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Abstract

Engaging human annotators to evaluate every summary in a content summariza-
tion system is not feasible. Automatic evaluation metrics act as a proxy for human
evaluation. A high correlation with human evaluation determines the effective-
ness of a given metric.

This thesis compares 40 different evaluation metrics with human judgments in
terms of correlation and investigates whether the contextual similarity-based met-
rics are better than lexical overlap-based metrics, i.e., ROUGE score. The compar-
ison shows that contextual similarity-based metrics have a high correlation with
human judgments than lexical overlap-based metrics. Thus, such metrics can act
as a good proxy for human judgment.

Keywords: News Summarization, Evaluation, Lexical overlap, Contextual Simi-
larity, ROUGE, Transformers, word2vec
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CHAPTER 1

Introduction

We live in a fast-paced world where enormous amounts of data are being gener-
ated every minute; we are experiencing information overload. In order to make
sense of it and extract knowledge from it, the process of summarization becomes
critical. We now see summaries of news articles, books, and research papers/articles
being supplemented with actual content. Search engines provide short snippets
of summary along with search results; news sites provide a summary at the start
of the article. Generally, readers tend to read summaries first, and they continue
reading the main content if they find it interesting.

The short form of content is becoming increasingly popular because of the ob-
served decrease in attention span [3]. Thus, for content publishers like news sites,
social media sites, and info repositories(like Wikipedia), generating content sum-
maries becomes essential to stay competitive.

Radev et al. define a summary as “A summary can be loosely defined as a text that
is produced from one or more texts, that conveys important information in the
original text(s), and that is no longer than half of the original text(s) and usually
significantly less than that.” [13]. This definition highlights three main points
about a summary:

1. A summary can be created from one or many documents.

2. A summary should preserve important information from the source docu-
ment(s). It should present the “main idea” of its source(s).

3. A summary should be short.

1



1.1 Types of Summarization Algorithms

Method-wise, summarization algorithms fall into two types: Extractive summa-
rization and Abstractive Summarization.

1.1.1 Extractive Summarization

The extractive summarization tries to select important sentences from the source
document(s). The extractive Summarization algorithms are generally straightfor-
ward, they often come down to a binary classification problem about whether to
include a sentence in a summary or not. Analogically, the process is more like
highlighting the essential parts of the text. Few of the classic Extractive summari-
ation algorithms include LexRank and TexRank [2].

1.1.2 Abstractive Summarization

In contrast with Extractive summarization, Abstractive summarization tries to
grasp the idea of the source document(s) and generate a novel summary. It resem-
bles more with how a human would summarize a document. Abstractive sum-
marization algorithms are comparatively complex and often posed as a seq-to-
seq problem. Traditionally, seq-to-seq problems are solved by Recurrence-based
architectures like LSTMs, and GRUs, where the encoder tries to grasp the main
idea of the document. At the same time, on the decoder side, we run a classifica-
tion problem over a whole vocabulary to decide which word to produce on every
timestep.

Since the inception of transformers [18], they have almost replaced recurrence-
based architectures like RNN, LSTM, and GRU by outperforming them on multi-
ple NLP tasks, including translation, summarization, classification, and Question
Answering. One of the critical advantages that transformers offer over recurrence-
based architectures is that we can parallelize the computation. With advanced
language understanding capabilities, ease of deployment, and tools and resources
from major cloud platforms, transformers dominate content summarization sys-
tems.
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1.2 Evaluation of Summarization

In a content summarization system, it is essential to monitor the quality of sum-
maries produced continuously. While assessing the quality of summaries, re-
viewers consider qualitative measures like grammatical correctness, the flow of
information, conciseness, exhaustiveness, and domain suitability [16]. However,
it is impossible to have humans review every summary produced because of time
and resource constraints. We need automatic evaluation metrics that can function
without human intervention and act as a proxy for human judgments. To judge
how good a given evaluation metric is, we compute its correlation with human
judgments; the higher the correlation, the better. Automatic Evaluation metrics
are broadly classified into two types:

1. Lexical Overlap

2. Contextual Similarity

1.2.1 Lexical Overlap

ROUGE [6] is a lexical-overlap-based metric, traditionally the most common met-
ric used for summarization. It captures N-gram lexical overlap between candidate
summary and reference summary. Its popularity can be attributed to the fact that
it is a statistical metric independent of the type of data it is applied to.

1.2.2 Contextual Similarity

In contrast with ROUGE, contextual similarity-based metrics compute the simi-
larity between the underlying meaning of the candidate and the reference sum-
mary. For capturing the meaning, we project both candidate and reference sum-
mary in contextual embedding space using various methods like BertScore [21],
word2vec [12], Glove Embeddings [11], and Transformer models like BERT [1],
ROBERTA [8]. We then compute the similarity between both vectors using cosine-
similarity or word-movers-similarity.

Capturing the similarity between underlying meanings sounds like a fantastic
idea, but it comes with its cost. Capturing the meaning of a document often re-
quires a model to be trained on the specific data a document contains. As the new
models keep being released, we have to keep updating our data.

3



1.3 Problem Statement

Since ROUGE [6] only considers N-gram lexical overlap, abstractive summaries
conveying the same meaning but containing different vocabulary of words may
get wrongly penalized. There may also be the case that there’s high lexical over-
lap between candidate and reference but maybe conveying different meanings.

Table 1.1: Instances where ROUGE fails

index type example LO CS

1
ref The quick brown fox jumped over a lazy dog

L H
cand The fast wood-colored fox hopped over a lethargic dog

2
ref The weather is cold today

L H
cand It is freezing today

3
ref The quick brown fox jumped over a lazy dog

H L
cand The quick brown dog jumped over a lazy fox

ref- reference, cand- candidate, LO- Lexical Overlap, CS- Contextual Similarity, L- Low, H- High

The above instances indicate that capturing only the content overlap does not
assess factual and semantic correctness in the candidate summary. An ideal eval-
uation metric should look for qualitative measures like Grammatical correctness,
Arrangement of sentences, Text Quality (Quality of language used and suitability
with a set of users the application serves), Coherence (Conciseness and Exhaus-
tiveness), or at least be a good proxy of them.

Based on this we raise a research question: "Does any evaluation metric exist
which can act as a proxy to human evaluation?"

1.4 Key Contributions

Key contributions of this thesis are:

1. A Comparative study of correlation of human judgments with 40 automatic
evaluation metrics. (Refer chapter 7).

2. Human judgments dataset for machine-generated abstractive summaries of
Indian News data. (Refer chapter 4)
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CHAPTER 2

Literature Survey

This chapter covers details about the Literature survey. We cover Transformers,
Different models of extractive and Abstractive Summarization (Transformers and
Non-Transformers based), Transformer based models to compute contextual em-
beddings, Traditional Word Embedding Models, Evaluation Metrics and Correla-
tion methods.

2.1 Transformers

Figure 2.1: Transformers Architecture
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Vaswani et al. (2017) [18] propose an attention mechanism-based encoder-decoder-
based architecture called “transformers” for sequence processing that replaces
standard recurrence-based architecture for the machine translation task. The en-
coder is a stack of n encoder blocks containing multi-head attention and a position-
wise fully connected feed-forward network which can process the input in bidi-
rectional way. The decoder is a stack of n decoder blocks containing masked
multi-head (unidirectional) attention, multi-head attention (same as earlier) and
feed-forward network. They reported BLEU scores of 28.4 and 41.0 for English to
German and French, respectively.

2.2 Contextual Embedding models

2.2.1 Word Embedding Models

word2vec

word2vec [9] was one of the first methods to generate contextualized word em-
beddings trained using a word set of 1.6 billion words. The model was trained
using a proxy task of predicting a middle word using context words or vice versa
called CBOW and SkipGram respectively.

Figure 2.2: Word2vec Architecture
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GloVe

GloVe [12] is an unsupervised algorithm for computing word vector represen-
tations. Unlike word2vec, which uses local context, it uses global context, i.e.,
co-occurrence of words to obtain word representations.

2.2.2 Transformer-based contextual embedding methods

PEGASUS

Zhang et al. (2020) [20] use standard encoder-decoder-based transformer archi-
tecture and propose a new pre-training objective called Gap Sentence Genera-
tion (GSG), which replaces important sentences with [MASK] tokens and lets
the model predict them in a self-supervised fashion. This pre-training objective
closely resembles the process of extractive summarization. There are mainly three
strategies that authors are proposing to select the sentences, Random (selects m
sentences randomly), Lead (selects first m sentences), and Principal (greedily se-
lects m sentences by maximizing the Rouge-f1). Authors consider HugeNews and
C4 corpus for pre-training. The authors also took human feedback on the gen-
erated summary and found it closely resembling human-generated summaries.
Pegasus proves to be performing well for low resource summarization; it demon-
strated state-of-the-art performance in as low as 1000 data points on datasets in-
cluding CNN/Daily mail and reported Rouge-1 of 47.21. Refer Fig. 2.3 for archi-
tecture.

Figure 2.3: PEGASUS Architecture
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T5

By proposing a uniform framework that transforms all text-based language prob-
lems into a "text-to-text" format, Colin et al. (2020) [15] investigate transfer learn-
ing strategies for NLP. This architecture enables us to use the same model, ob-
jective, training approach, and decoding process for all tasks considered by the
model, including machine translation, question answering, abstractive summa-
rization, and text classification. The authors focus on transfer learning and use
models that process input with an encoder before creating an output with a sep-
arate decoder. The authors use the C4 corpus for pre-training and create an ob-
jective that randomly samples and then removes 15% of tokens from the input se-
quence. We supply our input text prefixed with the task name, e.g., "summarise:
your text" to conduct any task. Refer Fig. 2.4 for Architecture.

Figure 2.4: T5 Architecture

BART

Lewis et al. (2019) [5] introduce denoising autoencoders for sequence-to-sequence
tasks based on simple transformer architecture. For pre-training, authors corrupt
the input with arbitrary noise functions and make the model to predict the orig-
inal text. Token masking, Text Infilling, token deletion, document rotation, and
text permutation are the supported noise functions. Authors report a Rouge-1
score of 44.16 on the CNN/Daily Mail dataset. Refer Fig. 2.5 for Architecture.

Figure 2.5: BART Architecture
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BERT

BERT [1] stands for "Bidirectional Encoder Representations from Transformers,
" built by stacking transformer encoders. As its name suggests, it is bidirec-
tional and trained in 2 phases: pretraining and finetuning. It uses Masked lan-
guage modeling(MLM) and Next sentence prediction (NSP) for pretraining. Task-
specific training is possible by stacking layers on top of BERT architecture. It is
available in two variants BERT-BASE and BERT-LARGE with 12 and 24 layers re-
spectively.

RoBERTa

RoBERTa [8] stands for “A Robustly Optimized BERT Pretraining Approach” which
has same architecture as BERT[5], but authors explore various design choices and
re-examine pre-training and training procedures used in BERT. In its pre-training,
authors use dynamic-maskinig instead of BERT-like masking.

DeBERTa

DeBERTa [4] stands for "Decoding-enhanced BERT with Disentangled Attention,"
which improves upon BERT and RoBERTa. The key improvements authors present
are disentangled attention and enhanced mask decoder. They also present a net-
work with the stacking of 48 encoder layers.

2.3 Extractive Summarization Models

2.3.1 BERTSUM

Liu, Yang et al. (2019) [7] propose an architecture called BertSum that uses BERT[5]
for extractive summarization. The author argues that BERT, with its pre-training
on large corpus and robust architecture for learning complex features, can im-
prove the performance of extractive summarization. In BERTSUM, sentences are
separated by [CLS] tokens and interval segment embeddings are added to gen-
erate a representation for each sentence. After getting sentence representations,
several summarization-specific layers are added and are trained as a binary clas-
sification problem (i.e., whether to include it in summary or not).Authors exper-

9



imented with a simple classifier, inter-sentence transformer, and RNNs. On the
CNN/Daily Mail dataset, it was discovered that the BertSum + inter-sentence
transformer combination produces the best results. Refer Fig. 2.6 for architecture.

Figure 2.6: BERTSUM Architecture

2.3.2 BERT-KMEANS

Derek Miller et al. (2019) [10] propose an unsupervised technique for extractive
summarization where he generates representation for sentences using BERT[5]
and applies the KMeans algorithm on sentence representations. For generating
summaries, it extracts sentences nearest from cluster centroids. The idea of clus-
tering of sentences can be thought of as covering all the focus points of the source
document(s). Refer Fig. 2.7 for architecture.

2.4 Abstractive Summarization Models

Above mentioned transformer-based models like PEGASUS, and BART can also
be used for abstractive summarization, posing the problem as a seq-to-seq prob-
lem.

2.4.1 GET-TO-THE-POINT

See et al. (2017) [17] propose using a pointer-generator network for accurate re-
production of text and coverage mechanism for keeping track of what has been
already generated. The approach suggested in this paper uses the standard LSTM
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based seq-to-seq model. Authors report the Rouge-1 of 39.53 on CNN/Daily mail
dataset. Refer Fig. 2.7 for architecture.

Figure 2.7: GET-TO-THE-POINT Architecture

Table 2.1: Comparison of Summarization Algorithms in Terms Of ROUGE

Model Type ROUGE-1 ROUGE-2
BERTSUM Extractive 43.25 20.24

GET-TO-THE-POINT Abstractive 39.53 17.28

PEGASUS Abstractive 47.21 21.47

BART Abstractive 44.16 21.28

2.5 Evaluation Metrics

2.5.1 Lexical Overlap

ROUGE

Lin et al. (2004) [6] define Rouge as Recall-Oriented Understudy for Gisting Eval-
uation. It measures N-gram overlap between system-generated summary and
reference summary. It is computed in 3 variants: precision, recall, and f1.

11



Rouge precision =
xoverlap

xsystem

Rouge recall =
xoverlap

xreference

Rouge F1 = 2 ∗
Rouge precision ∗ Rouge recall

Rouge precision + Rouge recall

where,

xoverlap = number of overlapping ngrams

xsystem = number of ngrams in generated summary

xreference = number of ngrams in refe summary

2.5.2 Contextual Similarity

For contextual similarity-based metrics, we project candidate and reference sum-
maries on embedded space and obtain vectors for both. Then we compute the
similarity between both the vectors. Multiple ways to project both texts on em-
bedding space include methods explained in section 2.2.

BERTSCORE

Zhang et al. (2019) [21] propose a metric called BERTSCORE, which computes a
similarity score for each token in the candidate sentence with each token in the
reference sentence. It measures contextual similarity between two texts which do
not necessarily have word or n-gram overlap. It has been used majorly in machine
translation problems. Tokens can be optionally weighted by their respective IDF
scores.

Figure 2.8: BERTScore computation
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PBERT =
1
|Y| ∗ ∑

xi∈x
max
yj∈y

xiyj

RBERT =
1
|X| ∗ ∑

xi∈x
max
yj∈y

xiyj

FBERT = 2 ∗ RBERT ∗ PBERT

RBERT + PBERT

Here, X is the reference summary, and Y is system generated summary.
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CHAPTER 3

Background

3.1 Correlation Methods

3.1.1 Pearson Correlation

Pearson correlation is a measure of linear correlation between two variables. It’s
the ratio of two variables’ covariances to the product of their standard devia-
tions; it’s effectively a normalised measurement of covariance. The result always
ranges between -1 and 1.

r = ∑ (xi − x̄) (yi − ȳ)√
∑ (xi − x̄)2 ∑ (yi − ȳ)2

r = correlation coefficient, xi = values of the x-variable in a sample, x̄ = mean of
the values of the x-variable, yi = values of the y-variable in a sample, ȳ = mean
of the values of the y-variable.

3.1.2 Spearman Correlation

The Spearman correlation between two variables is calculated as the Pearson cor-
relation between the rank values of those variables. Unlike Pearson’s correla-
tion method, which assesses linear relationships, Spearman’s correlation assesses
monotonic relationships.

ρ = 1 −
σ ∑ d2

i
n (n2 − 1)

ρ = Spearman’s rank correlation coefficient, di = difference between the two
ranks of each - observation, n = number of observations.
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3.2 Vector similarity measures

3.2.1 Cosine Similarity

It determines whether two vectors are pointing in the same general direction by
measuring the cosine of the angle between them. It is determined by the angle of
the vectors rather than their magnitudes.

cosine similarity = Sz(x, y) := cos(θ) =
x · y

∥x∥∥y∥ =
∑n

i=1 xiyi√
∑n

i=1 x2
i

√
∑n

i=1 y2
i

x = vector-1, y = vector-2, Sz(x, y) = cosine similarity between x and y

3.2.2 Earth Mover’s Distance

In this setup, we consider vectors as point clouds or piles. The Earth Mover’s
Distance is the lowest cost of changing one pile into the other, where the cost is
considered to equal the amount of dirt transported times the distance travelled.
The weight appears to flow from one distribution to the next until they are iden-
tical, just like filling holes with dirt piles. Let A, B be two distributions such that:
∀x ∈ A and ∀y ∈ B have probability mass functions px = 1

|A| and py = 1
|B|

Let dx,y = Euclidian distance between x and y
Let zx,y = amount of dirt to move from x ∈ A and y ∈ B, with cost d(x, y)
Let H(A, B) = all feasible flows between A, B

Let WORK(F,A,B) be the amount of dirt transported between A, B using one of
the Feasible flow F.

WORK(F, A, B) =
m

∑
x=1

n

∑
y=1

zx,ydx,y

EMD(A, B) =
minF=zx,y∈H(A,B)WORK(F, A, B)

min(∑x∈A px, ∑y∈B py)
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CHAPTER 4

Dataset

To compare the correlation of different evaluation metrics with human judgments,
a dataset that contains human judgments for machine-generated summaries is
needed. Due to the unavailability of such a dataset, we opted to create one. The
NEWS SUMMARY [19] dataset, which contains news articles, news titles, and
their human-written summary scraped from the News aggregator platform, In-
Shorts1 ; was chosen as a base dataset.

1. Only the subset of the dataset was retained, having tuples with total tokens
in the source article between 200-500.

2. Abstractive summaries of source articles were generated using BART [5]
finetuned on CNN/Daily Mail dataset [14].

At this point, the dataset had 1001 tuples containing the following fields: Source
Article, Source Title, Human Written Summary , Machine-generated Summary
(BART). For collecting the Human judgments (reviews) for Machine-generated
summaries, Human annotators(reviewers) were presented with news titles, human-
written summaries(to be considered a gold standard), and their respective machine-
generated summaries. They were told to rate machine-generated summaries on
some "Qualitative Measures" and rate them overall between 1-5. Since reviews
can be subjective, two sets of reviews were collected. A total of 30 people took
part in the annotation process, out of which nine people contributed in set-1 and
21 in set-2 (Refer Appendix A). Reviews were collected using an in-house tool,
which we eventually open-sourced (Refer Appendix B.).

1https://www.inshorts.com/
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4.1 Qualitative Measures

1. Grammatical Correctness (GC): A summary should be grammatically cor-
rect, i.e., there should not be any spelling mistakes, sentence formation should
be correct, and punctuations should be appropriately used.

2. Arrangement of sentences/Flow of information (AS): A summary is essen-
tially a 3-5 lines story. The arrangement of sentences should be such that the
story makes sense.

3. Text Quality (TQ): A summary should contain a language that suits its tar-
get audience. In this case, it is news. News is should be neutral and should
not contain aggressive language. News should be direct; it should not resort
to trolling or sarcasm.

4. Conciseness (CS): A summary should be focused on a single topic, i.e., the
topic presented in the title. It should not stumble between topics.

5. Exhaustiveness (EX): A summary should be exhaustive of all the needed
details. Given the topic it covers, it should satisfy the reader’s information
need.

6. Overall Rating (OR): Based on the above-mentioned Qualitative measures,
a reviewer was asked to rate the given summary.

The reason behind asking overall score was that we wanted to check whether
asking for only the overall score is sufficient.

4.2 Annotation Results

Figure 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 represent the histograms of scores received for
above mentioned qualitative points. It can be observed that there’s minimal dis-
agreement between the reviws of both sets.
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Figure 4.1: Histograms of "Grammatical Correctness" scores in both sets of re-
views

Figure 4.2: Histograms of "Arrangement of sentences/Flow of information" scores
in both sets of reviews
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Figure 4.3: Histograms of "Text Quality" scores in both sets of reviews

Figure 4.4: Histograms of "Conciseness" scores in both sets of reviews
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Figure 4.5: Histograms of "Exhaustiveness" scores in both sets of reviews

Figure 4.6: Histograms of "Overall Rating" scores in both sets of reviews
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CHAPTER 5

Evaluation Metrics

Sections 5.2.1, 5.2.2, 5.2.3 use different variants of Transformer architecture. The
models and model-weights were loaded from Transformers1 library from Hug-
gingface2.

5.1 Lexical Overlap

5.1.1 ROUGE

Table 5.1: Lexical Overlap based metrics

ALIAS MODEL
R1 ROUGE1

R2 ROUGE2

RL ROUGEL

Lexical overlap-based metrics like ROUGE-1 and ROUGE-2 respectively capture
1-gram similarity, and 2-gram similarity between source and reference summaries,
while ROUGE-L captures the longest common subsequence. Refer Table 5.1

1https://pypi.org/project/transformers/
2https://huggingface.co/
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5.2 Contextual Similarity

5.2.1 Sentence Transformers

Table 5.2: Sentence Transformers based metrics

ALIAS MODEL

CS1
sentence-transformers/
sentence-t5-xl

CS2
sentence-transformers/
sentence-t5-large

CS3
sentence-transformers/
multi-qa-MiniLM-L6-cos-v1

CS4
sentence-transformers/
distiluse-base-multilingual-cased-v1

CS5
sentence-transformers/
paraphrase-MiniLM-L6-v2

These siamese networks [14] compute document embeddings by applying aver-
age pooling over token embeddings and compute the cosine similarity between
both vectors. Refer Table 5.2.

5.2.2 BERT-like Architectures

Table 5.3: BERT-like architecture based metrics

ALIAS MODEL
CS6 bert-base-uncased

CS7 roberta-base

BERT-like architectures have special tokens like [CLS] and [SEP]. The [SEP] rep-
resents the end of the sequence, while [CLS] stores the cumulative representation
of token embeddings until the [SEP] is encountered. Therefore, we can pre-pend
[CLS] token in both candidate and reference summary to compute the sentence
embeddings and then compute the cosine similarity. Refer Table 5.3.
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5.2.3 BERTSCORE models

Table 5.4: BERTSCORE based metrics

ALIAS MODEL
BS00 bert-base-uncased

BS01 bert-large-uncased

BS02 bert-base-cased-finetuned-mrpc

BS03 roberta-base

BS04 roberta-large

BS05 roberta-large-mnli

BS06 facebook/bart-base

BS07 facebook/bart-large

BS08 facebook/bart-large-cnn

BS09 facebook/bart-large-mnli

BS10 facebook/bart-large-xsum

BS11 t5-small

BS12 t5-base

BS13 t5-large

BS14 microsoft/deberta-base

BS15 microsoft/deberta-base-mnli

BS16 microsoft/deberta-large

BS17 microsoft/deberta-large-mnli

BS18 microsoft/deberta-xlarge

BS19 microsoft/deberta-xlarge-mnli

BS20 google/pegasus-xsum

Instead of representing the candidate and reference summary as a single vector
and then computing the cosine similarity, this method computes pair-wise cosine
similarity between the tokens of both texts. Here, Transformer-based models like
BERT, RoBERTa, DeBERTa, PEGASUS and T5 are used.Refer Table 5.4.
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5.2.4 Word Embedding Models + Cosine Similarity

Table 5.5: Word Embedding + Cosine Similarity based metrics

ALIAS MODEL
CS8 spacy en_core_web_sm

CS9 spacy en_core_web_md

CS10 spacy en_core_web_lg

CS11 word2vec

CS12 glove_twitter_25

To obtain vectors for candidate and reference summaries, this method computes
the average of word embeddings. Then, the cosine similarity is computed be-
tween the vectors. Here CS8, CS9, and CS10 are from SpaCy3 Library. Refer Table
5.5.

5.2.5 Word Embedding Models + Earth Mover’s distance

Table 5.6: Word embeddings + Earth Mover’s distance-based metrics

ALIAS MODEL
WMD00 en_core_web_md

WMD01 en_core_web_lg

WMD02 word2vec-google-news-300

WMD03 glove-twitter-25

These models represent the candidate and reference summary as a point cloud of
word vectors and compute the earth mover’s distance between them.

3https://pypi.org/project/spacy/
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CHAPTER 6

Methology

The Idea: Though automatic metrics cannot replace the need for human judg-
ments, one having a higher correlation with human judgments is a better proxy.
Since ROUGE is the De’facto metric for summarization, we look for a metric that
correlates better with human judgments, i.e., is a better proxy than ROUGE. The
proposed approach is:

1. Try different approaches to form a “Human score”, a representation of hu-
man review for a summary as a single score.

2. Compute the correlation of "Human score" with various evaluation metrics
to know which one is the best proxy.

6.1 Human Score

Table 6.1: Human Scores

Human
Score

Description

HS1
Equal weights to all "Qualitative
Measures"

HS2

Unequal weights to all "Qualitative
Measures", the least weight to
"Grammatical Correctness"

HS3 Overall Score

To represent human ratings as a single score, there are two options: computing
the weighted average of the before-mentioned qualitative measures or using the
overall score directly. Since two sets of reviews were collected, average of both
sets is considered as a final human rating.
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HS = ω1 ∗ GC + ω2 ∗ AS + ω3 ∗ TQ + ω4 ∗ CS + ωS ∗ EX

Here, HS stands for Human Score. We computed two variants of the weighted
human score, HS1 and HS2. In HS1, we give equal weights to every measure. we
set ωi = 0.20. In HS2, we make use of the observation that most of the human rat-
ings given for grammatical correctness were 4 or 5, which means the summaries
produced by the algorithm was grammatically correct. To compute HS2, we com-
puted the correlation matrix of GC, AS, TQ, CS, and EX and collapsed the matrix
by summing up the rows. We computed applied softmax on it to make weights
sum to one. In this way, grammatical correctness would get the least weight.

HS2 = Softmax
(

A⊤ I
)

where, A = correlation matrix of size 5 × 5 and I = vector of 1’s of size 5 × 1

Apart from above mentioned qualitative measures, we also asked our users to rate
the given summary between 1 to 5, keeping in mind the measures. This was done
to check whether taking ratings for an overall score would be sufficient as review-
ing process involving reviews for each measure is time-consuming. We call it HS3.

6.2 Correlation

Since HS1, HS2, and HS3 represent human judgments, their correlation was mea-
sured with all the evaluation metrics discussed above to comprehend which met-
ric is the best proxy for human reviews. The correlation methods used:

1. Pearson Correlation

2. Spearman Rank Correlation
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CHAPTER 7

Results

Since ROUGE is a de-facto evaluation metric for summarization, it is considered
the baseline. Since R1 performed the best in the ROUGE family, we plot the differ-
ence plots considering the R1 as a reference. Metrics having bars on the positive
side in the difference plot correlate better with human judgments than R1.
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7.1 Pearson Correlation

7.1.1 Lexical Overlap

Table 7.1: Pearson correlation of "Lexical Overlap" based metrics with human
judgments

Metric HS1 HS2 HS3

R1 0.391125 0.403563 0.405817
R2 0.302982 0.312113 0.31682

RL 0.306813 0.316603 0.316652

Figure 7.1: Difference Plot of Pearson correlation scores for "Lexical Overlap"
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7.1.2 Sentence Transformers

Table 7.2: Pearson correlation of "Sentence Transformers" based metrics with hu-
man judgments

Metric HS1 HS2 HS3

CS1 0.474557 0.489912 0.481815

CS2 0.473413 0.490389 0.488624
CS3 0.390508 0.402207 0.397415

CS4 0.424224 0.439674 0.426063

CS5 0.380785 0.39466 0.379361

Figure 7.2: Difference Plot of Pearson correlation scores for "Sentence Transform-
ers"
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7.1.3 BERT-like Architectures

Table 7.3: Pearson correlation of "BERT-like Architectures" based metrics with hu-
man judgments

Metric HS1 HS2 HS3

CS6 0.310038 0.316681 0.333384
CS7 0.307965 0.311064 0.327259

Figure 7.3: Difference Plot of Pearson correlation scores for "BERT-like Architec-
tures"
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7.1.4 BERTSCORE models

Table 7.4: Pearson correlation of "BERTSCORE models" based metrics with human
judgments

Metric HS1 HS2 HS3

BS00 0.420552 0.430709 0.431368

BS01 0.408182 0.418725 0.420935

BS02 0.383917 0.393258 0.390887

BS03 0.422546 0.433619 0.432300

BS04 0.417388 0.427617 0.428478

BS05 0.405949 0.418768 0.423377

BS06 0.421794 0.432247 0.432853

BS07 0.439262 0.450845 0.450916

BS08 0.426432 0.438161 0.440847

BS09 0.426478 0.438706 0.438667

BS10 0.446845 0.459058 0.463744

BS11 0.391053 0.402589 0.405289

BS12 0.411650 0.423299 0.424781

BS13 0.420807 0.433452 0.436602

BS14 0.414748 0.425428 0.428430

BS15 0.397459 0.409896 0.414107

BS16 0.433419 0.445226 0.445338

BS17 0.420299 0.433826 0.437837

BS18 0.430478 0.441647 0.440460

BS19 0.412649 0.426417 0.428735

BS20 0.454003 0.467445 0.472490
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Figure 7.4: Difference Plot of Pearson correlation scores for "BERTSCORE models"
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7.1.5 Word Embedding Models + Cosine Similarity

Table 7.5: Pearson correlation of "Word Embedding Models + Cosine Similarity"
based metrics with human judgments

Metric HS1 HS2 HS3

CS8 0.285575 0.290975 0.281239

CS9 0.331576 0.346874 0.339983

CS10 0.310512 0.325337 0.319883

CS11 0.408396 0.423316 0.404882
CS12 0.291956 0.305086 0.309118

Figure 7.5: Difference Plot of Pearson correlation scores for "Word Embedding
Models + Cosine Similarity"

33



7.1.6 Word embeddings + Earth Mover’s distance

Table 7.6: Pearson correlation of "Word embeddings + Earth Mover’s distance"
based metrics with human judgments

Metric HS1 HS2 HS3

WMD00 0.375220 0.385934 0.384831

WMD01 0.374999 0.385250 0.385092

WMD02 0.381790 0.393033 0.386811
WMD03 0.380668 0.391698 0.387522

Figure 7.6: Difference Plot of Pearson correlation scores for "Word embeddings +
Earth Mover’s distance"
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7.2 Spearman Rank Correlation

7.2.1 Lexical Overlap

Table 7.7: Spearman Rank correlation of "Lexical Overlap" based metrics with
human judgments

Metric HS1 HS2 HS3

R1 0.379260 0.388557 0.400669
R2 0.302302 0.311316 0.322189

RL 0.298070 0.306450 0.317079

Figure 7.7: Difference Plot of Spearman Rank correlation scores for "Lexical Over-
lap"
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7.2.2 Sentence Transformers

Table 7.8: Spearman Rank correlation of "Sentence Transformers" based metrics
with human judgments

Metric HS1 HS2 HS3

CS1 0.442113 0.454188 0.457508

CS2 0.442481 0.455519 0.464508
CS3 0.359298 0.367239 0.370118

CS4 0.393563 0.405466 0.403517

CS5 0.34961 0.359223 0.352005

Figure 7.8: Difference Plot of Spearman Rank correlation scores for "Sentence
Transformers"
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7.2.3 BERT-like Architectures

Table 7.9: Spearman Rank correlation of "BERT-like Architectures" based metrics
with human judgments

Metric HS1 HS2 HS3

CS6 0.300683 0.305207 0.3219

CS7 0.346404 0.344943 0.358525

Figure 7.9: Difference Plot of Spearman Rank correlation scores for "BERT-like
Architectures"
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7.2.4 BERTSCORE models

Table 7.10: Spearman Rank correlation of "BERTSCORE models" based metrics
with human judgments

Metric HS1 HS2 HS3

BS00 0.420552 0.430709 0.431368

BS01 0.408182 0.418725 0.420935

BS02 0.383917 0.393258 0.390887

BS03 0.422546 0.433619 0.432300

BS04 0.417388 0.427617 0.428478

BS05 0.405949 0.418768 0.423377

BS06 0.421794 0.432247 0.432853

BS07 0.439262 0.450845 0.450916

BS08 0.426432 0.438161 0.440847

BS09 0.426478 0.438706 0.438667

BS10 0.446845 0.459058 0.463744

BS11 0.391053 0.402589 0.405289

BS12 0.411650 0.423299 0.424781

BS13 0.420807 0.433452 0.436602

BS14 0.414748 0.425428 0.428430

BS15 0.397459 0.409896 0.414107

BS16 0.433419 0.445226 0.445338

BS17 0.420299 0.433826 0.437837

BS18 0.430478 0.441647 0.44046

BS19 0.412649 0.426417 0.428735

BS20 0.454003 0.467445 0.472490
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Figure 7.10: Difference Plot of Spearman Rank correlation scores for "BERTSCORE
models"
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7.2.5 Word Embedding Models + Cosine Similarity

Table 7.11: Spearman correlation of "Word Embedding Models + Cosine Similar-
ity" based metrics with human judgments

Metric HS1 HS2 HS3

CS8 0.285575 0.290975 0.281239

CS9 0.331576 0.346874 0.339983

CS10 0.310512 0.325337 0.319883

CS11 0.408396 0.423316 0.404882
CS12 0.291956 0.305086 0.309118

Figure 7.11: Difference Plot of Spearman Rank correlation scores for "Word Em-
bedding Models + Cosine Similarity"

40



7.2.6 Word embeddings + Earth Mover’s distance

Table 7.12: Spearman Rank correlation of "Word embeddings + Earth Mover’s
distance" based metrics with human judgments

Metric HS1 HS2 HS3

WMD00 0.37522 0.385934 0.384831

WMD01 0.374999 0.385250 0.385092

WMD02 0.381790 0.393033 0.386811

WMD03 0.380668 0.391698 0.387522

Figure 7.12: Difference Plot of Spearman Rank correlation scores for "Word em-
beddings + Earth Mover’s distance"
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7.3 Observations

Table 7.13: Best performing metrics

Correlation Method HS1 HS2 HS3

Pearson Correlation CS1 CS2 CS2

Spearman Rank Correlation CS2 CS2 CS2

As can be observed in Tables 7.1,7.7, and Figures 7.1,7.7, the best performing met-
ric from the "Lexical Overlap" family, is R1, i.e., ROUGE-1. Thus, R1 is considered
a baseline for comparison between all families of metrics.

Based on Table 7.5,7.11 and Figure 7.5,7.11, it can be observed that except for CS11
(word2vec), the method of averaging the word embedding to extract document
embedding fails to capture the context; hence doesn’t prove to be better proxy
compared to ROUGE.

Tables 7.2,7.8, and Figures 7.2,7.8 indicate that these sentence transformers per-
form well except for CS3 (a multilingual model) and CS5. The best performing
models from all 40 evaluation metric belong to this family, CS1, and CS2 (Ta-
ble 7.13). CS1 is "sentence-transformers/sentence-t5-xl" and CS2 is "sentence-
transformers/sentence-t5-large". Both are Sentence Transformer models and vari-
ants of T5 Architecture having 24 and 48 layers (in both encoder and decoder),
respectively.

As seen in Tables 7.3,7.9, and Figures 7.3,7.9, the "[CLS]" token isn’t able to cap-
ture the context of the document efficiently, and hence the methods that use it to
represent the documents are not a good proxy.

Tables 7.6,7.12, and Figures 7.6,7.12 indicate that the idea of representing a doc-
ument as a point cloud of word embeddings and computing the earth mover’s
distance doesn’t prove to be a good proxy.

As observed in Tables 7.4,7.10, and 7.4,7.10, the idea of computing pairwise co-
sine similarity between tokens of reference and candidate summary proves to be
a good proxy, except for BS02.

42



CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

Based on the experimental results, we can conclude that some methods of captur-
ing contextual similarity are a good proxy for human evaluation and even beat
the de-facto metric ROUGE.

8.2 Future Work

The performance of contextual similarity methods largely depends on the archi-
tecture of the model, the data it is trained on, and the method of training (self-
supervised objective in the case of transformer-based models). A central reposi-
tory should keep track of the correlation of contextual similarity methods as the
new model architectures, datasets, and training methods keep getting introduced.
THe proposed experiment can be replicated on a larger scale, with a larger dataset
and diverse reviewers for more robust results.
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CHAPTER A

Annotation Process

Table A.1: Reviewers who participated in Set-1

Reviewer Qualification
Darshil Patel MTech

Prahar Pandya MTech

Dhyanil Mehta MTech

Devansh Choudaha MTech

Kishan Vaishnani MTech

Tarang Ranpara MTech

Shradha Makhija MTech

EVV Haricharan MTech

Sana Baid MTech

Figure A.1: Individual contribution of annotators in Set-1
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Table A.2: Reviewers who participated in Set-2

Reviewer Qualification
Kaushal Pandya BTech

Dev Dave BTech

khushali Ratanghayara MTech

Harsh Bhatt BTech

Ravi Dave BTech

Mihir Kotecha BTech

Raj Shah MTech

Vikas Gajera BArch

Jainil Soni BTech

Kevin Jadia MTech

Jugal Adesara MBA

Jilsa Chandarana BTech

Dev Parmar BTech

Shivangi Gajjar MTech

Viranya Shah MS

Nupur Mehta BTech

Dreamy Pujara BTech

Rahul Vansh MTech

Meet Shah MTech

Krunal Ranpara CA

Mrudang Vakharia BTech

Figure A.2: Individual contribution of annotators in Set-2

47



CHAPTER B

Annotation Platform

Human reviews were collected from an in-house tool, built using Django, Post-
greSQL hosted on two separate Linux servers. A tool is developed to be a de-facto
annotation tool for any NLP task. It essentially works as a "work allocation sys-
tem" where the admin can add/remove data samples(tasks), add/remove users,
allocate/de-allocate tasks to users, and check the status of allocated work. The
user can log in and complete assigned work across multiple sessions on the user’s
side. The platform can be tweaked to suit any NLP annotation task with min-
imal tweaking. Open-Source Repository: https://github.com/TarangRanpara/
SummaryAnnotatorTool

B.1 User’s Side

Figure B.1: Log-In Screen Prompted to the user
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Figure B.2: Work Allocated to a particular user

Figure B.3: Annotation Sample allocated to a particular user
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B.2 Admin’s Side

Figure B.4: Functions supported at Admin’s side: Create user, Bulk entry of tasks,
allocation/deallocation of tasks, and check the work-status

Figure B.5: Work Status Information
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CHAPTER C

Open Source Repository

We open-sourced a repository to replicate the results we presented. Along with
the repository, we also open-source the dataset we built. This repository also
serves as a "leader-board" to track the correlation of different metrics with human
judgments. With this repository, we can track the performance of new models as
they keep coming. Open-Source Repository: https://github.com/TarangRanpara/
EMFoS
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