
Increasing Transferability by Imposing
Linearity and Perturbation in Intermediate

Layer with Diverse Input Patterns
by

SHAH MEET ASHVINKUMAR
202011047

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

June, 2022

Acknowledgments

“Wisdom is not a product of schooling but of the lifelong attempt to acquire it.”

-Albert Einstein

Life is a never-ending learning experience. Resuming formal education by
pursuing MTech after Industrial experience was a challenging endeavor. This
journey was made possible by experienced lecturers, an engaging curriculum,
helpful classmates, and the wonderful DAIICT campus. My MTech Thesis is also
an important part of this learning process. This thesis presents not only my work
but also the motivation and support of the people around me. Hence, I want to
take this opportunity to convey my heartfelt gratitude to everyone who helped in
this thesis work.

First and foremost, I would like to express my deepest gratitude and reverence
to my supervisor Prof. Shruti Bhilare, who gave me the chance to explore this sub-
ject and motivated me to try new things throughout the research. Her consistent
support and guidance inspired me, and her dedication will continue to inspire me
in the future. I’m also grateful to Prof. Srimanta Mandal, my co-supervisor, for
pointing me in the right direction and correcting me at every turn along the way.
In addition, I would like to thank Prof. Avik Hati for offering valuable assistance
on several aspects of the thesis.

I would like to thank Shivangi Gajjar and Krunal Mehta for sharing their ex-
perience and knowledge and helping me kick-start my work in this domain till
the completion of my thesis. I’m indebted to all my friends who have provided
inspiration and moral support throughout this journey. A very special thanks to
my parents and sister for their love, care, enthusiasm, and unwavering support
throughout my life. The things I have achieved in life, I owe it to them.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms vii

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Contribution . 3
1.4 Document Outline . 4

2 Literature Review 5
2.1 Adversarial Attack . 5

2.1.1 Limited-memory-BFGS Attack 5
2.1.2 Fast Gradient Sign Method 6
2.1.3 Carlini and Wagner Attack 7

2.2 Transfer-based Attacks . 9
2.2.1 Diverse Input Iterative-FGSM 10
2.2.2 Intermediate Level Attack . 11
2.2.3 Linearized Backpropagation 11

2.3 Adversarial Defense . 12
2.3.1 Adversarial Training . 12
2.3.2 Network Distillation . 12

3 Proposed Approach 14
3.1 Linearization . 14
3.2 Intermediate Layers . 16
3.3 Diverse Input Patterns . 16

iii

4 Experimental Setup 18
4.1 Dataset . 18
4.2 Source Architecture . 18
4.3 Target Networks . 20

5 Experiment and Results 21

6 Conclusions and Future Work 26
6.1 Conclusions . 26
6.2 Future Work . 26
6.3 Publication . 27

References 28

iv

Abstract

Despite high prediction accuracy, deep neural networks are vulnerable to adver-
sarial attacks, introduced by perturbations that humans may not even perceive.
Hence, adversarial examples can mislead the trained networks. As a consequence,
the security of such systems can get compromised. The process of generating ad-
versarial examples can assist us in investigating the robustness of different mod-
els. Many developed adversarial attacks often fail under challenging black-box
settings. It is required to improve the success rate of misleading a network by
adversarial examples crafted to trick another model. This phenomenon is known
as transferability. In contrast to the existing methods, we propose to increase the
rate of transferability by inducing linearity in a few intermediate layers of archi-
tecture. The proposed design does not disturb the original architecture much. The
intermediate layers play significant roles in generating feature maps suitable for a
task. Hence, by analyzing the feature maps of architecture, a particular layer can
be perturbed more to improve the transferability. The performance is further en-
hanced by considering diverse input patterns. Experimental results demonstrate
the success in increasing the transferability of our proposition.

Keywords: Deep Neural Network, Perturbations, Adverasarial Examples, Trans-
ferability

v

List of Principal Symbols and Acronyms

AT Adversarial Training

BN Batch Normalization

C&W Carlini and Wagner

DI-FGSM Diverse Inputs Iterative - Fast Gradient Sign Method

DNN Deep Neural Network

DT Decision Tree

FGSM Fast Gradient Sign Method

I-FGSM Iterative - Fast Gradient Sign Method

ILA Intermediate Level Attack

JSMA Jacobian-based Saliency Maps Attack

KNN K Nearest Neighbor

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

LinBP Linearized Backpropagation

LinS Linear Substitution

LR Linear Regression

MI-FGSM Momentum Iterative - Fast Gradient Sign Method

PGD Projected Gradient Descent

ReLU Rectified Linear Unit

SVM Support Vector Machine

TI-FGSM Translation Invariant - Fast Gradient Sign Method

vi

VGG Visual Geometry Group

WRN Wide Residual Network

vii

List of Tables

1.1 Cross - transferability in machine learning techniques 3

4.1 CIFAR-10 Dataset . 18
4.2 Model architecture for VGG-19 with batch normalization 19

5.1 Success rates of transfer-based attacks on CIFAR-10 21
5.2 Success rates of different variations of the attack on CIFAR-10 dataset 22
5.3 Success rates of the variations with removing more ReLU from mid-

dle part on CIFAR-10 dataset . 22
5.4 Comparison on the success rates of different methods of attacks on

CIFAR-10 . 23
5.5 Visual results of perturbed images from CIFAR-10 dataset gener-

ated with our method . 24
5.6 Analyzing the effectiveness of different components on CIFAR-10

(I-FGSM as base attack) . 25

viii

List of Figures

1.1 Adversarial sample misleading the model 2

2.1 Adversarial samples generated from L-BFGS 6
2.2 Adversarial sample generated using FGSM 7
2.3 Source/Target pair generated from C&W L2 attack 9
2.4 The comparison of success rates using three different attacks 10
2.5 The comparision of Flow in LinS and LinBP with normal method . 12
2.6 An overview of defensive distillation mechanism 13

3.1 Illustration of proposed method. 14
3.2 An example from CIFAR-10 dataset perturbed using LinBP into ad-

versarial example for VGG-19 . 15
3.3 The process of using transformation function at each iteration to

select input for current iteration . 17

ix

CHAPTER 1

Introduction

Now-a-days deep learning based methods lead in several applications such as
automated driving, biometric recognition, machine translation, etc., due to their
learning efficiency [1, 2]. Vast corpora of training examples are used to create
models with high prediction accuracy on unseen samples. Hence, deep neural
networks (DNNs) [3] can be employed in many scenarios, including security-
sensitive applications. As the usage of these networks increased rapidly in a real-
world application, the threat to these networks also gets evolved in the form of
adversarial samples.

The implications for the existence of adversarial examples in the real world
can not be underestimated. Figure 1.1 demonstrates an example of an adversarial
sample. In the figure, the original image is classified correctly by the model as
"Fish" with 0.9 probability. After adding perturbations, the model misclassifies
that adversarial image as "Cat" with 0.9 probability. The perturbation is gener-
ated in a way such that the model gets deceived with high confidence score while
perceptually remaining same. Moreover, the recent works [4, 5, 6, 7] show the
success of adversarial attacks in misleading the DNNs. It implies that the basic
building blocks of DNNs and training methods generate some blind spots in the
model leading to incorrect predictions.

Adversarial attacks can be classified into two types based on the attacker’s
adversarial knowledge: white-box attack and black-box attack. In a white-box
attack, the adversary has complete information about the target model, including
its architecture, gradient information, and predictions. Adversary utilizes this
knowledge to generate attacks specific to the target model. On the other hand, in
a black-box attack [8], the adversary does not have knowledge of the target model,
which is the most likely scenario in real-world applications, and its success mainly
relies on the transferability [9] of the adversarial samples. Transferability is one of
the intriguing properties of adversarial examples that have been highlighted [10,
11], suggesting that adversarial examples crafted to misclassify a specific model

1

+ 0.007 *
.
. =

PR
O

B
A

B
IL

IT
Y

FISH CAT

0.9

0.1

PR
O

B
A

B
IL

IT
Y

FISH CAT

0.1

0.9

.
.

.
. . ..

.

Original image Original image
+Perturbation

Perturbation

Figure 1.1: Adversarial sample misleading the model

can be utilized to misclassify another model. The adversaries can exploit this
property in order to fool an unknown model using a known one. Hence, it is
imperative to study the extent of transferability of the adversarial attacks on the
state-of-the-art DNN models.

1.1 Motivation

The primary reason for focusing more on the transferability property is to make
state-of-the-art attacks more generalized and stronger as, in order to build a more
robust defense, it is essential to analyze the extent of the threat posed by more
transferable variants of stronger attacks. As shown in Table 1.1, among different
machine learning techniques such as Support Vector Machine, Linear Regression,
Decision Tree, K Nearest Neighbor, and Deep Neural Networks, attacks on DNNs
have the lowest transferability, which makes adversarial attacks on DNNs ideally
suitable for real-world applications. To understand the reliability of these DNNs
in case someone managed to improve the transferability of these attacks drasti-
cally, it is crucial to study the attack to investigate the threat posed by their more
transferable variants.

2

Table 1.1: Cross - transferability in machine learning techniques
SVM LR DT KNN DNN
100.0 91.43 89.29 41.65 38.27

1.2 Problem Statement

To enhance the transferability of adversarial attacks in the black-box setting and to
analyze the robustness of state-of-the-art deep neural network architecture against
these attacks.

1.3 Contribution

The key contributions of the proposed work are as follows:

• We propose to induce linearity in a few intermediate layers of the architec-
ture. During forward propagation, there is no change in the training pro-
cess. However, only a few non-linear activation functions are skipped in a
few intermediate layers during backpropagation.

• This method has a similarity with LinBP [12]. An important difference is
a position and the number of activation layers for linearization. We inves-
tigate to find out that linearizing only 2 layers in the middle and 2 layers
just before the fully-connected layer during backpropagation is sufficient to
improve transferability. Hence, the proposed design does not affect the ar-
chitecture much.

• We consider the importance of intermediate feature representations of the
adversarial example. Increasing the perturbation in a particular layer can
increase the transferability [13].

• We consider diverse input patterns [14] by applying random transforma-
tions to the input image. It helps address the over-fitting issue of the net-
work by augmenting the training data with label-preserving transforma-
tions.

3

1.4 Document Outline

The rest of the work is divided into four sections. Chapter 2 discusses the previ-
ous works on adversarial attacks and techniques to improve the transferability of
those attacks. Chapter 3 discusses the proposed method. Chapter 4 and 5 show-
cases the improvement in our results as compared to the state-of-the-art methods.
Chapter 6 concludes the work.

4

CHAPTER 2

Literature Review

By demonstrating the vulnerabilities of multiple state-of-the-art deep neural net-
works, Szegedy et al. [10] made significant progress in adversarial machine learn-
ing. DNNs trained with high accuracy also have certain blind spots, where they
can be vulnerable to adversarial attacks. The adversary exploits these areas to
generate adversarial samples. Even by changing the data distribution of the in-
put slightly, a machine learning model can easily be fooled [4]. Major attack ap-
proaches developed to minimize the perturbation and increase the generalizabil-
ity of adversarial samples and defense methods to mitigate those attacks devel-
oped till now are as follows.

2.1 Adversarial Attack

2.1.1 Limited-memory-BFGS Attack

Szegedy et al. [10] defined adversarial example as inputs that look very similar to
their real counterparts according to a distance metric but one that causes a classi-
fier to misclassify it. They generated adversarial examples using box-constrained
L-BFGS. Given an image x0, their method finds a different image x that is similar
to x0 under L2 distance, yet is labeled differently by the classifier. They model the
problem as a constrained minimization problem:

minimize ∥x − x0∥2
2

such that f (x) = y
x ∈ [0, 1]n

(2.1)

Figure 2.1 shows images that were classified correctly on the left, perturbation
added to them in the middle, and images that were misclassified after adding per-
turbation on the right.

5

Figure 2.1: col1: original image, col2: perturbation, col3: adversarial image
Adversarial samples generated from L-BFGS [10]

This problem can be challenging to solve, however, so they solved the following
problem, which aims to find a perturbation that:

minimize c · ∥x − x0∥2
2 + loss(f (x), y) , such that x ∈ [0, 1]n (2.2)

The above formulation aims to make the classifier f misclassify x as class y.
The loss function used here is the cross-entropy loss, and line search is used to
find the minimum constant c where c > 0 until an adversary is found.

2.1.2 Fast Gradient Sign Method

FGSM [4] is an example of a white-box attack because the attacker needs to know
the model’s architecture and parameters to perform backpropagation. FGSM searches
for the direction in which the loss function increases fastest for a target machine
learning model. Once the gradient is computed, one can push the input towards
the adversarial gradient by a small amount.

It is single-step algorithm to generate an adversarial sample xadv, given an
original input image x with the model’s output y as shown below,

xadv = x + ϵ · sign (∇xloss(f (x), y)) (2.3)

Here, ϵ is a hyperparameter that controls the magnitude of the perturbation, and
loss(.) denotes the model f ’s loss function. Figure 2.2 shows an adversarial image
generated using FGSM. FGSM differs from L-BFGS by 2 key points: 1. It is opti-

6

Figure 2.2: Adversarial sample generated using FGSM [4]

mized for the L1 distance metric 2. It is designed primarily to be fast instead of
producing very close adversarial examples.

FGSM has several variants primarily focused on the same technique but with
some modifications. Iterative FGSM (I-FGSM) [15] is an FGSM version that uses
the FGSM’s single-step rule to update the original input with perturbations com-
puted iteratively. In order to avoid poor local maxima, Momentum Iterative FGSM
(MI-FGSM) [5] collects gradients of the loss function at each iteration. As a re-
sult, stable optimization will be obtained. Diverse Inputs FGSM (DI-FGSM) [14]
augments input data as transformed images to avoid the problem of MI-FGSM
overfitting. The gradients of the untranslated pictures are convolved with a pre-
set kernel in Translation Invariant FGSM (TI-FGSM) [16], which optimizes the
perturbations.

2.1.3 Carlini and Wagner Attack

The adversarial attack proposed by Carlini and Wagner is by far one of the strongest
attacks [17]. They formulate targeted adversarial attacks as an optimization prob-
lem, take advantage of the internal configurations of a targeted DNN for attack
guidance, and use the L2 norm (i.e., Euclidean distance) to quantify the difference
between the adversarial and the original examples.

Given an image x0, let x denote the adversarial example of x0 with a targeted
class label y toward misclassification. The C&W attack finds the adversarial ex-
ample x by solving the following optimization problem:

minimize ∥x − x0∥2
2 + c · f (x)

subject to x ∈ [0, 1]n
(2.4)

7

where ∥v∥2 =
√

∑n
i=1 v2

i denotes the Euclidean norm (L2 norm) of a vector

v = [v1, . . . , vn]
T, and c > 0 is a regularization parameter. The first term ∥x − x0∥2

2

in equation is the regularization used to enforce the similarity between the adver-
sarial example x and the image x0 in terms of the Euclidean distance, since x − x0

is the adversarial image perturbation of x relative to x0. The second term c · f (x)
is the objective function that reflects the level of unsuccessful adversarial attacks,
and y is the target class. Carlini and Wagner compared several candidates for
objective function f (x) and suggested the following form for effective targeted
attacks [6]:

f (x) = max
{

max
i ̸=y

[Z(x)]i − [Z(x)]y,−κ

}
(2.5)

where Z(x) ∈ RK is the logit layer representation (logits) in the DNN for x such
that [Z(x)]y represents the predicted probability that x belongs to class y, and
κ ≥ 0 is a tuning parameter for attack transferability. The parameter κ is used
to control the strength of adversarial examples: the higher κ, the more powerful
the adversarial example’s classification. By increasing κ, we can construct high-
confidence adversarial examples. Carlini and Wagner set κ = 0 for attacking a
targeted DNN and suggested large κ when performing transfer attacks. The ra-
tionale behind the use of the loss function can be explained by the softmax classi-
fication rule based on the logit layer representation; the output (confidence score)
of a DNN F(x) is determined by the softmax function:

[F(x)]k =
exp ([Z(x)]k)

∑K
i=1 exp ([Z(x)]i)

, ∀k ∈ {1, . . . , K} (2.6)

here, maxi ̸=y[Z(x)]i− [Z(x)]y ≤ 0 implies that the adversarial example x at-
tains the highest confidence score for class y and hence the targeted attack is suc-
cessful. On the other hand, maxi ̸=y[Z(x)]i − [Z(x)]y > 0 implies that the tar-
geted attack using x is unsuccessful. The role of κ ensures a constant gap between
[Z(x)]y and maxi ̸=y[Z(x)]i, which explains why setting large κ is effective in trans-
fer attacks. The box constraint x ∈ [0, 1]n indicates that the generated adversarial
example has to be in valid image space. This constraint is removed by replacing x
with 1+tanh w

2 , where w is an optimizer. With this change-of-variable method, the
optimization problem converted as following with optimal w where, f (x) will be
the function choosen by carlini and wagner and discussed above

min
w

∥∥∥∥1
2
(tanh(w) + 1)− x0

∥∥∥∥2

2
+ c · f

(
1
2
(tanh(w) + 1)

)
(2.7)

Furthermore, Carlini and Wagner also showed that their attack could success-

8

fully bypass 10 different detection methods designed for detecting adversarial
examples [18]. Figure 2.3 demonstrates the adversarial samples generated from
L2 attack, which is the strongest among them. These attacks were proposed to
evaluate the robustness of DNNs by generating adversarial samples with high
confidence.

Figure 2.3: Source/Target pair generated from C&W [6] L2 attack

2.2 Transfer-based Attacks

As the foundation of many black-box attacks, the transferability of adversarial ex-
amples has drawn attention since Goodfellow’s work [4], where it is attributed to
the linear nature of modern DNNs. Transfer-based methods generate adversarial
examples on a source model and expect them to fool the target model. A some-
what non-trivial finding is that single-step attacks are more transferable than their
multi-step counterparts, which are undoubtedly more effective in the white-box

9

Figure 2.4: The comparison of success rates using three different attacks [14]

context. Specific techniques like variance tuning, skip gradients method, and in-
termediate level attack [13, 19, 20] have been developed to boost the transferability
of adversarial samples and to easily integrate them with current state-of-the-art
attacks.

2.2.1 Diverse Input Iterative-FGSM

The diverse inputs method, introduced by Xie et al. [14] applies random transfor-
mations to the inputs and feeds the modified samples into the classifier for gradi-
ent computation. At the start of each new iteration, they select input for current
iteration from the process with probability of p. Here, the stochastic transforma-
tion function T

(
Xadv

n ; p
)

is:

T
(

Xadv
n ; p

)
=

{
T
(
Xadv

n
)

with probability p
Xadv

n with probability (1 − p)
(2.8)

They have also integrated momentum term [5] with iterative algorithm [15] in
this approach to stabilize the update directions and avoid poor local maxima dur-
ing the iterations, resulting in more transferable adversarial examples. Figure 2.4
shows the comparison of success rates between 3 attacks FGSM, I-FGSM, and DI2-

10

FGSM, where adversarial examples are generated from Inception-v3 transferred
to target networks. In the top-5 confidence distribution plots of Figure 2.4, the
ground-truth "walking stick" is colored pink, while the other classes are colored
blue.

2.2.2 Intermediate Level Attack

By modifying a pre-specified layer of the source model, Huang et al. [13] have pro-
posed an intermediate level attack (ILA) for improved black-box transferability.
ILA refines existing adversarial samples, leveraging state-of-the-art adversarial
attacks. It fine-tunes samples at specified layer l for higher norm and attempts to
maintain the output difference’s direction, keeping the original adversarial struc-
ture intact. They must balance staying close to the original direction and increas-
ing the norm by maximizing the projection onto the original adversarial pertur-
bation. They examined that the intermediate feature maps, perceptibility is no
longer intrinsically tied to the norm in an intermediate feature map and able to
increase the norm of the perturbation in that feature space significantly with no
change in perceptibility in the image space.

2.2.3 Linearized Backpropagation

Guo et al. [12] have used the linearity hypothesis: "The cause of adversarial exam-
ples and their surprising transferability is the linear nature of modern DNNs" [4]
and have suggested eliminating non-linear layers from architecture, giving idea
for more linear substitution (LinS) model. Since such a direct linearization gen-
erates a retrogressive impact on the network’s adversarial success rate, they have
tried to obtain a reasonable trade-off between transferability and adversarial suc-
cess rate. They have decoupled the influence of ReLU removal in forward and
backward computing for constructing adversarial examples, and they analyze
how the specific "linearization" consistently affects both passes. After observing
the effects of linearity on both passes, Guo et al. [12] focused on the linearized
backpropagation (LinBP) method as it makes little sense to couple a "linearized"
forward with a non-linear backpropagation. LinBP technique can supplement
existing state-of-the-art attacks for superior transferability. However, it does not
consider the importance of intermediate layers. Figure 2.5 compares the flow of
Normal methods with the LinS and LinBP methods.

11

Convolution

ReLU

Batch Norm

Convolution

Batch Norm

Convolution

ReLU

Batch Norm

Normal LinS LinBP

Figure 2.5: The comparision of Flow in LinS and LinBP with normal method

2.3 Adversarial Defense

2.3.1 Adversarial Training

Conversely, many methods have been proposed recently to defend against ad-
versarial examples. Adversarial training (AT) is by far one of the best defense
techniques that defend the DNNs from adversarial attacks. Kurakin et al. pro-
posed [21] to inject adversarial examples with their correct labels into the training
data so that the model learns how to handle them and increases the network ro-
bustness. Tram‘er et al. [22] pointed out that such adversarially trained models
still remain vulnerable to adversarial examples and proposed ensemble adversar-
ial training, which augments training data with perturbations transferred from
other models, in order to improve the network robustness further. Although these
are effective, they are computationally expensive and will not guarantee total se-
curity against stronger attacks.

2.3.2 Network Distillation

Papernot et al. [23] proposed a defensive distillation method to defend against
attacks. In distillation training, one model is trained to predict the output prob-
abilities of another model trained on an earlier baseline standard to emphasize
accuracy. As shown in Figure 2.6, This trains the second model to behave like the
first model, and the soft labels convey additional hidden knowledge learned by
the first model. As indicated by the suggestion that the defense should defend

12

Figure 2.6: An overview of defensive distillation mechanism [23]

against the strong attack [18], several others [24, 25, 26] tried to develop detection
mechanisms where we can distinguish between original and adversarial samples.
Although these methods achieve quiet success in FGSM [4] and JSMA [27] at-
tacks, none proved to be capable enough to detect adversarial samples generated
by C&W attack.

13

CHAPTER 3

Proposed Approach

Figure 3.1 shows the end-to-end process for our method, where at each iteration,
we are generating diverse input patterns from an adversarial sample and calcu-
lating the perturbation while removing two ReLU layers from the middle and
last parts each. The pre-specified layer at which we are increasing perturbation is
highlighted as intermediate layer. After the process completes, generated adver-
sarial sample will have higher transferability.

3.1 Linearization

Our method is developed based on the concept of linearization. However, lin-
earization may affect the performance of a network. Hence, we design the learn-
ing in such a manner that the forward propagation does not get affected at all.
Only a few non-linear activation layers are skipped during backpropagation. If
the source architecture can be represented by a function h : RN → RK, which
labels one of the K classes to the N dimensional data x. The architecture is param-
eterized by a sequence of parameters θ1, θ2, . . . , θL. Then the forward propagation
of the architecture can be modeled mathematically as

h(x) = θT
LA

(
θT

L−1, . . . ,A(θT
1 x)

)
. (3.1)

First Part Middle Part Last Part

Intermediate
Layer

Fully
connected

Softmax

Adversarial
image

(current
Iteration)

Convolution

ReLU

Forward
Backward

Generating
Diverse
Input

patterns

Input
image
(prev

Iteration)

Calculated
Perturbation

Removal of
ReLU in

backpropagation

Prediction True labels

Loss
Function

Batch Normalization

Figure 3.1: Illustration of proposed method.

14

VGG-19

WRN

DenseNet

PyramidNet

automobile

truck

truck

truck

Label : truck

VGG19 Adversarial
 Example

LinBP

LinBP Modification

VGG-19

WRN

DenseNet

PyramidNet

automobile

automobile

automobile

truck

Figure 3.2: An example from CIFAR-10[28] dataset perturbed using LinBP into
adversarial example for VGG-19

Here A is non-linear ReLU unit. For simplicity of expression, consider skipping
last two ReLU functions during backpropagation,

∇̂xC(h(x), k) =
dC(h(x), k)

dym
θLθL−1

dyn

dx
(3.2)

C(h(x), k) is the cost function between the predicted class and true class. ∇̂ rep-
resents linearize gradient of the cost function. yn := f (x), where f (·) represents
the entire network except the last two convolution layers.

ym = θT
LA(θT

L−1yn) (3.3)

Figure 3.2 depicts the LinBP adaptation of an adversarial example for VGG19.
LinBP alters the adversarial example to make it more transferable. It is worth
noting that for this sample, while the initial VGG19 adversarial example fooled
VGG-19 [29], it did not fool the WRN [30], DenseNet [31] and PyramidNet [32].
The LinBP variant of this adversarial sample, on the other hand, is more trans-
ferrable and can trick more networks.

15

3.2 Intermediate Layers

Analyzing the representation of adversarial samples in the intermediate layers
can illuminate different aspects of transferability [13]. Based on the analysis,
one layer can be pre-specified and modified such that the norm of the output
at this layer increases while deviating minimally from the original output di-
rection. Even though the perturbation norm increases, intermediate-level attack
(ILA) achieves visually similar adversarial examples. This is because the interme-
diate layer typically induces less recognizable distortion in the resulting output.
Thus, the intermediate layer l is fine-tuned to have a higher perturbation in a di-
rection close to the previous adversarial example. It will help us to achieve higher
transferability without sabotaging the adversarial structure. It may be noted that
the ILA can be carried out without prior knowledge of the target model. Thus, we
can easily integrate the ILA attack with our method on the source model to get
superior transferability on the target models.

3.3 Diverse Input Patterns

M-DI2-FGSM attack overcomes overfitting, resulting in more transferable sam-
ples. M-DI2-FGSM attack uses the data augmentation technique termed as diverse
input pattern [14]. It transforms images using different transformation functions
such as random resizing and random padding at each iteration with probability p,
maximizing the loss function with respect to the original inputs (Eq. (3.5)). At the
start of each new iteration, they select the input for current iteration from the pro-
cess shown in Figure 3.3 with probability of p. Moreover, the momentum factor
in the attack stabilizes the update direction and avoids local maxima, thus allevi-
ating overfitting and resulting in even more transferable adversarial samples.

Updation step for I-FGSM attack is,

Xadv
0 = X

Xadv
n+1 = Clipϵ

X

{
Xadv

n + α · sign
(
∇X L

(
Xadv

n , ytrue ; θ
))} (3.4)

where, Xadv
n+1 is the adversarial sample, n is the iteration number, α is the step size,

and Clipϵ
X indicates the resulting image is clipped within the ϵ-ball of the original

image X. The updating step for M-DI2-FGSM is similar to I-FGSM with small
change, where gn is the accumulated gradient at iteration n and µ is the decay

16

Figure 3.3: The process of using transformation function at each iteration to select
input for current iteration [33]

factor of the momentum term.

gn+1 = µ · gn +
∇X L

(
T
(
Xadv

n ; p
)

, ytrue ; θ
)∥∥∇X L

(
T
(
Xadv

n ; p
)

, ytrue ; θ
)∥∥

1

Xadv
n+1 = Clipϵ

X

{
Xadv

n + α · sign (gn+1)
} (3.5)

17

CHAPTER 4

Experimental Setup

4.1 Dataset

For training and evaluation of the proposed method, experiments are performed
on the CIFAR-10 dataset [28]. CIFAR-10 imageset is a well-known and established
image dataset used for object detection and computer vision applications. This
dataset has 60,000 RGB color images, each of size 32x32x3 of a total 10 mutually
exclusive classes. These are a set of 60,000 small sized images, much smaller than
typical photograph meant for research work into computer vision domain. Out of
these, 50,000 corresponds to training images, and the rest are test images. Labels
of the class and its associated values are listed below in Table 4.1.

4.2 Source Architecture

We use VGG-19 [29] with batch normalization as the source model for crafting
adversarial samples and transferred them to other victim networks. Table 4.2 dis-
plays the architecture of VGG-19 with batch normalization.

Table 4.1: CIFAR-10 Dataset
Class number Class label

0 airplane
1 automobile
2 bird
3 cat
4 deer
5 dog
6 frog
7 horse
8 ship
9 truck

18

Table 4.2: Model architecture for VGG-19 with batch normalization [29]
Index Layer Type Filter
0 Convolution + BN + ReLU 3 × 3 × 64
1 Convolution + BN + ReLU 3 × 3 × 64
2 Max Pooling
3 Convolution + BN + ReLU 3 × 3 × 128
4 Convolution + BN + ReLU 3 × 3 × 128
5 Max Pooling
6 Convolution + BN + ReLU 3 × 3 × 256
7 Convolution + BN + ReLU 3 × 3 × 256
8 Convolution + BN + ReLU 3 × 3 × 256
9 Convolution + BN + ReLU 3 × 3 × 256
10 Max Pooling
11 Convolution + BN + ReLU 3 × 3 × 512
12 Convolution + BN + ReLU 3 × 3 × 512
13 Convolution + BN + ReLU 3 × 3 × 512
14 Convolution + BN + ReLU 3 × 3 × 512
15 Max Pooling
16 Convolution + BN + ReLU 3 × 3 × 512
17 Convolution + BN + ReLU 3 × 3 × 512
18 Convolution + BN + ReLU 3 × 3 × 512
19 Convolution + BN + ReLU 3 × 3 × 512
20 Max Pooling
21 Fully Connected 4096
22 Fully Connected 4096
23 Fully Connected 1000
24 Softmax 10

19

4.3 Target Networks

Adversarial attacks, namely FGSM, PGD, I-FGSM, and M-DI2-FGSM, are em-
ployed with ℓ∞ constraint in the untargeted setting. We have considered maxi-
mum perturbation (ϵ) to 0.03. In order to evaluate the transferability of the pro-
posed approach, we consider several DNN models trained on CIFAR-10 dataset
as victim models namely, ResNeXt [34], WRN [30], and DenseNet [31], GDAS [35]
and PyramidNet [32]. All these victim models with their unique architectures
were proposed after VGG-19 making the transfer of adversarial examples more
challenging. Pre-trained models of the target networks on Torchvision [36] have
been used for experimentation.

20

CHAPTER 5

Experiment and Results

To check how linearization affects the accuracy and transferability of the network,
we performed a number of experiments while removing non-linear units (ReLU)
from different parts of the architecture. We divide the source architecture into 3
parts as First (F), Middle (M), and Last (L). We removed ReLU layers from the last
part of the architecture and increased the number of ReLU layers to be removed
to compare the trade-off between accuracy and transferability. All ReLU layers
were removed one at a time, starting from the last layer of the architecture up to
the first layer. Here (L14) indicates, we removed 14 ReLU layers starting from
last part of the architecture in Table 4.2. Table 5.1 shows that transferability does
improve while we increase the removal of ReLU layers, but after a certain point,
it starts decreasing and hampering accuracy.

To observe the effects of reducing non-linearity, we conduct experiments to
remove the ReLU layer from other parts. Table 5.2 depicts different standalone
and combinations of parts where F1 indicates removing 1 ReLU layer from first
part, same as M1 and L1 indicates middle and last part. As shown in Table 5.2, we
found that removing ReLU layers from the middle part gives consistently better
results than only the first and last part. Further, we remove ReLU layers from the
first-middle (FM), middle-last (ML), and first-last (FL) parts as well. The combi-
nations like F1L1 depict removing 1 ReLU layer from the first and 1 from the last
part each. It can be observed that the combination of the middle and last part
while removing 2 ReLU layers gives the best transferability of all.

Table 5.1: Success rates of transfer-based attacks on CIFAR-10
Attack VGG-19∗bn ResNeXt WRN DenseNet GDAS PNet Average
(L14) 99.94 92.11 90.62 89.93 81.24 45.94 79.97
(L12) 100 94.96 93.98 93.18 84.8 51.62 83.71
(L9) 100 95.78 95.38 94.58 83.92 52.45 84.42
(L6) 100 91.76 91.57 89.86 79.05 43.24 79.10
(L2) 100 92.23 91.74 90.08 79.31 43.07 79.29

21

Table 5.2: Success rates of different variations of the attack on CIFAR-10 dataset
Attack VGG-19∗bn ResNeXt WRN DenseNet GDAS PNet Average

F1 99.91 92.21 91.54 89.98 78.7 43.27 79.14
F2 99.89 92.15 91.53 89.94 78.52 42.42 78.91
M1 100 94.88 94.92 93.82 81.68 49.19 82.90
M2 100 95.18 94.9 94.09 82.5 50.46 83.43
L1 99.93 92.02 91.59 89.69 78.54 42.58 78.88
L2 100 92.23 91.74 90.08 79.31 43.07 79.29

F1L1 99.93 91.93 91.5 89.78 78.68 43.03 78.98
F2L2 99.99 92.04 92.09 90.28 79.47 43.13 79.40
M1L1 100 95.16 95.03 94.26 82.88 50.8 83.63
M2L2 100 95.32 95.46 94.46 83.1 51.44 83.96
F1M1 100 95.12 95 94.19 83.02 50.21 83.51
F2M2 100 95.29 95.16 94.19 82.66 50.61 83.58

Table 5.3: Success rates of the variations with removing more ReLU from middle
part on CIFAR-10 dataset

Attack VGG-19∗bn ResNeXt WRN DenseNet GDAS PNet Average
M2L1 100 95.12 95.11 94.04 82.34 50.95 83.51
M3L1 99.99 95.27 95 94.33 83.55 51.6 83.95
M3L2 100 94.92 94.96 93.92 82.69 50.5 83.34

F1M1L1 100 93.13 92.83 91.65 78.87 46.31 80.55
F2M2L2 100 91.41 90.86 89.69 77.07 41.92 78.19
F3M3L3 100 88.76 88.21 86.81 72.14 38.34 74.85

To understand the impact of the middle and last part of architecture even
more, We experimented while removing more number of ReLU layers from these
parts. In Table 5.3, results show that just increasing more number of non-linear
units from these parts does not help much in increasing transferability. We also
tried to combine all three parts in F1M1L1 where we remove the ReLU layer from
each part while varying numbers, but in those as well, results for transferability
rates do not improve.

In Table 5.4, we present the comparison with the state-of-the-art methods to
increase the transferability by removing ReLU layers from the middle and last
part only. We compute the transferability using FGSM, PGD, I-FGSM, and M-DI2-
FGSM attacks. It can be seen from Table 5.4 that M-DI2-FGSM generates more
transferable examples than other attacks for all victim models. Moreover, the I-
FGSM attack can be combined with ILA [13] and LinBP [12]. It can be observed
that all DNN models can be fooled by the adversarial examples generated on the
source model with very high confidence for both I-FGSM and M-DI2-FGSM at-
tacks. It may be noted that the combination of modified LinBP with ILA attack

22

Table 5.4: Comparison on the success rates of different methods of attacks on
CIFAR-10

Attack VGG-19∗bn ResNeXt WRN DenseNet GDAS PNet Average
FGSM [4] 91.11 55.85 49.39 50.45 54.07 18.17 45.59
PGD [39] 92.32 56.6 50.13 51.43 55.52 17.76 46.29

I-FGSM [12] 99.96 64.82 64.32 61.92 49.98 16.6 51.53
ILA + I-FGSM [12] 99.96 88.08 87.66 85.7 72.52 33.74 73.54

LinBP + I-FGSM [12] 100 92.06 91.6 89.86 77.1 41.3 78.38
M-DI2-FGSM [14] 99.85 75.64 75.76 72.94 63.04 25.93 62.66

Our Result 100 95.32 95.46 94.46 83.1 51.44 83.96

having M-DI2-FGSM as the baseline attack gives the best transferability. One can
observe that the result for PyramidNet [32] is on the lower side. It may be at-
tributed to the fact that it is the best classification model available for CIFAR-10 as
it is trained using sophisticated data augmentation [37] and regularization tech-
niques [38].

Table 5.5 displays the visual representation of original images from CIFAR-
10 dataset and their perturbed images with our method. In First 3 rows, attack
successfully able to fool source model as well as all target models whereas in last
3 rows, attack only able to fool source model and not fooling any of the target
models.

One can observe in Table 5.6 that the results of our method (combination
of modified LinBP, ILA, and Diverse input patterns) are better than the current
works. The reason is that the ILA does not consider perturbation, whereas LinBP
disregards the importance of intermediate layers. M-DI2-FGSM considers data-
related aspects. Our method considers all three aspects: linearization, focus on
intermediate layers, and data augmentation. Thus our method produces the best
transferability on all the victim models. The results emphasize the importance of
intermediate layers for linearization as well as the perturbation.

23

Input Original Perturbed Source Target
Image Class Image Model Models

Automobile Truck Truck

Horse Deer Deer

Bird Cat Cat

Frog Dog Frog

Automobile Airplane Automobile

Truck Automobile Truck

Table 5.5: Visual results of perturbed images from CIFAR-10[28] dataset generated
with our method

24

Table 5.6: Analyzing the effectiveness of different components on CIFAR-10 (I-
FGSM as base attack)

Attack VGG-19∗bn ResNeXt WRN DenseNet GDAS PNet Average
Linearity 100 94.23 93.79 92.75 81.64 48.28 82.14

Linearity + 100 95.14 94.99 94.32 82.8 51.38 83.73
Intermediate Perturb

Linearity + 100 93.6 93.32 91.73 79.65 43.91 80.44
Data Augment

Intermediate Perturb 99.92 92.17 91.54 90.28 78.44 43.08 79.10
+ Data Augment

Our Result 100 95.32 95.46 94.46 83.1 51.44 83.96

25

CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

Higher the transferability, the more vulnerable the state-of-the-art DNN models
will be to black-box attacks, thus posing a severe threat to the reliability of the
deployed DNN models. Therefore, to assess the threat in this work, we present a
method for increasing the transferability of the adversarial examples in the black-
box setting. Notably, we modified the architecture of the source model minimally
so as to decrease the non-linearity in the model by removing a few intermediate
ReLU layers. We have performed a series of experiments using two state-of-the-
art adversarial attacks, namely IFGSM and M-DI2-FGSM. Supplementing these
attacks with minor modifications in the model architecture specifically, decreasing
non-linearity during backpropagation yields high transferability.

Further, we observed that removing the non-linear layers from the interme-
diate convolutional blocks results in superior transferability of adversarial ex-
amples. With lesser modifications in the architecture of the source model than
similar methods, our method achieves the same adversarial success rate in the
white-box setting and identical transferability in the black-box setting. We im-
prove the transferability further by using the M-DI2-FGSM as the attack that uses
data augmentation and integrates the ILA attack with our method. The obser-
vations partially confirm the linearity hypothesis as reducing non-linearity from
architecture improves transferability, thus raising security issues for developing
more robust deep learning models.

6.2 Future Work

To make these attacks more powerful, we can extend the enhancement of trans-
ferability for targeted variation of the state-of-the-art attacks. Another possible
future work is to validate the linearity hypothesis on architecture with different

26

non-linear units other than ReLU.

6.3 Publication

Meet Shah, Shruti Bhilare, Srimanta Mandal and Avik Hati, "Increasing Transfer-
ability by Imposing Linearity and Perturbation in Intermediate Layer with Di-
verse Input Patterns", IEEE International Conference on Signal Processing and
Communications (SPCOM), Bangalore, July 2022 (Accepted).

27

References

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1,
NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.

[3] Gaurav Goswami, Nalini Ratha, Akshay Agarwal, Richa Singh, and Mayank
Vatsa. Unravelling robustness of deep learning based face recognition
against adversarial attacks. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 32, 2018.

[4] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples, 2015.

[5] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,
and Jianguo Li. Boosting adversarial attacks with momentum, 2018.

[6] Nicholas Carlini and David Wagner. Towards evaluating the robustness of
neural networks. In IEEE Symposium on Security and Privacy (SP), pages 39–
57, 2017.

[7] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
Deepfool: a simple and accurate method to fool deep neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2574–2582, 2016.

[8] Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box ad-
versarial perturbations for deep networks. arXiv preprint arXiv:1612.06299,
2016.

28

[9] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277, 2016.

[10] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. arXiv preprint arXiv:1312.6199, 2013.

[11] Ekin Dogus Cubuk, Barret Zoph, Samuel Stern Schoenholz, and Quoc V.
Le. Intriguing properties of adversarial examples. arXiv preprint
arXiv:1711.02846, 2017.

[12] Yiwen Guo, Qizhang Li, and Hao Chen. Backpropagating linearly improves
transferability of adversarial examples. CoRR, abs/2012.03528, 2020.

[13] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge J. Belongie, and Ser-
Nam Lim. Enhancing adversarial example transferability with an intermedi-
ate level attack. CoRR, abs/1907.10823, 2019.

[14] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren,
and Alan L Yuille. Improving transferability of adversarial examples with
input diversity. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2730–2739, 2019.

[15] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236, 2016.

[16] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to
transferable adversarial examples by translation-invariant attacks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4312–4321, 2019.

[17] Gabriel Machado, Eugenio Silva, and Ronaldo Goldschmidt. Adversarial
machine learning in image classification: A survey towards the defender’s
perspective. CoRR, abs/2009.03728, 2020.

[18] Nicholas Carlini and David Wagner. Adversarial examples are not easily
detected: Bypassing ten detection methods. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, pages 3–14, 11 2017.

[19] Xiaosen Wang and Kun He. Enhancing the transferability of adversarial at-
tacks through variance tuning. CoRR, abs/2103.15571, 2021.

29

[20] Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. Skip
connections matter: On the transferability of adversarial examples generated
with resnets. CoRR, abs/2002.05990, 2020.

[21] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine
learning at scale. CoRR, 11 2016.

[22] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick
McDaniel. Ensemble adversarial training: Attacks and defenses. CoRR, 05
2017.

[23] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep
neural networks. In IEEE Symposium on Security and Privacy, pages 582–597,
05 2016.

[24] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick McDaniel. On the (statistical) detection of adversarial examples.
CoRR, 02 2017.

[25] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On
detecting adversarial perturbations, 2017.

[26] Kang Deng, Anjie Peng, Wanli Dong, and Hui Zeng. Detecting c amp;w
adversarial images based on noise addition-then-denoising. In 2021 IEEE
International Conference on Image Processing (ICIP), pages 3607–3611, 2021.

[27] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings, 2015.

[28] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian In-
stitute for Advanced Research). URL https://www.cs.toronto.edu/ kriz/cifar.html,
5(4):1, 2010.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning Rep-
resentations, 2015.

[30] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR,
abs/1605.07146, 2016.

30

[31] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4700–4708, 2017.

[32] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual net-
works. CoRR, abs/1610.02915, 2016.

[33] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Miti-
gating adversarial effects through randomization. ICLR, 2017.

[34] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming
He. Aggregated residual transformations for deep neural networks. CoRR,
abs/1611.05431, 2016.

[35] Xuanyi Dong and Yi Yang. Searching for A robust neural architecture in four
GPU hours. CoRR, abs/1910.04465, 2019.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[37] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V.
Le. AutoAugment: Learning augmentation strategies from data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[38] Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. Shakedrop regu-
larization. CoRR, abs/1802.02375, 2018.

[39] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning Representations, 2018.

31

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Contribution
	Document Outline

	Literature Review
	Adversarial Attack
	Limited-memory-BFGS Attack
	Fast Gradient Sign Method
	Carlini and Wagner Attack

	Transfer-based Attacks
	Diverse Input Iterative-FGSM
	Intermediate Level Attack
	Linearized Backpropagation

	Adversarial Defense
	Adversarial Training
	Network Distillation

	Proposed Approach
	Linearization
	Intermediate Layers
	Diverse Input Patterns

	Experimental Setup
	Dataset
	Source Architecture
	Target Networks

	Experiment and Results
	Conclusions and Future Work
	Conclusions
	Future Work
	Publication

	References

