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Abstract

A variety of frameworks and set of tools used for creating complex and difficult
behaviours are provided by reinforcement learning in robotics. Q-learning is one
of the most popularly used algorithms in reinforcement learning. The implemen-
tation of this algorithm is mostly done in MATLAB and Python using various
tools and libraries available there. These types of implementations are software
based only, which actually requires more time to provide the output. Another
way is to implement the algorithm on hardware i.e., to implement it on Field Pro-
grammable Gate Arrays (FPGA) or to design a chip based on the applications.
This way of implementation reduces the processing time and provides a faster
simulation compared to the one done on software.

This thesis aims to reduce the processing time i.e., latency required for the
agent to perform an action in any particular state while performing in an episode.
We propose an efficient hardware architecture that incorporates the testing of the
algorithm and provides a reduction in processing time. We also provided a chip
design based on the proposed hardware architecture. This in turn will increase
the performance and accuracy of the application. Thus, we majorly focus on the
two parameters i.e., latency and accuracy.
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CHAPTER 1

Introduction

In recent times, reinforcement learning (RL) is in much attention, with a large
number of successful innovations in various fields. RL a type of machine learning
is emerging as a sole computational intelligence through which the system can
make decisions in a given environment without any pre-hand information. Ar-
tificial intelligence has a power to drive the cutting-edge technology innovations
and allows to further extend the use of RL to a tremendous level.

Recent research efforts are done to improve/modify the algorithm so as to
work with real-time applications, and also some efforts are made to implement
the algorithm on hardware but is limited to the equation of Q-learning. Hence,
we decided to implement entire Q-learning testing algorithm for robot control
on hardware. This technology can be developed on hardware to reduce system
processing time. When compared to software counterparts, it is also possible to
achieve high performance not only in terms of processing time but also in terms
of power consumption.

1.1 Overview of Artificial Intelligence

Artificial Intelligence is the intelligence shown by the machines, as opposite to the
natural intelligence shown by humans and animals. According to John McCarthy,
the pioneer of AI, “The science and engineering of making intelligent machines, espe-
cially intelligent computer programs” [1]. AI is basically used to mimic the cognitive
functions that human brains perform such as solving problem, learning, etc [2].

In most cases, AI involves the creation of computer systems capable of doing
activities that would typically necessitate human intelligence, i.e., speech recogni-
tion, decision making, visual perception and understanding different languages
[3]. The above explanation provides general outline of AI, there is no such spe-
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cific definition of AI. In general, AI is a field that consist of a broad spectrum of
algorithms, technologies and applications.

1.2 About Machine Learning

A type of artificial intelligence called machine learning (ML), provides capability
to machines to learn without being explicitly programmed [4], [5]. From the name,
one can get an idea that it makes the computer more similar to humans by the
ability to learn. Basic ML classification is depicted in Figure 1.1. ML is based on
the idea that the machine can learn from data, identify patterns and then make
decisions accordingly [6], [7].

1.2.1 Types of Machine Learning

Mainly, three classifications of ML can be done, based on the training of model i.e.,
Supervised, Unsupervised and Reinforcement Learning. An overview of these is
explained below:

Figure 1.1: Classification of machine Learning (ML) based on training approaches.

1. Supervised Learning: Supervised ML is the most common method in AI. It is
the learning in which the model is trained with labeled set of input data and
its correlated output [7], [8], [9], [10]. For example, a dataset of vehicles as
input data can be labeled as “Trucks” or “Others” as result. The model needs
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to be continuously trained to provide accurate results. Once the training of
model is done with input data set, it can be feed with additional data to
obtain desired output.

2. Unsupervised Learning: Unsupervised ML is the learning in which the in-
put data set is not labeled and output is also not specified [7], [11], [12]. A
large data set is feed and the algorithm is expected to identify any hidden
meaningful pattern. Results obtained are then analyzed by humans whether
they are relevant or not.

3. Reinforcement Learning (RL): It is a type of ML that makes a series of deci-
sions in a given situation [13], [14]. It is an algorithm which learns based on
the observations of environment [15], [16], [17]. The advantage of using RL
is that, it provides rewards that lead to success even when the environment
is too large and complex. Our thesis work focuses on this.

1.3 Details of Reinforcement Learning

An agent can learn through reinforcement learning (RL), by exploring the envi-
ronment and observing the results and rewards. The goal is to find the suitable
action that would result in maximum reward [15], [16], [17]. In this technique
there is no requirement to provide training examples, which is actually a large
dataset and this is the main advantage of this technique. Real-time learning is
possible in RL which implies that it can provide outcomes while improving at the
same time. Figure 1.2 illustrates the action-reward feedback loop of a general RL
model.

Figure 1.2: Shows the schematic diagram of action-reward feedback loop [14].
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1.3.1 Flow of Reinforcement Learning

RL is the method of learning in which decisions are made using experiences. The
process of RL can be stated as below:

Figure 1.3: Block diagram of reinforcement learning system.

• Observing environment

• Decision making as per strategy

• Action

• Obtaining reward/penalty

• Using previous experience to improve the strategy

• Continue until the best strategy is obtained

1.3.2 Reinforcement Learning Approaches

There are three approaches with which RL can be implemented [15], [16], [17]:

1. Value Based: The value-based approach seeks to maximize value in a state
that is governed by policy π. As a result, the agent anticipates long-term
gains.

2. Policy-Based: In this approach an optimal policy is developed which can
maximize the future rewards, unlike the value-based which employs the
value function. There are two types of policy:

(a) Deterministic: Probability of 1 is given to one action and remaining
actions have 0 probability. Hence, the same action is repeated at any
state.

(b) Stochastic: All the actions will have different probabilities.

3. Model-Based: In a model-based strategy, there is no algorithm as the model
representation for each environment is different. The model is created vir-
tually for the environment.

4



1.3.3 Fundamental Elements of Reinforcement Learning

RL consists of four main elements, mentioned below:

1. Policy: A policy describes how the agent should act at all times. The agent’s
behavior can be defined by the policy [18]. Sometimes, it can be a function or
a table, whereas in some cases it can have a computation used for searching.

2. Reward: For each state the agent receives some reward based on its action
[19]. It can be positive or negative based on the action taken. The policy can
be changed based on the reward value i.e., if due to an action low rewards
are received, then there may be a change in policy so that more rewarding
action is taken in future.

3. Value Function: The reward and value function has a difference that is, the
reward indicates the value for the action taken by the agent, whereas the
value function provides information about the state if it is good or bad and
action related to it for the future.

4. Model: This basically helps to know about how the environment will behave
for certain action [4]. RL algorithm consists of two main types of model
approaches:

(a) Model-Free: A model-free algorithm is an algorithm which does not
use transition and reward functions related to Markov decision process
(MDP). The transition and reward function are known as model of the
environment and thus the name “model-free” [20]. This is related to a
trial-and-error algorithm.

(b) Model-Based: Transition and reward functions are used by model-based
algorithm to obtain the best policy [21].

1.3.4 Types of Reinforcement Learning

Till now, we have touched in brief about the flow of RL algorithm, different imple-
mentation approaches and major elements that RL consists. In the next session,
we will discuss about the main types of RL algorithms available that are used in
majority of the applications related to AI. Following are the algorithms:

1. Q-Learning: Q-learning, an RL algorithm, is model-free, which iteratively
improves the learning agent’s actions using Q-values, also known as action
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values. Q in Q-learning stands for quality [18]. The quality represents use-
fulness of given action for future benefits. Q-learning is an off-policy RL al-
gorithm for determining the best course of action in a given situation. Here,
"off-policy" mentions the fact that the Q-learning function learns from ran-
dom actions and hence no policy is necessary. In our work, we are using
Q-learning algorithm.

2. SARSA: It stands for "State", "Action", "Reward", "State", "Action". As oppo-
site to Q-learning, this is an on-policy method [22], [23], [24]. In on-policy
method the agent selects the action while learning the policy in each state.
The key difference between Q-learning and SARSA is that for the next state
to be updated in the Q-table, SARSA does not require the maximum reward.
The reward and next action in SARSA are determined by the same policy
that determined the first action.

3. Deep Q Neural Network (DQN): Here the Q-learning algorithm works us-
ing the Neural Network [4], [14], [25]. For very complex tasks it is hard to
update the Q-table. To solve this, we use DQN. Instead of updating the Q-
table every time, they are approximated by neural network for each action
and state.

1.4 Related Works

ML, AI, and signal processing are widely used in many recent applications. The
following are the main parameters that are taken into account in these applica-
tions: The amount of processing data is growing and need of robotic equipment
is also increasing.

In [26], a brief presentation of hardware implementation of artificial neural net-
work is done. The author also discusses the limitations, benefits, and drawbacks
of various strategies. In [27], a detailed analysis of performance, occupancy rate,
processing speed, and hardware consumption is undertaken using an FPGA hard-
ware architecture for neural networks on image identification. However, only a
few details about the hardware implementation of programmable architecture for
the Q-learning RL approach can be uncovered.
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A pipeline architecture for the selecting mechanism to select the most optimal
action was shown in [28]. The algorithm delay grows as the number of states in-
creases, causing the system to bottleneck. This delay can be decreased by adopt-
ing pipeline design to select the best feasible action in each state. However, no
hardware implementation was displayed for other mechanisms in Q-learning RL
algorithm, nor the details of tools used for hardware implementation of the choice
mechanism were presented.

To use the Q-learning algorithm for real-time applications, extensive researches
have been performed on improving it, but with certain limitations. These mod-
ifications/improvements were based on software [4]. Q-learning algorithm was
implemented with certain modifications, which resulted in faster processing as
compared to conventional algorithm [29], [30]. Hardware implementation for Q-
learning was proposed. The work focused on implementing the Q-learning equa-
tion [19]. Controlling a biped robot walking in real time using Q-learning was
proposed. The architectural implementation was software based [30].

1.5 Objective

Currently, research efforts have been focusing on improving the RL algorithms.
This in turn will provide a smooth operation of RL applications such as control-
ling robotics arm, autonomous vehicle and humanoid robots, etc. We have a dif-
ferent perspective in terms of research.

Currently, Python/MATLAB are used to implement RL algorithms and per-
form their training and testing. Here, testing refers to the real-time use of the
algorithm incorporated in applications such as humanoid robot, autonomous ve-
hicle, etc. [31]. This has a processing time in milliseconds. Hence, we aim to re-
duce the processing time i.e., latency of the robot by implementing the Q-learning
testing algorithm in Verilog HDL, and thereby providing an efficient hardware
architecture that will control the robot. This will reduce the processing time from
milliseconds to microseconds.

1.6 Organization of Thesis

The following is the structure of this thesis. The theoretical foundation for Q-
learning is presented in Chapter 2. More specific topics like the Markov Decision
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Process, the Bellman Equation, and the Exploration vs. Exploitation trade-off are
also explored. Before moving on to the proposed idea, the aim of this chapter
is to simplify all the above mentioned concepts and set-up all of the knowledge.
In Chapter 3, firstly, an example based on Deep Deterministic Policy Gradient
(DDPG) algorithm is showed that is done using MATLAB. Then, a description
of the designed environment, reward and simulation mechanisms are presented.
The training of the model in Python and testing in Verilog HDL along with the
proposed architecture is also described in detail. Lastly, the setup parameters,
data flow analysis and speed-power analysis are discussed. In Chapter 4, chip
design of the proposed architecture is displayed. Also, overview of the EDA tool
used for chip design is given. The design related information is also described in
brief. Lastly, in Chapter 5, the work is summarized, and potential improvements
are suggested and discussed.
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CHAPTER 2

Background

In the previous chapter, we discussed the overview of RL algorithm, its types,
and also the related works that have touched upon hardware implementations
related to Q-learning. Also, we discussed upon our objective, why we are trying
to implement Q-learning algorithm on hardware. The Markov Decision Process
(MDP) [32] defines the sequential behavior decision problem, which is the foun-
dation of RL. It teaches the concept of value function by describing an agent. The
Bellman equation is linked to the value function. To generate the Bellman equa-
tion, RL first employs MDP and a value function, and then applies Q-learning to
solve the problem. Here, in this chapter we will explain Markov Decision Process,
Q-learning algorithm and, its mathematical analysis.

2.1 Markov Decision Process

MDPs are used to describe sequential decision-making processes in which actions
are done while keeping future states and rewards in mind, as well as gaining im-
mediate rewards. In other words, if the state’s knowledge is adequate to predict
future environmental states in response to any activity, the Markov property is
said to exist in this condition (or in some literature, the state is deemed as Marko-
vian) [33], [34].

Natural environments can also be stochastic i.e., even if the same action is per-
formed on the same state, you may nevertheless end up in different states. When
we look at the mathematical description of Markov Decision Processes, this will
become evident.

The policies are termed as the rules for choosing the action that is to be done
in a specific state [35]. Required terminologies are mentioned below:
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1. STATE
The state is defined as a set "S" of observable states for agents. After every
action, the agent obtains a state from the environment.

2. ACTION
A set A of feasible actions in state "S" is called an action. Actions are the
moves taken by the agent in the environment.

3. AGENT
An entity capable of exploring and action on its surroundings.

4. ENVIRONMENT
A location where the agent can be found or is surrounding. The environ-
ment is assumed to be unpredictable i.e., it is random in nature.

5. REWARD
After performing an action the agent will receive feedback from the envi-
ronment, this feedback is termed as Reward.

6. PROBABILITY MATRIX
It is a numerical depiction of an agent’s migration from one state "S" to an-
other "S’" provided action "A".

7. DISCOUNT FACTOR
The concept of discount factor refers to how the value of a reward decreases
over time. Discount factor diminishes the amount of rewards received by
the agent over time and has a value between 0 and 1 [37].

8. POLICY
When an agent reaches to a specific condition, it uses the policy to determine
what action to take. Finally, by learning better policies than the present one,
RL algorithm obtains an optimal policy [36].

2.2 Value Iteration Algorithm

The Value Iteration algorithm is based on the Bellman Equation, according to
which the maximum reward obtained for an action is the ideal value for the state
[34]. The Q-value can be termed as the sum of the expected value of the imme-
diate reward over all potential state transitions plus the penalties of the resulting
state. The equation for the Value iteration algorithm is shown below for reference:
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V(s) = max
α

Q(s, a) ... (2.1)

Q(s, a) = ∑
s′

T(s′|s, a)[R(s, a, s′) + γV(s′)] ... (2.2)

Bellman updates are executed in full sweeps of the state space in Value Iter-
ation. That is, the value of all states is set to a random value at the start. The
Bellman Equation then sweeps over the full state space to update the value func-
tion estimate. These stages are performed until the maximum change in the value
function is small or for a set number of iterations. The pseudocode of Algorithm
1 is displayed below.

Algorithm 1 Value Iteration
Initialize V(s) i.e, value function randomly for all states.
Continue until the point of convergence is reached
for each state s do

V(s) = maxα ∑s′ T(s′|s, a)[R(s, a, s′) + γV(s′)]
end for

Table 2.1: Value Iteration Algorithm [34]

The Value Iteration is a planning approach that estimates the Value function
using the Bellman Equation [34]. When the probability or reward function are
unknown, which is common in actual systems, value iteration techniques cannot
be determined. The problem stems from the fact that the planning method ne-
cessitates the use of a world model or, at the absolute least, a simulator. Another
disadvantage of Algorithm 1 is that it may not perform well when state space is
huge or infinite.

2.3 Value Function

The value function is the criterion that is used to determine the best policy. It is
the sum of the benefits that should be expected if the policy is followed from the
current state [36]. The policy is as follows:

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s] ... (2.3)
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where Vπ is the expected value, Eπ and Rt+1 is the next rewarded value and γ

is the discount factor.

It contains the state value function, which sums the rewards that will be re-
ceived when the state is granted. It permits the agent to select a more advanta-
geous condition.

On the other hand, the action value function considers both the state and the
action. Based on the Q-function the agent picks an action. The Q-function is
presented as follows:

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At+1 = a] ... (2.4)

The following equation depicts the relationship between the Q-function and
the value-function:

vπ(s) = ∑
aϵA

π(a|s)qπ(s, a) ... (2.5)

The policy and the Q-function value are summed together for all activities.
Bellman equations are used to express the Q-function and value function. The
Bellman equation depicts the connection between the current state’s value func-
tion and the next state’s value function.

2.4 Bellman Equation

The Bellman equation was created in 1953 by mathematician Richard Ernest Bell-
man, and is thus known as a Bellman equation. It is linked to dynamic program-
ming and is used to calculate the values of a decision problem at a given moment
by factoring in previous states’ values.

The Bellman equation is a crucial component of many RL algorithms and may
be found throughout the Reinforcement Learning literature. Referring to the Bell-
man equation, the value function can be broken down into two parts i.e., the cur-
rent reward and discounted future values, according to the Bellman equation [33].

Also, the computation of the value function gets simplified by cutting it down
into small parts and finding answer for each of them, instead of summing it all
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together.

Modern reinforcement learning is a method of determining value functions in
dynamic programming or in an environment.

2.4.1 Bellman Expectation Equation

The Bellman equation expresses the connection between the present state’s value
function and the value function of the future state [36], [38].

vπ′(s) = ∑
aϵA

π(a|s)(Rt+1 + γ ∑
s′ϵS

Pa
ss′vπ(s′)) ... (2.6)

where ∑aϵA π(a|s) is the probability policy for doing action, ∑s′ϵS Pa
ss′ is the

state transition probability matrix. Rt+1 and γ are the reward and discount factor
respectively.

2.4.2 Bellman Optimality Equation

The Bellman optimal equation uses the value function to obtain the optimal value.
The Bellman optimal equation is expressed below:

v∗(s) = max
α

Eπ[Rt+1 + γv∗(St+1)|St = s] ... (2.7)

where maxα Eπ is the maximum expected reward value under given policy.

Reinforcement learning uses the Bellman expectation and Bellman optimum
equations to solve the MDP problem.

2.5 Q-Learning

Unlike prior algorithms that did not distinguish between behavior and learning,
Q-learning an off-policy algorithm, separates the training and testing policies. As
a result, even if the action chosen in the following state was mediocre, the infor-
mation was not incorporated in the updating of the current state’s Q-function,
resulting in the dilemma that it was a bad choice [36]. Q-learning, on the other
hand, overcomes the problem because it uses off-policy. The equation for the Q-
value is as follows:
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Q(st, at)← (1− α) ∗Q(st, at) + α ∗ (rt + γ ∗max
α

Q(st+1, a)) ... (2.8)

where, α is learning rate at which the model will be trained and has a value
between 0 and 1, Rt is the reward for each action taken, γ is the discount factor.

The difference between the value iteration and the Q-learning algorithm is
that the Q-value in value iteration is the total of rewards and discounted value
of the next state, whereas the Q-value in Q-learning is the sum of rewards and
discounted max Q-value of the next state. If we continue to perform random ac-
tions on the same state, all the possible states can be reached. This will allow us to
reach close to ideal Q-value. Some parameter setup ideas could be very useful in
practice for ensuring guaranteed convergence. First, over a set of training steps,
the greedy strategy should reduce the value linearly from 1.0 to a tiny fractional
value, say 0.1, and then be fixed at that small fraction. Thus, the agent can explore
more for a number of combinations of state-action, at the beginning of training
and gradually by reducing the randomness as and when the agent develops an
experience. Another technique is to gradually reduce the learning rate over time.

In the initial state, if an agent chooses an action based on a policy, it jumps to
the next state. Until the total Q-value reaches to a specific value that can be used to
perform a task using the Q-table, the process continues for multiple times [38]. Q-
learning is a simpler method in comparison to other methods, that demonstrates
good learning ability in single-agent situations. It has become the foundation of
numerous RL algorithms [45].

2.5.1 Q-Learning Algorithm Flow Chart

• Q*(s, a) is the expected reward obtained on doing an action “a” in state “s”.

• Q-Learning uses temporal difference (TD) to obtain the Q*(s, a) value. Using
TD means that the agent learns in the environment without having any prior
knowledge of it.

• The agent needs to maintain a Q-table i.e., Q [S, A], where S is the available
states and A is the possible actions that agent can perform.
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Figure 2.1: Basic Q-learning Flow

Step 1: To initialize the Q-table

The Q-table is a matrix kind of structure, which is used to store the future rewards
obtained for each state. This will end up with providing an optimal action in any
state. There are four possible number of actions at each state of environment.
When the agent is in a state it can either move forward, backward, left or right.
The Columns here represents action, and the rows represent the states. Each Q-
table value represents the robot’s maximum projected future reward if it does that
action in that condition. We must enhance the Q-table at each iteration, so this is
an iterative process.

Step 2 and 3: Choose and perform an action

This sequence of steps is repeated for an unspecified amount of time. This sig-
nifies that this phase will continue until the training is completed. Based on the
Q-table, the agent will choose an action in a particular state. However, as men-
tioned earlier, when the episode begins for the first times, every Q-value is 0. Here
the concept of exploration and exploitation comes into picture. For this trade-off
we use epsilon greedy strategy. The epsilon greedy strategy will be explained in
section 2.5.2.
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Step 4 and 5: Measure Reward Update Q-table

After performing action, the agent receives reward and hence it should be up-
dated in the Q-table. This is reiterative process; it will repeat until the learning is
stopped. The Q-table is updated in this manner, and the value function Q is max-
imized. The expected future rewards of the action taken in that state is returned
by Q (state, action).

2.5.2 Exploration Vs. Exploitation

All Reinforcement Learning agents gain knowledge from their previous experi-
ences. As a result, an agent’s decisions about which action to take have an impact
on the various kinds of experience it has and the lessons it learns. The agent then
claims that in order to reach new states with the highest future reward, it is some-
times necessary to avoid the optimal acts. If an agent always takes the action with
the highest Q-value, it will almost surely find a sub-optimal or no solution. Ex-
ploit refers to adopting a policy that is exclusively based on the actions that have
highest Q-value, whereas explore refers to ignoring those best actions in order to
find new states and rewards. This is why it’s critical to strike a balance between
exploring and exploiting. This demand for stability is termed as the Exploration
and Exploitation problem or Exploration and Exploitation trade-off [39], [40].

Figure 2.2: Epsilon-Greedy action selection.
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We utilize an epsilon greedy technique to achieve this balance between ex-
ploitation and exploration. We initially set the exploration rate to be 1. This rep-
resents the likelihood that the agent will explore rather than exploit. It is 100%
certain that the agent will begin by exploring the environment if ϵ = 1.

In the beginning of an episode, ϵ will decay by a rate that we set, once the
agent has great learning about the environment, through which the exploration
reduces. The agent is termed as "greedy" in terms of exploitation, when it gets a
chance to explore the environment [39], [40].

2.5.3 Q-Learning Algorithm Pseudo-code

Algorithm 2 Q-Learning Algorithm
Initialize Q-table randomly for each state-action pair
for each episode do
get initial state s
repeat

select a using policy derived from Q (e.g., ϵ-greedy)
take action a, observe next state s’ and obtain reward r
update Q (s,a)

until s is terminal state
end for

Table 2.2: Q-Learning Algorithm

Algorithm 1 provides an explicit technique for implementing the Q-learning
algorithm. Inputs consists of the discount rate, reward function and learning co-
efficient. The first stages are to set up the initial state s0 and the Q-table. The
algorithm selects an action for the current state from a list of options and mon-
itors the next state and reward. The Q-value then gets updated. This continues
until the final version of Q-table is not obtained.
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CHAPTER 3

Related Work and Proposed Method

In previous chapter, RL and Q-learning algorithm were explained in more de-
tail. In this chapter, we describe the implementation of Deep RL algorithm for
Walking Robot and Q-learning algorithm Hardware and setup parameters, im-
plementation results and analysis based on it. First of all, Deep RL algorithm for
Walking Robot implementation in MATLAB is presented. This implementation
was done to explore the algorithm and working of it. Subsequently, we have in-
troduced the implementation of Q-learning algorithm by differentiating it in two
parts i.e., training and testing. Also, we have presented the task that agent needs
to perform and the environment used for the same. The parameter used in imple-
mentation are also discussed. Finally, we have shown the simulation results and
their analysis.

3.1 Deep Reinforcement Learning for Walking Robot

RL a type of machine learning is all about how the virtual agent thinks of taking
an action to maximize the total reward in an environment. Figure 3.1 shows the
RL model used in this example. The Environment is the world where the actions
need to be taken in order to achieve the target. Here the environment is the lower
body of the robot i.e., two limbs. Here the actor-critic agent model is chosen,
DDPG algorithm. There are two neural networks in this example one is actor and
the second is critic. The actor has state observations and actions to be performed
as input and output respectively. The critic calculates the value of the state of the
environment based on the actions performed by the actor. This helps to update
the weight values of both the neural networks. This example aims to provide the
ability to balance and walk to the lower body of robot. Simscape Multibody was
used to model the robot in this example.
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Figure 3.1: RL model implemented for biped robot simulation.

This example trains the agent in the robot environment using the model pa-
rameters. The following settings are shared by all of the agents in the example
[41].

• The robot’s initial condition strategy

• Actor and critic network structure

• Possibilities for actor and critic representation

• Actor and critic training options

3.1.1 Deep Deterministic Policy Gradient (DDPG) Agents

The Deep Deterministic Policy Gradient (DDPG) algorithm is an off-policy rein-
forcement learning method that is model-free and online. A DDPG agent is an
actor-critic reinforcement learning agent that seeks out the best policy for maxi-
mizing the predicted long-term reward [41]. DDPG agents can be trained in envi-
ronment with observation space to be continuous or discrete and action space to
be continuous. During training, a DDPG agent does the following set of things:

19



Figure 3.2: Block diagram of reinforcement learning model for the control of hu-
manoid robot waking.

• At each learning phase, the actor and critic properties are updated.

• A circular experience buffer is used to store previous experiences. Using a
mini-batch of experiences randomly taken from the buffer, the agent updates
the actor and critic

• At each training step, a stochastic noise model is used to change the policy’s
action

3.1.2 Training Result

The DDPG agent seems to learn more quickly (around episode number 1700 on
average), shown in Figure 3.3. In this example, the training was done for around
2200 episodes. It took around 24 hours to train the model for these number of
episodes. Also, episode reward started to increase after 1500 episodes.

3.1.3 Simulation Results

Figure 3.4, shows the simulation of the project i.e., robot walking along the path
towards the final destination. In this work, the most important thing is the inter-
action of the robot with the floor. The main aim of this example was to achieve a
movement relatable to human walking, which here is forward motion along with
balancing and improving the movement.
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Figure 3.3: Training results obtained from MATLAB simulation.

Figure 3.4: Lower body simulation of humanoid robot in the environment after
training the model.
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Figure 3.5: Illustrates the cumulative reward with training time.

Figure 3.6: Illustrates individual reward with training time.
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Figure 3.7: Lower body actions (torque in N-m) for left and right legs movements
of humanoid robot.

The simulation was performed for 10 seconds. The agent needs to reach the
end point, without deviating from the straight-line path. The results presented
above consists of cumulative reward, which is the average reward received till
that time. It increases gradually as the agent follows the path. Also, there will be
different rewards/penalties for different robot movements, which will result in
increment/decrement of the total reward obtained respectively. As this example
consists of the biped robot walking, each limb will have some torque value for
every step, which will make the robot walk which is shown in Figure 3.7.

The major aspect to discuss here is the very high computational cost is required
for the training of the agent using deep RL, which takes few days to complete.
MATLAB is majorly used for Deep RL applications, where more computational
power is needed.

This example is considered to analyze the working flow and complexity of RL
and to have an exposure of MATLAB as a tool used for RL.
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3.2 Proposed Method

As the robot movement is a very complicated task and requires a lot of resources,
we divided in two parts, one of which is training and second is testing. We are
implementing an efficient hardware for the Q-learning algorithm, which in turn
will provide a faster execution compared to its current implementation. The area
in which we are focusing has a very negligible or have no research papers that
aim to implement a hardware for this purpose. They are focusing on improving
the RL algorithms that would make smooth simulations of the application. Thus,
we started to explore from an initial level. Hence, to reduce the complexity and to
provide better results, we are developing Q-learning instead of Deep Q-learning,
which is the base of RL for hardware implementation. The training of Q-learning
model is done in Python, whereas the testing is done in Verilog HDL. The Q-table
is obtained by training the model in Python, the same will be used in Verilog HDL
for testing it.

3.2.1 Task Description

This project’s major goal is to create and develop an agent which can act upon
certain task. The three sub-tasks or sub-objectives that make up this task are as
follows:

• Respect the environment’s boundaries.

• Avoid the obstacles.

• Reaching the goal location.

As a result, in order to assume that the task is completed, the agent must complete
the three sub-objectives listed above. Furthermore, completing the task outlined is
not the primary purpose of this thesis because it can be done in a variety of ways,
some of which are more efficient or complete than others. The optimality and
completion of the solution found by the agent are determined by the following
criteria:

• Number of times the agent hits the obstacle in total number of episodes com-
pleted.

• Number of steps needed to complete each episode.
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3.2.2 Environment

When experimenting with RL, one of the most important aspects to consider is
the environment design. The environment’s primary responsibility is to imitate
the inputs that the agent would get in a real or non-simulated setting and to adapt
itself in response to the agent’s outputs. We have considered a 2D environment
where we taught the agent to move from one tile to another and also it will op-
timize by learning from the mistakes. The 2D environment is a 4×4 grid which
contains four possible areas – Start (S), Tile (T), Obstacle (O) and End (E) as il-
lustrated in Figure 3.8. In Verilog HDL, as the hardware doesn’t understand the
characters, the binary representation of possible areas is done i.e., Start (00), Tile
(01), Obstacle (10) and End (11). Here is visual look of 2D environment:

Figure 3.8: Visual representation of 2D environment used for this work.

Case 1 2 3 4
|S| 16 64 256 1024
|A| 4,8 4,8 4,8 4,8

Table 3.1: Possible Test Cases based on Environment Size and Actions

The maximum total number of states is represented by |S|, and the maximum
total number of actions is represented by |A|. (a, b) coordinates are used to ad-
dress the states. When there are 64 total number of states, the a and b coordinates
are represented by 3-bits. Actions are represented by a series of integers. Each
action is represented by a 2-bit binary value in the instance of four actions, where
00 refers to left, 01 refers to right, 10 refers to forward, and 11 refers to backward.
While 000 refers to left, 001 refers to top-left, 010 refers to up, 011 refers to top-
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right, and so on in a clockwise direction. Total 8 actions will be there, which will
be represented by 3-bit binary number. In this thesis, we are assuming 16 states,
each with 4 possible actions.

3.2.3 Simulation Mechanism

Aside from the environment’s structure and features, there are various rules that
controls the simulation and determine the dynamics of the interaction between
the agent and an environment.

Firstly, the agent will have four possible number of actions that it can perform
i.e., Left (0), Right (1), Forward (2) and Backward (3). The agent will then travel to
the adjacent cell in that direction by doing any of the four potential actions, which
are all moves. A step in the simulation is defined as the selection and execution of
any activity. However, the two possible instances where the agent does not carry
out the movement resulting from a chosen action are the agent’s choice of action
that leads to an obstacle or the environment’s restrictions (grid).

In terms of the resulting interaction of the agent with the objects scattered
throughout the environment, an episode is termed as finished if the agent reaches
to the end or if it hits to an obstacle. Once the agent performs the action, the posi-
tion of it in the environment is updated.

Finally, an episode completes if the set number of steps have been performed
or it has reached the goal/obstacle location

3.2.4 Reward Mechanism

The reward principle is what makes Reinforcement Learning so diverse and pow-
erful. Giving good rewards to the agent when it performs as expected and pun-
ishing it when it won’t. As a result, the reward system design becomes extremely
relevant and important in any RL design or implementation.

In our case, if the agent meets with an obstacle, then it will be rewarded with
0 and the agent then starts with a new episode, whereas if it reaches to the finish-
ing point, then it will be rewarded with 1, and the agent will start with the new
episode again. Reward for each step is evaluated using the Q-learning equation
mentioned in chapter-2 (section 2.5).
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3.3 Training the Agent

The agent is the only component that has the ability to adapt and learn through
simulations, given that the environment is a static component with already set dy-
namics. The Q-learning algorithm guides the agent’s dynamics as well as its learn-
ing process, as detailed in Chapter-2. The world refers to the two-dimensional
grid, its element configuration, and the agent.

To know and grasp their situation in relation to the environment at all times,
all RL agents require their own representation of the world. The agent’s condition
refers to the agent’s own representation. The state of base agent, created initially,
was directly specified by its grid co-ordinate positions. This was the only infor-
mation except reward, which the agent received from the environment. This basic
agent’s learning process was identical to the one described in Algorithm 2 (refer
chapter-2, section 2.5). As a result, while taking each step, the agent was learning
from the information it encountered. Also, initially when the agent starts to learn
we need to allow random movements and then gradually its probability should
be reduced. Thus we can minimize the error by minimizing the loss. Finally, a
table was created that contained all of the Q-values which needs to be updated at
each step.

3.3.1 Q-table Rewards obtained from Training

There are 16 possible locations where the agent can be at any given instant of
time. In the present state the agent will have four possible actions that can be
performed for the next state. Hence, 16 possible locations, each having 4 possible
actions which forms a Q-table of size 16×4, where states are the rows and actions
are columns.

We will have an updated Q-table once the training is concluded, which is
shown in fig. 3.9. Also, for analysis purpose we can have average rewards per
thousand episodes, shown in Figure 3.10. Both the figures are obtained while
training the agent. It can be concluded that the average reward value increases
along with the number of episodes.
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Figure 3.9: Q-table obtained while training the agent.

Figure 3.10: Average rewards per thousand episodes.
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3.4 Testing in Python

Using the above obtained Q-table values, the agent was tested in the 2D environ-
ment for five episodes in Python, out of which two times the agent hits with an
obstacle and three times it reaches to the goal. The results are shown in Table
3.2, along with the number of steps the agent took for each episodes. The visual
transformation in the environment is also presented in Figure 3.11, 3.12.

Figure 3.11: Environment visualisation when the agent hits an obstacle.

Figure 3.12: Environment visualisation when the agent reaches the goal.
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Episode No. Last tile No. of steps Reward
0 Obstacle (O) 19 0
1 Obstacle (O) 28 0
2 End (E) 16 1
3 End (E) 25 1
4 End (E) 32 1

Table 3.2: Simulation results

Also, we observed that the run time of the simulation was 6.08 milliseconds in
Python

3.5 Testing in Verilog HDL

As mentioned in Chapter-1, we focused on the reduction of processing time, re-
quired by the agent to take the decision during the testing part. Hence, we pro-
posed an architecture for Q-Learning algorithm for testing purpose, that will re-
duce the processing time.

3.5.1 Proposed Architecture

Figure 3.13: Proposed VLSI architecture.

30



Figure 3.14: ADD/SUB/BUF blocks which are considered in the proposed archi-
tecture.

To accelerate this algorithm, we used the following resources: (i) SRAM1 for
storing the 2D environment i.e., 4x4 grid. (ii) SRAM2 for storing Q-table. Here we
have stored the Q-table as a labelled data set, i.e., action:reward, the first two bits
from MSB are the action bits, while the rest of bits depict the reward. So, when the
read operation from SRAM2 happens, action bits will be given further so that the
agent’s position can be updated in the environment. Thus, completion of a single
step i.e., to choose an action based on the Q-table stored in SRAM2, the process for
the next step will also start from SRAM2 only, thus making it the heart of archi-
tecture. (iii) Episode Counter for counting number of episodes. (iv) Step Counter
for counting number of steps per episode. (v) Comparators are used to compare
the results of each episode i.e., if the agent hits an obstacle or it reaches to the
goal. Also, one comparator is used to compare the number of steps, if it reached
the set limit. (vi) Multiplexer in the environment block is used to update the
state of the agent according to the action performed and co-ordinates it reached
in the environment. (vii) Multiplexer at the top is used to reset the next state if
the reset signal is triggered. (viii) Adder in environment block is used to add the
offset obtained from multiplexer with the previous co-ordinate value b. (ix) OR
gates are used for generating the reset signal based on the episode results or if the
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step count limit is reached. (x) ADD/SUB/BUF module shown in Figure 3.14, is
basically a combination of adder, subtractor and buffer (refer Chapter-4, section
4.4.3 for the role of buffer). The module is used to calculate the new co-ordinates
changed according to the action taken by the agent. The proposed architecture is
displayed in Figure 3.13.

3.5.2 Simulation Results

The simulations are performed using the proposed architecture and are based on
the Q-table obtained from training the model in Python. The number of episodes
for which we have done simulation is five. The results are presented in Table 3.3.
The agents hits the obstacle in all the episodes (for visual representation of the
environment refer Figure 3.11). For this we need to implement dynamic policy
block, through which the agent will be able to perform different actions based on
Q-table values in different episodes, that will end up with taking a different paths
in each episodes. This will be included in the future works.

Episode No. Last tile No. of steps Reward
0 Obstacle (O) 5 0
1 Obstacle (O) 5 0
2 Obstacle (O)) 5 0
3 Obstacle (O) 5 0
4 Obstacle (O) 5 0

Table 3.3: Simulation Results

The run time of the simulation in Verilog HDL is 30 nanoseconds, which is
a huge reduction in comparison to that of Python which was 6.08 milliseconds.
Hence, we succeeded to achieve our aim to reduce the processing time by imple-
menting Q-learning algorithm on Hardware. The next section will discuss about
how the data flow occurs in training as well as in testing process.

3.6 Data Flow Analysis

As we have mentioned above that the overall Q-learning algorithm is broken
down into two parts i.e., training and testing. So, it is important to analyze each
of the following part’s data flow to know how it works. Training being the first
part of any ML algorithm, we will discuss it first.
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Figure 3.15: Simulated training data flow diagram.

As shown in Figure 3.15, the first step in training is to initialize Q-table. Here
as the grid is of size 4×4 and total number of actions possible are 4, the size of Q-
table becomes 16×4. Now the agent starts in a state, according to which it chooses
the action. It performs the action and based on it, receives the reward. For the next
action, the agent will have two choices i.e., referring the Q-table and to select the
action with highest value or taking a random action. After performing the above
steps, the agent updates the Q-table. This repeats until the number of episodes of
training is reached to an end.

After training, the Q-table is ready to use. Testing is done based on the values
stored in Q-table. We analysed the data flow of testing. There are two cases (a)
agent hits an obstacle (b) agent reaches to the end. First, we will discuss case(a).

Figure 3.16: Data flow diagram when the agent hits an obstacle (case(a)).

Here in Figure 3.16 the data flow diagram for case(a) is shown, SRAM1-ENV
is the SRAM that is used to store the environment values and SRAM2-ACT is the
SRAM used to store Q-table and Reward values that helps us to choose the action.
a=1, b=1 is the position at which obstacle is there (refer Figure 3.8). It reads the
value from SRAM1-ENV for the value of a, b and detects it as an obstacle. The
reset signal becomes High and it resets the state. Next episode begins and this
loop continues till the episode count is reached.
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Figure 3.17: Data flow diagram when the agent reaches to the end (case(b)).

The data-flow diagram for case(b) is shown in Figure 3.17. The agent starts
from a=0, b=0 and continues the movement in the environment. At certain point
of time, it reaches a=3, b=3 that is the end point i.e., finish. Thus, the reset signal
becomes High and resets all the counters i.e., step and episode. Also, it resets the
state to 0 and hence starts a fresh episode. Here, the agent will receive reward as
1, as it completes the task. In earlier case i.e., case(a) the agent will receive reward
as 0 as it hits an obstacle.

3.7 Setup Parameters

Here, we detail the design and setup of the tests that were conducted in order
to assess the proposed strategy in the previous sections. To begin, the hyper-
parameters used in the experiment are determined, as well as their values. Then,
to compare and analyze the technique’s performance, we show several technique
and environment parameters, such as the utilization of the agent’s vision and the
size of the environment grid, and obstacles in the path.

In all RL problems, parameter tuning is a necessary step. The parameters de-
scribed here, optimize the systems using a combination of theoretical knowledge
and trial-and-error. To do so, a 2D, 4 × 4 grid with the agent’s vision and barriers
in between is used to evaluate the numerous permutations of these parameters in
the same environment setup and complexity.

The values chosen for each parameter are listed below, along with their justifi-
cations [33]:
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• Learning Rate (α) (0.01, 0.05, 0.001, 0.005): The learning process will be
too sluggish if the rate is set too low; but, if the rate is set too high, the
learning process will be divergent, leading to no solution. The values tried
are relatively modest because we favour finding a solution to speeding up
the learning process.

• Discount Factor (γ) (0.99, 0.975, 0.95, 0.9): Our purpose is to influence the
agent to act in such a way that it emphasizes long-term rewards over short-
term rewards. Then, to see if they work, significant discount values are used.

• Initial epsilon (ϵ) (1, 0.9, 0.8): The epsilon value indicates how unpre-
dictable the agent’s actions are. We then test large values for this parameter
since we want the agent to explore the environment rather than following
learned rules.

• Epsilon Decay Rate (0.999, 0.995, 0.99, 0.975, 0.95): This option, like the ep-
silon value, determines how much the epsilon decreases after each episode.
To give the agent sufficient exploration and episodes at learn, the parameter
is set to a consistent reduction.

• Epsilon Minimum Value (0.3, 0.2, 0.1, 0): This parameter is mostly con-
cerned with the experimentation’s testing phase. As a result, low values are
essential because we don’t want the agent to keep exploring but rather stick
to the taught policy.

Performance metrics such as precision, convergence time, and overall reward
are used to calculate the final parameter values. Table 4.1 shows the values that
perform the best.

Learning Rate Discount Factor Epsilon Decay Epsilon Epsilon Minimum
Rate Value

0.1 0.99 1 0.995 0.01

Table 3.4: Setup Parameter

3.8 Speed Analysis

The comparison between the processing time required for simulation in Python
and Verilog HDL is done. The reduction in processing time can be clearly seen
from the Table 3.5. These results are obtained based on frequency of 62.5 MHz.
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Processing Time
Python 6.08ms

Verilog HDL 30ns

Table 3.5: Processing Time

3.9 Power Dissipation

Different types of power dissipations resulted in the hardware implementation
are presented in Table 3.6.

Dissipation Power (mW)
Core Dynamic Power 0.73

Core Static Power 39.76
I/O Power 7.88
Total Power 48.37

Table 3.6: Power Dissipation
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CHAPTER 4

Chip Design

4.1 Introduction

Electronic design automation (EDA), often known as electronic computer-aided
design (ECAD), is a software program that allows you to create electronic circuits.
A design flow is usually included in the software application to design and ana-
lyze the electronic circuit. There are many commercial EDA tools, which follow
industry standards and are very costly in terms of license such as Cadence, Men-
tor Graphics, Synopsys, etc. But using Open-Source or free software EDA tool is
the one and only effective way for research students and teachers to implement
their ideology and also to learn. In the EDA community, Open-Source EDA has
become a prominent project since it promises a number of benefits, particularly
in terms of shared infrastructures like internal representations and databases, as
well as tool compatibility.

Steven M. Rubin created the Electric VLSI Design System in the early 1980s
as an EDA tool [42]. Electricity is utilized to create logic wire schematics and do
integrate circuit architecture analysis. It also supports VHDL and Verilog as well
as other hardware description languages. Design rule checking, Logical Effort,
Simulation, Layout vs. Schematic, Routing, etc tools are included in the system.
Electric is a Java application that was released in 1998 as part of the GNU project
under the GNU General Public License.

Electric VLSI provides various types of design related environments. They ex-
ist as a technology in Electric VLSI. Each of these environments consists of a set
of primitive nodes, arcs and some information about design rules. The environ-
ments present are more focused on layout of ICs and also for non-ICs.
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4.2 Existing Open-Source EDA Tools

A decent EDA tool should offer capabilities like logical design, circuit schematics,
layout creation, and design rule check based on the VLSI design flow. Most VLSI
CAD systems that support all of these elements are not open-source software in
today’s market, although there are some open-source solutions that offer parts of
these features individually. Table 4.1 has a list of these [43]. Other open-source
EDA tools have the basic disadvantage of not being as complete as Electric. Even
though certain tools provide certain aspects, the entire feature set is not integrated
into a single Open-Source CAD system. Only the Electric CAD system is compre-
hensive and covers all needed features [42]. Due to these reasons, we used Electric
VLSI for chip design purpose.

Tools Compatible OS Functions
Electric (9.07) Windows, Linux, Mac OS HDL to Layout

gEDA (3.0) Mac OS, Linux PCB Designing, Schematic
Magic (8.3) Linux Circuit Layout
eSim (2.2) Linux, Windows PCB Designing, Schematic

Xcircuit (3.10) Unix, Windows Schematic Capture
Qucs (0.0.19) Windows, Linux, Mac OS PCB Designing, Schematic

Table 4.1: Currently Available Open-Source EDA Tools

4.3 Electric VLSI Design Flow

The design flow followed by both Digital and Analog designs in Electric VLSI is
shown below.

• Step 1: Specifications for Digital/Analog Circuits

• Step 2: Schematic Design

– Worked on in the Schematic Design Environment.

– Naming convention “Cell_name{Sch}”

• Step 3: Schematic Verification

– Check for schematic errors with DRC.

• Step 4: Schematic Simulation
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– Using the Simulation Tool, create a SPICE deck.

• Step 5: Layout Design

– Standard CMOS processes are usually done in a MOCMOS design en-
vironment.

– Naming convention “Cell_name{lay}”

• Step 6: Physical Verification

– Run DRC to ensure that the layout design follows the rules.

– Check Layout versus Schematic using LVS.

– Check wells and antenna rules with ERC.

• Step 7: Layout Simulation

– Using the Simulation Tool, create a SPICE deck.

• Step 8: Final Layout

4.4 Digital Design using Electric VLSI

Electric VLSI is used to examine digital circuits in this section. Multiplexer, Adder,
Comparator, Counter, Decoder, and other combinational circuits, as well as mem-
ory design, such as SRAM, are discussed. MOSIS design standards for TSMC
180nm technology were used to generate all of the physical level designs. The
MOSIS website was used to obtain the transistor model files.

4.4.1 Adder 2-bit

In VLSI systems, adders are extremely important. Adders are used in micropro-
cessors, digital signal processing architectures, parity checks, and other applica-
tions. Here, two full adders are used to construct 2-bit adder. The adder has three
inputs A, B and Cin, where A and B are the input values which needs to be added
and Cin is the carry obtained from the previous operation. Besides these inputs
it has two outputs Cout and sum. Each of the inputs and outputs, except Cin and
Cout are of 2-bits. When A = 01, B = 10 and Cin = 0, then the sum = 11 and Cout

= 0. Similarly, when A = 01, B = 10 and Cin = 1, then the sum comes out to be 00
and Cout = 1. The 2-bit adder was used in ADD/SUB/BUF block (refer chapter-3,
section 3.5), to add the coordinate values. The layout area of the 2-bit adder is
137µm x 236.5µm.
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Figure 4.1: Adder 2-bit layout.

4.4.2 Adder 4-bit

Figure 4.2: Adder 4-bit layout.

Here, four full adders are used to construct 4-bit adder. The operation here,
remains the same as it was in 2-bit adder. A, B and sum are of 4 bits, while Cin

and Cout are of 3 bits. The layout area of the 4-bit adder is 137µm x 499µm.

4.4.3 Buffer

A buffer has only one input and one output and behaves in the opposite way as a
NOT gate. It merely sends its input to its output unmodified. Four back-to-back
inverters are used to construct buffer. A buffer is mostly utilized in a Boolean logic
simulator to increase propagation latency. A buffer can be used to amplify a signal
in a real-world circuit if its current is too weak. We have used buffer to provide
a delay in the ADD/SUB/BUF block (refer chapter-3, section 3.5). There are two
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Figure 4.3: Buffer layout.

coordinates in the environment (discussed in chapter-3, section 3.2), which gets
updated when an action is taken by the agent. Based on action, at most one of
the coordinates will get updated and the other will remain unchanged. Thus, the
unchanged coordinate will reach the output prior to the changed coordinate. As
the changed coordinate will go through adder/subtractor, it will reach after some
delay. Thus, to make both the coordinates reach to the output at the same time we
have used buffer, which will provide same amount of delay as the add/subtractor
will provide. The layout area of the buffer is 73µm x 107µm.

4.4.4 Decoder 2-to-4

A combinational circuit that decrypts the inputs, is known as Decoder. Thus, the
input has lesser bits as compared to the output. We have used a 2-to-4 decoder.
Three inputs are processed into eight outputs in a 2-to-4 decoder. It has two inputs
and four outputs. Only one of the four outputs is chosen based on the combina-
tions of the two inputs. When both the inputs are 0, then the output is 0001. When
both the inputs are 1, then the output is 1000. The layout area of 2-to-4 decoder is
169µm x 113µm.
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Figure 4.4: Decoder 2-to-4 layout.

4.4.5 Equality Comparator

Figure 4.5: Equality comparator layout.

A digital comparator, also known as a magnitude comparator, is a digital cir-
cuit that compares two binary integers to see if one is greater than, less than, or
equal to the other. Central processing units (CPUs) and microcontrollers both use
comparators (MCUs). Here, we have used an 8-bit equality comparator, which
will only check the equality between the two binary numbers. The layout area of
8-bit equality comparator is 153µm x 2391µm.

4.4.6 Counter

Counter is a sequential circuit. It is used to count the pulses. Flip-flops are the
basic elements that are used to construct the counters. We have used two counters
one for episode counting and the other for step counting. Both the counters are of
8-bits. The layout area of the 8-bit counter is 137µm x 1027µm.
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Figure 4.6: Counter layout.

4.4.7 4-to-1 Multiplexer 4-bit

Figure 4.7: 4-to-1 Multiplexer 4-bit layout.

A multiplexer is a digital switch with numerous inputs but only one output.
With the use of control inputs, it selects one of multiple inputs and transmits a
single output through it. Here, we have used 4-bit 4-to-1 mux, which has 4 inputs
each of 4 bits. The layout area of 4-bit 4-to-1 mux is 113µm x 587µm.

4.4.8 SRAM

Any computing platform would be incomplete without memory. During the exe-
cution of any application or program, it is responsible for storing temporary and
permanent data and instructions. SRAM (static random-access memory) serves
as a processor cache and is volatile memory. Data that is stored electronically and
does not need to be refreshed on a regular basis is referred to as "static." It is a
volatile memory, meaning it does not store data permanently, but it does provide
high-speed buffering for processors. The phrase random access was invented be-
cause any item of data can be seen at any time. A 1-bit SRAM circuit is explained
and developed at the schematic and physical levels in this section.

We have used SRAM as we need a small amount of memory. Conventional
SRAMs have less reliability while holding the data in presence of noise, since 12T
SRAM provides this as an advantage over the conventional SRAMs. We thought
of using 12T SRAM, as our application is used for prediction and needs data that
is error free i.e., less affected by noise, knowing that this would increase area
requirement and a bit of power consumption [30], [44], [46].
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Figure 4.8: Schematic diagram of 1-bit SRAM cell.

Figure 4.9: 1-bit SRAM cell layout.
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The schematic diagram of 12T SRAM cell is shown in Figure 4.8. The layout
of 12T SRAM cell is shown in Figure 4.9. We have used 2 SRAMs of size 64×4 bits
each designed using 12T SRAM cell. SRAM1 is used for storing the environment
variables and SRAM2 is used to store Q-table and reward values that will help to
choose an action. The layout of SRAM is shown in Figure 4.10. The area of SRAM
is 3934µm x 826.µm.

Figure 4.10: SRAM layout.

4.5 Final Chip Design

Final design of chip for the proposed algorithm is presented in Figure 4.11. The
chip design is done with 180nm technology file and is a 40-pin chip. The pin de-
scription of the chip design is given in the following table.

PIN NUMBER DESCRIPTION
1 Power Supply

2-3 SRAM_ENV inputs
4-10 Comparator2 inputs

11-12 Comparator1 inputs
13-14 Comparator0 inputs
15-16 A input
17-18 B input

19 Output
20-23 Next_State
24-28 SRAM_ACT

29 Reset
30-32 Episode_counter inputs
33-36 Step_counter inputs

37 Read_write SRAM2
38 Read_write SRAM1
39 Clock
40 Ground

Table 4.2: Pin Description
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Figure 4.11: Chip layout for the proposed algorithm.
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4.5.1 Area

The area of the chip design for proposed architecture is 25 mm2.

Sr. No. Layout Area Unit
1 Inverter 2675 µm2

2 Buffer 7811 µm2

3 2 Input OR Gate 4387 µm2

4 2 Input AND Gate 4280 µm2

5 3 Input AND Gate 5243 µm2

6 2 Input NAND Gate 3531 µm2

7 3 Input NAND Gate 3424 µm2

8 2 Input NOR Gate 6955 µm2

9 Half Adder 10767 µm2

10 Full Adder 14659 µm2

11 Full Subtractor 14873 µm2

12 2 to 4 Decoder 19097 µm2

13 4bit 4x1 Mux 66331 µm2

14 2bit Full Subtractor 36643 µm2

15 2bit Adder 32400 µm2

16 4bit Adder 68363 µm2

17 8bit Counter 0.1407 mm2

18 8bit Comparator 0.3659 mm2

19 1bit SRAM cell 7469 µm2

20 256bit SRAM 3.248 mm2

Table 4.3: Area Chart

4.6 Summary

As our work is started from scratch and as our initial aim is to get the desired
outputs, we have used 180nm technology. We started with building the standard
cells such as different logical gates, multiplexer, half adder, full adder, etc. After
building and simulating the standard cells we started designing other required
modules i.e., different bit (8, 16, 32 etc. as per requirement) adders, comparators,
counters, decoder, multiplexers, SRAMs, etc.
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CHAPTER 5

Conclusion

This paper demonstrated a chip-based hardware architecture for the Q-learning
technique. The focus was given on implementation of reinforcement learning
techniques on hardware at the cutting edge. The key objectives for the devel-
opment of this work were illustrated by a list of applications that use Q-learning
as a technique.

The design and implementation of an agent having the ability of avoiding the
obstacles and reaching the target in an environment with minimum number of
steps were given in this thesis. We also spoke about how the agent needs vision
and how an experience replay memory might force it to learn from past random
experiences.

To assess the planned system’s performance, we provided many scenarios and
arrangements that allowed us to examine the impact of various aspects and fea-
tures, such as the agent’s eyesight and the difficulty of the environment. The find-
ings mentioned in the previous chapters demonstrated the significance of these
characteristics in terms of the agent’s ability to comprehend its surroundings and
behave appropriately. Even though the trials just scratched the surface of our sys-
tem’s capabilities, they demonstrated the vast potential of RL approaches and its
derivative algorithms. We will also discuss the future work and design problems
faced in our research work, in this chapter.

Q-learning, an RL technique, finds a best policy for interacting with the en-
vironment without having any prior knowledge of the system model [47]. By
implementing this algorithm on hardware, the processing time of the system can
be reduced. The Hardware architecture’s implementation has been described in
detail. Details of various system modules were also explained, as well as the hard-
ware techniques utilized to implement the Q-learning algorithm.
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Finally, one of the thesis’s long-term goals is to create a system that can do
real-world activities. In that respect, the system demonstrated that it is conceiv-
able if more effort is put into this direction. This is why we finish this thesis by
suggesting future improvements to our model that could help us get closer to the
stated aim. Also, we were able to provide chip design based on the proposed
architecture.

5.1 Summary

To summarize the whole work, we first started with the research and reviewed
many papers and articles about the researches going on in the field of Reinforce-
ment Learning, and found that there is negligible research done on reducing the
processing time. This gave an ideology to us, that lead to use of hardware instead
of software for Q-learning Algorithm which is the base of Reinforcement Learn-
ing. First, we tried to analyze the existing projects done on Q-learning, Deep
Reinforcement Learning for Walking Robot (section II) describes the same. As
MATLAB uses a lot more resources and as our aim was to implement hardware,
we just needed training data, which can also be obtained from Python. So, we
moved to Python and implemented to training part and succeeded to obtain the
desired results. Now for testing part we started implementing the Hardware level
coding on Xilinx ISE/Quartus Prime. Once the Hardware coding was done, we
started working on layout in open-source tool Electric VLSI. Here we first started
with standard cell layouts and their simulations. Then, we implemented large
modules using those standard cells, and finally we designed layout for the whole
algorithm. At last, we ended up with chip design, major part of our thesis. In
this work, we have designed the layout using 180nm technology, as our priority
for now is to implement the Q-learning algorithm on hardware and its chip level
implementation. Once we start getting the desired outputs in 180nm technology,
we will scale it down. As mentioned above we need to implement dynamic cod-
ing and also some addition of functionalities, seeing this there would be some
changes in the hardware also which would lead to layout design changes. So,
it would be more practical to stick to 180nm until we have incorporated all the
changes and reached to desired outputs.
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5.2 Future Work

5.2.1 Deep Reinforcement Learning

Various RL approaches and algorithms were evaluated during the research phase
of this thesis in order to improve the system’s performance. Some of them were
adopted, while rest were not due to a lack of time or inability to produce better
results.

In Q-learning, however, the value is changed only once per action. As a result,
it’s hard to handle complex problems efficiently in a broad state-action context
because these many number of states and actions may be unfamiliar. In addition,
the Q-table for rewards is pre-programmed and hence a significant quantity of
storage memory is required. A substantial state-action memory is necessary in a
multi-agent system with two or more agents, which causes issues. As a result, ba-
sic Q-learning algorithms are limited in their ability to achieve effective learning
in a multi-agent context.

Furthermore, Deep Reinforcement Learning is a notion that is now being re-
searched and deployed extensively. We didn’t used it in our system because the
problem’s complexity did not need it. However, if we want to push the sys-
tem closer to solving real-world problems, we must collaborate with it. Deep
Q-Networks, whose superior performance has been demonstrated in problems
such as vintage Atari games, could be one option. This would undoubtedly aid in
the handling of more complicated settings and allow us to create more adaptable
agents.

5.2.2 Different Environment with Dynamic Configurations

Addition of, policy control block to the proposed architecture which will govern
the action mechanism can be added to eradicate the static decision problem. We
propose a complex environment with larger dimensions, different position of ob-
stacles and positioning of walls, as in a real situation. So as to make the agent
stretch, using the available system and sufficient processing power.

Also, it would be fascinating to see how the agent reacts in a dynamic envi-
ronment where the walls and obstacles are ordered differently each time it begins
the task. This last option would necessitate the usage of Deep RL, as previously
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noted, to aid the agent’s learning process, but it would be a huge step forward in
terms of real-world applications.

5.2.3 Real-Time Implementation of the Algorithm in a Robot

Finally, we also propose that the system be implemented in a real robot with the
enhancements and characteristics previously discussed. To do so, the robot must
meet many criteria. It needs sensors to detect whether it is hitting a wall or an
object. We propose two options to accomplish this. The first is to programmati-
cally avoid barriers whenever they are encountered. The second option is to in-
clude an avoidance action in addition to the basic actions available with the agent
and push the agent to learn it. This action may consist of specific predetermined
moves. Last but not least, the system must have enough computational capability
to run and process.

These characteristics enable them to be used in more complex practical situa-
tions and with a wide range of real-time applications.
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CHAPTER A

Standard Cell Layouts & Simulations

A.1 Inverter

Figure A.1: Inverter layout.

Figure A.2: Inverter waveform.
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A.2 AND

Figure A.3: AND Gate layout.

Figure A.4: AND Gate waveform.
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A.3 OR

Figure A.5: OR Gate layout.

Figure A.6: OR Gate waveform.
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A.4 NAND

Figure A.7: NAND Gate layout.

Figure A.8: NAND Gate waveform.
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A.5 NOR

Figure A.9: NOR Gate layout.

Figure A.10: NOR Gate waveform.
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A.6 XOR

Figure A.11: XOR Gate layout.

Figure A.12: XOR Gate waveform.
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A.7 Half Adder

Figure A.13: Half Adder layout.

Figure A.14: Half Adder waveform.
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A.8 Full Adder

Figure A.15: Full Adder layout.

Figure A.16: Full Adder waveform.
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