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Abstract

Vocal communication is the most important part of any individual’s life to con-
vey their needs. Right from the first cry of neonates to the matured adult speech,
required proper brain co-ordination. Any kind of lack in coordination between
brain and speech producing system leads to pathology. Asphyxia, asthma, Sud-
den Death Syndrome, Deaf (SIDS), etc. are some of teh infant cry pathologies
and neuromotor speech disorders such as Dysarthria, Parkinson’s Disease, Cere-
bal Palsy, etc. are some of the adult speech-related pathologies. These pathologies
lead to damaged or paralysed articulatory movements in speech production and
rendering unintelligible words. Infants as well as adults suffering from any of the
pathologies face difficulties in conveying the emotions.

The infant cry classification and analysis is a highly non-invasive method for
identifying the reason behind the crying. The present work in this thesis is di-
rected towards analysing and classifying the normal vs. pathological cries using
signal processing approaches. Various signal processing methods, such as Con-
stant Q Transform (CQT), Heisenberg’s Uncertainty Principle (U-Vector) and Tea-
ger Energy Operator (TEO) are analysed in this thesis. Spectrographic analysis
using ten different cry modes in a cry signal is also analysed in this work. In ad-
dition to this, an attempt has also been made to analyse various pathologies using
the form-invariance property of the CQT. In addition to the infant cry analysis,
classification of normal vs. pathological cries using 10-fold cross-validation on
Gaussian Mixture Model (GMM) and Support Vector Machine (SVM) have been
adopted.

In recent the years, dysarthria has also become one of the major speech tech-
nology issue for models, such as Automatic Speech Recognition systems. Dysarthric
severity-level classification, has gained immense attention via researchers in the
recent years. The dysarthric severity-level classification aids in knowing the ad-
vancement of the disease, and it’s treatment.

In this thesis, the dysarthric speech has been analysed using various signal
processing operators, such as TEO, and Linear Energy Operator (LEO) for four
different dysarthric severity-level against normal speech. With increasing use of
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artificial intelligence, there has been a significant increase in the use of deep learn-
ing methods for pattern classification task. To that effect, the severity-level classifi-
cation of dysarthric speech, deep learning techniques, such as Convolutional Neu-
ral Network (CNN), Light-CNN (LCNN), and Residual Neural Network (ResNet)
have been adopted. Finally, the performance of various signal processing-based
feature has been measured using various performance evaluation methods, such
as F1-Score, J-Statics, Matthew’s Correlation Coefficient (MCC), Jaccard’s Index,
Hamming Loss, Linear Discriminant Analysis (LDA), and latency period for the
better practical deployment of the system.

Keywords: Infant Cry Analysis, Dysarthric severity-level Classification, Constant Q
Transform, Teager Energy Operator, Deep Learning
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CHAPTER 1

Introduction

Communication is the integral part of life. Proper co-ordination between brain
and speech producing muscles is required for producing intelligible words. How-
ever, cry is the only way of communication for infants [55]. Hence, it makes
difficult for parents or guardian to differentiate between attention seek cry or
any pathological cry. Similarly, lack of brain to muscle co-ordination leads to
speech impairments. These impairments can be neurogenerative or neurodegen-
erative [56]. Dysarthria is one of the most common speech impairment. Hence,
classification of healthy vs. pathological cries and dysarthric severity-level is a
challenging task.

1.1 Speech Production Mechanism

Speech production is the process by which thoughts are translated into speech.
In ordinary fluent conversation, people pronounce roughly four syllables, ten or
twelve phonemes and two-to-three words out of their vocabulary (that can con-
tain 10 to 100 thousand words) each second. As shown in fig 1.2, speech produc-
ing organs are mainly divided into three parts normally, lungs, larynx and vocal
tract. Speech is produced with pulmonary pressure supplied by the lungs that
generates sound by phonation (i.e. glottal airflow) through the glottis in the lar-
ynx. This airflow is modulated by the larynx through the vocal tract, such as a
periodic noisy puff. The vocal tract is further divided into oral, nasal and phar-
ynx cavities, which gives spectral shaping to the source. In addition to the colour
shaping of the source by vocal tract, air pressure variation at lips also affects the
travelling sound wave that is perceived by the listener. Speech sounds are further
divided into three general categories namely, periodic, noisy and impulsive. Two
bands of smooth muscle tissue between the front and back of larynx is termed as
vocal folds [30] and a slit-like time varying orifice between two vocal folds is called
as glottis. There are three main states of vocal folds namely, breathing, voiced and

1



Figure 1.1: Cross-Sectional View of Speech Production Anatomy. After [58].

unvoiced. During speech production, airflow is obstructed by the vocal folds and
the partial closing of glottis increases tension at the folds, which leads to self-
sustained oscillations of vocal folds.

1.2 Speech Pathology

As seen in Section 1.1, lungs, vocal tract system and larynx are the main speech
producing organs. Apart from these organs, to produce intelligible speech, syn-
chronized harmony between several other organs, such as jaw muscle, tongue, teeth,
lips, soft palate, etc is required. However, if one or more of these subsystems are
abnormal or dysfunctional, the total mechanism is disrupted, rendering the out-
put speech incoherent.

1.2.1 Infant Cry Signal

Crying is the only mode of communication for infants. However, crying requires
to be a set of various complicated and sophisticated physiological activities and
co-ordination between brain, vocal system, motor control mechanism and respira-
tory system. Crying also helps infants to develop and strengthen the pulmonary
system [55]. Many a times, it is difficult for parents or guardian to determine be-
tween a normal cry or pathological cry. To overcome these situations, infant cry
analysis is essential. Analytical research on infant cry analysis started as early as
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1960s. Signal processing assistive tools have been made to aid parents and paedi-
atrics in detecting the symptom of pathology and help infant get the medical aid
without delay.

Figure 1.2: Cross-Sectional View of Cry Production Anatomy. After [3].

From the linguist view point, infant crying indicates the start of vocalization
and a step towards the new language acquiring process. In the signal processing
framework, it is the acoustical event, which has information regarding pitch, tim-
bre, intonation, loudness, and rhythm. Hence, this is highly interdisciplinary in
nature, where experts of different professions look at the infant cries in different
perspective as a different non-verbal communication.

The foundation of infant cry analysis was laid by a Scandinavian team of re-
searchers backs in 1960’s. The infant cry analysis proves helpful in three clinical
situations, namely:

(i) Some pathologies have different characteristics, which draws attention of
parents and paediatricians. Cry analysis also prevents the delayed diagno-
sis.

(ii) Early diagnosis of the pathology can reduce the mortality rate of infants. In-
fants victim of Sudden Infant Death Syndrome (SIDS) can also be prevented.

(iii) Infants on medication for abnormal cries or pathology can be monitored
over the period of time to check the advancement in the treatment.

(iv) Not every infant can have luxury of being attended by trained pediatricians
or pathologists more so in the developing nation context. Hence such non-
invasive tool may help to generate early warning sign for any possible se-
vere pathology.
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1.2.2 Dysarthria

Dysarthria is a degenerative motor speech function impairment, which is gener-
ally the result of neurological damage in the human body. In this kind of sce-
narios, the person suffering from dysarthria finds difficulty in communicating
and expressing vocal emotions. This impairment continues to worsen as dis-
ease progresses. Hence, its analytical study plays an important role for dysarthric
severity-level diagnosis and treatment of patient. Dysarthric symptoms vary from
patients-to-patients. Symptoms also depend on the impact and area of neurologi-
cal impact. Some common symptoms of dysarthria are [57]:

1. Less speech loudness

2. Slow and slurry speech

3. Abnormal rhythm in speech production

4. Hoarse quality of voice

5. Articulation problem

These symptoms are common with other neurological speech disorders, such
as apraxia, dysphasia, aphasia, shuttering, etc. [66]. In dysphasia and Aphasia, the
person’s ability to interpret and reproduce the following speech is compromised.
Person suffering from apraxia, suffers from the speech planning inability, which
is caused by damage in parietal lobe. On the other hand, dysarthria is caused due
to incapability of one or more muscles to produce the desired speech planned by
the brain.

1.3 Motivation

Around 3 million infants die within the first four months of birth due to various
reasons, such as pathology, malnutrition, vaccine preventable disease, abnormali-
ties in the brain stem controlling breathing function, etc. In the context of patholo-
gies, birth asphyxia and related abnormalities, in particular, sudden infant death
syndrome (SIDS) are the leading cause of death for infants [63]. Landmark in-
vestigations sponsored by the National Institute of Health (NIH), USA, reported
evidences of abnormalities in brainstem (in particular, medulla oblongata) that is
known to control breathing functions, for the infants who died of SIDS [11]. Fur-
thermore, clinical diagnosis of asphyxia is logistics heavy and costly and thus, it is
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mostly diagnosed late, however, by then, severe neurological damage would have
already occurred to the infants [33]. Further, acoustic cues of the deaf infant cry
depend on hearing loss, type and duration of rehabilitation and the age of pathol-
ogy detection [69]. Moreover, not every infant is privileged that it is taken care
by a Neonatal Intensive Care Unit (NICU) and a team of paediatricians. Analy-
sis of infant cry signals under diverse crying reasons is necessary to avert such
occurrences. Cry analysis was done via spectrographic analysis in the first two
decades, where researchers employed spectrograms to define separate cry modes
in the spectrogram of the infant cry. The presence of particular cry styles in babies
was linked to the presence of pathology or a risk of pathology. The development
of speech production throughout an individual’s life starts from an infant’s first
babble and is transformed into fully developed speech by the age of five. For
the production of speech sounds, proper coordination between the brain and the
speech generating muscles is essential [56]. Lack of coordination between brain
and speech producing muscles leads to speech impairments. These speech im-
pairments, due to motor speech disorder, occurs as developmental disability. The
abnormal speech creates hindrance for individuals to have effortless communica-
tion. Due to this, individual struggles to maintain the social relationship and may
get prone to depression in the later age. The dysarthric severity-level classification
also helps in knowing the advancement in the disease and effect of treatment on
the individual. The devices must be capable of performing their intended purpose
for a person with a vocal impairment, given the features of normal speech. Fur-
thermore, due to their conventional motor impairment, people with dysarthria
find it challenging to use traditional sources.

1.4 Social Relevance from this Thesis

Infant cry analysis is a noninvasive method of cry analysis that may assist doc-
tors in the diagnosis of disease. An application designed for this purpose can be
used to increase the confidence of paediatricians when making decisions about
the diagnosis of specific pathologies in infants. In addition, study in this area
is necessary to determine the cause of Sudden Infant Death Syndrome (SIDS), as
well as to detect and diagnose newborns who are more prone to SIDS. Developing
an automated cry analyser, the society can be benefited in the following ways:

i Identifying the Needs of Infants: Correctly identifying the cause of crying
may reduce the, such aslihood of poor parenting.
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ii Developing Medical Assistive Tools: Can help in detecting the alarming
pathologies even if visual symptoms are not seen. This reduces the chances
of delayed treatment. This also helps in aiding the neurological problems,
where lack of medications results in medical and physical disorders.

iii Study of Infants in Their Developmental State: The neurological devel-
opment is very fast in infants. Hence, the psychological changes related to
neurological control of brain is very also very fast. These changes are also
reflected in the infant cry pattern and thus, the infant cry analysis can be
used to study the physical development of the infants.

iv Reduction of Infant Mortality Rate: The early detection of neonatal pathol-
ogy may aid in lowering baby death rates.

v Language Acquisition in Infant: The cry patterns observed in the infant
crying, depicts the way any infant acquiring the language from his or her
surroundings.

vi Speech Prosody and Therapy: Early detection of hearing and speech prob-
lems in infants can assist parents and speech therapists in taking proactive
steps toward language learning for these children. Furthermore, the cry-
ing of infants has some specific melody contour and the message delivered
through the crying is in the prosodic manner.

Generally, dysarthric diagnosis requires the supervision of Speech Language
Pathologist (SLP). The treatment of dysarthtic patient requires rigorous clinical
treatment where patients are asked to speak various kinds of words, which in-
cludes various articulatory motion. These assessments are vulnerable to human
errors. Hence, the automatic severity-level analyser method is socially relevant
problem statement, which aids in knowing the advancement of treatment for
dysarthric patient.

Individuals find it challenging to interpret dysarthric speech due to the charac-
ter of the voice. Before someone to understand dysarthric speech, they must first
become comfortable with it. Furthermore, the speaker faces some difficulties in
speaking on a daily basis, which makes it a challenging duty. As a result, the Voice
Conversion (VC) job is one application of dysarthric speech analysis. Dysarthic-
to-normal VC can help people with dysarthria communicate more successfully
with other people.
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1.5 Contributions of This Thesis Work

Given the numerous challenges in infant cry research, an attempt is made to anal-
yse and classify various types of infant cry. The areas of attention are as follows:

i Analysis of Different Cries: In this work, different cries are analysed. Vari-
ous cry modes are analysed on the infant cries, such as hunger, pain, normal,
asphyxia and deaf cries. Form-invariance structure is also analysed for var-
ious infant cries.

ii Classification of Healthy and Pathological Cries: Here, the healthy and
pathological cries are classified. Various energy and auditory-based features
were used to classify the healthy and pathological cries.

Along with given challenges faced by the researchers in the analysis of infant
cries, the dysarthric severity-level classification also has several challenges. Fol-
lowing are the areas, which are focused on this thesis work for dysarthric severity-
level classification:

i Dysarthic Severity-Level Classification:
Dysarthria is a neuro-motor degenerative disorder, which is caused by lack
of coordination between brain and speech producing muscles. Formant fre-
quency analysis is presented through this work.

ii Dysarthric severity-level Classification:
Dysarthic severity-level analysis aids in knowing the mis-cordination be-
tween the primary speech producing system or secondary speech produc-
ing system„ which aids in development of formant enhancers for automatic
speech recognition. Along with this, dysarthric severity-level classification
helps in knowing the advancement in the patient’s condition through the
treatment.

1.6 Organization of the Thesis

Figure 1.3 depicts the organization of the chapters of the thesis work as a schematic
diagram, which is briefly discussed next:

• Chapter 2 presents the detailed study on the previous investigations on in-
fant cry analysis and dysarthric severity-level classification. Various meth-
ods based on signal processing and deep neural network aspects on various
databases are also discussed.
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Figure 1.3: Schematic Flowchart of Thesis Structure.

• Chapter 3 presents the details of the dataset used in this thesis work, the
classifier details, and the performance measures used for comparing the
models.

• Chapter 4 presents the detailed idea and analysis based on Constant Q Trans-
form (CQT) on infant cry. Comparison of pathological cries w.r.t. healthy cry
is analysed. Form-invariance property of CQT, and it’s significance on infant
cry analysis, is also discussed in the chapter 3.

• Chapter 5 presents the novel approach based on Heisenberg’s uncertainty
principle for infant cry analysis. The time-bandwidth product (TBP), u-
vector

• Chapter 6 presents the detailed investigations of dysarthric speech severity-
level analysis and classification and infant cry analysis and classification us-
ing TECC feature set which is energy based signal processing feature.

• Chapter 7 presents the extension of work on dysarthric severity-level analy-
sis and classification using another energy-based signal processing approach
using L2 Norm based on the conclusions made in the chapter 6.

• Chapter 8 concludes our research with an overview of the work completed
within the thesis’ scope. We also explain some of our work’s limitations and
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recommend some future research directions for improved applicability of
our thesis work.

1.7 Chapter Summary

In this chapter, we looked over the brief introduction to the infant cry classifica-
tion and dysarthric severity classification as a problem statement. In Section 1.1,
we looked at a brief overview of how speech is produced and modulated. Next,
in Section 1.2, gives the insight to the speech pathology. The motivation, social
relevance and contribution from this thesis work is presented in Section 1.3, 1.4,
and 1.5 respectively. Finally, Section 1.6, presents the organization and structure
of the rest of the thesis. In the next chapter, we will look into the background and
literature on the classification of infant cry and dysarthtic severity classification.
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CHAPTER 2

Literature Survey

2.1 Introduction

In this chapter, we discuss in brief regrading the attempts that have been made
in earlier times for Infant cry analysis, classification, and dysarthric severity-level
classification. This chapter starts with Infant cry analysis, classification, and its
recent trends. Following to this, this chapter also discuss the Dysarthric severity-
level classification. This chapter also discuss the available database for both infant
cry analysis and classification and dysarthric severity-level classification.

2.2 Infant Cry Analysis: Recent Trends

Foundation work of infant cry analysis started in early 1960s for four types of cries
namely, pain, hunger, birth, and pleasure [88]. The detailed investigation of nor-
mal infant cry using narrowband spectrogram was pioneered by Xie. et al. [92].
In this work, ten different cry modes were identified, reflecting the pitch and har-
monic variation in the infant cry. flat, falling, rise, vibrations, glottal roll, double
harmonic breaks, dysphonation, hyperphonation, inspiration, weak vibrations. A
new parameter known as the H-value was discovered using these ten distinct cry
modes. This parameter can be calculated as:

H-Value =
H-type sequence number

Total number of voiced sequences
(2.1)

The H-value obtained from the eq 2.1 is found to have correlation with the
parents’ assessment of the infant’s suffering (LOD). Trailing, double harmonic
breaks, dysphonation, hyperphonation, and inspiration are all examples of H-
type sequences. In the Chapter 4, all the infant cry modes are analysed in dif-
ferent normal vs. pathological cries as described by Xie. et al.. In extension to
the study presented by Xie. et al. on normal cries, [75] presents the study of cry
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modes on pathological cries. It was observed that dysphonation and hyperphona-
tion, are also correlated with pathological infant cries. Computer algorithms are
now employed to analyse infant cry signals, enabling rapid interpretation and
the development of infant cry analysis tools. Work on infant cry analysis, and
classification of normal infant cries from sick infant cries, development of signal
processing algorithms for infant cry analysis, and identification of cry kinds have
all been done recently. The use of Mel Frequency Cepstral Coefficients (MFCC) is
proposed in [65,74], for identification of an infant from his or her cry. Another in-
teresting study on infant cry analysis shows the impact of delayed auditory feed-
back on crying. However, this effect does not appear to be consistent across all
ages. Pitch or Fundamental frequency (F0) may increase in some cases, however,
it may also fall in others.

Attempts have also been made in the signal processing framework for infant
cry signals. These techniques focus on the (F0) estimation using auto correlation
function. A new method using cross-correlation to estimate (F0) was proposed
in [76, 77].

Research in classification of normal vs. pathological infant cry has been an
emerging new research problem. The initial study on infant cry classification was
done considering the normal infant cries and cries of deaf infants. The study in,
the discriminative acoustic cue used for classification was the complexity of auto-
covariance of the cries. Following this study, the work, reported in [24], used the
Support Vector Machine (SVM) for classification of normal vs. pathological in-
fant cries. A novel non-invasive health care system that uses acoustic analysis of
unclean noisy infant cry signals to quantitatively extract and evaluate particular
cry characteristics and categorise healthy and unwell newborn newborns. The
dynamic MFCC functionality uses the Gaussian Mixture Model-Universal Back-
ground Model to accomplish this (GMM-UBM). Several assistive technologies,
such as baby cry analyser [1], baby pod [2], and Ubenwa mobile app [69] are de-
veloped for cost-effective and non-invasive cry diagnosis tool as a supplement to
Apgar count [10] that can assist paediatrics to detect the early warning signs of
various pathologies.

State-of-the-art cepstral features, such as MFCC are also used recently for cry
classification task using Gaussian Mixture Model (GMM) as classifiers [8], [47].
Also, the radial based features called as Convolutional RBM are implemented
in [82] using 10-fold cross-validation on traditional GMM classifiers In addition to
the traditional GMM classifier, reports the infant cry classification using acoustic
and prosodic features on deep neural network architectures, such as KNN, CNN,
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and RNN. Finally, it was also found in, that melodic intervals in infant cry are
regular phenomena in healthy infant cry. Table 2.1, shows the database available
in the literature.

Table 2.1: Available Databases for Infant Cry Analysis and Classification. After
[47].

Database Creator Recordings Papers

Baby Chilanto NIAOE-CONACYT,
Mexico 2268 [80]

Donate a Cry github.com/domateacry 457 [85]
Icope infantcope.com 113 [35]

ChatterBaby chatterbaby.org 1071 [73]
SPLANN Hospital as part of the SPLANN study 13373 [13, 87]

Self-recorded data Recordings by 1st time parent 19691 [22]
DA-IICT recording done by authors 1190 [20], [25]

Autism Database recording done by authors 84 [89]
Hypothyroid

Database recording done by authors 88 [95, 96]

2.3 Dysarthric Speech Analysis

The subjective assessment of dysarthric speech, which has complex characteris-
tics requires the diagnosis assessment from Speech Language Pathologist (SLPs).
SLPs mainly focus on the articulations and acoustic detection of dysarthria. There
are mainly five methods in literature, which are widely used by SLPs for the as-
sessment of dysarthria. These methods are described as follows:

• Assessment of Intelligibility of Dysarthric Speech (AIDS): This method
takes the speaking and intelligibility rate of dysarthic speaker. However,
this assessment is performed for patients above 12 years [93]. The speech of
a dysarthric patient is recorded by the examiner and then played against the
judges in panel, which rates the speaker on the basis of word and sentence
intelligibility-level.

• Speech Intelligibility Test (SIT): It is the electronic form of AIDS, which
was introduced in 1996 [31]. It basically provides the score of patient’s
speech stimuli to the examiner. The scoring process for SIT is the same as
AIDS.

• Frenchay Dysarthria Assessment (FDA): This method determines the type
of dysarthria a patient suffering from [32]. It takes various behaviours, such
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as respiration, reflexes, intelligibility, movements of jaw, tongue, lip palate,
etc into consideration.

• Dysarthria Examination Battery (DEB): This test focuses on the prosody,
articulation, phonation, resonance, and respiration. The speech is rated on
the scale of 5 on the basis of both word and sentence-level intelligibility. The
details of DEB can be found in [72].

• Dysarthria Profile: This method is similar to the DEB method, where fa-
cial muscle movements are also taken into consideration. The evaluation is
done by one expert clinician, one familiar and one unfamiliar listener. This
provides more comprehensive assessment of dysarthric speech [79].

Table 2.2: Summary of Work Done in Dysarthric Speech Classification

Author Feature Sets Classifier Classification
Type

% age
Accuracy

Paja et al. Multiple acoustic
feature

Mahalnobis
Distance 2-level severity 95

KL Kadi et al. Multiple acoustic
feature

LDA+
GMM/SVM 4-level severity 93

Haewon Byeon et al.
Cepstral peak
prominance,

jitter, shimmer,etc.

Random
Forest

Dysarthria vs.
presbyphonia 83

C.Bhat et al. Audio descriptor
feature ANN 4-level severity 98

Chandrashekar et al. Mel spectrogram CNN 3-level severity 66

M. Fernandez et al. Log-mel
spectrogram

LSTM with
attention 3-level severity 77

Joshy et al. MFCC CNN 4-level severity 96

J.C. Vasquez-Correa et al. STFT
spectrograms CNN Normal vs. Dysarthria 86

2.3.1 Dysarthric Speech Databases

Standard and statistically meaningful databases play a major role in conducting
research in particular reproducible research. They provide straight access to the
raw material and comparative research study done by different researchers across
the globe. However, the collecting the database from the dysarthric speakers is a
challenge and hence, there is need for statistically meaningful database. However,
there are very limited statistically meaningful database available. To that effect, it
is important to discuss some statistically meaningful databases that are popularly
used for dysarthric speech research. Some database details are as follows:
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UA-Speech Database

It is the largest dataset available in the present time, with a total of 19 speakers,
including 15 male and 4 female speakers. The age of speakers varies from 18− 58
years. The speaker intelligibility was rated by the naive human listener on a scale
of 100 %. The recordings were done using eight microphone arrays in three blocks.
There are a total of 155 repeated and common words and 100 uncommon words
in each block with total of 765 word utterances [94]. The categories of the speech
utterances are given below:

• 10 English digits (’Zero’ to ’Nine’).

• 26 radio alphabets.

• 19 computer commands.

• 100 most common words.

• 100 uncommon words from children’s novels.

TORGO Database

It was developed by collaboration between department of Computer Science and
Speech-Language Pathology, University of Toronto. It has been studied that Word
Error Rate (WER) is of 97.5 %. Hence, this dataset is designed to develop dysarthric
Automatic Speech Recognition (ASR) systems. The database consists of the data
spoken by 7 different dysarthric patients (4 males, and 3 females) [81]. The database
is divided into the speech samples of the following categories:

• Non-Words consists of 5-10 repetitions of /iy-p-ah, ah-p-iy and p-ah-t-ah-
k-ah/, respectively. In addition, repeated pronunciation of high, and low
pitch vowels, for 5 seconds is also included

• Short Words consists of English digits (1-10) with repetition and words such
as yes, no, left, right, etc. In addition to this, 50 words from each word intel-
ligibility section of FDA and 360 words from Yorkston-Beukelman Assess-
ment of Intelligibility of Dysarthric Speech (YBAIDS) are also included. Ten
most common words from the British National Corpus were also recorded
by the subjects.

• Restricted Sentences consists of pre-selected phoneme rich sentences. The
grandfather passage from Nemours Database [64], 162 sentences from sen-
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tences intelligibility section from YBAIDS, and 460 sentences from MOCHA
database.

• Unrestricted Sentences consists of unscripted sentences by the subjects recorded
while describing 30 images of interesting situation chosen randomly from
Webber Photo Cards: Story Starters Collection

HomeService Database

This dataset is designed for aiding the dysarthric patients in voice assistive appli-
cations. It contains the speech utterances of 5 dysarthric patients (3 males and 2
females) recorded through a 8 channel microphone array [68]. It consists of the
two types of data as mentioned below:

• Enrollment Data is used to train the ASR system. The data was recorded in
the closed environment for individual speaker while reading the list. n

• Interaction Data is captured from the consumers’ homes when they control
their devices. Because the identity of each word in this data is unknown,
human listeners annotate it. The speech is more natural in this.

Table 2.3: Databases for Dysarthric Speech

Dataset Speakers Male/Females Data Application
TORGO
Database 7 4/3 Words &

Sentences ASR

UA-Speech
Database 19 15/4 Words ASR

HomeService
Database 5 3/2 Voice

Commands
Voice

Assistants

2.4 Chapter Summary

In this chapter, we discussed in brief regarding the previous attempts made for
analysing and identifying the infant cries using various signal processing tech-
niques and traditional classifiers, such as SVM and GMMs. We further discussed
the recent trend in infant cry classification using recent Deep Learning classifiers.
Table 2.1 shows the available dataset for infant cry classification purpose. Fur-
thermore, we also discussed the methods used for dysarthric severity-level clas-
sification using Modern Artificial Intelligence and Deep learning aspects. We also
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studied the the different clinical methods used by SLPs for assessment of advance-
ment in dysarthric treatment. Further table 2.3 shows the available database for
dysarthric severity-level classification.
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CHAPTER 3

Experimental Setup

3.1 Introduction

This chapter discusses about the experimental setup infant cry classification and
dysarthric severity-level classification. A brief description about the dataset used
in this thesis work is discussed in this chapter. Furthermore, the classifiers used
for classification of infant cry and dysarthric severity-level are discussed in this
chapter. Finally, this chapter also discuss about various performance evaluation
measures used in this thesis work for comparing the proposed feature model with
the State-of-The-Art (SoTA) feature set.

3.2 Database Details

3.2.1 Infant Cry Classification

Baby Chilanto Database is used for this work. It was developed by the recordings
conducted by medical doctors, which is a property of NIAOE-CONACYT, Mex-
ico [80]. Each cry signal was segmented into one second duration (which repre-
sent one sample) and are grouped into five categories. Two groups were formed
for binary classification of healthy vs. pathology. Healthy cry signals include
three categories, namely, normal, hungry, and pain resulting in 1049 cry samples.
Pathology cry signals include two categories, namely, asphyxia and deaf resulting
in 1219 cry samples. Another Database used for the infant cry classification and
analysis purpose is the DA-IICT Database. It was collected by [20], [25]. The sam-
pling frequency for DA-IICT Database is 12kHz. It consists of normal and hunger
cry samples for healthy infants, and asphyxia and asthma cries in pathology. Ta-
ble ?? shows the statistics of Baby Chilnato and DA-IICT Database
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Table 3.1: Number of cries in Baby Chilanto and DA-IICT Database. After [20, 25,
80].

Class Category Baby Chilanto DA-IICT

Healthy
Normal 507 793
Hungry 350 -

Pain 192 -

Pathology
Asphyxia 340 215

Deaf 879 -
Asthma - 182

3.2.2 Dysarthric Severity-Level Classification

In chapter 5, 6, and 7 the Universal Access Speech Corpus (UA Corpus) is used for
the development of the classification system based on severity-level dysarthria.
Data of 8 speakers, i.e., 4 males, namely, M01, M05, M07, M09, and 4 females,
namely, F02, F03, F04, and F05 are used for this work. From 765 word utterances,
465 (155 common utterences of each blocks) utterances of microphone array num-
ber 3 per speaker are used for feature extraction as mentioned in [43]. 90% of the
data was used for training and 10% for testing purpose. Each severity-level was
given a different label. The label according to the severity level is mentioned as in
the Table 3.2:

Table 3.2: Severity-Level labels. After [43].

Severity-Level Label
Very Low 3

Low 2
Medium 1

High 0

3.3 Classifiers

3.3.1 Gaussian Mixture Model (GMM)

A GMM is a mixture of Gaussian probability density function (pd f ) parameter-
ized by a number of mean vectors, covariance matrices, and mixture weights of
the individual mixture components. If a random vector xn can be modeled by
M Gaussian components with mean vectors µg, covariance matrices Σg, where

18



g = 1, 2, ..., M indicate the component indices, the pd f of xn is given by [14]:

f (xn|λ) =
M

∑
g=1

πgN(xn|µg, Σg), (3.1)

where πg indicates the weight of the gth mixture component. We denote the GMM
as λ = (πg, µg, Σg|g = 1...M). The likelihood of a feature vector given the GMM
can be evaluated using eq. 3.1. Acoustic feature vectors in the speech literature are
generally assumed to be statistically independent. Hence, for a sequence of feature
vectors, X = (xn|n ∈ 1, ..., T), the probability of observing these features given
the GMM is computed as [14]:

p(X|λ) =
T

∏
n=1

p(xn|λ). (3.2)

A GMM is usually trained using the expectation maximization (EM) algorithm
[28], which iteratively increases the likelihood between the classes.

3.3.2 Support Vector Machine (SVM)

SVM is a non-probabilistic binary linear classifier, as it assigns any new data sam-
ple directly to one of the classes. The SVM is based on discriminative training,
and it gives an optimal hyperplane in the higher-dimensional feature space than
the dimension of the original feature vector, given labelled training samples that
categorizes new examples [14]. In particular, SVM is based on Cover’s theorem
on separability of patterns, which states that, the patterns that are non-linearly
separable in low-dimensional feature space becomes linearly separable in high-
dimensional feature space by using suitable kernel function [26].

3.3.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) are deep learning algorithms which uses
the convolution operation in the architecture for processing the data. This con-
volution is done between the multidimensional input and multidimensional filter
weight, known as kernel. The convolution operators are followed by the pooling-
layer and non-linear activation operation. The combination of these three op-
eration comprises a convolution layer, through which the features are extracted
from input data. The Fully-Connected layers of perceptron are present in the CNN
model for the classification. Further, CNN model extracts the feature similar to the
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human brain by using the convolutional layers and activation functions. CNN has
been widely utilized for the image classification and pattern recognition. Hence,
in this study to capture the energy-based features, the CNN model has been im-
plemented.

Convolution Operation

In CNN, convolution operations are processed by sliding the kernel through the
input matrix and processing the data. The kernel size is smaller than the input
matrix. The convolution operator is represented as [54]:

G[gh, gw] = (F ∗ K)[gh, gw] =
kh

∑
i=1

kw

∑
j=1

K[i, j].F[gh − i, gw − j], (3.3)

where F ∈ R fh× fw is the input matrix, K ∈ Rkh×kw is the kernel matrix, which is
initialized randomly, and G ∈ Rgh×gw ∈ R fh−kh+1× fw−kw+1 is the output matrix.
The convolution operation is performed by the elementwise multiplication of be-
tween the kernel (which slides to the next region after every operation) and the
input matrix masked by the kernel. Further through the convolution operation
the feature is extracted from the input matrix through the kernel, such as shapes,
edges, patterns, etc.

Padding Operation

The output matrix obtained by the convolution operation has lower dimension
w.r.t the input matrix. Hence, for deeper convolution networks, the output will
diminish. Furthermore, by applying the convolution operation, it can be ob-
served that the effects of the boundary elements are less in comparison to the
elements placed at the center, which is disadvantageous if the prominent features
are present at the boundaries. Hence, to overcome these disadvantages, the in-
put matrix is padded with random values (generally zeros). Hence, the dimen-
sion of the input matrix is increased and assist in capturing the information from
the boundary elements. The padding size p, for a kernel size, k× k is calculated
as [54]:

p =
k− 1

2
. (3.4)
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Stride Convolution

In the convolution operation, the kernel overlaps each element in the input ma-
trix. However, in the larger input matrix, this represents the computational in-
efficiency, because the calculations are done multiple times on every element of
matrix, which consumes time and memory. Further, the capturing of the global
feature and local are effected through the stride values. Additionally, the stride
convolution contributes in dimensionality reduction resulting in a fewer calcula-
tions, which is desirable in many cases. The output dimension, nout of convolution
operation implemented by padding and striding, is estimated as [54]:

nout =
nin + 2.p− k

s
+ 1, (3.5)

where nin is the input matrix to the convolution layer, and k, p, and s are the
kernel size, padding size, and stride length, respectively.

Activation Layers

In neural network, the output of each smallest computation unit, namely, percep-
tron is passed through an activation function, which introduces the non-linearities
in the neural network models. Hence, the output is differentiable, which assist in
the back propagation and optimization of the weights. Activation function makes
the deep neural networks suitable for the complex tasks, and generalized and
adaptable to the data. The activation function makes the decision of enabling the
perceptron in the next layer. For the activation function σ(.), the output z for an
input, x is defined as [?]:

z = σ(w.x + b), (3.6)

where w and b are the weights and bias of the perceptron, respectively. Depend-
ing on the problem, different activation selected, such as Sigmoid function, Tanh
function, and Rectified Linear Unit (ReLU) function. Furthermore, the various
activation functions can be used for various layers of deep neural network.

Pooling Layer

Pooling layer is utilized for the dimensionality reduction without any significant
reduction in the information present. The convolution layer output is generally
provided as input to the pooling layer, through which the computational com-
plexity of the CNN reduced, making the model faster to operate. The pooling
layer captures the important features and make the network less susceptible to
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spatial movement from its kernel size. Therefore, the pooling layer do not affect
the model performance, however, it increases the efficiency of the model.

Architecture Details

• Dysarthria Severity-Level Classification: In this study, CNN model was
trained using Stochastic Gradient Descent (SGD) algorithm and 3 convolu-
tional blocks each with kernel size 5× 5, and 1 Fully-Connected (FC) layer
[54]. The input feature is made of uniform size of D × 300, where D is the
dimension of the feature vector. Learning rate of 0.001 and cross-entropy
loss is selected for loss estimation.

3.3.4 Light Convolutional Neural Network (LCNN)

Light-CNN (LCNN), a modified version of the neural network, has performed
exceptionally for SSD task [90]. In LCNN, the non-linear activation functions are
replaced with the Max-Feature-Map (MFM) activation layer, which is briefly dis-
cussed next.

Max-Feature-Map (MFM) Activation

MFM is a modified max-out function, which produces better generalization for
distinct data distribution by learning with a small number of parameters. The
MFM function is defined as [90]:

yk
ij = max(xk

ij, xk+ N
2

ij ), (3.7)

where k, i, and j represents the channel feature component, and frame num-
ber, respectively. Each convolution layer in our LCNN models applies a separate
convolution operation to its input. The element-wise maximum value is selected
from these two convolution layers and an output matrix is generated, which is
provided as input to the next layer.

Architecture Details

• Dysarthria Severity-Level Classification: In this study, we utilized seven
convolutional layers having MFM activation function followed by two-fully
connected layers. The 1st convolutional layer uses the kernel size of 5× 5
and stride of, 1× 1 and the following convolutional layer has a kernel size
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of 3× 3 and stride of 2× 2 with learning rate of 0.001. Weights of the LCNN
are initialized using Xavier weight initialization technique [41].

3.3.5 Residual Neural Network (ResNet)

The vanishing gradient problem in CNN introduced a new classifier, namely,
ResNet, which includes the skip connections into the architecture [23].

Skip Connection

The skip connections are implemented to resolve the vanishing gradient problem
of deep neural networks. The vanishing gradient occurs in several layered neu-
ral networks [23]. The gradient estimation using the back propagation is usually
less than 1, which provides mode stability to the model. However, in the large net-
works the gradient value is very small for the initial layers, which makes the effect
of initial layer insignificant. Hence, the skip layer is utilized where it passes over
one or more layers in neural network layers. This provides the gradient to flow
during the back propagation, such that the initial layer gradient is not 0. Further,
skip connections also enable the latter layers to learn information from the initial
layers. The skip connections are of two types, namely, addition and concatena-
tion. In the addition mode, the skip connection is added to the output from the
layer of the network in an elementwise manner. In concatenation mode, the out-
put is concatenated with the skip connection and used in the densely-connected
networks. This forms the residual block of the ResNet model.

Residual Blocks

The Residual blocks implemented in the ResNet model consist of two types, nor-
mal and downsampling residual blocks. The normal residual block the skip con-
nection is connected directly with the output after skip two layers. However, in
the downsampling residual block, the skip connection is connected to the output
after being downsampled by the convolution layer.

Architecture Details

• Dysarthria Severity-Level Classification: In this study we, have utilized 12
residual blocks out of which 9 are regular residual and 3 are downsampling
residual blocks. The convolution layer of 5 with stride 2 is applied along
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with max pool layer of 2× 2. The downsampling blocks are utilized to re-
duce the dimensionality of the feature maps. In the end, 1 fully connected is
utilized for the multi-class classification. Similar to CNN and LCNN model,
SGD with a batch size of 32 and a learning rate of 0.001 with 200 epochs.

3.4 Performance Evaluation Metrics

3.4.1 Confusion Matrix

A confusion matrix depicts, how well a classification model (or “classifier”) per-
forms on a set of test data for which the true values are known. For classification,
the Confusion matrix shows how errors are distributed across the class [34]. The
prediction is categorized as follows by the confusion matrix:

• True Positive (TP) = These are samples that are correctly predicted and be-
long to a specific class.

• True Negative (TN) = These are samples that do not belong to a specific
class and are projected to belong to a different class.

• False Positive (FP) = These are samples that do not belong to a certain class
but are projected to do so.

• False Negative (FN) = These are samples that are classified in one category
but may be classified in another.

3.4.2 % Classification Accuracy

The major diagonal numbers of confusion matrix indicates the correct decisions
made by the classifier, which gives % classification accuracy. The classification
accuracy can be defined as the ratio of total number of correct decisions made by
the classifier to the total number of test instances. In particular:

Classification Accuracy (%) =
TP + TN

P + N
. (3.8)

where p is total number of positive class utterances and n is total number of
negative class utterances.
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3.4.3 % Equal Error Rate (EER)

The EER is derived from the detection error trade-off (DET) curve, which repre-
sents the performance on detection tasks that involve the trade-off of error types
[61]. In binary classification task, there are two types of errors, namely, false alarm
rate (Pf a(s)) and miss rate (Pmiss(s)). For arbitrary threshold s, these error rates are
defined as [61]:

Pf a(s) =
number of pathology trials with score > s

total number of pathology trials
, (3.9)

Pmiss(s) =
number of healthy trials with score ≤ s

total number of healthy trials
. (3.10)

The EER refers to the threshold sEER at which both the error rates are equal, i.e.,

EER(%) = Pf a(sEER) = Pmiss(sEER). (3.11)

For 10-fold cross-validation, a confusion matrix was combined and calculated
for each fold [14].

3.4.4 F1−Score

Another important performance measure is F1−Score. F1−Score calculates the
precision and recall for test precision is calculated by considering number of true
positive results, i.e.,

F1− Score =
2TP

2TP + FP + FN
. (3.12)

The value of F1−Score ranges from 0 to 1. The more close value to 1, indicates
perfect precision and recall of any model [34].

3.4.5 J-Measure

J-statistic ranges between -1 and 1, where -1 indicates no agreement and +1 in-
dicated full agreement between observation and prediction. Youden’s J-statistic,
i.e.:

J − statistic =
TP

TP + FN
+

TN
TN + FP

− 1. (3.13)
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3.4.6 Matthew’s Correlation Coefficient (MCC)

MCC indicates how closely the predicted and actual class [62] are related. When
comparing models, it is usually regarded a balanced measure. MCC is in the −1
to 1 range. It is given by:

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TN + FN)(TPFN)(TN + FP)
. (3.14)

3.4.7 Jaccard Index

The Jaccard index compares the similarity and dissimilarity of two classes. It is
worth between 0 and 1. It is given by [18]:

JaccardIndex =
TP

TP + FP + FN
. (3.15)

3.4.8 Hamming Loss

It takes into account class labels that were mistakenly predicted. For prediction
error (predicting an incorrect label) and missing error, all classes and test data are
normalized (prediction of a relevant label). It is given by [27]:

Hamming Loss =
1

nL

n

∑
i=1

L

∑
j=1

I(yj
i ̸= ŷj

i), (3.16)

where yj
i and ŷj

i are the actual and predicted labels, and I is an indicator function.
The more it is close to 0, the better is the performance of the algorithm.

3.4.9 Linear Discriminate Analysis (LDA)

LDA is primarily used for the data classification, dimensionality reduction, and
data visualization, through the learning of the features, namely, Fisherfaces [46].
LDA increases the ratio of between-class variation to within-class variance in
every given dataset, assuring maximum separability. Hence, through the LDA
plot, the feature discriminative capabilities can be observed through the clusters
formed and the distance between them.
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3.5 Chapter Summary

This chapter discusses the dataset used for infant cry analysis and dysarthric
severity-level classification. In addition to this, this chapter discusses the clas-
sifier details used for infant cry classification and dysarthric severity-level clas-
sification. Finally, this discusses the performance evaluation metrics used in this
work for comparing the performance of various signal processing models and
practical deployment of the systems. In the next chapter, we discuss about an-
other transform called as Constant Q Transform for infant cry classification and
its form-invariance property for infant cry analysis.
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CHAPTER 4

CQCC for Infant Cry Classification

4.1 Introduction

In the time-frequency plane, the CQT has variable spectro-temporal resolution.
CQT uses the analysis window function which is dependent on time and fre-
quency both as parameters. Due to this, the form-invariance property is main-
tained in a desirable structure of feature descriptors, which is used in spectral
domain for pattern classification. This structure is impossible to be maintained
in traditional STFT. Adding on to it, Brown’s original analysis on CQT were and
inspiration for improvement of notes resolution in western music [19]. Memo-
rizing and perception of rhythm and melody (i.e., prosody) starts around third
trimester of gestation. Infants show excellent musical predisposition which has
melody contour of F0 (and it’s dynamics) in most prominent form [11]. As a re-
sult, we propose to implement CQT-based feature extraction to capture melodic
structure in infant cries via fundamental frequency F0 and its harmonics, (i.e., kF0,
k ∈ Z) for infant cry classification.

4.2 Proposed Work

4.2.1 Constant-Q Transform (CQT)

In the proposed approach, we employ CQT instead of WFT in order to obtain the
high frequency resolution bins in low frequency regions. Following Brown’s ap-
proach [19], the frequency bins in CQT are geometrically-spaced as opposed to the
linear spacing in the WFT. By selecting the appropriate parameters of the CQT, we
can locate the fine structural details of spectrum of the infant cry, which are lying
at very low frequency regions. Because of the geometrical spacing, the low fre-
quency region is well emphasized. For a time-domain signal, x(n), CQT maps it
into the time-frequency representation such that the quality factor, Q remains con-
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stant, and the center frequencies of the frequency bins are geometrically-spaced.
Moreover, such constant Q analysis of the signals is desirable from both theoreti-
cal and practical viewpoints. In particular, CQT helps to preserve form-invariance
property, such as the linear time-scaling property of the continuous-time Fourier
transform which does not hold for WFT (because analysis window used in WFT is
function of only the time parameter). Furthermore, such form-invariance property
is desirable for pattern recognition applications, where we want feature descrip-
tors of a pattern to be invariant w.r.t. scale, shift, rotation, shape, etc. [60].

Let x(n) be the the speech signal then its WFT, X(n, k), can be mathematically
represented as [60]:

X(n, k) =
N−1

∑
n=0

x(n) · w(n, k) · e−j( 2π
N )kn. (4.1)

where w(n, k) denotes the window function, k and n represents frequency bin
index and time index, respectively. The quality factor Q is defined as the ratio of
the center frequency fk of the kth frequency bin to its bandwidth (∆ fk), i.e., Qk =

fk/∆ fk. For CQT, Qk=Qk−1=Qk+1=Q ∀ k ∈ Z To maintain the Qk to be constant
w.r.t. frequency, it is necessary to vary the window length in time-domain. This
varying window length, N(k), can be defined as: N(k) = Fs/∆ fk. Hence,

N(k) =
Fs

∆ fk
=

(Fs

fk

)
·Q = Tk ·Q, (4.2)

To that effect, CQT can be mathematically expressed as:

XCQT(n, k) =
1

N(k)

N(k)−1

∑
k=0

x(n)w(n, k)e
−j
(

2π
N(k) Qn

)
. (4.3)

The time-domain window w(n, k) in CQT is a function of both time and frequency
parameters. Hence, the resulting transform integral yields constant-Q (or constant
percentage bandwidth [39]) analysis and also form-invariance property [40]. Fur-
thermore, Discrete Cosine Transform (DCT) is applied on the CQT spectrum for
feature decomposition and energy compaction to obtain the CQCC feature set.
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4.2.2 Form-Invariance Property

Considering continous-time version of FT, WFT, and CQT, the time-scaling prop-
erty of FT implies [38], [78]:

F{ f (kt)} = Fk(ω) =
1
|k|X

( k
α

)
, (4.4)

and a linear time-scaling of f (t) corresponds to frequency scaling of F(ω) by an
inverse factor of 1

k and vice-versa, implying the form or shape of spectral energy
density is invariant and hence it maintains the structure. However, this is vio-
lated for the traditional WFT because the window function is dependent only on
time parameter. In this context, Schroder and Atal defined WFT via practically
readable (and hence, should be stable) bandpass filters [84], i.e.,

Fk(t, ω) =
∫ t

−∞
f (kτ)w(t− τ)e−jωτdτ. (4.5)

For form-invariance of WFT, we must have

Fk(t, ω) = γF(αt, βω), k > 0 (4.6)

where α and β are scaling factor for time and frequency, Fk(t, ω) defines WFT of
f (kt). However, it is shown in the literature that realization of eq. (4.6) yields the
necessary and sufficient condition on weighting (i.e., window) function which be-
longs to the class of single term power functions, i.e., w(t) = a.tb, t > 0, and as per
bounded input bounded output (BIBO) stability condition for Linear-Time Invari-
ant (LTI) filter, this filter is unstable and hence, practically not realizable. How-
ever, it is interesting to note that if the window function is made to be frequency-
dependent, i.e., w(t) ≡ ω(t, ω) (as in the case of CQT), in particular, equation (4.5)
becomes

Fk(t, ω) =
∫ t

−∞
f (kτ)w(t− τ, ω)e−jωτdτ, (4.7)

then the form-invariance property, i.e, eq (4.6) is satisfied by eq. (10) for the win-
dow function, i.e.,

w(t, ω) = v(t, ω)tb t > 0, ω > 0, (4.8)

where v(tω) is an arbitrary real function of (tω), b is real constant, and function
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w(t, ω) also satisfy BIBO stability condition for LTI filter [71], i.e.,

∫ ∞

−∞
|w(t, ω)|dt < ∞. (4.9)

Because of this form-invariance property of CQT, we believe that it might be
more suitable over spectrogram for infant cry classification task. Furthermore,
equation (4.8) also holds for window function considered in most practical model
and short-time analysis performed by peripheral auditory system. For example,
original model developed by Flanagan based on Von Bekesy data [36] represents
the window function for the mechanical spectral analysis due to the movements
of basilar membrane in the cochlea of human ear [38]. In particular, w(t, ω) =

(tω)2e
−tω

2 , which is similar to equation (4.8).

4.3 Experimental Results

4.3.1 Results on Baby Chilanto Database

The CQT is a tune-able feature set with variable parameters such as Fmin and win-
dow function. To focus on the desired low frequency region, the experiments
initially were performed by varying Fmin, keeping the other parameter,i.e., win-
dow function constant as Hanning window. It is observed from the Table 4.1, that
fmin=100 Hz gives the best % classification accuracy. This might be because of the
high F0 and the fact that its harmonics are in the range of 500 Hz and higher that
it. As a result, the better discriminatory acoustic cues are captured beyond 250
Hz.

Table 4.1: Results for Various fmin (Hz). After [4].

fmin 5 10 20 50 100 150 200 250
Acc. 98.7 99.4 98.2 99.1 99.8 98.8 98.6 98.9

Further, the experiments were performed on various windowing functions
keeping F0 constant. It is observed from the Table 4.2, the optimum % classifi-
cation accuracy is achieved for Hanning window. In addition, the experiments
were also performed on various GMM mixtures. It is observed from Table 4.3,
that the optimum results are obtained for 512 GMM mixtures.

The % classification accuracy and % EER obtained from the experiments per-
formed using GMM and SVM as classifiers, are mentioned in Table 4.4. It is ob-
served that the CQCC performs way better than other SoTA. Moreover the CQCC

31



Table 4.2: Results for Various Window Functions. After [4].

Window Hanning Gaussian Hamming Rectangular
Acc. 99.82 98.81 99.60 97.75

Table 4.3: Results w.r.t. Various GMM Mixtures. After [4].

Mixtures 64 128 256 512 1024
Accuracy 97.53 99.43 98.94 99.82 98.67

and MFCC auditory-based features uses non-linear scale (logarithmic scale in par-
ticular) along the frequency-axis. As a result, we may conclude that human au-
ditory system-based features work better for pathological cry classification than
linear-scale features.

Table 4.4: % Classification Accuracy and % EER for different Feature Sets. After
[4].

MFCC LFCC Cepstrals CQCC

GMM Acc. 98.55 98.28 98.68 99.82
EER 1.23 0.50 0.47 0.44

SVM Acc. 88.11 80.18 80.62 91.19
EER 12.72 18.78 17.73 6.38

4.3.2 Results on DA-IICT Database

According to the results obtained in Section 4.3.1, the experiments were performed
by varying the fmin keeping the constant window function as Hanning window.
As mentioned in Table 4.1, it can be observed that the best possible % classification
accuracy is obtained for fmin=100 Hz. As discussed in the previous Section, this
might be due to the fact that due to high F0 and it’s harmonics (i.e., kF0, k ∈ Z),
have frequencies in the range of 500 Hz and above. Hence, the better discrimina-
tive acoustic cues are captured above 250 Hz. of frequency range. It can also be
observed that initially the % classification accuracy increases as the fmin increases
but after fmin=100 Hz, the % classification accuracy decreases as the fmin increases.

Table 4.5: Results for various fmin (Hz). After [44].

fmin 20 50 80 100 120 150
Acc. 97.62 97.03 98.42 99.31 97.52 98.42

Furthermore, as shown in Table 4.6, the experiments were also performed on
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various window functions keeping the fmin constant. The best % classification
accuracy was obtained for Hanning window.

Table 4.6: Results for various Window Functions. After [44].

Window Hanning Gaussian Hamming Rectangular
Acc. 99.31 98.61 96.44 94.44

In addition, the experiments were performed using the various number of
mixtures in GMM. As observed from Table 6.3, the best result was obtained for 128
number of mixtures in GMMs. In contrast to the results obtained from Baby Chi-
lanto Database, the best % classification accuracy was obtained for 512 mixtures in
GMM. This is due to the fact that the DA-IICT database is relatively shorter, hav-
ing lesser sampling frequency and lesser number of infant cry samples than the
Baby Chilanto database. Thus, lesser number of mixtures in GMM are sufficient
to model statistical distribution of underlying data for DA-IICT database.

Table 4.7: Results w.r.t. Various GMM Mixtures. After [44].

Mixtures 64 128 256 512 1024
Accuracy 96.53 99.31 98.61 96.14 94.16

4.4 Narrowband Spectrogram of Infant Cry Modes

As per the original study reported in [91], any infant cry signal can be encoded
into 10 different cry modes. These cry modes have different time-frequency pat-
terns when observed in spectrogram. These cry modes are:

(i) Glottal Roll: It is a gradually decreasing pattern of F0 and total energy. It is
also called as trailing cry phoneme.

(ii) Flat: The time-frequency pattern where, we can observe smooth and steady
F0 with less energy difference between F0 and it’s harmonics.

(iii) Falling: The time-frequency pattern where, we can observe descending F0.

(iv) Rising: The time-frequency pattern where, we can observe ascending F0.

(v) Double Harmonic Break: Weak primary simultaneous parallel harmonic
series present between harmonics of F0.

(vi) Dysphonation: Energy distribution is unstructured over all the frequency at
either higher concentration or space between indistinguishable harmonics.
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(vii) Hyperphonation: Energy distribution with high F0 phonation.

(viii) Inhalation: It is the exhaustive expiratory phase caused by an infant’s rapid
breathing.

(ix) Vibration: Normally time-frequency pattern of high energy level with un-
structured energy distribution of vibrating F0.

(x) Weak Vibration: Similar to vibration with lower energy level.

For detailed analysis of class, we need to have ten distinct kinds of cry modes
as shown in Figs 4.1, 4.2.

Spectrographic Analysis of Asphyxia

Asphyxia is a condition, which is caused due to lack of oxygen supply after the
birth. Due to insufficient oxygen supply, the damage is done to the brain tissue.
The visual symptoms of infants suffering from asphyxia are: pale skin and muscle
tone. In addition, the heart rate of infants is poor.

The spectrogram shows less energy in the infant cry. Dysphonation and in-
halation are prominently seen in the infant cry signal.

Figure 4.1: Cry Modes in Asphyxia Cry using STFT. After [44].

Spectrographic Analysis of Normal Infant Cry Signal

Figure 4.2 shows the narrowband spectrogram of normal infant cry. Melody pat-
terns found in normal infant cry are double harmonic break, rise/fall/break (i.e.,
rise in start, fall in between and then flat) and hyperphonation. Apart from these,
dysphonation is also found as the melody pattern in normal cry.
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(a)

(b)

Figure 4.2: Spectrograms of Normal Infant Cries and Their Corresponding Cry
Modes. After [44].

Spectrogram vs. CQTgram

In Panels I and II, the waterfall plots and corresponding top views of STFT and
CQT for healthy vs. pathological cry signal are shown, respectively. In Fig. 4.3(a)
and Fig. 4.3(b), the waterfall plot of STFT and its top view, it can be seen that
F0 of the normal signal occurs above 300 Hz. Lower frequency areas are used
to estimate the abnormality in the cry signal, which appears as F0 in pathologi-
cal cry signals. CQT emphasises this anomaly significantly more due to its high
frequency resolution at lower frequencies, as shown in Fig. 4.3(c) and Fig. 4.3(d).

Form-Invariance Using CQTgram

It can be observed from CQT-gram that there is a invariant structures (i.e., a pat-
tern) in spectral energy density for CQT-gram than that of spectrogram (which
has several cry modes than an invariant structure).
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Figure 4.3: Panels (I) and (II) shows the Spectrographic Analysis of Healthy (Nor-
mal) and Pathological (Asphyxia) Infant Cry Signal: (a) the Waterfall Plot for
STFT, (b) the top view of the STFT Waterfall Plot, (c) Waterfall Plot for CQT, and
(d) the top view of the CQT Waterfall Plot. After [4]

Figure 4.4: Cry Modes in Asphyxia Cry using CQT. After [44].
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Figure 4.5: Cry modes in Pain cry using CQT. After [44].

4.5 Performance Evaluation

4.5.1 Performance Evaluation using Violin Plots

Considering the small size of the database, statistical testing is performed for
the results obtained using 10-fold cross-validation. We employed violin plots
to visualize the distribution of the accuracy values obtained using 10-fold cross-
validation. Violin plot is a method for graphically demonstrating the locality,
spread, and skewness groups of numerical data through their quartiles along with
the addition of a rotated kernel density plot on each side, usually smoothed by a
kernel density estimator. It includes a marker for the median of the data; a marker
indicating the interquartile range; and possibly all sample points, if the number
of samples is not too high. We have performed the 10-fold cross-validation exper-
iment for 50 times for each feature set and produced the violin plots as shown in
Fig. 4.6. It can be observed from Fig. 4.6 that the mean and median values of %
classification accuracy for CQCC feature set are better than the MFCC and LFCC
feature sets, indicating statistical significance of the proposed CQCC feature set.

4.5.2 Performance Evaluation using F1−Score and J-Statistics

The % classification accuracies obtained for Baby Chilanto database is mentioned
in Table 4.8. The proposed CQCC feature set obtains higher % classification ac-
curacy compared to the MFCC, LFCC and Cepstrals on both GMM and SVM.
The performance measures of the classification experiments on Baby Chilanto
database is shown in Table 4.8. It can be observed that CQCC gives higher val-
ues for both the measures compared to other state-of-the-art feature sets. The
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Figure 4.6: Violin Plots for the Experiments Performed using (a) CQCC, (b) MFCC,
and (c) LFCC Feature Sets. After [44].

F1−Score takes only true positives into consideration, whereas J-statistic takes
true positive as well as true negative into consideration. Hence, these measures
are more meaningful evaluation parameters than % classification accuracy. Hence,
the CQCC has better discriminative power for healthy vs. pathological infant cries
for Baby Chilanto database compared to other state-of-the-art features.

Feature set F1−Score J-statistics
MFCC 0.8393 0.9801
LFCC 0.8320 0.9720

Cepstrals 0.8175 0.9622
CQCC 0.8436 0.9850

Table 4.8: Performance Measures for Classification Experiments on Baby Chilanto
Database. After [44].

4.5.3 Performance Evaluation using Latency Period

Latency period analysis of the trained GMMs using state-of-the-art MFCC, LFCC,
and CQCC is shown in Figure 4.7. The latency period of the trained model is
estimated by computing the % classification accuracy w.r.t. varying durations of
test speech segment in a test utterance. Latency period was analysed for cry seg-
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ment of, varying from 2 ms to 20 ms. It was observed that the CQCC produces
significant % classification accuracy for short duration of utterances, which are
less than 6 ms. Whereas, LFCC and MFCC feature sets shows the comparable
performance improvement for relatively longer cry segments of 9 ms and 20 ms,
respectively. Hence, this analysis signifies suitability of the proposed CQCC fea-
ture set for practical deployment of infant cry classification system.

Figure 4.7: Latency Analysis of CQCC Feature Set. After [44].

4.6 Results Under Signal Degradation Conditions

4.6.1 Results

Results obtained in % classification accuracy under signal degradation conditions
are reported in Table 4.9 and Table 4.10 on Baby Chilanto and DA-IICT database,
respectively. It can be observed that the proposed CQCC feature set shows robust
performance under signal degradation conditions with varying levels of Signal-
to-Noise Ratio (SNR). It can be observed that CQCC features are relatively more
robust, more so in severe signal degradation conditions (such as SNR =−5 dB and
−10 dB), where MFCCs are known to get notoriously affected for several speech
technology applications [42]. On the contrary, CQCC being derived from CQT
having constant quality factor (Q) on entire frequency region, helps feature rep-
resentation to preserve key spectral characteristics (such as resonances) of infant
cry signals that are buried in noise.
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Table 4.9: Results (in % Classification Accuracy) after Adding Babble Noise on
Baby Chilanto Database. After [44].

SNR (in dB) 20 15 10 0 -5 -10
CQCC 99.34 99.21 99.12 99.34 99.07 98.81
MFCC 99.12 99.07 99.03 98.77 98.63 98.28
LFCC 98.90 98.99 98.77 98.68 98.59 98.50

Cepstrals 99.43 99.21 98.99 98.99 99.07 98.90

Table 4.10: Results (in % Classification Accuracy) after Adding Babble Noise on
DA-IICT Database. After [44].

SNR (in dB) 20 15 10 0 -5 -10
CQCC 97.65 97.65 97.94 97.84 97.45 97.35
MFCC 97.35 96.67 96.37 95.78 94.41 93.63
LFCC 97.65 97.65 97.65 97.45 97.06 96.37

Cepstrals 97.55 97.55 97.75 97.94 97.06 97.06

4.7 Chapter Summary

In this chapter, we proposed the novel approach for capturing the melody in the
infant cry classification on Baby Chilanto database and DA-IICT database. The
results obtained for the proposed feature set are compared against various state-
of-the-art features, such as MFCC, LFCC, and Cepstrals. 10-fold cross-validation
strategy was used to validate the experiments. The spectrographic analysis of
various pathological cries against normal cry is also analysed in this chapter. Dif-
ferent cry modes were also analysed in this chapter. The fact that CQT follows
the form-invariance property is supported by the CQTgram. The discriminative
power of CQT was analysed using 10-fold cross-validation strategy on various
noise, such as babble noise and car noise. Finally, the performance of CQT was
statistically measured using statistically significant performance evaluation mea-
sures, such as violin plot, F1-Score, J-measure, and latency period analysis on
Baby Chilanto database
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CHAPTER 5

Uncertainty Principle for Infant Cry Classifi-
cation

5.1 Introduction

A new method using variations in both time and frequency-domains simultane-
ously obtained using Time-Frequency Distribution (TFD) is analysed in this chap-
ter. TFD indicates the energy spectral density of a signal in both time and fre-
quency domains, which represents information in the form of Heisenberg boxes.
The area of the Heisenberg’s box is dictated by the Heisenberg’s uncertainty prin-
ciple in signal processing framework [60]. The work presented in this chapter
was primarily developed based on success of u-Vector for replay spoof speech
detection task [45].

5.2 Time-Bandwidth Product

Let s(t) be a practical non-stationary signal having Fourier transform S(ω) =
F{s(t)}. If s(t) has regular time variations, then S(ω) decays fast in high fre-
quency region. This leads to a longer spread of energy of s(t) in the time-domain
[60]. In this context, from Mallat’s proposition in [60] (chapter 2, proposition 2.1),
a function s(t) is bounded and i times continuously differentiable with bounded
derivatives. ∫ ∞

−∞
|S(ω)|(1 + |ω|i)dω < +∞. (5.1)

Here, S(ω) = F{s(t)} ∈ L1(R). However, time spread can be restricted by
doing the following operation given by:

sα(t) = s
(

t
α

)
, (5.2)
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where the scaling factor is α < 1. Using the time-scaling property [70], the Fourier
transform of the signal s(t) is

Sα(ω) = |α|S(α ω). (5.3)

Since the scaling factor α < 1, eq. (5.3) the Fourier transform expands by a
factor of 1

α . Thus, it shows that gain in time localization counter-affects the gain in
localization in the frequency-domain and vice-versa [70].

From Heisenberg’s uncertainty principle in quantum mechanics, it is impos-
sible to find the precise location and momentum of any particle simultaneously
[21]. Similarly, in signal processing framework, the energy spread in time and
frequency-domain is restricted by Heisenberg’s uncertainty principle [17]. Hence,
the average location of the signal s(t) ∈ L2(R) is given as:

t̄ =
∫ ∞

−∞

1
||s||2 t|s(t)|2dt, (5.4)

and the average momentum is given by

ω̄ =
∫ ∞

−∞

1
2π||s||2 ω|S(ω)|2dω. (5.5)

The obtained ω̄ from eq. (5.5) is also called as effective bandwidth by Gabor [37].
The variance, i.e., σ2

t and σ2
ω around these averages represents the uncertainty in

determining the particle’s position and momentum, respectively [37]. The aver-
age time variance can be calculated as

σ2
t =

∫ ∞

−∞

1
||s||2 (t− t̄)2|s(t)|2dt, (5.6)

and the average momentum is given by

σ2
ω =

∫ ∞

−∞

1
2π||s||2 (ω− ω̄)2|S(ω)|2dω. (5.7)

It can be seen from eq. (5.6) and eq. (5.7), that signal expansion in one domain
results in signal contraction in the other domain. As a result, the signal spread in
either domain has an inverse relationship. Hence, the Time-Bandwidth Product
(TBP) given by σ2

t σ2
ω is constant and represents the area of the Heisenberg’s box.

This product gives the ”richness” of information from the infant cry segment un-
der consideration [12, 15, 16, 53]. Given that melody contours of F0 are prominent
in children and infant cries [11], and the F0 contours are not as rhythmic, and are
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smeared in pathological cries. In this study, we extract discriminative features
for infant cry classification using σ2

t , σ2
ω and the product σ2

t σ2
ω. To that effect, we

propose t-vector, ω-vector, and u-vector features for the detection of pathological
cries.

5.3 Feature Vector Extraction Procedure

Figure 5.1: Functional Block Diagram of u-vector, t-vector, and ω-vector Feature
Extraction. After [7].

The proposed feature extraction for infant cry classification is based on the
fact that the spectral energy density patterns are different for healthy vs. patho-
logical infant cries. This is also shown by the spectrographic analysis in Figure
5.2, which shows that pathological infant cries have high frequency of inhalation,
indicating problem while breathing. Hence, spectral smearing is found in the en-
tire frequency range. It can also be observed that there is a sudden rise in the
pitch source harmonics and spreading in some regions. Therefore, the frequency
variance helps to capture the regions of spectral smearing.

The feature extraction procedure in this work begins by passing the infant cry
signal s(t) through a Gabor filterbank of 40 subband filters. This results in 40
subband signals si(t), where i ∈ [1,40]. Since the cry signal is multi-component,
the subband signals help in capturing frequency variances effectively [83].

Here, 40 linearly-spaced Gabor filterbank is used because of its optimal time
and frequency resolution [59, 78]. Each of the subband output signals is frame
blocked with a window size of 30 ms and window shift duration of 15 ms (exper-
imentally optimized w.r.t. performance). For each of these frames, both σ2

t and
σ2

ω is computed using the eq. (5.6) and eq. (5.7), respectively and hence, three
different vector representation of the input cry signal are obtained as shown in
Algorithm 1. Next, logarithmic operation is then performed on σ2

t and σ2
ω to give

t-vector and ω -vector of the cry signal. Similarly, the logarithm of the product σ2
t

σ2
ω gives the u-vector or the uncertainty vector of the cry signal, as indicated by eq.
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(5.8) and eq. (5.9).
log(σ2

t σ2
ω) = log(σ2

t ) + log(σ2
ω), (5.8)

u-vector = t-vector + ω-vector. (5.9)

Algorithm 1: TBP Computation for Infant Cry. After [7].
Input: Input: cry signal x
Output: Output: u-vector

1 T← Gabor filterbank (x)
2 Window length = 30 ms, window overlap = 15 ms
3 For j=1:number of frames do
4 Vart ← Variance (T(j, :), mean) ←{t-vector}
5 mean f ←mean(FFT(T(j, :)), f req)/(2 ∗ pi)
6 Var f ← Variance(A, mean f , freq) ←{ω-vector}
7 tbpgen ← vart ∗ var f ←{u-vector}
8 end for
9 return tbpgen

5.4 Experimental Results

We performed the experiments by fine-tuning feature parameter such as window
overlap and number of subband filters. To that effect, we first varied the window
overlap with values as 10, 15, and 20 ms. Number of subband filters were kept
constant. The obtained experimental results are presented in Table 5.1.

Table 5.1: % Accuracy for Spectral and Cepstral u-vector. After [7].

Window
Length

Window
Overlap # Filters % Accuracy

(Spectral)
% Accuracy

(cepstral)
30 15 40 93.83 93.04
30 15 60 93.08 93.48
30 15 80 87.71 87.00
30 20 40 93.35 92.42

From Table 5.1, it can be observed that the highest performance is achieved as
93.83% classification accuracy, obtained when window length, window overlap,
and number of subband filters are of 30 ms, 15 ms and 40 ms respectively. Fur-
ther, the next set of experiments were performed by varying the subband filters
and keeping window overlap constant. These fine-tuning were performed con-
sidering the two cases of spectral, and cepstral u-vector. It should be noted that
the spectral u-vector (with 93.83% classification accuracy) performs better than
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(a)

(b)

Figure 5.2: Spectrograms of (a) Healthy vs. (b) Pathological Cries. After [7]

its cepstral version (with 93.48% classification accuracy). It can also be observed
from Table 5.1 that as the number of subband filters increases, the % classification
accuracy decreases.

Table 5.2: % Classification Accuracy for various Cepstral and spectral Feature Set.
After [7].

Spectral Feature Set Cepstral Feature Set
Feature Set % Accuracy Feature Set % Accuracy

u-vector 93.83 u-vector 93.48
t-vector 91.23 t-vector 89.38
ω-vector 98.50 ω-vector 96.74

CQT 97.00 CQT 98.55
Average 95.14 Average 94.53

Next, we compare the performance of u-vector, t-vector, and ω-vector with the
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CQT baseline in Table 5.2. The comparison is done for both the cases of cepstral
and spectral features. It can be observed that, the spectral ω-vector performs the
best with % classification accuracy of 98.5% with overall increase of about 1.5%
than the baseline CQT features. Hence, it can be observed that the frequency
distribution patterns of the different cry modes, smeared over the entire frequency
band, are captured by the ω-vector as discussed in [91].

Table 5.3: % Classification Accuracy of ω-vector with Various Number of Subband
Filters. After [7].

Subband Filters 40 60 80 100
% Accuracy 98.50 91.37 92.20 96.78

Further, it can be observed that out of all the features shown in Table 5.2, the
relatively best performance is achieved by ω-vector in the spectral case with an
accuracy of 98.50%. Furthermore, it should also be noted that the average over-
all accuracy of spectral feature is higher than the cepstral features. In particular,
the spectral features achieve average higher accuracy (95.14%) as compared to the
cepstral features. This indicates that spectral features are better suited for pathol-
ogy detection.

Given that ω-vector achieves the best performance in the spectral domain, we
performed the next set of experiments to observe the effect of number of subband
filters in the ω-vector. Table 5.3 presents the corresponding results, and it can be
observed that the best result of 98.50% is achieved with 40 number of subband
filters. From Table 5.3, we can say that when the entire frequency band is divided
into 40 subbands, the frequency variance captured in each subband is optimum
for our binary classification task.

5.5 Analysis of Latency Period

In this study, we also investigate the latency period for t-vector, ω-vector, and u-
vector w.r.t the baseline CQT feature set considered in this study. The latency is
estimated by the performance evaluation in terms of % accuracy w.r.t. varying
duration of speech segment in an utterance. The duration of the utterance ranges
from 20 ms to 600 ms, with an interval of 150 ms. Figure 5.3 shows comparison
between spectral features of CQT, u-vector, t-vector, and ω-vector. It can be ob-
served that the ω-vector outperforms u-vector and t-vector, and shows remark-
able latency as compared to the CQT. Moreover, it can be observed that all the
three features, i.e., u-vector, t-vector, and ω-vector gave increased % accuracy in a
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short duration of speech utterance < 200 ms. On the other hand, CQT showed no
improvement in accuracy even for a long duration of 600 ms of speech utterance.
Further, the feature performance is better if for a low latency period the accuracy
is high, which indicates the faster classification by the model and thus, indicating
suitability for practical deployment of infant cry classification system.

Figure 5.3: Latency Period vs. % Accuracy Between the Various spectral Features
for CQT, u-vector, t-vector, and ω-vector. After [7].

5.6 Chapter Summary

In this study, u-vector (which is a combination of t-vector and ω-vector) is used to
detect pathology from infant cries. These features are motivated from the Heisen-
berg’s uncertainty principle in the signal processing framework for classifying be-
tween normal and pathological crying. To categorize the infant cries, this feature
uses variances in time and frequency-domains, which correspond to t-vector and
ω-vector. It is observed that ω-vector outperforms the remaining feature sets. This
justifies the proposition that as compared to the healthy cries, pathological cries
have an irregular frequency dispersion across the entire frequency band. Our ex-
periments also show that spectral features are better suited for detection of patho-
logical cries. Given the early detection of pathology in infants is also associated
with faster detection, proposed features achieves relatively the best performance
in latency.

47



CHAPTER 6

TECC For Speech Pathologies

6.1 Introduction

In this chapter, we discuss Teager Energy Cepstral Coefficients (TECC) imple-
mented for the analysis and development of infant cry classification and dysarthric
severity-level classification system. In Section 6.2, the brief description of the TEO
and the extraction procedure is discussed. Further, in Section 6.3 the spectro-
graphic analysis and TEO profile analysis are described through which the pres-
ence of linearities vs. non-linearities is investigated.

6.2 Proposed Feature Set

In the signal processing literature, energy of the speech signal x(t) is estimated
through L2-norm of the signal, i.e., the integral of the square of absolute oper-
ation over the entire signal under analysis [71]. This method of estimating en-
ergy is based on linear filtering theory (in particular, Parseval’s energy equiva-
lence), which can describe only the linear components of speech production mech-
anism [67]. However, because the speech production mechanism is non-linear, the
energy of the speech wave could not be effectively approximated using linear fil-
ter theory [86]. TEO was developed to address this problem [50]. It is a nonlinear
differential operator that can capture the nonlinear feature of the speech produc-
tion mechanism as well as the properties of the airflow pattern in the vocal tract
system during speech production [71, 78].

By approximating the derivative operation in continuous-time with backward
difference in discrete-time, we obtain the TEO for a discrete-time signal x(n) hav-
ing amplitude, A and monocomponent angular frequency, Ωm as follows [50]:

Ψ[x(n)] = x2(n)− x(n− 1)x(n + 1) ≈ A2Ω2
m. (6.1)
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Figure 6.1: Functional Block Diagram of the Proposed Subband TEO representa-
tion and TECC Feature Set. (SF: Subband Filtered Signal, TE: Teager Energies, AE:
Averaged Energies over frames). After [29, 51].

TEO is derived to find the running estimate of the signal’s energy for a mono-
component signal. However, speech signal consists of the frequency range vary-
ing from baseband to Nyquist frequencies. Hence, to obtain the monocomponent
approximation of the signal, the speech signal is passed through the filterbank,
which consists of several subband filters with appropriate center frequency and
bandwidth. The subband filtered signals are narrowband signals, which are sup-
posed to approximate the monotone signals and hence, TEO can be applied on
these subband filtered signals. In this work, Gabor filterbank with linearly-spaced
subband filters, is utilized for subband filtering. We chose Gabor subband filters
due to their optimal time and frequency resolution in the framework of Heisen-
berg’s uncertainty principle [67]. TEO is applied on each subband filtered signal
to accurately estimate the energy. Furthermore, these narrowband energies are
segmented into the frames of 20 ms duration with overlapping of 10 ms. Then, the
temporal average for each frame is estimated to produce N-dimensional (D) sub-
band Teager energy representations (subband-TE). Discrete Cosine Transform (DCT) is
performed on subband Teager energy representations to obtain the TECC feature set.
The functional block diagram representation of the proposed subband-TE and
TECC feature set is shown in Figure 7.1. Throughout this study, TECC features
extracted using linear frequency scale are termed as TECC.

6.3 Experimental Analysis

6.3.1 Spectrographic Analysis of Infant Cry

In Fig. 6.2, Panel-I and Panel-II represents the spectrographic analysis for ran-
domly sampled normal and asphyxia cry signals, respectively. Fig. 6.2(a), Fig.
6.2(b), and Fig. 6.2(c) represents the STFT, MelFB, and subband-TE representa-
tions, respectively. It can be observed from Fig. 6.2(a) that there is a difference
in the pattern formed by F0 and its harmonics for normal vs. asphyxia cry sig-
nals. These differences in the pattern are also visible for MelFB representation, as
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shown in Fig. 6.2(b).

Figure 6.2: Panel-I and Panel-II represents the Spectrographic Analysis for Nor-
mal vs. Asphyxia Cry Samples, respectively. Fig. 6.2(a), Fig. 6.2(b), and Fig. 6.2(c)
represents the STFT, MelFB, and Subband-TE Representations, respectively. Af-
ter [9]

However, these differences are more vivid for subband-TE representations, as
shown in Fig. 6.2(c). It might be because TEO can accurately estimate the energy
of the signal, considering non-linear aspects of the speech production mechanism
and also properties of airflow pattern in the vocal tract system [71, 78]. Further-
more, the results obtained using 10-fold cross-validation also validates that the
proposed TECC and subband-TE representations performs better over the other
feature sets in this study.

6.3.2 Teager Energy Operator (TEO) Profile Analysis

Here, we analyse the TEO profiles around the 1st formant frequency (i.e., F1 =

500Hz) for the utterance w.r.t. the same text material for normal vs. severity-
levels. Panel-I of Figure 7.2 shows the subband filtered signal around 1st formant
frequency using a linear-spaced Gabor subband filter, and Panel-II shows corre-
sponding TEO profiles.

Figure 7.2(a), Figure 7.2(b), Figure 7.2(c), Figure 7.2(d), and Figure 7.2(e) shows
the analysis for normal, very low, low, medium, and high severity-levels, re-
spectively. It can be observed that TEO profile for normal speech shows bumps
within two consecutive Glottal Closure Instants (GCIs), which are known to in-
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Figure 6.3: Subband Filtered Signal for Male Speakers Around 1stFormant =
500Hz (Panel I) and corresponding TEO Profile (Panel II) for (a) Normal,
Dysarthic Speech with Severity as (b) Very Low, (c) Low, (d) Medium, and (e)
High. After [67].

dicate non-linearities in the speech production mechanism. Furthermore, it can
also be observed that the quasi-periodicity in glottal excitation source decreases
with increase in severity-level (as observed via aperiodic nature of TEO profile)
indicating disruption in the rhythmic quasi-periodic movements of the vocal folds

51



due to dysarthria. Moreover, it is all the more significant in high dysarthric con-
dition. Furthermore, as the severity-level increases, the neuro-motor impairment
also increase, which leads to increased vocal fold closure disruption and loosing
structural periodicity.

6.4 Experimental Results

Results on Baby Chilanto Database

Cepstral representations are being common in speech signal processing appli-
cations, we performed the experiments using four cepstral feature sets, namely,
MFCC, LFCC, STCC, and TECC. As the size of the database is relatively small, ex-
periments are performed using 10-fold cross-validation. The database consists of
the healthy and pathological class infant cry samples recorded with sampling rate
of 22 kHz and 11 kHz, respectively. The experiments are performed using features
extracted from the cry samples resampled to 16 kHz and results are reported in
Table 6.1. It can be observed that the proposed TECC feature set outperforms the
other feature sets for both SVM and GMM classifiers. We utilized 512 Gaussian
mixtures in the GMMs. Furthermore, experiments are extended with spectral fea-
ture sets, namely, subband-TE, MelFB, LinFB, and STFT. We utilized the spectral
feature representations as it has low-dimensional representations than the cep-
stral features. It can be observed from Table 6.2 that the proposed subband-TE
feature set outperforms the other feature sets for both SVM and GMM classifiers.
Furthermore, all the spectral representations performs equally well as compared
to their corresponding cepstral representations. However, subband-TE performs
slightly better than its cepsral counterpart, i.e., TECC. Hence, it would be better
to choose the spectral representations for this application.

Table 6.1: Results for Various Cepstral Feature Sets. After [9].

MFCC LFCC STCC TECC

GMM Acc. 98.55 98.28 98.99 99.12
EER 1.23 0.50 0.26 0.61

SVM Acc. 88.11 80.18 87.84 86.56
EER 12.72 18.78 13.84 12.57
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Table 6.2: Results for Various Spectral Feature Sets on GMM and SVM. After [9].

MelFB LinFB STFT subband-TE

GMM Acc. 98.99 98.77 98.59 99.47
EER 1.5 0.70 1.6 0.3678

SVM Acc. 88.15 87.80 78.06 90.35
EER 10.49 10.40 19.41 8.23

Table 6.3: Results w.r.t. Various GMM Mixtures. After [9].

Mixtures in GMM 64 128 256 512 1024
Accuracy 98.72 98.94 99.16 99.47 99.47

Table 6.4: Results for various Subband Filters. After [9].

Filters 40 60 80 100 120 140 160 180
Acc. 99.47 99.21 99.47 99.38 99.47 99.38 99.38 99.47

Results on UA-Speech Corpus

The results obtained in % classification accuracy using various features sets and
classifiers are reported in Table 7.1. It can be observed from the Table 7.1 that
the TECC performs relatively better than the baseline with classification accuracy
of 97.18%, 94.63%, and 98.02% (i.e., absolute improvement of 1.98%, 1.41%, and
1.69%) for CNN, LCNN, and ResNet classifiers, respectively.

Table 6.5: Results for Various Classification Systems. After [6].

Feature Set ↓ % Classification Accuracy
CNN LCNN ResNet

MFCC 95.20 93.22 96.33
LFCC 96.32 94.07 97.17

TECC-Mel 92.37 85.87 93.09
TECC 97.12 94.63 98.02
MelFB 96.04 91.24 97.45
LinFB 94.91 89.26 97.17

Subband-TE 95.48 93.22 95.12

Furthermore, it is observed that optimum results of TECC are obtained for
linear frequency scale. As mentioned in [52], the cepstral features perform better
on noisy signal. In [94], the noise in dysarthric speech increases with increase in
severity-levels. Hence, experiments were also performed on the spectral features
w.r.t proposed and baseline features with all the three classifiers. It was observed
that the cepstral features gave remarkably better % classification accuracy on all
the classifiers. Hence, it can be inferred that more the severity-level, more is the
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speech production noise.

6.5 Performance Evaluation

6.5.1 Infant Cry

DET curves are plotted for various spectral features as shown in Fig. 6.4. It can
be observed that the proposed subband-TE representation performs better than
all the other spectral representations for both the classifiers. The experiments are
extended for varying number of Gaussian mixtures in GMM and results are ob-
tained as shown in Table 6.3. It can be observed that the performance is improving
as we increase the number of Gaussian mixtures in GMM from 64 to 512 and then
it saturates, possibly due to the fact that a large number of 1024 mixtures is not
required to model relatively lesser duration of infant cry samples. Hence, we
utilized 512 Gaussian mixtures in GMM for the remaining experiments. Further-
more, performance is also validated w.r.t. number of subband filters in the Gabor
filterbank to extract the subband-TE representations, and the results are reported
in Table 6.4. It can be observed that the performance is almost constant w.r.t. num-
ber of subband filters in the filterbank and hence, we chose 40 number of subband
filters in the filterbank as an optimal choice.

Figure 6.4: DET Plots for Different Feature Sets using Classifiers, namely, GMM
and SVM for Infant Cry Classification. After [9].
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6.5.2 Dysarthric Speech

Table 6.6 shows the confusion matrices for the TECC, MFCC, and LFCC for ResNet
model. It can be observed that TECC reduces the misclassification errors, espe-
cially for high severity-level dysarthria, and overall performance of the TECC is
relatively better than the MFCC, and LFCC. Furthermore, F1-score, MCC, Jaccard
index, and Hamming loss are estimated for all the cepstral features as shown in
Table 6.7. It can be observed from Table 6.7 that the TECC feature set outperforms
the other cepstral features for all the evaluation metrics, indicating relatively bet-
ter feature discriminative power of TECC.

Table 6.6: Confusion Matrix for MFCC, LFCC, and TECC using ResNet. After [6]

Feature Severity High Medium Low Very Low
High 72 0 2 1

Medium 1 90 2 0
Low 1 1 88 3MFCC

Very Low 1 0 0 92

High 74 0 1 0
Medium 1 88 2 2

Low 0 1 91 1LFCC

Very Low 1 0 0 92

High 74 1 0 0
Medium 1 92 0 0

Low 0 1 92 0TECC

Very Low 1 0 0 92

Table 6.7: Various Statistical Measures for MFCC, LFCC, and TECC. After [6]

Feature Sets F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 0.96 0.95 0.93 0.033
LFCC 0.97 0.96 0.95 0.025
TECC 0.98 0.97 0.96 0.019

Analysis of Latency Period

We analysed latency period for TECC, LFCC, and MFCC feature sets as shown
in Figure 6.5. The latency period of the trained model is estimated by computing
the % classification accuracy w.r.t. varying durations of test speech segment in
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a test utterance. For latency period analysis, we chose the duration of the utter-
ances varying from 100 ms to 3000 ms. The better performing model w.r.t. latency
period should produce the larger accuracy for short speech segments. Moreover,
it can be observed that the TECC gave significant % classification accuracy in a
limited duration speech utterance of < 500 ms. On the contrary, MFCC and LFCC
shows increment in accuracy after a relatively longer utterance duration of 1000
ms. Hence, these results signifies the suitability of TECC for practical dysarthric
speech classification system deployment.

Figure 6.5: Latency period vs. % Classification Accuracy comparison between
MFCC, MelFB, LFCC, LinFB, TECC, and Subband-TE. Best viewed in colour. Af-
ter [6].

6.6 Chapter Summary

In this chapter, we investigated the use of Teager Energy-based features for clas-
sification of infant cry and dysarthric severity-level. It was observed that the
spectral representation performs better for infant cry classification. This is due
to the high pitch-source harmonics, spectral representations are more suitable for
the normal vs. pathological infant cry classification. Whereas, it can be observed
that the cepstral representation of the Teager energy performs best for dysarthric
severity-level classification. This is due to the fact that the cepstral features per-
form better for noisy signals, and dysarthric speech is found to have production
noise. This theoretical assumption is validated using the experimental results and
analysis using spectrograms and DET curve. Moreover, it proposes the proposi-
tion that as the severity-level increases, the non-linearities decreases.
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CHAPTER 7

Energy-Based Feature for Dysarthric Speech
Analysis

7.1 Introduction

As discussed in the previous chapter, the energy-based features are capable of ca-
puring better disctiminitive cues for dysarthric severity-level classification com-
pared to auditory-based features. To validate this hypothesis, inthis chapter, we
intoduce another-energy-based feature based on L2 Norm of the signal. The Per-
formance of L2 Norm Energy Cepstral Coefficients (LECC) are compared with
TECC and MFCC. State-of-the-art MFCC feature set is used as baseline for this
study as in [48]. Formant enhancers are employed to enhance the dysarthric
speech [49]. To that effect, this chapter presents the Formnat analysis for various
dysarthric severity-level around the 1st formant frequency for vowel /e/.

7.2 Proposed Work

In the signal processing literature, the energy of the speech signal x(t) is esti-
mated by calculating the integral of the square of absolute operation across the
entire signal under consideration, i.e., estimating the L2 norm of the signal, re-
ferred to as LEO [71]. This energy estimation method is based on linear filtering
theory (specifically, Parseval’s energy equivalence, the total energy of a signal,
i.e., L2 norm is conserved in the frequency-domain and this is also the condition
of existence of inverse for several linear transforms, such as Fourier, Gabor, and
Wavelet transforms), which can only represent the L2 norm components of the
speech generation process [67].

For LECC extraction, these narrowband output signals from Gabor filterbank
are squared to estimate corresponding energies. Next, these narrowband energies
are segmented with similar number of frames and window overlap. Temporal
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Figure 7.1: Functional Block Diagram of the Proposed TECC and LECC Feature
Sets. (SF: Subband Filtered Signal, SE: Squared Linear Energies, TE: Teager Ener-
gies, AE: Averaged Energies over frames). After [29].

averaging for each frame is estimated (i.e., L2 norm of each subband signal) to get
N-D subband L2 norm Energy representation (subband-LE). Discrete Cosine Trans-
form (DCT) is applied on subband L2 norm energy representations in order to obtain
the LECC. The functional block diagram representation of TECC and LECC fea-
ture sets is shown in Fig 7.1. Throughout this chapter, TECC and LECC features
extracted using linear frequency scale and for both the feature sets, DCT does the
job of feature decorrelation, energy compaction, and feature vector dimensional-
ity reduction.

7.3 Analysis of LEO Profiles

Here, we analyse the TEO profiles around the 1st formant frequency (i.e., F1 =

500Hz) for the utterance w.r.t. the same text material for normal vs. severity-
levels. Panel I of Fig. 7.2 shows the subband filtered signal around 1st formant
(F1) frequency using a linearly-spaced Gabor subband filter, and Panel II shows
corresponding TEO profiles. Fig. 7.2(a), Fig. 7.2(b), Fig. 7.2(c), Fig. 7.2(d), and Fig.
7.2(e) shows the analysis for normal, very low, low, medium, and high severity-
levels, respectively. It can be observed that TEO profile for normal speech shows
bumps within two consecutive Glottal Closure Instants (GCIs), which are known to
indicate non-linearities in speech production mechanism [78]. Furthermore, it can
also be observed that the quasi-periodicity in glottal excitation source decreases
with increase in severity-level (as observed via aperiodic TEO profile) indicat-
ing disruption in the rhythmic quasi-periodic movements of the vocal folds due to
dysarthria. Moreover, it is all the more significant in high severity-level dysarthric
condition. Furthermore, as the severity-level increases, the neuro-motor impair-
ment also increases, which leads to increased disruption in vocal fold closure
and loosing structural periodicity. From Panel III of Fig. 7.2, which shows the
LEO profiles around 1st formant frequency for vowel /e/, it can be observed
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Figure 7.2: Subband Filtered Signal (for Vowel /e/) for Male Speakers Around
1stFormantF1 = 500Hz (Panel I), Corresponding TEO Profile (Panel II), and Corre-
sponding |.|2 Envelope (Panel III) for (a) Normal, Dysarthic Speech with Severity-
Level as (b) Very Low, (c) Low, (d) Medium, and (e) High. After [67].

that the LEO is capable of maintaining the periodicity in the speech produced
by dysarthric speaker, which are not captured by TEO due to possible decrease in
non-linearities. Hence, it can be said that as the dysarthric severity-level increases,
the linearities in speech signal increases.

7.4 Experimental Results

The results obtained as % classification accuracy using various feature sets are re-
ported in Table 7.1. It can be observed that LECC performs relatively better than
the baseline MFCC with classification accuracy of 1.7% (4.23%) on CNN (LCNN)
classifier systems, respectively. Furthermore, LECC performs better than the base-
line MFCC explored in [48]. The analysis in the subsequent section, along with the
classification accuracy obtained using various classifiers, indicate that the energy-
based features are capabale of capturing better discriminative cues for dysarthric
severity-level classification rather than auditory-based features.
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Table 7.1: Results For various Classification Systems. After [5].

Feature Set
% Classification

Accuracy
CNN LCNN

MFCC 96.32 92.09
LECC 98.02 96.32

7.4.1 Performance Evaluation

The Table 7.2 shows the confusion matrices for MFCC and LECC. It can be ob-
served that LECC reduces the misclassification errors corresponding to the dif-
ferent severity-levels, indicating the better performance of LECC w.r.t. MFCC.
Furthermore, performance of LECC w.r.t. MFCC is also analysed using F1-Score,
MCC, Jaccard Index, and Hamming Loss as shown in Table 7.3. It can be ob-
served from Table 7.3 that LECC performs better than the MFCC for the dysarthic
severity-level classification.

Table 7.2: Confusion Matrix for MFCC and LECC using CNN. After [5].

Feature Severity High Medium Low Very Low
High 67 4 3 1

Medium 2 90 0 0
Low 1 1 91 0MFCC

Very Low 1 0 0 92

High 74 1 0 0
Medium 2 90 0 0

Low 1 0 92 0LECC

Very Low 0 0 0 93

Table 7.3: Various Statistical Measures of MFCC and LECC. After [5].

Feature Set F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 0.96 0.95 0.82 0.036
LECC 0.98 0.97 0.96 0.019

7.4.2 Linear Discriminate Analysis (LDA)

The capability of LECC to classify severity-level is also validated by LDA scatter
plots, which projects the higher-dimensional feature space to the lower-dimension
[46]. Here MFCC and LECC features are projected to the 2-D space to get the
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scatter plots for various severity-levels of dysarthria. Fig. 7.3(a) and Fig. 7.3(c)
shows the LDA plots of MFCC and LECC, respectively. From the Fig. 7.3, it
can be observed that for LECC, the variance of each severity-level clusters is less
resulting in relatively better performance of LECC, which increases the interclass
distance between the clusters than the :MFCC and TECC.

Figure 7.3: Scatter Plots obtained using LDA for (a) MFCC and (b) LECC. After
[46]. Best viewed in colour.

7.5 Chapter Summary

The effectiveness of the energy-based features vs. auditory-based features on
the analysis and classification of the severity-level of dysarthric speech was anal-
ysed in this chapter. To validate the effect of energy in dysarthric speech and
severity-level classification, the L2 norm energy operator, i.e., L2 norm is analysed
against TEO. The TEO profile of a normal speech signal shows bumps that repre-
sent non-linearities in the speech production mechanism. This bumpy structure,
on the other hand, diminishes as the severity-level increases. Experiments with
CNN and LCNN classifiers are used to test these hypotheses. The experimental
results demonstrated that the L2 norm operator is more suitable for dysarthric
speech analysis and classification than auditory based features like MFCC. Sta-
tistical measures, such as the F1-score, MCC, Jaccard Index, Hamming Loss, and
LDA were used to validate the observation.
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CHAPTER 8

Summary and Conclusions

8.1 Summary

The work presented in this thesis aims towards development of effective methods
for classification of infant cry and dysarthric severity-level. The practical poten-
tial of various signal processing based approaches are studied in this work. Apart
from the signal processing approaches, various deep-learning classifiers, and it’s
effect on dysarthric severity-level classification is also studied in this chapter. In
addition to this, a comparative study is also done for spectral vs. cepstral fea-
tures for the classification of pathological cries and dysarthric severity-level clas-
sification. A comparative study between energy-based features such as TECC,
LECC and perception-based features such as MFCC, and LFCC for capturing the
effective discriminative cues in infant cry and dysarthric speech is also studied in
this work. In addition to this, the ten cry modes in infant cries are also studied.
Further, the form-invariance property of CQT was studied in this work. The ef-
fectiveness of CQT and it’s form-invariance property was tested under the signal
degradation condition for babble and car noise. The motor control disorder in
dysarthric patients against a normal person was analysed around the 1st formant
frequency of vowel /i/ using TEO and following its analysis, the same analysis
was done using LEO around the 1st formant frequency of vowel /e/. Finally, the
performance of each model was evaluated using various evaluation metrics.

8.2 Limitations of the Current Work

Although our model for classification of infant cry analysis and dysarthric severity-
level classification gave remarkable results, following are some limitations of our
work as follows:

• The availability of different pathological cries is always an ordeal when it
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comes to quantitative perspective.

• Although certain pathological cries are available in various databases, how-
ever all the pathologies are not available in all databases. This creates a
challenge for cross database evaluation.

• Presence of linear component in dysarthric speech is still not generalized,
as very limited work has been explored in terms of signal processing frame-
work.

• Cross database evaluation has not been explored in terms of either signal
processing framework or in DNN perspective due to lack of standardization
when it comes to severity-levels in different database.

• The motor control distortion between brain and primary speech mecha-
nism or brain and secondary speech producing mechanism remains an un-
explored region of research.

8.3 Future Research Directions

Based on the limitations of our work, we present the future work directions:

• To overcome the challenge of limited dataset, various data augmentation
techniques can be applied on available database for infant cry analysis and
classification. Apart from this, the effect of various parameters like pitch,
speed, and tempo can also be analysed in infant cries.

• Cross database evaluation for infant cry analysis can be conducted for cer-
tain class of pathologies which are common across available databases using
traditional machine learning as well as modern deep learning methods.

• Autism spectrum disorder classification in the infant cries is a prominent
research direction with only hindrance being limited database.

• Multi-class classification of pathological cries based on type of pathologies.

• Analysis of presence of linearities in dysarthric speech using various signal
processing frameworks on cross database evaluation.

• Source glottal filtering method can be used to analyse the formant frequency
and know the most effect source of speech production for dysarthric pa-
tients.
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• An ensemble of signal processing and deep learning based approach can
be implemented for dysarthric speech enhancement, that can be used for
various applications such as voice assistants and ASR systems.

• A system can be designed to recognize the unintelligible words produced
by dysarthric patients inherently. Hence developing the ASR models for
dysarthric patients.
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