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Abstract

With the development of modern digital cameras and CCTVs, our cities and their
important public places can now be monitored 24x7 around the clock. Traditional
video analytics methods necessitate ongoing surveillance monitoring, which is
time-consuming. A lot of human resource is needed for running such systems
to observed and react to any abnormal event. Hence there is a need to develop
automatic video anomaly detection systems to reduce the dependency on human
resources. An anomaly can be described as an extraordinary event or an emer-
gency that differs from the norm. Finding and classifying anomalies in videos is
known as video anomaly detection. This thesis discusses the various algorithms
and techniques that are used to create anomaly detection systems. We have pro-
posed a model using Multiple Instance deep learning network for solving the
problem of video anomaly detection. We have used the two-stream Inflated 3-
D Convolutional Neural Network (I3D) for feature extraction from the RGB and
optical flow data stream. We propose a modified loss function based on the deep
ranking loss criteria to improve the model’s effectiveness. For training and testing
the model, we have used the UCF-Crime dataset. To check the model’s effective-
ness, we have used the Area Under Curve (AUC) value of the Receiver Operating
Characteristic (ROC) curve and compared it with the state of the art methods We
have also compared the loss resolution of the standard ranking loss function with
that of our modified loss function. Finally we have compared the anomaly ac-
tivity classification accuracy of our proposed model with that of the state of art
models.

v



List of Tables

4.1 Comparison of various video anomaly detection datasets. . . . . . 24
4.2 Comparison of AUC values of the ROC curve for UCF-Crime dataset 27
4.3 Comparison of the overall classification accuracy of the proposed

model with state of the art methods. . . . . . . . . . . . . . . . . . . 29

vi



List of Figures

1.1 Various types of abnormal events seen in cities. . . . . . . . . . . . . 3

2.1 A bare-bones architecture of deep learning based video anomaly
detection model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 C3D network architecture. . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The architecture of I3D network along with the Inception-V1 mod-

ule [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 An example of the idea behind Multiple Instance learning technique. 14

3.1 The working of the two-stream I3D network . . . . . . . . . . . . . 17
3.2 The training process of the proposed MIL model with ranking loss

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 A sample snapshot from video snippets of various types of anoma-
lies of the UCF-Crime dataset. . . . . . . . . . . . . . . . . . . . . . . 24

4.2 The total number of samples of each type of anomaly adding to 950
in UCF-Crime dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 The value of loss function after each epoch for both the original and
modified ranking loss function (k = 5). . . . . . . . . . . . . . . . . . 26

4.4 ROC plot of Sultani et al. (maroon), our model with original and
modified loss function (yellow and blue respectively). . . . . . . . . 27

4.5 Sample confusion matrix the values for class with label 3 are high-
lighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 The confusion matrix for anomaly classification model. . . . . . . . 29

vii



CHAPTER 1

Introduction

In the past few decades, we have seen an increase in the number of crimes ranging
from acts of vandalizing public property by a mob to terror incidents. Our law en-
forcement agencies carry out video surveillance to avoid escalation of such events
and provide a rapid response to quell them. Technological development has also
led to a significant improvement in the quality of the videos collected, resulting
in a significant increase in the volume of information stored. There is, therefore,
a need to process a large amount of information in the form of video files. His-
torically, such processing has been done manually, consuming many human re-
sources. Today, the speed at which this information is generated, and the sheer
volume of information generated daily, make it almost impossible to manage this
information manually in a thorough, exhaustive, and adequate manner. This in-
formation must be processed in real-time as much as possible since rapid response
in emergencies is crucial to reduce the effects of a potential catastrophe. Thus, the
need for automatic video monitoring systems has arisen to analyze video footage
for anomalous activities and incidents.

Anomaly detection is described as the process of finding outliers in a set of
data points that do not conform to the significant cluster of the dataset. Such
points deviate from expected values. An anomaly can be an abrupt change in the
values when historical data might show the values to be constant or converse. It
is difficult to judge whether a given deviation is good or bad without having any
context based on previous data [1]. Thus it is necessary to create comprehensive
datasets to create a model for what can be termed as “normal” behavior. An-
other important aspect is the need for a quantifiable metric to decide the degree
of anomaly, an anomaly score. We now describe the idea behind creating video
anomaly detection systems and the motivation for using deep learning.

Video anomaly detection [1] is a branch of research whose objective is the anal-
ysis of multiple real-time video sources for the automatic extraction of relevant
information related to the behavior of individuals and to notify the presence of
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abnormal behavior patterns. This research area brings together two necessary
fields of work within the machine learning/deep learning domains; computer vi-
sion and time series analysis. Since the most common type of data in this context
is video sequences, information has to be extracted from each frame. The infor-
mation extracted from these individual frames is then analyzed over the temporal
domain to get more context from them.

Video anomaly detection systems focus on the following tasks of video analy-
sis :

1. Detection and tracking of individuals

2. Counting and density estimation of individuals

3. Behavior analysis and classification

4. Detection of anomalous behaviors

Tasks 1 and 2 have been extensively studied, and classical learning models are
found to provide sufficiently good results. However, when it comes to tasks 3 and
4, the traditional machine learning methods are ineffective. Today, the volume of
video information has increased, along with our computational capacity. Hence
we can use deep learning techniques as they thrive on a large volume of data.
In this thesis, we predominantly focus on the problem of anomalous behavior in
video sequences by analyzing the images or image segments using deep learning
techniques. We now describe the various characteristics of anomalies found in
surveillance videos.

1.1 Characteristics video anomalies

The anomalies that are found in surveillance videos are abnormal behavior pat-
terns of the general public [1] depending upon the location. The anomalies in
video footage [2] from places like a traffic stop, banks, and house backyards can
potentially alert for the occurrence of a violent crime, accidents, robberies, etc.
On the other hand, the abnormal incidents at public places like banks and traffic
signals would be different. Hence, we need to analyze video information from
diverse environments to learn anomalous behavior patterns. Figure 1.1 shows
some anomalies we encounter in the public places like road accidents, armed rob-
bery, vandalizing public property, public shooting. When it comes to analyzing
the behavior of individuals, we limit ourselves to human-human and human-
environment interactions [3]. When we consider anomalies in public places, the
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density of crowds surrounding the location plays an important role; hence, crowd
density is essential in such cases. In a place like a crowded railway station, anoma-
lies like a stampede or panic dispersion situation are quite different from two
people fighting or a thief trying to steal. In a surveillance video, the anomaly can
occur in a fixed time slice, and the rest of the video can be “normal”, also in a
given clip (set of continuous frames), the anomaly can occur only in a localized
spot, and the rest of frame might be unchanged.

Figure 1.1: Various types of abnormal events seen in cities.

1.2 Motivation

The problem of finding anomalies in videos is critical in smart city management,
such as traffic control and criminal investigation. Unlike other anomaly detection
tasks that can yield clear unusual signals, video anomaly identification necessi-
tates video analysis. For carrying out such analysis manually around the clock
and everyday, many human resources would be utilized. Hence there is a need
for automatic video anomaly detection systems. Research in automated video
anomaly detection systems is of great practical importance as it can help reduce
the large amount of human effort needed to carry out surveillance. Furthermore,
it can help develop better systems to identify an anomalous event and send an
alert to resolve such incidents.
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1.3 Aims and objectives

The primary aim of this thesis is to construct a video anomaly detection system
based on the latest deep learning techniques. We aim to use a two-stream feature
extraction network to provide a composite feature vector to train our deep learn-
ing classifier. Another aspect we focus on is modifying the standard loss function
to improve the accuracy and reduce the training epochs of the classifier. As we
are dealing with videos, the aim is to extract more contextual information from
multiple anomalous video segments, thus increasing the size of the temporal di-
mension resulting a more effective classification model.

1.4 Organization of the thesis

The thesis henceforth is organized as follows:
In chapter 2, we provide the literature survey. We provide a brief history of this

problem, and the initial approaches proposed to tackle this problem. In chapter 3,
we propose our method for creating a video anomaly detection system. Chapter
4 provides the details of the datasets we use for training and testing the models.
We analyze the performance of our model on various parameters with the state of
the art methods. Chapter 5 concludes the thesis and provides potential pathways
for future work in this domain.
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CHAPTER 2

Literature Review

This chapter describes the three major strategies, including traditional image anal-
ysis techniques like object tracking, orientation and motion of people, and their
interactions. Then we look at the classical machine learning techniques like su-
pervised learning and non-supervised clustering. Finally, we describe the deep
learning architectures used for creating anomaly detection systems.

2.1 Handcrafted feature based video anomaly detec-

tion

Traditional methods of video anomaly detection rely on low-level features ex-
tracted from consecutive frames. They rely on annotations of every frame to find
the area of interest in the entire visual scene. An area of interest can be a person or
object, and their location or orientation changes. Fernyhough et al. [4] proposed
one of the earliest methods to find such areas in images called semantic regions.
They proposed a 2-D tracking technique that used surveillance footage to create
paths for the entities in the scene. These trajectories are then compared to detect
irregular patterns in the motion of obejcts or people.

2.1.1 Trajectory based approaches

The concept behind clustering-based approaches is that an anomaly is usually un-
expected and appears in a wide variety of videos. As a result, these algorithms can
learn regular trajectories from ordinary video occurrences. Tung et al. [5] present
a goal-based framework based on a mix of three models. A spatial scene model is
learned in the training phase; a region transition model is trained to incorporate
movement statistics between spatial regions, and trajectories in progress are iden-
tified using particle filtering in a probabilistic framework. These models perform
a trajectory analysis for abnormal patterns in the paths followed by people and
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provide a probability of the presence of an anomaly. Calderara et al. [6] have pro-
posed a trajectory analysis method by using spectral graphs. They have created a
representation of the trajectory paths by randomly selecting points on them using
Voronoi tessellation. A Voronoi tessellation divides a plane into zones that are
near to each of a set of objects. These objects can be a finite number of points in
the plane called seeds, sites, or generators. There is a Voronoi cell for each seed,
consisting of all points in the plane closer to that seed than any other. Transi-
tions between neighboring Voronoi cells are represented as vertices in the graph,
and a set of two successive transitions are represented as weights on the graph
edges. The movement of people in various Voronoi cells is then analyzed using
the spectral graphs to find anomalous patterns.

2.1.2 Low-level feature extraction

Trajectory-based methods are overly reliant on tracking the entities’ motion and
their location in the frame. Furthermore, these methods are complex and chal-
lenging to use in clustering techniques. To overcome this issue, low-level feature
extraction techniques are used. Low-level feature extraction approaches concen-
trate on low-level video displays such as greyscale shifts, moving flow vectors,
and textures. Adam et al. [7] have provided a multi-camera framework to moni-
tor optical flow vectors from various orientations. They have aggregated the flow
vectors from multiple cameras to detect alarming frames. Wang et al. [8] have
proposed a texture-based video anomaly localization and detection technique.
They have given a novel Robust Principal Component Analysis (PCA) video fore-
ground localization technique to locate the anomaly areas. They combined the
Light Gradient Patterns (LGP) for textures and optical flow vectors and proposed
a one-class classification method.

2.2 High-level feature based video anomaly detection

methods

In image analysis, high-level features are built using low-level features like tex-
ture, flow vectors, Scale Invariant Feature Transform(SIFT), etc. High-level fea-
tures are layered on top of low-level features to detect objects and larger shapes
in the image. These features have been used to create machine learning models
based on clustering methods. The anomaly detection approach of Lu et al. [9] was
based on computing gradient-based features on high frame rate videos. They uti-
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lized a dictionary-based system to learn normal activity features and used them
to create a model. Hasan et al. [10] have implemented an autoencoder-based ap-
proach to detect temporal irregularities in consecutive video frames. Yang et al.
[2] have used spatio-temporal features to train an autoencoder to detect abnormal
actions in large crowds.

In [11] they have used a Gaussian Mixture Model (GMM) to create a clustering
model using the feature vectors. A new framework for detecting anomalies was
introduced in [11] for weakly or partially labeled datasets. The datasets used
for video anomaly detection are usually unlabelled; hence clustering algorithms
are prevalent for creating models. However, clustering techniques are ineffective
in detecting abnormal behavior when the changes are not very distinct. These
models are prone to high false alarm rates [1] and are not very effective in creating
a generalized solution [12]. Liu et al. [13] have proposed a Generative Adversarial
Networks(GANs) model to detect outliers in nonlabelled datasets. The advantage
of using GANs is that they can adapt to any unseen change by updating the model
from real-world data.

2.3 Deep learning based video anomaly detection

A deep learning-based video anomaly detection system combines a feature extrac-
tor and a deep learning classifier. Feature extraction is converting the information
from the raw or original form into a vector space. This involves converting an
image or a sequence of images into an N-dimensional vector based on contextual
features in the computer vision domain. The main task of the classifier is to use
the feature vector to identify the presence of an anomaly in the video. A bare-
bones video anomaly detection system is illustrated in Figure 2.1. The video is
divided into fixed frame count snippets and then passed through a 3D Convo-
lutional Neural Network (CNN). The CNN extracts contextual spatio-temporal
features, and then the feature vectors are used to train the classifier. We will now
look at the CNN-based feature extraction networks and the various learning tech-
niques to train the classifier.

2.3.1 Feature extraction with 3D CNN

CNN is a deep learning technique for analyzing data by applying a series of con-
volutions one after another, which reduce the dimensionality of the input space.
A convolution is a function that expresses the amount of overlap of one function
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Figure 2.1: A bare-bones architecture of deep learning based video anomaly de-
tection model.

as it is shifted over another function. It "blends" one function with another. Next,
a pooling layer also reduces data dimensionality by taking either an average or a
max value from a block of convoluted values. These are then passed on to the next
layer of convolutions and poolings until the desired result is achieved. Unlike
other neural networks, CNNs have replaced the matrix multiplication layers with
the convolution layers. As a result of this change, the computation complexity is
reduced, leading to lesser resource consumption. Furthermore, due to the nature
of their architecture, individual images can be directly passed into the networks
as input. There is no need for any traditional feature extraction or dimensionality
reduction. CNNs are capable of extracting both low-level and high-level features
and provide a combined result. For all these features, CNN has been the most suc-
cessful and popular NN architecture, especially for image analytics. We require
3D CNN networks to factor in the extra temporal dimension for feature extrac-
tion from videos. We now describe the popular 3D CNN for extracting spatio-
temporal features from consecutive video frames along with the alogorithm for
extracting optical features. We also describe the weakly supervised deep learning
techniques and also provide a justification for using them.

The 3D Convolutional Neural Network (C3D)

One of the most widely used CNN models is the C3D model developed on the
UCF-101, and Sports-1M action recognition datasets by Tran et al.[14]. Action
recognition is the task of classifying the actions performed in videos. C3D is a
deep 3-dimensional convolutional neural network with a homogenous architec-
ture containing convolutional kernels followed by max-pooling at each layer. 2D
ConvNets like Alexnet or ResNet focus only on the spatiometric changes and av-
erage the temporal information across frames. The architecture of the C3D net-
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work is shown in Figure 2.2. Hence they are not particularly effective at action
recognition. The 3D convolutions extract features relating to the motion of ob-
jects, human actions, human-scene or human-object interaction, and the appear-
ance of those objects, humans, and scenes. The deeply interconnected nature of
C3D allows it to pick up changes in the spatiometric features along the temporal
dimension. This makes sure that C3D filters selectively focus on appearance and
motion at different instants of a video segment.

The first layer of the C3D network is a 1x3x3 convolution layer, followed by
a 1x2x2 pooling layer. This is done so that the temporal information is preserved
in the first layer, and higher-level representations of the temporal information
can be built in the network’s following levels. Each subsequent convolution and
pooling layer would be 3x3x3 and 2x2x2, respectively, with strides of 1 and 2.
The activation function at each layer is ReLu (Rectified Linear activation f (x) =

max(0, x)), the final fully connected layer has a sigmoid activation function. The
final fully connected layer (fc7 in Figure 2.2) provides a 4096-D feature vector. The
sigmoid function flattens this into a softmax out, reflecting 101 classes from the
UCF-101 dataset or 487 classes from the Sports 1M dataset. For anomaly detection,
we do not pass the output of the final fully connected layer through the softmax
classification; rather, we use the output to train the classifier.

Figure 2.2: C3D network architecture.

Inflated 3-D Convolutional Neural Network (I3D)

The temporal element is one of the critical differences between information in a
single image and information in a video. As a result, deep learning model archi-
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tectures have been inflated and improved to include 3D processing with temporal
data. I3D is one such 3D ConvNet introduced by DeepMind and the University
of Oxford researchers in [15]. This network was trained on the Kinetics Human
Action Video Dataset [16], which has around 400 human actions categorized in
it. The I3D network is initialized with a 2D architecture and inflated by the nu-
merous convolution filters and pooling kernels. The inflating process adds the
temporal dimension, thus making it a 3D capable network. The initial layer of the
I3D net is bootstrapped with the parameters of a 2D dense CNN trained on a large
dataset like ImageNet. The same parameters are then applied to N such images
to form a snippet. A layer of max and average pooling aggregates the result of
multiple frames. Thus, it works like a dense CNN applied on consecutive frames
aggregating the results for each one.

Another feature of the I3D network is its large receptive field of pooling and
convolution layers. A receptive field for a CNN is defined as the part of the im-
age that a filter can process at one time. The size of the receptive field increases
as the number of layers in the network increase. 2D convolutions and pooling
are symmetrical since they focus on the image’s height and width. However, the
appropriate receptive field must be determined when a temporal dimension is
added, dependent on the frame rate and image size. Suppose the receptive field
increases too quickly in time compared to space. In that case, it may mix edges
from various objects, breaking early feature identification, as pointed out by Car-
reira et al. [15]. The receptive field may not capture scene dynamics as well if it
increases too slowly. Because of the added time dimension, the kernels in I3D are
not symmetrical, and layers are deeper than in other action recognition networks
like C3D.

The architecture of the I3D network is shown in Figure 2.3 with all the layers
and the Inception-V1 module. The stack on N images is input into the first 7x7x7
convolution layer with the weights of a dense CNN architecture. Subsequently,
the network applies max-pooling to increase the receptive field, as shown in the
diagram. The receptive field is represented as TxWxH, where T denotes the num-
ber of frames (size of temporal dimension), and WxH denotes the size of the image
being processed at a time. The final size of the receptive field is 99x539x539 which
is large enough to cover any substantial part of a video. The Inception-V1 mod-
ule significantly increases the size of the receptive field in the spatial dimension,
making it wider. The advantage of using a Inception module is that it greatly re-
duces the number of computations needed to perform a convolution by applying
smaller convolutions repeatedly than applying one large at a time. The final fully
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Figure 2.3: The architecture of I3D network along with the Inception-V1 module
[15]

connected layer applies a sigmoid activation function to output a 1024D dimen-
sion vector which can be used to train the classifier.

2.3.2 Optical flow and the TV-L1 algorithm

We have seen various CNNs for extracting spatio-temporal RGB features from
video frames. However, when it comes to analyzing videos, tracking the motion
of various entities in the frame is essential. The pattern of apparent motion of ob-
jects, surfaces, and edges in a visual scene induced by the relative motion between
an observer and a scene is known as optical flow. The distribution of apparent ve-
locities of movement of a brightness pattern in an image is also known as optical
flow.
Mathematically, optical flow is defined for every pixel (x, y) at time t as the change
in the value of the intensity I(x, y, t) of its over a time interval ∆t between two
consecutive frames as follows ,

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (2.1)

After applying Taylor series expansion and truncating the higher order terms,

δI
δx

∆x +
δI
δy

∆y +
δI
δt

∆t = 0 (2.2)
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after dividing by ∆t let ∆x
∆t = Vx, ∆y

∆t = Vy the expression becomes,

δI
δx

Vx+
δI
δy

Vy+
δI
δt

= 0 (2.3)

This is the Optical flow equation, here Vx, Vy represent the velocity or flow in
the x and y direction respectively, taking the arctan(Vy/Vx) gives the direction of
flow. δI

δx , δI
δy , δI

δt are the partial derivatives of I(x, y, t). There are two unknowns
in this equation Vx and Vy, to solve the equation various methods have been
proposed based on certain assumptions. The TV-L1 algorithm is based on the
Horn–Schunck method of optical flow estimation. Equation 2.3 can be written in
vector operator form as follows with vector field u(x, y) = (u1(x, y), u2(x, y))

∇I.u +
δI
δx

= 0 (2.4)

The TV-L1 algorithm

The optical flow constraint given by Equation 2.4 is an underdetermined linear
system. The addition of a smoothness requirement, which somehow causes u to
be regular, is a common technique to solve underdetermined systems. Horn and
Schunck proposed choosing the u that minimizes the following function:

∫
Ω

(
∇I.u +

∂I
∂t

)2

+ α
(
|∇u1|2 + |∇u2|2

)
(2.5)

Standard methods may easily handle this minimization problem, and the result-
ing flow estimates are adequate for many tasks. The |∇1|2 + |∇u2|2 term’s funda-
mental flaw penalizes high u gradients and essentially eliminates discontinuities.
If the image data is continuous in time, Equation 2.4 is appropriate. To accom-
modate for general image sequences, this equation is typically substituted by the
non-linear formulation I1(x + u) − Iox = 0. Using Taylor expansions, the non-
linear term I1(x + u) can be linearized, yielding the equation below,

∇I1

(
x + u0

)
.(u − u0) + I1(x + u0)− I0(x) = 0 (2.6)

here u0 is a close approximation of u. By modifying the quadratic components in
the Horn–Schunck functional, it is possible to enable discontinuities in the flow
field, resulting in the approach detailed here. The TV-L1 algorithm minimizes
the following function, which is the sum of the overall fluctuation of u and an L1
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attachment term. ∫
Ω
|∇u1|+ |∇u2|+ λ |ϱ(u)| (2.7)

Sanchez et al. [17] have used the convex relaxation approach to minimize this
function. The final equation Eθ(u, v) is,

Eθ(u, v) =
∫

Ω
|∇u1|+ |∇u2|+

1
2θ

|u − v|2 + λ |ϱ(v)| (2.8)

When uand v are approximately equal, the minimum of E occurs, reducing to
the original value of E, described in Equation 2.7. This relaxation is interesting
because E can be minimised by fixing one of u or v and solving for the other vari-
able. The Equation 2.8 provides an approximate value of optical value, Sanchez
et al.[17] have proposed a solution of this equation in their work known as TV-
L1 algorithm. When uand v are approximately equal, the minimum of E occurs,
reducing to the original value of E, described in Equation 2.7. This relaxation is
interesting because E can be minimized by fixing one of uor v and solving for
the other variable. To solve Equation 2.8, the algorithm proposes a two-step ap-
proach,

1. Fix v and find the minimum value of u,

minu

∫
Ω
|∇u1|+ |∇u2|+ 1/2θ |u − v|2 (2.9)

2. Fix u and find the minimum value of v,

minv

∫
Ω

1/2θ |u − v|2 + λ |ρ (v)| (2.10)

This two-step solution provides an estimate of the optical flow data, which then
can be used to analyze the magnitude and direction of relative motion between
objects in contiguous frames.

2.3.3 Weakly supervised learning for classification

Weakly supervised learning [1, 18] is a branch of machine learning that deals with
this challenge of weakly labeled datasets where the granularity of the labels is low.
Weakly supervised algorithms rely on less data point information than supervised
algorithms. They use similarity assessments on tuples of data points, such as pairs
of similar and dissimilar points, as input instead of labeled points.

13



Why use weakly supervised learning?

As shown in Figure 2.1 every video in the dataset is divided into non-overlapping
snippets. The number of frames in each snippet depends on the architecture of the
feature extraction network. Hence, the snippet or snippets containing the anoma-
lous activity would differ based on our network. Furthermore, the most popular
datasets do not provide segment-level labels.[19, 20, 21, 22]. It would also be very
tedious to label every snippet of all the videos in the dataset. As a result, we
rely on weakly supervised learning techniques to train our deep neural network
model.Weakly supervised learning techniques also reduce the need for manual
annotations for each datapoint. For these reasons we will be using a weakly su-
pervised learning technique known as Multiple Instance Learning (MIL).

Multiple Instance Learning (MIL)

It is a weakly supervised learning technique in which the training data points are
grouped in distinct sets called bags [23]. These bags are then provided with la-
bels rather than individual instances. MIL is a very efficient technique for using
large datasets without having labels for each data point, reducing the need to label
each instance. There are two types of bags in a typical binary classification prob-
lem: positive and negative. MIL technique assumes that there are only negative
instances in a negative bag, whereas there is at least one positive instance in a pos-
itive bag [24]. Consider Figure 2.4 where three people have three keychains, and

Figure 2.4: An example of the idea behind Multiple Instance learning technique.

each keychain has multiple keys. The people holding the keychains only know
whether their bunch has the correct key, but they don’t know which key opens
the door. MIL model works on this concept and figures out that the green key
opens the door. The training data in a MIL model is in represented as a set of bags
Xtrain_set = {X1, X2, X3, X4, ....} with labels Ylabels = {Y1, Y2, Y3, Y4, ....}. The bags
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contain the actual train samples which are used to train the classifier, each bag is
can be represented as, X1 = {x1, x2, x3, x4, ....}. The MIL algorithm tries to find
which of the samples from the set X1 can be mapped to the label Y1 without the
need of instance level labelling.

In MIL, the model learns from both the positive and the negative instances,
widening the scope of information that can be processed. Sultani et al. [9]; have
trained a deep neural network model based on the MIL technique using the spatio-
temporal features. They have used both normal and abnormal videos to train their
model. The success of this model led to more techniques developed on the MIL
technique. Tian et al. [25] proposed a novel approach based on a variation of
the MIL model that they termed Robust Temporal Feature Magnitude learning
(RFTM). They have created a Multiscale Temporal Network(MTN) for improving
the context in the temporal space. Feng et al. [26] have provided a model with au-
tomated annotation generation to tackle the problem of manual annotations. They
combine a pseudo-label generator with Self Guided Attention (SGA) encoder on
the MIL model to create an automated video anomaly detection system. After ob-
serving the recent trends in this domain, we decided to use the MIL technique to
train our deep learning network.
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CHAPTER 3

Proposed work

As shown in Figure 2.1, the two principle modules of a video anomaly detection
system are the feature extractor and the classifier. In our model, we use the two-
stream I3D network for feature extraction, then use these feature vectors to train
the MIL network using the ranking loss criteria. We propose a modification to
the standard ranking loss function specific to the problem of anomaly detection
of videos. The MIL network scores every video on a scale of 0 to 1. The higher the
score greater the chances of finding the anomaly in that video. We now discuss
the various modules of the proposed architecture.

3.1 Feature extraction using a two-stream I3D network

The I3D model we use is a composite of RGB and Optical flow data of contigu-
ous video frames. The RGB features are extracted from the same I3D network
described in Section 2.1.1. For extracting the Optical flow features, we first extract
the Optical flow data from consecutive video frames by the TV-L1 [17] algorithm.
The Optical flow data is then passed through another I3D network, and the fea-
tures from the RGB and Optical flow are concatenated to create a composite fea-
ture vector. The 1024 features from both are concatenated to create a final feature
vector of 2048 features. We use this composite feature calculated for each snippet
to train the MIL network. Figure 3.1 shows the process feature extraction from
the two-stream network. It is important to note that we do not perform a soft-
max classification to detect the action in the video. The original I3D network was
created to recognize human actions and classify them. Instead, in our case, we di-
rectly use the output fully connected layer as input to our classification network.
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Figure 3.1: The working of the two-stream I3D network

3.2 The MIL network for video classification

The data needs to be split into positive and negative bags for training the MIL
model. In the case of video anomaly detection, a positive bag is the set of snippets
in which at least one snippet is from an anomalous video, and a negative bag has
only snippets from normal videos. As explained in section 3.1 we have extracted
the two-stream I3D features, which are then used to train the fully connected MIL
neural network. The anomaly video (positive bag) and the normal video (negative
bag) are divided into non-overlapping contiguous video segments (instance of the
bag). A video is thus a collection of N such snippets Vi where i is {1, 2, 3, ...N} .
Any video is thus represented as v = {Vi }N

1 is labelled as a positive bag Ba if at
least one of the N-snippets is anomalous and is negative bag Bn otherwise. y is
the label for each bag and y = 1 for a Ba or y = 0 for Bn. Both these bags are
passed through a function f (x) which then provides a score for each snippet, a
max-pooling is performed to determine the highest score, and then that bag is
scored as per the max value. This score per bag is used as a parameter for ranking
loss calculations. The objective behind using the ranking loss is to ensure that the
abnormal video snippet gets a higher score than the normal.
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3.2.1 Ranking loss

Ranking loss is based on the process of metric learning. It aims at predicting
the relative distances between different inputs. Ranking loss functions are pretty
flexible in training data: We only require a similarity score between data points to
use them. The score might be either binary (similar or dissimilar). Consider a face
authentication problem in which we know which photographs belong to the same
person (similar) and which do not (dissimilar). We train our classifier to recognize
the similarities between the patterns in an anomaly video and a normal video by
using a ranking Loss function. To apply a ranking Loss function, we must first
extract features from two (or three) input data points and create an embedded
representation for each. Then we define a metric (anomaly score in our case) for
each of the inputs and then try to maximize the distance between them. By back-
propagation, we adjust the weights in the hidden layers to achieve the desired
output. The standard ranking loss for a pair of positive and negative samples is
given by,

L = max(0, m − d(rp, rn)) (3.1)

Where d(rp, rn) is the euclidean distance between the positive rp and negative
rn sample’s metric values. m is the max value of the metric. For our case, we
have defined the positive and negative samples as bags, and the max value of our
metric, the anomaly score, is 1. Thus in our case, the loss is given by,

L = max(0, 1 − f (Ba),+ f (Bn)) (3.2)

Where d(rp, rn) is the euclidean distance between the positive rp and negative
rn sample’s metric values. m is the max value of the metric. For our case, we
have defined the positive and negative samples as bags, and the max value of our
metric, the anomaly score, is 1. Thus in our case, the loss is given by,

L = max(0, 1 − f (Ba),+ f (Bn)) (3.3)

where f () scores the bags using the two-stream composite I3D features. The loss
function reaches its minmum value when the value of f (Ba) approches 1 and
f (Bn) reaches 0.
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3.2.2 The architecture MIL network

We have created a MIL deep neural network using the two-stream I3D features as
training data and ranking loss function. The input to this network is pair of videos
(normal and anomaly) represented as collection composite I3D feature vectors.
Each vector represents a segment of the video of fixed length. The network then
scores each of these snippets and the bags (positive and negative videos) based
on the max value of the snippets. Then as discussed in section 3.2.1, the ranking
loss function is used for back-propagation to achieve the desired goal.

Sultani et al.[19] have noted some shortcomings of the loss calculated by Equa-
tion 3.3. They explain that an anomaly occurs for a short duration of time; hence,
the occurrences of anomalous instances in the negative bag would be sparse. They
have also proposed that there is an abrupt change in the anomaly score in consec-
utive segments when an anomaly occurs. As a result, they have added sparsity
and smoothness constraints to their loss function to adjust for irregularities. We
also use these constraints in our loss function, which then is given by,

sparsity = λ1

n

∑
i

f (Vi
a) (3.4)

smoothness = λ2

n−1

∑
i
( f (Vi

a)− f (Vi+1
a ))

2
(3.5)

Where λ1 and λ2 are sparsity smoothness and constants respectively and Vi is
the snippet with max anomaly score selected from the anomalous video, it is also
important to note that the constraints are added only for the anomalous instances
of the positive bags. On adding these constraints to the loss function of Equation
3.3 we get the final MIL ranking loss function as ,

L = max(0, 1 − f (Ba),+ f (Bn)) + sparsity + smoothness (3.6)

Figure 3.2 illustrates the entire flow of training the above mentioned MIL model.
Starting from the I3D composite feature extraction network to the scoring function
and ending at the ranking loss calculation at each training epoch. Once trained
the threshold value is calculated and used as a classification parameter.

3.2.3 The modified loss function

The model discussed above is trained on the general ranking loss criteria. This
model can produce two types of false alarms viz,
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1. a normal video is categorized as anomaly

2. an anomaly video is labeled as normal

An effective anomaly detection system must counter both false alarms. Further-
more, we also need to consider the presence of multiple anomalous snippets,
which Equation 3.6 does not factor in. To tackle the first challenge, we ensure
the tightest upper bound on the anomaly score of a normal video, thus reducing
the chances of predicting a normal video as anomalous. Hence we perform max-
pooling at the final stage when all the segments from both the bags are scored.
In order to mitigate the second type of false alarms and consider the presence of
multiple anomalous snippets, we propose a modified loss function.

In the modified ranking loss function, we take the anomaly scores of all the
snippets and sort them in descending order. Then we take the top k scores and
compare these values with the highest value of the anomaly score of a normal
video. The loss value is calculated for all the k snippets, and the net loss is a
weighted average of all the loss values. The aim here is to maximize the differ-
ence between the normal and abnormal instances and cover the maximum possi-
ble anomalous snippets extending our temporal space. Consider the an anomaly
video as a collection of N snippets, and f (x) the scoring function. Thus a video va

can be thus represented as a collection of anomaly scores as follows,

va = [ f (V1
a ), f (V2

a ), f (V3
a )..... f (Vn

a )] (3.7)

Now we sort these scores in descending order and select top k scores where k < n,

vasorted = [ f (V1
asorted

), f (V2
asorted

), f (V3
asorted

)..... f (Vk
asorted

)] (3.8)

henceforth the anomaly score for ith snippet of an anomaly video f (Vi
asorted

) is rep-
resented as ri

a and the similar for a normal snippet as rmax
n , then we calculate

the loss value for each of i ϵ = {1, 2, 3, ...k} by using Ranking loss criteria as in
Equation 3.3

li(ri
a, rmax

n ) = max(0, 1 − ri
a+rmax

n ) (3.9)

After this we take a weighted average of all these k losses to calculate the net
loss,

net_loss =
k

∑
i=0

(αi ∗ li(ri
a, rmax

n )) (3.10)

where, ∑k
i=0 αi = 1. This is the final loss value we evaluate at each iteration. The

modified loss function aimed to introduce even more information from the tem-
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poral dimension by considering multiple instances. Another aspect was to con-
sider the possibility of having multiple anomaly events from the video and have
the ability to mark all of them. The loss function in Equation 3.6 only considers
anomalous segments adjacent to the highest one. In contrast, we consider the
maximum possible segments in the modified loss function by taking top k snip-
pets. We have taken the weighted average to ensure that the overall loss value
never exceeds 1. The weights are assigned equally as 1/k then, by experimenta-
tion, we find values of αi for which the model gives best accuracy.
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CHAPTER 4

Experiment and results

After creating the proposed network, we need to train and test it to check its effec-
tiveness. To check the model’s effectiveness, we also need a parameter for bench-
marking and compare it with the most recent approaches.

4.1 Dataset

The most widely used datasets for video anomaly detection are UCSD Ped1, Ped2,
abnormal crowds, UMN, Avenue [19, 20, 21, 22]. These datasets contain a very
small number of video samples in a very limited range of environments. There-
fore they are not ideal for creating generalized anomaly detection systems for
practical applications. Table 4.1 describes the various types of datasets for video
anomaly detection. The datasets are compared for their size, and the types of
anomalies covered. We have used the UCF-Crime[19] dataset for training and
testing the model. This dataset is a compilation of 128 hours of surveillance
camera footage of 13 types of abnormal incidents like Abuse, Arrest, Arson, As-
sault, Road Accident, Burglary, Explosion, Fighting, Robbery, Shooting, Stealing,
Shoplifting, and Vandalism. It also has normal videos in equal numbers of sim-
ilar environments. Figure 4.1 has some snapshots of few types of anomalies of
the UCF-Crime dataset. The dataset is divided into 1610 training and 290 test-
ing videos. The train set comprises 800 normal and 810 abnormal videos; the test
set is split into 150 normal and 140 abnormal instances. Figure 4.2 describes the
various types of anomalies and the number of videos of each type. Although the
dataset provides a large number of videos for each type of activity, we do not
distinguish between the activities. Our objective is to identify the presence of ab-
normal activity in the video. Hence we ignore the activity specific labels and label
each anomalous video as 1 and normal video as 0. While testing the model, we
follow the same convention. The aim is to detect the presence of anomalous ac-
tivity in the abnormal video; such detection is our True Positive instance. For the
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Table 4.1: Comparison of various video anomaly detection datasets.

Name # of Average # Dataset Example
video of frames length anomalies

UCSD Pedestrian 1 70 201 5 mins Bikers, small carts,
walking across walkways

UCSD Pedestrian 2 28 163 5 min Bikers, small carts,
walking across walkways

UMN 5 1290 5min Running
Abnormal Crowd 31 1408 24 min Panic, fight,congestion,

obstacle, neutral
UCF-Crime 1900 7247 128 hours Abuse, arrest, arson,

assault, accident,
burglary, fighting, robbery

Figure 4.1: A sample snapshot from video snippets of various types of anomalies
of the UCF-Crime dataset.

Figure 4.2: The total number of samples of each type of anomaly adding to 950 in
UCF-Crime dataset.
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anomaly classification problem we classify the anomalies of 13 classes, labelled
as their names. For testing the anomaly classification we use the 140 anomaly
samples from the test set.

4.2 Implementation details

For the implementation, each video is converted into the 240x320 format at 30fps
and then divided into 16 frame clips each. We use the standard weights for the
I3D network available as ‘mixed.c’. The features are calculated for each 16-frame
clip and then aggregated to create video segments. For our implementation, we
divide each video into 32 segments of equal length depending on the size of video.
After passing these segments through a fully connected I3D network, as discussed
in 3.1, we obtain a 2048D vector of composite features. The feature vector is used
as input in the first layer having 2048 nodes; this layer is connected to a 512 node
hidden layer with a ReLu activation function and a dropout rate of 0.6. The next
layer is of 32 nodes with the same activation function. The final anomaly score
is obtained by flattening the output of the 32 nodes via a sigmoid function. For
optimization, we have used Adagrad optimizer [28] with a learning rate of 0.001.
To calculate the loss value we have set k = 5 and the values of {α1, α2, α3, α4, α5} =

{0.4, 0.3, 0.1, 0.1, 0.1}. These values for k = 5 gave the best accuracy and were
found experimentally. The hyperparameters of λ1 and λ2 used as sparsity and
smoothness constraints are set to 0.00008. We used these parameter values based
on the observations provided by Sultani et al. [19]. For preprocessing the videos,
we use the OpenCV and PyTorch to create the neural network model. We have
trained the setup on the Google Colab platform using Tesla K80 GPUs for 200
epochs.

4.3 Results and analysis

The loss values calculated at each iteration for the original and modified loss
(k = 5) functions were compared. It was observed that the modified loss function
resolves faster, resulting in less training time by reaching the optimum minimum
in lesser epochs. Figure 4.3 is a plot of of the loss values for both the loss func-
tions over 200 epochs. At 50 epochs, the loss value of the modified loss function
is about 9.60% lower. We observed that the final loss value of the modified loss
function is 6.5% lower than that of the original loss function.
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Figure 4.3: The value of loss function after each epoch for both the original and
modified ranking loss function (k = 5).

4.3.1 The Receiver Operating Characteristic (ROC) curve

To evaluate the model, we use the AUC value of the ROC plot for the test set
results. ROC curve is a plot of TPR(True Positive Rate) on the Y-axis and FPR(False
Positive Rate) on the X-axis for evaluating the performance of models at various
thresholds(FPR values). To calculate TPR and FPR, we calculate the number of
True Positives, True Negatives, False Positives, and False Negatives. When a test
case has an anomaly, and the model detects it, that is a True Positive (TP). If the
test case does not have an anomaly, but the model detects one, it is a False Positive
(FP). Similarly, we have a True Negative (TN) for the correct identification of a
normal case and a False Negative (FN) for an incorrect identification. Using these
terms, TPR and FPR are defined as follows:

TPR = TP/(TP + FN) (4.1)

FPR = FP/(FP + TN) (4.2)

After the ROC graph is plotted, we calculate the AUC value, which is a bench-
mark of the model’s effectiveness in classifying the test cases. The value of the
area under the ROC curve is always in the range of [0,1]; the higher the value, the
better the model at predicting the label. The AUC value shows the measure of
separability between the classes. A value close to 1 means the separability is ex-
cellent, 0 means the classification is precisely the opposite (all samples with label
‘A’ is labeled as ‘B’ and all samples with label ‘B’ as ‘A’ ). An AUC value of 0.5
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indicates that the model has learned nothing and has no criteria for classification.
The ROC plot for Sultani et al. [19], and our proposed model is compared in

Figure 4.4. We also compare the AUC values with some recently reported tech-
niques used for video anomaly detection in Table 4.2. We use the results that have
been reported by various publications [9, 11, 19, 25, 29] for these methods.

Figure 4.4: ROC plot of Sultani et al. (maroon), our model with original and
modified loss function (yellow and blue respectively).

Table 4.2: Comparison of AUC values of the ROC curve for UCF-Crime dataset

Method AUC (%)
Lu et al. [9] 65.51
BODS [29] 68.26
GODS [29] 70.46

GMM based [11] 75.90
Sultani et.al [19] 77.92
Proposed model 82.03

Proposed model (modified loss function) 84.11

We have compared our results with popular unsupervised and semi/ weakly
supervised techniques used for anomaly detection. Lu et al. [9] had based their
method on a dictionary-based technique to understand normal behavior and used
the reconstruction approach to detect the presence of anomalies. BODS (Basic
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One-class Discriminative Subspaces) and GODS ( Generalized One-class Discrim-
inative Subspaces) are unsupervised clustering techniques for anomaly detection
given by [29]. Another clustering technique based on GMM (Gaussian Mixture
Model) based on Bayesian distribution is also provided by [11]. Our proposed
model with the modified loss function provides a better AUC value by a factor of
10.81% from the highest value for the unsupervised learning technique. We also
compare our results with the MIL technique introduced by Sultani et al. [19] and
have achieved an improvement of about 7.92% in the AUC metric.

4.3.2 The Confusion matrix

For analyzing the accuracy of the anomaly classification problem, we use the con-
fusion matrix. The confusion matrix is a tabular representation of the performance
of a classification model. In our case, we have 13 classes of various anomalies as
per the UCF-Crime dataset. Figure 4.5 shows a confusion matrix for a multi-class
(5-classes) classification problem where the terms True Positive (TP), False Posi-
tive (FP), True Negative (TN), and False Negative(FN) are defined. The numbers
represent the number of samples predicted for each label against the actual label.
The diagonal (in green) is the number of TPs, FPs, FN, and TN for each class.

Figure 4.5: Sample confusion matrix the values for class with label 3 are high-
lighted.
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The overall accuracy of the classification model is defined as,

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4.3)

The confusion matrix for the video anomaly classifcation is shown in Figure 4.6.
The total number of test samples were 139 out of which 53 where correctly classi-
fied with an accuracy of 38.12% . Table 4.3 compares the overall accuracy of our
model with that of Sultani et al.[19]. The proposed model was able to give an
accuracy value which was 34.22% higher than the comapared methods.

Figure 4.6: The confusion matrix for anomaly classification model.

Table 4.3: Comparison of the overall classification accuracy of the proposed model
with state of the art methods.

Method (Feature extraction) Accuracy (%)
Sultani et al (C3D). [19] 23.0

Sultani et al (TCNN) [19] 28.4
Proposed model (I3D composite) 38.12
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CHAPTER 5

Conclusion and future work

5.1 Conclusion

In this thesis, we have done an exhaustive study on the problem of video anomaly
detection and the various techniques employed to tackle it. We looked at the tradi-
tional hand-crafted methods, which focused on trajectory analysis and extracting
low-level features to detect abnormal patterns in crowds. It was observed that
these methods were compute intensive, and there was a need for automated fea-
ture extraction. So high-level feature extraction techniques were developed based
on the low-level features. The most recent approach for solving this problem was
deep learning. CNN-based feature extraction methods were found to be the best
for analyzing video frames. For training the deep learning classifier, we discov-
ered that weakly supervised learning techniques were most practical due to the
nature of the data. Manual annotation of every abnormal video segment was no
longer required.

Based on the survey done, we have created a deep learning solution based on
the MIL ranking loss model and two-stream I3D network. The RGB and optical
flow features were concatenated to create a composite feature vector. Due to the
range and complexity of real-world scenarios, we use both the abnormal and nor-
mal videos in the training set. We tested our implementation on the UCF-Crime
dataset and evaluated the AUC of ROC curve values. The proposed method has
achieved better results than some of the recent approaches on the AUC metric.
We have provided a modified ranking loss function to cover multiple anomalous
instances in each video. The modified loss function performs better than the stan-
dard loss function reaching the minimum value in fewer epochs. In the anomaly
classification problem, we achieved an accuracy that was 34.22 % higher than re-
ported by Sultani et al [19].
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5.2 Future work

The two-stream model of generating composite feature vector can be merged into
a single step process rather than concatenating the output of two I3D networks.
Although we do not need the segment-level labels in our model, we need to create
an efficient automated annotation technique. An automated annotation network
would make it possible to apply supervised deep learning algorithms, which are
known to perform better than the unsupervised or weakly supervised ones. We
can improve the accuracy of the anomaly classification problem by including
location-specific details in the feature vector. For example, a bank robbery and
a house burglary are distinguishable by location. The action recognition model
cannot make this distinction. Furthermore, we need to have specific datasets for
each type of location for different anomalies.
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