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Abstract 

 
The COVID19 pandemic has triggered technical measures to halt the disease’s 

spread. One of the most promising solutions for this is private contact tracing 

(PCT). However, the recently suggested Bluetooth-based PCT has some function- 

ality and flexibility restrictions. Only direct contact can be detected by current 

methods, not indirect contact. Furthermore, dangerous contact regulations are 

not adaptable to changing environmental conditions or disease strains. They are 

also not flexible enough to adapt duration of contact into account while calculat- 

ing PCT. We present a robust and reliable trajectory-based PCT system based on 

trusted hardware in this study. The conceptual model of trajectory-based PCT is a 

generalisation of private set intersection (PSI) which is well studied till now. This 

difficulty is handled by creating new algorithms that result in a safe, efficient, and 

flexible PCT system that uses trusted hardware like Intel SGX. Experiments have 

demonstrated that this system is capable of great performance and scalability. 

Private Contact Tracing, Trusted Execution Environment (TEE), Intel SGX, Tra- 

jectory Compression. 
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CHAPTER 1 

Introduction 

 
Currently, contact tracing is expected as an effective measure to handle the spread 

of infection. Hence, PCT is necessarily needed. Decentralized Privacy Reservation 

Proximity Trace (DP3T) [8], a PCT protocol with Bluetooth Low Energy beacon, 

is already in use in apps made in Europe. The basic mechanism of DP3T is that 

the application uses the smartphone‘s Bluetooth to send a random ID. Sensitive 

information such as the user‘s ID or location is not contained by this random ID. 

And the upcoming smartphone will only send data for a limited time. 

However, Bluetooth-based private contract tracking has some constrains. First 

constraint is,that Bluetooth-based PCTs only recognize direct contact. Second, 

Bluetooth-based PCTs do not have the flexibility to determine risky contact rules. 

It’s supposed that the health agency sends confirmed COVID-19 patients’ location 

data to a server that customers don’t trust. Clients submit inquiries and encrypted 

personal data to the server, which gives a Boolean value as a result indicating 

whether or not a dangerous contact exists. 

The method of PCT allows two (or more) parties to work together to get the 

intersection of the private set and reveal nothing about the personal data to 

any party,only result of the intersection. However, existing methods of PSI, 

primarily based on elementary cryptography, not all of the prerequisites are 

met. The first TEE based PSI by given by Tamrakar et al [1] . 

The problem is demonstrated to be an extension of the well-studied Private 

Proximity Testing and Private Set Intersection problems (PSI). The formula is 

specified for both time and space and can be applied in a variety of situations. 

Intel SGX was used to build the system. It is demonstrated that a single machine 

running SGX can process thousands of queries on millions of records of trajectory 

data in a matter of seconds. 
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Figure 1.1: Trajectory-based PCT overview 

 
1.1 Related Works 

There are BLE-based decentralised architectures that employ a device’s wireless 

signals, such as DP3T and similar methods. To date, they are the most widely 

used implementation approaches. The main difference between our suggested 

system and ours is that here the trajectory data is maintained directly in a discreet 

way to detect implicit interactions, whereas they only manage contact information 

through random ID tracking. Hybrid architecture, also called as want architec- 

ture, shares many of the same qualities as decentralised architectures. Desire [2] 

users submit the server random ID-based contact information, but the ID cannot 

be used to identify a specific person. Unlike our system, AAROGYA SETU [6] 

collects actual trajectory data, which raises major privacy risks. 

In comparison with these works, there are a few differences we found. First, 

the characteristics are substantially different from a security and privacy stand- 

point. It is critical in centralised designs to discuss the model of trust. When 

the server is untrusted, we must consider methods to preserve private data of the. 

There is no such security problem with the BLE-based technique because personal 

data is not transmitted. BLE-based methods, on the other hand, pose security is- 

sues that aren’t present in other methods. Continuous tracking of random IDs, for 

example, in a centralised architecture. In the majority of circumstances, to ensure 
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either a very expensive method such as secret computation or the security of a 

centralised architecture It is necessary to make a major assumption, such as server 

trusting. Secondly, unlike the Bluetooth-based method, which computes the con- 

tact detection decision on each device, our method computes the contact detection 

decision on the server, that can be costly. one of the main advantage of the BLE- 

based method is that it has a smaller computing cost than our method, which 

compares data from a large number of infected persons, because the computation 

is limited to those who have been directly infected. The BLE-based technique, on 

the other hand, for instance, cannot detect indirect contact. In terms of commu- 

nication costs, the BLE-based technique essentially necessitates data broadcasting 

of the infected person. Despite the tiny size of the data, it is vital to alert all users. 

A synopsis of this paper appeared in [5]. When compared to that, there are 

three major differences. First difference is, that an additional parameter with re- 

spect to duration of contact is added in this paper. Second difference is, that a 

key agreement protocol is used along with remote attestation in order to prevent 

the system form masquerading attacks [7]. And the third difference is, that a new 

method – Bing maps tile system is used for encoding the trajectory data more ef- 

ficiently. In this paper, we use comprehensive experimental methods to measure 

the accuracy, that includes a comparative study to previous work on trajectory 

data PCT. 

Douglas-Peucker, or route-wise compression, is a well-studied technique for 

trajectory data compression [3]. The main concept is to recreate a route by es- 

timating it from a small number of sites. Instead of approximating the position 

information, the compression is done by approximating the route data. The com- 

monality of trajectory points is the basis for our compression. As a result, it is 

incompatible with these compression techniques. However, in contact tracing, 

routewise compression may not function effectively because it is impossible to 

know whether or not points are in contact just by crossing. It is vital to provide 

some type of time data in the route information to identify touch. 

 
1.2 Intel SGX 

Intel SGX [4] is an advanced instruction set of Intel-x86 processors that allows 

you to create a separate and reliable execution environment called an enclave. 

The enclave is located in a protected memory part called the Enclave Page Cache 

(EPC). In this area, a memory encryption engine with a private key used only by 

the processor, allows all programs and data to be processed quickly and trans- 
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parently outside the CPU package without encryption. In this trusted area,  the 

CPU prevents access from untrusted applications, including operating systems / 

hypervisors, thus protecting the integrity and confidentiality of the data in the 

system and enclave. This hidden process is software transparent and much faster 

than traditional advanced encryption-based methods. 

Local and remote attestations are allowed by SGX. The focus of this section 

is on remote authentication (RA). You can acquire a report comprising measure- 

ments (such as MRENCLAVE or MRSIGNER) which is based on the hashed orig- 

inal state of the enclave by requesting a RA from an enclave. This allows you 

to find critical information about your application, as well as the memory design 

layout and the contact information of the builder. This measurement is signed by 

the Intel Enhanced Privacy ID [4], and Intel Attestation Services can validate the 

signature’s accuracy as a trusted third party/client. Secure key transactions, like 

ECDSA, are done between the remote client and the enclave, who wants to attest 

to the server, within this RA protocol, along with the verifying of the SGX envi- 

ronment’s Remote attestation. In existing systems, the procedure for remote attes- 

tation is vulnerable to masquerading attack. A new RA algorithm with key agree- 

ment protocol is proposed in this paper which is not vulnerable to masquerading 

attack. 

The following section 1.1 describes some preliminary studies related to the tra- 

jectory based private contact tracing system. Chapter 2 represents the proposed 

algorithm. Chapter 3 includes the security analysis of the system. Performance 

analysis is included in the chapter 4. Finally, the last chapter 5 represents a con- 

clusion to the whole report. 
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CHAPTER 2 

Proposed Scheme 

 
A centralised system is examined in this research, which keeps infected patients’ 

trajectory data on a remote server and collects PCT queries from clients along with 

their own trajectory-data in form the of queues. While the system is operational, 

the server maintains past data records for infected people for the previous 14 days 

(or up to 21 days which is decided by the government). To add and remove data, 

update in batches on a regular schedule (once a day). The server has already pre- 

structured the trajectory data and is prepared to allow the PCT requests from the 

client. As a PCT request, the client additionally transmits his trajectory data of 

the last 14 days, and the server does contact tracing and produces the result and 

return it to the client. 

 
2.1 Problem Statement 

PCT depending on trajectory. Between the client and the server, it is an asymmet- 

rical protocol. This approach gives, 1 or 0, to the client as a result and does not 

provide the client’s data to the system’s server even if the person desires to know 

the server’s contact information. Every client has a collection of trajectory data 

for one person, while the server has numerous trajectory data for infected people 

in the instance of an infection. 

A PCT technique based on Trajectory-data can be described as an expansion of 

such a concept in its most basic form. For contact tracing, contacts can be calcu- 

lated using navigation data from user time series. Individual location information 

can be extended to time series trajectory data to accomplish this. we can represent 

the formula as: denoting trajectory data of user k as 

 
Dn = ( k = (t1

k , 1k)......., k = (tn
k , nk)) (2.1) 

1 n 
 

we can get the answer returned as k’s contact with v, 
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{1 (∋  ∈ D ,  ∈ D ) 

s chth t (  − ) ⩽ Θgeo 

nd (t  − t ) ⩽ Θdoc 

0 (others)} 

 

Where Θgeo is spatial and Θdoc is temporal duration of contact range thresh- 

old. However, the server doesn’t at all learn anything else aboutX , and with 

this protocol, u can only acquire a 1 or a 0 about X . For our experiment, we 

considered Θgeo and Θdoc equal to 0. 

Some important needs of trajectory-based PCT are described below: Efficiency. 

In many ways, the system necessitates efficiency. First, there will be response 

throughput. Since the server is constantly bombarded with requests from a huge 

number of clients, this is the case. The second consideration is bandwidth. Be- 

cause this protocol affects a large number of people, bandwidth must be decreased 

to improve effectiveness of communication. To put it another way, protocols that 

transfer a lot of data to devices at the end, should be avoided. The final point to 

consider is scalability. Efficiency requirements completely depend on the factors 

that are: the amount of the PCT used by the total number of users, frequency of 

use of the system and amount of data entered in the system. 

Security. Consider a malicious server attempting to steal data without adher- 

ing to protocol. Because an attacker can observe the processing of raw data, it’s 

critical to safeguard user privacy, therefore PCT computation on the server and 

network provisioning must be cryptographically distinct. You can assume that a 

trustworthy and curious client is following the rules but attempting to gain per- 

sonal information from the system’s server. You can also employ brute force at- 

tacks to reveal some part of the trajectory data on the server side if the trajectory 

data in teh server side is not encoded. By outputting the value returned to the 

user as a binary value, each user is authenticated and the number of requests can 

be limited, reducing the amount of information leaked and increasing the cost of 

the attacker. 

Flexibility. Flexibility is the requirement needed that is satisfied by parameters 

(Θgeo, Θdoc) in the system. 
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Figure 2.1: System Architecture 
 
 
 
 
 
 
 

 
Symbols Definition 

Table 2.1: Notations 

 
 

ND number of sick patient’s trajectory-data 
D sick patient’s trajectory-data 
NC number of clients requesting PSI 

c C a single client i(  = (1, .., Nc)) and set of all the clients 
NR Total number of chunks of data 
R D after mapping (into arrays of similar chunks) 

R R (  = 1,  ...... , NR) 
q query data sent by client i 
Q NC query data after merging 
NQ size of Q 
Θ Parameters of PCT : (Θgeo and Θdoc ) 

(t , ) th row of trajectory-data as time and location tuple 
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2.2 System Overview 

In figure 2.1: In step 1, in batch processing, the health agency uploads the com- 

promised patient’s data D. As there the need to differentiate trajectory data by 

infected users is not required, D is in the raw trajectory data form and does not 

need to include the users’ IDs. 

In step 2, with the function mapToChunkedDictionary, we map the raw data 

form D to the dictionary representation atht is efficient R as mapped array of 

chunks. Encoding process, chunking process, and translation process into the 

dictionary representation are all part of this mapping function. Each piece of tra- 

jectory data is encoded into 1-D bytes of strings. This step is carried out in SGX, 

and the R’s binary data is stored in the untrusted server’s memory. While upload- 

ing, the health agency obtains the key used for encryption from SGX via RA. 

In step 3, Remote attestation is happening. Before transmitting the RA request 

to the server, the client uses the new RA protocol to verify the remote enclave. 

The client can inspect to see whether the enclave is tampered before securely ex- 

changing the key with it or not. The data is transmitted to the enclave via a secure 

channel after being encrypted using the shared key. It is to be noted that a secure 

channel is one in which just the trajectory query data in the request is kept private 

and encrypted. Client’s personal data (like IP address) is not kept hidden on the 

server side and must be used in the response. The answer data, along with the 

request query data, are kept private and encrypted. 

In step 4, PCT requests are sent to the server by a large number of clients.  c  

sends q in form of a request parameter in the figure figure 2.1, which comprises 

her trajectory data of 14 days. Before encryption, Θ encodes trajectory data. As 

a result,in advance, the and client and the server can share this parameter. After 

exiting the client environment, q is encrypted in all untrusted parts and can only 

be seen and accessed in the verified enclave. 

In step 5,  q is queued on the outside of the enclave’s protected region until 

a specified amount (NC) of requests have been accumulated, at which point it is 

uploaded to the enclave joined by the loadToEnclave function. This function’s 

implementation is done by the ECALL function, which is used to call an SGX 

function. By batch processing, we want to improve the process of data loading for 

numerous users while reducing the overheads. 

In step 6, The data is finally decrypted after being uploaded to the trustworthy 

enclave. All the q queues are collected inside the enclave and using mapToArray, 

mapped to query representation Q. The amount of the enclave memory is tightly 
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limited, despite the fact that these query data are private and cannot be handled 

outside the enclave. As a result, it’s crucial to encode trajectory data into minimal 

bytes. 

In  step  7,  the  chunked  data  r  is  inserted  one  after  another  into  the  enclave, 

and in the enclave,the set-intersection of r  and Q is computed. Only searches that 

provide the non empty result for a set intersection are returned as 1. If a query is 

deemed as 1, we can save time by breaking the loop for the PSI calculation for rest 

of the r . 

In step 8, ConstructResponses method compute responses for all (NC) clients 

from the results of the PSI and total query data q (  = 1, ..., NC) inside the trust- 

worthy enclave after all the iterations for all chunks are done. Simply encryption 

of the results of PSI as positive or negative for each client inside the enclave can 

do this. After this, the operation sends each client the encrypted result via the 

secure channel. 

The encoding module converts the trajectory data into a string representation 

that is then used to produce a compact dictionary representation with the help 

of a finite state automaton (FSA). FSAs are circular, deterministic finite acceptors 

that can share prefixes and suffixes between nodes (see later sections). As a result, 

comparable strings can be efficiently stored. Trajectory-based coding. The first 

requirement for encoding is that the discrete - time independent trajectory data 

and the unique string must have an injective function. Due to FSA [4], there are 

numerous similarities between string suffixes and prefixes, which is a desirable 

quality. 

Trajectory data D contains arrays of time-location such as date-time format 

and geographic data such as longitude and latitude tuples: 

 

Dn = ((t1, 1), ......, (tn, n)) (2.2) 

Where, t1    time in date-time format and 1    co-ordinate (e.g.  (latitude, longi- 

tude)) 

 
Encoding 

Here, t and l are encoded distinctly and merged in series. For location, a method 

of mapping 2D coordinate system data to a string, Bing Maps Tile System [?] is 

used. In Bing Maps Tile System, the strings that are obtained after encoding of 

the trajectory data are going to be similar in suffix. For t, UNIX epoch encoding 

scheme is used. This coding will generate similar strings for time. And a simple 
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Figure 2.2: Encoding flowchart: Encoding trajectory-data into string. 
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merge will show you the prefix and suffix-like structures that the FSA can com- 

press more efficiently. Also, the encoded string will be different for each trajectory 

data. 

 
Remote attestation with key agreement protocol 

In this, an improved method for remote attestation is used, which includes a key 

agreement protocol. This is done in order to improve the performance of RA and 

make it more secure. How it secures the system is explained in Security Analysis 

Section. 
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CHAPTER 3 

Security Analysis 

 
Since we have considered that the enclave is trusted and secure, we can only anal- 

yse attacks that can happen outside the enclave. Here are some attacks that may 

be possible: 

 
Denial-of-Service attacks 

To avoid DoS attacks on SGX, the client must be authenticated before it can be 

processed. Because the server-side data changes just once a day, each client should 

be limited to one request per day. Because the information of the client requesting 

the query does not need to be disguised, this may be accomplished with a simple 

plugin. 

 
Query-abusing attacks 

To reduce the impact of attacks, verifying the client can also be used. Only 0 or 

1 information is available to the client. Even if the request is only made once 

a day, there is a chance that some information will be released due to the use 

of several infected clients.   Other protection techniques are required to prevent 

this; like, assuming the ability to link the discovered information with other data, 

differential privacy must be taken into account. 

 
Side-channel attacks 

Data cannot be leaked from the network since it is encrypted with a key shared 

between SGX and the client. 
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False answer attack 

False answers are prevented thanks to RA’s verification of the enclave’s internal 

blogs. 

 
Fake data injection 

Suppose that the health agency is a trusted institution, and that when a third party 

deposits data, the data in the memory protected by SGX must be modified. As a 

result, it is cryptographically secure. 

 
Replay attack 

Even if we consider that a secure channel is in place, it is possible that a replay 

attack may occur. However, it can be totally avoided by authenticating the user, 

limiting the number of requests each day, and by changing the key every other 

day. 

 
Masquerading attack 

 

 

 

 

Figure 3.1: Masquerading attack on Remote Attestation. 
 

In this attack strategy, the attacker targets the platform settings of the client 

which is honest to vouch to the client which is malicious and operating on M, 

circumventing M’s remote attestation.It is an attempt to get illegal access to per- 

sonal computer information by impersonating identity of someone else, such as 
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→ 

→ 

→ 

→ 

a network identity. A masquerading attack can make an authorisation process 

exceedingly vulnerable if it is not adequately safeguarded. 

 
Masquerading Attack in Remote attestation 

 
 

Algorithm 1 Masquerading Attack in Remote attestation 
 

1: A : create a non-predictable 160 bit nonce 
2: A M : send challenge Request(nonce) 
3: M  C : send challenge Request(nonce) 
4:   C: loadkey(A Kpr ) 
5:   C : Retrieve the Quote : sig(PCR, nonce)A Kpr  

6: C : get stored measurement log : SML 
7:   C     M : challengeResponse(Quote, SML) and certificate A Kp b 
8:   M     A : challengeResponse(Quote, SML) and certificate A Kp b 

9:   A : validate the certificate(A Kp b) 
10:   A : validate the sig(PCR, SHA1(nonce))A Kpr  

11: A : using PCR, validate nonce and SML 

 

 

Step 1 

A non-predictable nonce is created by A. 

 
Step 2 

The nonce is sent to the M by A. 

 
Step 3 

M forwards this nonce to C. 

 
Step 4 

The storage root key is used, and the attestor, that is C, uploads the Attestation 

Identity Key(A Kpr ) from the TPM’s protected storage (SRK). 

 
Step 5 and 6 

the attestor C issues a TPM Quote instruction, all the selected PCRs and the given 

nonce n are signed by the private key A Kpr .  In addition to this, the attestor C 

retrieves the measurement log that has been saved (SML). 
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Step 7 

M receives the attestor’s response, which includes the signed nonce, signed Quote, 

and SML. C also hands over the AIK credential, which is an A Kp b signed by a 

CA. 

 
Step 8 

M send this received information to C. 

 
Step 9 

Whether the AIK credentials that were signed by a reputable CA and hence be- 

longs to a legitimate TPM, is determined by A. Along with it, A also checks the 

trusted issuing party’s certificate revocation list to see if A Kp b is still valid. 

 
Step 10 and 11 

A validates the Quote’s signature and then A checks for freshness. 

Since, AIKs can’t be utilised to create secure channels or verify communication 

partners directly, therefore, the challenger has no way of knowing whether the 

received message is from the attesting system M or not. He can just know that he 

received a message form a legitimate TPM. Because the attesting system M uses 

all the integrity values with a valid AIK signature from platform C to pretend that 

it has the matching A Kpr , masquerading attacks cannot be stopped. 

 
Remote Attestation with key agreement protocol 

Both the parties(attestor and attestee) must agree on a common generator- g and 

a common group- m for the protocol to work. 

 
Step 1 

A non-predictable nonce is created by A. 

 
Step 2 

A 
p b 

= g  mod m is generated by A, where a is the private component of KA. K 
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p b 

p b 

p b 

p b 

p b 

→ 

p b 

p b 

A 

C 

 
 

Algorithm 2 Remote Attestation with key agreement protocol 
1: A : create a non-predictable 160 bit nonce 
2:  A : Generate the Keys(KA

 pr  
) 

3:   A → C : send Challenge Request(nonce,KA ) 

4:  C: Generate the Keys(KC
 pr  

) 
5:   C: loadkey(A Kpr ) 

6:  C: Retrieve the Quote = sig( PCR, SHA1 (nonce, KC
 

 
))A Kpr  

7: C : get stored measurement log (SML) 

8:  C : compute the Session Key (KAC) 

9:   A: validate the certificate(A Kp b) 
10:  A : validate the sign(PCR, SHA1(nonce, KC

 

 
 

))A Kpr  

11: A : using PCR, validate nonce and SML 
12: A : compute the session Key (KAC) 

13: A : create a non-predictable 160 bit nonce1 

14:  A C : send the challenge Request (nonce1) 
15:  C : compute Response = enc(nonce1,KAC) 

16: A : validate the nonce1 
 

 

Step 4 

The primary part is that, the attestor A generates a public key KC
 

 

 
, before signing 

the Quote with the AIK, it puts the produced key in the Quote message along with 

the PCRs and the nonce. 

 

Step 5-11 

The client’s CPU A, is used in order to generate the public keyKC
 

 

 
, which is 

then fed as an external data into the procedure of TPM Quote. Since the TPM 

Quote command can only allows for some bits ( 160 bits) of data, the message 

must be compressed using SHA1 to get under the 160 bit limit. As C is running 

a trustworthy OS with a trusted platform configuration the key’s, private part is 

unavailable to a possible malicious client. 

 
Step 12 

The challenging party uses his private part and the public part of C to generate 

the shared session key KAC. 

, K 

, K 
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C,M 

C,M 

p b 

p b 

Step 13-16 

Following the computation of the session key, A performs a second challenge- 

response authentication to see if C also possesses this shared key. 

We will prove that the proposed system is safe against masquerading attacks 

by contradiction. 

 
Proof by Contradiction 

Let E pMA
 be an experiment where the challenger A, wanted to authenticate the 

client M, before any secret message is sent in a collaborative masquerading attack. 

All messages are transferred from A to C by the malicious system M. Then, the 

probability of a successful attack 

 

Pr[E pMA ] = 1 (3.1) 

 

 
1. Let i and j be two plaintexts (1 ⩽ , j ⩽ N) 

2. The ciphertext resulting from the experiment upto polynomial times. The 

outputs are the ciphertexts from the algorithm 2. 

3. For this to happen, after step 1, algorithm 2, these step must happen. 

A → M : ChallengeRequest(nonce,KA ) 

M → C : ChallengeRequest(nonce,KM   ) 

But as we know that, 

1. M can not generate his own session key between him and A, since his 

software is corrupted and malicious platform details are transmitted to A 

by his TPM. 

2. The platform owner cannot transmit the session key KAC, which is gener- 

ated by A, to the malicious host since extraction (through memory dump or 

system software modification) would result in a compromised system state 

that would be identified during the attestation phase. 

3. As a result, neither M nor C have the right KAC and so are unable to 

encrypt the given nonce1, the second challenge response authentication 

(Step 5d to Step 10) discovers this substitution. 

Hence, 
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C,M 
Pr[E pMA ] = 0 (3.2) 

 
Comparing equation (3,1) and equation (3,2). This contradict our assumption 

and proves that our system is safe against masquerading attack. 
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CHAPTER 4 

Experimental Result 

 
4.1 Theoretical Analysis 

For calculating the complexity of the whole system, all the steps are evaluated 

step by step and then the final complexity of the system is calculated as c. Table 

below shows the complexity analysis of the proposed system. 

Table 4.1 summarizes the costs to perform computation in existing system. 

And Table 4.2 summarizes the costs to perform computation in proposed system. 

To represent the complexity measurements we use notations table Table 2.1. 

We can see from tables : Table 4.1 and Table 4.2, that our proposed system is 

more reliable than the existing system in terms of computational cost. 

 
4.2 Performance Analysis 

To conduct the experiments, we use Python 3.8.10 and pyQuadkey2 library for 

quadkey generation, encryption and decryption methods. Hardware platform 

has OS as Windows 11 64-bit with CPU Intel core i5,10th generation, and 8 GB 

memory, which supports the SGX instruction set. For experimental purpose, we 

 

Table 4.1: Computation cost of the existing system 
Step description Complexity 

1, ND trajectory data will be uploaded O(ND) 

2, NR chunks are encoded and mapped into the chunked dictionary. O(N2 ) 
3, NR each client will perform RA O(NC) 
4, let n be the size of each request. O(n) 
5, clients’ requests are uploaded in the Q. NC is client requests at a time O(NC ∗ n) 
6, these queues are merged into a single unique queue. O(NC ∗ n) 
7, set intersection is performed for all NR chunks and NC ∗ n queue data O(NC ∗ NR ∗ n) 
8, The intersection is stored in a queue of sizeNC And client get the result O(NC) 

Total O(NC ∗ ND
2 ∗ n) 
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Table 4.2: Computation cost of the Proposed system 
Step description Complexity 

 

1, ND trajectory data will be uploaded O(ND) 
2, NR chunks are encoded and mapped into the chunked dictionary. O(ND) 
3, NR each client will perform RA O(NC) 
4, let n be the size of each request. O(n) 
5, clients’ requests are uploaded in the Q. NC is client requests at a time O(NC ∗ n) 
6, these queues are merged into a single unique queue. O(NC ∗ n) 
7, set intersection is performed for all NR chunks and NC ∗ n queue data O(NC ∗ NR ∗ n) 
8, The intersection is stored in a queue of sizeNC And client get the result O(NC) 

Total O(NC ∗ ND ∗ n) 
 

Number of Data Time taken by old systemTime taken by our system 
10 1.5878918170928955 1.0629105567932130 
20 1.6581721305847168 1.0428571701049805 
50 1.5846397876739502 1.0560708045959473 
70 1.5680992603302002 1.0538170337677002 
100 1.7373738288879395 1.0621485710144043 
120 1.7136499881744385 1.0761454105377197 
150 1.7136499881744385 1.0870766639709473 
200 1.6356916427612305 1.1187500953674316 
250 1.8569145202636719 1.0985748767852783 
300 1.6048930644989014 1.1755142211914062 

Table 4.3: Time taken by both the systems to complete whole process 

 
have created a set of random data. Also, ND is updated in fixed time regularly in 

form of batches. Let us assume that 10000000 trajectory data is uploaded in one 

batch.  Hence,  ND will be 26 bits.  Also,  let number of clients  NC be 100.  Then 

NC will be of 9 bits. And for each client, trajectory data sent be 1000 for 1 day. 

Then n will be of 12 bits. As a result, the total computation will take 2808 bits (if 

calculated for worst case.) Also, Θdoc is considered 2 hours or 7200 seconds for 

this experiment. It can be changed and decided by the government according to 

disease or virus. 

 
4.3 Computational Cost 

Figure 4.1 shows the time taken to perform the existing system. And Figure 4.2 

shows the time taken to perform the proposed system. 

The experiment includes all phases running once. From Table 4.1 and Table 

4.2, it can be derived that the performance of the proposed system is efficient in 

terms of computation. 



21  

 
 

Figure 4.1: Graph between Number of data items (x axis) and time taken to per- 
form old system (y axis) 

 
 
 
 

 

Figure 4.2: Graph between Number of data items (x axis) and time taken to per- 
form proposed system (y axis) 
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CHAPTER 5 

Conclusion 

 
To restrict the spread of contagious diseases, this report provides a private contact 

tracing system based on trajectory data of patients that employs trusted technol- 

ogy/hardware. The criteria for the same has been specified, and a architecture 

based on TEE for safe, efficient, and flexible contact tracing has been proposed. 

The results of the experiments indicate that this technology can work on a broad 

scale. We can make the system more flexible according to our requirements in 

future as flexibility requirement is satisfied in our system. We can also try to im- 

prove the proposed system since it can also detects the contact even if the patient 

is in a protected space, like a car, near the infected patient. 
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