

Study of Consistency and

Performance Trade-off in Cassandra

By

Kena Vyas

202011066

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY

in

INFORMATION AND COMMUNICATION TECHNOLOGY

to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND

COMMUNICATION TECHNOLOGY

July 2022

Declaration

I hereby declare that

(i) the thesis comprises of my original work towards the degree of Master of Technology in

Information and Communication Technology at DA-IICT and has not been submitted elsewhere

for a degree,

(ii) due acknowledgement has been made in the text to all the reference material used.

 Kena Vyas

 Certificate

This is to certify that the thesis work entitled Study of Consistency and Performance Trade-off in

Cassandra has been carried out by Kena Vyas (202011066) for the degree of Master of

Technology in Information and Communication Technology at Dhirubhai Ambani Institute of

Information and Communication Technology under my supervision.

 Prof. PM Jat

 Thesis Supervisor

i

Acknowledgements

This thesis would not have been possible without the inspiration and support of a lot of incredible

people, and I am grateful to each and every one of them for being a part of this journey and

helping to make this thesis possible. I would want to convey my heartfelt gratitude to my

guide, Prof. PM Jat, for his unwavering support, patience, and encouragement during my

research. His advice was invaluable during the research and preparation of this thesis. His vast

knowledge and wealth of experience have continuously inspired me in my academic research. I

am grateful that you accepted me as a student and have continued to believe in me for the past

year.

I would also like to offer my heartfelt gratitude to my family and friends for their unconditional

love, assistance, and support during every stage of my research. Your prayers for me have kept

me going so far.

Finally, I would like to thank God for guiding me through all of my challenges and giving me the

strength to complete my thesis.

ii

Contents

Abstract .. iv

List of Principal Symbols and Acronyms.. v

List of Tables ... vii

List of Figures .. vii

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Objective .. 2

1.3 Thesis Outcomes .. 2

1.4 Thesis organization .. 3

2. Cassandra and Consistency ... 4

2.1 NoSQL .. 4

2.2 CAP theorem .. 5

2.3 Eventual consistency .. 6

2.3.1 Strong Consistency .. 6

2.3.2 Eventual Consistency .. 6

2.4 Cassandra ... 7

2.5 Consistency in Cassandra .. 8

2.5.1 What is replication? .. 8

2.5.2 Consistency .. 9

3. Performance Benchmarking.. 12

3.1 YCSB .. 12

3.2 Benchmarking Cassandra with YCSB .. 13

3.3 Related Works.. 13

4. Experimentation .. 16

4.1 Experiment Objective .. 16

4.2 Experiment Setup .. 16

4.2.1 Software Requirements ... 16

4.2.2 Cassandra Cluster Setup ... 17

4.3 Results .. 17

4.3.1 Experiment 1 ... 17

4.3.2 Experiment 2 ... 21

4.4 Discussion ... 24

iii

4.4.1 Correlational Analysis ... 24

5. Conclusion.. 26

References .. 29

iv

Abstract

Cassandra is a type of column-oriented NoSQL database. It is a distributed database with great

scalability and performance that can manage massive amounts of data that is not structured. The

experiments performed as a part of this research analyse the Cassandra NoSQL database's

performance and investigate the trade-off between data consistency and processing times. The

primary objective is to track the Cassandra performance for different consistency settings. The

setup includes a replicated Cassandra cluster deployed using VMWare. Benchmarking read and

write operations individually and in general yields performance statistics. We show how

Cassandra's performance is affected by different consistency settings under varying workloads.

For different consistency settings, the results are measured using threads from 10 to 1000. The

parameters that are measured are Latency and Throughput. The results measure values for latency

and throughput for various settings of consistency and threads. Based on the results, an optimal

value for consistency setting is identified such that delays are minimized, performance is

maximized and strong data consistency is guaranteed. Understanding this trade-off is necessary to

quantify the effective usage of the Cassandra database. One of our primary results is that by

coordinating consistency settings for both read and write requests, it is possible to minimise

Cassandra delays while still ensuring high data consistency.

Cassandra offers tuneable consistency because of which the consistency level can be set

externally for the read and write requests. By taking advantage of this Cassandra feature, we

present results showing how Cassandra behaves for different scenarios of consistency.

Keywords—NoSQL, Cassandra, Consistency, Latency, Throughput, YCSB.

v

List of Principal Symbols and Acronyms

NoSQL Non-SQL

YCSB Yahoo Cloud Serving Benchmark

RL Read Latency

WL Write Latency

CS Consistency Setting

CL Consistency Level

VMware Virtual Machine Software

CQL Cassandra Query Language

RF Replication Factor

GUI Graphical User Interface

R Read

W Write

Y Dependent Variable

ACID Atomicity, Consistency, Isolation, and Durability

DNS Domain name system

vi

List of Tables

Table 2. 1: Write consistency levels ... 10

Table 2. 2: Read consistency levels .. 11

Table 3. 1: Default workloads provided by YCSB (Values are in % percentage) 12

Table 4. 1: Cassandra READ latency statistics ... 18

Table 4. 2: Cassandra WRITE latency statistics ... 18

Table 4. 3: READ and WRITE latency for ratio: 10/90% ... 22

Table 4. 4: READ and WRITE latency for ratio: 30/70% ... 22

Table 4. 5: READ and WRITE latency for ratio: 50/50% ... 23

Table 4. 6: READ and WRITE latency for ratio: 70/30% ... 23

Table 4. 7: READ and WRITE latency for ratio: 90/10% ... 24

Table 4. 8: Multiple regression equation static ... 25

Table 4. 9: Multiple regression equation for read latency ... 25

Table 4. 10: Multiple regression equation for write latency .. 25

vii

List of Figures

Figure 2. 1: Positioning of different databases according to Brewer’s CAP theorem. (source:Tor

Andreas,University of oslo, Automatic Scaling of Cassandra clusters) ... 4

Figure 4. 1: Average Cassandra delay depending on the current workload: reads 19

Figure 4. 2: Average Cassandra delay depending on the current workload: writes 19

Figure 4. 3: Cassandra Throughput depending on the current workload: reads .. 20

Figure 4. 4: Cassandra Throughput depending on the current workload: writes....................................... 20

1

CHAPTER 1

Introduction

Data's relevance has skyrocketed to the point where it is now seen as a precious asset. Data is

critical to the success of a wide range of disciplines and technology. On the internet, Data is used

to display Ads based on the user's preferences. Every day, massive amounts of data are generated.

Data of various formats are seen nowadays in IoT devices such as smartwatches, smart TVs, and

home assistants. Every second or minute, Data of different kinds gets generated from different

devices. As a result, the ability to properly store and retrieve such huge and diverse data is

required.

Relational databases have typically been used to store structured data with a high level of

consistency. But when it comes to working with unstructured data, they have a number of

drawbacks. The rigorous schema constraints of relational databases make it challenging to store

massive data, which is typically anticipated to be unstructured or loosely structured. Field lengths

are limited in relational databases, which leads to improper handling of unstructured data.

Because of the inadequacies of relational databases when it comes to massive data, NoSQL

databases have grown in popularity.

NoSQL Databases are non-relational Data Management Systems. It gives a way to save and

retrieve data. The data is represented uniquely than in relational databases, where tabulated

relations are used. It does not require a fixed schema. The key advantage of using a NoSQL

database is for huge data repositories with dispersed data repositories. Therefore, it's becoming

more prevalent in big data and real-time online applications. NoSQL databases have the following

features: Flexible schemas, High availability, and Horizontal scaling. NoSQL databases also

provide characteristics such as being capable of handling a big number of concurrent users,

provide a globally distributed user base with extremely responsive experiences, being available at

all times, working with loosely-structured and unstructured data, with frequent upgrades and new

features, quickly adapt to changing requirements, NoSQL, on the other hand, has eventual

consistency and so lacks ACID features, etc.

1.1 Motivation

The main motivation of our thesis is to find optimal setting of Cassandra database such that it

provides strong consistency and minimal latency. Understanding this trade-off is crucial for

finding a database state that is consistent. The thesis examines the trade-offs that NoSQL

databases must make between consistency, availability, and latency. It's crucial to understand how

different consistency settings affect system latency. There are many NoSQL databases available

for use. various industry trends suggest that Apache Cassandra is one of the top three in use today

together with MongoDB and HBase [1]. Apache Cassandra is a columnar distributed database

2

that takes database application development forward from the point at which we encounter the

limitations of traditional RDBMSs in terms of performance and scalability [2]. Cassandra is a

NoSQL distributed database system that is known for managing large amounts of distributed data.

It provides high availability without a single point of failure [3].

1.2 Objective

In this thesis, the Cassandra database is used to provide a quantitative examination of the

fundamental Big Data trade-offs between data consistency and performance. We'd like to provide

practical recommendations to developers of distributed systems that use Cassandra as a

distributed data storage system, allowing them to forecast Cassandra latency while keeping the

required consistency level in mind, and to optimise the consistency settings of operations. A

benchmarking approach is developed that optimizes Cassandra's performance that guarantees

strong data consistency under the selected workload.

A NoSQL database like Cassandra supports database replication in order to maintain availability

in the case of event failure or planned maintenance events. The nodes where replicas are put are

determined by a replication strategy. Cassandra keeps replicas on several nodes to ensure

automatic failover and durability. The nodes where replicas are put are determined by a

replication strategy. The replication factor refers to the total number of replicas in the cluster. The

minimal number of Cassandra nodes that must recognise a read or write operation before it may

be declared successful is known as the Cassandra consistency level. Depending on the replication

mechanism employed, a consistency setting can be found that maximises performance while

minimising latency.

1.3 Thesis Outcomes

Using YCSB, a benchmarking methodology is created for working with read and write workloads

in different proportions. Various workload runs are executed on the deployed cluster and their

results are measured. The Cassandra database is monitored for Latency and Throughput values

when read and write workloads are executed on it for a varying number of threads. Various

combinations of read and write workloads are considered. The outcome of thesis will help the

user of the database in identifying a consistency setting that is strong and simultaneously provides

sufficient throughput with minimized latency.

Two experiments are performed as a part of this work that measured the performance of the

Cassandra database for varying read/write workloads, changing threads, and different consistency

settings. The first experiment measures the results by separating the read and write workloads. In

the second experiment, various proportions of read/write workloads are considered together so

that we can get all possible combinations and can measure the results accordingly. From the

measured results, regression formulas are generated which can be used for prediction purposes.

3

1.4 Thesis organization

The thesis document is organised as follows. In the next section i.e., section 2, Literature survey is

presented where papers having related work are discussed. Section 3 talks about NoSQL

benchmarking which covers the basics of NoSQL, YCSB and benchmarking concepts. Section 4

is consistency in Cassandra where concepts like replication factor and consistency level is

covered. Section 5 is about experimentation, the 2 experiments performed as a part of this thesis

are explained in detail along with their aim, configurations and results. Section 6 concludes the

thesis with a conclusion.

4

CHAPTER 2

Cassandra and Consistency

2.1 NoSQL

NoSQL is often referred to as "non-SQL" or "non-relational". Eben Hewitt has his own

explanation of what NoSQL is all about in his book Cassandra: The Definite Guide [4].

"Comparing NoSQL to relational is basically a shell game," Hewitt argues. He's probably

implying that NoSQL cannot be directly compared to a relational database because it

encompasses a wide range of non-relational database types. Most NoSQL databases provide some

level of balance among consistency, availability, partition tolerance, and latency. Although a few

databases have made ACID (Atomicity, Consistency, Isolation, Durability) transactions core to

their architecture, most NoSQL stores lack these [13]. NoSQL databases' data structures are more

flexible than relational databases' data structures in terms of schemas.

NoSQL systems can be classified into categories according to their data model. There are four

different types of NoSQL databases: Column-oriented, Graph, Document, and Key-value

databases. Cassandra, MongoDB, Couchbase, HBase, and Redis are some of the most popular

NoSQL databases. Cassandra offers a range of unique features which makes it a good choice for

us. Cassandra has no single point of failure because of its peer-to-peer architecture. Scalability is

another advantage that Cassandra provides for scaling up or down. It is highly available and fault

tolerant because of the data replication it provides. Such benefits provided by Cassandra makes it

a great choice.

Figure 2. 1: Positioning of different databases according to Brewer’s CAP theorem.

https://en.wikipedia.org/wiki/SQL

5

2.2 CAP theorem

Being ACID compliance is one of the strengths of relational databases. However, it is hard to

achieve serializability in distributed and replicated environment and may leads to delays that are

beyond acceptable limits.

NoSQL systems have compromised ACID properties in order to achieve better performance when

working with large data sets. Because of that, NoSQL systems need to follow some other set of

rules that fit the NoSQL criteria. A scientist called Eric Brewer established a theorem called

Brewer’s CAP theorem. Brewer et.al. [5] realizes this and presents CAP theorem which states

that any distributed data store can only provide two of the three (i.e. consistency, availability and

partition tolerance) guarantees.

Brewer's CAP theorem categorizes database systems according to their capabilities. The CAP

theorem was created to put the different NoSQL solutions together because the bulk of them was

obliged to compromise the ACID guarantee in order to focus on more critical aspects for their

specific needs. CAP is an acronym that stands for [5]:

● Consistency - At the same moment, all connected nodes see the same data.

● Availability - Even if a request is unsuccessful, it is guaranteed that a response will be

received if it is delivered to the database.

● Partition tolerance - There is no single point of failure in the system. If one node fails, the

data can still be accessed by another node, and the system will continue to function

normally.

Hewitt states in his book about Cassandra that “Brewer’s theorem is that in any given system, you

can strongly support only two of the three” [4]. The definition says that a database system cannot

provide all three properties at the same time. When a system is spread across numerous nodes, it

cannot be 100% consistent and available at any given time. When the state of a database is

changed (new data added or data updated) due to various reasons it will take a few milliseconds

or seconds to propagate the changes to other nodes because of which the system is called

eventually consistent.

Figure 2.1 shows which parts of Brewer’s CAP theorem the most known NoSQL solutions

support. All three CAP features cannot be supported at the same time. Cassandra enables partition

tolerance and availability. However, Cassandra also supports eventual consistency where data is

consistent within a reasonable amount of time. The fundamental goal of NoSQL databases is to

achieve as low latency as possible while maintaining good performance [5]. Figure 2.1 is not a

universal truth; it is simply a representation of the solutions' initial configuration and position in

the CAP theorem.

https://en.wikipedia.org/wiki/Distributed_data_store
https://en.wikipedia.org/wiki/Trilemma

6

2.3 Eventual consistency

One of the main feature of No-SQL systems is their ability to run on clusters and data can always

be partitioned and replicated. Achieving serializability is hard in such a scenario. It requires us to

redefine consistency in the context of distributed and replicated data [11].

2.3.1 Strong Consistency

Hewitt explains three different levels of consistency in his book about Cassandra [4]. He talks

about strong consistency as follows:

Strong consistency - All data received from the database must be the most current information

available. A mechanism for a global timer will be necessary to put a time stamp on the data and

actions done to the system across many nodes in different data centres around the world in order

to achieve strict consistency across numerous nodes in multiple data centres around the world.

String consistency is essential in areas like financial institutions, e-commerce websites, etc at all

times. Strict consistency ensures that the data returned will be consistent and valid. However, one

disadvantage is that performance will be degraded because the system will have to verify data

with multiple nodes before returning the results.

Most No SQL systems use the concept of R, W, N where R is the number of nodes from which

data is read, W is the number of nodes where data is written and N is the replication factor and it

can be easily shown that when we have R+W>N then, strong consistency can be achieved.

2.3.2 Eventual Consistency

Context here is we have partitioned and replicated data. Any update to such a database needs to

be should propagated to all replicas. Any read request for a data item following its write should

get the last updated value irrespective of a replica from which value is being read. Eventual

consistency is weaker than strong consistency. Whenever eventual consistency is used and a

request for data is made, then it may provide data which is one version older than the current one.

However, eventual consistency makes sure that the most recent data is available to the user after a

certain period of time.

When we make a change to a distributed database, eventual consistency ensures that the change is

mirrored across all nodes that store the data, ensuring that we get the same response every time

query is made. Eventual consistency offers low latency. Because changes take time to reach

replicas throughout a database cluster, early results of eventual consistency data queries may not

have the most current updates. The database system guarantees that if no new updates are made to

the object, eventually all accesses will return the last updated value [6].

Another type of consistency is weak consistency which gives no guarantee that all nodes will

have same data at any given time. From time to time, updates are exchanged among nodes such

7

that all nodes have updated data. After a certain period of time, the data in the nodes will reach a

consistent state.

2.4 Cassandra

In 2008, two Facebook developers, Lakshman and Malik, released Cassandra to the Apache

community. They describe Cassandra as a "distributed storage system for managing very large

amounts of structured data spread across many commodity servers while providing highly

available service with no single point of failure"[7].

Facebook required a storage structure to address their Inbox search issue. Something was needed

which had low latency and was distributed. Facebook created Cassandra as a part of their

problem’s solution. Cassandra is a column-oriented, peer-to-peer NoSQL database that is a

distributed and decentralized storage system that is open source. It oversees massive amounts of

structured/unstructured/loosely structured data from all around the world. It ensures high

availability, which eliminates the possibility of a system failure and provides eventual consistency

[4]. Cassandra databases have the following features:

● Distributed, Scalable, Consistent

● Data storage that is adaptable

● Fault-tolerant

● The data dissemination is simple.

● High-performance

● Availability / Zero-Downtime

● Consistent replication

● Fast writes.

Cassandra provides a familiar interface known as Cassandra Query Language (CQL). CQL offers

an abstraction layer to the database where Implementation specifics are hidden, and native access

syntaxes are provided. The data in Cassandra is kept in keyspaces, which are similar to databases

in relational database concepts. A column family in the Cassandra database is equivalent to a

table in a relational database, and they can be represented as a collection of rows. Rows are

formed of columns and their values, which are represented as key-value pairs [5]. The Replication

Factor and Strategy can be defined at the time of keyspace creation.

Cassandra is a Java-based database that makes use of Java Management Extensions (JMX) to

administer and monitor it. For example, the JMX-compliant nodetool software can be used to

administer Cassandra. In addition, Nodetool provides a number of commands that yield

Cassandra metrics such as disc use, latency, compaction, garbage collection, and more.

8

Data model

The Cassandra Wiki page says that the Cassandra data model is “designed for distributed data on

a very large scale” [8]. Cassandra runs in main memory and makes asynchronous disc writes on a

regular basis. Cassandra comprises ACID properties in order to increase availability and

performance. The structure of the Cassandra model is quite different from the relational model.

Keyspace is a component in the Cassandra database that is similar to a database in a relational

database.

A Cassandra cluster is a storage unit in the database. It consists of multiple keyspaces. Multiple

apps can run on the same Cassandra cluster thanks to this feature. A level of Column families

exists beneath the keyspace level. A column family is a logically arranged collection of one or

more columns depending on database design. There will be one or more column(s) inside a

column family. Within the Cassandra data paradigm, a column is the simplest data structure and is

at the lowest level. A column has 3 different attributes namely name, value, and timestamp. The

name attribute is used to identify a column. Value attribute stores the actual value related to the

name attribute and timestamp is the time when the column is stored, it is mainly used during data

replication.

A "row" is similar to a relational database row which is a collection of values linked together.

However, there is a difference between the two. The row in the Cassandra model is dynamic and

can have a varying number of columns. One of the advantages of Cassandra is the flexibility of

what may be stored and the fact that no space is allocated for columns that are not part of the

current data set.

2.5 Consistency in Cassandra

2.5.1 What is replication?

In computing, replication entails transferring data to ensure consistency amongst redundant

resources. Data replication is the process of storing several copies of each row in multiple nodes.

The replication approach ensures that the same data is available in other nodes if one node fails

for whatever reason. Cassandra supports replication in the database to ensure availability in the

event of failure or other predefined activity. The process of replicating data from one location to

another is known as replication. The replication method for each Edge keyspace determines the

nodes where replicas are situated. It identifies the nodes where the replicas are put. Cassandra

keeps replicas on several nodes to ensure fault tolerance and reliability. The replication factor

refers to the total number of replicas in the cluster.

The Replication Factor (RF) is equivalent to the number of nodes where data is replicated. A

replication factor of one means that each row in the Cassandra cluster has only one copy. A

replication factor of two indicates that each row has two copies, each on a distinct node. All the

9

replicas in a cluster are equally important. At the time of keyspace generation, the Replication

Factor and Strategy can be specified. The replication factor should not be more than the cluster's

Cassandra nodes.

There are two replication strategies that can be used:

● SimpleStrategy- Only use for one datacenter and one rack. If many datacenters are

planned to be implemented then use the NetworkTopologyStrategy.

● NetworkTopologyStrategy- Because it is much easier to scale, it is strongly recommended

for most deployments.

2.5.2 Consistency

A row's consistency refers to how recent and in sync the replicas are. When data is copied over a

distributed system, maintaining consistency is tough. Cassandra is more inclined towards

availability than consistency. Depending on our use case, we can fine-tune the consistency. In

most cases, Cassandra relies on eventual consistency.

The minimal number of Cassandra nodes that must recognize a read or write operation before it

may be declared successful is known as the Cassandra consistency level. Different Edge

keyspaces can have different consistency levels allocated to them. When the consistency option is

one, it indicates that for a read/write operation to succeed, at least one of the three Cassandra

nodes in the datacentre must react. Depending on the replication mechanism employed, a

consistency setting can be found that maximizes performance while minimizing latency.

Cassandra's consistency settings can be set to balance data accuracy and availability. Consistency

can be set for a session or for each read or write operation individually.

Our thesis focuses on the consistency and latency trade-off aspect mainly. To identify the best

setting of threads and read/write workloads such that strong consistency can be obtained. The

paper “Consistency Trade-offs in Modern Distributed Database System Design” explains in detail

the consistency/latency trade-off. The paper gives a good introduction about CAP theorem.

According to CAP, the system must choose between high availability and consistency [12]. The

reason for such trade-off as explained in the paper is that a high availability requirement implies

that the system must replicate data [12].

The paper “Interplaying Cassandra NoSQL Consistency and Performance: A Benchmarking

Approach” puts light on the trade-off between data consistency and performance. The main aim

of the paper is to allow the developers to predict the delay in Cassandra by considering the

required consistency level. The paper proposes a benchmarking approach for optimising

performance of Cassandra such that strong consistency is ensured [11]. In the paper, a Cassandra

database is deployed and executed in a real production environment. YCSB benchmark is

modified to execute application specific queries. The Cassandra database is benchmarked for

10

various conditions such as different workloads, different consistency settings, etc. After that,

regression functions are generated that interpolate the average read/write latency with precision.

The paper identifies optimal consistency setting by using regression functions which will help the

developers to find out settings such that required consistency level is obtained.

Consistency level (CL) on Write

The number of replica nodes that must acknowledge before the coordinator can properly report

back to the client is determined by the consistency level for write operations. The number of

nodes that acknowledge (for a given consistency level) and the number of nodes that store

replicas (for a certain RF) are almost always different. For e.g., even when only one replica node

recognizes a successful write operation with consistency level ONE and RF = 3, Cassandra

concurrently replicates the data to two other nodes in the background. Below are write

consistency levels that are used in our thesis:

Level Description

ONE It only requires one replica node to recognise it. Because only one copy

needs to acknowledge the write operation, it is faster.

QUORUM It requires 51 percent or a majority of replica nodes across all

datacentres to acknowledge it.

ALL It requires confirmation from all replica nodes. Because all replica

nodes must acknowledge the write operation, it is the slowest.

Furthermore, if one of the replica nodes fails during the write

operation, the write operation will fail, and availability will degrade.

As a result, it's advisable not to use this option in production

deployment.

Table 2. 1: Write consistency levels

Consistency level (CL) on Read

The consistency level for read operations determines how many replica nodes must respond with

the most recent consistent data before the coordinator can deliver the data back to the client

successfully. Below are read consistency levels that are used in our thesis:

11

Level Description

ONE Only one replica node returns the data at consistency level ONE. In this

scenario, data retrieval is the quickest.

QUORUM It signifies that 51 percent of replica nodes in all datacentres have

responded. The data is then returned to the client via the coordinator.

The delay of inter-data centre connection causes a slow read when

there are several datacentres.

ALL It requires confirmation from all replica nodes. The write operation is

the slowest in this situation since all replica nodes must acknowledge.

Furthermore, if one of the replica nodes fails during the write

operation, the write operation will fail, and availability will degrade.

As a result, it's advisable not to use this option in production

deployment.

Table 2. 2: Read consistency levels

Quorum Calculation-The QUORUM level writes to the number of quorum nodes. The following

is how a quorum is computed and then rounded down to a whole number:

quorum = floor((sum_of_replication_factors / 2) + 1)

In a cluster of 3 nodes, a quorum is 2 nodes. In a cluster of 6 nodes, a quorum is 4 nodes.

There are mainly 2 ways for setting consistency in a cluster:

1st Way

To set the consistency level for all queries in the current cqlsh session, use CONSISTENCY in

cqlsh.

Syntax:

CONSISTENCY [Level]

Example: CONSISTENCY ONE

2nd Way

For setting the consistency level individually for each operation, the consistency can be set in the

command line argument (CLI).

-p cassandra.readconsistencylevel=[Level] -p cassandra.writeconsistencylevel=[Level]

Example:-p cassandra.readconsistencylevel=[ONE] -p cassandra.writeconsistencylevel=[ONE]

12

CHAPTER 3

Performance Benchmarking

3.1 YCSB

YCSB and its workloads

YCSB is an abbreviation for Yahoo cloud serving benchmark. YCSB is a program suite for

computing the execution of NoSQL systems. It is used to evaluate/compare the working of

different NoSQL systems based on several parameters. YCSB Benchmark is a collection of

workloads. It can collect the performance metrics of a system under a specific, pre-defined

workload. It makes it easier to compare the performance of the next generation of data serving

systems [9]. The YCSB framework is a standard benchmark for evaluating the operation of

NoSQL databases such as Redis, MongoDB, HBase, Cassandra, and others. The YCSB

framework is made up of a client that generates a workload and a set of basic predefined

workloads that cover various aspects of performance. YCSB provides five different workloads.

Each workload is a unique combination of read/write queries and data sizes. The operations in the

workload are Insert, Update, Read and Scan. The vital feature of the YCSB framework is its

extensibility. The workload generating client is extensible which supports the benchmarking of

different databases. The workloads are [9]:

Workload Read

Weightage

Update Weightage Insert Weightage Scan Weightage

A-Update Heavy 50% 50% 0% 0%

B-Read Mostly 95% 5% 0% 0%

C-Read Only 100% 0% 0% 0%

D-Read Latest 95% 0% 5% 0%

E-Short Ranges 0% 0% 5% 95%

Table 3. 1: Default workloads provided by YCSB (Values are in % percentage)

Parameters measured by YCSB are:

● Performance – This area of the test focuses on request delay when the database is under

load. There is usually a trade-off between latency and throughput.

● Scaling - The capacity to scale a system so that it can manage additional load as

applications add features. Scaling investigates the influence of adding more machines to a

system on performance. Scaling measures the behaviour of the system when the number

of machines increases.

13

Yahoo cloud serving benchmark framework is presented in the paper titled “Benchmarking Cloud

Serving Systems with YCSB”, that facilitates performance comparisons of data serving systems.

Four widely used databases like Cassandra, HBase, Yahoo!’s PNUTS, and a simple sharded

MySQL implementation are used in the paper for benchmarking. The papers use core workload of

YCSB for measuring performance and scalability of the databases. The results show that

Cassandra and HBase have higher read latency on a read heavy workload and lower update

latency on write heavy workload [9]. Along with that, Cassandra and PNUTS showed better

scalability. The paper also explains in details the core workloads provided by YCSB. The paper

also talks about the workload generating client that comes with YCSB using which new

workloads can be defined.

3.2 Benchmarking Cassandra with YCSB

This section describes how Cassandra can be benchmarked using YCSB. The following steps

describe how the benchmark has been integrated with Cassandra.

Step 1: Installing YCSB

Download the latest version of YCSB from GitHub or clone the git repository.

Step 2: Setup the database

Install Cassandra from their authorized website. The setup can be done on a single machine or on

a cluster depending upon the requirement. YCSB requires a database named “YCSB” and that

should contain a table named “Usertable”. The keyspace can be created using the below syntax:

cqlsh> create keyspace YCSB with REPLICATION = {‘class’:’SimpleStrategy’,

’replication_factor’:3};

The syntax for creating a table “Usertable” is as follows:

cqlsh:ycsb>create table usertable (y_id varchar primary key, field0 varchar,field1 varchar,field2

varchar,field3 varchar,field4 varchar,field5 varchar,field6 varchar,field7 varchar,field8

varchar,field9 varchar);

Step 3: Choose a workload

During the loading phase, the workload defines the data that will be put into the database, as well

as the operations that will be performed on the data set during the transaction phase. The

CoreWorkload is a set of standard workloads that comes with the YCSB and can be utilized right

away. As mentioned in Table 2.1, the core workload defines a shuffle of activities such as scan,

read, insert, update, etc. Using the workload parameter file, we can create our own workload if the

CoreWorkload does not meet our requirements.

14

Step 4: Using required parameters

Sometimes we may want to specify additional options for a particular benchmark run. When we

execute the YCSB client, these options are available on the command line.

● -threads: The number of client threads. The YCSB Client employs a single worker thread

by default, although several threads can be specified. This is frequently done in order to

increase the amount of load applied to the database.

● -target: The target number of operations per second.

● -s: Status, for tracking a long-running workload.

Step 5: Load the data

The following command can be used to load a particular workload in the database:

load cassandra-cql -p hosts=localhost -P workloads\workloada

The above command loads workload a of YCSB in the usertable. The number of rows that needs

to be added can also be defined using the recordcount property. Few notes about the command:

the load command indicates the client to execute the loading section. -p indicated to load the

property file. Cassandra-cql is the database layer.

Step 6: Execute the workload

After the data has been loaded, the task can be run. This is accomplished by instructing the client

to run the workload's transaction portion. We may run the workload using the following

command.

run cassandra-cql -p hosts=localhost -P workloads\workloada

3.3 Related works

Relational databases have been the choice for majority of systems due to their rich set of features.

However, they are not suitable for handling huge data. NoSQL databases have gained popularity

as they efficient work with big data [13]. The paper “NoSQL Databases: MongoDB vs

Cassandra” talks mainly about NoSQL databases along with their types and also briefs about

CAP/ACID theorems. YCSB benchmark is used for the experimentation. The performance

parameter which signifies the execution time is taken into consideration for comparing the two

databases i.e., MongoDB and Cassandra. In the experiments, 6 different YCSB workloads are

used for testing both the databases. The results indicate that as the data size increased, MongoDB

started to reduce performance [13]. However, Cassandra became faster as data size increased.

Yahoo cloud serving benchmark framework is presented in the paper titled “Benchmarking Cloud

Serving Systems with YCSB”, that facilitates performance comparisons of data serving systems.

Four widely used databases like Cassandra, HBase, Yahoo!’s PNUTS, and a simple sharded

MySQL implementation are used in the paper for benchmarking. The papers use core workload of

YCSB for measuring performance and scalability of the databases. The results show that

Cassandra and HBase have higher read latency on a read heavy workload and lower update

15

latency on write heavy workload [9]. Along with that, Cassandra and PNUTS showed better

scalability. The paper also explains in details the core workloads provided by YCSB. The paper

also talks about the workload generating client that comes with YCSB using which new

workloads can be defined.

Our thesis focuses on the consistency and latency trade-off aspect mainly. To identify the best

setting of threads and read/write workloads such that strong consistency can be obtained. The

paper “Consistency Trade-offs in Modern Distributed Database System Design” explains in detail

the consistency/latency trade-off. The paper gives a good introduction about CAP theorem.

According to CAP, the system must choose between high availability and consistency [12]. The

reason for such trade-off as explained in the paper is that a high availability requirement implies

that the system must replicate data [12].

The paper “Interplaying Cassandra NoSQL Consistency and Performance: A Benchmarking

Approach” puts light on the trade-off between data consistency and performance. The main aim

of the paper is to allow the developers to predict the delay in Cassandra by considering the

required consistency level. The paper proposes a benchmarking approach for optimising

performance of Cassandra such that strong consistency is ensured [11]. In the paper, a Cassandra

database is deployed and executed in a real production environment. YCSB benchmark is

modified to execute application specific queries. The Cassandra database is benchmarked for

various conditions such as different workloads, different consistency settings, etc. After that,

regression functions are generated that interpolate the average read/write latency with precision.

The paper identifies optimal consistency setting by using regression functions which will help the

developers to find out settings such that required consistency level is obtained.

The above paper also ensures that for achieving strong consistency, the sum of nodes written and

read is greater than the replication factor. The paper shows that strong consistency costs up to

25% of performance and the best setting for strong consistency depends on the ratio of read and

write operations [11]. The results are then generalized by proposing a benchmarking-based

methodology for optimization purpose.

Our presented work shows how different consistency setting affect the Cassandra response time

and throughput. Because Cassandra provides the feature of tuneable consistency, it is possible to

achieve strong consistency by finding optimal settings. By monitoring various parameters of

Cassandra database while different combinations of workload, threads and consistency settings

are executed, we try to find certain consistency setting that provides the minimum latency.

16

CHAPTER 4

Experimentation

4.1 Experiment Objective

To describe a methodology for benchmarking the performance of Cassandra. To extract

experimental results, show how different consistency settings influence the latency and

throughput. To understand the relationship between the parameters and generate a regression

equation for predicting the parameters. The experiment extracts results based on two scenarios:

1. When the read and write operations are executed individually.

2. When mixed read and write workload are executed.

To narrow down the available options for consistency setting based on results obtained. The

objective also includes generating a data set for finding multiple regression equations which can

be used to perform predictive analysis and to find an optimal setting such that strong data

consistency is guaranteed.

4.2 Experiment Setup

4.2.1 Software Requirements

The software/tools that are required for experimentation work are described below:

● VMware- It is used to create and run Virtual Machine directly on a single Windows

computer. Each VM has its own operating system, such as Windows or Linux. Because

each virtual machine (VM) can run its own operating system (OS), multiple OSes can run

on a single physical server.

● MobaXterm- It provides better GUI and important remote network tools to Windows

computers. The ultimate remote computing toolbox is MobaXterm. It is great for

programmers, webmasters, IT managers, and pretty much everyone who wants to manage

their remote jobs more efficiently. MobaXterm is a robust Windows terminal software. It

enables us to perform Linux commands on a Windows PC, connect to our Virtual

Machine (VM) remotely, transfer files, and even run graphical programs on our VM

remotely.

● CentOS 7 for creating a virtual machine in VMware that is based on Linux.

● Java JDK 8 as required by Cassandra. CentOS is an open-source project. CentOS Stream

is an open-source upstream development platform that lets us create, test, and contribute to

a constantly delivered distribution. CentOS is an operating system that can be used for

17

web hosting. It provides various advantages such as security, documentation, and

extended support.

● YCSB (Yahoo Cloud serving benchmark) for benchmarking the database and Cassandra

for experimentation. YCSB is an open-source specification and software suite for

evaluating the retrieval and maintenance of computer programmes. It is used to compare

the performance of different NoSQL systems.

4.2.2 Cassandra Cluster Setup

A Cassandra cluster of 3 nodes with different IP addresses is deployed on VMware. All the nodes

are connected in a cluster by installing Cassandra in all of them and configuring them. A

replication factor of 3 is configured for ALL consistency to be applied. The data in the nodes is 3-

replicated which means a row in a table has 3 copies in the cluster. The VMware virtual machine

uses CentOS operating system that is based on Linux. YCSB benchmark is used in order to

evaluate the performance of databases under different workloads. The YCSB Client is a Java

program that generates data for database loading and runs the loaded workloads.

In our setup, three nodes with IPs: 192.168.29.143, 192.168.29.144, and 192.168.29.145 are

deployed in a single cluster such that they are connected and Cassandra is installed on each.

4.3 Results

4.3.1 Experiment 1

In the experiment 1 where the performance of Cassandra is measured by considering the read and

write workload individually, the configuration is made as follows. A Cassandra cluster of 3 nodes

is deployed on the VMware. In our study, the focus is on examining the dynamic features of

Cassandra's performance in various consistency settings. We investigate how the current

workload affects database latency and throughput. The following configuration is made for

experiment 1.

● A replication factor of 3 is configured.

● Nodes have a Keyspace YCSB and table USERTABLE for experimentation purposes.

● YCSB workload c [read] and workload a [write] parameterized to execute only write

operations are used.

● 25,000 records are used for loading and execution

● The results are calculated with

○ a Varying number of threads from 10 to 1000.

○ 3 consistency settings: ONE, QUORUM, and ALL.

● Latency and Throughput for all the combinations are measured for further analyses.

● Regression equations

18

Read Write Latencies and Throughput Measurements

Tables 4.1 and 4.2 show the results of the Cassandra performance benchmarking. The average

latency and throughput for read requests are shown in Table 4.1, and the average latency and

throughput for write requests are shown in Table 4.2. For each request, the results are calculated

using 25000 records. We may use a mix of average delay and throughput to look at how average

read and write delays are affected by the current workload.

Table 4. 1: Cassandra READ latency statistics

Table 4. 2: Cassandra WRITE latency statistics

19

Latency graphs

Figure 4. 1: Average Cassandra delay depending on the current workload: reads

Figure 4. 2: Average Cassandra delay depending on the current workload: writes

20

Throughput graphs

Figure 4. 3: Cassandra Throughput depending on the current workload: reads

Figure 4. 4: Cassandra Throughput depending on the current workload: writes

21

Experimental Results

Cassandra reads with the ONE consistency level achieve a maximum throughput of 1203 requests

per second, as shown in Table 4.1. It varies between 1240 and 110 requests per second for the

QUORUM and ALL consistency levels. For writes, it is 1437 for ONE consistency level and it

fluctuates around 1400 and 1250 for QUORUM and ALL consistency setting respectively.

The graphs in Fig 4.1 and 4.2 show the delay experienced for read and write operations

individually. The X-axis represents the number of threads running and the Y-axis represents the

delay in microseconds. The three lines denote the average latency for ONE, QUORUM, and ALL

consistency settings. The average latency for ALL consistency settings is the highest compared

with ONE and QUORUM. However, as shown in Fig 4.3 and 4.4, the throughput for ALL

consistency settings is the lowest for both read and write operations.

4.3.2 Experiment 2

As already discussed, if the overall number of written and read replicas is more than the factor of

replication, the Cassandra database can ensure the maximum data consistency model. This means

for a 3-replicated system there are six different read/write consistency settings that can be used to

provide high data consistency. They are

● 1R-3W: One read-All write

● 2R-2W: Quorum read-Quorum write

● 3R-1W: All read-One write

● 2R-3W: Quorum read-All write

● 3R-2W: All read-Quorum write

● 3R-3W: All read-All write

Besides, the two settings: 1R-3W and 2R-1W provide the 66.6% of consistency. Finally, the 1R-

1W setting can guarantee only the 33.3% of consistency [12]. Whenever a smaller number of

replicas are invoked read/write operations in Cassandra executes faster. Hence, in real life

experiments, the following consistency should be chosen: 1R-3W, 2R-2W and 3R-1W. All the

three combinations follow the rule:

As all the three consistency settings provide strong consistency, a system developer may want to

know the performance of those settings for different read/write load proportions and different

read/write consistency settings.

Read/Write Latency measurements

For this experiment, 5 different read/write load proportions are taken into consideration:

Read/Write-10/90%, Read/Write-30/70%, Read/Write-50/50%, Read/Write-70/30%, and

Read/Write-90/10%. For each of these 5 proportions, read and write latency are measured for 3

consistency settings such as 1) ‘Read ONE – Write ALL’ (1R-3W) 2) ‘Read QUORUM – Write

22

QUORUM’ (2R-2W) 3) ‘Read ALL – Write ONE’ (3R-1W). Table 4.3 to 4.7 shows the

measured results. The consistency setting that fetches the lowest latencies is highlighted. The

tables below show some estimations of Cassandra latency for various configurations, ensuring

good consistency in a mixed read/write workload.

Table 4. 3: READ and WRITE latency for ratio: 10/90%

Table 4. 4: READ and WRITE latency for ratio: 30/70%

23

Table 4. 5: READ and WRITE latency for ratio: 50/50%

Table 4. 6: READ and WRITE latency for ratio: 70/30%

24

Table 4. 7: READ and WRITE latency for ratio: 90/10%

Experimental Results

The 1R-3W configuration delivers the lowest consistency for threads up to 300 when the read

load proportion is less than 30%. For threads more than 300, the 3R-1W setting shows optimal

latency among others. When the read load proportion increases, it can be observed that, regardless

of the current workload, the 1R-3W option delivers the best latency readings when compared to

others. For a read and write proportion of 90/10%, the 2R-2W setting shows the lowest

consistency for a greater number of threads. As the number of requests per second and the

fraction of read requests increases, the 2R-2W and specifically the 3R-1W arrangements becomes

extremely wasteful. When the percentage of read requests is around 10%, the 3R-1W design still

provides the shortest delay in high write-heavy workloads.

4.4 Discussion

4.4.1 Correlational Analysis

To generalize our results, a multiple regression equation is generated such that it identifies the

optimal write consistency factor for the given workload. Syntax of multiple regression equation:

Y = Constant C0 + C1*(X1) + C2*(X2) + C3*(X3) + C4*(X4) (1)

The dependent variable Y is the write consistency measure needed to provide strong consistency.

There are 4 independent variables: X1-read latency, X2-write latency, X3-threads, and X4-

proportion of write workload. To make all of the parameters on the same scale, they are

compressed. The following multiple regression formula is created based on the 200 records

measured in our experiment:

25

Table 4. 8: Multiple regression equation static

 Y=0.5173-3.876*X1+3.5528*X2+0.3473*X3+0.0739*X4 (2)

Using the formula 2, optimal write consistency can be identified such that Cassandra provides

strong consistency along with minimized latency for our setup.

Multiple Regression for Read Latency

Table 4. 9: Multiple regression equation for read latency

 Y=0.1598-0.1257*X1+0.8071*X2-0.0708*X3 (3)

Here the parameter Y is the read latency measured for various read and write combinations.

Multiple Regression for Write Latency

Table 4. 10: Multiple regression equation for write latency

 Y=0.1+0.0018*X1+0.7827*X2-0.0981*X3 (4)

Here the parameter Y is the write latency measured for various read and write combinations.

26

CHAPTER 5

Conclusion

To measure Cassandra's latency and performance, we used benchmarking approach. The

benchmarking is performed to assess system performance in order to establish how well the

system can handle a mixed workload when different consistency settings are employed.

Our research focuses on the relationship between multiple settings for consistency and the

performance of the Cassandra column-oriented database. The findings suggest that consistency

settings have a considerable impact on Cassandra's response time and throughput, which must be

taken into account during system development and monitoring. The Cassandra database gives

programmers the ability to fine-tune the consistency setting for each read and write operation

request. Software developers can assure strong consistency for their setup by managing the

consistency setting by ensuring that the sum of nodes written to and read from is more than the

replication factor. In our research, the aim is to choose optimal consistency setting such that

strong consistency is provided along with lower latency for our thesis-specific setup.

27

Commands executed in experiment 1:

In experiment 1, the results are recorded by executing the read and write operations separately.

Command to load workload c which has 100% reads.

ycsb.bat load cassandra-cql -p hosts=localhost -P workloads/workloadc recordcount=25000

Running the workload c

Results will be measured for 3 consistency setting namely ONE, QUORUM and ALL.

1. Set the consistency to ONE using cqlsh terminal. Command – Consistency ONE;

2. Run the following command for threads varying from 10 to 1000.

ycsb.bat run cassandra-cql -p hosts=localhost -P workloads/workloadc -thread 10

3. We have 3 consistency setting and 12 different thread setting and for each of them 2

different values are measured (latency and throughput).

Therefore, we get 3*12*2 = 72 values for read operations to use.

Command to load workload a which is parameterized to execute 100% writes.

ycsb.bat load cassandra-cql -p hosts=localhost -P workloads/workloada recordcount=25000

Running the workload a

Results will be measured for 3 consistency setting namely ONE, QUORUM and ALL.

1. Set the consistency to ONE using cqlsh terminal. Command – Consistency ONE;

2. Run the following command for threads varying from 10 to 1000.

ycsb.bat run cassandra-cql -p hosts=localhost -P workloads/workloada -s -thread 10

3. We have 3 consistency setting and 12 different thread setting and for each of them 2

different values are measured (latency and throughput).

Therefore, we get 3*12*2 = 72 values for read operations to use.

28

Commands executed in experiment 2:

In experiment 2, the results are recorded by executing the read and write operations combined.

Command to load workload a which has been parameterized to execute different proportions of

read/write such as:

ycsb.bat load cassandra-cql -p hosts=localhost -P workloads/workloada recordcount=25000

Percentage of read/write proportions are: 10/90, 30/70, 50/50, 70/30, and 90/10.

Running the workload

1. There are 3 combinations for read/write consistency that are set individually for read and

write i.e., ONE/ALL, QUORUM/QUORUM, and ALL/ONE.

2. Thread ranges from 10 to 1000 having a total of 12 options.

3. The following command is executed in order to fetch the required values.

Cassandra>./bin/ycsb run cassandra-cql -p hosts="192.168.29.143" -p

cassandra.readconsistencylevel=ONE -p cassandra.writeconsistencylevel=ALL -P

workloads/workloada -s -threads 10

The above command is executed multiple times by changing the consistency requirements and

number of threads.

29

References

[1] Github: Benchmarking Cassandra and other NoSQL databases with YCSB. https://github. com/cloudius-

systems/osv/wiki/Benchmarking-Cassandra-and-other-NoSQL-databaseswith-YCSB

[2] Mishra, V. (2014), Beginning apache cassandra development.Apress [E-book]

[3] P. Bagade, A. Chandra and A. B. Dhende, "Designing performance monitoring tool for NoSQL Cassandra

distributed database," International Conference on Education and e-Learning Innovations, 2012, pp. 1-5, doi:

10.1109/ICEELI.2012.6360579. Eben Hewitt. Cassandra: The Definitive Guide. O’Reilly Media, Inc., 1 edition,

2010.

[4] Daniel Bartholomew. Sql vs. nosql. Linux J., 2010.

[5] Lourenço, J.R., Abramova, V., Vieira, M., Cabral, B., Bernardino, J. (2015). NoSQL Databases: A Software

Engineering Perspective. In: Rocha, A., Correia, A., Costanzo, S., Reis, L. (eds) New Contributions in Information

Systems and Technologies. Advances in Intelligent Systems and Computing, vol 353. Springer, Cham.

https://doi.org/10.1007/978-3-319-16486-1_73

[6] Lakshman, Avinash & Malik, Prashant. (2010). Cassandra — A Decentralized Structured Storage System.

Operating Systems Review. 44. 35-40. 10.1145/1773912.1773922.

[7] Datamodel - cassandra wiki. http://wiki.apache.org/cassandra/DataModel.

[8] Cooper, Brian & Silberstein, Adam & Tam, Erwin & Ramakrishnan, Raghu & Sears, Russell. (2010).

Benchmarking cloud serving systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud Computing,

SoCC '10. 143-154. 10.1145/1807128.1807152.

[9] Abramova, Veronika & Bernardino, Jorge & Furtado, Pedro. (2014). Evaluating Cassandra Scalability with

YCSB. 8645. 199-207. 10.1007/978-3-319-10085-2_18.

[10] Gorbenko, A and Romanovsky, A and Tarasyuk, O (2020) Interplaying Cassandra NoSQL Consistency and

Performance: A Benchmarking Approach. Dependable Computing - EDCC 2020 Workshops. EDCC 2020.

Communications in Computer and Information Science., 1279. pp. 168-184. ISSN 1865-0929 DOI:

https://doi.org/10.1007/978-3-030-58462-7_14

[11] D. Abadi, "Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part of the

Story," in Computer, vol. 45, no. 2, pp. 37-42, Feb. 2012, doi: 10.1109/MC.2012.33.

[12] Pritchett, Dan. (2008). Base an acid alternative. ACM Queue. 6. 48-55. 10.1145/1394127.1394128.

[13] Abramova, Veronika & Bernardino, Jorge. (2013). NoSQL databases: MongoDB vs cassandra. Proceedings of

the International C* Conference on Computer Science and Software Engineering. 14-22. 10.1145/2494444.2494447.

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Thesis Outcomes
	1.4 Thesis organization

	Cassandra and Consistency
	2.1 NoSQL
	2.2 CAP theorem
	2.3 Eventual consistency
	2.3.1 Strong Consistency
	2.3.2 Eventual Consistency

	2.4 Cassandra
	2.5 Consistency in Cassandra
	2.5.1 What is replication?
	2.5.2 Consistency

	Performance Benchmarking
	3.1 YCSB
	3.2 Benchmarking Cassandra with YCSB
	3.3 Related works
	Relational databases have been the choice for majority of systems due to their rich set of features. However, they are not suitable for handling huge data. NoSQL databases have gained popularity as they efficient work with big data [13]. The paper “No...

	Experimentation
	4.1 Experiment Objective
	4.2 Experiment Setup
	4.2.1 Software Requirements
	4.2.2 Cassandra Cluster Setup

	4.3 Results
	4.3.1 Experiment 1
	4.3.2 Experiment 2

	4.4 Discussion
	4.4.1 Correlational Analysis

	Conclusion
	References

