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Abstract

High speed mobility is a challenging case in wireless communication where or-
thogonal frequency division multiplexing (OFDM) performance degrades due to
high Doppler effect. A new modulation scheme orthogonal time frequency space
(OTFS) that operates in the delay-Doppler (DD) domain is proposed in the litera-
ture. Considering the sparse nature of the delay-Doppler (DD) channel, we model
the estimation of the channel as a sparse signal recovery problem. To solve this
problem, we use compressed sensing (CS) based estimation techniques. We ap-
ply orthogonal matching pursuit (OMP), generalized OMP (gOMP), orthogonal
least square (OLS) and generalized OLS (gOLS) based algorithms for DD chan-
nel estimation. We compare the performance of the proposed CS-based estima-
tion schemes.We analyse the performance of the CS techniques for a grid pattern
which has pilot symbols embedded in the data frame. We further extended the
OTFS system for multi user case and analyse the performance of the CS-based
channel estimation schemes.

Keywords: OTFS modulation, delay-Doppler channel, compressed sensing (CS),
pilot arrangement, multi-user OTFS.
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CHAPTER 1

Introduction

1.1 Motivation

As technologies improve, the wireless applications demand high data rates. One
way to tackle this is to use large bandwidths as they increase the data rates but the
drawbacks of doing this is the frequency selective fading in the wireless channels.
Hence multi-carrier transmissions came into effect and out of these OFDM is most
commonly used in wireless transmissions.

OFDM provides high data rates with efficient use of high bandwidths and it
also combats the multi-path delay. It has been deployed in the fourth-generation
cellular communications.

Over the past years, interest has turned to the development of fifth-generation
cellular communications [1]. It is anticipated that carrier investment will require
new applications (beyond high-speed video connections), including Internet of
things (IoT), and high-velocity V2X (vehicle to vehicle V2V and vehicle to infras-
tructure V2I) connections.

OTFS is a recent modulation technique that has been shown to have robust
performance in high mobility environment [2][3][4][5]. OTFS modulation repre-
sents the channel and the information in the delay-Doppler (DD) domain rather
than the time-frequency (TF) domain as done by the conventional modulation
techniques. The advantage of the DD representation is that the channel is time
invariant in DD domain[4].

1.2 Problem Statement

The delay Doppler representation of the channel used in the OTFS system is
sparse in nature[2]. Due to this sparse nature we propose to use CS algorithms
for estimating the channel.CS algorithms estimate the non zero elements of the
DD channel and hence less parameters have to be estimated at the receiver side.

1



1.3 Contributions

The detection of the OTFS signals using the message passing is presented in [6]
where the algorithm assumes the perfect knowledge of the channel at the receiver
for signal detection. A channel estimation technique using impulses in the DD do-
main as the pilots also has been reported in [1]. The idea of embedding impulses
as pilots surrounded by guard band along with the data symbols in the DD plane
has been proposed in [7].The drawback of this method is that the spectral effi-
ciency is reduced with the inclusion of guard bands.In the current literature on
OTFS the sparse nature of the delay Doppler channel is not explored while esti-
mating.

This thesis will address the issue of estimating the DD channel using CS algo-
rithms for OTFS system as well as multiple access OTFS (MA-OTFS) system.

1.4 Organization of the Thesis

In Chapter 2 we discuss the basic OFDM principles its advantages and disadvan-
tages and Chapter 3 introduces the OTFS principles where we will discuss the
transition from the TF domain to the DD domain. Then we will discuss the OTFS
system model and the DD channel and address the problem of DD channel esti-
mation. In Chapter 4 we present orthogonal matching pursuit (OMP), generalized
OMP (gOMP), orthogonal least square (OLS) and generalized OLS (gOLS) based
algorithms.

In Chapter 5 we modify the OTFS system equations in order to apply the CS
algorithms for estimating the DD channel. In Chapter 6 we design the DD grid
consisting of both the pilot and data symbols and apply the CS algorithm.Chapter
7 introduces the multiple access OTFS (MA-OTFS) system where we will discuss
the grid design for using the CS-based estimation schemes. The results are pre-
sented in Chapter 8 where we compare the performance of the proposed CS-based
estimation schemes with the existing impulse based channel estimation with the
existing impulse based channel estimation. This is followed by the comparison of
the performance of the CS algorithms for grid discussed in Chapter 6 as well as
the MA-OTFS system. Lastly, Chapter 9 and Chapter 10 deal with the conclusion
and the future scope in this area.
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CHAPTER 2

OFDM (Orthogonal Frequency Division Mul-
tiplexing)

OFDM is a multi-carrier modulation scheme where the information symbols are
transmitted on sub-carriers which use frequency division multiplexing. These
sub-carriers are arranged such a way that they are orthogonal to each other i.e.,
peak of one sub-carrier is located at the zero crossing points of the remaining sub-
carriers.

Figure 2.1: The orthogonal sub-carriers in frequency domain.

Initially at the transmitter and the receiver a large number of sub-carrier oscil-
lators were used to do the frequency division multiplexing. The usage of discrete
time Fourier transform (DFT) by Weinstein and Ebert to perform the base band
modulation and demodulation eliminated the need of the bank of sub-carrier os-
cillators there by making the implementation of the system more efficient.

At the transmitted side the data symbols are mapped onto the sub-carriers in
parallel using the IDFT (inverse discrete time Fourier transform) block. By doing
this our data symbols in the frequency domain are converted to the time domain
for the transmission over the channel and at the receiver the inverse operations are
performed to get the received data symbols back to the frequency domain. Fast
Fourier transform (FFT) and inverse fast Fourier transform (IFFT) blocks replaced
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the DFT and IDFT blocks
In order to combat ISI (inter symbol interference) guard bands were used in

the frequency domain and raised cosine windowing is used in the time domain to
combat ICI (inter carrier interference).

With the introduction of the cycle prefix (CP) where they placed a cyclic ex-
tension of the OFDM symbol instead of using the guard band in the frequency
domain this can be seen in the below Fig. 2.2. This converted the transmission
over the channel as a cyclic convolution operation. Introducing the CP helps in
maintaining orthogonality even in poor transmission conditions thereby remov-
ing the effect of ISI.

Figure 2.2: Cyclic Prefix addition in the time domain.

The orthogonality of a signal is jeopardized when it is passing through a time-
dispersive channel. By introducing CP, the orthogonality between the sub-carriers
is maintained and the length of the CP (or the interval occupied by the CP) should
be larger than the maximum delay spread of the channel. CP ensures that the de-
layed replicas of the OFDM symbols will always have a complete symbol within
the FFT interval (often referred as FFT window) making the transmitted signal
periodic. When IFFT is taken for an OFDM symbol period the output is periodic,
hence all the resulting components of the original signal are orthogonal to each
other. In general, in the OFDM system can be viewed as transmitting the data on
time-frequency grid. The time frequency grid can be interpreted as a sequence of
N multi-carrier symbols having a spacing of τ0 and each having M sub-carriers
and having a spacing of ν0. The parameter τ0 is the multi-carrier symbol duration
and the parameter ν0 is the sub-carrier spacing. We note that the bandwidth of
the transmission B = Mν0.

2.1 OFDM system model

The OFDM system model is shown in Fig. 2.4, where the serial input bit stream
is modulated by the modulator block and is then converted into parallel so that
it can be fed into the IFFT block. By doing this the data in frequency domain
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Figure 2.3: The time frequency domain grid.

is converted into time domain for transmission as discussed previously. CP is
added to this in order to combat channel conditions but before adding CP the
data in parallel is converted into series. The signal in discrete domain is converted
into continuous domain using digital to analog converter (DAC). Now the analog
signal is transmitted over the channel.

Figure 2.4: OFDM system model.

At the receiver the opposite operations are done i.e., the received analog sig-
nal is converted into the discrete signal using ADC (Analog to Digital Converter).
CP is removed from this discrete signal and then further converted into parallel
using serial to parallel converter block. This parallel data is fed to the FFT block
which converts the time domain signal into the frequency domain signal for de-
modulation. The output from the FFT block is parallel which is converted into
serial data and is then demodulated into the serial output bit stream.
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2.2 OFDM advantages

• OFDM systems are more resistant to frequency selective fading when compared
to the single carrier system because the channel is divided into multiple narrow
sub-bands which undergo flat fading.
• The ISI is completely eliminated due to the introduction of cyclic prefix.
• The OFDM system is easy to implement due to the use of FFT techniques at the
transmitter and the receiver.
• The available spectrum is effectively utilized due to the closed space overlap-
ping of the sub-carriers.
• Channel equalization becomes simpler as it is to be applied on the sub channel
instead of applying across the entire channel.

2.3 OFDM disadvantages

OFDM has high PAPR (Peak to Average Power Ratio) which impacts the RF am-
plifier efficiency as the amplifier has to be in a linear range and accommodate high
amplitude variations. One of the major disadvantages of OFDM is the sensitiv-
ity to the carrier frequency offset as even a slight change in the frequency of one
sub-carrier results in the loss of the orthogonality among the entire sub-carriers
this results in the ICI. The loss of orthogonality among the sub-carriers is shown
in Fig. 2.5

Figure 2.5: Effect of Doppler frequency on the sub-carriers.

Though this can be mitigated to some extent using the frequency-controlled
oscillator but at high Doppler frequency resulting from high V2X (vehicle-to-
vehicle V2V and vehicle-to-infrastructure V2I) connections, the frequency offset
is so high that it is beyond the scope of FCO.
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CHAPTER 3

OTFS (Orthogonal Time Frequency Space)

The traditional OFDM suffers performance degradation in the high Doppler con-
ditions. One way to overcome this problem without sacrificing the performance
is to combine the principles of CDMA and OFDM i.e., to combine the principle of
spreading so as to have resilience to narrow band interference and the principle
of orthogonality so as to simplify the channel coupling for achieving high spectral
densities with better performance-complexity trade off [4].

OTFS is one such modulation scheme where the QAM data symbols are trans-
mitted over waveforms which are spread in both the time and the frequency do-
mains at the same time remaining orthogonal to each other. In general, OTFS
combines the reliability and robustness of the spread spectrum and the high spec-
tral efficiency low complexity of the narrow-band transmission.

For a better understanding of OTFS we look into the basic signal representa-
tion in the time and frequency domain. In the time domain representation, the sig-
nal is realized as the superimposition of the delta functions and in the frequency
domain representation, the signal is the superimposition of the complex exponen-
tials. These two representations are interchanged using the Fourier transform.

This complementary nature of the time and frequency representation is ex-
pressed by the Heisenberg uncertainty principle which states that the signal can-
not be localized in both time and frequency simultaneously. Which means that if
the signal is localized in the time domain, then its non-localized in the frequency
domain and vice versa.

Using ZAK representation/transform a time domain signal which is neither
time-limited nor bandwidth limited can be transformed into delay-Doppler do-
main in which the signal is localized [8]. A signal can be represented in three
fundamental ways. First, it can be represented as a function of time. Second,
it can be represented as a function of frequency. Third, it can be represented as
function of delay and Doppler.

Similar to Fourier transform, any signal in time domain or frequency domain
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can be transformed to delay-Doppler domain using Zak transform[8].
Converting the Time Domain Multiplex (TDM) pulse to the delay-Doppler

representation results in a function which is localized in the delay domain but it
is non localized in the Doppler domain and similar is the case when Frequency
Domain Multiplex (FDM) pulse is converted to the delay-Doppler representation
results in a function which is localized in the Doppler domain but it is non local-
ized in the delay domain. A modulation based on symmetrically localized signal
in the delay-Doppler representation as shown in the below Fig. 3.1 is referred to
OTFS or orthogonal time frequency space.

A wireless channel is modeled as the collection of reflectors which can either
be stationary or are moving. The transmitted wave is reflected by a reflector has
a shift in frequency due to the relative velocity between the reflector and the re-
ceiver/transmitter and these reflections arrive at the receiver with some delay.
There will also be a change in the amplitude based on the constructive or destruc-
tive interference due to numerous reflectors sharing the same properties of delay
and Doppler. We now look how the channel effects the three signals discussed
above i.e., the TDM, FDM and the OTFS waveforms.

Figure 3.1: The relation between TDM FDM OTFS

In Fig. 3.2 there are 5 reflectors out of which 3 are stationary and 2 are in
motion. By transmitting a localized TDM pulse we can separate the reflections
of each reflector based on the delays but when reflectors have same delay but
different Dopplers they are superimposed on each other and hence can’t be sep-
arated. This can be seen in the Fig. 3.2 where the TDM reflections from left to
right, the first and third reflections are time invariant as they are stationary, the
last reflection is time variant as its moving and lastly the second reflection is the
superimposition of the two reflectors where one is stationary while the other is
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Figure 3.2: TDM and FDM channel symbol interactions

moving.
By transmitting FDM pulse we can separate the reflections of each reflector

based on the Doppler values but when reflectors have same Dopplers but different
delays they are superimposed on each other and hence can’t be separated. This
can be seen in the Fig. 3.2 where considering the FDM reflections from top to
bottom the first and last reflections have different frequencies as they are moving
at different velocities. The middle reflection is due to the superposition of the
static reflectors.

Figure 3.3: Delay Doppler channel and symbol interactions

When we transmit a localized OTFS pulse in the delay-Doppler channel we
have the reflections with specific delay-Doppler shifts induced by different re-
flectors as shown in Fig. 3.3. The phase and the amplitude of the delay-Doppler
reflections are independent of the location of the initial pulse in the domain. These
reflections are also easily separated based on the delay and Doppler values, hence
there is no interference and no loss of energy. These reflections are also orthogonal
to each other.
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(a) (b)

Figure 3.4: 2D basis function in delay-Doppler domain

OTFS is a time-frequency spreading scheme which are a collection of 2D ba-
sis functions defined over a time-frequency grid. OTFS is designed as a pre-
processing block for the multi-carrier modulation schemes like the OFDM. This
is based on the duality of the Fourier duality between the delay-Doppler and the
time frequency grids.

The 2D basis signal in the delay-Doppler domain are shown in Fig. 3.4a. Each
basis in Fig. 3.4b are separated by a distance of 1

NT along the Doppler domain and
a distance of 1

M∆ f along delay domain. Hence in a given grid there are a total of
MN different basis signals which are orthogonal to each other[8].

The delay Doppler grid consists of M points along the delay axis of spacing
of ∆τ = τ

M and N points along the Doppler axis with spacing of ∆ν = ν
N and the

time-frequency grid consists of M points along the frequency axis with spacing
∆ f and N points along the time axis with a spacing of T . The time frequency
grid is interpreted as a sequence of N multi-carrier symbols each having M sub-
carriers. The parameter T is the multi-carrier symbol duration and the parameter
∆ f the sub-carrier spacing. We note that the bandwidth of the transmission B =

M∆ f is inversely proportional to the delay resolution ∆τ and the duration of the
transmission NT is inversely proportional to the Doppler resolution ∆ν. Both the
grids are presented in Fig. 3.5.

Figure 3.5: Time Frequency grid and the Delay Doppler grid.
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The Fourier relation between the two grids is a variant of the 2D FFT called
as simplectic finite Fourier transform (SFFT). SFFT transforms the time frequency
domain into the delay-Doppler domain or the inverse simplectic finite Fourier
transform (ISFFT) transforms the delay-Doppler domain to time-frequency do-
main which is shown in the below equation.

X[n, m] =
1√
NM

N−1

∑
n=0

M−1

∑
m=0

x[k, l]ej2π( nk
N −ml

M ) (3.1)

ISFFT can be seen as applying an M-dimensional FFT along the columns of
the delay-Doppler matrix x[k ,l] followed by applying N-dimensional IFFT along
the rows of the matrix to get the time-frequency domain X[n, m] .

Figure 3.6: The relation between different domains

Fig. 3.6 shows the different linear time variant (LTI) wireless channels and
relation between each of them. X(t, f ) represents the time-frequency response,
x(τ, t) represents the time-variant impulse response, X(τ, f ) represents the Doppler-
variant transfer response and x(τ, ν) represents the delay-Doppler response. Each
response can be transformed into another by means of Fourier transform as shown
in the figure. x[k,l] is the discrete delay-Doppler signal and X[n,m] is the discrete
time-frequency signal.

11



3.1 OTFS System model

In this section we derive the input output relation of the OTFS mod/demod for
delay-Doppler channel. Delay-Doppler plane is discretized to an information grid
Γ =

{( k
NT , l

M∆ f
)
, k = 0, 1, . . . , N − 1, l = 0, 1, . . . M − 1

}
where 1

M∆ f and 1
NT repre-

sent the quantization steps of delay and Doppler frequencies.

Figure 3.7: OTFS system model block diagram

First, we map the information symbols onto the delay-Doppler domain x [k,l].
The symbols in the delay-Doppler domain are converted into the time domain sig-
nal. The obtained time domain signal is then transmitted over the delay-Doppler
domain channel by the transmitter. At the receiver side the received time domain
signal is transformed back into the delay-Doppler domain.

3.1.1 OTFS modulation

Consider a set of information symbols x [k, l] k=0, 1, . . . , N-1, l=0, 1, . . . , M-1
which are arranged on the delay Doppler grid. Now these symbols in the delay-
Doppler domain are mapped to X [n, m] n=0, 1, . . . , N-1, m=0, 1, . . . , M-1 in the
time frequency domain.

This is done by applying ISFFT on x [k, l] as shown in (3.1). ISFFT can be seen
as applying inverse Fourier transform in Doppler domain and applying Fourier
transform in the delay domain to map the symbols into time frequency domain.

In Fig. 3.8 each element of the delay-Doppler domain grid when transformed
to time frequency domain spreads across the whole grid forming 2D wave forms
which are orthogonal to each other. This is similar to OFDM where the data grid
is mapped onto orthogonal sub-carriers, in OTFS the data grid is mapped onto
the 2D orthogonal wave forms. The spreading nature of OTFS is also similar to
that of CDMA.

The 2D symbols X[n, m] in time frequency domain are mapped to continuous

12



Figure 3.8: The 2D basis functions in the Information (delay-Doppler) domain
(left), and the corresponding symplectic Fourier dual basis functions in the time
frequency domain (right).

time domain signal s(t) as

s(t) =
N−1

∑
n=0

M−1

∑
m=0

X[n, m]gtx(t − nT)ej2π∆ f (t−nT) (3.2)

The above equation is also referred to as the Heisenberg transform, where it
maps the 2D symbols X[n,m] to a waveform s(t) via superimposition of delay-
and-modulate operations on the pulse waveform gtx(t).

The signal s(t) is transmitted over a time-varying channel with complex base-
band channel impulse response h(τ, ν). The received signal r(t) is given by (ne-
glecting the noise component in order to simplify the notations)

r(t) =
∫ ∫

h(τ, ν)s(t − τ)e−j2πv(t−τ) dτdν (3.3)

The transmitted signal is reflected by different reflectors and these reflections are
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superposed at the receiver. Each reflection is the delayed and frequency shifted
version of the transmitted signal s(t) weighted by h(τ, ν). The τ and ν correspond
to the path delay and Doppler shift introduced by the reflector.

h(τ, ν) =
P

∑
i=1

hiδ(τ − τi)δ(ν − νi) (3.4)

3.4 is the delay-Doppler channel where P is the number of propagation paths
and hi,τi,νi represent the path gain, delay, and Doppler shift (or frequency) asso-
ciated with i-th path, respectively, and δ(.) denotes the Dirac delta function.

3.1.2 OTFS demodulation

At the receiver side we perform the Wigner transform which can be seen as an
inverse operation of the Heisenberg transform.

Y(t, f ) = Agrx,r(t, f ) =
∫

g∗rx(t
′ − t)r(t ′)e−j2π f (t ′−t) dt ′ (3.5)

Sampling the continuous signal at every T intervals in the time domain and
∆ f intervals in the frequency domain yields Y[n, m] = Y(t, f )|t=nT, f=m∆ f .

we characterize the relationship between time–frequency output samples Y
[n, m] and input samples X [n, m] as

Y[n, m] =
N−1

∑
n ′=0

M−1

∑
m ′=0

Hn,m[n ′, m ′]Xn,m[n ′, m ′] (3.6)

Where

Hn,m[n ′, m ′] =
∫ ∫

h(τ, v)Agrx,gtx((n − n ′)T − τ, (m − m ′)∆ f − ν)

ej2π(ν+m ′∆ f )((n−n ′)T−τ)ej2πνn ′T dτdν
(3.7)

Hn,m[n ′, m ′] denotes the channel in the time-frequency domain as shown in
[6]. The grx(t),gtx(t) pulses are said to be ideal if they satisfy the bi-orthogonal
property [6].

Agrx,gtx(t, f )|t=nT+(−τmax,τmax), f=m∆ f+(−νmax,νmax)

= δ[n]δ[m]qτmax(t)qνmax( f )
(3.8)

The right-hand side of (3.8) is non zero only when n and m are zeros. Substi-
tuting this in (3.7), Hn,m[n ′, m ′] is non zero only when n ′ = n and m ′ = m.
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Y[n, m] = Hn,m[n, m]X[n, m] (3.9)

Where

Hn,m[n, m] =
∫ ∫

h(τ, v)e−j2π(ν+m∆ f )τej2πνnTdτdν (3.10)

The time frequency domain samples Y [n, m] are converted int the delay-Doppler
domain samples y [k, l] by applying the SFFT operation.

y[k, l] =
1√
NM

N−1

∑
n=0

M−1

∑
m=0

Y[n, m]e−j2π( nk
N −ml

M ) (3.11)

The above equations can be represented as matrix equations for easy imple-
mentation at the transmitter and the receiver. (3.1) is the ISFFT operation and can
be represented as matrix equation with the help of the DFT matrix i.e., FM and FN

which are the M point and N point DFT matrices.

X = FMxFH
N

Similarly, (3.2) is written as matrix equation S = GtxFH
MX and is further

simplified as S = GtxFH
MFMxFH

N . The vectorised form of S is s = Vec(S) =

Vec(GtxxFH
N ) = (FH

N ⊗ Gtx)xlin. Here xlin is the vectorised version of the M × N
delay Doppler matrix x.

s = (FH
N ⊗ Gtx)xlin (3.12)

At the receiver side (3.5) can be written as Y = FMGrxR where R is the matrix
form of the received vector r. Applying SFFT as shown in (3.11) we get y = FH

MYFN

which simplifies to y = GrxRFN. We vectorise y as ylin and R as r then we get the
matrix equation as

ylin = (FN ⊗ Grx)r (3.13)

Now that we discussed on the OTFS transmitter and the receiver we look into
the channel model in the delay-Doppler domain in the next chapter.

3.2 Channel Model

In order to obtain the channel in delay Doppler domain we simplify the end-to-
end input output relation of the OTFS system in the delay-Doppler domain [6].
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y[k, l] =
1

NM

N−1

∑
k ′=0

M−1

∑
l ′=0

x[k ′, l ′]hw[(k − k ′)N, (l − l ′)N] (3.14)

where (∗)N is the modulo N operation and

hw[(k − k ′)M, (l − l ′)N] = hw(ν, τ)|
ν= k−k ′

NT τ= l−l ′
M∆ f

hw(ν, τ) =
∫ ∫

h(τ ′, ν ′)w(ν − ν ′, τ − τ ′)e−j2πν ′τ ′) dτ ′dν ′ (3.15)

Proof is given in Appendix A.
Substituting (3.4) we further simplify hw(ν, τ)

hw(ν, τ) =
P

∑
i=1

hie−j2πνiτi w(ν − νi, τ − τi)

hw(ν, τ) =
P

∑
i=1

hie−j2πνiτi G(ν, νi)F(τ, τi) (3.16)

Where

F(τ, τi) =
M−1

∑
m ′=0

ej2π(τ−τi)m ′∆ f

G(ν, νi) =
N−1

∑
n ′=0

ej2π(ν−νi)n ′T

Evaluating G(ν, νi) and F(τ, τi) at ν = k−k ′
NT , τ = l−l ′

M∆ f we get

F
(

l − l ′

M∆ f
, τi

)
=

M−1

∑
m ′=0

ej2π(l−l ′−lτi )m
′

(3.17)

G
(

k − k ′

NT
, νi

)
=

N−1

∑
n ′=0

ej2π(k−k ′−kνi )n
′

(3.18)

To get the delay-Doppler channel we use (3.16), (3.17), (3.18) and for which
we need the delay-Doppler coefficients and the channel coefficients as the inputs
and upon substituting these values in the equations we get the 2D M × N channel
matrix in the delay-Doppler domain.

Fig. 3.9 shows the delay-Doppler channel, the non-zero elements correspond
to the reflectors and their coordinates on the grid corresponds to the delay and
Doppler values, the magnitude signifies the attenuation of the corresponding re-
flector. Since the reflectors are few in number the delay-Doppler channel is sparse
in nature.
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Figure 3.9: 2-D channel in the delay Doppler domain.

To get the channel in the time frequency domain we can perform the SFFT
operation on the delay-Doppler channel matrix. We get the same results by sub-
stituting (3.4) in (3.10). Fig. 3.10 shows the channel in the delay-Doppler domain
which is sparse in nature and Fig. 3.11 shows the corresponding time-frequency
domain channel response.

Figure 3.10: Delay-Doppler domain channel
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Figure 3.11: Time-frequency domain channel

Substituting (3.4) in (3.3) we get

r(n) =
P

∑
i=1

hie
−j2πki(n−li)

NM s([n − li]MN) + w(n), 0 ≤ n ≤ MN − 1 (3.19)

(3.19) is written in the matrix form as

r = H1s + w (3.20)

H1 =
P

∑
i=1

hiΠli ∆ki (3.21)

Where Π is the permutation matrix and ∆ is a diagonal matrix shown below and
hi , li , ki are the channel, delay and Doppler coefficients respectively.

Π =


0 · · · 0 1
1 · · · 0 0
... . . . ...

...
0 · · · 1 0


MN×MN
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∆ki =


e

j2πki(0)
NM · · · · · · 0

0 e
j2πki(1)

NM · · · 0
... . . . . . . ...

0 · · · · · · e
j2πki(MN−1)

NM


MN×MN

On simplifying (3.12) , (3.13) and (3.20) we get

ylin = (FN ⊗ Grx)H1(FH
N ⊗ Gtx)xlin + (FN ⊗ Grx)w (3.22)

where
He f f = (FN ⊗ Grx)H1(FH

N ⊗ Gtx)

ŵ = (FN ⊗ Grx)w

ylin = He f f xlin + ŵ (3.23)

From (3.23) we conclude that if we know the channel matrix then we can
get back the transmitted message symbols. Hence channel estimation is to be
performed in order to get the channel state information (CSI). The performance
of the system in decoding the transmitted symbols depends on how perfectly we
are able to estimate the channel.
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CHAPTER 4

Compressive sensing

Nyquist sampling theorem states that a sampled signal can be reconstructed with-
out losing any information if the signal is sampled at frequency twice that of the
maximum frequency of the signal. This results in too many samples which makes
compression of these samples necessary before performing any operations.

Compressive sensing states that if a signal is sparse in some transformed do-
main, then that signal can be compressed. For example, let u(t) be a time domain
signal which on sampling at Nyquist rate becomes uN×1 which is an N length vec-
tor containing samples of u(t). According to compressive sensing if u is known to
be sparse in some transformed domain say u = ψx where x is also an N length
vector which is K sparse i.e., x has K(K ≪ N) non zero values, then u can be
reconstructed from fewer samples i.e., y = Au where y is an M × 1 vector with
M < N.

y = Aψx = ϕx where y is the observation vector and ϕ is the M × N dictio-
nary matrix. Obtaining x from y and ψ can be seen as solving and undetermined
system with M equations and N unknowns (M < N). We can recover x by l0
minimization i.e.,argmin

x
∥x∥0 subject to the constraint that y = ψx. This is a con-

vex optimization problem which is NP-hard. ∥x∥0 is defined as total number of
non-zero elements present in x. Alternatively, we use l1 minimization or greedy
algorithms. l1 is defined as

∥x∥1 =
N

∑
i=1

|xi|

In order to get perfect reconstruction, the dictionary matrix ϕ has to satisfy
the Restricted Isometry Property (RIP).

A matrix ψ is said to satisfy the RIP of order K if there exists a Restricted
Isometry Constant δk ∈ (0, 1) such that

1 − δk ≤
∥ϕx∥2

2
∥x∥2

2
≤ 1 + δk
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The constant δk is taken as the smallest number from (0, 1) for which the RIP
is satisfied.

Compressive sensing algorithms try to find the sparse estimation of the orig-
inal signal using the compressive measurements and the dictionary matrix. One
of the methods is the greedy approach, which is a step-by-step iterative method.
In each iteration the solution is updated by selecting those columns of the dictio-
nary matrix which are highly correlated with the measurement vector and adding
them to the support set. A few greedy algorithms discussed in this book are OMP
(Orthogonal Matching Pursuit), gOMP (Generalized Orthogonal Matching Pur-
suit), OLS (Orthogonal Least Square) and gOLS (Generalized Orthogonal Least
Square) algorithms.

All the mentioned algorithms have the same steps which are the initialization
step, identifying step and the updating step. In the initialization step an M × 1
vector r called the residue vector is initialized to the measurement vector y, sup-
port set Λ is initialized as a null set (∅) and the solution vector x is initialized
to 0. In the identifying step the atom which is to be added to the support set is
calculated. In the updating step the solution vector x is updated using the least
square method and the residue is calculated using the updated solution vector.

Algorithm 1 OMP Algorithm [9]
Input:ϕ, y, stoppingcriterion
Initialize: r0 = y, x0 = 0, Λ = ∅, l = 0
while Not converged do

Match : hl = ϕTrl

Identify : Λl+1 = Λl ∪ argmax
j

∥hl(j)∥

Update: xl+1 = arg min
z:supp(z)⊆ Λl+1

∥y − ϕz∥2

rl+1 = y − ϕxl+1

l = l + 1

end
Result : x̂ = xl = arg min

z:supp(z)⊆ Λl
∥y − ϕz∥2
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Algorithm 2 gOMP Algorithm [10]
Input:ϕ, y, stoppingcriterion
Initialize: r0 = y, x0 = 0, Λ = ∅, l = 0, n
while Not converged do

Match : hl = ϕTrl

Identify : αk = argmax
jk

∥hl(jk)∥

Λl+1 = Λl ∪ {α1, α2, · · · , αN}
Update: xl+1 = arg min

z:supp(z)⊆ Λl+1
∥y − ϕz∥2

rl+1 = y − ϕxl+1

l = l + 1

end
Result : x̂ = xl = arg min

z:supp(z)⊆ Λl
∥y − ϕz∥2

The difference between the OMP and gOMP algorithms is in the identify step
where in OMP we select the maximum element where as in the gOMP algorithm
we select the ’n’ maximum elements instead of one in each iteration.

Algorithm 3 OLS Algorithm [11]
Input:ϕ, y, stoppingcriterion
Initialize: r0 = y, x0 = 0, Λ = ∅, l = 1
while Not converged do

Identify : imax = argi min
Λl : Λl = Λl−1 ∪ i

∥y − ϕΛl
i
ϕ†

Λl
i
y∥2

Update: Λl : Λl = Λl−1 ∪ imax
xl = ϕ†

Λl y
rl = y − ϕxl

l = l + 1

end
Result : x̂ = xl−1 = arg min

z:supp(z)⊆ Λl−1
∥y − ϕz∥2

22



Algorithm 4 gOLS Algorithm [12]
Input:ϕ, y, stoppingcriterion
Initialize: r0 = y, x0 = 0, Λ = ∅, l = 1, N
while Not converged do

Identify : imax = argi min
Λl : Λl = Λl−1 ∪ i

∥y − ϕΛl
i
ϕ†

Λl
i
y∥2

Update: Λl : Λl = Λl−1 ∪ {imax1, imax2, · · · , imaxN}
xl = ϕ†

Λl y
rl = y − ϕxl

l = l + 1

end
Result : x̂ = xl−1 = arg min

z:supp(z)⊆ Λl−1
∥y − ϕz∥2

ϕ†
Λl is the Morse pseudo inverse of ϕΛl which is similar to the least square

solution.
OLS and gOLS algorithms differ in the same way as OMP and gOMP differ

from each other that is selecting n minimum elements in gOLS instead of one
in each iteration for the OLS algorithm. OPM and OLS algorithms differ in the
identifying step as the OMP algorithm selects the atom which has the maximum
correlation between the column of the dictionary matrix and the residue vector.
Where as in the OLS algorithm the atom which has the least square error of the
residue vector.

The performance of the CS algorithms depends on the sparsity of the vec-
tor which is to be reconstructed. As the sparsity order increases i.e., the non-
zero elements increase the reconstruction of the sparse vector becomes difficult.
This is seen in the performance analysis of the CS algorithms where we plot the
percentage of successful reconstruction against the sparsity. The results are pre-
sented in Fig. 4.1 and for this we consider a M × N(128 × 256) dictionary matrix
ϕ whose elements are gaussian distribution N (0, 1

M )The K-sparse vector has the
non-zero elements from either gaussian signal or randomly selected from PAM
signals {±1,±3}.

In Fig. 4.2 we present the time taken by each CS algorithm for successful
reconstruction as a function of sparsity. The time taken for the OMP and gOMP
algorithms is less when compared to OLS and gOLS algorithms as they are less
complex and the time taken increases as sparsity increases.

In Fig. 4.3 we present the iterations taken by each CS algorithm for successful
reconstruction as a function of sparsity. In both figures 4.3a and 4.3b , the itera-
tions taken by the CS algorithm increase linearly with the increase of sparsity.
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(a) PAM Signal (b) Gaussian Signal

Figure 4.1: Percentage of successful reconstruction by CS algorithms as a function
of sparsity

(a) PAM Signal (b) Gaussian Signal

Figure 4.2: Time taken for successful reconstruction by CS algorithms as a function
of sparsity

(a) PAM Signal (b) Gaussian Signal

Figure 4.3: Iterations taken for successful reconstruction by CS algorithms as a
function of sparsity
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CHAPTER 5

Delay Doppler channel estimation

The channel in the delay-Doppler domain is sparse in nature so the compressive
sensing algorithms can be applied to estimate the delay-Doppler channel. In order
to apply the compressive sensing algorithms, we rewrite the OTFS system model
equations in an alternate form of y = ϕx where y is the output vector and ϕ is the
dictionary matrix and x is the sparse input vector.

From (3.14) we can see that the input-output relation in the delay-Doppler do-
main is the 2D convolution with the channel matrix and the input delay-Doppler
matrix. (3.14) is rewritten as

ylin =
1

MN
Hxlin (5.1)

Proof is in Appendix B.
Similarly (3.14) can also be rewritten in the form of y = Xh where h is MN × 1

channel vector obtained by the vectorization of the M× N delay-Doppler channel
matrix and X is the MN × MN 2D matrix and y is the corresponding MN × 1
output vector. Now the 1D channel matrix h becomes the sparse vector which is
to be estimated using output vector y and the dictionary matrix X as the inputs
for the compressive sensing algorithms.

In the Fig. 5.1 we take an example for 2D convolution of 2× 2 matrices, first el-
ement of the output y = y00 is obtained by the dot product of vectors

[
1 2 3 4

]
and

[
a b c d

]
and the second element y01 is obtained by the dot product of

vectors
[
1 2 3 4

]
and

[
b a d c

]
,y10 the third element of y is obtained by the

dot product of vectors
[
1 2 3 4

]
and

[
c d a b

]
, finally the fourth element

of y = y11 is obtained by the dot product of vectors
[
1 2 3 4

]
and

[
d c a b

]
.These dot products are written in the form of y = Xh. The mathematical equa-
tions are similar to the steps followed in converting (3.14) to (5.1).
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Figure 5.1: Matrix representation of the 2D convolution.

y[k ′, l ′] =
1

MN

N−1

∑
k2=0

M−1

∑
l2=0

hw[k2, l2]x[(k ′ − k2)N, (l ′ − l2)M] (5.2)

and hence the double summation is written as a matrix equation as

y =
1

MN
Xh (5.3)

For the DD channel estimation, X is the dictionary matrix which has the mod-
ulated symbols known to both the transmitter and the receiver i.e., pilot symbols.
We use the entire M × N grid to transmit the pilots for channel estimation. In this
method the first grid contains the pilot symbols for the channel estimation and
once the channel is estimated we send the data symbols and use the estimated
channel while decoding the data symbols at the receiver.

This method assumes that the channel remains static, so that once estimated
it can be used for decoding at the receiver. This is not the case in practice as the
channel is not static and changes with time. Hence, we have to design a grid
which has both the pilot as well as the data symbols for transmission so that we
can estimate the channel for the respective grids.
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CHAPTER 6

Grid Design

From Fig. 3.9 and Fig. 3.10 for an M channel matrix the channel quotients are
present inside a sub-matrix of size max delay spread (lmax) along the Delay axis
and max Doppler spread (kmax) along the Doppler axis and the remaining ele-
ments of the matrix are zeros.

From this observation we can use a pilot gird of the size lmax × kmax and still
perform channel estimation. Hence, we design our grid such that it has pilot grid
of sufficient size at the centre surrounded by a guard band then the remaining
elements can be used for data transmission.

For an M × N grid the centre
(M

2 − kmax to M
2 + kmax

)
along the Doppler axis

and
(N

2 − lmax to N
2 + lmax

)
along the delay axis will be the pilot symbols grid used

for CS dictionary matrix.
The guard band encircles the pilot grid with guard length of

d = max (lmax, kmax). Hence, the dimensions of the guard band along the de-
lay axis

(N
2 − lmax − d to N

2 − lmax
)

and
(N

2 + lmax to N
2 + lmax + d

)
and along the

Doppler axis
(M

2 − kmax − d to M
2 − kmax

)
and

(M
2 + kmax to M

2 + kmax + d
)
. Rest

of the M × N grid contains the data symbols.
From Fig. 6.1a the delay-Doppler grid has the pilots in the centre which are

surrounded by the guard symbols and then the data symbols are mapped in the
remaining part of the grid. The size of the pilot grid and the guard symbols de-
pend on the max delay and Doppler spread of the channel. For example, the grid
in Fig. 6.1b is of size 24 × 24 and if the max delay and Doppler spread of the
channel is 4 then the size of the pilot grid is 4 × 4 and the guard symbols are of 5
symbols in width on each side of the pilot grid which results to a grid of 14 × 14
size (14 = 5 (guard symbols) + 4 (pilot symbols) + 5 (guard symbols)). The remain
part of the grid has data symbols.

Fig. 6.2 gives us the channel response for the delay-Doppler grid mentioned
in Fig. 6.1. From the channel response the centre part of the grid is used for
estimating the channel using the CS algorithms and then the estimated channel
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(a) Grid in 3D (b) Top View of grid

Figure 6.1: The delay-Doppler grid with the pilot symbols as well as the data
symbols.

(a) Grid in 3D
(b) Top View of grid

Figure 6.2: The delay-Doppler channel response for the grid with the pilot sym-
bols as well as the data symbols.
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is used for estimating the data transferred in the grid. Hence this type of grid
can capture the dynamic change in the channel and correspondingly modify the
channel estimate for better demodulation process at the receiver side. We only
consider the central position of the grid which is the pilot grid as the dictionary
matrix and the corresponding central position at the receiver side as the corre-
sponding channel output which will be given as the input parameters for the CS
algorithms.

29



CHAPTER 7

OTFS-MA (Multiple Access)

We extend the OTFS system model to multiple user case scenario i.e., multiple
access OTFS system (OTFS-MA) where each user has a dedicated delay slot. Con-
sider the OTFS-MA system with Ku multiple users at the transmitter side and a
single antenna to receive them. Hence at the receiver side the information from
these Ku users is multiplexed on the M× N delay-Doppler grid. The system equa-
tion (5.3) is modified as

y =
Ku

∑
i=1

Xihi

y =
[
X1 X2 · · · XKu−1 XKu

]


h1

h2
...

hKu−1

hKu



Xcomb =
[
X1 X2 · · · XKu−1 XKu

]
, hcomb =



h1

h2
...

hKu−1

hKu


y = Xcombhcomb (7.1)

Where Xi is the MN data grid corresponding to the ith user which is obtained
by converting the x[k, l]M × N delay-Doppler grid of the ith user. For the OTFS-
MA we design the grid such that each user’s data does not interfere with the
other user. This is done by assigning a part of the grid for single user data and
the remaining part is made to zero. Below Fig. 7.1 shows the design of the delay-
Doppler grid of size 16 × 16 with 4 users whose data is multiplexed along the
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delay axis.

Xu[k, l] =

α, if k ∈
{ (u−1)M

Ku
, · · · , uM

Ku
− 1

}
, l ∈

{
0, 1, · · · , N − 1

}
0, otherwise

α is the modulated symbol.

Figure 7.1: The four data grids corresponding to the 4 users in delay-Doppler
domain.

Fig. 7.1 has 4 user grids and the yellow region in each user grid is the part on
the grid where data of the corresponding user is transmitted. Rest of the grid is
zero for the corresponding user.
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CHAPTER 8

Results

In this section we present the performance results of the CS algorithms discussed
for channel estimation. The normalized mean square error (NMSE) between the
original channel (H) and the estimated channel (Ĥ) from the CS algorithms as a
function of noise SNR in dB scale is used.

NMSE =
∥Ĥ − H∥2

2
∥H∥2

2

A delay-Doppler grid with M = 4 and N = 4 with a carrier frequency of 4GHz
and sub-carrier spacing of 15kHz. The channel has 4 multi-paths with a max delay
spread of 2.08 µs and max Doppler spread of 470Hz. For the channel estimation
the entire grid is considered as a pilot i.e., known symbols are mapped onto the
grid for transmission which are used as dictionary matrix for the CS algorithms.
The results from the CS algorithms are also compared with the impulse-based
channel estimation technique [2]. The noise SNR is varied from 0dB to 50dB and
the NMSE performance of the estimated channel by different CS algorithms is
plotted. Along with the NMSE performance we also plot the iterations taken by
each algorithm and the also the time taken by each of these CS algorithms against
the SNR in dB scale.
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Figure 8.1: NMSE performance of OMP, gOMP, OLS, gOLS and impulse based
estimation with 16 QAM symbols as the elements of the dictionary matrix.

From Fig. 8.1 we observe that the NMSE performance of the CS algorithms
that are the OMP, gOMP, OLS and gOLS algorithms is same and they perform
poorly when compared to the impulse-based estimation technique.

Figure 8.2: NMSE performance of OMP, gOMP, OLS, gOLS and impulse based
estimation with 64 QAM symbols as the elements of the dictionary matrix.
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Figure 8.3: NMSE performance of OMP, gOMP, OLS, gOLS and impulse based
estimation with 256 QAM symbols as the elements of the dictionary matrix.

As we increase the modulation order the performance of the CS algorithms
approaches to that of the impulse based estimation technique. This is observed in
Fig. 8.2 and Fig. 8.3.

In Fig. 8.4 we see the combined performance of the CS algorithms with dif-
ferent QAM modulation order as the elements of the dictionary matrix.

Figure 8.4: NMSE performance of OMP algorithm with dictionary matrix ele-
ments having modulation order (i)16, (ii)64, (iii)256 and Impulse based estima-
tion.

From Fig. 8.4 we observe that as the modulation order increases the CS al-
gorithms performance improves. This is due to the decrease in the correlation
between the elements of the dictionary matrix as modulation order. The correla-
tion of the dictionary matrix is shown in Fig. 8.5.
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Figure 8.5: The auto correlation of the dictionary matrix with QAM symbols at
different modulation order as the elements of the matrix.

To further differentiate the performance of the CS algorithms we present the
number of iterations taken by each algorithm to converge as a function of the SNR
in dB in Fig. 8.6 and time taken by each algorithm to converge as a function of
SNR in dB in Fig. 8.7.

Figure 8.6: : Iterations taken by (i) OMP (ii) gOMP (iii) OLS (iv)gOLS to converge.
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Figure 8.7: Time taken in seconds by (i) OMP, (ii) gOMP, (iii) OLS, (iv)gOLS to
converge.

Fig. 8.8 shows the performance of the CS algorithms for this grid designed in
Chapter 6 and they remain same as that of the previous results presented in this
session.

Figure 8.8: NMSE performance of OMP, gOMP, OLS, gOLS for the new grid.

Once we have the estimated channel, we perform the Least square estimation
on (5.1) to get the estimated data which will be demodulated and bit error rate
(BER) performance is plotted against the noise SNR in dB scale. This is shown in
the Fig. 8.9.

Fig. 8.9 shows the BER performance of the estimated channel along with the
BER performance when the channel is known at the receiver side.
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Figure 8.9: BER performance of estimated channel and when the channel is known
while decoding at the receiver side.

Now we look into the performance analysis of the CS algorithms for the MA-
OTFS system. The CS algorithms are applied for (7.1) and for the impulse-based
estimation the grid design for each user is as shown in Fig. 8.10 and follows the
below equation.

Xu[k, l] =

1, if k = (u−1)M
Ku

u ∈
{

1, 2, · · · , Ku
}

, l = 0

0, otherwise

In the Fig. 8.10 the element marked yellow in each grid are the position where
impulse is present for the 4 users and rest of the grid is zeros. The shaded region is
where the corresponding user’s data will be sent in the subsequent transmissions.

37



Figure 8.10: The grid design for the 4 users in the MA-OTFS case and each grid is
of size 16x16.

Figure 8.11: The channel response corresponding to each individual user.
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The channel response for the impulse-based method is shown in Fig. 8.11.
The colored elements in the grid signifies the reflectors. In the above figure the
channel for each user has 4 reflectors and the reflectors have a max delay spread
of 5 and max Doppler spread of 5. The 16x16 grid is divided among 4 users and
each user spans 4 grid elements along the delay axis. In the channel response
some of the reflectors go out of the user’s allocated part in the grid this results
in inter user interference when the 4 channel responses are added at the receiver
side as shown in Fig. 8.12.

Figure 8.12: The channel response at the receiver side.

Fig. 8.13 and Fig. 8.14 shows the NMSE performance of 8x8 grid with 4
users with max delay and max Doppler spread of 2 and with max delay and max
Doppler spread of 4 respectively.
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Figure 8.13: NMSE performance of 8x8 grid with 4 users with max delay and max
Doppler spread of 2

Figure 8.14: NMSE performance of 8x8 grid with 4 users with max delay and max
Doppler spread of 4
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CHAPTER 9

Conclusions

From Fig. 8.6 we observe that gOMP and gOLS take less iterations to converge
because in the algorithms identifying step, we take N=2 that is two max element
when compared to taking only one element in the case of OMP and OLS algo-
rithms. From Fig. 8.7 we observe that gOMP takes the least time to converge. OLS
and gOLS take more time to converge than OMP and gOMP, this is because the
OLS and gOLS algorithms differ from OMP and gOMP algorithms in the identi-
fying step. The identifying step is more complex and time consuming for the OLS
and gOLS algorithms.

Considering all the above mentioned results we conclude that gOMP algo-
rithm has the better performance when compared to the other CS algorithms in
estimating the DD channel.

Using the grid design as discussed in chapter 6 we can estimate the channel
as well as use the grid for data transfer. Fig. 8.9 shows the BER results and We
can see that the performance of the estimated channel is almost similar to that of
when the channel is known at the receiver side.

The performance of CS algorithms for estimating the DD channel in the MA-
OTFS case are presented in Fig. 8.13 and Fig. 8.14 and from Fig. 8.12 we can
conclude that when the max delay spread is more than the elements allocated to
the individual users resulting in inter user interference. This is reflected in the
NMSE performance of the impulse-based estimation technique.

From Fig. 8.13 when there are 4 users (each user having 2 grid elements along
the delay axis) we can see that when the max delay spread is 2 which is equal to
each user’s grid element along delay axis the impulse-based channel estimation
has better performance than that of the CS algorithms. And in Fig. 8.14 when
there are 4 users (each user having 2 grid elements along the delay axis) we can
see that when the max delay spread is 4 which is greater than each user’s grid
element along delay axis resulting in interference and hence the CS algorithms
have better performance than that of the impulse-based channel estimation.
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CHAPTER 10

Future Scope

In Chapter 4 we discussed a few CS algorithms and were implemented in estimat-
ing the sparse DD channel. The performance of these algorithms vary from one
another as seen in the results section. This opens up further opportunities to ex-
plore other algorithms which can further improve the performance in estimating
the delay Doppler channel in OTFS system.

In chapter 7 we estimated the delay-Doppler channel for OTFS-MA system
which is a MISO system using CS algorithms. This can be further extended to the
MIMO OTFS system and see how these algorithms perform.

Similar to the grid designed in Chapter 6 a similar grid can also be designed
for MISO and MIMO systems in order to estimate the dynamicaly varying DD
channel .
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CHAPTER A

y[k, l] =
1√
NM

N−1

∑
n=0

M−1

∑
m=0

Y[n, m]e−j2π( nk
N −ml

M )

substituting Y[n, m] = Hn,m[n, m]X[n, m] and from (3.1)

=
1

NM

N−1

∑
n=0

M−1

∑
m=0

Hn,m[n, m]

[
N−1

∑
k ′=0

M−1

∑
l ′=0

x[k ′, l ′]ej2π
(

nk ′
N −ml ′

M

)]
e−j2π( nk

N −ml
M )

=
1

NM

N−1

∑
k ′=0

M−1

∑
l ′=0

x[k ′, l ′]

[
N−1

∑
n=0

M−1

∑
m=0

Hn,m[n, m]e−j2πnT
(

k−k ′
NT

)
ej2πm∆ f

(
l−l ′
M∆ f

)]

=
1

NM

N−1

∑
k ′=0

M−1

∑
l ′=0

x[k ′, l ′]hw[k − k ′, l − l ′]

where

hw[k − k ′, l − l ′] =
N−1

∑
n=0

M−1

∑
m=0

Hn,m[n, m]e−j2πnT
(

k−k ′
NT

)
ej2πm∆ f

(
l−l ′
M∆ f

)

And hw(τ, ν) is the circular convolution of the channel response with the SFFT of
the rectangular windowing function in the time-frequency domain.

hw(τ, ν) =
N−1

∑
n=0

M−1

∑
m=0

Hn,m[n, m]e−j2πnTνej2πm∆ f τ

hw(τ, ν) =

N−1

∑
n=0

M−1

∑
m=0

[∫ ∫
h(τ ′, ν ′)e−j2π(ν ′+m∆ f )τ ′

ej2πν ′nTdτ ′dν ′
]

e−j2πnTνej2πm∆ f τ
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∫ ∫
h(τ ′, ν ′)

[
N−1

∑
n=0

M−1

∑
m=0

e−j2π(ν ′−ν)nTej2π(τ−τ ′)m∆ f

]
e−j2πτ ′ν ′

dτ ′dν ′

∫ ∫
h(τ ′, ν ′)w(ν − ν ′, τ − τ ′)e−j2πτ ′ν ′

dτ ′dν ′

where

w(τ, ν) =
N−1

∑
n=0

M−1

∑
m=0

1.e−j2π(νnT−τm∆ f )
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CHAPTER B

y[k ′, l ′] =
1

NM

N−1

∑
k=0

M−1

∑
l=0

x[k, l]hw[(k − k ′)N, (l − l ′)M]

let the elements of the matrix y be known as follows:

y =


y0,0 y0,1 y0,2 · · · · · · y0,M−1

y1,0 y1,0 y1,1 · · · · · · y1,M−1
...

...
... · · · · · · ...

yN−1,0 yN−1,1 yN−1,2 ... ... yN−1,M−1


N×M

The 2D matrix y and x are rewritten as the column vectors as follows

y =



y0,0

y0,1
...

y0,M−1

y1,0

y1,1
...

y1,M−1
...
...
...

yN−1,0

yN−1,1
...

yN−1,M−1


NM×1

x =



x0,0

x0,1
...

x0,M−1

x1,0

x1,0
...

x1,M−1
...
...
...

xN−1,0

xN−1,1
...

xN−1,M−1


NM×1

Any element of y can be obtained from the equation as
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y[a, b] =
1

NM

N−1

∑
k=0

M−1

∑
l=0

x[k, l]hw[(a − k)N, (b − l)M]

y[a, b] =
1

NM

N−1

∑
k=0

M−1

∑
l=0

x[k, l]hw[(N − k + a)N, (N − l + b)M]

This double summation can be rewritten as

y[a, b] =
1

NM
habx

Where hab is 1 × MN row vector and x is the column vector.

ha,b =



hw[(N − 0 + a)N, (M − 0 + b)M]

hw[(N − 0 + a)N, (M − 1 + b)M]
...

hw[(N − 0 + a)N, (M − (M − 1) + b)M]

hw[(N − 1 + a)N, (M − 0 + b)M]

hw[(N − 1 + a)N, (M − 1 + b)M]
...

hw[(N − 1 + a)N, (M − (M − 1) + b)M]
...
...
...

hw[(N − (N − 1) + a)N, (M − 0 + b)M]

hw[(N − (N − 1) + a)N, (M − 1 + b)M]
...

hw[(N − (N − 1) + a)N, (M − (M − 1) + b)M]



T

H =



h0,0

h0,1
...

h0,M−1

h1,0

h1,0
...

h1,M−1
...
...
...

hN−1,0

hN−1,1
...

hN−1,M−1


NM×NM

We generate a 2D matrix H of dimensions MN × MN whose rows are the hij

such that we can rewrite the double summation equation (12) as

y =
1

NM
Hx
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Equation (12) can be rewriten as

y[k ′, l ′] =
1

NM

N−1

∑
k2=0

M−1

∑
l2=0

x[k2, l2]hw[(k2 − k ′)N, (l2 − l ′)M]

and hence the double summation is writen as a matrix equation as

y =
1

NM
Xh
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