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Abstract

Osteoarthritis (OA) is a common cause of painful knee joints among senior citi-
zens. Osteoarthritis restricts the range of movement of the body. Senior citizens
are particularly vulnerable, as limited mobility reduces their quality of life, lead-
ing to depression and isolation. Proper working of joints is an essential health
indicator. In early-stage osteoarthritis can be treated mainly based on medication
and physiotherapy. When the conventional treatment stops giving relief to pa-
tients, total knee arthroplasty (TKA) is the next option available to the patient.
The success of TKA depends on proper sizing and positioning of implant, pre-
operative and intra-operatively decisions. 3D segmented bone information from
the patient’s Magnetic Resonance Imaging (MRI) or Computed Tomography (CT)
can help doctors make better pre-operative decisions on implant size and posi-
tioning plan.

CT scan image is the input for this pre-operative stage of TKA. But the chal-
lenge here is that the CT images comes as in slices and it becomes a problem to
identify exact location and their physical condition of the bones converging at the
knee. The main bones are femur, tibia and fibula. It would become quite helpful
for the surgeon if these bones and only bones are visibly available in a 3D view
of the given CT scan images. For this segmentation of these bones is desired and
if the segmentation be done in an automated way, it would be very less resource
and less time consuming. This thesis presents an automated framework for seg-
mentation of the distal femur and femoral head from 3D CT scans. The first stage
of this framework consists of 2D U-Net architecture for landmark prediction of
the distal femur and femoral head in the original 3D CT scans. The next stage of
the framework is to perform local 3D segmentation around the landmark. We also
demonstrated and performed tissue and femur bone segmentation using various
methods such as fixed threshold segmentation, UNet segmentation, and Ostu’s
based segmentation. Further focusing on the femur bone of CT scans of the knee
joint, we are using deep learning method the UNet as segmentation model.

The test set of CT scans is used to evaluate the methods. The experiments of
the results indicate that the method chosen by us, of landmarking and further
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segmentation is effectively and thoroughly automatically able to segment femur
bone and distal femur from the whole leg CT scans.
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CHAPTER 1

Introduction

A consequence of an aging society is that the older population is prone to chronic
diseases. This may lead to increased demands for qualified medical practition-
ers in the upcoming years. The current healthcare system must be restructured
from personalized care to a more decentralized and automated one that empha-
sizes more accuracy and less time for treatment. Osteoarthritis (OA) is a disease
that affects people over the age of 60 years. The degradation of articular car-
tilage in joints, notably in the knee and hip, characterizes this disorder. When
the cartilage wears away, bones scrape against each other, producing stiffness,
pain, and discomfort in joint movement. It is the most frequent joint illness and
the second most common rheumatologic condition in India, with a prevalence of
22% to 39% of the population. [53]. Women are more likely than men to suffer
from it. Over the age of 65 years, nearly 45% of women show symptoms, while
70% amongst those over 65 show the existence of osteoarthritis in the radiology
tests [53]. Among the treatment options currently available, total hip replacement
(THR) and total knee arthroplasty (TKA) surgery are the most effective.

Different technologies are used to produce high-resolution three-dimensional
models of tissues and bones from patient-specific medical imaging, such as Com-
puted Tomography (CT). Medical images provide a way to examine, diagnose,
monitor, and eventually treat multiple medical conditions wherein the skillful
physicians do not require any instrument insertion in the body. Tissue segmenta-
tion is the technique of segregating an image into sections that correspond to dis-
tinct types of tissue. These classes are defined in biology as specific tissue types,
whole organs, or sub-regions of organs (e.g., bone or muscle segments). Common
image modalities which are used in recording image data are X-Ray, computed to-
mography (CT) [31] and magnetic resonance imaging (MRI). It would be of great
help to the medical practitioners if there were a definitive trustworthy system
that could segment the input medical image for a speedy analysis and diagnosis
from the input medical imagery. The lack of trust in the system hinders accepting
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such solutions in the practical world, which remains the focal point of our work.
We perform the segmentation and further analyze various models to perform tis-
sue segmentation and further perform bone segmentation, focusing on the femur
bone, leveraging the advantages of the deep learning technology.

Deep learning is a commonly used terminology nowadays. From face recog-
nition systems to self-driving cars, profit/costs forecasts, or automatic detection
of problems. It appears that deep learning-based autonomous systems will have
the capability of transforming the world in the coming years, owing to the de-
velopment of convolutional neural networks (CNN). CNN’s are one of the kind
of a deep neural network. CNN recently obtained exceptional performance in
tasks involving natural language processing, speech recognition and object recog-
nition [25]. Moreover, in various studies, it is seen that U-Net has been effectively
used to analyze medical images and accomplish tasks such as object detection, im-
age classification, segmentation and registration. U-Net is one such convolutional
neural network developed for biomedical image segmentation at the Computer
Science Department of the University of Freiburg [58]. This study looked into us-
ing a convolutional neural network (CNN) to automatically segment bones in CT
scans. This is a difficult task, and it would be quite beneficial to assist doctors in
their difficult task of making decisions after studying those images. Segmenting
an image into its constituent regions or separate objects is known as image seg-
mentation. [24] Segmentation gives us a representation that is not so hard to study
further and analyze. A label is assigned to every pixel in 2D and voxel in 3D im-
ages during segmentation. Thus, it is essentially a voxel classification task. Voxels
with similar characteristics or that belong to the same object have the same label
and are thus grouped in the same class. Segmentation has many real-world ap-
plications in medical imaging, like locating tumors and other diseases, measuring
tissue volumes, surgery planning, and virtual surgery simulation. More tradi-
tional computer vision and machine learning algorithms for image segmentation
have been developed and successfully executed. There is no general algorithm
for semi-automated or autonomous segmentation of medical images, which is al-
ways chosen. The choice of the algorithm depends on several things like which
part of the body is to be studied, the type of the medical image, and the goal of the
study. Even in many circumstances, manual segmentation is still the gold stan-
dard despite being a time-consuming and arduous process. Various types of noise
caused by the acquisition system and the partial volume effect are the facets that
should be considered both in the automatic and manual segmentation methods.

Bone segmentation in CT scans is a critical step in assisting surgeons with vari-
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ous medical procedures. The majority of the bones may be easily detected visually
in CT scans, while perfect automated segmentation remains a problematic issue.
CT scans frequently have low signal-to-noise ratio, a poor spatial resolution, and
a variety of artifacts, making it a time-consuming and challenging process.

Image segmentation algorithms are divided into the following three categories:

• Manual

• Semi-automated

• Fully automated

Manual segmentation is perhaps the most consistent and precise method; but, it
requires subject knowledge, a significant amount of effort, and is time-consuming.
The results achieved from the manual segmentation techniques are often heavily
influenced by the expert in charge’s analysis. On the other hand, segmentation
algorithms that are semi-automatic need some manual initialization, like regions
of interest for the structures to be segmented or even some parameters. Finally, the
fully automated algorithms must retrieve the elements of interest independently
in an autonomous fashion, with no user input. Increased GPU computational
capacity is one of the key factors that has allowed deep learning-based approaches
to expand so quickly in recent years. Deep learning models in computer vision
achieved great results thanks to the latest GPUs, which significantly shortened the
training time of complex networks.

In this thesis we present a framework based on U-Net for automated landmark
detection of the femur head and distal femur from CT scan modality. Based on
these landmarks, we present an automated U-Net-based segmentation method
to segment bones and femur bone using very few computational resources. In
particular, the landmark of femoral bone is detected in the CT scans, and the next
local segmentation of femoral bone from other bones and tissues of the body is
performed.

Our work presented in this thesis can be summarized as follows:

• Implementing and understanding the efficiency of different existing, stan-
dard segmentation techniques such as fixed threshold-based, Otsu segmen-
tation and U-Net based segmentation for tissue segmentation.

• Studying their limitations.

• Implementing landmark prediction and then merging with U-Net.
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• Eliminating the need for manual cropping at the pre-processing stage for
finding regions of interest as one can see in Fig. (1.1).

• Performing the data augmentation to increase the training data size for bet-
ter segmentation.

• Implementing U-net for femur bone segmentation.

Figure 1.1: Full CT scan slices of size 512 x 512 pixels.

The second chapter of the thesis gives background and previously reported works
related to Computed Tomography based segmentation techniques with specific
focus on their use in medical images. The third chapter of the thesis consists
of backgrounds and fundamentals. The fourth chapter is all about the dataset for
this thesis. The fifth chapter is about landmark detection and finding the region of
interest. Some of the most frequent segmentation strategies are briefly discussed
and analyzed in the sixth chapter, and then more focus is on the deep learning
approaches. The final chapter is about the work’s conclusion and possible future
advancements.
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CHAPTER 2

Background and related work

Segmentation of image consists of splitting a picture into significant regions semi-
automatically or automatically . The aim of segmentation is to locate the voxels in
a region of object interior or its border. In the process semantic segmentation each
voxel is given a label, and the resultant image is in which voxels with the very
same label have similar qualities or properties [43], [14], [52], [54], [30] [8] . As a
result, image segmentation gives us a more generalised representation of image
data that holds a lot of meaning and is a critical path in effectively evaluating and
diagnosing medical images.

Segmentation retrieves critical information for a quantitative examination of
clinical parameters in medical image processing. Segmentation of tissue, organs,
bones, or other small portion is an important step in the great majority of computer-
aided detection (CAD) systems. Different ways to this problem have been offered
in the literature, and in recent years, papers integrating deep learning and medical
imaging have been the most common topic [40]. However, it remains a difficult
task due to a variety of problems such as image noise, low contrast, artefacts, in-
homogeneities, and others. An automatic segmentation is a method with least
dependency on the operator and also have features like accuracy, reliability, re-
peatability and robustness [61].

The most successful medical image segmentation methods are simply catego-
rized into techniques based on supervised and unsupervised, texture features and
grey level characteristics methods. These methods are briefly presented in the up-
coming sections. Some recent and major publications on this topic are referenced
and discussed at the end of chapter.

This contains the U-Net [58], a neural network for medical image segmentation
that underpins the Deep-learning method used in this thesis.
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2.1 Deep Learning

Artificial intelligence (AI) is among the most widely debated topics in today’s so-
ciety, among both the general public and academics. AI is defined as computers’
ability to accomplish tasks that would ordinarily need human intelligence. There
are numerous active research subjects on automating some form of function right
now. Understanding and recognising self-driving cars, sights and sounds, strate-
gic game systems and digesting complex information and diagnostics in medicine
are just a few examples. Furthermore, deep learning is continually being applied
to new situations, and its full potential has yet to be fully explored. Initially, AI
systems were capable of successfully accomplishing tasks that were considered
difficult for humans. AI could be described by a set of mathematical and log-
ical rules, such as proving logical theorems or solving algebra problems. Later
on, solving issues that people accomplish effortlessly, such as recognising a given
sound or visual pattern, became much more difficult. Making machines learn
from their experiences, allowing them to solve problems using what they’ve al-
ready learned, is a prominent strategy right now. They learn about the world by
developing a hierarchy of concepts, with each concept represented as a collec-
tion of smaller ones. As a result, basic, simpler elements are used to understand
abstract and more complicated representations. In this approach, machines may
develop complex models using a variety of techniques without the need for any-
body to programme what the model should learn. If its hierarchy of concepts
were displayed, it would have multiple levels, which is one of the main reason
why this method is known as deep learning [25]. Deep learning is a subset of ma-
chine learning that comprises all approaches based on data representation learn-
ing. The data format that is fed to commonly used machine learning techniques,
on the other side, has an impact. A feature is any knowledge included in those
representations, and hand-crafted characteristics are those developed by humans.
Choosing the right features for a machine learning system is a major step in en-
hancing its performance. Representation learning, on the other side, is a technique
for learning both the representation and the mapping between representation to
output. This method eliminates the need for handcrafted features and frequently
produces better results. In few cases, obtaining a proper representation select-
ing proper feature set can be equivalently difficult to solving the actual problem
itself. For all of these reasons, deep learning has its roots from many levels of
data qualities or concepts, with the higher level ones built on the lower level ones.
This renders flexibility and a great power that allows to solve complex real-world
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problems. Deep learning networks are made up of multiple layers that are stacked
on top of each other. The signal is processed by a specific unit at each layer based
on parameters learned during training, and then it is passed to the next layer. The
layers between the input and output in a network are known as hidden layers.
Various linear and non-linear transformations are applied on these hidden layers.
Because of the enormous number of hidden layers, these networks are referred to
as deep neural networks. In general, deep learning methods can be partitioned
into supervised and unsupervised learning: in supervised learning models, mod-
els learn features from labeled data, whereas in unsupervised learning models
aim at a pattern analysis.

We have primarily focused on the supervised learning method in this thesis.

2.2 Supervised learning

A supervised learning model’s dataset is made up of training data units, each of
which comprises input features and the desired output, which are also known as
label, target, or mask. The algorithm itself analyze the data, extracts relevant im-
portant features from it and provide a function which can predict new unknown
data which is also known as test data. While adopting a supervised learning
method to solve a problem, few pointers need to be kept in the mind [25]. First and
foremost, the training dataset should reflect the distribution of datasets in the real
world. Second, the data input sample should be carefully selected. It shouldn’t
have a lot of information in it, but just enough for the algorithm to figure out an
appropriate function. Next, a suitable function is picked and its parameter are
manipulated to adjust. Finally, the algorithm’s performance should be evaluated
using a testing dataset that the algorithm has never seen before. Regression and
classification are the two basic areas of issues that supervised learning systems ad-
dress. A classification model predicts discrete values or data divided into groups,
whereas a regression model predicts continuous values. Support vector machines,
artificial neural networks, and decision trees are examples of typical algorithms
used for both purpose.

2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are the most advanced deep neural net-
work technology for image processing.

CNNs are inspired by the biological visual cortex [64], [6], ANNs aim to mimic
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biological neuron activity in a comparable way. CNNs are comparable to tradi-
tional neural networks, but they assume that the input data is organised in a grid-
like structure. Because images are multidimensional grids by nature, the convo-
lutional layer, in which neurons are organised in three dimensions and a three-
dimensional volume input is processed to produce another three-dimensional
volume, is a key building component of CNNs. In Fig. (2.1) a scheme of this
arrangement is shown.

Figure 2.1: An illustration of how neurons in a convolutional layer are structured
in three dimensions.

In order to optimise learning, CNN design takes advantage of this character-
istic. Because of their large size and the loss of local information, vectorizing
multidimensional data such as images is not appropriate. Instead, processing
sub regions to derive feature maps is favoured [25], which are vital features of
an image such as edges. Instead of utilising element-wise multiplication, the im-
age is convolved with a kernel or sliding window, which has the added benefit
of decreasing the network’s complexity through weight sharing. However, in-
stead of convolution, the existing libraries for CNN implementation employ the
cross-correlation operator [55], which fulfills the same motive by using symmetric
kernels and omitting the “flip” or time reversal that is associated with convolu-
tion. The key issue becomes determining the ideal kernel weights that minimise
the error function [25].

2.4 Unsupervised and supervised methods

In the following sub sections, few examples from unsupervised and supervised
algorithms for segmentation are described.

2.4.1 Clustering methods

Unsupervised methods or clustering divide the data initially in a way that differ-
ent objects are grouped together on the basis of similarity. They do not even re-
quire any type of training datasets with minimal involvement of operator. These
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algorithms have the advantage of being able to generalise effectively across a vari-
ety of data sets and requiring a minimal amount of time. However, because they
are sensitive to noise, they do not always produce the best results. For cluster
analysis, K-means is a method that is used frequently. It is mainly composed of a
somewhat simple iterative algorithm. k centroids are –initially randomly picked
positions in the input space, and then the following steps is followed:

• The Euclidean distance from the centroids is calculated for all objects.

• Every object is allocated to the centroid that is closest to it.

• The centroids are recalculated based on the average value of each cluster.

The prior steps are then reiterated until the components of each group remain
unchanged. On the one hand, this approach is simple to use, but it has a few
disadvantages, such as the number of clusters which must be selected manually
by the operator, as well as its outliers, sensitivity to noise and initial values. K-
means clustering algorithms have already been widely used in the medical image
analysis sector, for example, in the segmentation of the brain and tumours of brain
from MRI scans [34],[63]. Fuzzy C- means is another unsupervised technique that
has performed well on medical images. This method is very alike to k-means,
except that the each point is assigned a weight to each cluster. As a result, a soft
segmentation is created, which means that a point does not fit in to just one cluster
and that overlapping areas are possible. This last point is particularly important
in medical imaging where tissues are clearly overlapping. Fuzzy C-means has
been used successfully in medical images, particularly for segmentation on MRI
scans [67]. On MR brain images, a study compared k-means and Fuzzy C-means
[45], indicating that one algorithm is not necessarily superior than the other, and
that their relative effectiveness varies depending on the specific task.

2.4.2 Supervised methods

For image segmentation, several supervised algorithms have been proposed, of-
ten known as classifiers. These are generally based on supervised learning (see
Section 2.2), which requires the of a training dataset consisting of objects and their
target labels. Segmenting the training dataset manually requires time and effort,
and it is a process that is highly dependent on human knowledge and actions.
These methods, on the other hand, may adapt to a wide range of tasks and handle
complex problems.
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The supervised approach k-nearest-neighbour (k-nn) is a very frequently used
technique. This technique requires a large amount of labelled data and is classified
as a non parametric classifier since it does not consider the statistical structure of
the data. Each pixel is classified in the k-nn technique into the class to which
the maximum of his k closest neighbors belong, where k is a parameter chosen
manually by the operator. The choice of k, the distance measurement, and the
mechanism of counting votes all have an effect on the approach’s performance.

Another commonly used method is the maximum likelihood methodology,
which assumes the data is comprised of statistically independent and identical
distribution samples which usually belong to Gaussian distribution. The likeli-
hood principle is then used to estimate the distribution’s parameters.

The supervised artificial neural network-based techniques are also included in
the supervised methods category. For medical image segmentation, feed-forward
and feedback networks have been widely used, feedback is inspired by the hu-
man visual cortex mechanism. These convolutional neural network feedback al-
gorithms are based on neuron selection and visual information from neurons.
[40]. Several studies using deep learning for medical image segmentation have
been conducted in recent years, and the most relevant ones are discussed in the
following sections.

2.5 Deep learning approaches

Segmentation approaches that have been based on Deep learning have been suc-
cessfully applied to a variety of image segmentation in the field of medicine in
many challenges in recent years. For instance, skull segmentation [49], brain ar-
eas [47], [22] , calcifications in coronary arteries, organs, and different substruc-
tures [40]. Although all of these research work use CNNs, each one has a different
architecture. The transformation of conventional classification CNNs into seg-
mentation networks is briefly explained in the next subsection.

2.5.1 CNNs for Medical Imaging Segmentation

General CNNs are the primary form of classification networks [25]. They take
an image as input and gives a vector as an output corresponding to the image’s
probability of belonging to each potential class. CNNs often deal with the entire
assignment pipeline, from feature extraction to learning the desired outcomes.
End-to-end training refers to methods that do not use any hand-crafted interme-
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diary algorithms. As a result, fully automated techniques reduce manual inter-
vention and have produced amazing results in a variety of applications, ranging
from self-driving automobiles to medical imaging segmentation jobs [48].

CNN architectures can be deftly used for segmentation tasks in which each
voxel or pixel is given to a class. In the beginning, this was attained using a patch-
wise classification method. In this approach, every pixel is categorized using a
patch surrounding it, and the patch is then moved in a gliding window pattern
until all the pixels in the image have been looked over. However, two significant
flaws were discovered [25]. To begin with, because the patch usually only covers
a limited area surrounding the pixel, the architecture of the network focuses on
learning local properties while not considering the global arrangements. Second,
the convolutions are performed redundantly due to several overlapping patches.

To get over these limitations, an alternative technique is given that uses the
generic CNN construct and replaces the fully connected layers with convolutions
[25]. This technique allows for a multi-class prediction for several pixels with less
calculations. Because of the convolutions and pooling layers, the network’s out-
put is smaller than the input. Several solutions have been investigated in order to
build a segmentation map that is the same size as the original image [20]. Long et
al. [43] suggested a method that uses deconvolution procedures to upsample the
smaller feature maps. The authors of [43] describe deconvolution as backwards-
strided convolution applying it as many times as the pooling layer reinstates the
image’s original size.

Earlier methods for image segmentation that used CNNs consisted of piling
up many convolutional layers. [16]. The reason behind this was that as the num-
ber of layers in the image grew, so did the number of features extracted from it;
however, the high number of learnable parameters makes the training process
slow. An example of this kind of architecture was proposed by Cireşan et al. [16].

Ronneberger et al. [58] built on this previous research and created the U-Net
architecture for biomedical segmentation of images. It comprises of a diminishing
route, which is made of a generic CNN, and a growing path, which uses decon-
volution to restore the image’s original size. Because of its topology, this network
is also known as an encoder-decoder.

2.5.2 U-Net

The U-Net is the most well-known "CNN architecture for medical image seg-
mentation" [58], and it is the one on which my own thesis is based. The fully-
convolutional network architecture, which resembles a convolutional autoencoder,
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is shown in Fig. (2.2). The core idea of the deconvolutional layers was borrowed
from [43], but there is one significant difference: there are so-called skip connec-
tions between feature maps at the same depth level of the contracting and ex-
panding path. The feature maps are then concatenated, giving the U-Net a sub-
stantial advantage over patch-wise techniques in terms of allowing global features
to propagate to higher resolution layers. As a result, the skip connections feature
can be found in a variety of other segmentation works, with the characteristics
mapping merged in various ways.

Figure 2.2: A schematic of our 2D u-net model.

There are five layers of depth in our network architecture. Each level in the
contracting path performs two 3x3 convolutions, followed by a rectifier linear
unit (ReLU) activation function and a 2x2 max pooling operation that decreases
the feature map by half. The feature channels start at 64 and double with each
subsequent level. The expanding path is similar to the contracting path, with
the exception that the feature maps from the contracting section are concatenated
and a 2x2 up-convolution is used instead of max pooling. At each layer, this last
process doubles the image’s size. Following the last expanding layer, the final
segmentation map is generated using a convolution with 1x1 filters. The U-Net
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was created in Caffe [33], a popular deep learning framework, and trained using
stochastic gradient descent as the optimization approach in the original research.
On the last feature map, a pixel-wise softmax is applied, and the dice loss is used
as the loss function. A weight map is incorporated in the dice loss calculation to
correct for the frequency mismatch across classes. When we talk about medical
image segmentation, class imbalance is a common problem, and loss function
weighting could be a solution. Another option is to use the Dice coef-ficient as a
metric [48], which takes into account the overlapping regions of the source image
and the segmentation mask.

In this work, data augmentation is a key strategy. Obtaining a huge dataset on
which medical imaging analysis can be performed is generally difficult, and this
is a simple and effective way to solve this issue. With only a few training pho-
tos available, the U-Net was trained end-to-end and obtained exceptional results
in a variety of biomedical image segmentation tasks. It won the ISBI cell tracking
challenge for transmitted light microscopy images in 2015, outperforming the pre-
vious best technique in the ISBI challenge for segmentation of neural structures in
electron microscopic stacks.

2.5.3 Some other Relevant studies

Cicek et al. [15] extended the U-Net framework to 3D implementations. Their
network generates rich volumetric segmentations after being trained with 2D an-
notated slices. Since a large percentage of medical data belongs to 3D, with same
sizes in every dimension, and a slide-by-slide application of 2D convolutional pro-
cedures can be costly, 3D implementation is an interesting evolution of the initial
U-Net. Inspired by the U-Net, Milletari et al. [48] introduced the V-Net, a fully-
convolutional neural network for 3D image segmentation which is volumetric.
The V-Net solves the vanishing gradient problem by performing 3D convolutions
using volumetric kernels and using residual blocks. The residual block is a learn-
ing architecture that was recently created to make image recognition job optimiza-
tion easier [28]. At the end of these blocks, the signal, which has been processed
with convolutions and non-linearities, is aggregated with the stage’s original in-
put. Convergence can be reached in less time this way. Fig. (2.3) depicts a residual
learning building block. The objective function is another important distinction
between the V-Net and the U-Net. The cross-entropy is no longer used, and an
objective function which is based on the Dice coefficient is presented to deal with
the unbalanced classes problem. This strategy has the advantage of not requir-
ing any hyperparameters (like the weight map, for example) to maximise the dice
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similarity coefficient. Given the relative manual ground truth annotations, the V-
Net was trained from the first to the end on a dataset of prostate scans in MRI in
the original work. Based on the Dice coefficient, it was able to achieve a quick and
accurate segmentation.

In a recent study, the feasibility of using the same CNN for multiple segmenta-
tion tasks in images obtained with different modalities was also investigated [51].
A single convolutional network was proposed in this study that executed nicely in
the segmentation of tissues in pectoral muscle in MR breast images, MR brain im-
ages and coronary arteries in cardiac CTA. Since of their adaptability and learning
capabilities, CNNs could potentially solve a variety of segmentation challenges in
the future without any prior task-specific training.

Weight layer

Weight layer

+

F(x)

F(x) + x
ReLu

x identity

x

Figure 2.3: A schematic of a residual block, as proposed in [28]

A new novel segmentation strategy based on adversarial training is also worth
highlighting. In 2014, Goodfellow et al. [26] proposed generative adversarial net-
works, a new construct for estimating generative models using an adversarial
approach. Two networks are simultaneously trained in this experiment, one that
creates data and the other that learns to distinguish whether such a sample arrives
from the training data or the generative model. The generative network improves
its output as a result of the competition between the both models, providing data
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that the classification function cannot differentiate from the original. Adversar-
ial networks have recently been used in semantic segmentation [44]. This ap-
proach has been shown to be effective in correcting inconsistencies between both
the ground truth and a segmentation CNN’s segmentation map. In the field of
medical imaging, this method has yielded promising results in the segmentation
of prostate cancer in MRI [38], organs in chest X-Rays [17], and brain MRI [50]. In
comparison to earlier methods based on a single segmentation net, all of these in-
vestigations indicate improved segmentation performance. Further examination
of this architecture, including additional challenges, could be an intriguing future
deep learning research area.

To summarise, numerous medical image segmentation challenges have been
solved using various deep learning algorithms in recent years. The approaches
that receive the entire image or a big subregion as input have beaten out the "slide
window" techniques, but both could be improved, and developing a particular
architecture for a certain task might not be the only effective solution.

2.6 Gray level features methods

A screening tool for femur bone can be created by combining the grey scale fea-
tures of CT scans with the appropriate segmentation mask. However, because
proximal femur segmentation currently requires manual intervention, these ap-
proaches have yet to be adopted for clinical use, limiting their utility in a clinical
setting.

In these methods segmentation is performed on the intensity values of the
pixels. These techniques can be classified as follows, fixed threshold [35], [9];
Otsu Threshold, watershed-based techniques [66], [2], [5], [27]; graph-cut [56],
and model-based approaches [37], [68], region growing, region split and merge,
edge based segmentation and a few more. The most common methods for dealing
with medical photographs are explained in the following subsections.

2.6.1 Fixed threshold

The most basic segmentation approach is thresholding, which is based on the no-
tion that distinct pixels/voxels in an image have different intensity values. It splits
pixels into foreground and background, with foreground having a greater inten-
sity value and background having a lower intensity value. Therefore it can be
defined mathematically as follows:
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fk,j =

1, if ik,j ≥ t

0, otherwise

where t is the threshold value, i(k ,j) is the initial value of the pixel at coordinate
(k, j) and f(k ,j) is the result after applying the threshold value.

Thresholding based method works well when only two segmentation classes
is desired and if the image and each class’s pixels have similar intensities and
minimal noises. A multi threshold based method can also be applied when we
have multi class segmentation requirement.

2.6.2 Otsu Threshold

Segmentation based on threshold technology is essential in image analysis and
segmentation. Otsu’s method is widely used in calculating stable, simple, and
compelling analysis [41]. A binary image or black and white image is benefi-
cial in many image analysis or processing problems as it reduces the processing
complexity. An essential step in obtaining the binary is to figure out the optimal
threshold that can be used to convert the greyscale image into a binary image;
this can be done by using global and local thresholds [65]. The global threshold
is a single threshold value used for the whole image, and the local threshold is a
single unique value used for partitioned sub-images of the whole image.

2.6.3 Region growing and Split and Merge algorithms

Region growing is a technique for extracting a region of interest from a scalar
image or volume using predetermined growing criteria (intensity distribution,
connectedness, and image edges)[29]. It incorporates information about neigh-
bouring regions and is aimed to locate homogenous zones that have a higher like-
lihood of corresponding to anatomical features than thresholding techniques. For
each object to be segmented, this approach necessitates at least one manual seed
point, from which all the pixels or voxels that correspond to that object are se-
lected based on homogeneity criteria. As a result, the fundamental disadvantage
is that it is very dependent and sensitive to initialization, and that noise and par-
tial volume effects have a significant impact.

Split and merge algorithms are very much similar to region growing algo-
rithm. It dose not requires seed points [46]. Similarly, it splits the regions into
subregions and merges the ones that meet the necessary requirements, based on
the manual predefined criteria. The fundamental problem of this approach is that
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it requires a dataset with a pyramidal grid structure, which makes it computa-
tionally expensive and unsuitable for today’s massive data sets.

Thresholding-based techniques are majorly used in the segmentation of tissue
in CT scans. Because bones have higher intensity values than other surround-
ing tissues, this method of segmentation is usually successful. Due to shallow
space between the femur and Tibia and weak and diffused boundaries between
all bones in the knee area, it’s rare to find a threshold that’s less than the the in-
tensity value of all bones yet more than that of surrounding tissues. The local
thresholding strategy can prevent this problem, however due to intensity inho-
mogeneity, it may not always perform effectively. All of these approaches are
notoriously noise-sensitive, resulting in over-segmentation and a failure to detect
important areas with low-contrast bone borders. All these methods can only seg-
ment tissues; these methods cannot be able to segment different bones.

To produce precise, acceptable masks for finite element modelling, all segmen-
tation algorithms now require a user-in-the-loop parameter which adds manual
intervention to the segmentation. Their processing time is so long that it cannot be
used for clinical usage. This lack of robustness is costly and requires a trained pro-
fessional to correct the segmentation manually and time taking. As a result, these
methods are not as effective at processing huge cohorts as fully automated sys-
tems. Deep learning in image segmentation has received a lot of interest in recent
years. The U-Net architecture provides a direct result of the use of deep learning
as a feasible choice for biomedical image segmentation by Ronneberger et al. [58].
This research demonstrates how the U-Net architecture may provide accurate and
rapid segmentations without the use of massive training data sets. Deep learning
has become the state-of-the-art approach in medical imaging, notwithstanding the
necessity for ground truth masks. [60, 32]. A segmentation prediction of data can
be generated fully automatically (i.e., without human intervention) in a few sec-
onds, which is often faster than preceding methods that do not use deep learning.

2.7 Bone segmentation

In many medical treatments, segmenting bones from CT images is a crucial step. It
has a variety of applications in image based computer aided orthopaedic surgery;
it is critical for finding fractures and diagnosing bone diseases, as well as assisting
the radiologist in the overall medical decision-making process. They also provide
some reliable resources for examining and segmenting other body sections, such
as organs. As a result, a lot of time has been spent looking for an automatic seg-

17



mentation algorithm. Despite extensive research, current systems do not provide
reliable image segmentation in the presence of non - uniformity or noise, and fre-
quently requiring algorithm setup or parameter tuning. In a clinical situation, if a
plan to make radiologist work easier is essential, this can be a big disadvantage.
Furthermore, the majority of these methods are unable to discriminate between
distinct bone structures and classify them. They can only segment a small num-
ber of bone structures, and their lack of generality is another issue.

The bones are difficult to segment for a variety of reasons. To begin with, os-
seous tissue and soft tissue regions may not always appear to be easily differen-
tiated on CT images. A segmentation based purely on the intensity value would
be inaccurate because the HU values of the bone and other surrounding tissues
overlap significantly. Second, the bone structures themselves do not have consis-
tent density qualities, hence the HU within a single bone might vary greatly. To
make matters even more complicated, several disorders (such as Osteoarthritis,
Rheumatoid Arthritis, and Osteoporosis) can affect bone density in different re-
gions. Finally, CT scans’ limited resolution and poor quality can be an issue. The
presence of noise or artefacts impacts the automatic segmentation performance,
as adjacent bones appear to be in direct touch.

2.8 Related work

The four primary techniques to bone segmentation in CT scans are region-based,
edge-based, intensity-based and deformable [26]. Atlas-based segmentation is
another technique that has recently shown promising results. The most basic seg-
mentation approaches are intensity-based techniques, which are based on local or
global thresholding as explained in the preceding sections. They’re usually sim-
ple to set up, but their main drawback is that they’re not adaptable because they
require the regions to be separated into groups with comparable intensity values.
This flaw can be addressed in part using an adaptive threshold [69]. In this 2010
study, an automated 3D adaptive thresholding technique for bone segmentation
in CT scans was developed. It produces good results and takes less than 10 sec-
onds each 2D slice on average. In more recent studies, thresholding has become
an integral part of the segmentation algorithm’s pre-processing pipeline.

Edge-based approaches use a variety of edge detection operators to locate and
segment the boundaries of the bones. For example, this study [35] used vari-
ous edge detection approaches to produce effective segmentation of the proximal
femur, knee, and cranium in CT scans. It also simply requires a very basic ini-
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tialization. It does, however, require a site-specific separation of particular bones
in order to be applied to other anatomic locations. In general, edge-based ap-
proaches are sensitive to noise and do not always produce the best results.

Region-based techniques partition an image into sections based on a homo-
geneity criterion. In the previous chapter a few more details are explained. Fi-
nally, when using deformable techniques, research refers to model with active
contours or surfaces. Those curves change during the segmentation process due
to various forces, yet the model stays smooth. Those approaches have been the
most extensively studied in recent years for bone segmentation in CT scans, with
multiple studies yielding positive results [12]. They do, however, have some
drawbacks, such as an extreme sensitivity to the beginning conditions.

Hybrid methods that combine the aforementioned methodologies have also
been studied, with mixed results. The authors of [13], proposed an approach that
consists of image contouring, pre-processing, and label filtering.

Atlas-based image segmentation algorithms are an innovative approach to im-
age segmentation. They use a collection of expert-labeled images and hope to ap-
ply what they’ve learned to new, unknown data. These approaches compute a
transformation that registers the atlas to the image being studied in order to seg-
ment a new image (i.e establishes a point-to-point correspondence). To segment
the patient image, the mask is deformed from the atlas onto it [21]. Atlas-based al-
gorithms, among the previously outlined methods, have recently achieved better
accuracy and robustness in many segmentation tasks. It’s worth highlighting this
2017 study [23] on human skeleton segmentation in CT images. For the segmen-
tation of individual bones, it presents a unique atlas and articulated registration
approach. This can segment 62 main bones with pinpoint accuracy, including 24
vertebrae and 24 ribs. The average Dice coefficient is 0.90, which is better than
prior studies’ results.

Moreover, in the near future, deep learning-based algorithms will undoubt-
edly play a significant role in bone segmentation. The most popular topic in pub-
lications applying deep learning to medical imaging is segmentation [40]. Re-
cent studies have described successful methods based on deep learning based
pelvic bone segmentation [42], froximal femur segmentation [18] [7] in Ct images.
The proximal femur is automatically segmented in quantitative CT images using
a deep learning-based U-Net inspired architecture in this [7]. The network im-
plementation is identical to the one presented in this thesis, except the operator
chooses the region of interest. The method reported is intriguing because it uses a
local otsu method as pre-processing to detect bone regions in CT scans and elimi-
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nate background voxels, which reduces image size. They achieve a mean DSC of
0.990 0.002 and a mean HD95 of 0.981 0.040 mm using this method. There would
definitely be more studies on the subject in the coming few years.

This thesis proposes an automated approach for detecting regions of interest
in CT images and using the U-Net architecture to segment the femur bone to the
best of my knowledge.
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CHAPTER 3

Fundamentals

3.1 Computed Tomography images

Computed tomography (CT) is a medical imaging method that creates cross-sectional
images of the patient’s body using a combination of X-rays. Where a person is
exposed to sequential X-ray radiation along with the region of interest. These
X-ray images result in a 3D volume [11]. After post-processing, it creates a cross-
sectional image (slices). The original image can be reconstructed using algebraic
methods like Fourier-based techniques or statistical methods, giving grayscale
values as in Hounsfield units (HUs) defined by:

HU(x, y, z) = 1000
µ(x, y, z)− µw

µw
(3.1)

where HU(x,y,z( represents the Hounsfield units at location (x,y,z), (x,y,z) is
the corresponding avg. linear attenuation coefficient at the same location, and µw

is the linear attenuation coefficient for water at the specific conditions used in the
procedure [10].

These CT slices are DICOM files with the file type (.dcm).

3.2 Segmentation

Segmentation is a method in which an image is divided into many subclasses
called image segments. Voxels from 3D imaging modalities such as Computed
Tomography (CT), Micro-Computated Tomography (micro-CT or X-ray), or Mag-
netic Resonance Imaging (MRI) scanners are labelled during 3D image segmen-
tation to isolate regions of interest as a separate category. In this thesis, we have
done tissue segmentation and bone segmentation. In tissue segmentation, we
differentiate voxels in a different types of tissue. In contrast, bone segmentation

21



means differentiating voxels of different types of bones.

3.3 Evaluation Parameter

In the task of the segmentation generally we classify the prediction into the four
categories: "TP", "FP", "TN" and "FN". With this we compute the pixel wise model
result and get the model performance it can be seen in the Table 3.1

The result "TN" stands for True Negative, and it displays the number of neg-
ative occurrences that were correctly identified. Similarly, "TP" stands for True
Positive, which refers to the number of positive events that have been correctly
identified. False Positive and False Negative values are denoted by the letters "FP"
and "FN," respectively. False Positive value (FP) is the number of actual negative
cases categorised as positive, whereas False Negative value (FN) is the number of
actual positive instances classified as negative.

Table 3.1: Confusion matrix

Predicted
Negative Positive

Actual Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

The F1 score, precision, and recall are the measures that are used to track the
training and evaluate the test dataset. F1 score which is also known as Dice Score
[57].

3.3.1 Precision

Precision shows the purity of the predicting result. It is a ratio between the posi-
tively predicted pixel that matched ground truth to the all the positive predicted
pixel.

Precision =
True Positive

True Positive + False Positive
(3.2)

3.3.2 Recall

Recall shows the completeness of the predicting result. It is a ration between the
positively predicted pixel that matches ground truth to the all correct pixel in the
ground truth.
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Recall =
True Positive

True Positive + False Negative
(3.3)

3.3.3 F1 Score

The overlap index, also known as the Dice coefficient/score or F1 score, is a statis-
tical metric that shows how similar two samples are. Its range of values is 0 to 1,
with 0 indicating that the samples do not overlap at all and 1 indicating that they
are identical.

It’s also known as mask, and it’s widely used in image segmentation jobs to
compare an algorithm’s output to its relative ground truth image. It is the most
frequently used statistic to validate medical volume segmentations [62].

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3.4)

Another common index in these tasks is the Jaccard, which has the following
relationship with the F1 score:

JAC =
F1 score

2 − F1 Score
(3.5)

Because the two metrics evaluate the same overlapping qualities, monitoring
them both offers no new information [62], and only the F1 Score is taken into
account in this research.

23



CHAPTER 4

Data Set

The Shah Hospital, Ahmedabad, provided us with CT scans of both men and
women aged between 45yrs - 82yrs old. This dataset of high-quality CT scans
contains full-leg CT scans of 80 patients of which 50 are used for training, 10 are
used for validation and 20 are used for testing. The in-plane resolution of each CT
scans ranges from 500 x 500 to 512 x 512 voxels with 812- 1211 slices and 0.9 x 0.9
x 0.99 to 0.97 x 0.97 x 1 mm3 voxel size.

4.1 Data annotation

Building an artificial intelligence or machine learning based model that acts like
a human requires many training data. To train a model, data and their label are
required. Data annotation is the categorization and labeling of data.

4.1.1 3D Slicer

3D slicer [1, 36] is an open-source software that gives us a platform to edit, an-
alyze and segment parts of CT scans. We used 3D Slicer to make our ground
truth/lable our data. Even when done by professionals, labelling takes time, and
the outcomes are dependent on the operator’s skill. A variety of processes were
performed to the initial scans in this work in order to create ground truth images.
For this purpose, 80 CT scans were used to creating the ground truth.

The original scans (.dcm files) were preprocesed and checked with the 3D
slicer tool for any type of corrupted or missing .dcm files. After preprocessing
stage, a fixed threshold is decided by slowly increasing the threshold value from
-200 till a threshold value at which only bone pixels whose threshold value is
greater than fixed threshold value are remaining. Segment editor tool of 3D slicer
is used to select or deselect pixels of any labels. 3D view of 3D slicer is used to
verify, identify any noise and eliminating noisy voxels. In Fig. (4.1 one can see, in
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right pane three axial sections of CT images is shown with bone highlighted at a
fixed threshold value of 144.01.

Figure 4.1: A view of 3D slicer application

These annotations are mostly made up of plain binary data that is saved slice
by slice. Data visualization and file reading for U-Net training requires the cre-
ation of unique classes and methods. This, combined with the lack of homogene-
ity in data resolutions, encouraged us to save the data in a more standard format
than DICOM. For the following reasons, we chose the NIfTI format:

• Folder organisation was simplified. NIfTI data is organised by volume. As
a result, per patient scan, only two files are required: one for CT and one
for CT ground-truth values. When compared to DICOM format, this signif-
icantly reduces the total quantity of files.

• There are visualisation tools (3D Slicer) as well as many reading and writing
packages for NIfTI files available.

• All slices have the same pixel spacing, rotation, and orientation.

With the available metadata from the first slice, we generated the new NIfTI
files. Obtains the origin coordinates, voxel dimensions and orientation for CT
images, creating the affine matrices required by the NIfTI format. We used the
same affine matrix for the CT ground-truth volumes as we did for the relevant CT
images, and based on the annotated slice information, we assigned the following
voxel values:
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• The background label is labelled with a number of zeros.

• 1 is for the Femur bone.

• 2 is for the Patella bone.

• 3 is for the Tibia bone.

• 4 is for the Fibula bone.

• 5 is for the Pelvis bone.

• 6 is for all the bones in the foot.

These numbers from 0-6 are the nomenclature for different classes in our ground
truth. Fig. (4.2a). shows the original CT image in Axial format, Fig. (4.2b) shows
the original CT image in Coronal format, Fig. (4.2c) shows the original CT image
in Sagittal and Fig. (4.3) shows masked image of the same images shown in the
rest of the three figures.

(a) (b) (c)

Figure 4.2: Example of CT slices in axial, coronal and sagittal format.
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Femur, 1Patella, 2Tibia, 3 Fibula, 4 Pelvis, 5Foot, 6 Background, 0

Figure 4.3: 3D mask for ground truth.

These data annotation techniques and annotated data are verified by Dr. Man-
ish Shah, Shah Hospital, Ahmadabad.

4.1.2 MRIcro

MRIcro [59] is an application that allows Windows and Linux computers to view
and export medical images. We have used MRIcro to label Landmark co-ordinate
of the following:

• Femur head centre.

• Femoral centre.

4.2 Data augmentation

The performance of most machine learning models and deep learning models,
in particular, depends on the quantity and quality of training data. However,
insufficient data is one of the most common challenges in implementing deep
learning models. Collecting and prepossessing data is time-consuming and costly.

Data augmentation is a set of techniques to artificially increase the amount of
data by creating new data points from existing data and by making some small
changes to the data by rotation, scaling and translation. The augmented data are
similar to the real data for models.

Here we have done data augmentation two times, by following factors:
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• Rotation up to 15◦.

• Transnational radius = 10 mm.

• Scaling = 0.2.

These factors are aligned with the ideal condition of a CT Scan taken, with differ-
ent patients having legs slightly rotated and always facing up. We have increased
our data set of 50 CT scans to 150 CT Scan images by augmenting for the training.
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CHAPTER 5

Landmark detection

Identifying femoral bone landmarks is essential and used mainly in orthopedics
and biomechanics. A fully automated detection overcomes the drawbacks of
labor-intensive manual identification. Landmarks give us the location of objects
in the 3D plane, which will be used to identify regions of interest. This thesis aims
to automatically identify the femur head center and distal femur landmark, which
will be used with 3D UNet to segment the femur and distal femur with very few
resources and less time.

5.1 UNet Model

For the landmark prediction, data upto 20mm in radius around the landmark
coordinate from CT ground truth values is kept as it is and diluted rest of the
data. We selected 2D U-Net architecture for this model to segment the landmarks.
Fig. (5.1) shows the architecture of our 2D UNet.

For this implementation, I used the Tensor-flow based Keras framework for the
U-Net. For traning the model we have used newly created NIfTI files, we selected
the 41 slices kepping landmark slice in between, and 55 slices randomply from
the each CT scan of all patients. The training was performed on Google Collab
Pro, o avoid surpassing the available memory, the training ran for 2700 epochs for
25 CT images with a batch size of 4, resulting in a total number of iterations of
8,10,000 (2700 epochs × (25*96) slices/ batch size of 8))). We have performed this
experiment for femur head and distal femur.

5.2 Results and Analysis

Following training, the model is tested using the remaining annotated volumes.
Data was fed into the network to build a probability map for each of the pixels,
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and afterwards the values were converted to discrete values to generate a binary
3D image. We have taken centreoid of this predicted image as predicted center.

5.2.1 Femur head center

Table 5.1 shows the accuracy of the femur head’s center prediction in the 3D plane
and z-axis(Superior axis), which can be considered good as per our requirement
to locate the femur head in 3D CT Scan volume.

Table 5.1: Landmark prediction accuracy of Femur head (in mm).

Patient Id 3D plane Superior axis
78 7.07 0.67
82 11.35 0.02
88 9.88 1.35
81 13.74 0.96
102 11.67 0.54
103 4.13 1.1

5.2.2 Distal Femur

Table 5.2 shows the accuracy for predicted co-ordinate center of distal femur in
3D plane and z axis(Superior axis). Which can be considered good as per our
requirement to locate distal femur in 3D CT Scan volume.

Table 5.2: Landmark prediction accuracy of distal femur(in mm).

Patient Id 3D plane Superior axis
78 6.55 2.01
82 8.14 3.23
88 6.26 5.56
81 12.26 4.04
102 4.8 3.61
103 10.35 4.09

Table 5.3: Landmark prediction accuracy of distal femur in 3D plane and z-axis

Landmarks 3D Plane z axis(slice)
Femur Head center 9.64 ± 3.18 0.7 ± 0.01
Distal Femur 6.5 ± 2.5 3.75 ± 0.43

In table 5.3 one can see the average accuracy of the femur head and distal
femur in the 3D plane is under 10 mm distance, and in slice or z-axis, it is up to
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1mm in the case of the femur head and 4mm in the case of the distal femur. Our
model fulfills our requirement of predicting the location of the femur head and
distal femur location in the whole CT Image of the leg.

Figure 5.1: A schematic of our proposed 2D u-net model.
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CHAPTER 6

Segmentation

Tissue Segmentation [3] is not something that has been recently introduced. There
are architectures such as UNet [58], and Segnet [4] which have been used for im-
age segmentation, which has also been used and referred to during medical im-
agery segmentation. Also, tools such as 3D slicer provide a workspace for a user
to perform segmentation in a non-AI approach. Many diagnostic and treatment
planning is dependent on the successful segmentation of bony structures in the
CT-scan images.

6.1 Model I : Fixed Threshold-based Segmentation

The Hounsfield unit (HU) [19] is a computed tomography images are interpreted
using a relative quantitative measurement of radio density. The attenuation or
observation coefficient of radiation within a tissue is used to produce a grayscale
image. The attenuation and observation of the X-RAY beam are proportional to
the physical density of the tissue. Where distilled water is arbitrarily defined as 0
HU, Air is -1000 HU, bones range from 400 HU and can go up to 2000 for dense
bones like cochlea and more than 3000 for metals like iron and silver. [19].
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Figure 6.1: A flowchart showing the workflow of fixed threshold segmentation
method.

Fig. (6.1) shows the flowchart depiction of the algorithm for the approach for
doing HU-based standard segmentation. CT scans have different resolutions, so
every CT scan data is processed to have the exact 1mm resolution in the prepos-
sessing stage. Then, we select voxels based on HU value, voxels that have HU
value in the range of bones are selected, but many voxels are noise and have HU
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value in the range of bone. Furthermore, connected voxels which form a region
are selected, and these regions are selected based on volume size that indicates the
possibility of a bone. 6 Patients’ CTs are taken for this experiment. Fig. (6.2) de-
picts a test scan segmentation image at knee for the sole purpose of visualisation.
The prediction is visualised in three dimensions. We have calculated precision,
recall, and F1 score to mask (Ground Truth as mentioned in Chapter 4) for fixed
threshold-based segmentation. These scores of the performance matrix are given
in table 6.1

Figure 6.2: 3D view of a prediction of bone by fixed threshold value method.

Table 6.1: Performance matrix score of fixed threshold segmentation

,

Patient ID Precision Recall F1 Score
78 0.863 0.9951 0.924
82 0.875 0.9891 0.929
88 0.908 0.9867 0.945
81 0.856 0.9931 0.919
102 0.851 0.9859 0.913
103 0.917 0.9844 0.949

,

6.2 Model II : Otsu’s Segmentation

Segmentation based on threshold technology is essential in image analysis and
segmentation. Otsu’s method is widely used in calculating stable, simple, and
compelling analysis [41]. A binary image or black and white image is benefi-
cial in many image analysis or processing problems as it reduces the processing
complexity. An essential step in obtaining the binary is to figure out the optimal

34



threshold that can be used to convert the greyscale image into a binary image; this
can be done by using global and local thresholds [65]. The global threshold is a
single value applied to the entire image and the local threshold is a single unique
value used for partitioned sub-images of the whole image. The local threshold
technique has been used here to segment bones on the Knee Joint of size 384mm
in length. Fig. (6.3) depicts a test scan segmented femur, tibia, fibula, and patella
bones for the sole purpose of visualisation. The prediction is visualised in three
dimensions.

Figure 6.3: 3D view of a prediction of bones using local Otsu’s threshold method.

We have calculated precision, recall, and F1 score to mask (Ground Truth
as mentioned in Chapter 4) for local Otsu’s threshold based segmentation. The
scores of the performance matrix are given in table 6.2

Table 6.2: Performance analysis for all bone based on Ostu’s segmentation.

Patient ID Precision Recall F1 Score
78 0.49 0.98 0.65
82 0.44 0.97 0.61
88 0.51 0.97 0.67
81 0.45 0.98 0.62
102 0.47 0.97 0.63
103 0.55 0.98 0.71
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6.3 Model III : 2D UNet

UNet [58] was first designed and applied in 2015 to process bio-medical images. It
has evolved from a traditional convolution neural network. A conventional neu-
ral network is generally focused on classifying images, where input is an image
and output is a label. However, in biomedical cases, it not only requires us to dis-
tinguish abnormal images from disease but also requires localization of the area of
abnormality. The consensus is that an extensive data set with thousands of anno-
tated training samples is required to train deep networks successfully. Also, UNet
can work efficiently and gives a good result with solid use of data augmentation
[58].

Figure 6.4: A schematic of our 2D u-net model.

The Fig. (6.4) explains our UNet architecture diagrammatically. Generally, CT
of the leg is of size 512mm in height, 512mm in width, and 700mm to 1200mm
in depth. Computational resources to process this massive data with 3D UNet
are too high. Therefore, we have used 2D UNet and treated the third dimension
as Channels. After that, Data is converted to 2mm resolution per voxel. We had
used nineteen CT samples for training, five CT samples for validation, and six
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CT samples for testing. After performing augmentation two times, there were
57 Samples for Training and 15 for validation. For this implementation, I used
the Tensor-flow based Keras framework for the U-Net. For traning the model we
have used newly created NIfTI files,The training was performed on Google Collab
Pro, Training was carried out for 7000 epochs for 57 training samples with 256 2D
slice images each, with a batch size of 2 to avoid exceeding the available memory,
resulting in a total of 5,10,72,000 iterations(7000 epochs × (57x256) slices/ batch
size of 2))). We have performed this experiment for tissue segmentation, femur
head segmentation and distal femur segmentation.

6.3.1 Tissue segmentation

While executing the U-Net segmentation, the network tries to understand the gen-
eralized anatomy of bone among all tissues and does the segmentation of bones.
Fig. (6.5) depicts a test scan segmented femur, tibia, fibula and patella for the sole
purpose of visualisation. The prediction is visualised in three dimensions. Table
6.3 shows the performance measure concerning ground truth.

Table 6.3: Performance matrix for Knee Joint based on U-Net deep learning model.

Patient ID Precision Recall F1 Score
78 0.90021 0.83439 0.86605
82 0.8678 0.7237 0.78923
88 0.88072 0.81759 0.84798
81 0.83922 0.66723 0.74341
102 0.88703 0.80286 0.84285
103 0.9175 0.8213 0.86664

Figure 6.5: 3D view of a prediction of knee joint obtained by 2D UNet model.
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6.3.2 Femoral Head

In this experiment, we are segmenting the femur head concerning Fig. (6.7), which
contains the femur head and hip joint bone. In Fig. (6.11), one can see the seg-
mented femur head obtained from the 2D UNet model.

Figure 6.6: 3D view of a prediction of femur head and femur shaft from 2D UNet

Figure 6.7: 3D view of ground truth at hip joint

Table 6.4 shows performance measure with respect to ground truth for femur
head segmentation within the entire femur bone image.

6.3.3 Distal Femur

The distal femur is more complex than the femur head, as, in the distal femur,
there are more bones and different angles between bones. Fig. (6.8) shows seg-
mented femur bone obtained by 2D UNet, and one can see it does not have any
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Table 6.4: Performance matrix for Femur Head based on 2D UNet deep learning
model.

Patient ID Precision Recall F1 Score
78 0.8786 0.8139 0.84504
82 0.873 0.7499 0.8068
88 0.885 0.7825 0.8321
81 0.8688 0.6656 0.7537
102 0.8859 0.7757 0.8272
103 0.8919 0.8196 0.8543

voxels of other bones. It shows model can segment the femur from other bones.
Table 6.5 shows performance matrix of 2D UNet on Distal femur.

Figure 6.8: Segmented Femur Condyle

Table 6.5: Performance analysis for Femur at knee Joint based on UNet deep learn-
ing model.

Patient ID Precision Recall F1 Score
78 0.8561 0.724 0.7845
82 0.7645 0.6238 0.6871
88 0.838 0.74577 0.78921
81 0.7397 0.49336 0.5919
102 0.8274 0.7093 0.7638
103 0.9042 0.6865 0.7805

6.4 Model IV: 3D UNet

3D-UNet is a contractive and expanding path composition that aims to build a
bottleneck in its centermost part through convolution and pooling operations.
After this bottleneck, the image is formed through convolutions and upsampling.
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The computational requirement of 3D UNet is very high. For the work to be com-
pleted successfully, the developed segmentation algorithm method has multiple
steps to automatically crop background voxels to reduce the image size around
the desired area. The first step to find landmark is developed in Chapter 5. Fig.
6.9 shows the flowchart depiction of the algorithm for the approach to do figure
shows our proposed model, in which 3D slices volume is first processed through
landmark prediction model, after locating landmarks 3D volume will be auto-
matically cropped around the location to decrease the size of the image, then 3D
segmentation is performed on cropped data using 3D UNet, Fig. (6.10) represent
our 3D Model architecture. We have performed 3D UNet on the Femur head and
Distal femur.
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Input of Full leg CT-Scan to the landmark prediction model

Got voxel co-ordinates of
Femur head / Distil Femur from the image

Landmark Prediction

512 x 512 x900

Automated
Cropping

96 x 96 x 96

3D UNet Model

Segmented Output

Resized image with the given co-ordinates
from the landmark predicted

Segmented image of Femur Head
from the cropped image of CT-Scan 

Figure 6.9: A flowchart showing the workflow of our proposed method
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Figure 6.10: A schematic view of our proposed 3D U-Net model

6.4.1 Femur Head

The distal femur is more complex than the femur head, as, in the distal femur,
there are more bones and different angles between bones. In Fig. (6.12), 1st col-
umn is of CT scan slices, 2nd column is of ground truth(mask), and the last col-
umn is the segmented output from 3D UNet, where one can see the hip bone is not
segmented. A 3D rendering of the segmented structure with 3D U-Net is shown
in Fig. (6.11).

Figure 6.11: Segmentation result for femur head on a sample test patient.
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Figure 6.12: Slice representation of femur head

Table 6.6 One can see the performance matrix of the 3D UNet model on the
Femur head. Due to hole filling, False positive increases, which leads to less Pre-
cision. Higher Recall shows higher True positives.

Table 6.6: Performance analysis of 3D UNet on Femoral head.

Patient Id Average Precision Recall F1 Score
78 0.63 0.94 0.76
82 0.66 0.91 0.77
88 0.75 0.8 0.77
81 0.51 0.93 0.66
102 0.56 0.93 0.7
103 0.8 0.93 0.86

6.4.2 Distal Femur

The distal femur is more complex than the femur head in the distal femur, and
there are more bones and different angles between bones. In figure 6.13 1st col-
umn is of CT scan slices, 2nd column is of ground truth(mask), and in the last
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column is the segmented output from 3D UNet, where one can see patella bones
is not segmented. Table 6.7 shows the performance matrix of 3D UNet on the Dis-
tal femur. A 3D rendering of the segmented structure with 3D U-Net is shown in
Fig. (6.14).

Figure 6.13: Slice representation at distal femur.
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Figure 6.14: Segmentation result for femur head on a sample test patient.

Table 6.7: Performance analysis of 3D UNet on Distal Femur.

Patient Id Average Precision Recall F1 Score
185 0.77 0.84 0.80
200 0.84 0.92 0.88
192 0.62 0.84 0.71
207 0.81 0.92 0.86
224 0.85 0.93 0.89
205 0.76 0.88 0.81
198 0.86 0.92 0.89
190 0.83 0.96 0.89
175 0.85 0.86 0.86
206 0.83 0.92 0.88
167 0.70 0.94 0.81
193 0.84 0.9 0.87
182 0.82 0.92 0.87
171 0.65 0.81 0.72
204 0.81 0.92 0.87
199 0.81 0.88 0.84
201 0.78 0.95 0.86
172 0.76 0.9 0.83
197 0.84 0.92 0.88
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6.5 Results and Analysis

The inner part of bones is less dense than the outer layer of bones, so in fixed
threshold methods, voxels with less dense bones are not considered as bones and
are treated as background, whereas deep learning-based methods treat these less
dense bones voxels as bone.

The results in Table 6.8 show a comparison with all our approaches. Here, the
F1 score of Standard segmentation is the best of all our models. Our data annota-
tion strategy is based on fixed threshold techniques, and standard segmentation
is also based on fixed threshold techniques, which decreases the chance of false
positives. Other methods have more false positives as many voxels that are back-
ground as per our ground truth, but methods predicted these voxels as bones,
resulting in less F1 score. In Fig. (6.13), it can be visually verified that the middle
column is the ground truth which has many background pixels in between the
bones, and the rightmost column, which is of 3D U-Net model prediction, have
the whole part as bone, which leads to many false positives by which lower F1
score.

Table 6.8: Performance measure of all our approaches.

Methods Average Precision Recall F1 Score
Standard Segmentation 0.878 ± 0.025 0.989 ± 0.004 0.930 ± 0.013
Local Otsu Segmentation 0.485 ± 0.037 0.975 ± 0.005 0.648 ± 0.034
2D UNet Bone 0.882 ± 0.025 0.778 ± 0.061 0.826 ± 0.045
2D UNet Distal Femur 0.822 ± 0.055 0.664 ± 0.085 0.733 ± 0.072
2D UNet Femur head 0.881 ± 0.008 0.768 ± 0.051 0.820 ± 0.033
3D UNet Distal Femur 0.52 ± 0.12 0.89 ± 0.03 0.65 ± 0.1
3D UNet Femur head 0.81 ± 0.04 0.90 ± 0.03 0.84 ± 0.03

Fig. (6.15) is a visual representation of the femur bone segmentation by the
approach of [39]. They claim that the femur is segmented from at least one of its
adjacent bones in 57% of the cases. Due to their unavailability of the dataset, we
could not try our approach on the same data set. However, using our best ap-
proach 3D UNet it is possible to segment the femur from all the adjacent bones in
all cases. Fig. (6.16) and Fig. (6.17) is a visual representation of the femur segmen-
tation using our approach, and one can see that our model can segment femur
from other bones(patella, tibia, pelvis bones). Our 3D U-Net approach shows
a recall value of 0.9 as compared to TPR>0.85 of model [39], which shows our
model can discriminate the actual femur voxels with more satisfactory precision
correctly.
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Figure 6.15: Segmentation result of Model [39] on axial slice of Femur head

In [7] the authors employed the Local Otsu approach to identify background
voxels and allow automatic bone cutting from a 3D image to lower the size and
hence speed up neural network execution. We have used the Landmark predic-
tion model to roughly identify the different parts of the femur. Furthermore, allow
the automatic cropping of any part of the femur, by which we can even decrease
the size of the 3d image even more than [7], which will reduce the time of execu-
tion and computational requirement.
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Figure 6.16: Segmentation result of 3D UNet model on axial slice of Femur head
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Figure 6.17: Segmentation result of 3D UNet model on axial slice of Distal femur

49



CHAPTER 7

Conclusion

The objective of this thesis is to design an efficient architecture for segmentation of
bone, femur head, and distal femur which should be effective and which should
do the needful in an automated way. Usually a CT scan is a 3D image of large
size and bones are just a small part of this image. In case of an OA patient, the
ortho surgeon is interested in just this small part of the CT scan image. Therefore
the first task that we dealt with was cropping the full image and extracting just
the part which contained the bones. Once it is done, we drew the landmark of the
femur followed by the segmentation of bones. Cropping of the image obviously
reduces the size of the image and hence needs less computational resources to
carry out the later processes. And the automated system enables the surgeon
analyse the patient’s condition without any unnecessary human intervention.

In this thesis, we performed labeling of femur, patella, fibula and tibia from
40 CT scan images with full stack of corresponding slices of 2D images. Since
these images were provided to us by a local ortho surgeon, we created its in-
house ground truth using an open source 3D slicer tool. For bone segmentation
we used four techniques of bone segmentation, namely, 2D U-Net, 3D U-Net,
Otsu’s and Fixed threshold. We noted that though all these techniques segmented
the bones successfully, they were deficient in identifying or differentiating the
bone types. However, our objective was to identify the bones also. For this we
implemented a deep learning based technique, i.e., U-Net. We presented a fully
automatic framework based on U-Net for bone segmentation. We presented the
effectiveness of our algorithm using U-Net and found it satisfactory.

The proposed framework consists of 2 stages, The first stage of this framework
consists of 2D U-Net architecture for landmark prediction of the distal femur and
femoral head in the original 3D CT scans. The next stage of the framework is to
perform local 3D segmentation around the landmark. The first stage of the frame-
work reduces the size of 3D volume from 512 X 512 X 1000 to 96 X 96 X 96, which
reduces the requirement of computational resources and time for segmentation.
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We also demonstrated and performed tissue and femur bone segmentation us-
ing various methods such as fixed threshold segmentation, U-Net segmentation,
and Ostu’s based segmentation. Further focusing on the femur bone of CT scans
of the knee joint, we had used deep learning method the U-Net as segmentation
model. We had also did the tissue segmentation using other segmentation meth-
ods based on Grey level feature methods and evaluated with our in house ground
truth.

However, this study has limitations with our ground truth, and with a few
adjustments results can be improved. First, the data used for training is limited to
25 full leg CT scans, validation is limited to 9 full leg CT scans and then model is
tested on 6 full leg Ct scans. Therefore with a larger training dataset, performance
of our approach are expected to be improved. This framework can be extended to
locate anatomical landmarks and segmentation of other bones or organs’ medical
images with different modalities in future work.
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[39] M. Krčah, G. Székely, and R. Blanc. Fully automatic and fast segmentation of
the femur bone from 3d-ct images with no shape prior. In 2011 IEEE Interna-
tional Symposium on Biomedical Imaging: From Nano to Macro, pages 2087–2090,
2011.

[40] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,
J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. A survey on
deep learning in medical image analysis. Med. Image Anal., 42:60–88, Dec.
2017.

55



[41] S. Liu. Image segmentation technology of the ostu method for image mate-
rials based on binary pso algorithm. In D. Jin and S. Lin, editors, Advances
in Computer Science, Intelligent System and Environment, pages 415–419, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[42] X. Liu, C. Han, H. Wang, J. Wu, Y. Cui, X. Zhang, and X. Wang. Fully auto-
mated pelvic bone segmentation in multiparameteric mri using a 3d convo-
lutional neural network. Insights into imaging, 12(1):1–13, 2021.

[43] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3431–3440, 2015.

[44] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic segmentation using
adversarial networks. arXiv preprint arXiv:1611.08408, 2016.

[45] S. Madhukumar and N. Santhiyakumari. Evaluation of k-means and fuzzy c-
means segmentation on mr images of brain. The Egyptian Journal of Radiology
and Nuclear medicine, 46:475–479, 2015.

[46] I. Manousakas, P. Undrill, G. Cameron, and T. Redpath. Split-and-merge
segmentation of magnetic resonance medical images: performance evalua-
tion and extension to three dimensions. Computers and Biomedical Research,
31(6):393–412, 1998.

[47] F. Milletari, S.-A. Ahmadi, C. Kroll, A. Plate, V. Rozanski, J. Maiostre, J. Levin,
O. Dietrich, B. Ertl-Wagner, K. Bötzel, et al. Hough-cnn: deep learning for
segmentation of deep brain regions in mri and ultrasound. Computer Vision
and Image Understanding, 164:92–102, 2017.

[48] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In 2016 fourth interna-
tional conference on 3D vision (3DV), pages 565–571. IEEE, 2016.

[49] J. Minnema, M. van Eijnatten, W. Kouw, F. Diblen, A. Mendrik, and J. Wolff.
CT image segmentation of bone for medical additive manufacturing using a
convolutional neural network. Comput. Biol. Med., 103:130–139, Dec. 2018.

[50] P. Moeskops, M. Veta, M. W. Lafarge, K. A. Eppenhof, and J. P. Pluim. Adver-
sarial training and dilated convolutions for brain mri segmentation. In Deep
learning in medical image analysis and multimodal learning for clinical decision
support, pages 56–64. Springer, 2017.

56



[51] P. Moeskops, J. M. Wolterink, B. H. van der Velden, K. G. Gilhuijs, T. Leiner,
M. A. Viergever, and I. Išgum. Deep learning for multi-task medical image
segmentation in multiple modalities. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 478–486. Springer,
2016.

[52] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In Proceedings of the IEEE international conference on computer
vision, pages 1520–1528, 2015.

[53] C. P. Pal, P. Singh, S. Chaturvedi, K. K. Pruthi, and A. Vij. Epidemiology of
knee osteoarthritis in india and related factors. Indian J. Orthop., 50(5):518–
522, Sept. 2016.

[54] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille. Weakly-and semi-
supervised learning of a deep convolutional network for semantic image seg-
mentation. In Proceedings of the IEEE international conference on computer vision,
pages 1742–1750, 2015.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[56] Y. Pauchard, T. Fitze, D. Browarnik, A. Eskandari, I. Pauchard, W. Enns-
Bray, H. Pálsson, S. Sigurdsson, S. J. Ferguson, T. B. Harris, V. Gudnason,
and B. Helgason. Interactive graph-cut segmentation for fast creation of fi-
nite element models from clinical ct data for hip fracture prediction. Comput.
Methods Biomech. Biomed. Engin., 19(16):1693–1703, Dec. 2016.

[57] C. Riang. F1 score = dice coefficient. https://chenriang.me/

f1-equal-dice-coefficient.html, Jun 2020.

[58] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells,
and A. F. Frangi, editors, Medical Image Computing and Computer-Assisted In-
tervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International
Publishing.

[59] C. Rorden. An open source tool for landmark identification. https://

people.cas.sc.edu/rorden/mricro/.

57

https://chenriang.me/f1-equal-dice-coefficient.html
https://chenriang.me/f1-equal-dice-coefficient.html
https://people.cas.sc.edu/rorden/mricro/
https://people.cas.sc.edu/rorden/mricro/


[60] M. Shao, S. Han, A. Carass, X. Li, A. M. Blitz, J. Shin, J. L. Prince, and L. M.
Ellingsen. Brain ventricle parcellation using a deep neural network: Applica-
tion to patients with ventriculomegaly. NeuroImage: Clinical, 23:101871, 2019.

[61] N. Sharma and L. M. Aggarwal. Automated medical image segmentation
techniques. J. Med. Phys., 35(1):3–14, Jan. 2010.

[62] A. A. Taha and A. Hanbury. Metrics for evaluating 3d medical image seg-
mentation: analysis, selection, and tool. BMC medical imaging, 15(1):1–28,
2015.

[63] P. A. Thakur. Brain tumor segmentation using k-means clustering algorithm.
International Journal for Research in Applied Science and Engineering Technology,
10(2):1–8, 2022.

[64] T. P. Trappenberg. Fundamentals of machine learning. Oxford University Press,
2019.

[65] P. Ubolkosold and P. Tiawongsombat. A study of otsu’s local optimal thresh-
olding algorithm. 04 2014.

[66] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence, 13(06):583–598, 1991.

[67] M.-S. Yang, Y. J. Hu, K. C.-R. Lin, and C. C.-L. Lin. Segmentation techniques
for tissue differentiation in mri of ophthalmology using fuzzy clustering al-
gorithms. Magnetic resonance imaging, 20 2:173–9, 2002.

[68] F. Yokota, T. Okada, M. Takao, N. Sugano, Y. Tada, and Y. Sato. Automated
segmentation of the femur and pelvis from 3d ct data of diseased hip using
hierarchical statistical shape model of joint structure. In International Con-
ference on Medical Image Computing and Computer-Assisted Intervention, pages
811–818. Springer, 2009.

[69] J. Zhang, C.-H. Yan, C.-K. Chui, and S.-H. Ong. Fast segmentation of bone in
ct images using 3d adaptive thresholding. Computers in biology and medicine,
40(2):231–236, 2010.

58


	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Background and related work
	Deep Learning
	Supervised learning
	Convolutional neural networks
	Unsupervised and supervised methods
	Clustering methods
	Supervised methods

	Deep learning approaches
	CNNs for Medical Imaging Segmentation
	U-Net
	Some other Relevant studies

	Gray level features methods
	Fixed threshold
	Otsu Threshold
	Region growing and Split and Merge algorithms

	Bone segmentation
	Related work

	Fundamentals
	Computed Tomography images
	Segmentation
	Evaluation Parameter
	Precision
	Recall
	F1 Score


	Data Set
	Data annotation
	3D Slicer
	MRIcro

	Data augmentation

	Landmark detection
	UNet Model
	Results and Analysis
	Femur head center
	Distal Femur


	Segmentation
	Model I : Fixed Threshold-based Segmentation
	Model II : Otsu's Segmentation
	Model III : 2D UNet
	Tissue segmentation
	Femoral Head
	Distal Femur

	Model IV: 3D UNet
	Femur Head
	Distal Femur

	Results and Analysis

	Conclusion
	References



