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Abstract

Single Image Super-Resolution (SISR) is an ill-posed problem that aims to gener-
ate a high-resolution (HR) image from a single low-resolution (LR) image. The
low resolution image and its associated features are very rich in low frequency
information. The main objective of super-resolution is to add relevant high fre-
quency detail to complement the available low frequency information. Classi-
cal techniques such as non-local similarity and sparse representations both have
shown promising results in SISR task in past decades. Nowadays, deep learn-
ing techniques such as convolutional neural networks (CNN) can extract deep
features to improve the results of SISR task. However, CNN does not explicitly
consider the similar information in the image. Hence, we employ non-local sparse
attention (NLSA) module in the CNN framework such that it can explore the non-
local similarity within an image. We consider sparsity in the non-local operation
by focusing on a particular group named attention bin among many groups of
features. Non-local Sparse Attention is intended to retain the long-range of non-
local operation modeling capacity while benefiting from the efficiency and robust-
ness of sparse representation. Additionally, we try to rescale the channel-specific
features adaptively while taking into account channel interdependence by using
residual channel attention. In this thesis work, we try to incorporate and combine
the advantages of non-local sparse attention (NLSA) and residual channel atten-
tion to produce results similar to state-of-the-art methods.

Keywords: Deep Learning Techniques, Single Image Super Resolution, Channel
Attention, Non-local Sparse Attention.
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CHAPTER 1

Introduction

1.1 Single Image Super-Resolution

Single Image Super-Resolution (SISR) aims to generate a high resolution (HR)
image from a given low resolution (LR) image.

Figure 1.1: Image Super Resolution: The objective

It has various applications in medical imaging(e.g., Figure 1.2(a)), surveillance
(e.g., Figure 1.2(b)), remote sensing, etc. In medical imaging such as magnetic
resonance imaging(MRI) the resolution of the image is very crucial to detect any
damaged tissue/ tumor. For LR MRI slice, such detection will be a difficult task.
Here, SR can play a significant role by providing a HR MR slice. Further, in
surveillance applications such as distant face recognition by a CCTV footage is
not a trivial task as the captured face image could have resolution which is very
low. It has been found that exiting face recognition algorithms do not produce op-
timal results on face images with resolution lower than 16× 16 [32]. Furthermore,
in remote sensing, images captured by a satellite may not have sufficient resolu-
tion for classifying different objects/events. Likewise, every industry needs HR
images for different applications.
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Figure 1.2: Some Applications of Image Super Resolution

SR is among the most well-known ill-posed problem due to the possibility of
multiple solutions. In other words, multiple HR images can produce the same
LR image. Hence, choosing a particular solution among the many possibilities is
quite challenging. It requires some regularization techniques to achieve a single
solution. If multiple LR images of the same scene are available, the shift among
the images can be used to regularize the problem in deriving an HR image. This
kind of methods broadly lie in the category of multiple image super-resolution
(MISR) [20, 5, 6, 12]. The requirement of multiple sub-pixel shifted images become
the bottleneck for this kind of methods. Hence, researchers try to develop meth-
ods to generate HR image from a single LR image. This group of techniques are
known as single image super-resolution (SISR). In SISR, classical techniques such
as non-local similarity and sparse representations are quite popular techniques
for regularization.

Prior to minor patterns recurring within the same image, SISR using non-local
similarity could be a significantly more common method for using image self-
similarity. Non-local similarity searches globally for comparable patterns and se-
lectively aggregates those connected features to improve the representation[18].
The sparse-representation based techniques use dictionaries. The dictionaries are
either learned from HR-LR image pairs or they are built using pre-defined trans-
formations such as DCT, DWT, etc.[7, 25, 27]. Recent developments and advance-
ments in deep learning architectures have demonstrated exceptional and state-of-
the-art outcomes in SR problem across several image datasets [22]. SRCNN [3]
was the first deep learning algorithm disclosed, and its improved version was
later reported in [4]. Deep learning architecture also includes recursive networks
[10] and residual learning [9] to improve the training process.
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Most of the CNN-based methods do not consider the similar information across
images. Further, the significance of sparse representation is seldom considered in
the SR task. In this proposed method, our goal is to combine the advantages of
classical methods such as non-local and sparse representation with deep learn-
ing techniques. To retain the global modeling ability of the non local similarity,
with the efficiency and robustness we try to impose sparse representation with
non-local attention. Further, we suggest a channel attention (CA) mechanism for
adaptable rescaling of each channel-wise feature. This CA mechanism enables
our proposed network to focus on more relevant channel-wise features while im-
proving discriminative learning performance. Indicatively, we try to embed the
non-local sparse attention and residual channel attention in a CNN-framework to
super-resolve a single image.

1.2 Objective

Our work aims to implement a deep learning model for generating high-resolution
image from its low-resolution counterpart. The focus is significantly on residual
connections and attention networks. Our objectives are

• To combine the advantages of classical techniques such as non-local similar-
ity and sparse representation with deep learning.

• To enable CNN based networks to explore non-local information similarity
in an image with sparsity.

• To allow a smoother flow of information from input to output in a residual
channel attention framework.

• To investigate different attention mechanisms like channel attention, pixel
attention, spatial attention, and non-local sparse attention.

• To reduce computational cost by utilizing sparse representation in non-local
attention.
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1.3 Contribution of Thesis

In the field of Image Super-Resolution, we provide a comprehensive overview
and discussion of the recent techniques. In order to fulfil the mentioned objectives,
the following key contributions are made:

• Non-local sparse attention block is employed in CNN-framework such that
the network can explore the non-local similarity in an image using sparse
representation.

• The sparsity can reduce the time requirement of non-local operations.

• We induce a channel attention mechanism to assign weights to different
channels according to their importance.

• We analyze different attention mechanism and combination of them to solve
the SR task.

• The proposed model architectures are evaluated qualitatively and quantita-
tively on the five benchmark test datasets for different scale factors.

1.4 Organization of Thesis

In the remaining thesis, Chapter 2 highlights a few existing deep learning architec-
tures for SISR (Single Image Super-Resolution) task. Further it briefly summarizes
the sparse representation framework along with a few image quality assessment
metrics. Chapter 3 discusses the proposed method based on non-local sparse at-
tention and channel attention. In Chapter 4, we discuss the experiments and re-
sults of the existing method and proposed method. This chapter also includes the
other experiments done to solve the SISR task. Chapter 5 concludes the paper
with some key points that can be addressed in future.

4



CHAPTER 2

Literature Survey and Background

2.1 Deep Learning Architectures for SISR task

A technical overview of super resolution is provided by [20]. Many recent papers
have used deep CNNs to address the SISR issue due to their excellent feature rep-
resentation capabilities. The Image Super Resolution using Convolutional Neu-
ral Network(SRCNN)[3]’s innovative, deep application of single image super-
resolution is a CNN - based technology to address SISR, a three-layer super-
resolution convolution network. After SRCNN effectively implemented the Deep
Learning Network for a super-resolution task, the researchers proposed a variety
of deeper and more effective models. Very Deep SR (VDSR)[9] enlarges the depth
of the network by assembling more convoluted layers with the residual practice.
They tried to collect hierarchical features using dense residual connections with
the residual learning for better results. Attention processes in the Deep Neural
Network help focus on key data while ignoring unwanted data to the network.
Over the past few years, deep CNN-based image-enhancing techniques have been
effectively implemented with attention mechanisms. The Residual Channel At-
tention Network ([28]RCAN) allows the network to concentrate on more infor-
mative channels using the Residual Channel Attention Block (RCAB). Channel
Attention considers every convolution layer as a separate function, ignoring their
correlation.

2.1.1 SRCNN

The Image Super Resolution using Convolutional Neural Network(SRCNN)[3] is
the first deep neural network architecture in this SR task. It is mainly divided in
three parts as given in its architecture described in the Figure 2.1:
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Figure 2.1: Architecture of Super-Resolution Convolutional Neural Networks [3]

1. Patch Extraction and Representation: SRCNN is the preupscaling method
of SR task. So here the upscaling of the low-resolution image is done first.
Then we extract features F1(Y) using a convolution with ReLU.

F1(Y) = max(0, W1 ∗ Y + B1) (2.1)

In this case, X is a high-resolution ground truth image, and Y is bicubic up-
sampled image low-resolution image. The size of W1 is c × f1 × f1 × n1,
where c is the number of channels, f1 and n1 are the size of the filters and
the number of filters, respectively, and B1 is an n1 dimensional bias vector.

2. Non-linear mapping: Now, we have features F1(Y) and we need to perform
non-linear mapping on this F1(Y) by doing the given computation:

F2(Y) = max(0, W2 ∗ F1(Y) + B2) (2.2)

It is a mapping of an n1-dimensional vector to an n2-dimension vector. When
n1 > n2, we can imagine it as dimensionality reduction like PCA with non-
linearity. 1 × 1 convolutions are performed to introduce more non-linearity
to improve accuracy. A similar approach is also applied in GoogLeNet to
introduce non-linearity and reduce the number of convolutions. It is here to
map low-resolution vectors to high-resolution vectors.

3. Reconstruction Process: After the non-linear mapping, reconstruction is re-
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quired. For that, also we will do convolution:

F(Y) = W3 ∗ F2(Y) + B3 (2.3)

In this network, we are using the conventional loss function average of mean
squared error for training, which can be computed as follow:

L(Θ) =
1
n

n

∑
i=1

||F(Yi; Θ)− Xi||2 (2.4)

2.1.2 RCAN (Residual Channel Attention Network)

RCAN[28] uses a very deep learning model and inter-dependencies among chan-
nels to improve SISR task results. A residual in residual (RIR) module comprises
several residual groups connected by long skip connections to construct a very
deep network. In addition, each residual group contains residual blocks with
short skip connections. A channel attention approach is suggested to rescale
channel-wise characteristics by adapting channel inter-dependencies. RCAN is
made up of four parts, as seen in architecture Figure 2.2:

Figure 2.2: Architecture of Residual Channel Attention Network [28]

1. Shallow Feature Extraction: Here, we use one convolutional layer for ob-
taining the shallow features F0 from the given LR input as given below,
where HSF is shallow feature extraction function, i.e., convolution function.

F0 = HSF(ILR) (2.5)

2. Residual in Residual (RIR): RIR is also known as Deep Feature Extraction.
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The RIR module as shown in Figure 2.2 uses the previous feature for deep
feature extraction in this step using the long skip connection. HRIR stands
for the proposed RIR configuration containing G residual groups (RG).

FDF = HRIR(F0) (2.6)

This presented RIR for deep feature extraction could achieve significant depth
to date while also providing a large receptive field using B Residual Channel
Attention Blocks as described in the Figure 2.2 which is using short skip con-
nections. The architecture of the Residual Channel Attention Block (RCAB),
which consists of channel attention mechanisms, is shown in Figure 2.3.

(a) Channel Attention: In this experiment main two concerns are: First off,
there are a lot of low-frequency and valuable high-frequency compo-
nents in the LR space. Low-frequency components appear to be more
complex. Usually, regions with their many edges, textures, and other
details make up the high-frequency components. However, each filter
in the Convolution layer uses a local receptive field to operate. As a
result, the output of convolution is limited in its ability to use context
outside of the immediate region. From this analysis we use global av-
erage pooling to transform the channel-wise global spatial information
into a channel descriptor.

Figure 2.3: Architecture of Residual Channel Attention Block

3. Upscale module and reconstruction part: We upscale the deep features gen-
erated from RIR module and these upscaled features are then reconstructed
by one convolution layer,

FUP = HUP(FDF) (2.7)

ISR = HREC(FUP) = HRCAN(ILR) (2.8)
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In above computation, HREC and HRCAN stands for the reconstruction layer
and the function of the RCAN, respectively.

In this network L1 loss function is used as given below:

L(Θ) =
1
N

N

∑
i=1

||HRCAN(Ii
LR)− Ii

HR||1 (2.9)

2.1.3 NLSN (Non Local Sparse Attention Network)

The non-local prior is yet another extensively used image prior. Prior to mi-
nor patterns recurring inside the same image, SISR employing Non-Local Atten-
tion(NLA) could be a noticeably more common approach for using image self-
similarity. The non-local operation looks globally for comparable patterns and
aggregate those connected features selectively to improve the representation. Al-
though NLA is perseptive and appealing in fusing characteristics, using it in the
SISR job will raise several overlooked issues i.e., i) The receptive field of features
in deeper layers tends to be global; therefore, mutual correlation calculation across
deep features is not accurate. ii) Calculating feature similarity across every pixel
locations is essential for global non-local attention. As a result, we get quadratic
computational cost to image size. One option for addressing the above mentioned
issues is to confine searching range of non-local operation inside a local neighbor-
hood. However, it lowers commuting costs by missing out on a lot of global data.
The architecture of NLSN network is given in figure 2.4.

Figure 2.4: Architecture of Non Local Sparse Attention Network[18]

The presented NLSA will allow the computational cost of non-local to be re-
duced from quadratic to asymptotic linear in terms of spatial dimensions. Search-
ing for similar cues inside a narrower content-correlated bin will also direct the
module’s attention to more informative and related locations. As a result, NLSA
maintain the conventional non-local operation’s global modelling capability while
benefiting from the resilience and efficiency of its sparse representation.
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2.2 Sparse Representation

Suppose we have an overcomplete dictionary Dd×n(d < n) of x1, x2, ..., xn ∈ Rd

i.e., n known examples. So, a query y ∈ Rd, is represented as a weighted sum of a
elements in D:

y = α1x1 + α2x2 + ... + αnxn (2.10)

here, αi is a coefficient with reference to xi. Above equation is rewritten as:

y = Dα (2.11)

where α = [α1, α2, ..., αn]. In this equation finding α is an ill-posed problem. To
solve this problem, in sparse representation we assume that y need to be sparsely
represented which implies that α is going to be sparse.

yi = D α s.t. ||α||0 ≤ k (2.12)

Here k and ||.||0 bounds and counts the number of non-zero elements of α, respec-
tively.

2.3 Image Quality Assessments

Image quality measures an image’s visual features, including its perceptual qual-
ity. Image quality assessment categorizes into objective and subjective computa-
tional techniques. Subjective techniques are concerned with human perception
(i.e., realistic images). Although they are not very consistent, objective techniques
are currently in use, as they frequently fail to reflect human perception accurately.
We will discuss some of the most often used iqa methods and techniques here.

2.3.1 Peak Signal-to-Noice Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) is an image quality statistic that describes
the ratio between an image’s or signal’s maximum achievable strength and the
power of corrupting noise that influences the quality and representation of an
image. We can estimate a picture’s PSNR by comparing it to an ideal clean image
with the highest potential power. The ideal image is the ground truth image in the
SR problem, and the predicted image is the SR reconstructed image. One of the
most widely used image quality measurements focused on image reconstruction
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quality. We can give the PSNR of the ground truth picture I with N pixels and the
reconstructed image S as:

PSNR = 10. log10

(
L2

1
N ∑N

i=1(I(i)− Î(i))2

)
(2.13)

For an 8-bit representation of an image, L is 255, which is the most typical
case. One disadvantage of utilizing PSNR is that it only pertains to the pixel-level
difference using MSE. It disregards the visual perception of an image, which fre-
quently results in poor performance in determining the reconstruction quality of
an image or real scene, where we are more concerned with the human perception
and perceptual quality of an image. Despite this, the most generally used image
quality metric is still the PSNR, partly due to a lack of entirely accurate perceptual
metrics.

2.3.2 Structural Similarity Index (SSIM)

The human vision system is more sensitive to structural and abstract image de-
tails[43]. The structural similarity index (SSIM) [23] is proposed to account for
the structural similarity between images. The structural similarity of an image is
determined via separate comparisons of its three components, which are known
as structures, contrast, and luminance. If an image is represented as I with a cer-
tain number of pixels (N), the luminance µI and contrast σI can be calculated as
the mean and standard deviation of the image intensity, i.e.,

µI =
1
N

N

∑
i=1

I(i)

σI =

(
1

N − 1

N

∑
i=1

(I(i)− µI)
2

) 1
2

The ith pixel intensity of an image is represented by Ii. On the other side, we can
see the luminance and contrast comparisons, which are denoted by Cl and Cc.

Cl(I, Î) =
2µIµ Î + C1

µ2
I + µ2

Î
+ C1

Cc(I, Î) =
2σIσÎ + C2

σ2
I + σ2

Î
+ C2

Furthermore, the structural component of an image is represented by the normal-
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ized value of pixels, and their correlation values are inner products that assess
structural similarity, which is equal to the correlation coefficient between the re-
constructed images and ground truth. The structural comparison function Cs is
defined as:

σI1̂ =
1

N − 1

N

∑
i=1

(I(i)− µI)
(

Î(i)− µl̂
)

Cs(I, Î) =
σI Î + C3

σIσÎ + C3

The final form of SSIM is gives as:

SSIM(I, Î) =
[
Cl(I, Î)

]α [Cc(I, Î)
]β [Cs(I, Î)

]γ

Here the α, β and γ are the parameters which are variable.
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CHAPTER 3

Proposed Method

As shown in the figure 3.1 in our proposed method’s architecture there are two
main components

1. Non Local Sparse Attention(NLSA)

2. Residual Group(RG)

The first component is used to embrace the long-range features with minimizing
the complexity. And the second component contains residual channel attention
blocks to extract high frequency details of an image and improve discriminative
capability of the network:

Figure 3.1: Proposed Method Architecture

3.1 Non Local Sparse Attention

To understand non-local sparse attention, we will first discuss about non-local
atttention and sparsity on non-local attention.
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3.1.1 Non Local Attention

The main purpose of non-local attention is to enhance the image by summerizing
all the features of an image. For example, let’s take an input feature X ∈ Rh×w×c,
now reshape it into an one dimensional feature X ∈ Rn×c where n = hw. The
output yi ∈ Rc generated as:

yi =
n

∑
j=1

f (xi, xj)

∑n
ĵ=1 f (xi, x ĵ)

g(xj) (3.1)

The above equation is of non-local operations, where xi, xj, x ĵ are pixel-wise fea-
ture at the respective location that is i, j, ĵ on X. Here f is for mutual-similarity
and g is the function for feature transformation which is computed as follow.

f (xi, xj) = eθ(xi)
Tϕ(xj) = e(Wθ xi)

TWϕxj

g(xj) = Wgxj

Here, Wθ, Wϕ, Wg are weight metrices, which means θ and ϕ are learned linear
projections.

Figure 3.2: Non Local Sparse Attention[18]
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3.1.2 Non-local Attention with sparsity constraint

When we try to use non-local attention, it comes with the limitations of the search-
ing range so to concur this limitation we applied sparsity constraint on the non-
local attention. The equation 3.1 can also be seen as a sparse representation from
equation 2.11 with the substitution as D = [g(x1), ..., g(xn)] ∈ Rc×n and αi =

[ f (xi, x1), ..., f (xi, xn)] ∈ Rn, which is, yi = Dαi. According to Equation 3.1, spar-
sity constraint on non-local attention can be applied by reducing the number of
non-zero values of α to a constant k. As a result, the general version of non-local
attention with sparsity constraint may emerge as follows:

yi = ∑
j∈δi

f (xi, xj)

∑ ĵ∈δi
f (xi, x ĵ)

g(xj) (3.2)

yi = Dαi s.t. ||αi||0 ≤ k (3.3)

Here δi indices non-zero elements of the αi, i.e., δi = {j|αi[j] ̸= 0}, αi[j] is jth

element in αi. This δi indicates pixel location’s group where the query should
attend.This δi contains the identified locations from which we can calculate non-
local attention, these group can be known as Attention Bin.

3.1.3 Attention Bin using LSH(Locality Sensitive Hashing)

A target attention should be sparse as well as include the most significant ele-
ments. We can use Locality Sensitive Hashing(LSH) to create the desirable atten-
tion bin, which includes global and correlating components as well as the query
element. The hashing scheme is locality sensitive if nearby elements are at high
possibility to fall into the same hash bin (hash code) whereas distant ones are not.
The spherical LSH is an instance of LSH designed for angular distance. We can
intuitively think it as randomly rotating a cross-polytope inscribed into a hyper-
sphere, as shown in the top branch of Figure 3.2. The hash function projects a ten-
sor onto the hyper-sphere and the closest polytope vertex is selected as its hash
code. Thus, if two vectors have a small angular distance, they are likely to fall in
the same hash bin, which is also the defined attention bin.

To obtain h hash bins, we must first take projection of targeted tensor onto one
hyper-sphere(because we will use spherical LSH) and then randomly rotate that
with a matrix M ∈ Rc×h, a sample random rotation matrix with independent and
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identically distributed Gaussian entries, that is,

x̂ = M(
x

||x||2
) (3.4)

The hash bin is determined as hb(x) = argmaxi(x̂). After hashing every elements,
we are able to spliting up the space into bins of correlated elements, and the index
set δi = {j|hb(xj) = hb(xi)} can identify the attention bin of xi. In reality, the
spherical LSH is computed for all elements at the same time using batch matrix
multiplication, which adds just a minor computing overhead. By disregarding
other noisy as well as less-correlated partitions and determining which bin to at-
tend in advanced, the model can attain high resilience and efficiency.

Figure 3.3: Example of attention bins[18].

The attention bin is formed by the darker blue portions in the illustration given
in Figure 3.3. In this figure, For query location at i and an index set δi the attention
bin is formed by the darker blue portions in the illustration. Given a query at i
location and an index set δi. Here the δi decides the group of locations to compute
the non-locally fused features. As given in the figure darker blue regions form
the attention bin. In the figure, δi = {j} denotes the use of full-range pixels, as
in typical non-local attention and δi = {j||j − i| < L} denotes a limited attention
span in the nearby neighbourhood. While the proposed hash-based attention bin
is δi = {j|hb(xi) = hb(xj)}.

After determining the attention bin index set δi for the query location i the
suggested NLSA can be simply obtained from Equation 3.2. Furthermore, as il-
lustrated in Figure 3.2, NLSA assigns each one of the pixel-wise feature in X to
a bin with the similar hash code depending its content relevance, and only the
elements of the related bin contribute to the output.
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3.2 Residual Groups

As shown in the architecture diagram the residual group consists of multiple
Residual Channel Attention Blocks(RCAB). The architecture of RCAB is in given
in Figure 3.4. The channel attention directly faces the input data to produce a
feature with weights highlighting channel-wise important features. Here, using
global average pooling, we convert the channel-wise global spatial features into
a channel descriptor. After the success of Residual blocks we try to impose chan-
nel attention with the residual block. Further, short skip connections in Residual
group enable a smoother information flow from the input towards output. Addi-
tionally, it assists in addressing the over-fitting issue, which is often encountered
by deep-learning models due to lesser data.

Figure 3.4: Residual Channel Attention Block

3.3 Loss Function

In the proposed method we used L1 reconstruction loss to train the network.
Given a training set {Ii

LR, Ii
HR}N

i=1 , which contains N LR inputs and their HR
counterparts. The goal of training the model is to minimize the L1 loss function.

L(Θ) =
1
N

N

∑
i=1

||Hmodel(Ii
LR)− Ii

HR||1 (3.5)

Here Hmodel represents the output from the proposed method architecture.
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CHAPTER 4

Experiments and Results

4.1 Dataset

Recently, numerous new datasets in Image super-resolution have been introduced,
each with a specific number of images, quality, and resolution. Handful datasets
supply the HR image, whereas the LR image is built using bicubic interpolation,
and only some of them also have the LR-HR image pairings. We have compiled a
list of some of the most common and widely utilized image datasets in the image
super-resolution task.

Dataset Count Purpose

DIV2K[22] 800 Training

Set5[1] 5 Testing

Set14[26] 14 Testing

B100[16] 100 Testing

Urban100[8] 100 Testing

Manga109[17] 109 Testing

Table 4.1: List of Datasets used for SISR task

Different datasets can be used for the image super-resolution benchmark, but
these are the most prevalent. In addition, people employ a combination of mul-
tiple datasets to generate their training dataset by integrating photos from other
datasets. Image data augmentation is a well-known and extensively used tech-
nique for artificially increasing the size of a training dataset. It generates a changed
version of a single image, and the procedure can be performed for an entire im-
age dataset. Training deep learning models and models on vast amounts of data
may yield more resilient and generic models; augmentation approaches generate
distinct versions of images depending on various transformations such as flip,
rotation, shear, etc.
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We trained our network on DIV2K[22] dataset, which consist of 800 training
images to train the network. For testing we used the most popular benchmark
test dataset for image super-resolution task i.e., Set5[1], Set14[26], Urban100[8].
B100[16], and Manga109[17].

4.2 Training and Implementation details

We are using attention bins here, so for training we set the number of bins to 144.
In the network we are using 5 non-local sparse attention blocks and 4 Residual
Groups which contains 8 RCABs each. We used randomly cropped patches of
size 48×48 as the training. To optimize the model we used ADAM[11] optimizer
with the parameters β1 = 0.9, β2 = 0.99 and ϵ = 10−8. This architecture is
implemented using pyTorch and trained on Tesla T4 GPU.

4.3 Results and Comparison

For evaluating the effectiveness of our network we examine the results of the pro-
posed network with the state-of-the-art methods like,

1. SRCNN[3]: The First ever method to use deep learning method for SISR
task.

2. VDSR[9]: Very deep learning architecture for Image Super-resolution.

3. EDSR[14]: The network which removes unnecessary modules from conven-
tional residual networks and gives effective super-resolution image.

4. NLRN[15]: It is a Non Local Recurrent Network for image restoration which
incorporates non local operation with the RNN(Recurrent Neural Network).

5. RNAN[29]: Residual Non Local Attention Network for image restoration.

6. SRFBN[13]: SRFBN(Super-resolution feedback network) is proposed to fine
tune low-level representations with high-level information.

7. RDN[30]: Residual Dense Network(RDN) uses dense skip connections for
SISR task.

8. RCAN[28]: Residual Channel Attention Network which uses channel atten-
tion mechanism with short and long skip connections for SISR task.
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9. NLSN[18]: In this Non Local Sparse Network sparsity constraint is used
with non local attention for image super resolution.

The results for the same are given in the Table 4.2 and 4.3, where the bold values
are the highest result in that particular dataset and underlined result is the second
highest result in that column.

As we can notice in Table 4.2 our method gives better results than the most of
the existing methods like SRCNN[3], VDSR[9], EDSR[14], NLRN[15], RNAN[29],
SRFBN[13], and RDN[30] in scale 2 in most of the datasets. And also in scale
3 it can get better results from the existiting methods like SRCNN[3], VDSR[9],
EDSR[14], NLRN[15] and RNAN[29]. Table 4.3 shows the quantitative results of
scale 4 of the existing methods and our method, we can notice that we get better
results from some of the existing methods.

The qualitative performance is shown from Figure 4.1 to 4.4. Figure 4.1 shows
the scale 2 results of the butterfly image of Set5. We can observe the edges of
the cropped portion of an image. The edges of bicubic interpolated image is not
clear, also in RCAN’s visual results we can notice some artifacts around the edges,
while in our results we can notice that the visual results are mostly similar as the
results of NLSN[18] architecture.

For scale 3 we have chosen a comic.png from Set14 dataset which is shown in
Figure 4.2. We can observe that visual result with our proposed model is better
and visually appealing than the existing methods.

In scale 4, Figures 4.3 and 4.4 shows the qualitative results from Urban100
dataset’s img_002.png and img_093.png.
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Method Scale Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRCNN[3] ×2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663
VDSR[9] ×2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750
EDSR[14] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
NLRN[15] ×2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 - -
RNAN[29] ×2 38.17 0.9611 33.87 0.9207 32.32 0.9014 32.73 0.9340 39.23 0.9785
SRFBN[13] ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
RDN[30] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
RCAN[28] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
NLSN[18] ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
Our
Method

×2 38.25 0.9613 33.91 0.9204 32.29 0.9008 32.74 0.9338 39.32 0.9784

Bicubic ×3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556
SRCNN[3] ×3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117
VDSR[9] ×3 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290 32.01 0.9340
EDSR[14] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
NLRN[15] ×3 34.27 0.9266 30.16 0.8374 29.06 0.8026 27.93 0.8453 - -
RNAN[29] ×3 34.66 0.9290 30.52 0.8462 29.26 0.8090 28.75 0.8646 34.25 0.9483
SRFBN[13] ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
RDN[30] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
RCAN[28] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
NLSN[18] ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
Our
Method

×3 34.67 0.9290 30.49 0.8439 29.19 0.8067 28.60 0.8601 34.23 0.9480

Table 4.2: Quantitative analysis of different Architectures (Scale 2 & 3)
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Method Scale Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRCNN[3] ×4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555
VDSR[9] ×4 31.35 0.8830 28.02 0.7680 27.29 0.0726 25.18 0.7540 28.83 0.8870
EDSR[14] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
NLRN[15] ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 - -
RNAN[29] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7421 26.61 0.8023 31.09 0.9149
SRFBN[13] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
RDN[30] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
RCAN[28] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
NLSN[18] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
Our
Method

×4 32.43 0.8973 28.73 0.7853 27.63 0.7372 26.39 0.7927 30.94 0.9125

Table 4.3: Quantitative analysis of different Architectures(Scale 4)

Figure 4.1: Qualitative Results on Scale 2 (Set5: Butterfly.png)

22



Figure 4.2: Qualitative Results on Scale 3 (Set14: comic.png)

Figure 4.3: Qualitative Results on Scale 4 (Urban100: img_002.png)
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Figure 4.4: Qualitative Results on Scale 4 (Urban100: img_093.png)
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4.4 Other Experiments

4.4.1 Other Experiments

Other than the proposed method we have done some experiments which are
briefly described below.We first learn about channel attention, pixel attention[31],
and spatial attention[24] in brief. As seen in the figure 4.5, channel attention seeks
to produce a 1D (C × 1 × 1) attention feature vector, whereas spatial attention
produces a 2D (1× H × W) attention map. As opposed to this, pixel attention can
produce a 3D (C × H × W) matrix as its attention features. Therefore, attention
coefficients are generated for each pixel in the feature map using pixel attention.
Here, C stands for the number of channels, and H and W stand for the features’
respective height and width.

Figure 4.5: (a) CA: Channel Attention; (b) SA: Spatial Attention; (c) PA: Pixel At-
tention. [31]

4.4.2 RCAN_Dense

From RCAN[28] we notice that in RCAN features are extracted only from the
previous RCAB. So for hierarchical feature extraction we applied the residual
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skip connections between Residual Channel Attention Blocks in the each Residual
Group of the network. The architecture of RCAN dense network is given in the
figure 4.6

Figure 4.6: RCAN_dense Architecture

4.4.3 RCAPAN(Residual Channel Attention and Pixel Attention

Network)

In Residual Channel Attention Network[28] they focused on only channel atten-
tion. So for this experiment we tried to incorporate pixel attention with the chan-
nel attention. We tried to make residual pixel attention blocks(RPAB) as shown in
figure 4.7.Here 10 residual groups are used in which first 10 RCABs are there and
then 10 RPABs are there.
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Figure 4.7: RCAPAN Architecture

4.4.4 RPCSN(Residual Channel Pixel Spatial Network)

After the improvement of previous experiment’s result we tried to implement
spatial attention with channel attention and pixel attention as shown in figure 4.8.
We used each block serially in this experiment i.e., first RCAB, then RPAB and
then Channel Spatial Attention Blocks(CSAB[19]). The number of this blocks are
7 and the number of residual groups are 10.
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Figure 4.8: RPCS Architecture

4.4.5 Results of Experiments

Results of the experiments are given in table 4.4. These experiments are performed
on scale 2.
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Dataset Scale PSNR SSIM

RCAN_Dense

Set5 X2 37.930038 0.960345

Set14 X2 33.444639 0.916403

Urban100 X2 31.915354 0.925503

Manga109 X2 38.174127 0.976865

B100 X2 32.034723 0.901073

RCAPAN

Set5 X2 38.085357 0.960697

Set14 X2 33.721527 0.918634

Urban100 X2 32.366394 0.930623

Manga109 X2 38.681300 0.977189

B100 X2 32.209183 0.899827

RCPSN

Set5 X2 38.056365 0.960782

Set14 X2 33.635946 0.917732

Urban100 X2 32.386882 0.930770

Manga109 X2 38.675729 0.977264

B100 X2 32.204666 0.899918

Table 4.4: Other Experiments’ Quantitave results

4.5 Experiments with other Image Modalities

4.5.1 Depth Map

When comprehending a scene, people are able to capture the depth information
necessary to produce stereo perception in addition to the scene’s appearance (such
as colour and texture). Numerous research areas that depend on high-quality
depth data, such as autonomous navigation and 3D reconstruction, can be facil-
itated by a better understanding of the scene. Portable consumer-grade depth
cameras, like Microsoft Kinect and Lidar, have become increasingly common and
offer great convenience for quickly determining the depth of a scene. The resolu-
tion of a depth map, even when combined with a high-resolution colour image,
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is typically constrained due to the imaging limitations of depth cameras. Depth
map super-resolution (SR) technique has drawn increasing attention as a potential
solution to the urgent need for high-quality depth maps in applications.

Figure 4.9: Qualitative results of our network on scale 4 on MiddaleBury 2005 Art
and Laundry image[21]

The depth map SR is evaluated using Root Mean Squared Error(RMSE) values.
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We tested our network for Middlebury dataset’s Art, Books, Laundry, Reindeer
and teddy images we took average of the both depth images present in that set.

Data Bicubic Our Network

Art 3.87 0.24
Books 1.61 0.26

Laundry 2.41 0.20
Reindeer 2.81 0.19

Teddy 2.86 0.29

Table 4.5: Quantitative results of Depthmap SR on scale 4 upsampling on Middle-
bury dataset in terms of RMSE values

4.5.2 X-Ray Images

To perform experiment on medical image dataset, we used COVID-19 image dataset[2]
which consists of chest X-ray and computed tomography (CT) images. Electro-
magnetic waves are a category of radiation that includes X-rays. X-ray imaging
produces images of what’s in your body. The images depict the various body parts
in various shades of black and white. This is due to the fact that different tissues
absorb radiation in different ways. Because calcium in bones absorbs the most
x-rays, bones appear white. Fat and other soft tissues have a grey appearance
and absorb less. Lungs appear black because air absorbs the least. The dataset is
updated frequently, and it’s important to note that each image’s resolution varies.
The results of our network on the some images of COVID-19 image dataset [2]
are given in the figure 4.10. The quantitative results of these 4 images’ average in
PSNR are given in the 4.6.
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Figure 4.10: Qualitative results of our network on scale 2 upsampling

Data Bicubic Our Network

COVID-19 36.67 43.62

Table 4.6: Quantitative results of this on scale 2 upsampling in terms of PSNR
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CHAPTER 5

Conclusion & Future Scope

5.1 Conclusion

In the proposed method, we used non-local sparse attention for single image su-
per resolution networks, that simultaneously adopts the benefits of sparse repre-
sentations and non-local similarity. Furthermore, to improve ability of the net-
work, we suggest channel attention mechanism to adaptively rescale channel-
wise features by taking into account inter-dependencies among channels. Our
proposed method produces super-resolved results that are comparable with the
state-of-the-art architectures in terms of qualitative and quantitative evaluation.

5.2 Future Work

1. We can try to modulate the convolution kernel and generate the adaptive
context information and then use it in our architecture to improve the re-
sults.

2. We can also try to use overlapping of patches in training to further improve
the results in existing architecture.

3. Using channel attention and pixel attention in parallel can also influence and
improve results.
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