
Private Contact Tracing based on
Trajectory-data through Trusted Hardware

by

ASTHA KURKIYA

202011010

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY

in

INFORMATION AND COMMUNICATION TECHNOLOGY

to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

May, 2022

i

ii

Acknowledgments

Dr. Maniklal Das, my supervisor, whose genuineness and encouragement I will

never forget, deserves my heartfelt gratitude. He has been an inspiration to me as

I worked through this Master’s programme. He is the epitome of leadership and

the ideal role model. This thesis would not have been done without his supervi-

sion, which allowed me to build a grasp of the subject from the beginning. I am

grateful for the tremendous possibilities he provided for me to progress profes-

sionally and for the extraordinary experiences he planned for me. It is a privilege

to study under Dr. Maniklal Das.

I am thankful for my parents’ unwavering love and support, which keeps

me inspired and confident. I am also thankful for my friends’ constant support

throughout the master’s programme.

iii

Contents

Abstract iv

List of Principal Symbols and Acronyms iv

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Related Works . 2

1.2 Intel SGX . 3

2 Proposed Scheme 5

2.1 Problem Statement . 5

2.2 System Overview . 8

3 Security Analysis 12

4 Experimental Result 19

4.1 Theoretical Analysis . 19

4.2 Performance Analysis . 19

4.3 Computational Cost . 20

5 Conclusion 22

References 23

iv

Abstract

The COVID19 pandemic has triggered technical measures to halt the disease’s

spread. One of the most promising solutions for this is private contact tracing

(PCT). However, the recently suggested Bluetooth-based PCT has some function-

ality and flexibility restrictions. Only direct contact can be detected by current

methods, not indirect contact. Furthermore, dangerous contact regulations are

not adaptable to changing environmental conditions or disease strains. They are

also not flexible enough to adapt duration of contact into account while calculat-

ing PCT. We present a robust and reliable trajectory-based PCT system based on

trusted hardware in this study. The conceptual model of trajectory-based PCT is a

generalisation of private set intersection (PSI) which is well studied till now. This

difficulty is handled by creating new algorithms that result in a safe, efficient, and

flexible PCT system that uses trusted hardware like Intel SGX. Experiments have

demonstrated that this system is capable of great performance and scalability.

Private Contact Tracing, Trusted Execution Environment (TEE), Intel SGX, Tra-

jectory Compression.

v

List of Tables

2.1 Notations . 7

4.1 Computation cost of the existing system .. 19

4.2 Computation cost of the Proposed system ... 20

4.3 Time taken by both the systems to complete whole process 20

vi

List of Figures

1.1 Trajectory-based PCT overview . 2

2.1 System Architecture . 7

2.2 Encoding flowchart: Encoding trajectory-data into string. 10

3.1 Masquerading attack on Remote Attestation... 13

4.1 Graph between Number of data items (x axis) and time taken to

perform old system (y axis) .. 21

4.2 Graph between Number of data items (x axis) and time taken to

perform proposed system (y axis) .. 21

1

CHAPTER 1

Introduction

Currently, contact tracing is expected as an effective measure to handle the spread

of infection. Hence, PCT is necessarily needed. Decentralized Privacy Reservation

Proximity Trace (DP3T) [8], a PCT protocol with Bluetooth Low Energy beacon,

is already in use in apps made in Europe. The basic mechanism of DP3T is that

the application uses the smartphone‘s Bluetooth to send a random ID. Sensitive

information such as the user‘s ID or location is not contained by this random ID.

And the upcoming smartphone will only send data for a limited time.

However, Bluetooth-based private contract tracking has some constrains. First

constraint is,that Bluetooth-based PCTs only recognize direct contact. Second,

Bluetooth-based PCTs do not have the flexibility to determine risky contact rules.

It’s supposed that the health agency sends confirmed COVID-19 patients’ location

data to a server that customers don’t trust. Clients submit inquiries and encrypted

personal data to the server, which gives a Boolean value as a result indicating

whether or not a dangerous contact exists.

The method of PCT allows two (or more) parties to work together to get the

intersection of the private set and reveal nothing about the personal data to

any party,only result of the intersection. However, existing methods of PSI,

primarily based on elementary cryptography, not all of the prerequisites are

met. The first TEE based PSI by given by Tamrakar et al [1] .

The problem is demonstrated to be an extension of the well-studied Private

Proximity Testing and Private Set Intersection problems (PSI). The formula is

specified for both time and space and can be applied in a variety of situations.

Intel SGX was used to build the system. It is demonstrated that a single machine

running SGX can process thousands of queries on millions of records of trajectory

data in a matter of seconds.

2

Figure 1.1: Trajectory-based PCT overview

1.1 Related Works

There are BLE-based decentralised architectures that employ a device’s wireless

signals, such as DP3T and similar methods. To date, they are the most widely

used implementation approaches. The main difference between our suggested

system and ours is that here the trajectory data is maintained directly in a discreet

way to detect implicit interactions, whereas they only manage contact information

through random ID tracking. Hybrid architecture, also called as want architec-

ture, shares many of the same qualities as decentralised architectures. Desire [2]

users submit the server random ID-based contact information, but the ID cannot

be used to identify a specific person. Unlike our system, AAROGYA SETU [6]

collects actual trajectory data, which raises major privacy risks.

In comparison with these works, there are a few differences we found. First,

the characteristics are substantially different from a security and privacy stand-

point. It is critical in centralised designs to discuss the model of trust. When

the server is untrusted, we must consider methods to preserve private data of the.

There is no such security problem with the BLE-based technique because personal

data is not transmitted. BLE-based methods, on the other hand, pose security is-

sues that aren’t present in other methods. Continuous tracking of random IDs, for

example, in a centralised architecture. In the majority of circumstances, to ensure

3

either a very expensive method such as secret computation or the security of a

centralised architecture It is necessary to make a major assumption, such as server

trusting. Secondly, unlike the Bluetooth-based method, which computes the con-

tact detection decision on each device, our method computes the contact detection

decision on the server, that can be costly. one of the main advantage of the BLE-

based method is that it has a smaller computing cost than our method, which

compares data from a large number of infected persons, because the computation

is limited to those who have been directly infected. The BLE-based technique, on

the other hand, for instance, cannot detect indirect contact. In terms of commu-

nication costs, the BLE-based technique essentially necessitates data broadcasting

of the infected person. Despite the tiny size of the data, it is vital to alert all users.

A synopsis of this paper appeared in [5]. When compared to that, there are

three major differences. First difference is, that an additional parameter with re-

spect to duration of contact is added in this paper. Second difference is, that a

key agreement protocol is used along with remote attestation in order to prevent

the system form masquerading attacks [7]. And the third difference is, that a new

method – Bing maps tile system is used for encoding the trajectory data more ef-

ficiently. In this paper, we use comprehensive experimental methods to measure

the accuracy, that includes a comparative study to previous work on trajectory

data PCT.

Douglas-Peucker, or route-wise compression, is a well-studied technique for

trajectory data compression [3]. The main concept is to recreate a route by es-

timating it from a small number of sites. Instead of approximating the position

information, the compression is done by approximating the route data. The com-

monality of trajectory points is the basis for our compression. As a result, it is

incompatible with these compression techniques. However, in contact tracing,

routewise compression may not function effectively because it is impossible to

know whether or not points are in contact just by crossing. It is vital to provide

some type of time data in the route information to identify touch.

1.2 Intel SGX

Intel SGX [4] is an advanced instruction set of Intel-x86 processors that allows

you to create a separate and reliable execution environment called an enclave.

The enclave is located in a protected memory part called the Enclave Page Cache

(EPC). In this area, a memory encryption engine with a private key used only by

the processor, allows all programs and data to be processed quickly and trans-

4

parently outside the CPU package without encryption. In this trusted area, the

CPU prevents access from untrusted applications, including operating systems /

hypervisors, thus protecting the integrity and confidentiality of the data in the

system and enclave. This hidden process is software transparent and much faster

than traditional advanced encryption-based methods.

Local and remote attestations are allowed by SGX. The focus of this section

is on remote authentication (RA). You can acquire a report comprising measure-

ments (such as MRENCLAVE or MRSIGNER) which is based on the hashed orig-

inal state of the enclave by requesting a RA from an enclave. This allows you

to find critical information about your application, as well as the memory design

layout and the contact information of the builder. This measurement is signed by

the Intel Enhanced Privacy ID [4], and Intel Attestation Services can validate the

signature’s accuracy as a trusted third party/client. Secure key transactions, like

ECDSA, are done between the remote client and the enclave, who wants to attest

to the server, within this RA protocol, along with the verifying of the SGX envi-

ronment’s Remote attestation. In existing systems, the procedure for remote attes-

tation is vulnerable to masquerading attack. A new RA algorithm with key agree-

ment protocol is proposed in this paper which is not vulnerable to masquerading

attack.

The following section 1.1 describes some preliminary studies related to the tra-

jectory based private contact tracing system. Chapter 2 represents the proposed

algorithm. Chapter 3 includes the security analysis of the system. Performance

analysis is included in the chapter 4. Finally, the last chapter 5 represents a con-

clusion to the whole report.

5

CHAPTER 2

Proposed Scheme

A centralised system is examined in this research, which keeps infected patients’

trajectory data on a remote server and collects PCT queries from clients along with

their own trajectory-data in form the of queues. While the system is operational,

the server maintains past data records for infected people for the previous 14 days

(or up to 21 days which is decided by the government). To add and remove data,

update in batches on a regular schedule (once a day). The server has already pre-

structured the trajectory data and is prepared to allow the PCT requests from the

client. As a PCT request, the client additionally transmits his trajectory data of

the last 14 days, and the server does contact tracing and produces the result and

return it to the client.

2.1 Problem Statement

PCT depending on trajectory. Between the client and the server, it is an asymmet-

rical protocol. This approach gives, 1 or 0, to the client as a result and does not

provide the client’s data to the system’s server even if the person desires to know

the server’s contact information. Every client has a collection of trajectory data

for one person, while the server has numerous trajectory data for infected people

in the instance of an infection.

A PCT technique based on Trajectory-data can be described as an expansion of

such a concept in its most basic form. For contact tracing, contacts can be calcu-

lated using navigation data from user time series. Individual location information

can be extended to time series trajectory data to accomplish this. we can represent

the formula as: denoting trajectory data of user k as

Dn = (k = (t1

k , 1k)......., k = (tn
k , nk)) (2.1)

1 n

we can get the answer returned as k’s contact with v,

6

{1 (∋ ∈ D , ∈ D)

s chth t (−) ⩽ Θgeo

nd (t − t) ⩽ Θdoc

0 (others)}

Where Θgeo is spatial and Θdoc is temporal duration of contact range thresh-

old. However, the server doesn’t at all learn anything else aboutX , and with

this protocol, u can only acquire a 1 or a 0 about X . For our experiment, we

considered Θgeo and Θdoc equal to 0.

Some important needs of trajectory-based PCT are described below: Efficiency.

In many ways, the system necessitates efficiency. First, there will be response

throughput. Since the server is constantly bombarded with requests from a huge

number of clients, this is the case. The second consideration is bandwidth. Be-

cause this protocol affects a large number of people, bandwidth must be decreased

to improve effectiveness of communication. To put it another way, protocols that

transfer a lot of data to devices at the end, should be avoided. The final point to

consider is scalability. Efficiency requirements completely depend on the factors

that are: the amount of the PCT used by the total number of users, frequency of

use of the system and amount of data entered in the system.

Security. Consider a malicious server attempting to steal data without adher-

ing to protocol. Because an attacker can observe the processing of raw data, it’s

critical to safeguard user privacy, therefore PCT computation on the server and

network provisioning must be cryptographically distinct. You can assume that a

trustworthy and curious client is following the rules but attempting to gain per-

sonal information from the system’s server. You can also employ brute force at-

tacks to reveal some part of the trajectory data on the server side if the trajectory

data in teh server side is not encoded. By outputting the value returned to the

user as a binary value, each user is authenticated and the number of requests can

be limited, reducing the amount of information leaked and increasing the cost of

the attacker.

Flexibility. Flexibility is the requirement needed that is satisfied by parameters

(Θgeo, Θdoc) in the system.

7

∈

Figure 2.1: System Architecture

Symbols Definition

Table 2.1: Notations

ND number of sick patient’s trajectory-data
D sick patient’s trajectory-data
NC number of clients requesting PSI

c C a single client i(= (1, .., Nc)) and set of all the clients
NR Total number of chunks of data
R D after mapping (into arrays of similar chunks)

R R (= 1, , NR)
q query data sent by client i
Q NC query data after merging
NQ size of Q
Θ Parameters of PCT : (Θgeo and Θdoc)

(t ,) th row of trajectory-data as time and location tuple

8

2.2 System Overview

In figure 2.1: In step 1, in batch processing, the health agency uploads the com-

promised patient’s data D. As there the need to differentiate trajectory data by

infected users is not required, D is in the raw trajectory data form and does not

need to include the users’ IDs.

In step 2, with the function mapToChunkedDictionary, we map the raw data

form D to the dictionary representation atht is efficient R as mapped array of

chunks. Encoding process, chunking process, and translation process into the

dictionary representation are all part of this mapping function. Each piece of tra-

jectory data is encoded into 1-D bytes of strings. This step is carried out in SGX,

and the R’s binary data is stored in the untrusted server’s memory. While upload-

ing, the health agency obtains the key used for encryption from SGX via RA.

In step 3, Remote attestation is happening. Before transmitting the RA request

to the server, the client uses the new RA protocol to verify the remote enclave.

The client can inspect to see whether the enclave is tampered before securely ex-

changing the key with it or not. The data is transmitted to the enclave via a secure

channel after being encrypted using the shared key. It is to be noted that a secure

channel is one in which just the trajectory query data in the request is kept private

and encrypted. Client’s personal data (like IP address) is not kept hidden on the

server side and must be used in the response. The answer data, along with the

request query data, are kept private and encrypted.

In step 4, PCT requests are sent to the server by a large number of clients. c

sends q in form of a request parameter in the figure figure 2.1, which comprises

her trajectory data of 14 days. Before encryption, Θ encodes trajectory data. As

a result,in advance, the and client and the server can share this parameter. After

exiting the client environment, q is encrypted in all untrusted parts and can only

be seen and accessed in the verified enclave.

In step 5, q is queued on the outside of the enclave’s protected region until

a specified amount (NC) of requests have been accumulated, at which point it is

uploaded to the enclave joined by the loadToEnclave function. This function’s

implementation is done by the ECALL function, which is used to call an SGX

function. By batch processing, we want to improve the process of data loading for

numerous users while reducing the overheads.

In step 6, The data is finally decrypted after being uploaded to the trustworthy

enclave. All the q queues are collected inside the enclave and using mapToArray,

mapped to query representation Q. The amount of the enclave memory is tightly

9

∈ ∈

limited, despite the fact that these query data are private and cannot be handled

outside the enclave. As a result, it’s crucial to encode trajectory data into minimal

bytes.

In step 7, the chunked data r is inserted one after another into the enclave,

and in the enclave,the set-intersection of r and Q is computed. Only searches that

provide the non empty result for a set intersection are returned as 1. If a query is

deemed as 1, we can save time by breaking the loop for the PSI calculation for rest

of the r .

In step 8, ConstructResponses method compute responses for all (NC) clients

from the results of the PSI and total query data q (= 1, ..., NC) inside the trust-

worthy enclave after all the iterations for all chunks are done. Simply encryption

of the results of PSI as positive or negative for each client inside the enclave can

do this. After this, the operation sends each client the encrypted result via the

secure channel.

The encoding module converts the trajectory data into a string representation

that is then used to produce a compact dictionary representation with the help

of a finite state automaton (FSA). FSAs are circular, deterministic finite acceptors

that can share prefixes and suffixes between nodes (see later sections). As a result,

comparable strings can be efficiently stored. Trajectory-based coding. The first

requirement for encoding is that the discrete - time independent trajectory data

and the unique string must have an injective function. Due to FSA [4], there are

numerous similarities between string suffixes and prefixes, which is a desirable

quality.

Trajectory data D contains arrays of time-location such as date-time format

and geographic data such as longitude and latitude tuples:

Dn = ((t1, 1),, (tn, n)) (2.2)

Where, t1 time in date-time format and 1 co-ordinate (e.g. (latitude, longi-

tude))

Encoding

Here, t and l are encoded distinctly and merged in series. For location, a method

of mapping 2D coordinate system data to a string, Bing Maps Tile System [?] is

used. In Bing Maps Tile System, the strings that are obtained after encoding of

the trajectory data are going to be similar in suffix. For t, UNIX epoch encoding

scheme is used. This coding will generate similar strings for time. And a simple

10

Figure 2.2: Encoding flowchart: Encoding trajectory-data into string.

11

merge will show you the prefix and suffix-like structures that the FSA can com-

press more efficiently. Also, the encoded string will be different for each trajectory

data.

Remote attestation with key agreement protocol

In this, an improved method for remote attestation is used, which includes a key

agreement protocol. This is done in order to improve the performance of RA and

make it more secure. How it secures the system is explained in Security Analysis

Section.

12

CHAPTER 3

Security Analysis

Since we have considered that the enclave is trusted and secure, we can only anal-

yse attacks that can happen outside the enclave. Here are some attacks that may

be possible:

Denial-of-Service attacks

To avoid DoS attacks on SGX, the client must be authenticated before it can be

processed. Because the server-side data changes just once a day, each client should

be limited to one request per day. Because the information of the client requesting

the query does not need to be disguised, this may be accomplished with a simple

plugin.

Query-abusing attacks

To reduce the impact of attacks, verifying the client can also be used. Only 0 or

1 information is available to the client. Even if the request is only made once

a day, there is a chance that some information will be released due to the use

of several infected clients. Other protection techniques are required to prevent

this; like, assuming the ability to link the discovered information with other data,

differential privacy must be taken into account.

Side-channel attacks

Data cannot be leaked from the network since it is encrypted with a key shared

between SGX and the client.

13

False answer attack

False answers are prevented thanks to RA’s verification of the enclave’s internal

blogs.

Fake data injection

Suppose that the health agency is a trusted institution, and that when a third party

deposits data, the data in the memory protected by SGX must be modified. As a

result, it is cryptographically secure.

Replay attack

Even if we consider that a secure channel is in place, it is possible that a replay

attack may occur. However, it can be totally avoided by authenticating the user,

limiting the number of requests each day, and by changing the key every other

day.

Masquerading attack

Figure 3.1: Masquerading attack on Remote Attestation.

In this attack strategy, the attacker targets the platform settings of the client

which is honest to vouch to the client which is malicious and operating on M,

circumventing M’s remote attestation.It is an attempt to get illegal access to per-

sonal computer information by impersonating identity of someone else, such as

14

→

→

→

→

a network identity. A masquerading attack can make an authorisation process

exceedingly vulnerable if it is not adequately safeguarded.

Masquerading Attack in Remote attestation

Algorithm 1 Masquerading Attack in Remote attestation

1: A : create a non-predictable 160 bit nonce
2: A M : send challenge Request(nonce)
3: M C : send challenge Request(nonce)
4: C: loadkey(A Kpr)
5: C : Retrieve the Quote : sig(PCR, nonce)A Kpr

6: C : get stored measurement log : SML
7: C M : challengeResponse(Quote, SML) and certificate A Kp b
8: M A : challengeResponse(Quote, SML) and certificate A Kp b

9: A : validate the certificate(A Kp b)
10: A : validate the sig(PCR, SHA1(nonce))A Kpr

11: A : using PCR, validate nonce and SML

Step 1

A non-predictable nonce is created by A.

Step 2

The nonce is sent to the M by A.

Step 3

M forwards this nonce to C.

Step 4

The storage root key is used, and the attestor, that is C, uploads the Attestation

Identity Key(A Kpr) from the TPM’s protected storage (SRK).

Step 5 and 6

the attestor C issues a TPM Quote instruction, all the selected PCRs and the given

nonce n are signed by the private key A Kpr . In addition to this, the attestor C

retrieves the measurement log that has been saved (SML).

15

Step 7

M receives the attestor’s response, which includes the signed nonce, signed Quote,

and SML. C also hands over the AIK credential, which is an A Kp b signed by a

CA.

Step 8

M send this received information to C.

Step 9

Whether the AIK credentials that were signed by a reputable CA and hence be-

longs to a legitimate TPM, is determined by A. Along with it, A also checks the

trusted issuing party’s certificate revocation list to see if A Kp b is still valid.

Step 10 and 11

A validates the Quote’s signature and then A checks for freshness.

Since, AIKs can’t be utilised to create secure channels or verify communication

partners directly, therefore, the challenger has no way of knowing whether the

received message is from the attesting system M or not. He can just know that he

received a message form a legitimate TPM. Because the attesting system M uses

all the integrity values with a valid AIK signature from platform C to pretend that

it has the matching A Kpr , masquerading attacks cannot be stopped.

Remote Attestation with key agreement protocol

Both the parties(attestor and attestee) must agree on a common generator- g and

a common group- m for the protocol to work.

Step 1

A non-predictable nonce is created by A.

Step 2

A
p b

= g mod m is generated by A, where a is the private component of KA. K

16

p b

p b

p b

p b

p b

→

p b

p b

A

C

Algorithm 2 Remote Attestation with key agreement protocol
1: A : create a non-predictable 160 bit nonce
2: A : Generate the Keys(KA

 pr
)

3: A → C : send Challenge Request(nonce,KA)

4: C: Generate the Keys(KC
 pr

)
5: C: loadkey(A Kpr)

6: C: Retrieve the Quote = sig(PCR, SHA1 (nonce, KC

))A Kpr

7: C : get stored measurement log (SML)

8: C : compute the Session Key (KAC)

9: A: validate the certificate(A Kp b)
10: A : validate the sign(PCR, SHA1(nonce, KC

))A Kpr

11: A : using PCR, validate nonce and SML
12: A : compute the session Key (KAC)

13: A : create a non-predictable 160 bit nonce1

14: A C : send the challenge Request (nonce1)
15: C : compute Response = enc(nonce1,KAC)

16: A : validate the nonce1

Step 4

The primary part is that, the attestor A generates a public key KC

, before signing

the Quote with the AIK, it puts the produced key in the Quote message along with

the PCRs and the nonce.

Step 5-11

The client’s CPU A, is used in order to generate the public keyKC

, which is

then fed as an external data into the procedure of TPM Quote. Since the TPM

Quote command can only allows for some bits (160 bits) of data, the message

must be compressed using SHA1 to get under the 160 bit limit. As C is running

a trustworthy OS with a trusted platform configuration the key’s, private part is

unavailable to a possible malicious client.

Step 12

The challenging party uses his private part and the public part of C to generate

the shared session key KAC.

, K

, K

17

C,M

C,M

p b

p b

Step 13-16

Following the computation of the session key, A performs a second challenge-

response authentication to see if C also possesses this shared key.

We will prove that the proposed system is safe against masquerading attacks

by contradiction.

Proof by Contradiction

Let E pMA
 be an experiment where the challenger A, wanted to authenticate the

client M, before any secret message is sent in a collaborative masquerading attack.

All messages are transferred from A to C by the malicious system M. Then, the

probability of a successful attack

Pr[E pMA] = 1 (3.1)

1. Let i and j be two plaintexts (1 ⩽ , j ⩽ N)

2. The ciphertext resulting from the experiment upto polynomial times. The

outputs are the ciphertexts from the algorithm 2.

3. For this to happen, after step 1, algorithm 2, these step must happen.

A → M : ChallengeRequest(nonce,KA)

M → C : ChallengeRequest(nonce,KM)

But as we know that,

1. M can not generate his own session key between him and A, since his

software is corrupted and malicious platform details are transmitted to A

by his TPM.

2. The platform owner cannot transmit the session key KAC, which is gener-

ated by A, to the malicious host since extraction (through memory dump or

system software modification) would result in a compromised system state

that would be identified during the attestation phase.

3. As a result, neither M nor C have the right KAC and so are unable to

encrypt the given nonce1, the second challenge response authentication

(Step 5d to Step 10) discovers this substitution.

Hence,

18

C,M
Pr[E pMA] = 0 (3.2)

Comparing equation (3,1) and equation (3,2). This contradict our assumption

and proves that our system is safe against masquerading attack.

19

D

CHAPTER 4

Experimental Result

4.1 Theoretical Analysis

For calculating the complexity of the whole system, all the steps are evaluated

step by step and then the final complexity of the system is calculated as c. Table

below shows the complexity analysis of the proposed system.

Table 4.1 summarizes the costs to perform computation in existing system.

And Table 4.2 summarizes the costs to perform computation in proposed system.

To represent the complexity measurements we use notations table Table 2.1.

We can see from tables : Table 4.1 and Table 4.2, that our proposed system is

more reliable than the existing system in terms of computational cost.

4.2 Performance Analysis

To conduct the experiments, we use Python 3.8.10 and pyQuadkey2 library for

quadkey generation, encryption and decryption methods. Hardware platform

has OS as Windows 11 64-bit with CPU Intel core i5,10th generation, and 8 GB

memory, which supports the SGX instruction set. For experimental purpose, we

Table 4.1: Computation cost of the existing system
Step description Complexity

1, ND trajectory data will be uploaded O(ND)

2, NR chunks are encoded and mapped into the chunked dictionary. O(N2)
3, NR each client will perform RA O(NC)
4, let n be the size of each request. O(n)
5, clients’ requests are uploaded in the Q. NC is client requests at a time O(NC ∗ n)
6, these queues are merged into a single unique queue. O(NC ∗ n)
7, set intersection is performed for all NR chunks and NC ∗ n queue data O(NC ∗ NR ∗ n)
8, The intersection is stored in a queue of sizeNC And client get the result O(NC)

Total O(NC ∗ ND
2 ∗ n)

20

Table 4.2: Computation cost of the Proposed system
Step description Complexity

1, ND trajectory data will be uploaded O(ND)
2, NR chunks are encoded and mapped into the chunked dictionary. O(ND)
3, NR each client will perform RA O(NC)
4, let n be the size of each request. O(n)
5, clients’ requests are uploaded in the Q. NC is client requests at a time O(NC ∗ n)
6, these queues are merged into a single unique queue. O(NC ∗ n)
7, set intersection is performed for all NR chunks and NC ∗ n queue data O(NC ∗ NR ∗ n)
8, The intersection is stored in a queue of sizeNC And client get the result O(NC)

Total O(NC ∗ ND ∗ n)

Number of Data Time taken by old systemTime taken by our system
10 1.5878918170928955 1.0629105567932130
20 1.6581721305847168 1.0428571701049805
50 1.5846397876739502 1.0560708045959473
70 1.5680992603302002 1.0538170337677002
100 1.7373738288879395 1.0621485710144043
120 1.7136499881744385 1.0761454105377197
150 1.7136499881744385 1.0870766639709473
200 1.6356916427612305 1.1187500953674316
250 1.8569145202636719 1.0985748767852783
300 1.6048930644989014 1.1755142211914062

Table 4.3: Time taken by both the systems to complete whole process

have created a set of random data. Also, ND is updated in fixed time regularly in

form of batches. Let us assume that 10000000 trajectory data is uploaded in one

batch. Hence, ND will be 26 bits. Also, let number of clients NC be 100. Then

NC will be of 9 bits. And for each client, trajectory data sent be 1000 for 1 day.

Then n will be of 12 bits. As a result, the total computation will take 2808 bits (if

calculated for worst case.) Also, Θdoc is considered 2 hours or 7200 seconds for

this experiment. It can be changed and decided by the government according to

disease or virus.

4.3 Computational Cost

Figure 4.1 shows the time taken to perform the existing system. And Figure 4.2

shows the time taken to perform the proposed system.

The experiment includes all phases running once. From Table 4.1 and Table

4.2, it can be derived that the performance of the proposed system is efficient in

terms of computation.

21

Figure 4.1: Graph between Number of data items (x axis) and time taken to per-
form old system (y axis)

Figure 4.2: Graph between Number of data items (x axis) and time taken to per-
form proposed system (y axis)

22

CHAPTER 5

Conclusion

To restrict the spread of contagious diseases, this report provides a private contact

tracing system based on trajectory data of patients that employs trusted technol-

ogy/hardware. The criteria for the same has been specified, and a architecture

based on TEE for safe, efficient, and flexible contact tracing has been proposed.

The results of the experiments indicate that this technology can work on a broad

scale. We can make the system more flexible according to our requirements in

future as flexibility requirement is satisfied in our system. We can also try to im-

prove the proposed system since it can also detects the contact even if the patient

is in a protected space, like a car, near the infected patient.

23

References

[1] The circle game: Scalable private membership test using trusted hard-

ware https://dl.acm.org/doi/abs/10.1145/3052973.3053006, au-

thor=Tamrakar, Sandeep and Liu, Jian and Paverd, Andrew and Ekberg, Jan-

Erik and Pinkas, Benny and Asokan, N, booktitle=Proceedings of the 2017

ACM on Asia Conference on Computer and Communications Security,

pages=31–44, year=2017.

[2] C. Castelluccia, N. Bielova, A. Boutet, M. Cunche, C. Lauradoux, D. L. Mé-

tayer, and V. Roca. Desire: A third way for a european exposure notifi-

cation system leveraging the best of centralized and decentralized systems

https://arxiv.org/abs/2008.01621. arXiv preprint arXiv:2008.01621, 2020.

[3] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng. Trajcompres-

sor: An online map-matching-based trajectory compression framework lever-

aging vehicle heading direction and change https://ieeexplore.ieee.org/

abstract/document/8697124/. IEEE Transactions on Intelligent Transportation

Systems, 21(5):2012–2028, 2019.

[4] V. Costan and S. Devadas. Intel sgx explained https://www.

intel.com/content/dam/develop/external/us/en/documents/

intel-sgx-support-for-third-party-attestation-801017.pdf. Cryp-

tology ePrint Archive, 2016.

[5] F. Kato, Y. Cao, and M. Yoshikawa. Secure and efficient trajectory-based

contact tracing using trusted hardware https://arxiv.org/pdf/2010.13381.

pdf. In 2020 IEEE International Conference on Big Data (Big Data), pages 4016–

4025. IEEE, 2020.

[6] D. R. Sehgal. Unpacking the privacy concerns of aarogya setu app-https:

//blog.ipleaders.in/unpackingprivacy-concerns-aarogya-setu-app/.

2020.

https://dl.acm.org/doi/abs/10.1145/3052973.3053006
https://arxiv.org/abs/2008.01621
https://ieeexplore.ieee.org/abstract/document/8697124/
https://ieeexplore.ieee.org/abstract/document/8697124/
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://arxiv.org/pdf/2010.13381.pdf
https://arxiv.org/pdf/2010.13381.pdf
https://blog.ipleaders.in/unpackingprivacy-concerns-aarogya-setu-app/
https://blog.ipleaders.in/unpackingprivacy-concerns-aarogya-setu-app/

24

[7] F. Stumpf, O. Tafreschi, P. Röder, C. Eckert, et al. A

robust integrity reporting protocol for remote attestation

https://www.researchgate.net/profile/Claudia-Eckert-4/

publication/228958139_A_robust_integrity_reporting_protocol_

for_remote_attestation/links/5452ccc30cf2bccc49094c47/

A-robust-integrity-reporting-protocol-for-remote-attestation.pdf.

In Second workshop on advances in trusted computing (WATC’06 Fall), pages

25–36, 2006.

[8] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,

W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized privacy-

preserving proximity tracing https://arxiv.org/abs/2005.12273. arXiv

preprint arXiv:2005.12273, 2020.

https://www.researchgate.net/profile/Claudia-Eckert-4/publication/228958139_A_robust_integrity_reporting_protocol_for_remote_attestation/links/5452ccc30cf2bccc49094c47/A-robust-integrity-reporting-protocol-for-remote-attestation.pdf
https://www.researchgate.net/profile/Claudia-Eckert-4/publication/228958139_A_robust_integrity_reporting_protocol_for_remote_attestation/links/5452ccc30cf2bccc49094c47/A-robust-integrity-reporting-protocol-for-remote-attestation.pdf
https://www.researchgate.net/profile/Claudia-Eckert-4/publication/228958139_A_robust_integrity_reporting_protocol_for_remote_attestation/links/5452ccc30cf2bccc49094c47/A-robust-integrity-reporting-protocol-for-remote-attestation.pdf
https://www.researchgate.net/profile/Claudia-Eckert-4/publication/228958139_A_robust_integrity_reporting_protocol_for_remote_attestation/links/5452ccc30cf2bccc49094c47/A-robust-integrity-reporting-protocol-for-remote-attestation.pdf
https://arxiv.org/abs/2005.12273

