
Privacy-Preserving Proximity Detection
through Haversine Distance and Geo-Hash

by

Jash Rathi
202011070

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

May, 2022

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Master of
Technology in Information and Communication Technology at Dhirubhai
Ambani Institute of Information and Communication Technology and has
not been submitted elsewhere for a degree,

ii) due acknowledgment has been made in the text to all the reference material
used.

Jash Rathi

Certificate

This is to certify that the thesis work entitled "Privacy-Preserving Proximity De-
tection through Haversine Distance and Geo-Hash" has been carried out by Jash
Rathi for the degree of Master of Technology in Information and Communication
Technology at Dhirubhai Ambani Institute of Information and Communication Technol-
ogy under my/our supervision.

Prof. Priyanka Singh
Thesis Supervisor

i

Acknowledgments

It is very well said one should never stop learning. During my MTech journey
of two years, I learned how to handle real-life problems in the computer science
world. Given this beautiful opportunity, I would like to thank the Dhirubhai Am-
bani Institute of Information and Communication Technology. Thank you, god,
for this great opportunity and a fantastic experience.

Foremost, I would like to express my sincere gratitude to my guide Prof. Priyanka
Singh who has been a constant support and motivation for me. Her knowledge in
the research is immense, which helped me throughout my work. I could not have
imagined a better guide with so much patience for my MTech thesis.

I am also thankful to my fellow research colleague and friend Nimmi Patel for
being a solid support system. She had always boosted me from refining drafts to
removing errors when I struggled.

At last, I would thank my family, professors, and friends for giving their pre-
cious time to build me into a good human. I appreciate the time each of you has
spent helping me in any situation. I will always be grateful and will never forget
your teaching.

ii

Contents

Abstract iv

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Introduction . 1
1.2 Organization . 4

2 Preliminaries 5

3 Related work 7

4 Proposed Method 11
4.1 Threat Model . 11
4.2 Proximity detection through Haversine distance (P3-HD) 12
4.3 Proximity detection through Geohash (P3-GH) 15
4.4 Secure anomaly detection using homomorphic encryption (SADHE) 17
4.5 Proposed Algorithms . 20

5 Implementation and Results 24
5.1 Dataset . 24
5.2 Experimental details of P3-GH and P3-HD 24
5.3 Experimental details of SADHE . 26

6 Security Analysis 29

7 Conclusion 32

References 33

iii

Abstract

Proximity implies computing suitable distance between nearby people and places.
Proximity detection is very crucial to many multimedia applications. For in-
stance, fatal incidents occur near forests if animals like elephants walk into nearby
crowded regions, resulting in loss of life and property. During the COVID-19
pandemic, the infection spread globally due to a lack of proper proximity detec-
tion strategies. Many solutions were proposed based on Bluetooth, WiFi, wear-
able sensors, ultrasound, and GPS co-location to detect the proximity. However,
privacy-preserving solutions were limited, which hindered the privacy-aware so-
ciety. In this paper, we propose two privacy-preserving proximity detection frame-
works called Privacy-Preserving Proximity through Haversine Distance (P3-HD)
and Privacy-Preserving Proximity through Geohash (P3-GH). With the help of
available GPS data and the traditional Haversine formula, P3-HD computes the
distance to detect if the user is in the proximity zone. The other framework, P3-
GH detects the proximity on the top of the encrypted Geohashes. These proposed
frameworks secure the data of the authentic user from any unauthorized access.
GPS data may introduce anomalies that lead to false results. We have proposed
a secure framework to detect the anomalies called SADHE, a secure method for
detecting anomalies in GPS trajectory without compromising users’ location. We
compare various primacy and deficiency against potential threats, specifically re-
play attacks, poison attacks, frequency analysis attacks, and man-in-the-middle
attacks, and validate the robustness of the proposed frameworks.

iv

List of Tables

3.1 Primacy and deficiency of the existing proximity detection schemes 10

5.1 Comparison of proximity points for P3-GH (9 bits) & P3-HD (d <=

3 m) . 25
5.2 Comparison of proximity points for P3-GH (8 bits) & P3-HD (d <=

19 m) . 26
5.3 Comparison of existing method [11] and SADHE 26

v

List of Figures

4.1 The architecture of Privacy-Preserving Proximity Detection through
Haversine Distance (P3-HD) . 12

4.2 Connection establishment phase . 13
4.3 The architecture of Privacy-Preserving Proximity Detection through

Geohash (P3-GH) . 15
4.4 The architecture of Secure Anomaly Detection using Homomorphic

Encryption (SADHE) . 17

5.1 Comparison of P3-GH (9 bits) and P3-HD (d <= 3m) 24
5.2 Comparison of P3-GH (8 bits) and P3-HD (d <= 19m) 25
5.3 Comparison of existing method [11] and SADHE 26
5.4 Distance computed using traditional Haversine and proposed Haver-

sine formula . 27
5.5 Velocity computed using traditional Haversine and proposed Haver-

sine formula . 27
5.6 Acceleration computed using traditional Haversine and proposed

Haversine formula . 28

6.1 Defense against replay attack . 29
6.2 Defense against poison attack . 30

vi

CHAPTER 1

Introduction

1.1 Introduction

Proximity implies computing the suitable distance between nearby people and
places. In general, proximity does not feed its absolute location, nor does it give a
solution for going there. Proximity issues become so popular during the COVID-
19 pandemics. The infection spread globally due to the infected people lying in
the vicinity of the healthy ones. To combat the spread of COVID-19, medical pro-
fessionals suggested maintaining a safe distance. Proximity detection and dig-
ital contact tracing became popular during the pandemics. Several multimedia
exist in the real world based on proximity detection schemes. With the help of
multimedia tools and technologies, human daily life activities can be monitored
easily. It includes primarily medical and pharma sectors, unmanned aerial vehi-
cles (UAVs), and robotics. Detecting transmissible infectious diseases is one of the
emerging areas in which proximity detection strategies are used. Nowadays, arti-
ficial intelligence and machine learning algorithms analyze human behavior and
social interaction. Autonomous vehicles (AV) and robotic cars are rapidly grow-
ing research work areas in which proximity detection strategies can be used. Sev-
eral fatal accidents happen due to the proximity of autonomous vehicles, which
result in losing lives, properties, and equipment involved in accidents. Several
proximity detection schemes can avoid fatal incidents, such as video cameras.
But cameras do not remain reliable under poor light and bad weather. Cameras
can also be blinded by dirt, dust, and fog. Another way to avoid fatal incidents
is to use a radar system. The radar system recognizes objects present in its range.
Sometimes it triggers false alarms due to moving debris, even birds and animals.
The system with a false alarm suffers from a lot of nuisance. These events can be
avoided by alerting the user with the proximity detection system.

1

Most of the solutions are based on Bluetooth, WiFi, wearable sensors, ultra-
sound, and GPS co-location to detect the proximity. Bluetooth devices can detect
the proximity in its short range. Bluetooth signal strength gets reduced as the dis-
tance increases. The Bluetooth signal gets absorbed by the surrounding objects.
That is another reason Bluetooth devices fail to detect proximity. WiFi technol-
ogy is also used to detect proximity. The majority of the devices that use WiFi
technology suffers from privacy issues. The user’s privacy gets compromised
when they use publicly available WiFi. Public WiFi enables unethical users to
sniff/eavesdrop, session hijacking, etc. GPS is also a widely used technology to
detect short-range and long-range proximity. But accessing the GPS data can re-
veal the user’s location, frequently visited places, habits, political involvements,
spiritual aptitude, etc. Due to these privacy issues, GPS and WiFi-based detection
schemes are not accepted by society. So these demands for privacy-preserving
proximity detection approaches.

In most cases, GPS provides accurate results. But sometimes, it gives false
GPS readings, leading to anomalies in GPS data. Anomalies may lead to wrong
decisions and inaccurate results that create problems in availing LBS. We have
proposed a framework called secure anomaly detection using homomorphic en-
cryption (SADHE).

In this work, we have proposed two proximity detection frameworks called
Privacy-Preserving Proximity through Haversine Distance (P3-HD) and Privacy-
Preserving Proximity through Geohash (P3-GH). We assume mainly three entities
in the proposed framework: user, CSP, and adversary. In the proposed framework
P3-HD, the user will provide his location-based information to the CSP to stay se-
cure from the proximity zone. The CSP will use the GPS data and the traditional
Haversine formula to calculate the distance. The CSP will detect whether the user
is in the proximity zone based on the distance. Unauthorized users try to gain
information through an insecure communication channel and threaten the user’s
privacy. By encrypting the GPS data user’s identity remain hidden, and no unau-
thorized user can access the data. In the proposed framework P3-GH, the user
sent his encrypted Geohashes to the CSP. Then on the top of the encrypted data,
the CSP will detect whether the user is free from the proximity zone. In both these
approaches, we detect the proximity while preserving the user’s data privacy. We
have conducted various experiments to validate the robustness of the proposed
frameworks.

2

The major contributions of the work are as follows:

1. Detecting the proximity while preserving the user’s privacy: The proposed
frameworks can detect the proximity without revealing the user’s actual lo-
cations. The user’s identity remains anonymous due to the encrypted data.
In the proposed framework, P3-HD, the user sends the encrypted GPS co-
ordinates to the CSP. The CSP will calculate the distance using the Haver-
sine formula. In P3-GH, the user provides encrypted Geohashes to the CSP.
Based on data available from other active users and data received from the
actual user, it will verify and detect the proximity. If the user is in a proxim-
ity zone, it will alert the user.

2. Maintaining confidentiality: Information privacy is referred to as confi-
dentiality. When data is transmitted over an insecure communication chan-
nel, an external adversary can intercept the communication. The proposed
framework employs homomorphic encryption to resolve the issues above.
The user sends the encrypted information to preserve the user’s privacy. So
even if the data is intercepted, it does not compromise confidentiality.

3. Preserving the data integrity: Though the user sends the encrypted GPS
data to the CSP, it can be tampered intentionally or unintentionally by an ad-
versary to deteriorate the services. The proposed scheme ensures that data
integrity must be preserved against these malicious activities by verifying
the received GPS data.

4. Anomaly detection in GPS data: Sometimes, signal distortion, bad weather,
bad antenna position, poor mobile networks, etc., may introduce anomalies
in GPS reading that give inaccurate results. Before detecting the proxim-
ity, we ensure that GPS data must be accurate. Inaccurate GPS data intro-
duces anomalies that lead to wrong decisions and create problems in avail-
ing location-based services. We have proposed SADHE to detect the anoma-
lies based on the distance, velocity, and acceleration parameters and remove
them to clean the trajectory before outsourcing.

5. Defense against potential attacks: The insecure communication channel
opens the door for an adversary to access the underlying information. Ad-
versaries also gain information through attacks like man-in-the-middle at-
tacks and frequency analysis attacks. We have conducted various experi-
ments to validate the robustness of proposed methods against potential at-

3

tacks, specifically, replay attacks, poison attacks, frequency analysis attacks,
and man-in-the-middle attacks.

1.2 Organization

The work is organized as follows: Chapter 2, 3 presents preliminaries and
related work respectively. Chapter 4,5 presents the proposed frameworks
and it’s results respectively. We compare various primacy and deficiency in
the security analysis chapter 6, and finally, the conclusion.

4

CHAPTER 2

Preliminaries

This chapter discusses potential attack scenarios: replay attack, poison attack, fre-
quency analysis attack, and man-in-the-middle attack.

• Replay attack: A replay attack is a passive attack in which an unauthorized
user does not know ongoing communication. He observes the pattern of
messages and captures some of these messages. After some time, the at-
tacker forwards these messages to the original destination pretending to be
an authorized user.

• Poison attack:This attack is combination of erasure attack and duplicate fak-
ing attack. Threat occurs in a system when the data stored on the server is
different from the actual data. Either the source of data has got erased or the
stored data has been modified. Therefore failing the data integrity check.

– Erasure attack For data M, whose tag value is T an adversary store
cipher text C′ instead of C on server. Now if the legitimate client tries
uploading same data M with actual cipher C on sever, request will be
rejected. As to upload data M client will pass the tag value T, server
will check T in its log. On server as T is already stored mapping to
cipher C′ the actual data upload request is not accepted.

– Duplicate faking attack The attack occurs when client fails to detect
the modified data during download phase, and hence accepts the cor-
rupted data. This attack can be stopped by performing data integrity
check on client side before the download phase.

• Frequency analysis attack: A frequency analysis attack is based on monitor-
ing the frequency of messages. The attacker observes the ciphertext, and if
the same ciphertext is sent multiple times, he can map that it corresponds to
the same original message. For instance, consider a scenario in which the ci-
phertext C is sent that corresponds to the original message M. If an attacker

5

observes that ciphertext C is sent multiple times, the attacker can map that
ciphertext C belongs to the same message M.

• Man-in-the-middle attack: A man-in-the-middle attack is a cyber-attack
where an unauthorized user intercepts the ongoing communication between
two authenticated users without their awareness. This attack is possible
when communication between two users occurs over an unencrypted chan-
nel.

6

CHAPTER 3

Related work

The majority of the solutions use Bluetooth, WiFi, wearable sensors, radar, and
GPS colocation to detect the proximity as shown in Table 3.1. Carreras et al. pro-
posed proximity detection through smartphones [2]. They proposed the mecha-
nism called "comm2Sense", in which proximity gets detected through WiFi, WiFi
hotspots, and WiFi receivers. They achieved a proximity range of 0-5 meters.
Dmitrienko et al. proposed a proximity detection framework based on WiFi colo-
cation [5]. They proposed a framework for digital contact tracking using scan-
ning and storing information. Deterministic if/else classifier was used to detect
the proximity from WiFi scan data and hotspot duty cycle. But as discussed ear-
lier public WiFi opens the door for an adversary to steal sensitive data and fails to
preserve privacy. WiFi-based devices suffer from several privacy issues, including
cyber-attacks, session hijacking, packet sniffing/eavesdropping, etc.

Social behavior analysis is also one of the rapidly growing research work areas.
Today with advanced sensing technology, it is easy to monitor human interactions
and social behavior. Choudhury et al. proposed sensor-based human interactions,
proximity, and social network analysis [4]. They offered a "Sociometer," a wear-
able sensor that measures group interactions. A hidden Markov model is used
to learn the pattern of IR signals. Several drawbacks of technical tools like sen-
sors and chips are comparatively costlier than other proximity detection schemes.
Also, it requires daily and heavy maintenance.

Cattuto et al. proposed a framework that allows monitoring social interactions
and identifying the community connector patterns [3]. The idea is to identify
proximity based on face-to-face interactions. It is based on the Radio Frequency
Identification (RFID) devices that evaluate mutual proximity by exchanging low-
power radio packets. Krumm et al. proposed a "NearMe" solution without abso-
lute location [6]. NearMe compares clients’ lists of WiFi access points and signal
strengths to compute the proximity of devices. NearMe can give relative distance
for short-range proximity without absolute locations.

7

Leith et al. proposed a framework for Coronavirus detection using Bluetooth
LE signal [7]. They report a Bluetooth LE received signal measurement in various
environments (i.e., in a meeting, train carriage, and grocery shop). They noticed
during their experiments that Bluetooth signal strength varied from device to de-
vice, and the signal strength gets reduced as the distance increases. Also, Blue-
tooth devices fail to detect the long-range proximity. The Bluetooth signal gets
absorbed by the surrounding objects like walls, clothes, cupboards, etc.

Nieto et al. proposed proximity warning system (PWS) and transmission lock-
ing mechanism [9]. It is based on mobile equipment and GPS location to avoid
vehicle accidents. Picco et al. offer wildscope system whose key functionality is
geo-referenced proximity detection of an animal to others or to landmarks based
on GPS signals and GSM modem. GPS data is compensated data [12]. GPS gad-
gets can reveal the user’s identity and expose personal and religious habits, po-
litical involvements, etc. Hence, exposure of the GPS data can threaten the user’s
privacy and reveal a person’s identity. This is a limiting factor for the GPS gad-
gets that data privacy must be preserved while using them. Marks et al. pro-
posed a framework for proximity detection and alert technology for safe construc-
tion equipment operation [8]. This framework is based on alerting the operators
through Personal protection unit (PPU) and Equipment Protection Units (EPU)
devices. It gives a warning when Objects are near humans’ safe zone.

GPS is a contemporary solution used to move from one place to another. In
most cases, GPS provides accurate results. Sometimes, signal distortion, bad
weather, bad antenna position, poor mobile networks, etc., may introduce an
anomaly in GPS reading and give inaccurate results. Anomalies may lead to
wrong decisions and create problems in availing the LBS services. Several so-
lutions have been proposed to detect anomalies from GPS data while achieving
user data privacy. Patil et al. proposed an anomaly detection technique based
on statistical data analysis [11]. The author proposed a framework to detect the
outliers using the z-test method. To compute the distance, they have modified the
actual Haversine formula. Using the modified Haversine formula, they reduce the
computational cost. Sari et al. have discussed the implication of anomaly detec-
tion systems in cloud environments, their types, techniques, and the restrictions
of each method [13]. In this work, they have compared the security measures of
Dropbox, Google Drive, and iCloud using the AES encryption algorithm. Baru-
cija et al. proposed a solution to detect the outliers based on statistic data analysis
[1]. Patil et al. proposed an anomaly detection technique based on statistical data
analysis [11]. The author proposed a framework to detect the outliers using the

8

z-test method. To compute the distance, they have modified the actual Haversine
formula to reduce the computational cost.

These existing solutions require Bluetooth, WiFi, advanced sensors, high main-
tenance chips, technical tools, etc. That is why it is not cost affordable to everyone.
Also, this tool requires daily and heavy maintenance. As discussed earlier major-
ity of the existing system can detect the proximity but fail to preserve privacy.
User identity will remain hidden in the proposed frameworks, and data privacy
will also be preserved. We have used an encryption scheme to hide the user’s
actual location. Using P3-HD and P3-GH, users’ location never gets disclosed to
unauthorized users. Also, the proposed architecture does not need any complex
hardware devices, high-cost sensors, etc. Also, there is no direct interaction be-
tween participating users.

9

Table 3.1: Primacy and deficiency of the existing proximity detection schemes

Technology Benefits Limitations

Bluetooth Low initial cost Not suited for long range
Minimum infrastructure needed Signal absorption by objects

WiFi Low initial cost Not suited for long range
Privacy issues, session hijacking,
packet sniffing/eavesdropping,
etc.

Laser High accuracy High initial cost
Only applicable for short range
Can’t differentiate between hu-
man and objects

Video camera Differentiate between human
and objects

High maintenance cost

Poor work ability in dusty, foggy
area

Sonar Minimum infrastructure needed Can not differentiate between
human and objects

Magnetic fields Differentiate between human
and objects

High battery power

GPS Detect short-range and long-
range proximity

Ability to reveal the location

10

CHAPTER 4

Proposed Method

This chapter gives a detailed description of the proposed frameworks P3-HD, P3-
GH, and SADHE. It also discusses the involved entities and their specific roles.

4.1 Threat Model

This subsection presents the details of the involved entities. There are mainly
three entities in this model: user, CSP, and adversary. The communication channel
between the user and the CSP is considered as insecure channel.

• User: A user is an entity that preserves the safe distance in his surrounding
to other humans or objects. To detect whether a user holds the proximity, it
provides encrypted GPS data to the CSP. A user is assumed to be an honest
entity.

• CSP: The CSP receives the encrypted GPS data sent by the user and detects
whether the user is free from the proximity zone or not. The CSP detects the
proximity based on the user’s location and its database values. Its database
contains other active users’ location-based information surrounding the ac-
tual user. It periodically maintains the database by dumping the old data
to check the proximity with the recent data. The CSP is assumed to be a
semi-honest entity.

• Adversary: An adversary intercepts the ongoing communication between
the user and the CSP and gets to know the information exchanged. It is
considered to be a malicious entity.

11

Figure 4.1: The architecture of Privacy-Preserving Proximity Detection through
Haversine Distance (P3-HD)

4.2 Proximity detection through Haversine distance (P3-

HD)

In this subsection, we provide all the steps of the proposed framework P3-HD as
depicted in Fig. 4.1.

User:

Step 1: The user provides the GPS data to the CSP. GPS data consists of latitude,
longitude, and timestamp value. Before encryption, every pair of latitude
and longitude is multiplied by a scalar value by 106 to extract the integer
portion.

Step 2: Then, the user encrypts the extracted integer values of latitude and lon-
gitude using the Paillier homomorphic encryption [10]. Let the extracted
integer values of latitude and longitude be lat = {lat1, lat2, . . . , latn} and
long = {long1, long2, . . . , longn} respectively. Each of these integer values

12

Figure 4.2: Connection establishment phase

are encrypted independently as shown in algorithm 1. At the same time,
the timestamp t of the recorded GPS data is also encrypted as et.

elati = E(lati) (4.1)

elongi = E(longi) (4.2)

eti = E(ti) (4.3)

where, lati and elati represent the ith value of latitude and correspond-
ing encrypted value of latitude. longi and elongi represent the ith value
of longitude and corresponding encrypted value of longitude. E() is the
encryption function. This gives us encrypted values of latitude and lon-
gitude as elat = {elat1 , elat2 , . . . elatn} and elong = {elong1 , elong2 , . . . elongn}
respectively.

Step 3: The user also computes the hash value of the extracted integer values of
the latitude as follows:

hi = H((lati − lati−1)
⊕

Na) (4.4)

where, hi represents the hash value of the ith data point in the trajectory.
H() is the hash function, Na represents the secret random nonce known
only to the authorized user and the CSP as shown in Fig. 4.2.

The user repeats steps 1 to 3 for every consecutive pair of the GPS tra-
jectory. Thereafter, he sends the entire set of encrypted data elat, elong, the

13

encrypted timestamp et and the hash value h to the CSP.

CSP :
The CSP is assumed to be an honest entity in P3-HD because it needs to
decrypt the GPS data to detect the proximity.

Step 4: The CSP receives the encrypted data from the user and decrypts it as fol-
lows:

lati = D(elati) (4.5)

longi = D(elongi) (4.6)

ti = D(eti) (4.7)

where, D is the decryption function.

Step 5: After decryption, the CSP will compute the hash value hCSP as shown in
algorithm 3. To check whether data integrity is preserved or not, it will
compare hCSP with the hash value h sent by the user.

Step 6: Also, CSP checks for any delayed messages based on the decrypted times-
tamp value dt.

Step 7: Once the validation phase is over (data integrity check in step 5 and de-
layed messages in step 6), the CSP will compare user coordinates and
the data stored in its database to detect the proximity. It uses the tradi-
tional Haversine Eq. 4.10 to calculate the distance d between two points
as shown in algorithm 4.

a = sin
(

lat2 − lat1

2

)2

+ cos(lat1) ∗ cos(lat2) + sin
(

lang2 − lang1

2

)2

(4.8)

c = 2 ∗ atan2(
√
(a),

√
(1− a)) (4.9)

d = r ∗ c (4.10)

where r is the radius of the earth that is 6,371 km, and d is the distance.

14

Step 8: Based on the calculated distance, we will alert the user if two users do not
maintain a safe distance.

Figure 4.3: The architecture of Privacy-Preserving Proximity Detection through
Geohash (P3-GH)

4.3 Proximity detection through Geohash (P3-GH)

In this subsection, we provide all the steps of the proposed framework P3-GH as
depicted in Fig. 4.3.

User:

Step 1: The user’s location can be represented in terms of GPS coordinates. The
coordinates are a pair of latitudes and longitudes representing the user’s
exact location.

Let the values of latitude and longitude be lat = {lat1, lat2, . . . , latn} and
long = {long1, long2, . . . , longn} respectively.

Step 2: The user will encode each pair of coordinates and generate the Geohash
[14]. Geohash is an alphanumeric string containing numeric values and

15

alphabet characters. Geohash generation process will be followed as shown
in algorithm 5.

Step 3: Encrypting the non-numeric value is complex compared to numeric val-
ues. Each character in Geohash is replaced with its ASCII value to encrypt
it.

Step 4: After substitution, the user has encrypted the Geohash value using Pail-
lier homomorphic encryption algorithm. It also encrypts the timestamp
value t corresponding to the Geohash. The user sends the encrypted data
to the CSP using an insecure communication channel.

eghi = E(ghi) (4.11)

eti = E(ti) (4.12)

where, ghi and eghi
represent the ith value of Geohash and corresponding

encrypted value of Geohash. ti and eti represent the ith value of timestamp
and corresponding encrypted value of timestamp. E() is the encryption
function.

CSP:

Step 5: The CSP receives the encrypted data from the user and verifies the data
based on timestamp conditions as shown in Fig. 6.1. It decrypts the times-
tamp value as follows:

ti = D(eti) (4.13)

where, D is the decryption function.

Step 6: Once the validation phase is over (delayed messages in step-5), the CSP
compares the user’s Geohash data with the data stored in its database.
It will use the timestamp value to check the recent data in its database.
It stores the location-based information (i.e. Geohashes) of other active
user’s surrounding the actual user. The CSP periodically maintains the
database by dumping the old data.

Step 7: On the top of the encrypted data, using the paillier additive property, the
CSP will compare the encrypted Geohashes to detect the proximity. If the
user is found to be in a proximity zone, then the CSP will alert the user.

16

4.4 Secure anomaly detection using homomorphic en-

cryption (SADHE)

This subsection gives a detailed description of the proposed method SADHE, a
secure anomaly detection scheme using homomorphic encryption as depicted in
Fig. 4.4.

Figure 4.4: The architecture of Secure Anomaly Detection using Homomorphic
Encryption (SADHE)

User:

Step 1: The user provides the encrypted GPS data to the CSP. GPS data consists of
latitude, longitude, and timestamp value. Before encryption, every pair of
latitude and longitude is multiplied by a scalar value, by 106 to extract the
integer portion.

Step 2: Then the user encrypts the extracted integer values of latitude, longitude
and the timestamp value.

17

Step 3: The user also computes the hash value of the extracted integer values of
the latitude as Eq. 4.4:

The user repeats steps 1 to 3 for every consecutive pair of the GPS trajec-
tory. Thereafter, he sends the entire matrix of encrypted data elat, elong, the
encrypted timestamp et and the hash value h corresponding to the GPS tra-
jectory to the CSP.

CSP :

Step 4: The CSP receives the data from the user and calculates the difference be-
tween consecutive pairs of encrypted latitude and longitude to generate
the difference matrix di as follows:

dlati = D(elati , elati−1
) (4.14)

dlongi = D(elong(i), elong(i−1)) (4.15)

where, dlati and dlongi represent the columns of ith difference value of adja-
cent latitude and longitude. D() is the difference function.

Step 5: The CSP decrypts the difference matrix. The CSP computes hash value
hCSP for the decrypted difference matrix. CSP compares the computed hash
value hCSP with the hash value h sent by the user. If both the hash values
match, then the data integrity of the GPS data is preserved.

Step 6: Also, CSP checks for any delayed messages based on the decrypted times-
tamp value dt as shown in Fig. 6.1.

Step 7: After finishing the validation phase (data integrity check in step-5 and de-
layed messages in step-6), the CSP uses the modified Haversine Eq. 4.18 to
calculate the distance d between two consecutive points.

According to the small-angle approximation theorem, we have approxi-
mated the values of the trigonometric functions assuming the angle be-
tween two successive coordinates is very small (i.e., sinΘ ≈ Θ). Based on
the literature [14], we can approximate the product of the cos(lat1) and
cos(lat2) to be 1 . Based on these modifications, we have derived the mod-
ified Haversine formula as follows:

18

a =

(
lat2 − lat1

2

)2

+

(
long2 − long1

2

)2

(4.16)

c = 2 ∗ atan2(
√
(a),

√
(1− a)) (4.17)

d = r ∗ c (4.18)

Step 8: Based on calculated distance d, the CSP will calculate the velocity v and
acceleration a. CSP will also calculate mean values of distance, velocity,
and acceleration as d̄, v̄, and ā.

Step 9: The CSP will calculate the threshold value based on the frequency distri-
bution of distance. In our case, the threshold values is considered as 5. The
threshold value is calculated as follows:

δ =

(
f requency range o f distance

mean value o f distance

)
(4.19)

Step 10: Calculate the anomalies for every parameter distance d, velocity v, and ac-
celeration a, and store them in the separate anomaly vectors as follows:

D⃗ = ∀ i ∈ d (di > δ ∗ d̄) (4.20)

V⃗ = ∀ i ∈ v (vi > δ ∗ v̄) (4.21)

A⃗ = ∀ i ∈ a (ai > δ ∗ ā) (4.22)

Step 11: Thereafter, the final anomalies are computed based on the intersection of
the corresponding vectors as follows:

O⃗ = {∀ i ∈ ((D⃗i ∩ V⃗i) ∪ (V⃗i ∩ A⃗i) ∪ (A⃗i ∩ D⃗i))} (4.23)

Step 12: Once identified, these anomalies are removed to obtain the cleaned data
and sent to the third-party service providers.

Third-party service providers:

Step 13: Third-party service providers like Google maps, Ola, Uber, Swiggy, and
Zomato will need clean GPS data to calculate the distance between source
and destination without knowing users’ actual locations.

19

4.5 Proposed Algorithms

This subsection represents the algorithms fro the proposed frameworks.

Algorithm 1 P3-HD
The user will encrypt the GPS data using Paillier homomorphic encryption.
INPUT: Set of latitude, longitude, and timestamp
OUTPUT: Encrypted values of latitude, longitude, and timestamp
Define: 1. lat = {lat1, lat2, ..., latn} is the set of latitude

2. long = {long1, long2, ..., longn} is the set of longitude

3. t = {t1, t2, ..., tn} is the set of timestamp value

4. elat = {elat1 , elat2 , . . . elatn} is the set of encrypted latitudes

5. elong = {elong1 , elong2 , . . . elongn} is the set of encrypted longitude

6. et is encrypted timestamp value

7. Na is secret random nonce

8. h = {h1, h2, ..., hn} is the set of hash value

9. E(): It will encrypt the data using Paillier encryption algorithm.

10. H(): It will generate the hash value.
1: procedure ENCRYPT(lat, long)
2: for i do in lat,long
3: i← i ∗ 106

4: end for
5: for i do in lat,long, t
6: elati , elongi , eti ← E(lati, longi, ti) ▷ (Encryption of GPS data)
7: end for
8: for i do in lat
9: hi ← H({(lati − lati−1)

⊕
Na}) ▷ (Calculate hash value)

10: end for ▷ (Send encrypted data to CSP)
11: end procedure

20

Algorithm 2 P3-HD
The CSP will decrypt the data sent by the user
INPUT: Encrypted values of latitude, longitude, and timestamp
OUTPUT: Decrypted values of latitude, longitude, and timestamp
Define: 1. D(): It will decrypt the encrypted data sent by the user.

1: procedure DECRYPT(elat, elong)
2: for i do in elat,elong
3: lat, long← D(elat,elong) ▷ (Decryption of GPS coordinates)
4: end for
5: for i do in t
6: ti ← D(eti) ▷ (Decryption of timestamp value)
7: end for
8: end procedure

Algorithm 3 P3-HD
The CSP will compute the hash value and verify the data.
INPUT: Decrypted set of latitude, longitude, and timestamp
OUTPUT: Valid set of latitude, longitude, and timestamp
Define: 1. hCSP is hash value computed by the the CSP.

1: procedure VALIDATE(hCSP, lat)
2: for i do in hCSP
3: hCSPi ← H({(lati − lati−1)

⊕
Na}) ▷ (CSP will Calculate the hash

value)
4: end for
5: for i do in hCSP, h
6: if h == hCSP then
7: Valid data
8: end if ▷ (Data integrity validation)
9: end for

10: end procedure

21

Algorithm 4 P3-HD
The CSP will detect the proximity based on the Haversine distance
INPUT: Set of latitude, longitude and timestamp
OUTPUT: Calculated Havesine distance
Define: 1. r is a radious of the earth (i.e., 6435 km)

2. d is a distance calculated using traditional Haversine formula.
1: procedure DIST(lat, long)
2: for i do in lat, long
3: for j do in lat, long

4: a = sin
(

latj−lati
2

)2

+ cos(lati) ∗ cos(latj) + sin
(

langj−langi
2

)2

5: c = 2 ∗ atan2(
√
(a),

√
(1− a) ▷ Haversine distance calculation

6: d = r ∗ c
7: if d < 3m then
8: proximity occurs ▷ Alert the user
9: end if

10: end for
11: end for
12: end procedure

Algorithm 5 P3-GH :
The user will encrypt the Geohashes using Paillier homomorphic encryption
INPUT: Set of latitude, longitude and timestamp
OUTPUT: Encrypted set of Geohashes
Define: 1. gh is Geohash value

2. egh is encrypted Geohash value

3. E(): It will encrypt the data using Paillier encryption algorithm.

4. ENCODE(): It will encode the GPS coordinates to Geohash
1: procedure ENCRYPTION(lat, long)
2: for i do in lat,long
3: i← i ∗ 106

4: end for
5: for i do in lat,long
6: ghi ← ENCODE(lati, longi) ▷ (Geohash generation)
7: eghi ← E(ghi) ▷ (Encryption of Geohash)
8: end for
9: for i do in t

10: eti ← E(ti) ▷ (Encryption of timestamp value)
11: end for ▷ (Send encrypted data to CSP)
12: end procedure

22

Algorithm 6 P3-GH :
The CSP will detect the proximity on the top of the encrypted data
INPUT: Encrypted set of Geohashes
OUTPUT: Acknowledge the user
Define: 1. gh is Geohash value

2. egh is encrypted Geohash value

3. D(): It will decrypt the timestamp using Paillier encryption algorithm.
1: procedure PROXIMITY
2: for i do in et
3: ti ← D(et) ▷ Validation phase
4: end for
5: for i do in eghi
6: for j do in eghj

7: if i==j then
8: Alert the user ▷ Check for the proximity
9: end if

10: end for
11: end for
12: end procedure

23

CHAPTER 5

Implementation and Results

This chapter presents the details of our experiments to validate the proposed
frameworks.

5.1 Dataset

We have used the Microsoft Geolife dataset to examine our proposed frameworks
[15]. We have used a few trajectories, which consist of around 21000 points. The
dataset contains the parameters like latitudes, longitudes, it’s recorded times-
tamp, etc.

5.2 Experimental details of P3-GH and P3-HD

Figure 5.1: Comparison of P3-GH (9 bits) and P3-HD (d <= 3m)

The proposed framework P3-HD is based on the available GPS data and the
traditional Haversine formula. The CSP will use this GPS data to calculate the
distance. Based on the distance, the CSP will detect the proximity. The proposed
framework P3-GH is based on the encrypted Geohashes. We have taken the first

24

Table 5.1: Comparison of proximity points for P3-GH (9 bits) & P3-HD (d <= 3
m)

Text File P3-GH (9 bits) P3-HD(d <= 3 m)
(Total points) (proximity points) (proximity points)

005_708, 005_230 (4500) 27 29
001_104, 001_305 (3000) 61 88
020_301, 020_907 (6700) 0 0
020_825, 020_926 (2300) 24 28
020_301, 020_443 (3300) 0 0
002_523, 002_805 (6700) 965 1071

Total points(21000) 1077 1216

few bits from the entire twelve-bit string of the Geohash value. There are several
proximity chances if it matches with any other string stored in the CSP’S database.
We compared these two frameworks on the bunch of GPS data to analyze the
accuracy.

We performed experiments with the proposed frameworks on the Geolife datasets
and got almost same results. We got 828, and 992 proximity points out of twenty-
one thousand points for P3-GH with the first 9 bits and P3-HD with the Haversine
distance less than 3 meters, respectively. These results are shown in Fig. 5.1 and
Table 5.1 respectively.

We got 1077, and 1216 proximity points out of twenty-one thousand points
for P3-GH with the first 8 bits and P3-HD with the Haversine distance less than
18 meters, respectively. These results are shown in Fig. 5.2 and Table 5.2 respec-
tively. In terms of privacy, P3-GH is more suitable than P3-HD because it does not
need to decrypt the data. P3-GH is able to detect the proximity on the top of the
encrypted data without compromising the user’s data privacy.

Figure 5.2: Comparison of P3-GH (8 bits) and P3-HD (d <= 19m)

25

Table 5.2: Comparison of proximity points for P3-GH (8 bits) & P3-HD (d <= 19
m)

Text File P3-GH (8 bits) P3-HD (d <= 19 m)
(Total points) (proximity points) (proximity points)

005_708, 005_230 (4500) 47 72
001_104, 001_305 (3000) 450 571
020_301, 020_907 (8000) 49 56
020_825, 020_926 (2300) 208 223
020_301, 020_443 (3300) 67 77
002_523, 002_805 (6700) 1523 1549

Total points(21000) 2344 2548

5.3 Experimental details of SADHE

Figure 5.3: Comparison of existing method [11] and SADHE

Table 5.3: Comparison of existing method [11] and SADHE
Parameters Existing method [11] SADHE

(Anomaly counts)
Distance 9 10
Velocity 11 7

Acceleration 15 15
Final count 8 7

We have computed anomaly points using the z-test method [11] and the pro-
posed SADHE method. We achieved almost similar anomaly points for the z-test
method [11] and the proposed SADHE method. We have shown the results for
one of the trajectories consisting around one thousand points as shown in Fig.
5.3. For the z-test method, we got 9, 11, and 15 anomaly points based on the dis-
tance, velocity, and acceleration parameters. The proposed SADHE has 8, 7, and

26

15, respectively. The final anomaly points came out to be 8 and 7 for the z-test
method and the SADHE, respectively.

Figure 5.4: Distance computed using traditional Haversine and proposed Haver-
sine formula

Figure 5.5: Velocity computed using traditional Haversine and proposed Haver-
sine formula

We have calculated the distance, velocity, and acceleration parameters using
the traditional Haversine Eq. 4.2 and modified Haversine Eq. 4.18 to check the
accuracy of the modified Haversine formula. We got approximately same calcu-
lations using modified Haversine formula in compared to traditional Haversine
formula as shown in Fig. 5.4, 5.5, and 5.6.

27

Figure 5.6: Acceleration computed using traditional Haversine and proposed
Haversine formula

28

CHAPTER 6

Security Analysis

In this chapter, we have analyzed the security of the proposed frameworks P3-HD
and P3-GH, and SADHE.

Figure 6.1: Defense against replay attack

29

Lemma 6.0.1. : The proposed frameworks are secure against replay attacks.

Proof. We are using the timestamp-based defense mechanism to detect replay at-
tacks. The user sends the encrypted timestamp et of the coordinates along with
the encrypted coordinates to the CSP. The CSP will decrypt the timestamp value
dt received from the user. Based on the decrypted timestamp value dt, the CSP
will validate the data. If dt + α > tCSP, then the received message is considered as
valid otherwise it gets discarded. Here, α and tCSP represent the threshold value
of the timestamp and current timestamp value of the CSP, respectively. In our
experiments, we have set the α value to be 180 seconds. Therefore, the proposed
frameworks are secure against replay attacks.

Figure 6.2: Defense against poison attack

30

Lemma 6.0.2. : The proposed frameworks are secure against poison attacks.

Proof. A poison attack combines an erasure attack and a duplicate faking attack.
In an erasure attack, the original data on the server is removed by the adversary.
In a duplicate faking attack, the original data on the server is replaced with some
malicious data. In both cases, the authentic user loses the actual data, which re-
sults in a violation of data integrity. P3-HD uses robust hashing using Eq. 4.4 to
detect whether data integrity is preserved or not as shown in Fig. 6.2. The user
sends the hash value h of the coordinates and the encrypted coordinates to the
CSP. The CSP will calculate the hash value hCSP based on the data it receives and
then verify it with the hash value sent by the user. By verifying the hash value, the
CSP verifies whether data integrity is preserved or not. Therefore, the proposed
frameworks are secure against poison attacks.

Lemma 6.0.3. : The proposed frameworks are secure against frequency analysis attacks.

Proof. We use the Paillier homomorphic encryption, a probabilistic scheme to pre-
vent the frequency analysis attack. Even for the same plaintext, we get different
ciphertexts. It avoids any direct mapping between the plaintext-ciphertext pairs.
Hence, the proposed frameworks are secure against frequency analysis attacks.

Lemma 6.0.4. : The proposed frameworks are secure against man-in-the-middle attacks.

Proof. The user sends the encrypted data to the CSP. For an attacker to successfully
determine the user’s actual location, it needs to decrypt the data. As the attacker
doesn’t have access to the key, it cannot decrypt the data. So it is infeasible to track
the user’s actual location. Therefore, the proposed frameworks are secure against
man-in-the-middle attacks.

31

CHAPTER 7

Conclusion

Many researchers have proposed proximity detection schemes based on Bluetooth
devices, WiFi co-location, sonar-radar navigation, GPS data, etc. These solutions
can detect the proximity but fail to preserve the user’s data privacy. We have pro-
posed two privacy-preserving proximity detection frameworks called P3-HD and
P3-GH. Both the frameworks use GPS data, restricting the chance of privacy leak-
age. Without revealing the user’s actual locations, it can detect the proximity and
alert the user without compromising data privacy. The proposed SADHE detects
anomalies while preserving the user’s privacy. Without revealing the user’s ac-
tual location, it identifies the anomalies and removes them to clean the data. The
proposed frameworks preserve data integrity, confidentiality, and authentication;
only authorized entities have access to the data. We thoroughly evaluated our
frameworks concerning privacy and security against potential attacks, including
replay attacks, poison attacks, frequency analysis attacks, and man-in-the-middle
attacks. We encourage researchers working on proximity detection to search for
the best realistic operation point.

32

References

[1] E. Barucija, A. Mujcinovic, B. Muhovic, E. Zunic, and D. Donko. Data-driven
approach for anomaly detection of real gps trajectory data. In 2019 XXVII
International Conference on Information, Communication and Automation Tech-
nologies (ICAT), pages 1–6. IEEE, 2019.

[2] I. Carreras, A. Matic, P. Saar, and V. Osmani. Comm2sense: Detecting prox-
imity through smartphones. In 2012 IEEE International Conference on Pervasive
Computing and Communications Workshops, pages 253–258. IEEE, 2012.

[3] C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F. Pinton, and
A. Vespignani. Dynamics of person-to-person interactions from distributed
rfid sensor networks. PloS one, 5(7):e11596, 2010.

[4] T. Choudhury and A. Pentland. Sensing and modeling human networks
using the sociometer. In Seventh IEEE International Symposium on Wearable
Computers, 2003. Proceedings., pages 216–222. IEEE, 2003.

[5] M. Dmitrienko, A. Singh, P. Erichsen, and R. Raskar. Proximity infer-
ence with wifi-colocation during the covid-19 pandemic. arXiv preprint
arXiv:2009.12699, 2020.

[6] J. Krumm and K. Hinckley. The nearme wireless proximity server. In Inter-
national Conference on Ubiquitous Computing, pages 283–300. Springer, 2004.

[7] D. J. Leith and S. Farrell. Coronavirus contact tracing: Evaluating the poten-
tial of using bluetooth received signal strength for proximity detection. ACM
SIGCOMM Computer Communication Review, 50(4):66–74, 2020.

[8] E. D. Marks and J. Teizer. Method for testing proximity detection and alert
technology for safe construction equipment operation. Construction Manage-
ment and Economics, 31(6):636–646, 2013.

33

[9] A. Nieto, S. Miller, and R. Miller. Gps proximity warning system for at-rest
large mobile equipment. International Journal of Surface Mining, Reclamation
and Environment, 19(1):75–84, 2005.

[10] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In International conference on the theory and applications of cryptographic
techniques, pages 223–238. Springer, 1999.

[11] V. Patil, P. Singh, S. Parikh, and P. K. Atrey. Geosclean: Secure cleaning of gps
trajectory data using anomaly detection. In 2018 IEEE Conference on Multime-
dia Information Processing and Retrieval (MIPR), pages 166–169. IEEE, 2018.

[12] G. P. Picco, D. Molteni, A. L. Murphy, F. Ossi, F. Cagnacci, M. Corrà, and
S. Nicoloso. Geo-referenced proximity detection of wildlife with wildscope:
Design and characterization. In Proceedings of the 14th International Conference
on Information Processing in Sensor Networks, IPSN ’15, page 238–249, New
York, NY, USA, 2015. Association for Computing Machinery.

[13] A. Sari et al. A review of anomaly detection systems in cloud networks and
survey of cloud security measures in cloud storage applications. Journal of
Information Security, 6(02):142, 2015.

[14] Wikipedia contributors. Geohash — Wikipedia, the free encyclopedia, 2021.
[Online; accessed 20-April-2022].

[15] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li. Geolife GPS trajectory dataset -
User Guide, geolife gps trajectories 1.1 edition, July 2011. Geolife GPS trajec-
tories 1.1.

34

	Abstract
	List of Tables
	List of Figures
	Introduction
	Introduction
	Organization

	Preliminaries
	Related work
	Proposed Method
	Threat Model
	Proximity detection through Haversine distance (P3-HD)
	Proximity detection through Geohash (P3-GH)
	Secure anomaly detection using homomorphic encryption (SADHE)
	Proposed Algorithms

	Implementation and Results
	Dataset
	Experimental details of P3-GH and P3-HD
	Experimental details of SADHE

	Security Analysis
	Conclusion
	References
	71ad1036-45be-4157-ac9a-09fde7c86d2c.pdf
	Abstract
	List of Tables
	List of Figures
	Introduction
	Introduction
	Organization

	Preliminaries
	Related work
	Proposed Method
	Threat Model
	Proximity detection through Haversine distance (P3-HD)
	Proximity detection through Geohash (P3-GH)
	Secure anomaly detection using homomorphic encryption (SADHE)
	Proposed Algorithms

	Implementation and Results
	Dataset
	Experimental details of P3-GH and P3-HD
	Experimental details of SADHE

	Security Analysis
	Conclusion
	References

