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Abstract

Shape deformation is one of the fundamental techniques in geometry processing.
Shape deformation algorithms aim to mimic 3D object deformations on digital
representations of objects efficiently. Deformation refers to the change in the shape
and size of the object. Rigidity performs a significant role in the deformation. The
actual 3D object could have parts with different amounts of rigidity. The shape
deformation algorithm should be able to model the rigidity of the entire object and
spatially varying rigidity. We propose a rigidity controllable mesh deformation
method where the user can specify the rigidity of each part of the object. There are
several popular deformation models and algorithms to deform objects. However,
none of them explicitly capture the rigidity of the object. Additionally, we try to
estimate the rigidity of the object given various deformations of the object.
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CHAPTER1

Introduction

The thesis topic falls under the area of geometry processing. The scope of geome-
try processing is vast; it ranges from digitally representing the object and match-
ing the shape to changing shapes or applying deformation. Deformation refers
to modifications of the shape or size of an object. Deformation is a fundamen-
tal research area in geometry processing, and it is used in animation, mechanical
modeling, design, augmented reality, and simulation. Due to time and resource
constraints, it is not feasible to apply deformation manually as it involves chang-
ing the positions of every point of the object. Applying transformation only to
the handle points overcomes the limitation of manual deformation. Every point
of the object would be linked with some handle points so one can find the trans-
formation or position of the deformed position of the vertex. In this way, the
movement of those handle points would define the movement for the respective
linked points.

Some well-known algorithms for applying various deformations using han-
dles on a given mesh are skinning[7, 9], Deformation using bone and cage[18],
Laplacian mesh edition[16], As-Rigid-As-Possible[15], Rigidity controllable As-
Rigid-As-Possible[3] etc. Some algorithms learn deformation space from the ex-
ample meshes and find the appropriate deformation from the learned space, for
example, [5, 17]. The mentioned algorithms take only shape information, not ma-
terial information. Therefore, resultant deformations would not be as similar as
they should be if they were provided with the material information. Every ma-
terial responds differently to deformations like twisting, bending, compression,
and expansion. For example, bending deformation applied on a rod made up
of flexible material like rubber and rigid material like iron would be significantly
different.

Additionally, deformation applied on objects with spatially varying rigidity
would be different. Building on this fact, deformation applied to an object made
up of various materials with different rigidity would be a combination of the
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Figure 1.1: Same shape and same movement of handles but different rigidity leads
to different deformed mesh

neighborhood-level and object-level properties. Because of the reasons stated
above, it makes the study of material-aware deformations relevant.

1.1 Problem statement

The deformation should depend on the rigidity of the object. Objects with the
same shape but different materials are likely to undergo different deformation
even if they are subject to the same force. For example, in Figure 1.1, The bar in
the center is the reference bar and handles and free vertices are represented in yel-
low and purple color respectively. Applying the transformation on The handles
(kipping the bottom portion as it is and 90◦ rotation with respect to the center of
the bar on the top portion), how other vertices should move is dependent on the
material. If the material is more rigid, we will use the deformed mesh that is on
the right, and if the material is less rigid, we will use the deformed mesh that is
on the left in Figure 1.1. The digital representation of the object as a mesh does
not contain information about the material it is made up of. This work tries to
capture the material’s rigidity via a rigidity controlling cost function. As shown
in Figure 1.1, our deformation algorithm gives the user control over the rigidity of
the object. Additionally, we try to estimate the rigidity of the object given various
deformations of the object, as shown in Figure 1.2.

1.2 Thesis Organization

Background topics like object representation, transformations, neighborhood, and
cotangent weights in Chapter 2. We provide a survey of the most related work in
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Figure 1.2: How to estimate the rigidity from the reference mesh and its deformed
mesh or two deformed mesh of the same object?

Chapter 3. Our proposed approach rigidity controllable deformation and learning
material from reference meshes are described in Chapter 4. Results and discus-
sions are presented in Chapter 5. Finally, the conclusion and future work is given
in Chapter 6.

1.3 Contribution

The contributions of this work are summarized as follows:

• We propose an algorithm that takes material information along with shape
information and performs the deformation.

• The proposed algorithm also works where different parts of the object are
made of different materials. The proposed algorithm gives functionality to
change the neighborhood size as mentioned in RC-ARAP[3] and the mate-
rial of that neighborhood to get more realistic deformation.

• We also propose an algorithm that takes in multiple meshes of the same
object and estimates the material the object is made of.

3



CHAPTER2

Background

Deformation refers to the change in the size or shape of an object. Since our prob-
lem domain is mesh deformation, some concepts and terminologies are necessary
to understand various deformation algorithms and proposed work.

2.1 Object Representation

There are many ways to represent the 3D object digitally, including Mesh repre-
sentation, Implicit representation, point cloud, and skeletons. The most prevalent
representation is mesh. Mesh is a graph-like data structure that contains infor-
mation about the position of the vertices and connectivity between them, where
vertices represent points on the object. A mesh represents a larger geometric do-
main by small discrete cells. Examples of some discrete cells are shown in Figure
2.1. The object is continuous, so to represent the object in digital form, one needs
to convert it into discrete form, taking the samples or points from the object. Mesh
is a data structure to store these sampled points and their connectivity. Mesh can
be classified into two types based on the discrete cell or connectivity.

1. Surface mesh: Discrete cells are 2D shapes like triangles or quadrilateral
in the surface mesh. The surface mesh contains only the samples from the
surface of the object.

2. volumetric mesh: Discrete cells are 3D shapes like tetrahedrons, pyramids,
or hexahedrons in the volumetric mesh. The volumetric mesh contains the
samples from the surface and interior part of the object.

Among all the meshes, triangular meshes have become the ubiquitous surface
representation in recent years in computer graphics, so a lot of research has been
put into efficiently manipulating them. Triangular mesh has two components:

• Set of Vertices, which can be represented as a n × 3 matrix V, each row of
the Vertices matrix V contains 3D coordinates of the vertex.

4



Figure 2.1: Discrete cells[1]

Figure 2.2: surface mesh and volumetric mesh[11]

Figure 2.3: surface meshes[4]
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Figure 2.4: Vertices and Faces

• Set of faces that provides connectivity/topological information, which can
be represented as a m× 3 matrix F, Each row of F contains indices of 3 ver-
tices from V that form a triangular face.

.
This thesis will assume that all objects are represented as triangular meshes.

2.2 Transformations

Mesh has some properties like the position of vertices, distance between vertices,
the angle between edges, and the orientation of faces. Transformation changes
these properties, and, based on these changes, transformations can be classified
into two types.

1. Rigid transformations

2. Non-rigid transformations

2.2.1 Rigid Transformations

Transformations that do not change the distance between two points are called
rigid transformations. Rigid transformations do not change the size and shape
of the object. Translation, Rotation, and their combinations are rigid transforma-
tions.

In R3 translation by a vector r ∈ R3 can be defined as,

f : R3 → R3, f (x) = x + r, ∀x ∈ R3

6



Original Translation Rotation Scalling Shearing

Figure 2.5: Transformations

and a 3D rotation can be represented as,

f : R3 → R3, f (x) = R(n, θ)x, ∀x ∈ R3

where the 3× 3 matrix R(n, θ) is an orthogonal matrix that represents rotation by
an angle θ with unit vector n as axis of rotation.

The translation is a non-linear transformation, so it can not be represented
using a 3× 3 matrix, but using a homogeneous coordinate system, translation can
be represented using a 4 × 4 matrix. Reflection may also be considered a rigid
transformation with determinant −1. It changes the orientation of the axes.

2.2.2 Non-Rigid Transformations

The transformations that are not rigid are called non-rigid transformations. Scal-
ing and shearing are examples of non-rigid transformations. A non-rigid trans-
formation can change the object’s size, shape, or both.

In R3, scaling can be defined as,

f : R3 → R3, f (x) = Sx, ∀x ∈ R3

where S is a 3 x 3 diagonal matrix, whose diagonal elements represents the scaling
factor along the three axis.

In R3, shearing can be define as,

f : R3 → R3, f (x) = Tx, ∀x ∈ R3

where 3× 3 matrix T has diagonal elements as 1 and off-diagonal elements repre-
sent the amount of shear and direction along with different axis.

7



(a) 1-ring neighbour (b) 2-ring neighbour

Figure 2.6: the r-ring neighborhood of the vertex

2.3 Neighborhood

As shown in Figure 2.6, the set of 1-ring neighbors of a vertex contains other ver-
tices that are directly connected to the vertex with an edge. In comparison, the set
of 2-ring neighbors contains vertices that can be reached using two steps from the
vertex. The r-ring neighborhood can be represented using two sets.

1. Vertex setN (k, r) is the set of vertices within the r-ring neighborhood of ver-
tex k, where a vertex j ∈ N (k, r) if and only if there exists a path connecting
vertex k and j with the number of edges no more than r.

2. Edge set E(k, r) is the set of edges within the r-ring neighbourhood of vertex
k, where edge (i, j) ∈ E(k, r) if i ∈ N (k, r) and j ∈ N (k, r).

The vertex and edge set can be obtained efficiently using a breadth-first search.

2.4 Cotangent weight

The Laplace-Beltrami operator (LBO) is the swiss-knife of Geometry Processing.
The discrete Laplace-Beltrami operator[2] works for the discrete surface, for ex-
ample, triangular mesh. One should arrive at a definition of a discrete LBO by
requiring it to satisfy all the properties satisfied by the continuous LBO. Cotan
laplacian is one of the doscrete laplace beltrami operators. Cotan weights are part
of the Cotan laplacian. Cotan weights reduce the effect of discretization of the
triangular mesh.

8



Figure 2.7: Cotan Weight

Consider pi and pj are the vertices of a mesh, and there is an edge that connects
these two vertices, then the cotan weight of this edge is,

wij =
1
2
(cot α + cot β)

where α and β are two angles opposite to the edge (i, j) as shown in the Figure
2.7.

This background knowledge will help to understand the popular deformation
algorithms in Chapter 3 and the proposed method.
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CHAPTER3

Related work

Shape deformation has received much attention over the last three decades. This
chapter reviews important milestones in this area and discusses algorithms or
approaches close to ours.

Skinning

Skinning [7] is the earliest algorithm proposed for mesh deformation. Skinning
has three components.

• Control Structure

• Weights

• Transformations

A low dimensional structure, typically known as the control structure, is used
to obtain user define deformation, which is then used to obtain the deformation
of the entire mesh. Some examples of the control structures are cage, skeleton,
and set of vertices as shown in figure 3.1. Points or parts of the control structure
where the user provides deformation via transformation are called handles. From
these transformations, transformations for each vertex of mesh is obtained by a
weighted combination of transformation defined on handles.

Suppose a mesh contains n vertices. Among n vertices, m vertices are the
handles. Linear Blend Skinning(LBS) uses a linear combination of handle trans-
formations to deform mesh vertices:

p′i =
m

∑
j=1

wijTjpi

where pi and p′i is ith vertex of reference mesh and deformed mesh respec-
tively. T1 to Tm are the transformations applied on the handle vertices. wij is
weight assigned to pair of ith vertex and jth handle.

10



Weights are critical in skinning because it determines how much a vertex is
affected by the transformation on handles. There are some methods to define
weights, for example, rigid weights, inverse distance weights, Bounded Bihar-
monic Weights [6]. Different weigh assign methods result in different deforma-
tions. Some methods are described below.

In rigid weights, for the closest handle, the weight will be 1, and for others
handles, it will be 0. Thus any vertex will be affected by only its closest handle.
i.e.,

wij =

1 if d(pi, Hj) ≤ d(pi, Hk)∀j ̸= k

0 otherwise

where, d(pi, Hj) is the euclidean distance or geodesic distance between vertex
pi and handle Hj. Another method is inverse distance weights, in which weight
can be defined as,

wij =
1

d
(
pi, Hj

)p

where p > 0 and it is hyper-parameter.
Figure 3.2 shows the different types of weights. Figure 3.2 (a) is a bar mesh

with two handle points that are represented in red color. Figure 3.2 (b) represents
the weight assigned(yellow color for 1 and purple color for 0) to all vertices for
respective handles points(left figure for left handle point and right figure for right
handle point). Similarly, inverse distance is shown in Figure 3.2 (c), where the
yellow color represents a higher value and the purple color represents a lower
value.

While assigning weights, we need to consider its properties like,

• weights should be continuous and non-negative

• weights should be local and sparse

• weight should be shaped aware

• sum of all weights at a vertex must be equal to 1. This property is known as
the partition of unity.

Some updated skinning algorithm are Dual Quaternion Blending technique
[9], Spherical blend skinning [10], Example-based dynamic skinning [13].

11



Figure 3.1: Examples of control structures: point handles, bones, skeleton [18],
and cage

(a) bar example with handle

(b) Rigid weights (yellow for 1 and purple for 0)

(c) Inverse distance weights

Figure 3.2: Vertices are colored with the respective weights where yellow color
represents high value and purple color represents low value
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Laplacian Mesh Editing

Sometimes it is challenging to operate on a mesh that uses absolute coordinates(3D
coordinate system) to store the geometric properties. Because while applying the
transformation to each point, it is challenging to preserve topology and overall
shape.

Laplacian mesh representation maintains track of differential vertex informa-
tion rather than absolute information while storing the geometry of triangle meshes.
When certain modifications (particularly deformations) are performed on the mesh,
this proves to be a far better approach for maintaining the relationship between
vertices. It also enables smooth function interpolation across the surface using a
natural technique. And the quick approximation of several differential geometry
metrics like means curvature.

A Laplacian coordinate for vertex i is defined as,

δi = pi −
∑j∈N (i) wijpj

∑j∈N (i) wij
(3.1)

where wij represents the weight related to edge between ith and jth vertex.
Weights can be cotan weights. N (i) is the set of all neighbor vertices of the ith

vertex.
A Laplacian coordinate is the linear combination of the vertices, so we can use

matrix multiplication to find the Laplacian coordinate.

δ = LV

where, V and δ are n × 3 matrices contains absolute coordinates and Laplacian
coordinate respectively. L is n× n Laplacian matrix whose entries are followed:

Lij =


1 if i = j

− wij
∑k∈N (i) wik

if j ∈ N (i)

0 otherwise

The energy function for the laplacian mesh editing is,

E
(
V′, Ti

)
=

n

∑
i=1

∥∥Tiδi −
(

LV′
)

i

∥∥2
+

n

∑
i=m

∥∥p′i − ui
∥∥2 (3.2)

where V′ is the matrix containing all vertex coordinates of the deformed mesh,
with p′i denoting the new coordinates of the ith vertex, L is the district Laplace

13



Beltrami operator (laplacian matrix) [2], δi is laplacian coordinate corresponding
to the ith vertex, ui is the position of the handles and Ti is transformation that
applied on the 1-ring neighbourhood of ith vertex.

As-Rigid-As-Possible

The paper[15] describes a mesh deformation technique called ARAP(As-Rigid-
As-Possible) that allows you to change the shape of a mesh while still preserving
its detail. ARAP fits a rotation transformation between the 1-ring neighborhood
of reference and the same neighborhood of deformed mesh. In this way, ARAP
tries to apply global non-rigid transformation using local rigid transformation. In
ARAP, the authors assume that the 1-ring neighborhood of mesh is rigid, and dur-
ing any non-rigid deformation also, it should behave as rigidly as possible. For
each vertex, the neighborhood overlaps each other, so multiple transformations
are applied on the particular edge. The energy function is defined as,

E
(
S ,S ′

)
=

n

∑
i=1

 ∑
j∈N (i)

wij

∥∥∥(p′i − p′j
)
− Ri

(
pi − pj

)∥∥∥2

2

 (3.3)

where S is the reference mesh, S ′ is the deformed mesh, n is the number of
vertices, pi is ith vertex of the reference mesh, p′i is ith vertex of the deformed
mesh, Ri is rotation defined on ith vertex, wij is cotan weight of edge between pi

and pj and N (i) is set of 1-ring neighbours of ith vertex.
The Equation 3.3 is popularly known as ARAP energy. For this energy func-

tion, R and p′ are unknown. The author proposes using a simple alternating
minimization strategy to find the next local minimum energy state (starting from
a given initial vector of positions and rotations). i.e., find positions p′ that mini-
mize energy function 3.3 for a fixed set of rigid transformations R. Then, for the
given set of positions p′, find the rigid transformations R that minimize energy
function 3.3. Repeat these interleaved iterations until the local energy minimum
is reached. This kind of strategy is called Alternating Minimization, and for more
details, refer Section 12.3 of [14]. The important features of this approach are ro-
bustness, simplicity, and efficiency.

Rigidity Controllable As Rigid As Possible

The author extends the ARAP energy function 3.3 in Rigidity controllable ARAP
[3] energy. The goal is to control the rigidity by varying the size of the local neigh-
borhood. The larger the size, the more local geometric details will be preserved,

14



(a) (b)

Figure 3.3: overlapping area represented by yellow color in 1-ring(a) and in 2-ring
(b) neighborhood

or the material will appear more rigid. This is because expanding the local neigh-
borhoods increases the size of overlapping areas between adjacent vertices, im-
proving the coherence of the rigid local transformation. For example, as shown in
the figure 3.3 green and red colors represent the 1-ring neighborhood of respec-
tive vertices. The yellow color represents an overlapping region. We can conclude
from figure 3.3 that as r increases, the overlapping region will increase. Another
benefit of improved rigid transformation consistency is that it reduces the vari-
ability of local rigid transformations, allowing the optimization to converge faster.

E
(
S ,S ′

)
=

n

∑
k=1

 ∑
(i,j)∈E(k,r)

wij

∥∥∥(p′i − p′j
)
− Rk

(
pi − pj

)∥∥∥2

2

 (3.4)

This energy function is similar to the ARAP energy function. Here, the only
difference is that the r-ring neighborhood is considered instead of the 1-ring neigh-
borhood. Rigidity Controllable ARAP allows such objects to be simulated within
a unified framework using the r-ring ARAP formulation with different r values
specified for different regions.

The limitation of the ARAP and RC-ARAP is that they try to fit rotation trans-
formation between the local neighborhood of reference mesh and deformed mesh
because they assume that the local neighborhood is rigid.
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CHAPTER4

Proposed Approach

4.1 Deformation

We assume that an input model has a set of vertices as handles, similar to tradi-
tional ARAP[15] deformation. Given a mesh S , and user defined deformation on
handles (subset of S), the algorithm generates a deformed mesh S ′ that satisfies
the handle requirements while maintaining geometric details. In this Chapter Ck

and Ck
′ denotes the neighbourhood of kth vertex of the S and S ′ respectively. S

and S ′ contains same number of vertices n and same connectivity that is repre-
sented using m triangular faces. N (k, r) is the set of vertices within the r-ring
neighbourhood of vertex k, E(k, r) is the set of edges within the r-ring neighbour-
hood of vertex k, pi and p′i denotes the position of ith vertex in S and S ′ respec-
tively. wij is cotan weight of edge (i, j). Tk is the transformation applied on the
r-ring neighbourhood of kth vertex of S . The following energy function should be
minimized for each vertex k to maintain the geometric details.

E
(
Ck, Ck

′) = ∑
(i,j)∈E(k,r)

wij

∥∥∥(p′i − p′j
)
− Tk

(
pi − pj

)∥∥∥2

2
+ λ∥Tk

TTk − I∥2
F (4.1)

The above equation is similar to the RC-ARAP[3] energy, but here Tk can be
a non-rigid transformation. The rigidity controlling term in the energy function
4.1 is defined as ∥Tk

TTk − I∥2
F ,where I is 3× 3 identity matrix. For a high value

of λ, Equation 4.1 tries to minimize this term. Hence, Tk will try to converge to a
nearly orthogonal matrix containing the maximum effect of rotation. Similarly, a
low value of λ tries to minimize the first term in the Equation 4.1. Therefore, Tk

may behave as a shear transformation.
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(a) (b)

Figure 4.1: (a) Reference mesh, (b) Deformed mesh

(a) (b) (c)

Figure 4.2: (a) λ = 0.01, (b) λ = 1.5, (c) λ = 10

For example, one square mesh Figure 4.1 (a) containing nine vertices. The
center of the square is at the origin and it is fixed. Another mesh (b) in Figure 4.1 is
a Transformed version of (a). For the deformation, shear transformation is applied
on the center vertex. The idea is to get the closest deformed mesh to the Figure
4.1 (b) using the deformation algorithm. The proposed algorithm finds the best
transformations for each vertex to minimize the energy function 4.1. Figure 4.2
shows the deformed meshes obtained after applying the transformations, which
are generated using the proposed approach of substituting different values of λ

on the given mesh. In Figure 4.2 we can see that if λ is small, mesh behaves as less
rigid and gives the very close result to the Figure 4.1 (b), but as λ increases, the
mesh behaves as more rigid. Therefore we can see some rotation effects to find
the closest deformation to the Figure 4.1 (b).

4.1.1 Optimization

We iteratively optimize the local transformation matrix Tk and the deformed posi-
tion p for each vertex given the input model and the handle positions after defor-
mation. Two alternating steps are applied in each iteration to make this tractable.
We optimize the transformation in the first step with the vertex positions fixed,
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and then we optimize the vertex positions in the second step given the transfor-
mation. In experiments, we study that considering relative energy as stoping cri-
teria will converge after 5-6 iterations. Because after some iterations, the change
in the energy becomes significantly less, but the function is non-convex, so there
may be more convincing deformation for the same energy. So we keep the number
of iterations as a stopping condition for this iterative algorithm.

Local Step:

Given the optimized vertex positions p′ the transformation Tk for each vertex k
is computed as follows. Let us denote the edge pi − pj as eij and corresponding
edge in the deformed mesh by e′ij. Then for single vertex we can rewrite Equation
4.1 as,

E(Tk) = ∑
(i,j)∈E(k,r)

wij

(
e′ij − Tkeij

)T (
e′ij − Tkeij

)
+ λ tr

((
Tk

TTk − I
)T (

Tk
TTk − I

))
where tr(X) denotes trace of matrix X. To get the optimal transformation we

minimize E(Tk). After simplification the optimization function can be rewritten
as,

argmin
Tk

tr
(

λTk
TTkTk

TTk − 2λTk
TTk + Tk

TTkBk − 2TkCk

)
(4.2)

In the optimization problem 4.2, Bk and Ck are 3× 3 matrices defined as,

Bk = ∑
(i,j)∈E(k,r)

wijeijeij
T

Ck = ∑
(i,j)∈E(k,r)

wijeije′ij
T

Using the gradient descent method, the optimization problem 4.2 can be solved,
and we will get local minima Tk that minimizes the energy function 4.1. For the
optimization and simplification, we refer to [12].

for the optimization problem 4.2 gradient can be calculated as,

E(Tk)

dTk
= 4λTkTk

TTk − 4λTk + 2TkBk − 2CT
k (4.3)
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Global step:

Simple approach for measuring the energy of a deformation of the mesh is to sum
of the the energy of all vertex, as expressed by Equation 4.1. Thus, we obtain the
following energy function:

E
(
S ,S ′

)
=

n

∑
k=1

 ∑
(i,j)∈E(k,r)

wij

∥∥∥(p′i − p′j
)
− Tk

(
pi − pj

)∥∥∥2

2
+ λ∥Tk

TTk − I∥2
F


(4.4)

Given the optimized transformation Tk, the proposed energy becomes a quadratic
function w.r.t. the deformed positions p′i. In Equation 4.4 the second term is not
dependent on p′i. So, the optimal position for p′i can thus be obtained by solv-
ing the linear system ∂E(S ,S ′)

∂p′i
= 0 as shown in the RC-ARAP [3], and reproduced

bellow for the sake of completeness.

∂E (S ,S ′)
∂p′i

= ∑
j∈N (i,1)

 ∑
k:(i,j)∈E(k,r)

2wij

((
p′i − p′j

)
− Tk

(
pi − pj

))

+ ∑
s:(j,i)∈E(s,r)

−2wji

((
p′j − p′i

)
− Ts

(
pj − pi

))

where {k|(i, j) ∈ E(k, r)} is the vertex set containing all the vertices whose r-ring
neighborhood covers the edge (i, j). Since wij = wji,

∂E(S ,S ′)
∂p′i

can be rewritten as,

∑
j∈N (i,1))

2wij

dij

(
p′i − p′j

)
− ∑

k:(i,j)∈E(k,r)
Tk

(
pi − pj

)

where dij is the number of elements in {k|(i, j) ∈ E(k, r)}. The linear system
∂E(S ,S ′)

∂p′i
= 0 gives,

∑
j∈N (i,1)

dijwij

(
p′i − p′j

)
= ∑

j∈N (i,1)
wij ∑

k:(i,j)∈E(k,r)
Tk

(
pi − pj

)
(4.5)

Equation 4.5 can be represented as linear system Ap′ = b. Assume that H
is the set of handle vertices with user specified positional constraints. For vertex
i ∈ H, the specified handle position is hi that can be put as a hard constraint
p′ = hi. To use this hard constraint we divide A into two matrices: A1 and A2.
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A1 contains all rows whose indices are handles, and A2 is used for the remaining
vertices. we also remove all columns whose indices are handles from A2.

4.1.2 Initialization

The starting guess for vertices p′ is obtained using laplacian editing [16] by sim-
ple linear minimization of ∥Lp′ − δ∥. under the positional modeling constraints.
where, δ = Lp are the Laplacian coordinates, and p and p′ is the matrix contains
absolute coordinates of the vertices of the reference mesh and deformed mesh
respectively. Although this method produces distorted results for large deforma-
tions, the subsequent iterations manage to recover. However, the convergence
may be slow for a significantly distorted initial guess.

Transformations are computed using the gradient descent method. It is also
required to use good initialization for transformation because gradient descent
gives local minima. We minimize the given energy function to initialize transfor-
mations.

E
(
Ci, C ′i

)
= ∑

j∈N (i)
wij

∥∥∥(p′i − p′j
)
− Ti

(
pi − pj

)∥∥∥2

2
(4.6)

Minimization of the Equation 4.6 with respect to Ti gives a closed-form solu-
tion.

The energy function in Equation 4.1 is not a convex function with respect to the
transformations T and is dependent on λ, r and initialization of vertices. Different
initialization leads to different deformed vertices positions, and gradient descent
gives the local minima.

4.1.3 Effects of normal

Consider a neighborhood of a vertex that contains all the co-planar edges in the
reference mesh and the deformed mesh. In this case, transformations are not full
rank. So multiple transformations are possible that transform the neighborhood

The solution is to consider the unit normal on the vertex and apply the trans-
formation on that unit normal. The normal can be obtained using cross-product
of any two non-parallel edges. After including normal, the optimization problem
can be re-written as,
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E
(
Ck, Ck

′) = ∑
(i,j)∈E(k,r)

wij

∥∥∥(p′i − p′j
)
− Tk

(
pi − pj

)∥∥∥2

2

+ λ∥Tk
TTk − I∥2

F + ∥n̂′k − Tkn̂k∥2
2

(4.7)

where n̂k and n̂′k are the unit normal of the kth vertex in the reference mesh and
deformed mesh respectively.

In this way, the rank deficiency problem is resolved, And the optimal transfor-
mation will be unique and invertible.

4.1.4 Deformation for submesh

In the proposed approach, if there are n vertices, there will be 9n unknowns for
the transformations and 3n unknowns for the deformed vertices’ position. When
we change the position of the handles, then the handle’s position will be fixed. If a
large portion of the mesh is used as a handle the transformations on these vertices
are also fixed. In this case, we can neglect some handles whose neighborhood also
contains only handles in the optimization process.

In other words, we are considering those vertices in a sub mesh with at least
one free vertex in their neighborhood. This is because the transformation applied
on that vertex will not be fixed. This will reduce the number of unknowns in the
optimization problem and takes less computation time.

(a) octopus mesh (b) sub mesh

Figure 4.3: Octopus mesh and its sub mesh used for the deformation

For example, If only one tentacle of the octopus is to be deformed, we keep the
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rest of the mesh fixed. The purple color represents the free vertices, and the yellow
color represents the handles in Figure 4.3. Octopus mesh contains 50001 vertices.
Among them, 45355 vertices are fixed, and only 4646 vertices are free (vertices on
tentacle). We can observe that number of free vertices is significantly less than the
number of total vertices. While optimizing, it takes unnecessary time to compute
the transformations for the handles. Instead of finding the transformations for
the whole mesh, we can compute the sub mesh of the one tentacle as shown in
Figure 4.3 (b) and deform only the sub mesh. It is visible that in the sub mesh,
free vertices are more and handles are less. For a vertex, the transformation is
fixed if all the positions of the vertices in its neighborhood are fixed. Because of
that, the sub mesh also contains some fixed vertices that have at least one free
vertex.

Now, the whole algorithm will be applied to the sub mesh, and after perform-
ing the deformation, we can compute the whole mesh.

4.2 Estimating λ

Using the proposed energy function given in Equation 4.1, we can also estimate
the rigidity of the object, i.e., λ.

Algorithm 1 Learn Material
procedure LEARN_MATERIAL(V1, V2, step_size, threshold)

Initialize i← 0, step← 0
λ0 ← 10−6

FIND_HANDLES(V1, V2)
λ f inal ← 0
while True do

de f ormed_V ← DEFORM(V1,λi)
step← step_size× ∥de f ormed_V −V2∥F
λi+1 ← λi + step
if λi+1−λi

λi+1
< threshold then

λ f inal ← λi+1
break

end if
i← i + 1

end while
return λ f inal

end procedure

The algorithm 1 takes two deformed meshes of the same object as input and
finds appropriate λ for that object. We designate one mesh as a reference mesh
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and the other as the final mesh. In the algorithm 1 v1 is the vertices matrix of the
reference mesh, and v2 is the vertices matrix of the final mesh. The assumption
is that the final mesh (v2) is the deformed version of the reference mesh (v1). The
idea is to deform the reference mesh to the final mesh using the proposed ap-
proach for an estimated λ. If the estimated λ is incorrect, the obtained deformed
mesh will be different from the final mesh. Based on the difference between the
deformed mesh and the final mesh (i.e., error in vertex position), change the value
of λ and repeat the process until the difference between the vertices of the de-
formed mesh and the resulting mesh becomes very small.

In the proposed deformation approach user needs to provide the handle po-
sitions, but while learning λ handles are unknown. We find the transformations
that minimize the energy function 4.6. We will get the identity transformation on
those vertices whose 1 ring neighborhood is not deforming, and we can consider
those vertices as handles.

If the relative change of λ is less than a fixed threshold, the algorithm will stop.
An algorithm 1 can also be used if more than two deformed meshes of the

same object are given. The approach is simple, estimate the value of λ for each
pair, and consider the maximum value among all the estimated λ.
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CHAPTER5

Experiments and Results

The experiments have been performed on different geometrical meshes: bar, cylin-
drical, and cactus mesh, to support the mathematical arguments discussed in
the previous chapter. Experiments are implemented on a Python backend using
NumPy and libigl[8] with the processing power of an Intel core i5 processor with
8 GB RAM.

Meshes Bar Cylinder Cactus

Vertices 722 4802 5261
Faces 1440 9600 10518

pre-computation 1.2 sec 7.5 sec 13.2 sec
Fastest time 1.7 sec 30.6 sec 132 sec
slowest time 11.4 sec 170.5 sec 261 sec
mean time 4.5 sec 100 sec 170 sec

Table 5.1: Details of meshes and corresponding computation time for deformation

Table 5.1 shows the information on the meshes and the corresponding com-
putation time for computing the deformed meshes. In Table 5.1 pre-computation
includes computing edges, normals and weights, finding r-ring neighbours and
r-ring edges, computing matrix A mention in global step Chapter 4 and initializa-
tion of the vertices position using Laplacian mesh editing [16].

5.1 Effect of different λ for same deformation

Figure 5.1 shows the results on bar mesh for different values of λ. The vertices
represented by yellow color are handles for deformation. r is set to 1, and the
number of iterations is 100. Initially, the value of λ is very small, i.e., λ = 0.01
shows non-rigid deformation. It can be observed from the Figure that, as the value
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λ = 0.01 λ = 0.1 λ = 0.5 λ = 1 ARAP

λ = 5 λ = 10 λ = 30 λ = 100 RC-ARAP

Figure 5.1: Effect of λ for same deformation for r = 1 and comparision with ARAP
and RC-ARAP(r = 2)

of λ increases, the deformation becomes more rigid. Ultimately, for a higher value
of λ, i.e., λ = 100, the deformation is similar to the ARAP result.

5.2 Effect of spatially varying λ

Figure 5.2 shows the results of different values of λ on different portions of the bar
mesh. The values of λ are depicted using different colors, as shown in the first row
of Figure 5.2. Higher the value of λ, darker the color. The largest value of the λ

is 30, and the smallest value is 0.01. Second row in Figure 5.2 shows the bending
effect on the mesh for corresponding values of λ in the first row. Similarly, the
third row shows the twisting effect on the mesh. It can be observed that there is
more stretching on the darker side that has a lower value of λ and the part of the
mesh with higher value of λ shows a more rigid behavior.

5.3 Deformation using spatially varying r-ring and λ

Along with rigidity, experiments are also performed on controlling the rigidity
of the neighborhood. To fulfill this purpose, we change the size of neighbour-
hood. Figure 5.3 shows the results on cylindrical mesh incorporating different
r-ring neighborhood. The first row of the image grid represents the λ values on
different mesh regions. Here, purple refers to λ = 0.001 and yellow refers to
λ = 1. The first column of the image grid represents the value of r. Here, purple
refers to r = 1 and yellow refers to r = 2. The entire image grid is constructed
as a combination of different values of λ for the selected neighborhood of rigidity.
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(A) (B) (C) (D) (E) (F)

Figure 5.2: Bar contains different λ values for the different regions
.

For example, sub-figure 2A shows less rigidity, and the neighborhood chosen for
rigidity is 1-ring. The last column (column-F) shows the results of the Rigidity
control ARAP[3] method considering corresponding neighborhoods.

The deformation shown in Figure 5.3 had a bending effect. Identical experi-
ments are done on the cylindrical mesh for the twisting deformation. These results
are shown in Figure 5.4.

5.4 Comparison with Laplacian mesh deformation

In Figure 5.5 (a), handles are represented in yellow, and purple shows free ver-
tices. The 2-ring neighborhood is represented in pink, and the 1-ring neighbor-
hood is represented by blue in (b). Green represents λ = 50 and orange rep-
resents λ = 0.01 in (c). (d) and (e) is the deformation of the laplacian mesh
edition(initialization) and proposed method. The green portion in (c) and pink
portion in (b) show high rigidity. In the Laplacian mesh deformation, the middle
portion of the cactus is squeezed, but the proposed approach is able to preserve
thickness and appears more natural.
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(1)

(2)

(3)

(4)

(5)
(A) (B) (C) (D) (E) (F)

Figure 5.3: Bending deformation on Cylinder using different r-ring(column A)
and λ(row 1)

(1)

(2)

(3)

(4)

(5)
(A) (B) (C) (D) (E) (F)

Figure 5.4: Twisting deformation on Cylinder using different r-ring(column A)
and λ(row 1)
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(a) (b) (c) (d) (e)

Figure 5.5: Deformation of cactus with different r-ring and λ, (a) Handles (b) r-
ring (c) λ (d) Laplacian mesh editing deformation (e) deformation using Proposed
method

(a) (b) (c) (d)

Figure 5.6: deformation of the the octopus mesh (a) to (d) by deforming only one
the tentacle (b) to (c)

process computational time
Computation of sub mesh (a) to (b) 5.6 sec
Deformation of sub mesh (b) to (c) 155.6 sec
Restore the whole mesh (c) to (d) 2.2 sec

deform the whole mesh
without computing sub-mesh (a) to (d) 700 sec

Table 5.2: computational time distribution for Figure 5.6
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 5.7: Meshes used to estimate rigidity(λ)

5.5 Deformation using sub mesh

As shown in Figure 5.6, we want to deform one octopus tentacle represented by
the purple in (a). Time distribution is shown in the Table 5.2. Generating a de-
formed mesh (d) takes nearly 700 seconds if we deformation the whole octopus
mesh. However, if we extract one tentacle as sub mesh and deform it only, that
tentacle takes 163.4 seconds to deform during mesh.

5.6 Experiment for Estimating λ

To show the experiment of the estimating λ, we use three different deformed
meshes, as shown in the Figure 5.7 of the bar mesh. Mesh 2 and Mesh 3 are
generated from Mesh 1 using λ = 30. The result of the estimation of λ is given in
Table 5.3.

The Figure 5.8 algorithm minimizes the difference between deformed and re-
sult mesh vertices. As λ increases, we can see that the difference between vertices’
location decreases. Because the rate of change in λ is dependent on the differ-
ence between all vertices of the deformed mesh and the resulting mesh after some
value of λ deformation remains the same. The algorithm converges at λ = 8.052.
We can consider the largest value of λ among all predicted values of λ. In this
experiment, we are not getting the exact λ. one can conclude from this is, using
the estimated λ, we can get similar deformation that shows that to perform this
particular deformation, we do not need too much rigidity.

Figure 5.9 shows the output of the deformations using estimated λ where col-
umn number represents the final mesh, and row number represents the reference
mesh.
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Figure 5.8: λ vs ∥de f ormed_V −V1∥F for Mesh 3 as reference mesh and Mesh 1 as
final mesh

Reference mesh Final mesh Estimated λ
Mesh 1 Mesh 2 5.557
Mesh 1 Mesh 3 1.920
Mesh 2 Mesh 3 20.471
Mesh 2 Mesh 1 23.123
Mesh 3 Mesh 1 8.052
Mesh 3 Mesh 2 5.557

Table 5.3: Learned λ from reference mesh and final mesh
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(1)

(2)

(3)
(1) (2) (3)

Figure 5.9: Deformed meshes using Learnt λ where row number represents refer-
ence mesh and column number represents final mesh

31



CHAPTER6

Conclusion and Future Work

The proposed approach gives all functionality of ARAP and RC-ARAP. It also re-
moves the limitations of both methods providing the choice to control the r ring
neighborhood’s local rigidity, as well as allows spatially varying rigidity control.
We have also proposed a method to estimate the rigidity of a mesh from exam-
ples. Our algorithm, by design, provides the least rigidity required to produce the
examples.

As of now, the deformation algorithm runs much slower than interactive speeds.
The bottleneck is gradient descent based optimization. We want to explore faster
optimization methods and parallel implementation to reach interactive speeds.
Estimating the rigidity of the mesh is currently a preliminary study. Faster exe-
cution time working with a larger set of meshes and estimating spatially varying
rigidity are some future directions we would like to explore.

32



References

[1] "types of mesh - wikipedia". https://en.wikipedia.org/wiki/Types_of_

mesh. (Accessed on 05/17/2022).

[2] A. I. Bobenko and B. A. Springborn. A discrete laplace–beltrami operator for
simplicial surfaces. Discrete & Computational Geometry, 38(4):740–756, 2007.

[3] S.-Y. Chen, L. Gao, Y.-K. Lai, and S. Xia. Rigidity controllable as-rigid-as-
possible shape deformation. Graphical Models, 91:13–21, 2017.

[4] W. Frei. "meshing your geometry: When to use the various el-
ement types | comsol blog". https://www.comsol.com/blogs/

meshing-your-geometry-various-element-types/. (Accessed on
04/29/2022).

[5] L. Gao, Y.-K. Lai, J. Yang, L.-X. Zhang, S. Xia, and L. Kobbelt. Sparse data
driven mesh deformation. IEEE transactions on visualization and computer
graphics, 27(3):2085–2100, 2019.

[6] A. Jacobson, I. Baran, J. Popovic, and O. Sorkine. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph., 30(4):78, 2011.

[7] A. Jacobson, Z. Deng, L. Kavan, and J. P. Lewis. Skinning: Real-time shape
deformation (full text not available). In ACM SIGGRAPH 2014 Courses, pages
1–1. 2014.

[8] A. Jacobson, D. Panozzo, C. Schüller, O. Diamanti, Q. Zhou, N. Pietroni, et al.
libigl: A simple c++ geometry processing library, 2018.

[9] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Geometric skinning with
approximate dual quaternion blending. ACM Transactions on Graphics (TOG),
27(4):1–23, 2008.

[10] L. Kavan and J. Žára. Spherical blend skinning: a real-time deformation
of articulated models. In Proceedings of the 2005 symposium on Interactive 3D
graphics and games, pages 9–16, 2005.

33

https://en.wikipedia.org/wiki/Types_of_mesh
https://en.wikipedia.org/wiki/Types_of_mesh
https://www.comsol.com/blogs/meshing-your-geometry-various-element-types/
https://www.comsol.com/blogs/meshing-your-geometry-various-element-types/


[11] P.-O. Persson and G. Strang. A simple mesh generator in matlab. SIAM
review, 46(2):329–345, 2004.

[12] K. B. Petersen and M. S. Pedersen. The matrix cookbook, Oct. 2008. Version
20081110.

[13] X. Shi, K. Zhou, Y. Tong, M. Desbrun, H. Bao, and B. Guo. Example-based
dynamic skinning in real time. ACM Transactions on Graphics (TOG), 27(3):1–
8, 2008.

[14] J. Solomon. Numerical algorithms: methods for computer vision, machine learning,
and graphics. CRC press, 2015.

[15] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In Sympo-
sium on Geometry processing, volume 4, pages 109–116, 2007.

[16] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel.
Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, pages 175–184, 2004.

[17] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović. Mesh-based inverse
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