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Abstract 

The significant wave height prediction plays a very crucial role in wave power generation. Apart 

from this, the hourly efficient prediction of SWH can significantly help to improve the decisions 

in maritime and off-shore activities. But, the highly random and chaotic nature of ocean waves 

makes the significant wave height prediction task difficult and challenging. In this thesis, we 

have developed a series of wave hybrid models for hourly significant wave height prediction. 

Our developed hybrid models use a signal decomposition method along with a regression model. 

We have used the ε-Support Vector Regression (ε-SVR), Least Squares Support Vector 

Regression (LS-SVR), Long Short-Term Memory (LSTM) and Large-margin Distribution 

Machine based Regression (LDMR) model for the regression task. For signal decomposition 

methods, we have considered the Wavelet Decomposition (WD), Empirical Mode 

Decomposition (EMD) and Variational Mode Decomposition (VMD) method. Apart from this, 

we have also used the Particle Swarm Optimization (PSO) method to tune the parameters of the 

used regression model in our wave hybrid models. Till now, the VMD method and LDMR model 

have not been used in any wave hybrid model. We have evaluated the performance of our 

developed wave hybrid models on time-series significant wave heights, collected from four 

different buoys, and located at different geographical locations using the different evaluation 

criteria. After the brief analysis of the obtained numerical results, we conclude that the LDMR 

based wave hybrid model outperforms the other regression model based hybrid model. Also, the 

VMD based wave hybrid models can obtain better performance than other decomposition based 

hybrid models. Further, we perform two-way ANOVA analysis on obtained numerical results 

which statistically infer that the use of a particular decomposition method and a particular 

regression model affect the prediction accuracy significantly but, their effects are independent 
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Chapter 1  

Introduction 

1.1 Motivation 

The renewable energy technologies have exploded in popularity in recent years as a means of 

addressing the fossil fuel dilemma and mitigating climatic hazards. The wave energy is one of 

the most promising and clean sources of sustainable energy for meeting future energy demands. 

When compared to other renewable energy sources such as solar and wind, it offers larger 

prospects and a greater energy density [8]. In determining the wave power level, the Significant 

Wave Height (SWH) is a highly important and essential metric. It is obtained by taking the 

average of one-third highest ocean waves observed in a given time interval. In wave power 

generation, considerable wave height prediction is extremely important. In order to improve the 

performance of wave energy converters, it is necessary to have a reliable and efficient prediction 

of significant wave height a few hours ahead of time [9]. Aside from that, hourly efficient SWH 

forecast may considerably aid in decision-making in marine and off-shore activities. However, 

due to the extremely random and chaotic behavior of ocean waves, meaningful wave height 

prediction is a tough and complex endeavor. Traditionally, researchers have employed energy 

balance models to anticipate waves across a vast geographical and temporal scale utilizing 

various ocean factors [10]. However, these models are computationally expensive and 

sophisticated, limiting their utility to hourly SWH predictions for a single area. For short-term 

wave height forecasting, researchers use data-driven models that predict SWH for the next few 

hours using time-series data. The parametric algorithms (time-series models) are the one which 

makes the assumptions for the form or the curve while training to ease the process of learning. 
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Their numbers of parameters are of fixed size and independent of size of the training data. 

Researchers have successfully used parametric time-series models such as Auto-Regressive 

(AR), Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving Average 

(ARIMA), and others for SWH forecasting. There is some noteworthy work that makes good use 

of the AR model for SWH prediction which are [11] and [12]. Ge and Kerrigan [13] effectively 

employed the ARMA model to compute noise covariance in ocean wave data. Vanem and 

Walker [14] also utilized the ARIMA model to identify the climate in terms of ocean waves. 

The non-parametric algorithms are the one which do not assumes anything and changes their size 

and magnitude according to the training data during learning process. They are dependent on the 

size of the training set. Non-parametric current machine learning methods have demonstrated to 

be more promising than parametric time-series models, especially for short-term forecasting 

tasks. Researchers employed many neural architecture types to arrive at an accurate short-term 

prediction of SWH. For SWH prediction, Deo et al. utilized a three-layer feed forward ANN 

model [15]. Using the ANN model, the author enhanced the SWH prediction in [16]. In [17], the 

authors utilized the Extreme Learning Machine (ELM) in conjunction with a grouping genetic 

algorithm to find the most effective features set to anticipate short-term SWH. The daily 

prediction of SWH was obtained using an ensemble of ELM models in [18]. Researchers have 

found the Recurrent Neural Network (RNN) to be a particularly successful and popular solution 

for SWH prediction [19] [20]. In [20] [21], multiple forms of the Gated Recurrent Unit (GRU) 

were employed to estimate the SWH. For short-term SWH prediction, the Long Short Term 

Memory Network (LSTM) [3] is a popular RNN design. [22] [23] [24] [25] are some key 

research studies that apply LSTM models for SWH forecasting. 
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1.2 Related Work 

In predicting tasks, researchers frequently use Support Vector Regression (SVR) models [26]. 

These models are based on statistical learning theory [26], and in their optimization problem, 

they can minimize an acceptable trade-off between empirical risk and model complexity. 

Furthermore, unlike other neural network architecture-based machine learning models, these 

models may reach the global optimal solution. In a number of studies, several forms of the SVR 

models have been utilized to provide accurate predictions of the SWH. [27] [28] [29] [30] are a 

few of them. 

Despite the use of sophisticated non-linear machine learning methods, there are some 

circumstances where effective SWH forecasts are difficult to produce, owing to the very 

unpredictable and chaotic character of ocean waves. In recent years, researchers have begun to 

develop hybrid wave models to improve prediction in order to overcome these obstacles. A 

decomposition approach is used in wave hybrid models to deconstruct time-series data into more 

useful components. Following that, these attributes were fed into machine learning algorithms in 

order to produce more accurate predictions. Researchers presented hybrid model versions by 

evaluating various combinations of decomposition methods and machine learning models and 

evaluated their behaviour on various SWH datasets. Prahlada and Deka suggested a hybrid 

model that employs the ANN model in conjunction with the Wavelet Decomposition (WD) 

approach to forecast SWH with a lead time of up to 48 hours [31]. [21] [32] [33] are some more 

important hybrid models that employ the wavelet decomposition approach in conjunction with a 

variety of neural network topologies. The Empirical Mode Decomposition (EMD) [5] approach 

has also been utilized extensively in conjunction with several machine learning algorithms to 

create efficient hybrid models. Duan et al. employed the EMD [5] approach in conjunction with 
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the 𝜖-SVR model [1] to produce short-term forecasting of significant wave height [10]. Tang et 

al. employed the Least Square Support Vector Regression (LS-SVR) [2] models in conjunction 

with the EMD approach to estimate short-term wave height. Ali and Parasad employed an 

enhanced ensemble EMD approach in conjunction with an ELM model to anticipate major wave 

height 30 minutes in advance [34].  

1.3 Contribution 

In this study, we provide a set of wave hybrid models for predicting hourly significant wave 

height. A signal decomposition approach and a regression model are used in our proposed hybrid 

models. We have used 𝜖-Support Vector Regression (𝜖-SVR), Least Squares Support Vector 

Regression (LS-SVR), Large- margin Distributed Machine Regression (LDMR) and Long Short 

Term Memory (LSTM) models for performing the task of prediction of significant ocean wave 

height. We have exploited the Wavelet Decomposition (WD), Empirical Mode Decomposition 

(EMD) and Variational Mode Decomposition (VMD) approaches for decomposition of signals. 

Aside from that, we have employed the Particle Swarm Optimization (PSO) approach to fine-

tune the parameters of the regression model used in our wave hybrid models. The VMD 

technique and the LDMR model have never been employed in a wave hybrid model before. 

Using multiple assessment criteria, we have tested the efficacy of our created wave hybrid 

models using time-series significant wave heights gathered from four separate buoys positioned 

at different geographical locations. Following a quick examination of the numerical findings 

obtained, we conclude that the LDMR-based wave hybrid model surpasses the other regression 

model-based hybrid mode. Furthermore, VMD-based wave hybrid models outperform other 

decomposition-based hybrid models. Furthermore, we run two-way ANOVA analysis on the 

obtained numerical findings, which statistically indicate that, the adoption of a certain 
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decomposition method and specific regression model impact prediction accuracy considerably, 

but their effects are independent. 

The organizations of rest of this thesis are as follows: In Chapter 2, we have described about 

different machine learning and metaheuristic models used in our developed wave hybrid models. 

In Chapter 3, we have briefly discussed the signal decomposition techniques used in our 

developed hybrid models.  Chapter 4 briefly describes methodologies and implementation details 

of our developed hybrid models. In Chapter 5, we have presented the numerical results and their 

brief analysis. Chapter 6 concludes this thesis. 
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Chapter 2  

Machine Learning Models and their Parameter Tuning 

In this chapter, we shall briefly describe the used machine learning models in our developed 

wave hybrid models. Further, we have also described the metaheuristic algorithm for tuning the 

parameters of the machine learning models. 

Given a training set 𝑇 = {(𝑥௜ , 𝑦௜) ∶  𝑥௜  ∈  ℝ௡
, 𝑦௜ ∈  ℝ, 𝑖 = 1,2, … . , 𝑙}, SVR models minimize a 

linear combination of the loss function and regularization term to obtain a linear estimate 

𝑓(𝑥) ∶  𝑤்𝑥 + 𝑏, 𝑤 ∈  ℝ௡
, 𝑏 ∈  ℝ. For estimating the nonlinear function, it finds 𝑓(𝑥) ∶

 𝑤்𝜙(𝑥) + 𝑏 = 𝐾(𝑥் , 𝐴்)𝑢 + 𝑏 in feature space, where 𝐾 is an appropriate kernel satisfying 

Mercer condition [36] such that 𝜙(𝑥௜)்𝜙൫𝑥௝൯ = 𝐾(𝑥௜, 𝑥௝). The matrix 𝐴 is 𝑙 × 𝑛 data matrix 

containing 𝑙 data points in ℝ௡
 and u is 𝑙 × 1 decision variable required for obtaining kernel 

generated surface.  

 

2.1 𝜖-Support Vector Regression Model 

Support Vector Regression (SVR) is a supervised learning approach for forecasting discrete 

values. The fundamental tenet of SVR is finding the optimum fit line. The flexibility of SVR 

allows us to decide how much error in our model is acceptable, and it will locate a suitable 

hyperplane. The hyperplane with the most points is the best-fitting line in SVR. In 𝜖-SVR model, 

there is 𝜖-insensitive loss function which enables the model to ignore the error upto 𝜖. The 

Figure 1 shows the plots of the 𝜖-insensitive loss function.  
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The 𝜖-SVR model [26] minimizes 𝜖-insensitive loss function along with 
ଵ

ଶ
𝑤்𝑤 regularization. It 

finds the solution of the following optimization problem:  

 min௪,௕  
ଵ

ଶ
𝑤்𝑤 + 𝐶 ∑ 𝐿஫(௟

௜ୀଵ 𝑦௜ − (𝑤்𝜙(𝑥௜) + 𝑏))                         (1) 

where 𝐿ఢ is the epsilon insensitive loss function and is given by: 

                                       𝐿ఢ(𝑢) = max(|𝑢| − 𝜖, 0) = ൜
|𝑢| − 𝜖 ;  𝑖𝑓 |𝑢| > 𝜖,
0           ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       (2) 

 

 

 

Figure 1: 𝜖-insensitive loss function 

After introducing the slack variables 𝜉i and 𝜉i* for  𝑖 = 1,2, … . , 𝑙 and the user defined penalty 

factor C , the problem (1) can be reduced as : 

min
௪,௕,ஞ,ஞ∗

       
1

2
𝑤்𝑤 + 𝐶 ෍(ξ௜ + ξ௜

∗)

௟

௜ୀଵ

 

                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦௜ − (𝑤்𝜙(𝑥௜) + 𝑏) ≤ 𝜖 + 𝜉௜, 

Image Reference: Linear Regression and Support Vector 

Regression (adelaide.edu.au) 
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(𝑤்𝜙(𝑥௜) + 𝑏) −  𝑦௜ ≤ 𝜖 + 𝜉௜
∗, 

                                                          𝜉௜ , 𝜉௜
∗ ≥ 0 , 𝑖 = 1,2,3, … , 𝑙   .                                                                  (3) 

             

The solution of the primal problem (3) is computationally expensive. Therefore, we need to 

derive the equivalent Wolfe dual problem [38] for the primal problem (3).  For this, we obtain 

the Lagrangian function for primal problem (3) as:-  

 

𝐿(𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝜂, 𝜂∗) =  
1

2
𝑤𝑇𝑤 + 𝐶 ෍(ξ௜ + ξ௜

∗)

௟

௜ୀଵ

− ෍(𝜂
𝑖
𝜉

𝑖
+ 𝜂

𝑖
∗𝜉

𝑖
∗)

𝑙

𝑖=1

 

− ∑ 𝛼௜(𝜖 + 𝜉௜ + (𝑦௜
௟
௜ୀଵ − (𝑤்𝜙(𝑥௜) + 𝑏)))              

                                         − ∑ 𝛼௜
∗௟

௜ୀଵ (𝜖 + 𝜉௜
∗ − (𝑦௜ − (𝑤்𝜙(𝑥௜) + 𝑏)))                                              (4) 

 

where,  𝛼, 𝜉, η are the  Lagrangian multiplier vectors. Hence, the dual problem of the primal 

problem (4) can be written as: 

min  
ఈ(∗)∈ோమ೗

                
1

2
෍ ෍(𝛼௜ − 𝛼௜

∗)൫𝛼௝ − 𝛼௝
∗൯(𝐾൫𝑥௜ , 𝑥௝൯

௟

௝ୀଵ

)

௟

௜ୀଵ

+ 𝜖 ෍(𝛼௜ + 𝛼௜
∗) − ෍ 𝑦௜(𝛼௜ − 𝛼௜

∗)

௟

௜ୀଵ

௟

௜ୀଵ

, 

   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         ∑ (𝛼௜ − 𝛼௜
∗)௟

௜ୀଵ = 0, 

                              0 ≤ 𝛼௜ , 𝛼௜
∗ ≤ 𝐶 , 𝑖 = 1,2,3, … , 𝑙                                                                                           (5) 

then the solution (𝑤ഥ, 𝑏ത) to the above primal problem (4) can be obtained by: 

                                            𝑤ഥ = ∑ (𝛼ത௜
∗ − 𝛼ത௜

௟
௜ୀଵ )𝜙(𝑥௜)                                                                                           (6) 
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To compute the value of b, we will consider the index  j where,  

0 < 𝛼௝ < 𝐶                                                                       

                                      𝑏ത = 𝑦௝ − 𝑤ഥ ்𝑥௝ + 𝜖                                                                                                           (7) 

Or we can also consider the index k  

0 < 𝛼௞ < 𝐶                                                                            

and compute           𝑏ത = 𝑦௞ − 𝑤ഥ ்𝑥௞ − 𝜖                                                                                                (8) 

2.2 Least Squares Support Vector Regression Model 

The typical 𝜖-SVR can solve a convex quadratic optimization problem with a unique solution, but 

its method of solving the problem is quite complex. Suykens et.al. [2] proposed the least squares 

support vector machine (LS-SVR) by converting inequality requirements to equality constraints 

and substituting empirical risk deviation with quadratic deviation. LS-SVR preserves the features 

of SVR while handling the issues including nonlinearity and small sample sizes. Additionally, 

LS-SVR solves problems more quickly and uses less processing resources.  

The LS-SVR model [2] minimizes the quadratic loss function along with ½wTw regularization 

term. It minimizes: 

min
௪,௕,క

1

2
𝑤்𝑤 + 𝐶 ෍ 𝜉௜

ଶ

௟

௜ୀଵ

                             

                                    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑦௜ − (𝑤்𝜙(𝑥௜) + 𝑏) = 𝜉௜, 𝑖 = 1,2,3, … , 𝑙                  (9) 

The primal problem for the above problem: 
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                   𝐿(𝑤, 𝛼, 𝜉) =  
ଵ

ଶ
𝑤்𝑤 + 𝐶 ∑ 𝜉௜

ଶ + ∑ 𝛼௜(𝑦௜ − (𝑤்𝜙(𝑥௜) + 𝑏) − 𝜉௜
௟
௜ୀଵ

௟
௜ୀଵ )         (10) 

where, C > 0 is a user defined parameter. The solution of the problem (10) can be obtained by 

solving the following system of equations. 

                              ቈ
0 𝑒்

𝑒 𝐾(𝐴, 𝐴்) +
ଶ

஼
𝐼
቉ ቂ

𝑏
𝛼

ቃ = ቂ
0
𝑌

ቃ                                                            (11) 

After obtaining the (b, α) by solving the above system of equations, we can estimate our 

regression function for a given x ∈ ℝ using 

                                  𝑓(𝑥) =  𝑤்𝜙(𝑥) +  𝑏 = 𝐾(𝑥், 𝐴்)𝛼 + 𝑏                                            (12) 

2.3 Large-margin Distribution Machine Regression Model 

In the presence of normal noise in the data, the least square loss function utilized in the LS-SVR 

model allows it to perform optimally. In the case of uniform noise, the 𝜖-insensitive loss function 

in the 𝜖-SVR model allows it to perform optimally. We should also try to reduce the spread of 

data points within the 𝜖 -tube. As a result, including both of these loss functions in the suggested 

formulation allows for a trade-off between sparsity and scatter reduction. It also allows the 

proposed model to use the entire training set's information while avoiding over-fitting. 

For quantifying empirical risk, the LDMR model [4] minimizes the linear combination of the 

quadratic loss and 𝜖-insensitive loss function, as well as the 
ଵ

ଶ
𝑤்𝑤 regularization component. It 

allows it to outperform both the 𝜖-SVR and the LS-SVR models. The LDMR model [4] 

minimizes: 

min௪,௕
ଵ

ଶ
𝑤்𝑤 +

ଵ

ଶ
∑ (𝑦௜ − (𝑤்𝜙(𝑥௜) + 𝑏)ଶ) + 𝐶 ∑ 𝐿ఢ(𝑦௜ − (𝑤்𝜙(𝑥௜) + 𝑏)௟

௜ୀଵ
௟
௜ୀଵ ,                 (13) 
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which can be converted to the following QPP 

min
௪,௕,కభ,కమ

𝑐

2
‖𝑤‖ଶ +

1

2
||𝑌 − (𝐴𝑤 + 𝑒𝑏)||ଶ + 𝐶𝑒்(𝜉ଵ + 𝜉ଶ) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑌 − (𝐴𝑤 + 𝑒𝑏) ≤ 𝑒𝜖 + 𝜉ଵ,                       

          (𝐴𝑤 + 𝑒𝑏) − 𝑌 ≤ 𝑒𝜖 + 𝜉ଶ, 

                                                                 𝜉ଵ, 𝜉ଶ ≥ 0                                                                      (14) 

where C, e, c and 𝜖 are the user specified positive parameters. We prefer to solve Wolfe dual of 

the primal problem (14) which can be obtained as follows, 

min
ఈభ,ఈమ

   

1

2
(𝛼ଵ − 𝛼ଶ)்𝐻൫𝑐(𝛼ଵ − 𝛼ଶ) + 𝑌்𝐻(𝑐𝐼଴ + 𝐻்𝐻)ିଵ𝐻்(𝛼ଵ − 𝛼ଶ)൯

−𝑌்(𝛼ଵ − 𝛼ଶ) + 𝜖𝑒்(𝛼ଵ + 𝛼ଶ),
 

                   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 0 ≤ 𝛼ଵ, 𝛼ଶ ≤ 𝐶𝑒                                             (15) 

Here H = [K, e] is a augmented matrix and 𝐼଴ = ቎

𝐼
0
⋮

0
0
⋮

0 … 0

቏, where I is a 𝑛 × 𝑛 identity matrix. 

After obtaining the solution of problem (15), the solution vector 𝑢 = [𝑤, 𝑏]்  can be obtained by 

using 𝑢 = [𝑤, 𝑏]் = (𝑐𝐼଴ + 𝐻்𝐻)ିଵ𝐻்(𝛼ଵ − 𝛼ଶ + 𝑌)and regression function using is estimated 

using (12). 

2.4 Long Short Term Memory (LSTM) 

Long short-term memory (LSTM) is a type of artificial neural network used in deep learning and 

artificial intelligence. LSTM features feedback connections, unlike normal feed-forward neural 

networks. This type of recurrent neural network can handle not just single data points (like 
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photos), but also complete data sequences (such as speech or video). Because there might be 

delays of undetermined duration between critical occurrences in a time series, LSTM networks 

are well-suited to categorizing, processing, and generating predictions based on time series data. 

LSTMs were created to solve the problem of vanishing gradients that can occur while training 

standard RNNs. In many cases, LSTM has an advantage over RNNs, hidden Markov models, 

and other sequence learning approaches due to its relative insensitivity to gap length. 

 

 
Figure 2: Vanishing and exploding gradient error explanation  

 

To update the network's weights, a neural network employs an algorithm known as Back-

Propagation. So, first, BP determines the gradients from the mistake using the chain rule in 

Calculus, and then it updates the weights (Gradient descent). Because the BP commences from 

the output layer and goes all the way back to the input layer, updating weights may not be a 

Image Reference: Chapter 10.1: DeepNLP — LSTM (Long Short Term Memory) Networks with Math. | 

by Madhu Sanjeevi ( Mady ) | Deep Math Machine learning.ai | Medium 
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problem in a simple neural network, but it may be in a deep neural network. As we return to the 

gradients, the values may get smaller exponentially, causing a Vanishing Gradient problem, or 

larger exponentially, causing an Exploding Gradient problem. Figure 2 and Figure 3 gives the 

pictorial representation of the exploding and vanishing gradients. 

 

 

Figure 3: Vanishing and exploding gradient error flow 

 

As a result, we have issues with network training. We have time steps in RNNs, and the current 

time step value is dependent on the prior time step, thus we must go back in time to perform an 

update. The Figure 4 below depicts an accurate description of LSTM as well as solution to the 

aforementioned challenges.  

 

Image Reference: Chapter 10.1: DeepNLP — LSTM (Long Short Term Memory) Networks with Math. | 

by Madhu Sanjeevi ( Mady ) | Deep Math Machine learning.ai | Medium 
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Figure 4: Working of the LSTM cell network 

an lstm cell are Xt (current input), Ht-1 (previous cell output) 

outputs are Ht (current cell output) and Ct (current cell memory)

(forget gate), 𝐶t (candidate gate), It (input gate) and 

Except for the candidate gate, which employs the tanh activation function, all of the gates uti

activation function. U = (Uf,Uc,Ui,Uo) and W = (Wf,Wc,Wi,Wo) are the weight vectors 

of the current input and previous output respectively for the forget, candidate, input and output

input and previous output, execute element-wise multiplication with 

their corresponding weight vectors, and then sum the results. After which the activation 

functions is applied to the corresponding results.  

These gate operations generate vectors in between -1 to 1 in case of tanh activation function and 

0 to 1 in case of sigmoid activation function and accordingly we obtain our forget, candidate, 

input and output gate vectors. Using these gate vectors, current memory state 

are obtained, which can be studied from Figure 4.  

Chapter 10.1: DeepNLP — LSTM (Long Short Term Memory) Networks with Math. | 

by Madhu Sanjeevi ( Mady ) | Deep Math Machine learning.ai | Medium 

Institute Of Information and Communication Technology 
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2.5 Parameter Tuning 

In 1995, Kennedy and Eberhart proposed particle swarm optimization (PSO) [7]. Initially, they 

stated in their first research paper that an epistemologist believed that a group of socio-biological 

animals moving forward together "can profit from the experience of all other members," i.e., 

when a flying bird is randomly hunting for food, the remaining members of the flock can share 

their experience of food search and discovery, allowing the entire flock to get the best hunt 

faster. 

While we can emulate a flock of birds' movement, we can also suppose that each bird is aiding 

us in identifying the best solution in a high-dimensional solution space, with the flock's best 

solution being the best solution in the space. This is a method based on metaheuristics. We can 

never be sure whether or not the genuine global optimum solution exists, and it rarely does.  We 

commonly find, however, that the PSO solution is quite close to the global optimum. 

Assume we have p particles and we denote the positions of the particles at ith iteration as 

𝑋௜ = (𝑥ଵ௜ , 𝑥ଶ௜, … , 𝑥௣௜ , ) and the velocities of the particles are denoted as 𝑉௜ = (𝑣ଵ௜, 𝑣ଶ௜ , … , 𝑣௣௜ , ), 

now we can update the positions in the next iterations given as follows: 

                                                              𝑋௜ାଵ =  𝑋௜ + 𝑉௜              (16) 

and also at the same instant, the updated velocity will be given as: 

                          𝑉௜ାଵ = 𝑤 ∗ 𝑟 ∗ 𝑉௜ + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡௜ − 𝑋௜) + 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑋௜)     (17) 

 

In the equation (25), r, r1 and r2 are the random numbers ranging from 0 to 1, c1 and c2 are the 

acceleration co-efficients whose values are kept generally equal to 2 and w is the inertial weight 
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which is equal to 1 generally. The flow of the process can be studied and visualized from the

Figure 5. 

 

 Institute Of Information and Communication Technology

which is equal to 1 generally. The flow of the process can be studied and visualized from the

Figure 5: Flowchart of PSO 
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Chapter 3  

Decomposition Methods 

We have used the decomposition methods to generate informative and robust features for 

machine learning models in our developed wave hybrid models. In this chapter, we have briefly 

described the decomposition methods used in our wave hybrid models. 

3.1 Wavelet Decomposition 

A Wavelet is a time-localized wave-like oscillation. Scale and location are the two most basic 

features of wavelets. The scale (or dilation) of a wavelet determines how "stretched" or 

"squished" it is. This feature has to do with the frequency of waves. The wavelet's position in 

time is defined by its location (or space). In this study, discrete wavelet transform (DWT) is used 

to compute decompositions since the datasets are in the form of the discrete time sequence. The 

discrete wavelet transform can be expressed as, 

                                           𝑤థ(𝑎, 𝑏) =
ଵ

√௡
∑ 𝑥(𝑚)𝜙௔.௕௠ (𝑚)     (18) 

where, x is function to be decomposed or transformed, ϕ is mother(base) wavelet function,  

𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 0,1,2, … , 𝐴 −

1, 𝑛 = 2஺, 𝑚 = 0,1,2, … , 𝑛 − 1 𝑎𝑛𝑑 𝑏 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 0,1,2, … , 2௔ − 1 

In other words, we select a wavelet of a specific scale. Then we slide this wavelet through the 

full signal, varying its position, and multiply the wavelet and signal at each time step. This 

multiplication yields a coefficient for that wavelet scale at that time step. The procedure is then 

repeated by increasing the wavelet scale. Basically, this decomposition is repeated to improve 

frequency resolution, and the approximation coefficients are decomposed with high-pass and 
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low-pass filters before being down-sampled. The binary tree, with each node indicating a distinct 

time-frequency localization of a sub-space is known as a filter bank. Figure 6 represents the 

decomposition workflow in the filter bank. 

 

Figure 6: Decomposition workflow in the filter bank  

 

3.2 Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) [5] is a powerful signal processing method, particularly 

for non-linear and non-stationary data. In case of wavelet decomposition (WD), the prior/initial 

information or knowledge for mother wavelet is required which drives the algorithm for the 

appropriate decomposition whereas EMD is absolutely data driven where no prior information is 

required and decomposes the signal recursively until desired specifications are met. We shall 

now discuss the EMD decomposition technique. The EMD approach divides an arbitrary signal 

𝑥(𝑡) into many Intrinsic Mode Functions (IMFs) plus a residual function. There are two 

requirements that the IMFs must meet: 

 The number of zero-crossings and extrema should be identical or differ by at most one. 

Image Reference: sciencedirect.com/topics/earth-and-planetary-sciences/wavelet-analysis 
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 The mean of the upper and lower envelopes, which are functions of local maxima and 

minima respectively, should be zero. 

 

Figure 7: Internal work flow of EMD 

 

The EMD approach iteratively detects and estimates the lower and upper envelopes by detecting 

local minima and maxima. The average of envelopes is removed as ’low pass’ center line. The 

high-frequency components are segregated as ‘mode' in this fashion as shown in Figure 7. The 

process is repeated by decomposing the remaining low pass center line iteratively. The flow of 

EMD decomposition is depicted in the following Figure 8 below. 

 

Image Reference: Decomposing Signal Using Empirical Mode Decomposition — Algorithm 

Explanation for Dummy | by Muhammad Ryan | Towards Data Science 
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Figure 8: Flowchart of EMD 

Image Reference: Flowchart of the Empirical Mode Decomposition (EMD).  | Download (researchgate.net) 



21 Dhirubhai Ambani Institute Of Information and Communication Technology 
 

3.3 Variational Mode Decomposition (VMD) 

The EMD approach is vulnerable to noise and sampling effects, according to researchers [5]. The 

Variational Mode Decomposition (VMD) approach is an adaptive, non-recursive method for 

obtaining several modes at the same time. The model seeks for an ensemble of modes and their 

corresponding centre frequencies that collectively reconstruct the input signal while each getting 

smooth after demodulation into base band. 

The input signal f is decomposed into different frequency components (a modal component 

function) 𝑢௞(𝑡) using VMD. VMD decomposed the daily stream-line sequence 𝑋 into 𝑛 +

1 intrinsic mode functions (IMFs), i.e.,𝑢ଵ, 𝑢ଶ, … , 𝑢௡. Each mode 𝑢௞(𝑡) had a finite bandwidth 

with different centre frequencies in which the minimum computed bandwidth’s summation of 

each mode was required. The more details on VMD can be studied from [6]. Figure 9 gives an 

idea of flow of VMD.  
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Figure 9: Flowchart of VMD 

Image reference: https://www.researchgate.net/publication/324917202/69865/ 
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Chapter 4  

Methodology of Proposed Wave Hybrid Models for SWH Prediction 
and their Implementation Details  

In this chapter, we shall briefly describe our methodology used by our developed wave hybrid 

models along with their implantation details.  

4.1 Methodology of Proposed Wave Hybrid Models 

Our wave hybrid model involves different successive steps which we have presented in the 

Figure 10. 

We describe these steps as below: 

1. Decomposition of signal: After receiving the time series SWH data, we need to 

decompose it into more informative data signals. The decomposition of the signal is 

important as it helps to obtain the more informative features for our machine learning 

method. In our developed wave hybrid models, we have used the WD, EMD or VMD 

decomposition method to decompose the time series SWH 𝑥(𝑡) into 

[𝑥ଵ(𝑡), 𝑥ଶ(𝑡), … , 𝑥௡(𝑡)] component data signals. 

2. Attributes/features composition: After decomposing the SWH signal, we need to 

prepare the dataset for machine learning model. For this, we need to compose the feature 

set and corresponding response values. For 𝑖௧௛ signal component, we compose the p-

dimensional ൣ𝑥௜(𝑡), 𝑥௜(𝑡 − 1), 𝑥௜(𝑡 − 2), … , 𝑥௜൫𝑡 − (𝑝 − 1)൯൧  features for the prediction 

of 𝑥௜(𝑡 + 1). 
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3. Parameters Tuning: 
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the PSO algorithm to tune the parameters of our machine learning models
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 We need to train the 𝑛 machine learning models to obtain the 

𝑥௜(𝑡 + 1) for 𝑖 = 1,2, . . 𝑛, using our composed feature sets.

before training a machine learning model, we need to tune its parameters. We have used 

to tune the parameters of our machine learning models

After selecting the appropriate values of parameters for our machine learning 

model, we finally train them for obtaining the prediction of 𝑥௜(𝑡 + 1

After obtaining the prediction of 𝑥௜(𝑡 + 1) for 𝑖 =
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Figure 10: Flowchart of wave hybrid model 
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4.2 Implementation Details 

We will be systematically describing the implementation details of our developed wave hybrid 

models. We have used the WD, EMD and VMD methods to develop the different wave hybrid 

models. 

In Wavelet decomposition based hybrid models, we have decomposed the SWH data signal into 

five high frequency detail signals (D1, D2, D3, D4, D5) and a low frequency approximate signal 

A5. For this, we have used the Daubechies 4 discrete wavelet filter available in MATLAB 

(www.mathworks.com). In Figure 12, we have shown the wavelet decomposition for the dataset 

A (refer Table 1). For our EMD and VMD decomposition based wave hybrid models, we have 

decomposed the initial data signal into six IMFs using their respective algorithms. In Figure 13, 

we have shown the VMD decomposition for the dataset A (refer Table 1). After decomposing the 

original signal into six different components, we have composed the feature sets and response 

values in each case and divided the obtained datasets into training set and testing set. The 80% of 

a dataset was used as training set and remaining was used as testing set. 

We have used the SVR, LS-SVR, LDMR and LSTM models for the prediction of SWH data. We 

have implemented the SVR, LS-SVR and LDMR models in MALTAB environment by writing 

an appropriate function in MATLAB. The SVR and LDMR model require the solution of the 

dual QPPs (5) and (15) respectively. The solution of these QPPs of SVR and LDMR models 

have been obtained using the ’quadprog’ function available in MATLAB by using the ’interior-

point convex’ algorithm. The LS-SVR model only requires the solution of a system of equations 

to obtain its solution. In SVR, LDMR and LS-SVR models, we have used the RBF kernel of the 

form 𝑘(𝑥, 𝑦) =  𝑒ି௤‖௫ି௬‖, where q is the kernel parameter. 
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We need to tune and obtain the appropriate parameters of our machine learning model for a 

given dataset before using them for obtaining the prediction. We have used the PSO algorithm to 

tune the parameters of our used machine learning models. We have illustrated the flow chart of 

used PSO algorithm in our hybrid model in Figure 5. The LDMR model involves four 

parameters namely 𝜖, C, c and kernel parameter q. The 𝜖-SVR involves three parameters namely 

𝜖, C and kernel parameter q and LS-SVR models involve two parameters C and kernel parameter 

q only. The ranges of parameters 𝜖, C, c and q have been fixed with [0, 2], [0, 1024], [0, 1024], 

[0, 1024] respectively for all considered SVR models. For the evaluation of fitness function in 

our PSO algorithm, we need to obtain the testing error by solving the dual problem (5) and (15) 

for 𝜖-SVR and LDMR model respectively. For the LS-SVR model, we need to obtain the 

solution of system of equations (11). In LSTM, the number of hidden unit used were 100 units, 

optimizer used was ‘adam’ optimizer, maximum number of epochs taken was 1000, the gradient 

threshold was kept 0.01 and initial learning learning rate was 0.0001. 
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Chapter 5  

Experimental Results 

In this chapter, we have compared the performances of developed wave hybrid models along 

with different existing wave hybrid models on different ocean significant wave height datasets. 

Further we have briefly analyzed our obtained numerical results. 

5.1 Dataset Description 

We have collected the time-series hourly SWH data from the different ocean buoys available on 

the National Data Buoy Center (NDBC) (https://www.ndbc.noaa.gov/). At first, we have listed 

brief details of chosen ocean buoys datasets at Table 1. The location of the considered buoy 

stations has also been mapped at Figure 11. We have shown the VMD and WD decomposition of 

the time-series signal for dataset A (refer Table 1) at Figure 12 and Figure 13.  

 

Figure 11: Pin locations of the buoy stations 
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Dataset Station 

ID 

Station Name Co-

ordinates 

Time No. of 

samples  

Mean, 

STD 

Payload Type of 

Buoy 

A 410532 San Juan, PR 66°5'58" 

W, 

18°28'27" 

N  

Feb'21 - 

Mar'21 

571 1.5452, 

0.2812 

Scoop  2.3-

meter 

foam 

discus 

buoy 

B 42001 MID GULF - 

180 nm South 

of Southwest 

Pass, LA 

89°39'25" 

W, 

25°56'31" 

N  

Jan'15 - 

Apr'15 

380 1.1354, 

0.6125 

Scoop  3-meter 

discus 

buoy 

C 42002 WEST GULF - 

207 NM East 

of Brownsville, 

TX  

93°38'46" 

W, 

26°3'18" 

N  

Jan'15 - 

Apr'15 

379 1.1785, 

0.6754 

Scoop  3-meter 

foam 

buoy 

D 42035 GALVESTON,TX 

- 22 NM East 

of Galveston, 

TX 

94°24'45" 

W, 

29°13'54" 

N  

Jan'15 - 

Apr'15 

378 0.7570, 

0.4047 

Scoop  Moored 

Buoy 

Table 1: Description of datasets 
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Figure 12: WD decomposition plot of dataset A 

 

Figure 13: VMD decomposition plot of dataset A 
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5.2 Evaluation Criteria 

For evaluating the different considered wave hybrid models, we need to fix the evaluation 

criterion first. We have used the commonly used evaluation criterion for measuring the 

performance of wave hybrid models. With the notations, 𝑦௜ as actual SWH for 𝑖௧௛ test sample, 𝑦ො௜ 

as predicted SWH for 𝑖௧௛ test sample, 𝑦ത௜ as mean of actual SWH and n as total number of testing 

samples, we briefly describe our evaluation criteria as follows: 

 Root Mean Square of Errors (RMSE):  

ඩ
1

𝑛
෍(𝑦௜ − 𝑦ො௜)ଶ

௡

௜ୀଵ

 

 Mean of Absolute Deviations (MAD): 

1

𝑛
෍|𝑦௜ − 𝑦ො௜|

௡

௜ୀଵ

 

 Mean Absolute Percentage Error (MAPE): 

1

𝑛
෍

|𝑦௜ − 𝑦ො௜|

𝑦௜

௡

௜ୀଵ

× 100 

5.3 Results and Discussion 

After fixing the evaluation criteria, we present our numerical results from the extensive 

experiments. We have listed the performance of proposed PSO-LDMR, PSO-VMD-LDMR, 

PSO-VMD-LS-SVR, PSO-VMD-SVR, PSO-VMD-LSTM, PSO-EMD-LDMR and PSO-WD-

LDMR models along with PSO-WD-SVR, PSO-WD-LS-SVR, PSO-WD-LSTM, PSO-EMD-

SVR, PSO-EMD-LS-SVR, PSO-EMD-LSTM, PSO-SVR, PSO-LS-SVR and PSO-LSTM 

models on our selected SWH datasets using RMSE, MAD and MAPE at Table 2 and Table 3.  
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Dataset Method RMSE MAD MAPE Dataset Method RMSE MAD MAPE 

4105322021 

A 

PSO-LDMR 0.1037 0.0866 5.11 

42001h2015 

B 

PSO-LDMR 0.2965 0.23 17.49 

PSO-SVR 0.112 0.0888 5.15 PSO-SVR 0.3195 0.2379 17.41 

PSO-LS-SVR 0.1039 0.0876 5.18 PSO-LS-SVR 0.3305 0.2554 19.48 

LSTM 0.224 0.1832 10.41 LSTM 0.7271 0.627 47.22 

WD-PSO-LDMR 0.0381 0.0307 1.91 WD-PSO-LDMR 0.1226 0.0908 7.17 

WD-PSO-SVR 0.6061 0.5135 4.78 WD-PSO-SVR 0.1168 0.0911 7.22 

WD-PSO-LS-SVR 0.049 0.0391 2.43 WD-PSO-LS-SVR 0.1873 0.1443 12.01 

WD-PSO-LSTM 0.1219 0.1032 6.26 WD-LSTM 0.1802 0.2047 25.24 

EMD-PSO-LDMR 0.1896 0.1669 10.56 EMD-PSO-LDMR 0.3189 0.2614 19.72 

EMD-PSO-SVR 0.177 0.1559 9.81 EMD-PSO-SVR 0.3916 0.3048 21.41 

EMD-PSO-LS-SVR 0.1768 0.1556 9.69 EMD-PSO-LS-SVR 0.4153 0.3407 25.10 

EMD-PSO-LSTM 0.357 0.3039 17.05 EMD-PSO-LSTM 0.2342 0.3331 45.92 

VMD-PSO-LDMR 0.0344 0.0283 2.52 VMD-PSO-LDMR 0.0661 0.0538 4.23 

VMD-PSO-SVR 0.0349 0.0285 1.72 VMD-PSO-SVR 0.2238 0.1702 13.51 

VMD-PSO-LS-SVR 0.042 0.0348 2.08 VMD-PSO-LS-SVR 0.0616 0.0584 4.57 

VMD-LSTM 0.1491 0.132 8.12 VMD-LSTM 0.2022 0.1603 13.30 

Table 2: Numerical Results of datasets A and B 
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Dataset Method RMSE MAD MAPE Dataset Method RMSE MAD MAPE 

42002h2015 

C 

PSO-LDMR 0.2812 0.2233 20.95 

42035h2015 

D 

PSO-LDMR 0.241 0.0876 5.18 

PSO-SVR 1.0469 0.8815 70.74 PSO-SVR 0.2475 0.1919 26.94 

PSO-LS-SVR 0.3055 0.2323 21.45 PSO-LS-SVR 0.2502 0.1941 29.25 

LSTM 0.6587 0.4807 39.44 LSTM 0.5597 0.4031 47.63 

WD-PSO-LDMR 0.1137 0.081 7.24 WD-PSO-LDMR 0.1 0.0671 9.28 

WD-PSO-SVR 0.1072 0.0817 7.75 WD-PSO-SVR 0.0955 0.0642 9.43 

WD-PSO-LS-SVR 0.1344 0.1074 10.75 WD-PSO-LS-SVR 0.1859 0.1418 18.99 

WD-LSTM 0.32 0.2802 27.23 WD-LSTM 0.2832 0.2305 34.42 

EMD-PSO-LDMR 0.3123 0.2425 21.57 EMD-PSO-LLDMR 0.1983 0.1531 19.31 

EMD-PSO-SVR 0.2991 0.2273 20.28 EMD-PSO-SVR 0.2068 0.1528 21.12 

EMD-PSO-LS-SVR 0.3202 0.2531 22.46 EMD-PSO-LS-SVR 0.2542 0.1776 21.45 

EMD-LSTM 0.3589 0.285 27.04 EMD-LSTM 0.295 0.2385 31.73 

VMD-PSO-LDMR 0.0672 0.05 4.97 VMD-PSO-LDMR 0.0592 0.0443 6.77 

VMD-PSO-SVR 0.0667 0.0527 5.40 VMD-PSO-SVR 0.0613 0.0486 7.55 

VMD-PSO-LS-SVR 0.0711 0.0536 5.54 VMD-PSO-LS-SVR 0.083 0.0625 9.62 

VMD-LSTM 0.2378 0.2735 21.33 VMD-LSTM 0.306 0.2735 34.21 

Table 3: Numerical Results of datasets C and D 

Now, we shall briefly analyze the numerical results presented in the Table 2 and Table 3 and 

Figure 14 attempts to verify our claims. At first, we plot the accuracy obtained by PSO-LDMR, 
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PSO-SVR, PSO-LS-SVR and PSO-LSTM regression models when used with different 

decomposition methods in Figure 14 on our considered SWH datasets A, B, C and D. 

   

Figure 14: Comparison of the accuracies of the different machine learning models 
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obtains the best accuracy among all other used regression models for dataset A, C and D when 

no any decomposition technique is used. In case of EMD decomposition also, the PSO-LDMR 

model obtains the best accuracy for the dataset B and D.  

 

Figure 15: Comparison of the accuracies of the different decomposition methods   
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decomposition method perform better than the case where no decomposition is used except in 

case of dataset B and D (42001h2015 and 42035h2015) in which PSO-LS-SVR performs better 

than EMD-PSO-LS-SVR. Also, the VMD decomposition based hybrid models obtains the best 

performance among other decomposition based hybrid models in case of all regression models. 

We have shown the prediction and scatter plot obtained by different VMD and WD based hybrid 

models on test set of dataset A and D at Figure 16-18. We can observe that in case of both 

decomposition methods the PSO-LDMR based hybrid models obtain the best performance. 



36 Dhirubhai Ambani Institute Of Information and Communication Technology 
 

 

Figure 16: Prediction plots of dataset A using WD and VMD based hybrid models 
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Figure 17: Prediction plots of dataset D using WD and VMD based hybrid models 
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Figure 18: Scatter plots of dataset A using WD and VMD based hybrid models 
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Now, we shall attempt to quantitatively analyze our numerical results presented in the Table 2 

and Table 3 to obtain the clearer picture. At first, we have computed the average of the accuracy 

obtained by our different regression models when used with different decomposition methods in 

Table 4. In Figure 15, we have plotted the average accuracy obtained by different regression 

models in case of different used decomposition methods in two different ways. In Table 4, we 

have also computed the total average accuracy obtained by different regression models and 

decomposition methods. 

 No Decomp. WD EMD VMD AVG 

PSO-LDMR 82.82 ± 8.63 93.6 ± 3.15 82.21 ± 4.92 95.59 ± 2.11 88.56 

PSO-SVR 69.94 ± 28.55 92.7 ± 1.92 81.85 ± 5.58 92.96 ± 4.94 84.36 

PSO-LS-SVR 79.03 ± 11.57 88.95±6.79 80.33 ± 6.83 94.55 ± 3.14 85.71 

PSO-LSTM 63.83 ± 17.59 76.71 ± 12.01 71.34 ± 14.82 80.76 ± 11.36 73.16 

TOTAL AVG 73.90 88.00 78.93 90.96  

Table 4: Average accuracy obtained by different wave hybrid models 

We can observe that the LDMR model based hybrid models manages to obtain the best rank in 

average accuracy followed by LS-SVR model based hybrid models. The SVR and LSTM based 

wave hybrid models obtain the third and fourth rank respectively. On average, the LDMR model 

based hybrid models are 4.26% more accurate than SVR based hybrid models and 2.85% more 

accurate than LS-SVR based hybrid model. Also, we can find that the VMD decomposition 

based wave hybrid models obtains the best average prediction followed by WD and EMD based 

hybrid models. On average, the VMD based hybrid models obtain the 2.96% and 12.03% more 

accuracy than WD and EMD based hybrid models. Also, every decomposition based hybrid 
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models obtains a far better accuracy than hybrid models which do not make use of any 

decomposition technique. 

 No Decomp. WD EMD VMD Average 

PSO-LDMR 0.2306+0.0878 0.0936+0.0381 0.2548+0.0704 0.0567+0.0153 0.1589 

PSO-SVR 0.4315+0.4192 0.2314+0.25 0.2686+0.0971 0.0967+0.0859 0.2570 

PSO-LS-SVR 0.2475+0.1015 0.1392+0.0649 0.2916+0.1012 0.0644+0.0173 0.1857 

PSO-LSTM 0.5424+0.2231 0.2263+0.0914 0.3113+0.0593 0.2238+0.0658 0.3259 

Average 0.3630 0.1726 0.2816 0.1104  

Table 5: Average RMSE obtained by different wave hybrid models 

We have also computed the average RMSE obtained by considered regression models when used 

with different decomposition methods in Table 5. We can conclude that the LDMR based hybrid 

models obtain lower RMSE than SVR, LS-SVR and LSTM based hybrid models. Also, the 

VMD decomposition method based hybrid models obtain lower RMSE than EMD, WD and no 

decomposition based hybrid models. 

5.4 ANOVA Analysis 

ANOVA, is the abbreviation of Analysis Of Variance, is a statistical method used to determine if 

the means of two or more groups differ from one another substantially. ANOVA compares the 

means of various samples to examine the influence of one or more factors. The formula for 

ANOVA analysis is as follows: 

𝐹 =  
𝑀𝑆𝑇

𝑀𝑆𝐸
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where, F is ANOVA coefficient, MST is mean of squares due to treatment and MSE is mean of 

squares due to error. 

Using the ANOVA test, you may compare more than two groups at once to see whether there is 

a correlation between them. The F statistic, or F-ratio, which is the outcome of the ANOVA 

formula enables the examination of several sets of data to ascertain the variability within and 

across samples. 

The outcome of the ANOVA's F-ratio statistic will be near to 1 if there is no discernible 

difference between the tested groups, which is known as the null hypothesis. The F-distribution 

is the distribution of all potential F statistic values. The numerator degrees of freedom and the 

denominator degrees of freedom are two characteristic numbers that describe this collection of 

distribution functions. 

Now, we shall be using the two way ANOVA analysis to obtain the answer of the following 

questions. 

 Do performances obtained by different regression models in Table 2 and Table 3 differ 

significantly? 

 Do performances obtained by different decomposition methods in Table 2 and Table 3 

differ significantly? 

 Is there any significant interaction between the used decomposition methods and 

regression models in Table 2 and Table 3? 

For this, we shall be testing the following hypothesis: 

a) H1 : All the regression models have equal mean accuracy 
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b) H2: All the decomposition methods have equal mean accuracy. 

c) H3: These factors are independent i,e. the interaction effects do not exist. 

Now, we perform the two way ANOVA analysis in Microsoft Excel with 5% of level of 

significance using the numerical results of Table 6 and listed the final output table in Table 

V. It lists the Sum of Squares of variation (SS), Degree of Freedom (DF), Mean Square of 

variation (MS), F statistics, p statistics and F critical values also. We can observe at last 

section of Table V that the obtained F-statistics are greater than F-critical value for the first two 

rows. Also, the obtained p-values are lesser than our chosen level of significance 0.05. So,  

we must reject the null hypothesis H1 and H2. It means that the obtained accuracy by different 

used regression models and decomposition methods are significantly different. For the row 

’interaction’ listed at the last section of Table 6, the obtained F statistics is lower than the critical 

value. Also, the obtained p-value is greater than our chosen level of significance. So, we cannot 

reject the null hypothesis H3. 
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Table 6: Two way ANOVA analysis for obtained numerical results 

 

From the presented two way ANOVA analysis, we can statistically infer that the use of different 

regression model in wave hybrid models significantly affect their performance. Also, the use of 

different decomposition method in wave hybrid model significantly affects their performance. 
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But, the effect of the used decomposition method and regression model on the performance of 

the resulting wave hybrid model is independent i,e. these two factors do not interact among 

themselves. Therefore, we cannot claim that a certain combination of regression model and 

decomposition method can obtain any special effect on the performance of wave hybrid model. 
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Chapter 6  

Conclusions and Future Work 

In this work, we have considered the different combinations of decomposition methods, 

regression models and metaheuristic algorithm to develop the different variants of wave 

hybrid models for hourly significant wave height prediction. We have compared the performance 

of developed sixteen different wave hybrid models namely PSO-LDMR, PSO-SVR, 

PSO- LS-SVR, LSTM, WD-PSO-LDMR, WD-PSO-SVR, WD-PSO-LS-SVR, WD-LSTM, 

EMD-PSO-LDMR, EMD-PSO-SVR, EMD-PSO-LS-SVR, EMD-LSTM, VMD-PSO-LDMR, 

VMD-PSO-SVR, VMD-PSO-LS-SVR and VMD-LSTM models using different evaluation 

criteria on real world ocean wave height datasets collected from four different 

ocean buoys. The VMD [6] method and LDMR [4] model have not been exploited in any wave 

hybrid models before this. After the brief analysis of the numerical results, we 

conclude that the VMD [6] method is a superior decomposition method over Wavelet 

Decomposition and EMD [5] method for hourly significant wave height forecasting. Also, the 

LDMR [4] based hybrid models have outperformed the ε-SVR, LS-SVR and LSTM based wave 

hybrid models. Further, we have also carried out the two-way ANOVA analysis for obtained 

numerical results. It statistically infers that the used decomposition method and regression model 

affect the performance of the wave hybrid models significantly but, their effects are independent. 

In this work, the wave hybrid models can forecast the ocean wave height of immediate next hour.  

We have planned to extend our developed wave hybrid models for long hour forecasts. Also the 

rate of convergence of the used metaheuristic method is quite low due to which the 

computational time complexity is considerably expensive. We would also like to develop or 
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explore the metaheuristic algorithms which has higher rate of convergence when used in our 

wave hybrid models in future. Further, we also feel the need of developing an appropriate 

machine learning model for wave height forecasting which can properly incorporate the prior 

information available. 
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