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Abstract

The thesis work introduces a new concept of predicting the first name from the fa-
cial image. Several studies show a relationship between first names and facial fea-
tures. The prediction problem here is treated as an image classification problem.
Here we have made a comparative analysis of various Ensemble learning tech-
niques and a Transfer learning method. Dataset Name100 consists of 100 popular
names of the U.S is used. The previous study was done on U.S. face-name dataset.
We have created an Indian face-name dataset. The Indian dataset right now con-
tains 5 Indian names. Thus we have used these two datasets for our experiments.
The dataset mentioned here has no additional labelling cost apart from the name
tags freely available on the internet. And we have also circulated a Google Form
to collect the Indian data samples shown in this thesis.

The prediction accuracy of this system is very low. Despite such a system’s low
accuracy, the prediction was correct at more excellent rates than random chances.
Though this system is imperfect for use in the real world today, it still has its ap-
plications in security and biometrics. And it also has the application of Face Name
association. We have observed that misclassification happens amongst names of
the same gender. While in the case of gender-neutral names, it is highly non-
deterministic. Thus, a lot of research work needs to be done in this area.

Keywords : Image Classification, Facial Image, First Name.
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CHAPTER 1

Introduction

What’s in a name? That which we call a rose
By any other name would smell as sweet.

- Shakespeare [17].

In this chapter, we briefly discuss the thesis objective and the motivation. We
note and describe the potential challenges for this thesis work. We describes the
potential Application of the First Name prediction. We also mention our contri-
butions. And after that, we also say the organization of this thesis.

1.1 Thesis Objectives

This thesis work aims at predicting the first name of a person from the facial im-
age. The problem task here is assumed to be an image classification problem. The
Classification problem means identifying a category from the available classes.
The system predicts the class label which accommodates the new training sam-
ple. This task is supervised learning as the class labels are predefined. Thus, the
final output label will also be from the same set of these class names used in the
dataset.

1.2 Challenges

The patterns found in previous studies had the underlying dataset of the U.S.
population. One significant challenges for this problem is the availability of the
data. We had a keen desire to carry out similar research on Indian faces.

We as a researcher need cultural knowledge of the people. We are now talking
about specific instances of Indian First names. In some cultures or localities, par-
ticular names are treated as females in one locality, while the same name can be
treated as male names too in another locality. For instance, Sonal can be treated
majorly as female, but the name Sonal is also used as a male name in some locali-
ties. Similarly, Muskan is a female name majorly, but there are few males with the
first name Muskan. So, we need to be careful and take only those photographs
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which are of the dominant gender for that particular first name. People may be
biased and fill out their full names even when asked to fill in only the first name.
So in some cases, we may have to manually filter out these data entries during the
data collecting phase. So, we at least need to understand the name breakdown in
these particular cases.

One of the major challenges here is name selection. The names for which we
would want to consider this research. For the Name100 [3], they had taken top 100
names from SSA [19]. In the scenario of Indian names, there is no such availability
of these top 100 names or something like that. To the best of our knowledge, there
is no provision for an Indian first name list too.

After selecting the first name, the next and the most significant challenge would
be to search for photographs of individuals with these first names. So here, we
also need to take the consent of the responder to use the data for our educational
use. Some people may not want to share their images for academic research here.
Here certain people may be unaware of machine learning / deep learning. So
these people are not confident in giving their data for this kind of studies.

So to overcome the problem of name selection, we tried selecting five common
names from our networks through brainstorming. To collect the photographs for
this dataset, we created a Google Form. To give the respondents confidence and
assurance, we had a disclaimer about the data used for purely academic purposes.
We also asked for the responder’s consent to make the collected data public if
needed.

This form was circulated through our networks through various means and
platforms like LinkedIn, Twitter, Gmail, Whatsapp etc. Even mouth to mouth
interactions was there among the people in the institute. While collecting the
dataset, many people were not comfortable sharing their photographs. We have
selected five classes. And now, searching for this set of people with these specific
names is a very challenging task.

1.3 Applications

Every individual has a faceprint [6]. It’s an electronically stored portrayal of a
person’s face, which is as unique as a fingerprint. So it may have applications for
security purposes and biometrics.

One of the potential applications of this work is name association. Suppose
we have a group photo. So we can predict the names of the persons present in
the image using our model. And we can associate the predicted first name to the
face in the group photo. This application of Name association comes with given
constraints. The trained model is a supervised learning model and a classifier. So,
as a result, the classifier only outputs the first names from the training set.

Name association is already a part of the present-day social media platforms
like LinkedIn, Instagram, Facebook etc. And it is required to associate/tag the
social media handle of the persons present in the group photo. As a privacy set-
ting provided to social media users, some users may have turned off the tagging
feature, so others can not tag these individuals in their social media posts.

One of the ways of Name association can be using Face Matching. But then, a
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critical difference between these two systems lies in the methodologies. The face
matching uses the previously available photographs. In contrast, our system uses
Name prediction. Our system is assumed to be an Image Classification problem,
thus, outputs are restrained to the training classes. And in the face matching
system, there have to be previous photographs of the person and the name, and
then only it can associate the name.

1.4 Thesis Motivation

Suppose a person meets a new face. They have several questions in their mind.

• Who are they? (i.e., First Name).

• How old are they? (i.e., Age).

• Where are they based? (i.e., Ethnicity in a more general way).

• What is their gender?

• What is their occupation?

• Even one can think of the emotions of the other person.

Also, consider a similar scenario for the image of a new face. So consider that
above-mentioned are the features we can extract from a facial image.

The human brain can predict some of these attributes through a glance. It can
predict gender in almost all cases. It can also predict the age group. Predicting
the exact age can be a bit difficult, though. Through some other facial features, it
can also predict certain races. Not from the face, but at times may be through the
clothing, some occupations can also be predicted. It can also predict happiness or
sadness, or other emotions on a face. So, anticipating the first name can be a new
and nearly impossible task from the aforementioned features.

Parents expecting a baby spend a significant amount of time deciding on the
child’s name. Most of the time, it may be assumed that the choice of the name is
nearly random from a vast pool of names [3]. Does there exist any relationship
between the person’s first name and the facial image? Mostly if people are posed
with the question, they would deny it. But several studies indicate the existence
of a relationship between first name and face.

The focus here is on first names and not last name because the former illus-
trates more freedom and variety when selecting. At the same time, the latter
tends to be determined more by lineage or, in some cases, based on occupation.
Rather than arbitrariness, clear patterns have been observed between the owner
and the name. Even though very few first names are gender-neutral like Jamie,
first names are generally gender-specific. Even the education of the parents and
their race does influence the choices of the first names. Names do carry the in-
formation about the age because trends in naming keep on varying throughout
decades (Krammer et al., 2015, p. 2) [12].
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1.5 Contributions

The thesis contributions includes the following :

• In this thesis work, we have created an Indian face-name dataset. We have
used a Google Form to collect the dataset. This Google Form was circulated
through various social media platforms available.

• We have made a comparative analysis of the Transfer learning and Ensemble
learning techniques. We derived the analysis results based on the Confusion
Matrices and prediction accuracy. Here we have used two different datasets
as well.

• We also developed a Flask demo to showcase Name Association based on
the Name prediction method instead of the traditional Face Matching.

1.6 Thesis Organization

This thesis is split into following 5 chapters:
The second chapter is Related work. It includes the existing studies done in

this area. The third chapter is Experimental setup and Implementation details.
It showcases the experiments conducted throughout the thesis. It also provides
information regarding the datasets used for this thesis work. The fourth chapter
is Results and Analysis. It summarizes the results and analysis based on the com-
parisons undertaken in the experiments. It also showcases the visualization of the
results. The fifth chapter is Conclusion and Future Work. It concludes this thesis,
along with the potential future works.
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CHAPTER 2
Related Work

Shouldn’t you be asking for my name first?

- Kip Fulbeck [8].

According to [11] (as cited in [3]) the achievements of face detection and recog-
nition in computer vision have been found dating back to approximately four
decades.

This work poses as well as thus starts to solve a unique topic in facial process-
ing. Is it possible to infer a person’s name from through a single facial image?
While that too, without additional sample images of such face. Expecting a high
level of accuracy from this work is impractical. However, even the identical twins
get their unique names.

This flawed system could have a variety of usages, for instance, in terms of
security and biometrics. In the security aspect, finding fake IDs from databases
can be solved using this system. And for biometrics, we can infer the ethnicity,
sex, age by taking a guess of probable names from a face [3].

A variety of aspects influences the name selection. The gender of the indi-
vidual can control the name selection. Even the age, race, social culture, eco-
nomic culture, the popularity of names, names of near and dear also influence
name selection. Thus, even within an ethnicity, the occurrence of particular first
names varies. There is a significant age difference in easily distinguishable name
pairs. The name pairs which exhibit the same popularity trends seem indistin-
guishable [3].

The visual characteristics that distinguish any given set of people differ. First
names and numerous face aspects contain a relationship. According to [16] (as
cited in [3]), aspects such as skin colour, male-ness, facial feature size, age, and
potentially other unnamed traits correlate with first names. Now, for instance, the
genders of "David" and "Mary" vary. At the same time, the names "David" and
"Ethan" are distinguished primarily in age because "Ethan" is a newer name [3].

Danny has a boyish appearance and a permanent smile in someone’s imagina-
tion. Zoe has big eyes, wild hair, as well as a mildly amused demeanour. Accord-
ing to studies, the concept that persons with the same name have the same typical
"look" can be genuine.

The researchers offered an unfamiliar face that had five choices of names. And
the individuals selected the correct name for around thirty-five per cent of the
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cases. In contrast, the probability is only twenty per cent [21]. The researchers
never claimed that this can be carried out by anyone anywhere without having
any cultural familiarity.

Individuals having the same name are prone to having almost identical ex-
pressions around the mouth and the eye area [21] of the face. These areas seem
easily adjustable, as per a computer analysis.

The classifier was trained with the facial image obtained over the internet.
The output values are significantly higher than the probability. Thus, the system
accurately predicts the actual first name of research subjects. There was no extra
user intervention in training. First names are not distributed arbitrarily among
society’s members [3].

2.0.1 Multi-Feature SVM

Figure 2.1 is the summary of the system. According to [5] (as cited in [3]), the test
faces are first scaled with observed eye locations and then resampled to 150 x 120
pixels. After sampled on a dense grid with an interval of two-pixel, they extract
SIFT descriptors [14] (as cited in [3]). After this, every 128 dimension SIFT descrip-
tor is encoded to a 1024-dimensional code using the Locality-constrained Linear
Coding (LLC) method, which is according to [20] (as cited in [3]). These encoded
LLC codes are combined by applying max-pooling above a spatial pyramid [13]
(as cited in [3]), resulting in a 1024-dimension vector at each of the twenty-one
points of the pyramid grid. For each face, this results in a feature vector with 21
x 1024 = 21504 dimensions [3]. Thus, these twenty-one feature vectors could be
thought of as originating from 21 complementing feature channels, and the au-
thors suggest the Multi-Feature SVM (MFSVM) [3]. The algorithm is based on the
AdaBoost [9] framework, where the classifiers are SVMs that work on multiple
feature channels.

Figure 2.1: A summary of the system. The confidence scores produced by the
pairwise name classifiers are referred to as the pairwise name attribute vector
©[2013] IEEE. Reprinted, with permission, from H. Chen, A. Gallagher, and B.
Girod. What’s in a name? First names as facial attributes. Proceedings / CVPR,
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion., pages 3366–3373, 06 2013.
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CHAPTER 3
Experimental setup and Implementation de-
tails

I’m gonna tell a real story. I’m gonna start with my name.

- Kendrick Lamar [15].

This chapter describes the algorithms used during the thesis work.

3.1 Hardware Configurations

Our training tasks are mostly done on Google Colaboratory. For training Vision
Transformer, I have used GPU resources allocated by the institute. The resource’s
system configuration is 64 GB of RAM and Titan XP GPU with 12 GB of GPU
memory. This system OS is Ubuntu 20.04.3 LTS. The following section discusses
dataset details.

3.2 Dataset details

This section describes about the datasets used during the thesis work. We created
the Indian dataset and it was used in our experiments.

3.2.1 Name100

Name100 is the first dataset with Name and Face data. To determine the con-
nection between first names and facial appearance, they generate a large dataset
by selecting photographs and name tags from Flickr. The dataset comprises 800
faces, for each of the 100 most famous first names, based on information from the
U.S. Social Security Administration (SSA) [19] (as cited in [3]). After completion,
the dataset contains 48 men’s names, 48 women’s names, and 4 gender-neutral
names. The names listed represent 20.35 per cent of all the Americans birthed
from 1940 to 2010 [3].

When there are numerous people in a photo, name ambiguity occurs. Thus,
images that contained multiple faces were eliminated, and it was verified whether
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the image tag included exactly one first name tag. Secondly, they removed the
images that had celebrity names. The reason being this can result in a bias in their
sampling. Assume that a search for "Brad" could produce a lot of photographs of
the film actor "Brad Pitt" distorting the facial feature pattern for the name "Brad"
[3].

There was no additional manual labelling required for creating this dataset
apart from the name tags available from the internet.

Sample image from the Name100 dataset

Figure 3.1 shows Alejandra’s , Heather’s and Ethan’s face examples respectively.
Alejandra’s hair and skin are usually darker unlike Heather’s. The name Ethan,
which gained popularity in recent years, appears to be much young.

Figure 3.1: Sample images from Name100 images along with their average faces
computed from 280 aligned faces ©[2013] IEEE. Reprinted, with permission, from
H. Chen, A. Gallagher, and B. Girod. What’s in a name? First names as facial at-
tributes. Proceedings / CVPR, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition., pages 3366–3373, 06 2013.
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3.2.2 Indian Dataset

We have created a dataset on Indian faces. We have scrapped the data from the
internet. The dataset comprises five classes with 180 images of each class. Thus in
total, this dataset has 900 images. The preprocessing was done using OpenCV.

Here we have considered five first names. We have divided them into two
male names, two female names and one gender-neutral name. Here the first name
Krishna is gender-neutral. For the male names, we have considered Rahul and
Pranav. For the female names, we have taken Sonal and Priya.

Here, we also tried collecting data from Google Form. However, there was
a lesser number of responses than we expected. The samples shown below are
collected from Google Form, and we do have the consent of the owner of the
photograph to use them.

Sample images from the Indian dataset

Here figure 3.2 shows Pranav’s face examples. Similarly, figure 3.3, 3.4 and 3.5
show face examples of Krishna, Rahul and Sonal, respectively. These images are
raw data samples that were collected directly from users. We thank them for their
consent to use their pictures.

Figure 3.2: Raw Samples of Pranav’s facial collected from Google Form.

Figure 3.3: Raw Samples of Krishna’s facial collected from Google Form.
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Figure 3.4: Raw Samples of Rahul’s facial collected from Google Form.

Figure 3.5: Raw Samples of Sonal’s facial collected from Google Form.
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3.3 Image classification techniques used

We have implemented various algorithms for the comparative analysis. We have
implemented Vision Transformer [7], ensemble learning like Bagging [1] , and
boosting algorithms like Adaboost [9] and XGBoost [4]. For extracting features,
we have used Spatial pyramid pooling [10] and Deep Learning features. For Deep
learning, it uses the Relu activation function.

In the domain of image classification, Vision transformer (ViT) [7] is state-of-
the-art for ImageNet with a given particular condition. Thus we have chosen this
model. Adaboost, a boosting technique, was used in [3]. And one knows boosting
is a type of Ensemble learning technique. Therefore, we have attempted to follow
in their footsteps and used various Ensemble learning techniques.

3.3.1 Spatial Pyramid Pooling for feature extraction

Figure 3.6: Spatial Pyramid Pooling Architecture ©[2015] IEEE. Reprinted, with
permission, from K. He, X. Zhang, S. Ren and J. Sun, "Spatial Pyramid Pooling in
Deep Convolutional Networks for Visual Recognition," in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904-1916, 1 Sept.
2015.

Figure 3.6 shows the architecture of Spatial pyramid pooling. In Spatial pyra-
mid pooling [10] algorithm, 21 features are extracted in 3-levels. In Level-0, the
sample remains undivided. In Level-1, the sample is split into four regions, and
four features are extracted here. In Level-2 sample is split into sixteen regions,
and sixteen features are extracted here. Thus these 21 extracted features are con-
catenated are used in classification.

3.3.2 Vision Transformer

In the domain of image classification, Vision transformer (ViT) [7] is state of the art
for ImageNet with a given particular condition. The particular condition here is

11



that ViT has an insatiable need to be pretrained on a large dataset to achieve higher
results. And we applied this model and were able to achieve higher accuracy for a
certain set of classes. This model has various variations. We have used ViT_B_16
with the image resolution of 224 x 224, and it was trained on the Imagenet21k
dataset. Here B stands for Base. 16 are the number of patches. Figure 3.7 shows
the architecture of the Vision transformer.

Figure 3.7: ViT Architecture [7]. Reprinted, with permission, from A. Dosovitskiy,
L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M.
Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929,
2020

3.3.3 Ensemble Learning

The ensemble learning technique combines various weak learners to achieve higher
prediction accuracy. These weak learners can be any classifier algorithm. Some
of the commonly used learners are Random forests. A few of the commonly used
Ensemble learning techniques are bagging and boosting.

Bagging

In the bagging technique [1], all the classifiers learn independently and parallelly.
The results of all these classifiers are combined to determine the final output.

Boosting

In boosting technique, classifiers are used iteratively. The weights for the in-
correctly classified samples get elevated after each iteration. Similarly, the algo-
rithm will drop the weights for the correctly classified samples after each iteration.
These weight updations are done to provide more importance to the misclassified
samples. And thus, it learns from its previous mistakes. XGBoost [4] and Ad-
aBoost [9] are boosting algorithms.
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CHAPTER 4
Results and Analysis

A person’s first name is to him or her the sweetest and the most important sound
in any language.

-Dale Carnegie [2].

This chapter summarizes and showcases the results. There is a comparison ta-
ble that shows the classification accuracies of various models. There are confusion
matrices for the best results. And the observations made from the experiments.

4.1 Results

Table 4.1: Result table of classification accuracy (%). The models with higher ac-
curacies than the baseline are represented in bold. The accuracies are rounded off
to 2 decimal places.

Sr.
Model

Name100 Name100
Indian

No. Subset 1 Subset 2

1 ViT [7] 35 44.2 41.67

2 Bagging SPP 35.63 37.38 42.2

3 Adaboost SPP 34.63 37.38 41.6

4 XGBoost SPP 32.75 37.25 44.44

5 Adaboost DL 27.5 31.62 39.44

6 Bagging DL 29.67 31.62 39.44

In the table 4.1 sufix SPP stands for Spatial pyramid pooling. These algorithms
have used SPP for feature extraction. While the suffix DL stands for Deep learning
feature.
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Here, we have treated MFSVM [3] as the baseline. MFSVM uses boosting tech-
nique AdaBoost [9] with the classifier SVM. The baseline for five classes is 39.4%.
The random chances for five classes would be one-fifth, i.e. 20%. With ViT model,
we have achieved higher accuracy than this baseline for certain subsets of the
dataset. While for 10 classes, the baseline of MFSVM is 23.5%. At the same time,
the random chances for 10 classes are one-tenth, i.e., 10%. And with ViT for cer-
tain subsets of the dataset, it achieves an accuracy of 26%.

Name100 subset 1 stands for classes Chris, Jamie, Maggie, Stephen, and Tina.
So the distribution of this subset includes 2 male names, 2 female names and 1
gender-neutral name. Name100 subset 2 stands for classes Abby, Amanda, An-
gela, Aaron, and Andrea. So the distribution of this subset includes 1 male name,
4 female names.

4.2 Confusion Matrices

We have achieved an almost higher accuracy score than the random chances with
our experiments. Moreover, in some cases, the accuracy score even exceeded the
baseline. We have also added the confusion matrix for the models with the highest
accuracy for that particular dataset.

Moreover, from the results of other experiments, a pattern was followed. The
first name is mainly misclassified among the first names of same-gender itself. For
instance, male names are majorly misclassified into male names only. However,
there are cases where the classification accuracy is lower than the random chances
for some classes and models. But these types of instances are scarce.

Table 4.2: Confusion Matrix for Indian data. The model used is XGBoost [4]. The
overall accuracy is 44.44%. The values are rounded off to 2 decimal places.

Krishna Pranav Priya Rahul Sonal

Krishna 30.56 5.56 22.22 16.67 25.00

Pranav 8.33 47.22 2.78 41.67 0.00

Priya 38.89 2.78 36.11 0.00 22.22

Rahul 13.89 22.22 0.00 63.89 0.00

Sonal 16.67 0.00 36.11 2.78 44.44

From table 4.2, one can see that Pranav is majorly misclassified as Rahul. More-
over, Rahul is highly misclassified as Pranav. A male first name is mostly misclas-
sified as other male names instead of the female names. Similarly, we can see the
results for Priya and Sonal too. The female names are highly misclassified as other
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female names rathen than the male names. However, for the gender-neutral name
Krishna, it is nondeterministic. Here, the overall accuracy is majorly higher than
the random chances with some exceptions.

Table 4.3 uses Name100 subset 2 dataset. The Name100 subset 2 stands for
classes Abby, Amanda, Angela, Aaron, and Andrea. So the distribution of this
subset includes 1 male name and 4 female names. Here Aaron is the male name
while the other names are female names.

Table 4.3: Confusion Matrix for Name100 Subset2. The model used is ViT [7]. The
overall accuracy is 44.2%. The values are rounded off to 2 decimal places.

Abby Amanda Angela Aaron Andrea

Abby 55.00 23.00 10.00 8.00 4.00

Amanda 23.00 37.00 19.00 5.00 15.00

Angela 23.00 30.00 29.00 6.00 12.00

Aaron 7.00 2.00 3.00 81.00 7.00

Andrea 24.00 20.00 11.00 29.00 15.00

From table 4.3 one can see that Andrea is highly misclassified as Aaron. Name-
100 is the U.S. face-name dataset, and Andrea in the U.S. is used as a female name.
But the name Andrea has Greek origin, and it means "strong and manly". It is used
as a gender-neutral name in its native Italy and other European nations. As the
dataset was collected from the Flickr platform, there are rare instances of male
faces in the female name Andrea. The name Andrea was also highly misclassified
as Aaron in many other models.

Table 4.4 uses 10 classes from Name100 dataset. These classes are Amanda,
Brian, Aaron, Jamie, Brandon, Abby, Andrea, Anthony, Dylan, and Angela. So the
distribution of this subset includes 5 male names, 4 female names and 1 gender-
neutral name. Male names here are Brian, Aaron, Brandon, Anthony and Dylan.
Female names here are Amanda, Abby, Andrea and Angela. The gender-neutral
name here is Jamie.

From table 4.4 one can observe that seven classes here have classification accu-
racy higher than the random chance of one-tenth, i.e., ten per cent. While for the
remaining three classes, one can observe lower classification accuracy. And one
of these three classes is a gender-neutral name, Jamie. As it was already observed
from tables 4.2 and 4.3, that gender-neutral names perform poorly.
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Table 4.4: Confusion Matrix for Name100 subset containing 10 classes. The model
used is ViT [7]. The overall accuracy is 26%. The values are rounded off to 2
decimal places.
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4.3 Visualized results

First Name Raw Input image Cropped Face Name Association

Rahul

Sonal

Pranav

Krishna

Figure 4.1: Figure shows visualization of our approach on Indian dataset. First
Names in Blue are correctly classified, while names in Red are misclassified.
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First Name Raw Input image Cropped Face Name Association

Pranav

Rahul

Sonal

Pranav

Figure 4.2: Figure shows visualization of our approach on Indian dataset. First
Names in Blue are correctly classified, while names in Red are misclassified.
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First Name Raw Input image Cropped Face Name Association

Rahul

Pranav

Rahul

Rahul

Figure 4.3: Figure shows visualization of our approach on Indian dataset. First
Names in Blue are correctly classified, while names in Red are misclassified.
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First Name Raw Input image Cropped Face Name Association

Rahul

Pranav

Krishna

Krishna

Figure 4.4: Figure shows visualization of our approach on Indian dataset. First
Names in Blue are correctly classified, while names in Red are misclassified.
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CHAPTER 5
Conclusions and Future Work

Every name is real. That’s the nature of Names.

-Jerry Spinelli [18].

In this chapter, we briefly discuss the conclusion drawn from the thesis work.
And also describe the potential future work for this thesis.

5.1 Conclusion

In the discipline of computer vision, name prediction can be a tough and inspiring
problem to solve. This work did not receive that much consideration and had very
restricted efforts in terms of research. The name prediction system is not ideal
for functioning well in all real-world situations. This thesis work summarises
the results of the experiments that were conducted. We have also constructed
the dataset for Indian faces. And with our experiments, we concluded that the
patterns found in the Names100 dataset can also nearly be seen in Indian faces.
Thus the current works have high prediction accuracy than random chance. The
classes with gender-neutral names would require certain amount of future efforts
to increase the prediction accuracy. But still plenty of work needs to be carried
out to achieve higher efficiency and accuracy goals.

5.2 Future Works

As part of future work, we would want to enhance the size of the custom In-
dian dataset. We want to increase the number of classes, i.e. various unique first
names. Moreover, we would like to raise the count of sample images per class.
For the name selection procedure, we can do brainstorming, surveys, etc. We
may approach different social media giants, educational institutes, or research in-
stitutes for the required data. We also would like to see and verify if this pattern
exists for datasets of other nationalities. We would also like to improve the overall
classification accuracy. And we would specifically like to increase the prediction
accuracy for gender-neutral classes.
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CHAPTER A
Source Code

All the source code in this section are in Python language.

A.1 Preprocessing image using OpenCV

#######################################################################
’’’

I am Kashyap Nirmal, M.Tech (ICT) student at DA-IICT. I am working
under the Thesis supervision of Prof. Manish Gupta, DA-IICT.
This code file is a piece of work for my M.Tech thesis.

The source will also be available at :
https://github.com/Kashyap-Nirmal/Face_Name_Prediction

=> We have used following libraries in this code file:
- OpenCV. Available at :https://opencv.org/
- Python os. Available at:
https://docs.python.org/3/library/os.html
- Python sys. Available at:
https://docs.python.org/3/library/sys.html

=> CODE and DATASET Directory structure details:

- This code crops and resizes a face.
- This code was executed on Google Colaboratory.
- Create the OUTPUT_PATH Directory.
- The dataset directory structure should be classwise directories.

/Krishna/Krishna_1.jpg
/Rahul/Rahul_1.jpg
/Sonal/Sonal_1.jpg
/Priya/Priya_1.jpg

’’’
#######################################################################
import cv2
import sys
import os

#INSERT THE DATASET PATH HERE.
root_path = "DATASET_PATH"
save_path = "OUTPUT_PATH"
imagePath = root_path
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for image_class in os.listdir(root_path):

count = 0
save_path_file = os.path.join(save_path ,image_class)
try:
os.mkdir(save_path_file)

except OSError as error:
print(error)

for img in os.listdir(os.path.join(root_path ,image_class)):

path_ = os.path.join(root_path ,image_class ,img)
image = cv2.imread(path_)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faceCascade = cv2.CascadeClassifier(
cv2.data.haarcascades +
"haarcascade_frontalface_default.xml"

)
faceDetected = faceCascade.detectMultiScale(

gray,
scaleFactor = 1.3,
minNeighbors = 3,
minSize = (30, 30)

)

for (x, y, w, h) in faceDetected:
save_face = image[y:y + h, x:x + w]
save_face = cv2.resize(save_face , (64, 64))
filename = image_class + ’_’ + str(count) + ’.jpg’
cv2.imwrite(os.path.join(save_path_file ,filename), save_face)

count+=1
#######################################################################

A.2 Vision Transformer

#######################################################################
’’’

I am Kashyap Nirmal, M.Tech (ICT) student at DA-IICT. I am working
under the Thesis supervision of Prof. Manish Gupta, DA-IICT.
This code file is a piece of work for my M.Tech thesis.

The source will also be available at :
https://github.com/Kashyap-Nirmal/Face_Name_Prediction

=> We have used following libraries in this code file:
- Python time. Available at:
https://docs.python.org/3/library/time.html
- Python os. Available at:
https://docs.python.org/3/library/os.html
- datasets: Available at:
https://huggingface.co/docs/datasets/index
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- numpy: Available at: https://numpy.org/
- matplotlib: Available at: https://matplotlib.org/
- seaborn: Available at: https://seaborn.pydata.org/
- tensorflow: Available at: https://www.tensorflow.org/
- keras: Available at: https://keras.io/
- sklearn: Available at: https://scikit-learn.org/stable/
- Python datetime. Available at:
https://docs.python.org/3/library/datetime.html
- pycm : Available at: https://www.pycm.io/
- transformer: Available at:
https://huggingface.co/docs/transformers/index

’’’
#######################################################################
# This code block contains all the necessary imports.
import time
import os
import datasets
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import TensorBoard as \
TensorboardCallback , EarlyStopping

from sklearn import metrics
from sklearn.metrics import confusion_matrix , classification_report ,\

accuracy_score ,
ConfusionMatrixDisplay

from datetime import datetime
from pycm import *

from transformers import ViTFeatureExtractor , ViTForImageClassification
from transformers import DefaultDataCollator
from transformers import TFViTForImageClassification , create_optimizer

#######################################################################

’’’
- Create a directory "0.Saved_Outputs"

- This code block contains all the variables. Please set them as per
as your convenience

- The dataset directory structure should be classwise directories.

/Krishna/Krishna_1.jpg
/Rahul/Rahul_1.jpg
/Sonal/Sonal_1.jpg
/Priya/Priya_1.jpg

’’’
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model_id = "google/vit-base-patch16-224-in21k"

num_classes = 100
num_img_per_class = 800

#test size will be x% of train dataset
test_size = .20

num_train_epochs = 14
train_batch_size = 32
eval_batch_size = 32
learning_rate = 3e-5
weight_decay_rate=0.01
num_warmup_steps=0

class_data_labels = []
len_data = 0

# current dateTime
now = datetime.now()

# convert to string
date_time_str = now.strftime("%Y-%m-%d_%H:%M:%S")

#Name100 or Indian
dataset_name = "Name100"

#INSERT DATASET PATH HERE.
root_path = "./DATASET/"
filename_ = "ViT_"+dataset_name+"_"+str(num_classes)+ \
"_Classes_"+str(num_img_per_class)+"_images_"+date_time_str
save_path = "./0.Saved_Outputs/"
save_path += filename_ + ’/’
os.mkdir(save_path)

#######################################################################

feature_extractor = ViTFeatureExtractor.from_pretrained(model_id)

# basic processing (only resizing)
def process(examples):

examples.update(feature_extractor(examples[’img’], ))
return examples

"""creates ‘Dataset‘ from image folder structure"""
def create_image_folder_dataset(root_path):

global class_data_labels

# get class names by folders names
_CLASS_NAMES= os.listdir(root_path)
# defines ‘datasets‘ features‘
features=datasets.Features(
{

"img" : datasets.Image(),
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"labels" : datasets.features.ClassLabel(
names = _CLASS_NAMES

),
}

)
# temp list holding datapoints for creation
img_data_files = []
label_data_files = []
# load images into list for creation
for img_class in os.listdir(root_path)[:(num_classes % 101)]:
class_data_labels.append(img_class)
for img in os.listdir(os.path.join(root_path ,img_class))\ [:(

num_img_per_class % 801)]:
path_=os.path.join(root_path ,img_class ,img)
img_data_files.append(path_)
label_data_files.append(img_class)

global len_data
len_data = len(img_data_files)
# create dataset
return datasets.Dataset.from_dict(
{

"img" : img_data_files ,
"labels" : label_data_files

}, features=features
)

#######################################################################

processed_dataset = create_image_folder_dataset(root_path)

processed_dataset = processed_dataset.map(process, batched = True)

processed_dataset = processed_dataset.shuffle().train_test_split(
test_size = test_size

)

#######################################################################
’’’

Data collator that will dynamically pad the inputs received , as
well as the labels.

’’’
data_collator = DefaultDataCollator(return_tensors="tf")

# converting our train dataset to tf.data.Dataset
tf_train_dataset = processed_dataset["train"].to_tf_dataset(
columns = [’pixel_values’],
label_cols = ["labels"],
shuffle = True,
batch_size = train_batch_size ,
collate_fn = data_collator

)

# converting our test dataset to tf.data.Dataset
tf_eval_dataset = processed_dataset["test"].to_tf_dataset(
columns = [’pixel_values’],
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label_cols = ["labels"],
shuffle = False,
batch_size = eval_batch_size ,
collate_fn = data_collator

)

#######################################################################

id2label = {str(i): label for i, label in enumerate(class_data_labels)}
label2id = {v: k for k, v in id2label.items()}

fp16 = True

if fp16:
tf.keras.mixed_precision.set_global_policy("mixed_float16")

len_labels = len(class_data_labels)

# load pre-trained ViT model
model = TFViTForImageClassification.from_pretrained(

model_id ,
#ignore_mismatched_sizes = True,
num_labels = len_labels ,
id2label = id2label ,
label2id = label2id

)

# define loss
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

# define metrics
metrics = [

tf.keras.metrics.SparseCategoricalAccuracy(name = "accuracy"),
tf.keras.metrics.SparseTopKCategoricalAccuracy(

3,
name = "top-3-accuracy"

),
]

num_train_steps = len(tf_train_dataset) * num_train_epochs
optimizer , lr_schedule = create_optimizer(

init_lr=learning_rate ,
num_train_steps=num_train_steps ,
weight_decay_rate=weight_decay_rate ,
num_warmup_steps=num_warmup_steps ,

)

# compile model
model.compile(

optimizer = optimizer ,
loss=loss,
metrics=metrics,

)

model.summary()
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#######################################################################

model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath = save_path ,
save_weights_only = True,
monitor = ’val_accuracy’,
mode = ’max’,
save_best_only = True

)

early_Stopper = tf.keras.callbacks.EarlyStopping(
monitor = "val_accuracy",
patience = 1

)

#######################################################################

train_results = model.fit(
tf_train_dataset ,
validation_data=tf_eval_dataset ,
callbacks = [model_checkpoint_callback],#,early_Stopper
epochs=num_train_epochs ,

)

#######################################################################

try:
model.save(save_path + "Model_" + filename_)

except Exception as e:
print("Error in saving model. Error msg" + str(e))

try:
ypred = model.predict(tf_eval_dataset)
ypred = ypred.logits.argmax(-1)

true_categories = tf.concat([y for x, y in tf_eval_dataset] , axis=0)
true_categories = np.array(true_categories)

except Exception as e:
print("Error Model Predict" + str(e))

#######################################################################

# Create CM From Data
try:

cm = ConfusionMatrix(
actual_vector = true_categories ,
predict_vector = ypred

)

try:

cm.save_html(
save_path + "Confusion_Matrix_" + filename_ ,
color = "Blue" ,
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normalize = True
)

except Exception as e:

print("Error in saving Html. Error msg" + str(e))

try:

cm.save_csv(
save_path + "Confusion_Matrix_" + filename_ ,
normalize=True

)

except Exception as e:

print("Error in saving CSV. Error msg" + str(e))

try:

cm.save_obj(save_path + "Confusion_Matrix_" + filename_)

except Exception as e:

print("Error in saving obj. Error msg" + str(e))

except Exception as e:

print("Error in CM 1 : ", e)

try:

confusionmatrix = confusion_matrix(
true_categories ,
ypred ,
normalize = ’true’

)
print("Confusion Matrix : ")
print(confusionmatrix)
cnt = 1
for i in confusionmatrix:
print(cnt)
print(i)
cnt += 1

except Exception as e:

print("Error in CM 1 : ", e)

#######################################################################

try:

print("\nTotal number of classes: ", len(class_data_labels))
if(len_data != 0):
print("\nTotal number of images : ", len_data)
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print("\nList of class labels : ")
print(class_data_labels)
print("Train test split : {0} - {1}".format(
100*(1-test_size),test_size*100)

)
print("Train Batch size : ", train_batch_size)
print("Test Batch Size : ", eval_batch_size)
print("Number of epochs : ", num_train_epochs)
print("Model used here : ", model_id)
print("Optimizer : Custom optimizer created.")
print("Learning rate : "+str(learning_rate))
print("\nClassification Report : ")
print(classification_report(true_categories , ypred))
ypred = ypred.reshape((ypred.shape[0], 1))
true_categories = true_categories.reshape(
(

true_categories.shape[0],
1

)
)
print("Accuracy:", accuracy_score(true_categories , ypred))

except Exception as e:
print("Error Print section" + str(e))

#######################################################################

A.3 XGBoost with Spatial Pyramid Pooling for fea-
ture extraction

#######################################################################
’’’

I am Kashyap Nirmal, M.Tech (ICT) student at DA-IICT. I am working
under the Thesis supervision of Prof. Manish Gupta, DA-IICT.
This code file is a piece of work for my M.Tech thesis.

The source will also be available at :
https://github.com/Kashyap-Nirmal/Face_Name_Prediction

=> We have used following libraries in this code file:
- tensorflow: Available at: https://www.tensorflow.org/
- keras: Available at: https://keras.io/
- sklearn: Available at: https://scikit-learn.org/stable/
- xgboost: Available at:
https://xgboost.readthedocs.io/en/stable/python/python_intro.

html
- matplotlib: Available at: https://matplotlib.org/
- seaborn: Available at: https://seaborn.pydata.org/
- numpy: Available at: https://numpy.org/
- Python random. Available at:
https://docs.python.org/3/library/random.html
- OpenCV. Available at :https://opencv.org/
- Python os. Available at:
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https://docs.python.org/3/library/os.html
- Python glob. Available at:
https://docs.python.org/3/library/glob.html
- Python math. Available at:
https://docs.python.org/3/library/math.html

’’’
#######################################################################
# This code block contains all the necessary imports.
# This code was executed on Google Colaboratory.
from keras.preprocessing.image import img_to_array
from keras.layers import MaxPooling2D , Flatten, Dense
from keras.applications.vgg16 import VGG16
from keras.models import Model
from sklearn.metrics import confusion_matrix , classification_report ,\

accuracy_score

import xgboost as xgb
import matplotlib.pyplot as plot
import seaborn as sns
import numpy as npy
import random
import cv2
import os
import glob
import math

#######################################################################

’’’
- The dataset directory structure should be "train" directory which
contains all the training classes as subdirectories.
- And "test" directory which contains all the testing classes as
subdirectories.
- Image resolution used is 64 * 64.

=> For instance:
/DATASET/train/Krishna/Krishna_1.jpg
/DATASET/train/Rahul/Rahul_1.jpg

/DATASET/test/Krishna/Krishna_1.jpg
/DATASET/test/Rahul/Rahul_1.jpg

’’’

training_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/train" + "/**/*", recursive= True):

training_files.append(filename)

testing_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/test" + "/**/*", recursive = True):

testing_files.append(filename)

#######################################################################
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random.shuffle(training_files)
print(len(training_files))
print(len(testing_files))

#######################################################################

#INSERT THE CLASS LABELS HERE.
class_labels = {

"Krishna":0,
"Pranav":1,
"Priya":2,
"Rahul":3,
"Sonal": 4

}

#######################################################################

training_image = []
testing_image = []
training_label = []
testing_label = []

for imgX in training_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
training_image.append(image)
’’’

Suppose below is the naming convention used. We want class
label ’Krishna’. So we will extract last second element of
the list.

C:\Files\gender_dataset_face\Krishna\Krishna_1.jpg.
’’’
label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

training_label.append([l_index])

except:
print("Corrupted.")

for imgX in testing_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
testing_image.append(image)

label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

testing_label.append([l_index])
except:
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print("Corrupted.")

#######################################################################

training_image = npy.array(training_image , dtype = "float")/255.0
testing_image = npy.array(testing_image , dtype = "float")/255.0

#######################################################################

training_label = npy.array(training_label)
testing_label = npy.array(testing_label)

#######################################################################

training_image.shape

#######################################################################

#Feature extraction using SPP

base_model_ = VGG16(
include_top = False,
weights = ’imagenet’,
input_shape = (64, 64, 3)

)

win1 = math.ceil(16/1)
str1 = math.floor(16/1)

win2 = math.ceil(16/2)
str2 = math.floor(16/2)

win3 = math.ceil(16/4)
str3 = math.floor(16/4)

l1 = MaxPooling2D(
pool_size = (win1),
strides = str1,
padding ="valid"

)(base_model_.layers[-10].output)
l2 = MaxPooling2D(

pool_size = (win2),
strides = str2,
padding = "valid"

)(base_model_.layers[-10].output)
l3 = MaxPooling2D(

pool_size = (win3),
strides = str3,
padding = "valid"

)(base_model_.layers[-10].output)

flat1 = Flatten()(l1)
flat2 = Flatten()(l2)
flat3 = Flatten()(l3)

for layer in base_model_.layers:
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layer.trainable = False

modelX = Model(
inputs = base_model_.inputs,
outputs = [flat1,flat2,flat3]

)

#######################################################################

modelX.summary()

#######################################################################

trainX_deep = modelX.predict(training_image)
testX_deep = modelX.predict(testing_image)

#######################################################################

trainX_deep = npy.hstack(
[

trainX_deep[0],
trainX_deep[1],
trainX_deep[2]

]
)
testX_deep = npy.hstack([testX_deep[0], testX_deep[1], testX_deep[2]])

#######################################################################

xgboost_classifier = xgb.XGBClassifier()

#######################################################################

xgboost_classifier.fit(trainX_deep , training_label)

#######################################################################

label_predicted = xgboost_classifier.predict(testX_deep)
print("Accuracy:", accuracy_score(testing_label , label_predicted))

#######################################################################

confusionmatrix = confusion_matrix(
testing_label ,
label_predicted ,
normalize = ’true’

)
axX = sns.heatmap(

confusionmatrix ,
cmap = ’Blues’,
annot = True ,
cbar = True ,
fmt =’.2%’

)
axX.figbox
list1 = []
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for key in class_labels.keys():
list1.append(key)

axX.xaxis.set_ticklabels(list1)
axX.yaxis.set_ticklabels(list1)
plot.setp(

axX.get_xticklabels() ,
rotation = 45 ,
ha = "right",
rotation_mode = "anchor"

)
axX.set_title(’Confusion Matrix for Name Prediction\n\n’);
plot.show()

#######################################################################

print(classification_report(testing_label , label_predicted))

#######################################################################

A.4 Bagging with Spatial Pyramid Pooling for feature
extraction

#######################################################################
’’’

I am Kashyap Nirmal, M.Tech (ICT) student at DA-IICT. I am working
under the Thesis supervision of Prof. Manish Gupta, DA-IICT.
This code file is a piece of work for my M.Tech thesis.

The source will also be available at :
https://github.com/Kashyap-Nirmal/Face_Name_Prediction

=> We have used following libraries in this code file:
- tensorflow: Available at: https://www.tensorflow.org/
- keras: Available at: https://keras.io/
- sklearn: Available at: https://scikit-learn.org/stable/
- xgboost: Available at:
https://xgboost.readthedocs.io/en/stable/python/python_intro.

html
- matplotlib: Available at: https://matplotlib.org/
- seaborn: Available at: https://seaborn.pydata.org/
- numpy: Available at: https://numpy.org/
- Python random. Available at:
https://docs.python.org/3/library/random.html
- OpenCV. Available at :https://opencv.org/
- Python os. Available at:
https://docs.python.org/3/library/os.html
- Python glob. Available at:
https://docs.python.org/3/library/glob.html
- Python math. Available at:
https://docs.python.org/3/library/math.html

’’’
#######################################################################
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# This code block contains all the necessary imports.
# This code was executed on Google Colaboratory.

from keras.preprocessing.image import img_to_array
from keras.layers import MaxPooling2D , Flatten, Dense
from keras.applications.vgg16 import VGG16
from keras.models import Model
from sklearn.metrics import confusion_matrix , classification_report , \

accuracy_score

import matplotlib.pyplot as plot
import seaborn as sns
import numpy as npy
import random
import cv2
import os
import glob
import math

from sklearn.ensemble import BaggingClassifier
from sklearn.svm import SVC

#######################################################################
’’’
- The dataset directory structure should be "train" directory which
contains all the training classes as subdirectories.
- And "test" directory which contains all the testing classes as
subdirectories.
- Image resolution used is 64 * 64.

=> For instance:
/DATASET/train/Krishna/Krishna_1.jpg
/DATASET/train/Rahul/Rahul_1.jpg

/DATASET/test/Krishna/Krishna_1.jpg
/DATASET/test/Rahul/Rahul_1.jpg

’’’

training_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/train" + "/**/*", recursive= True):

training_files.append(filename)

testing_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/test" + "/**/*", recursive = True):

testing_files.append(filename)

#######################################################################

random.shuffle(training_files)
print(len(training_files))
print(len(testing_files))

#######################################################################
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#INSERT THE CLASS LABELS HERE.
class_labels = {

"Krishna":0,
"Pranav":1,
"Priya":2,
"Rahul":3,
"Sonal": 4

}

#######################################################################

training_image = []
testing_image = []
training_label = []
testing_label = []

for imgX in training_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
training_image.append(image)
’’’

Suppose below is the naming convention used. We want class
label ’Krishna’. So we will extract last second element of
the list.

C:\Files\gender_dataset_face\Krishna\Krishna_1.jpg.
’’’
label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

training_label.append([l_index])

except:
print("Corrupted.")

for imgX in testing_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
testing_image.append(image)

label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

testing_label.append([l_index])
except:
print("Corrupted.")

#######################################################################

training_image = npy.array(training_image , dtype = "float")/255.0
testing_image = npy.array(testing_image , dtype = "float")/255.0
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#######################################################################

training_label = npy.array(training_label)
testing_label = npy.array(testing_label)

#######################################################################

#Feature extraction using SPP

base_model_ = VGG16(
include_top = False,
weights = ’imagenet’,
input_shape = (64, 64, 3)

)

win1 = math.ceil(16/1)
str1 = math.floor(16/1)

win2 = math.ceil(16/2)
str2 = math.floor(16/2)

win3 = math.ceil(16/4)
str3 = math.floor(16/4)

l1 = MaxPooling2D(
pool_size = (win1),
strides = str1,
padding = "valid"

)(base_model_.layers[-10].output)
l2 = MaxPooling2D(

pool_size = (win2),
strides = str2,
padding = "valid"

)(base_model_.layers[-10].output)
l3 = MaxPooling2D(

pool_size = (win3),
strides = str3,
padding = "valid"

)(base_model_.layers[-10].output)

flat1 = Flatten()(l1)
flat2 = Flatten()(l2)
flat3 = Flatten()(l3)

for layer in base_model_.layers:
layer.trainable = False

modelX = Model(
inputs = base_model_.inputs,
outputs = [flat1, flat2, flat3]

)

#######################################################################

modelX.summary()
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#######################################################################

svc = SVC(probability = True, kernel = "linear")
bagging_classifier = BaggingClassifier(

base_estimator = svc,
n_estimators = 21

)

#######################################################################

trainX_deep = modelX.predict(training_image)
testX_deep = modelX.predict(testing_image)

#######################################################################

trainX_deep = npy.hstack(
[trainX_deep[0], trainX_deep[1], trainX_deep[2]]

)
testX_deep = npy.hstack([testX_deep[0], testX_deep[1], testX_deep[2]])

#######################################################################

clfmodel = bagging_classifier.fit(trainX_deep , training_label)

#######################################################################

label_predicted = clfmodel.predict(testX_deep)
print("Accuracy:", accuracy_score(testing_label , label_predicted))

#######################################################################

confusionmatrix = confusion_matrix(
testing_label ,
label_predicted ,
normalize = ’true’

)
axX = sns.heatmap(

confusionmatrix ,
cmap = ’Blues’,
annot = True ,
cbar = True ,
fmt =’.2%’

)
axX.figbox
list1 = []
for key in class_labels.keys():
list1.append(key)

axX.xaxis.set_ticklabels(list1)
axX.yaxis.set_ticklabels(list1)
plot.setp(

axX.get_xticklabels() ,
rotation = 45 ,
ha = "right",
rotation_mode = "anchor"

)
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axX.set_title(’Confusion Matrix for Name Prediction\n\n’);
plot.show()

#######################################################################

print(classification_report(testing_label , label_predicted))

#######################################################################

A.5 Adaboost with Spatial Pyramid Pooling for fea-
ture extraction

#######################################################################
’’’

I am Kashyap Nirmal, M.Tech (ICT) student at DA-IICT. I am working
under the Thesis supervision of Prof. Manish Gupta, DA-IICT.
This code file is a piece of work for my M.Tech thesis.

The source will also be available at :
https://github.com/Kashyap-Nirmal/Face_Name_Prediction

=> We have used following libraries in this code file:
- tensorflow: Available at: https://www.tensorflow.org/
- keras: Available at: https://keras.io/
- sklearn: Available at: https://scikit-learn.org/stable/
- xgboost: Available at:
https://xgboost.readthedocs.io/en/stable/python/python_intro.

html
- matplotlib: Available at: https://matplotlib.org/
- seaborn: Available at: https://seaborn.pydata.org/
- numpy: Available at: https://numpy.org/
- Python random. Available at:
https://docs.python.org/3/library/random.html
- OpenCV. Available at :https://opencv.org/
- Python os. Available at:
https://docs.python.org/3/library/os.html
- Python glob. Available at:
https://docs.python.org/3/library/glob.html
- Python math. Available at:
https://docs.python.org/3/library/math.html

’’’
#######################################################################
# This code block contains all the necessary imports.
# This code was executed on Google Colaboratory.

from keras.preprocessing.image import img_to_array
from keras.layers import MaxPooling2D , Flatten, Dense
from keras.applications.vgg16 import VGG16
from keras.models import Model
from sklearn.metrics import confusion_matrix , classification_report , \

accuracy_score
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import matplotlib.pyplot as plot
import seaborn as sns
import numpy as npy
import random
import cv2
import os
import glob
import math

from sklearn.ensemble import AdaBoostClassifier
from sklearn.svm import SVC

#######################################################################
’’’
- The dataset directory structure should be "train" directory which
contains all the training classes as subdirectories.
- And "test" directory which contains all the testing classes as
subdirectories.
- Image resolution used is 64 * 64.

=> For instance:
/DATASET/train/Krishna/Krishna_1.jpg
/DATASET/train/Rahul/Rahul_1.jpg

/DATASET/test/Krishna/Krishna_1.jpg
/DATASET/test/Rahul/Rahul_1.jpg

’’’

training_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/train" + "/**/*", recursive= True):

training_files.append(filename)

testing_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/test" + "/**/*", recursive = True):

testing_files.append(filename)

#######################################################################

random.shuffle(training_files)
print(len(training_files))
print(len(testing_files))

#######################################################################

#INSERT THE CLASS LABELS HERE.
class_labels = {

"Krishna":0,
"Pranav":1,
"Priya":2,
"Rahul":3,
"Sonal": 4

}
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#######################################################################

training_image = []
testing_image = []
training_label = []
testing_label = []

for imgX in training_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
training_image.append(image)
’’’

Suppose below is the naming convention used. We want class
label ’Krishna’. So we will extract last second element of
the list.

C:\Files\gender_dataset_face\Krishna\Krishna_1.jpg.
’’’
label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

training_label.append([l_index])

except:
print("Corrupted.")

for imgX in testing_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
testing_image.append(image)

label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

testing_label.append([l_index])
except:
print("Corrupted.")

#######################################################################

training_image = npy.array(training_image , dtype = "float")/255.0
testing_image = npy.array(testing_image , dtype = "float")/255.0

#######################################################################

training_label = npy.array(training_label)
testing_label = npy.array(testing_label)

#######################################################################

#Feature extraction using SPP
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base_model_ = VGG16(
include_top = False,
weights = ’imagenet’,
input_shape = (64, 64, 3)

)

win1 = math.ceil(16/1)
str1 = math.floor(16/1)

win2 = math.ceil(16/2)
str2 = math.floor(16/2)

win3 = math.ceil(16/4)
str3 = math.floor(16/4)

l1 = MaxPooling2D(
pool_size = (win1),
strides = str1,
padding = "valid"

)(base_model_.layers[-10].output)
l2 = MaxPooling2D(

pool_size = (win2),
strides = str2,
padding = "valid"

)(base_model_.layers[-10].output)
l3 = MaxPooling2D(

pool_size = (win3),
strides = str3,
padding = "valid"

)(base_model_.layers[-10].output)

flat1 = Flatten()(l1)
flat2 = Flatten()(l2)
flat3 = Flatten()(l3)

for layer in base_model_.layers:
layer.trainable = False

modelX = Model(
inputs = base_model_.inputs,
outputs = [flat1, flat2, flat3]

)

#######################################################################

modelX.summary()

#######################################################################

svc = SVC(probability = True, kernel = "linear")
ADBclassifier = AdaBoostClassifier(

n_estimators = 21,
base_estimator = svc,
learning_rate = 0.5,
algorithm = ’SAMME.R’

)
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#######################################################################

trainX_deep = modelX.predict(training_image)
testX_deep = modelX.predict(testing_image)

#######################################################################

trainX_deep = npy.hstack(
[trainX_deep[0], trainX_deep[1], trainX_deep[2]]

)
testX_deep = npy.hstack([testX_deep[0], testX_deep[1], testX_deep[2]])

#######################################################################

clfmodel = ADBclassifier.fit(trainX_deep , training_label)

#######################################################################

label_predicted = ADBclassifier.predict(testX_deep)
print("Accuracy:", accuracy_score(testing_label , label_predicted))

#######################################################################

confusionmatrix = confusion_matrix(
testing_label ,
label_predicted ,
normalize = ’true’

)
axX = sns.heatmap(

confusionmatrix ,
cmap = ’Blues’,
annot = True ,
cbar = True ,
fmt =’.2%’

)
axX.figbox
list1 = []
for key in class_labels.keys():
list1.append(key)

axX.xaxis.set_ticklabels(list1)
axX.yaxis.set_ticklabels(list1)
plot.setp(

axX.get_xticklabels() ,
rotation = 45 ,
ha = "right",
rotation_mode = "anchor"

)
axX.set_title(’Confusion Matrix for Name Prediction\n\n’);
plot.show()

#######################################################################

print(classification_report(testing_label , label_predicted))

#######################################################################
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A.6 Bagging with Deep learning feature

#######################################################################
’’’

I am Kashyap Nirmal, M.Tech (ICT) student at DA-IICT. I am working
under the Thesis supervision of Prof. Manish Gupta, DA-IICT.
This code file is a piece of work for my M.Tech thesis.

The source will also be available at :
https://github.com/Kashyap-Nirmal/Face_Name_Prediction

=> We have used following libraries in this code file:
- tensorflow: Available at: https://www.tensorflow.org/
- keras: Available at: https://keras.io/
- sklearn: Available at: https://scikit-learn.org/stable/
- xgboost: Available at:
https://xgboost.readthedocs.io/en/stable/python/python_intro.

html
- matplotlib: Available at: https://matplotlib.org/
- seaborn: Available at: https://seaborn.pydata.org/
- numpy: Available at: https://numpy.org/
- Python random. Available at:
https://docs.python.org/3/library/random.html
- OpenCV. Available at :https://opencv.org/
- Python os. Available at:
https://docs.python.org/3/library/os.html
- Python glob. Available at:
https://docs.python.org/3/library/glob.html
- Python math. Available at:
https://docs.python.org/3/library/math.html

’’’
#######################################################################
# This code block contains all the necessary imports.
# This code was executed on Google Colaboratory.

from keras.preprocessing.image import img_to_array
from keras.layers import MaxPooling2D , Flatten, Dense
from keras.applications.vgg16 import VGG16
from keras.models import Model
from sklearn.metrics import confusion_matrix , classification_report ,\

accuracy_score

import matplotlib.pyplot as plot
import seaborn as sns
import numpy as npy
import random
import cv2
import os
import glob
import math

from sklearn.ensemble import BaggingClassifier
from sklearn.svm import SVC

#######################################################################
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’’’
- The dataset directory structure should be "train" directory which
contains all the training classes as subdirectories.
- And "test" directory which contains all the testing classes as
subdirectories.
- Image resolution used is 64 * 64.

=> For instance:
/DATASET/train/Krishna/Krishna_1.jpg
/DATASET/train/Rahul/Rahul_1.jpg

/DATASET/test/Krishna/Krishna_1.jpg
/DATASET/test/Rahul/Rahul_1.jpg

’’’

training_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/train" + "/**/*", recursive= True):

training_files.append(filename)

testing_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/test" + "/**/*", recursive = True):

testing_files.append(filename)

#######################################################################

random.shuffle(training_files)
print(len(training_files))
print(len(testing_files))

#######################################################################

#INSERT THE CLASS LABELS HERE.
class_labels = {

"Krishna":0,
"Pranav":1,
"Priya":2,
"Rahul":3,
"Sonal": 4

}

#######################################################################

training_image = []
testing_image = []
training_label = []
testing_label = []

for imgX in training_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
training_image.append(image)
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’’’
Suppose below is the naming convention used. We want class
label ’Krishna’. So we will extract last second element of
the list.

C:\Files\gender_dataset_face\Krishna\Krishna_1.jpg.
’’’
label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

training_label.append([l_index])

except:
print("Corrupted.")

for imgX in testing_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
testing_image.append(image)

label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

testing_label.append([l_index])
except:
print("Corrupted.")

#######################################################################

#Feature extraction using DL.

base_model = VGG16(
include_top = False,
weights = ’imagenet’,
input_shape = (64, 64, 3),
classes = 5

)

flat1 = Flatten()(base_model.layers[-1].output)
class1 = Dense(4096, activation = ’relu’)(flat1)

modelX = Model(inputs = base_model.inputs, outputs = class1)

#######################################################################

modelX.summary()

#######################################################################

training_image = npy.array(training_image , dtype = "float")/255.0
testing_image = npy.array(testing_image , dtype = "float")/255.0

#######################################################################
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training_label = npy.array(training_label)
testing_label = npy.array(testing_label)

#######################################################################

training_image.shape

#######################################################################

trainX_deep = modelX.predict(training_image)
testX_deep = modelX.predict(testing_image)

#######################################################################

svc = SVC(probability = True, kernel = "linear")
bagging_classifier = BaggingClassifier(

base_estimator = svc,
n_estimators = 50

)

#######################################################################

clfmodel = bagging_classifier.fit(trainX_deep , training_label)

#######################################################################

label_predicted = clfmodel.predict(testX_deep)
print("Accuracy:", accuracy_score(testing_label , label_predicted))

#######################################################################

confusionmatrix = confusion_matrix(
testing_label ,
label_predicted ,
normalize = ’true’

)
axX = sns.heatmap(

confusionmatrix ,
cmap = ’Blues’,
annot = True ,
cbar = True ,
fmt =’.2%’

)
axX.figbox
list1 = []
for key in class_labels.keys():
list1.append(key)

axX.xaxis.set_ticklabels(list1)
axX.yaxis.set_ticklabels(list1)
plot.setp(

axX.get_xticklabels() ,
rotation=45 ,
ha="right",
rotation_mode="anchor"

)
axX.set_title(’Confusion Matrix for Name Prediction\n\n’);
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plot.show()

#######################################################################

print(classification_report(testing_label , label_predicted))

#######################################################################

A.7 Adaboost with Deep learning feature

#######################################################################
’’’

I am Kashyap Nirmal, M.Tech (ICT) student at DA-IICT. I am working
under the Thesis supervision of Prof. Manish Gupta, DA-IICT.
This code file is a piece of work for my M.Tech thesis.

The source will also be available at :
https://github.com/Kashyap-Nirmal/Face_Name_Prediction

=> We have used following libraries in this code file:
- tensorflow: Available at: https://www.tensorflow.org/
- keras: Available at: https://keras.io/
- sklearn: Available at: https://scikit-learn.org/stable/
- xgboost: Available at:
https://xgboost.readthedocs.io/en/stable/python/python_intro.

html
- matplotlib: Available at: https://matplotlib.org/
- seaborn: Available at: https://seaborn.pydata.org/
- numpy: Available at: https://numpy.org/
- Python random. Available at:
https://docs.python.org/3/library/random.html
- OpenCV. Available at :https://opencv.org/
- Python os. Available at:
https://docs.python.org/3/library/os.html
- Python glob. Available at:
https://docs.python.org/3/library/glob.html
- Python math. Available at:
https://docs.python.org/3/library/math.html

’’’
#######################################################################
# This code block contains all the necessary imports.
# This code was executed on Google Colaboratory.
from keras.preprocessing.image import img_to_array
from keras.layers import MaxPooling2D , Flatten, Dense
from keras.applications.vgg16 import VGG16
from keras.models import Model
from sklearn.metrics import confusion_matrix , classification_report ,\

accuracy_score

import matplotlib.pyplot as plot
import seaborn as sns
import numpy as npy
import random
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import cv2
import os
import glob
import math

from sklearn.ensemble import AdaBoostClassifier
from sklearn.svm import SVC

#######################################################################
’’’
- The dataset directory structure should be "train" directory which
contains all the training classes as subdirectories.
- And "test" directory which contains all the testing classes as
subdirectories.
- Image resolution used is 64 * 64.

=> For instance:
/DATASET/train/Krishna/Krishna_1.jpg
/DATASET/train/Rahul/Rahul_1.jpg

/DATASET/test/Krishna/Krishna_1.jpg
/DATASET/test/Rahul/Rahul_1.jpg

’’’

training_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/train" + "/**/*", recursive= True):

training_files.append(filename)

testing_files = []
#INSERT THE TRAINING DATASET PATH HERE.
for filename in glob.glob(r"DATASET/test" + "/**/*", recursive = True):

testing_files.append(filename)

#######################################################################

random.shuffle(training_files)
print(len(training_files))
print(len(testing_files))

#######################################################################

#INSERT THE CLASS LABELS HERE.
class_labels = {

"Krishna":0,
"Pranav":1,
"Priya":2,
"Rahul":3,
"Sonal": 4

}

#######################################################################

training_image = []
testing_image = []
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training_label = []
testing_label = []

for imgX in training_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
training_image.append(image)
’’’

Suppose below is the naming convention used. We want class
label ’Krishna’. So we will extract last second element of
the list.

C:\Files\gender_dataset_face\Krishna\Krishna_1.jpg.
’’’
label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

training_label.append([l_index])

except:
print("Corrupted.")

for imgX in testing_files:
try:
image = cv2.imread(imgX)
image = cv2.resize(image, (64, 64))
image = img_to_array(image)
testing_image.append(image)

label = imgX.split(os.path.sep)[-2]
l_index = class_labels[label]

testing_label.append([l_index])
except:
print("Corrupted.")

#######################################################################
#Feature extraction using DL.

base_model_ = VGG16(
include_top = False,
weights = ’imagenet’,
input_shape = (64, 64, 3),
classes = 5

)

flat1 = Flatten()(base_model_.layers[-1].output)
class1 = Dense(4096, activation = ’relu’)(flat1)

modelX = Model(inputs=base_model_.inputs, outputs=class1)

#######################################################################

modelX.summary()
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#######################################################################

training_image = npy.array(training_image , dtype = "float")/255.0
testing_image = npy.array(testing_image , dtype = "float")/255.0

#######################################################################

training_label = npy.array(training_label)
testing_label = npy.array(testing_label)

#######################################################################

training_image.shape

#######################################################################

trainX_deep = modelX.predict(training_image)
testX_deep = modelX.predict(testing_image)

#######################################################################

svc = SVC(probability = True, kernel = "linear")
adaboost = AdaBoostClassifier(

n_estimators = 3,
base_estimator = svc,
learning_rate = 0.5,
algorithm = ’SAMME.R’

)

#######################################################################

clfmodel = adaboost.fit(trainX_deep , training_label)

#######################################################################

label_predicted = clfmodel.predict(testX_deep)
print("Accuracy:", accuracy_score(testing_label , label_predicted))

#######################################################################

confusionmatrix = confusion_matrix(
testing_label ,
label_predicted ,
normalize = ’true’

)
axX = sns.heatmap(

confusionmatrix ,
cmap = ’Blues’,
annot = True ,
cbar = True ,
fmt =’.2%’

)
axX.figbox
list1 = []
for key in class_labels.keys():
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list1.append(key)
axX.xaxis.set_ticklabels(list1)
axX.yaxis.set_ticklabels(list1)
plot.setp(

axX.get_xticklabels() ,
rotation = 45 ,
ha = "right",
rotation_mode = "anchor"

)
axX.set_title(’Confusion Matrix for Name Prediction\n\n’);
plot.show()

#######################################################################

print(classification_report(testing_label , label_predicted))

#######################################################################
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CHAPTER B
Additional snapshots

Figure B.1: Google Form title and information fields snapshot.

Figure B.2: Google Form information fields snapshot.
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Figure B.3: Google Form information fields snapshot.

Figure B.4: Google Form information fields snapshot.
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Figure B.5: Google Form information fields snapshot.

Figure B.6: Google Form snapshot containing the Consent message.
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Figure B.7: Google Form Response snapshot with the response entries from 1-24

Figure B.8: Google Form Response snapshot with the response entries from 25-48.
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Figure B.9: Google Form Response snapshot with the response entries from 49-65.

Figure B.10: A flask demo of the Name Association using name prediction.
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Figure B.11: Demonstration Output 1
Demonstration of the system using the Rahul’s input image which is correctly
classified as Rahul. And we can see the bounding box which associated the pre-
dicted name Rahul to the face.

Figure B.12: QR Code for Github repository.
URL : https://github.com/Kashyap-Nirmal/Face_Name_Prediction
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