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Abstract

Speech is used in various applications apart from voice communications, such as
pathology detection, severity-level classification of dysarthria, and replay spoof
speech detection for voice biometric and voice assistants. The first part of this
thesis work deals with the development of the countermeasure (CM) system for
replay Spoof Speech Detection (SSD). Replay attack on voice biometric, refers to
the fraudulent attempt made by an imposter to spoof another person’s identity by
replaying the pre-recorded voice samples in front of an Automatic Speaker Veri-
fication (ASV) system or Voice Assistants (VAs). Lastly, the dysarthria, which is
neuromotor speech disorder is studied and analysed using various speech pro-
cessing and deep learning approaches.

Dysarthria, Parkinson’s disease, Cerebral Palsy, etc. are types of atypical speech,
which impairs neuromotor functions of the human body. Among these, dysarthria
is one of the most common atypical speech. To analyse the dysarthic condition of
the patient depends on the severity-level, which is generally provided by Speech
Language Pathologist (SLPs). However, to make the assessment immune to hu-
man biases and errors, this thesis is oriented towards developing the severity-
level classification system using signal processing and deep learning approaches
for dysarthric speech. This presents analysis of dysarthic vs. normal speech us-
ing the Teager Energy Operator (TEO)-based Teager Energy Cepstral Coefficients
(TECC), and Squared Energy Operator (SEO)-based Squared Energy Cepstral Co-
efficients (SECC) as the frontend features. These features provided as input for
deep learning and pattern recognition model predicts the severity-level class for
dysarthria.

Lastly, the generalization of the countermeasure system for the replay attacks
on the ASV systems and VAs is analysed using the TEO-based TECC feature set.
The generalization of the CM system is presented through the cross-database eval-
uation between the Voice Spoofing Detection Corpus (VSDC), ASVspoof 2017 ver-
sion 2.0 and ASVspoof 2019 PA datasets. Further, the analysis of One-point Replay
(1PR) and Two-Point Replay (2PR) are presented in this thesis.

Keywords: Replay Spoof Speech, Teager Energy Cepstral Coefficients, Cross-Teager En-
ergy Cepstral Coefficients, Squared Energy Cepstral Coefficients, Dysarthria
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CHAPTER 1

Introduction

Communication between humans is primarily and widely performed through
speech. It is a type of quasi-periodic signal with the primary goal of conveying in-
formation from one person to another, or machine to person, and vice-versa [74].
However, speech is of dynamic and complex nature as speech production mecha-
nism involves various sophisticated biological systems, such as lungs, vocal tract,
larynx, mouth, tongue, and lips [74]. The complexity of the speech signal can
be further observed through the changes in the duration of pauses in the speech
wave. There are variety of information, which can be captured through a normal
speech such as linguistic information, gender, attribute, emotion, acoustical envi-
ronment information, and health [75]. The advancement of the severity-level of
patient’s ailment, such as dysarthria, Parkinson’s disease, cerebral palsy, apraxia,
etc. can be investigated through atypical speech [59]. Furthermore, the speech
processing is applied in the detection of the pathology in infants through their cry
modes [26, 82]. Apart from the speech pathology, speech processing is utilized in
automatic speaker recognition system using the speaker-specific information for
the Speaker Identification (SID) and Automatic Speaker Verification (ASV). A SID
system recognize an individual speaker from a group of speakers [66]. An ASV
system, on the other hand, authenticates or verifies the claimed speaker identity
from the speech utterance of the speaker [78].

The ASV system uses various biometric attributes, such as voice, fingerprint,
palm print, veins, iris, face, etc. Amongst these biometrics, face, voice, and iris
are the most commonly used biometrics [39]. Naturally, humans have an abil-
ity to identify a person jointly using face and voice biometrics. However, due to
the recent advancement in speech technologies, voice biometrics are widely used
in ASV systems. Additionally, the growth of speech technologies has made ad-
vancement in the medical-domain, where detection of the patients’ ailment and
severity-level can be detected through the patient’s speech. Further, the advan-
tage of use of speech technologies in voice biometric and pathology detection
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is due to its simplicity and touch-free interface provided by the systems, such
as ASV systems, SID systems, Voice Assistants (VAs) and pathology detection.
Hence, the speech technologies provide convenience and efficiency in various ap-
plications.

1.1 Motivation

The speaker verification technologies use speaker-specific attributes known as fea-
tures, which are generated using signal processing and deep learning approaches
for the ASV systems. The modern ASV system uses the advanced machine learn-
ing and deep learning approaches for the robust and efficient performance. How-
ever, the advancement in computational capabilities has increased the vulnera-
bility of the spoofing attack through the machine learning and deep leaning al-
gorithms [39]. Spoofing attacks indicates occurs when an imposters masquerade
as a genuine speaker using the various spoofing techniques. Among the various
spoofing attacks, Voice Conversion (VC), Synthetic Speech (SS), impersonation,
twins, and replay attacks are the known spoofing attacks [18, 24, 63, 96]. Among
these attacks, the replay attack is the easiest to implement but difficult to detect
as it uses ready-to-use recording devices, such as simple tape recorder and smart-
phone, where requirement of technical expertise is minimum. In replay attack,
an unauthorized attacker try to gain the access to a secure content through the
playback of genuine speech. Hence, to protect the speech operated devices, such
as ASV system and Voice Assistants (VAs), the development of Countermeasure
(CM) system is essential.

To that effect, various standard datasets, such as ASVSpoof 2015, ASVSpoof
2017, ASVSpoof 2019, and ASVSpoof 2021 are released for designing CM sys-
tem for ASV systems and subsequently, Replay Attack Microphone Array Speech
Corpus (ReMASC) and Voice Spoofing Detection Corpus (VSDC) are released for
designing CM for VAs. The differences between the CM system of ASV system
and VAs exists [4]. Given the significant difference between CM systems of ASV
system, the generalization of CM system is necessary.

Secondly, dysarthria is one of the most common speech disorder, occurring
due to neurological diseases and neuro-degenerative disorder reported by the
America Speech-Language-Hearing Association (ASHA) [5]. Dysarthria promi-
nently occurs in the patients of Parkinson’s Disease (PD) [79]. Apart from PD,
dysarthria also occurs in neurological diseases and injuries, such as Cerebral Palsy,
muscular dystrophy, Amyotrophic Lateral Sclerosis (ALS), brain stroke, etc. Hence,

2



due to the growth of speech technologies has made it feasible for the detection
of pathology, in underdeveloped countries, where the numbers of medical prac-
titioners are less. Moreover, people suffering from dysarthria have significant
difference characteristics than normal speech, which makes it difficult to use the
conventional assistive technologies due to their impaired neuro-motor disorder.

Given these vulnerabilities of CM systems, the severity-level classification for
dysarthria and the detection of pathology in infant cry, there exists a need of fur-
ther exploration in these research areas.

1.2 Research Problems

1.2.1 Generalization of CM System

Self-classification is a widely used evaluation procedure, where the training and
evaluation of the model is performed on the same database, which is generated
through the same distribution, i.e., the data collection is limited and under simi-
lar scenarios. However, the generalization capabilities of features and classifiers
cannot be estimated through self-classification. Hence, for the generalization of
CM system, cross-database evaluation is necessary. In cross-database evaluation,
the training and evaluation is performed on different databases. Further, cross-
database evaluation presents overfitting of the classifiers and depicts practical
potential of features in the real-world application.

1.2.2 Dysarthria

Dysarthria is a neuromotor speech disorder caused due to neurological damage,
which hinders the speech production and perception depending on the severity-
level. The patient suffering from dysarthria finds difficulty in communicating
and expressing vocal emotions as it affects the dynamic motion of articulators,
such as lip, teeth, tongue, throat, lips, and upper respiratory tract system. Fur-
ther, as the dysarthria severity-level increases, the patient’s condition deteriorates.
Hence, analytical study of severity-level classification plays an important role for
diagnosis and treatment of patient. However, symptoms of dysarthria depends
on impact and area of neurological impact, and it varies from patient to patient,
common symptoms of dysarthria are as follows [58]:

1. Hoarse Quality of Voice : Speech will sound breathy, raspy, strained, or will
be softer in volume or lower in pitch.
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2. Articulation Problem: Difficulty to physically produce a sound or sounds
due to improper coordination between jaws, lips, tongue, etc.

3. Less speech loudness: Intensity or loudness of the dysarthric speech is less
than natural speech.

4. Slow and slurry speech: Words spoken are slow or garbled.

1.3 Application Scope of this Thesis Work

1.3.1 Designing CM System

The requirement of genuine speech is of significant importance in various appli-
cations, such as Internet/telephonic banking, digital voicemails, smarthome de-
vices, telephone industry, etc. The authenticity of the speaker is provided through
the CM system, which uses various speaker-specific properties for the detection
between genuine vs. spoof speech. Hence, to secure the user from these replay
spoofing attacks, in this thesis design frontend CM system is implemented.

1.3.2 Severity-Level-based Classification

Recent study in dysarthic speech has primarily focused on classifying between
normal and dysarthic speech. The classification of the dysarthic severity-level has
been less explored. The severity-level classification aids in tracking the patient’s
advancement in the medication period. Further, for designing better dysarthric
speech enhancement and ASR, the severity-level classification of dysarthria can
be implemented. Hence, this thesis also focuses on the dysarthric classification
based on severity-level into four severity-levels.

1.4 Contributions of the Thesis

1.4.1 Teager Energy Operator (TEO)

In this study, we have employed the TEO proposed in 1990 for capturing the non-
linear energy generated in the speech production mechanism. Hence, TEO-based
Teager Energy Cepstral Coefficients (TECC) were used for the severity-level clas-
sification of dysarthria. Further, TECC is known to capture the reverberation ef-
fects of the replay, which results in the better performance of the CM system for
ASV system and VAs.
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1.4.2 Squared Energy Cepstral Coefficients (SECC)

Here, the feature representation of a speech signal is obtained using squared
energy-based on linear filtering theory (specifically, on Parseval’s energy equiv-
alence). The performance of SECC indicates the relation of the linearity in the
speech generation signal and the severity-level of dysarthria.

1.5 Organization of the Thesis

Figure 1.1: Organization of the Thesis.

• Chapter 2 presents the detailed study on the previous investigations on re-
play Spoof Speech Detection (SSD), severity-level classification of dysarthria,
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and infant cry classification. Various methods based on signal processing
and deep neural network aspects on various datasets are also discussed.

• Chapter 3 illustrates the replay SSD, severity-level classification, and infant-
cry classification methodologies and various steps required for the imple-
mentation. Further, this chapter presents the features, classifiers, and the
performance measures used for the evaluation of the systems.

• Chapter 4 uses the Teager Energy Cepstral Coefficients (TECC), which is an
energy-based feature, for the designing of the CM system and severity-level
classification of dysarthria. Further, TECC captures the energy generated
during the speech production mechanism and hence, it is implemented for
the replay SSD and dysarthric severity-level classification. Further, TECC
captures the reverberation of environment, which assists in the detection of
the replay SSD.

• Chapter 5 is an extension of work on dysarthric severity-level analysis and
classification based on the conclusions made in chapter 4. In this study, we
proposed the Squared Energy Cepstral Coefficients (SECC) depicts the re-
lation between the severity-level of dysarthria and presence of linearities in
the dysarthic speech.

• Chapter 6 concludes our research with a summary of the completed work
within the scope of the thesis. Further, we also discuss some limitations of
our work and propose some future research directions for practical potential
of our thesis work.

1.6 Chapter Summary

In this chapter, we briefly looked over introduction of the CM system for replay
SSD, dysarthric severity-level classification and infant cry classification as three
key problem statements. Further, Section 1.1 gave an insight into the motivation
that transpired into the formation of this thesis work, while Section 1.2 throws
some light on the current major research issues in the scope of this thesis. Section
1.3 discusses the possible practical application of this thesis work. In Section 1.4,
provides, the original contribution towards the thesis work has been described.
Lastly, Section 1.5 discusses the structure and organization of the thesis. In the
next chapter, we discuss the previous works and their limitations in form of liter-
ature survey in order to position this thesis work in the history of previous work.
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CHAPTER 2

Literature Survey

2.1 Introduction

This chapter presents a brief literature review of a few studies that have been
made in the past for replay SSD, and severity-level classification of dysarthria
This chapter starts with the mathematical modelling of a speech signal through
the convolution (i.e., LTI system) operation between various impulse response of
the biological systems. The speech production mechanism is extended towards
the mathematical modelling of the replay speech, in order to be able to design
CM system effectively. In addition to replay SSD system, this chapter focuses on
the dysarthric speech, the techniques used by the speech pathologist for detection
and classification of dysarthria. Lastly, the modern approaches for the severity-
level classification of dysarthria is discussed.

2.2 Replay Spoof Speech Detection (SSD)

2.2.1 Speech Production Mechanism

The organs involved in the speech production mechanism can be divided into
three major groups: the lungs, larynx, and vocal tract system, as shown in Fig.
2.1. The lungs serve as a source of energy and provides airflow to the larynx stage
of the speech production process. The larynx regulates the flow of air and gen-
erates either noisy airflow or puff-like source for the third organ group, i.e., the
vocal tract system. The vocal tract system comprises oral, nasal, and pharynx cav-
ities, these organs spectrally shape the regulated airflow provided by the larynx.
Hence, the speech production mechanism can be modelled as:

x(t) = p(t) ∗ l(t) ∗ v(t), (2.1)
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where ∗ represents the convolutional operator, p(t), l(t), and v(t) represents the
source energy by lungs, airflow modulation by larynx, and transfer function of
vocal tract system, respectively.

Figure 2.1: Simplified View of Speech Production Mechanism. After [50].

2.2.2 Mathematical Modelling of Replay Speech Signal

A typical replay signal may be recorded and replayed with different devices and
under different environmental conditions. Hence, the mathematical model of a re-
play speech signal (y(t)) can be represented as the convolution of genuine speech
(x(t)) with the impulse responses of recording device (hrd(t)), recording envi-
ronment (hre(t)), playback device (hpd(t)), and playback environment (hpe(t)).
All of these factors lead to distortions that are introduced in the original speech
signal.

y(t) = x(t) ∗ hrd(t) ∗ hre(t) ∗ hpd(t) ∗ hpe(t), (2.2)

where ∗ denotes the convolution operation. This equation can also be written as:

y(t) = x(t) ∗ h(t), (2.3)

where h(t) considers the cascaded effect of all the environments and intermediate
replay devices.

8



2.2.3 Literature Review

An anti-spoofing system finds its application in safeguarding ASV system and
Voice Assistants (VAs) against possible threats. Hence, to avoid any unwanted
hacks, countermeasures needs to be developed. The present voice-based ASV sys-
tems are prone to spoofing attacks, namely, speech synthesis (SS) [97], voice con-
version (VC) [98], replay [73], and twins [83]. Apart from the above-mentioned
attacks, VAs are also vulnerable to additional attacks such as, hidden voice com-
mands [16], self-triggered attacks [30], and audio adversarial examples [17]. In
practice, we would expect our ASV system and VAs to be robust against any or
all of the possible spoofing attacks.

Replay unlike any other spoofing attack is the most accessible kind of spoofing
attack, wherein the attacker tries to masquerade the target simply by replaying the
prerecorded voice samples [73]. The replay speech recorded with a high quality
recorder and playback device in a noiseless recording environment is very hard to
detect easily, as it is very equivalent to the genuine speech [73]. Hence, the present
VAs and ASV systems find it very challenging to detect specially constructed sig-
nals. A replayed speech can mathematically be modelled as convolution of gen-
uine speech signal and the impulse response of the recording device, recording
environment, playback device, and the playback environment [55].

Since 2015, bi-annual ASV spoof campaigns were initiated to develop coun-
termeasures against various spoofing attacks. Such initiatives provided standard
corpora, metrics, and baseline SSD system proposal to support common evalua-
tion. Since then, four international challenges have been organized so far to pro-
mote research in this direction, namely, ASVspoof 2015, ASVspoof 2017, ASVspoof
2019 and ASVspoof 2021. The ASVspoof 2015 challenge considered SS and VC
attacks and countermeasures against these were to be developed [103]. Feature
extraction methodologies for speech applications are either based on the speech
production models or auditory models. The features which are derived from lin-
ear prediction (LP) analysis comes under the former class. The various LP-based
features used in SSD task are LPCC, LFRCC [34, 84]. In replay SSD task, LFCC is
found to be performing better than MFCC [45]. Furthermore, LFCC is chosen as
feature set to develop the baselines in ASVspoof-2017 and ASVspoof-2019 chal-
lenge campaign [94, 99]. Moreover, LFCC and CQCC feature set is selected as
baseline for recently released ASVspoof 2021 challenge campaign [67].

Feature set, such as Constant-Q Cepstral Coefficients (CQCC) [90], Linear Fre-
quency Cepstral Coefficients (LFCC), and Cochlear Filter Cepstral Coefficients In-
stantaneous Frequency (CFCCIF) [72] were a few notable contributions of this
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anti-spoofing challenge. The ASVspoof 2017 challenge focused on developing
countermeasures against replay spoofing attacks. A comparative study of ASVspoof
2015 and ASVspoof 2017 detection challenges suggests that the detection of replay
attack is more difficult as compared to the SS and VC spoofing attacks. Further,
ASVspoof 2019 challenge focuses on developing countermeasures against all the
three, i.e., SS, VC, and replay attacks. In addition to SS, VC, and replay attacks,
DeepFake spoofing attack was introduced in recent ASVspoof 2021 challenge,
generated through the deep learning framework. In addition to the ASV chal-
lenges, the Realistic Replay Attack Microphone Array Speech Corpus (ReMASC),
which comprises genuine and realistic replay speech, was developed in 2019 to
protect VAs from spoofing attacks. Furthermore, the Voice Spoofing Detection
Corpus (VSDC) was released in 2021 for SSD development for One-Point Replay
(1PR) and Two-Point Replay (2PR) threats. Playback of pre-recorded genuine ut-
terances (0PR) to the VAs is known as 1PR attacks. Furthermore, 2PR attacks are
generated through the playback of the 1PR utterance using Drop-in feature of the
VAs.

In recent years, the CM system of ASV system and VAs were assumed to be
identical, however, there are significant differences between them. For example,
in ASV system, single channel microphones are present, and the user speaks gen-
erally in close proximity of the system in a close controlled acoustic environment
whereas, in VAs, voice commands are spoken in diverse acoustic environment
and from an unknown distance. Further, prior works on detection of replay at-
tacks on ASV systems were based on the single channel inputs, which provided
only the spectral and temporal features. However, in the VAs, microphone arrays
are present, which provides spatial diversity, in addition to the spectral and tem-
poral features which may be useful to distinguish between genuine and replay
utterances. Additionally, the VAs are mounted with speech enhancement tech-
nologies, due to which the acoustic environmental noises are suppressed. Hence,
due to these significant differences of ASV system vs. VAs, notable contributions
to ASVspoof 2017, ASVspoof 2019, ReMASC, and VSDC databases were studied
for the development of replay SSD shown in the Table 2.1.
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Table 2.1: Selected Literature of Anit-spoofing for ASV and VAs
% EERDatabase Author Feature Sets Classifier Dev Eval

Weicheng Cai et al. [14] CQCC (Baseline) GMM 10.25 22.39

Patil et al. [73]
MFCC

CFCCIF
LFCC

GMM
GMM
GMM

26.78
12.98
16.76

26.31
14.77
13.9

Kamble et al. [48] TECC GMM 9.55 11.73

ASVspoof 2017

Lian Huang et al. [104]

Hybrid Feature
Hybrid Feature
Hybrid Feature

CQCC
MFCC
CQCC

GMM
DesnseNet

LSTM
DenseNet
DenseNet

DenseNet-LSTM

8.67
5.62
9.45
7.65
6.77
3.87

25.63
12.39
15.64
17.73
15.86
12.64

ASVspoof 2019 Massimiliano Todisco el at. [94] CQCC
LFCC

GMM
GMM

9.87
11.797

11.198
13.012

ReMASC Rajul Acharya el at. [71] CQCC
Hybrid Feature

GMM
DenseNet

—
—

10.84
10.93

VSDC, ASVspoof 2019, ASVspoof 2017 Anand Therattil el at. [87] TECC GMM
CNN

20.01
27.63

24.07
26.19

0PR-1PR
Test set

0PR-2PR
Test setVSDC Roland Baumann et al. [6] CQCC GMM 17.29 8.78

2.3 Severity-Level Classification of Dysarthria

2.3.1 Brief History of Dysarthria Severity Classification

Dysarthric speech has complex characteristics and often requires the expertise of
Speech Language Pathologists (SLPs) for diagnosis and severity-level assessment.
SLPs provides severity-rating through the clear procedures of diagnosis through
patient’s acoustics and articulation. There are five assessment methods which are
widely used by SLPs for the diagnosis of dysarthria. A brief description of these
methods are discussed below:

• Assessment of Intelligibility of Dysarthic Speech (AIDS)

AIDS take into consideration the intelligibility and speaking rate of a dysarthic
speaker, who needs to be at least 12 years of age [100]. The voice utter-
ance of speaker is recorded and played back to one or more examiner, who
are not present at recording. The examiner then scores the speaker based
on percentage intelligibility at word and sentence-level. Average scores are
considered to rate the intelligibility of the speaker.

• Speech Intelligibility Test (SIT)

SIT was introduced in 1996, which is an electronic form of AIDS [25]. Com-
puter software provides the speech stimuli to the patient and scores the pa-
tient similar to AIDS.

• Frenchay Dysarthria Assessment (FDA)
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FDA determines the type of dysarthria the patient is suffering from [15].
FDA creates a patient’s profile by considering different behaviour that cor-
responds to speech functions, such as respiration, reflexes, intelligibility,
movement of jaw, tongue, lips etc. Intelligibility is considered at word, sen-
tence, and conversation-levels.

• Dysarthria Examination Battery (DEB)

DEB evaluates the dysarthic severity-level by focusing on the prosody, ar-
ticulation, phonation, resonation, and respiration [35]. Articulation is eval-
uated at both word and sentence-level, and the performance is evaluated by
an expert diagnostician on a 5-point scale.

• Dysarthria Profile

Dysarthria Profile is a 5-point rating scale and provides a comprehensive
assessment of dysarthria speech [76]. The patient is rated on phonation,
articulation, intelligibility, respiration etc. The ratings are provided based
on one expert diagnostician and one unfamiliar listener based on reading
aloud tasks.

2.3.2 Literature Review on Dysarthric Speech Classification

Although, the above methods were developed decades ago and are still widely
used, many SLPs rely on informal methods for the assessment of dysarthria. A
study in [35] reported that 35% SLPs use formal methods for dysarthric speech
assessment. Assessment using subjective methods are also subject to familiarity
bias, that is the assessment of an individual gets effected, depending on the re-
lationship of the examiner with the patient. In addition, a study in [35] reports
that there is a higher variability among the performance of the listener who tran-
scribe atypical speech. Therefore, there is a need for better objective analysis and
classification methods for dysarthic speech. Further, in recent years, through the
increase of high computational systems, the development and implementation of
complex deep learning architectures has been possible. Furthermore, deep learn-
ing methods provide as solution towards this problem as they are immune to
human biases and errors. Therefore, recently, implementation of various signal
processing combined with deep learning models has been implemented for the
severity-level classification of dysarthria shown in Table 2.2.
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Table 2.2: Summary of Work Done in Dysarthric Speech Classification.

Author Feature Sets Classifier Classification
Type

% age
Accuracy

Paja et al. [70] Multiple acoustic
feature

Mahalnobis
Distance 2-level severity 95

KL Kadi et al. [44] Multiple acoustic
feature

LDA+
GMM/SVM 4-level severity 93

Haewon Byeon et al. [13]
Cepstral peak
prominance,

jitter, shimmer etc.

Random
Forest

Dysarthria vs.
presbyphonia 83

C.Bhat et al. [8] Audio descriptor
feature ANN 4-level severity 98

Chandrashekar et al. [20] Mel spectrogram CNN 3-level severity 66

M. Fernandez et al. [28] Log-mel
spectrogram

LSTM with
attention 3-level severity 77

Joshy et al. [41] MFCC CNN 4-level severity 96

J.C. Vasquez-Correa et al. [92] STFT
spectrograms CNN Normal vs. Dysarthria 86

2.4 Chapter Summary

This chapter began with the convolutional (LTI) model of a replayed speech sig-
nal. This expression suggested that replay detection is a problem of deconvolu-
tion and hence, it is hard to detect replay. Furthermore, the history of dysarthria
and the limitations of the conventional approaches is discussed. The next chapter
discusses the experimental setup that is used for the replay SSD, severity-level
classification and infant cry classification.
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CHAPTER 3

Experimental Setup

3.1 Introduction

This chapter describes the experimental setup for the replay SSD, and severity-
level classification of dysarthria. This involves description of the basic speech
processing methodology, which includes pre-processing, feature extraction, and
post-processing. Further, the brief description of the dataset utilized is discussed
in this thesis work. In addition to the datasets and speech processing methods,
various statistical and deep learning-based classifiers utilized to evaluate are dis-
cussed in the thesis work. Lastly, the performance measures are discussed for the
analysis and the potential practical applications of features and classifiers.

3.2 Basic Speech Processing Methodologies

Classification system requires discriminative acoustic cues as features generated
through signal processing or deep learning or combination of both the approaches
for the replay SSD, severity-level classification of dysarthria, and infant cry clas-
sification. Hence, input features to classifier are extracted through the following
three process: (1) pre-processing, (2) feature extraction, and (3) post-processing
explained in next the sub-Section.

3.2.1 Pre-Processing

In order to extract the features effectively from the input data, it is important to
convert the input data into a form which is more useful for further processing.
This is done by pre-processing on the raw speech data to allow only the useful in-
formation to be used for the feature extraction process. There are several ways of
pre-processing, which include pre-emphasis and silence removal schemes. How-
ever, in this work, only pre-emphasis has been used for replay SSD.
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Pre-emphasis

Studies suggest that high frequency regions are more important for replay SSD
as compared to the low frequency region. Hence, pre-emphasis is essentially a
high pass filter that allows only the high frequencies content of the signal to pass
while stopping the low-frequency content. This ensures only the part which is
essential for replay SSD to be used for feature extraction. The transfer function of
pre-emphasis filter is defined as [93]:

H(z) = 1 − αz−1, (3.1)

where the value of α is 0.97 for most of the speech applications.

3.2.2 Feature Extraction

The natural speech production mechanism is a random process, and hence, speech
as ensemble could not be used directly be used for classification. So the input
speech signal is mapped to a vector space, which gives more effective represen-
tation of the speech signal. In this study, we have implemented the energy-based
feature Teager Energy Cepstral Coefficient and Square Energy Cepstral Coeffi-
cient. Hence, these features extracted through the signal processing approach
highlights the discriminative cues such as, linguistic information, acoustical envi-
ronmental condition, and noise present during speech production.

3.2.3 Post Processing

Post-processing operations are performed so to map feature space to another space
such that it is more suitable for the classifier. Post-processing operations involve
normalization, dimensionality reduction, velocity and acceleration coefficients,
etc.

Velocity and Acceleration Coefficients

To capture the transitional or dynamic information of the speech signal, velocity,
and acceleration coefficients are appended with the static feature coefficients. The
velocity (∆) and acceleration (∆∆) features are extracted through the first and sec-
ond derivative coefficients averaged over the interval, for the cepstrum time func-
tion. It is given by :

∆ =
dC
dt

, (3.2)
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∆∆ =
d2C
dt2 , (3.3)

where C are the cepstrum coefficients. Although this triples the feature dimen-
sion, however, this increase in dimensions is more than compensated by the im-
proved feature representation and hence, the performance of the replay SSD sys-
tem.

3.3 Details of Dataset Used

3.3.1 Replay SSD

ASVspoof 2017 version 2.0 dataset

In chapter-4, experiments are performed on ASVspoof 2017 version 2.0 database.
This dataset is based on the RedDots database [53], having a collection of genuine
and spoof utterances. This speech data is collected from 177 replay sessions, and
61 unique replay configurations [53]. A replay configuration is a unique combi-
nation of a recording environment, playback device, and recording device. The
database contains the recording of 42 speakers. Spoofed utterances were gen-
erated by replaying the genuine utterance in different environments and using
different playback devices.

The ASVspoof 2017 Version 2.0 corpus consists of a training, development,
and evaluation set. The first two subsets are to be used to develop the spoofing
countermeasures. Metadata includes the file ID, speech ground truth label, phrase
ID, and replay configuration details. The evaluation set is used to test the trained
model and hence, evaluate the performance of trained models.

Table 3.1: Details About the ASVspoof 2017 Version 2.0 Database. After [52].

Datasets # Speakers # Utternaces
Genuine Spoof

Training 10 1507 1507
Development 8 760 950
Evaluation 24 1298 12008

Total 42 3565 14465

ASVspoof 2019 PA

In chapter 4, ASVspoof 2019 challenge dataset is utilized for the developing the
CM systems for the ASV systems [91]. The source signals for performing simu-
lation are from the VCTK corpus [102]. This is the first database, which consists
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of all the three spoofing attacks SS, VC, and replay attacks, which are separated
into two groups logical access and physical access scenarios. The first part of
ASVspoof 2019 LA consists of SS and VC utterances, generated through the deep
learning algorithms. The second part explores the replay attacks, which are gen-
erated using the simulation of the room acoustics under varying source/receiver
positions through the approach reported in [91] and based upon an image-source
method. This dataset consists of 107 speaker, 28890 genuine utterances and 189540
replay utterances in 27 various acoustic environments. Furthermore, the utter-
ances are captured under various parameter settings for acoustic configurations
given in [91].

ReMASC

In chapter-4, Realistic Replay Attack Microphone Array Speech Corpus (ReMASC)
has been used, which is specifically designed to develop CM against replay spoof-
ing attack. ReMASC dataset consists of four device comprising ~29000 utterances,
among which ~25500 utterances are used for experiments as they are recorded
by voice assistants [31]. Data collection is done in four acoustic environments,
namely, outdoor environment (Env-A) containing random background noises,
moving vehicle environment (Env-D), and two sets of indoor environments (Env-
B and Env-C). Env-B is emulated in a silent meeting room with different de-
vice placements, while Env-C contains voice commands with background music
player and TV sounds.

The statistics of the dataset used for performing experiments is shown in Table
3.2. Data partition is disjoint in terms of speakers. The data partition is done such
that the proportion of environment-wise utterances in all the subsets remains the
same as in the main dataset.

Table 3.2: Design of ReMASC Database. After [31].
Datasets Training Development Evaluation
Genuine 5698 633 2118

Spoof 15458 1717 14162
Total 21156 2350 16280

VSDC

The VSDC dataset is designed for developing CM systems for VAs for multi-point
replay attacks [6]. Further, chapter 4 performs cross-database evaluation between
VSDC, ASVspoof 2017 version 2.0, and ASVspoof 2019 PA. This dataset consists
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Figure 3.1: Schematic Illustrations and Realistic Scenarios of 0PR, 1PR, and 2PR.
After [87].

of three types of utterances, namely, 0PR, 1PR, and 2PR. Figure 3.1 describes a
scenario, which explains 0PR, 1PR, and 2PR speech. This scenario depicts a situ-
ation in which the victim is assumed to be someone close to the attacker, so that
the attacker is able to record the required voice commands. This can be done
by directing a normal conversation and using social engineering techniques. The
speech of the victim, which is directly given as voice command to his/her VA, is
genuine, and it is represented as 0PR. The attacker then discretely records the con-
versation and later executes 1PR and 2PR attacks, which are described in detail as
follows.

• One-Point Replay (1PR): The use of smart devices is on the rise. These
devices, such as baby monitors and smart doors, are equipped with built-in-
microphones, loudspeakers/playback mechanism, and remote service access. These
smart devices can be operated by VAs using remote service access. If the attacker
has recordings of the victim’s voice commands, he/she can playback the recorded
speech in front of the victim’s VA through his/her smartphone. The playback sig-
nal produced by the smartphone is called as 1PR utterance (as shown by the 1PR
signal in Figure 3.1). Hence, the smartphone acts as the first-point of replay attack
also known as 1PR attack.

• Two-Point Replay (2PR): The Drop-in feature initiates the two-way conver-
sation between users using the VAs, similar to intercom devices [40]. This fea-
ture works between two different locations and different VAs owned by different
users. This feature is enabled if the permission is allowed for the contact to Drop-
in. Hence, the attacker can listen to the conversations at the location of the victim
using Drop-in feature. Due to this feature, the attacker can record and playback
victim’s speech. Thus, we can establish that Drop-in feature can be used for pry-
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ing into the possible personal information of the victim [1–3]. Furthermore, the
attacker who has Drop-in permission can access the authorized speaker’s VA and
operate devices, such as smart bulb and smart doors. [40]. The scenario shown
in Fig. 3.1, where the attacker is able to access the victim’s 2nd VA through the
playback of 1PR utterance using the Drop-in feature (assuming the attacker has
enabled the Drop-in feature permission at the victim’s 1st VA through social engi-
neering). This playback of 1PR to the victim’s 2nd VA through the Drop-in feature
of the 1st VAs is known as Two-Point Replay (2PR) attack.

This dataset consists of 14050 utterances in total. Furthermore, there are 42 dif-
ferent command phrases of VAs used, which are recorded at a sampling frequency
of 96 kHz. Furthermore, the dataset distribution is provided in Table 3.3.

Table 3.3: Design of VSDC Corpus Database. After [6].
Datasets Training Evaluation

Genuine (0PR) 3198 1371
1PR 3298 1427
2PR 3298 1397
Total 9794 4195

3.3.2 Dysarthria

Universal Access Speech Corpus (UA-Speech Corpus)

In chapter 4, and chapter 5 the Universal Access Speech Corpus (UA-Speech Cor-
pus) is used for the development of the classification system based on severity-
level dysarthria. The UA-Speech corpus [51] consists of dysarthric speech ut-
terances from 19 subjects (15 males and 4 females). UA-Speech corpus is the
largest database currently used for the dysarthric ASR, speech enhancement, and
severity-level classification. The range of age for the speaker varies from 18-58
years. Furthermore, speakers with diverse speech intelligibility were taken into
consideration. The intelligibility of each speaker was rated by naive human lis-
teners on a scale of 0-100 %. The recording is done using a 8-channel microphone
array with a sampling frequency of 16kHz. For each speaker, data was collected
in 3 recording sessions defined as blocks. These blocks consist of 255 words for
recording, with 155 repeated words recording in all blocks and 100 distinct words
in each block. The speech utterances are divided into the following categories:

• 10 English digits (0-9),

• 26 radio alphabets (“Alpha”, “Bravo”, “Charlie”, etc.),
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• 19 computer commands (“open”, “enter”, “delete”, etc.),

• 100 most common words from Brown corpus of written English),

• 100 uncommon words (naturalization, exploit, etc.) chosen from children’s
novels.

Hence, 765 utterances are recorded in total, where each speaker records 255 utter-
ances.

3.4 Details of Classifier Used

Once the feature representation is obtained, it is used to train an appropriate clas-
sifier. Given a speech sample X, the extracted feature is utilized for the binary clas-
sification problems, such as replay SSD. However, for severity-level classification
of dysarthric speech, multi-class classification is required. Hence, various classi-
fiers are implemented in this thesis work are discussed in the next sub-Section.

3.4.1 Gaussian Mixture Model (GMM)

A GMM back-end classifier was employed for genuine and spoofed speech de-
tection [10]. It is the weighted sum of several multivariate Gaussian components.
Gaussian mixture of N mixture components is represented as [10]:

P(y/G) =
N

∑
j=1

wj p(y/µj, Σj), (3.4)

where y is a D-dimensional feature vector, wj is the weight corresponding to the
multivariate Gaussian component p(y/µj, Σj) such that Σwj = 1. Here µj and Σj

are D × 1 mean vector and D × D dimensional covariance matrix, respectively.
Thus, p(y/µj, Σj) is given by [10]:

p(y/µj, Σj) =
1

(2π)D/2Σ1/2
i

exp
{
− 1

2
(y − µi)

TΣ−1
j (y − µj)

}
. (3.5)

The GMMs were trained using the expectation maximization (EM) criterion to ob-
tain the maximum likelihood estimate (MLE) with random initialization. Individ-
ual GMMs trained on genuine and spoof training samples. The Log-Likelihood
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Ratio (LLR) score is computed as [23].

LLR = log
P(y|G0)

P(y|G1)
, (3.6)

where P(y|G0) and P(y|G1) are likelihood scores of genuine (G0) and spoof (G1),
respectively.

3.4.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) are deep learning algorithms which uses
the convolution operation in the architecture for processing the data. This con-
volution is done between the multidimensional input and multidimensional filter
weight, known as kernel. The convolution operators are followed by the pooling-
layer and non-linear activation operation. The combination of these three op-
eration comprises a convolution layer, through which the features are extracted
from input data. The Fully-Connected layers of perceptron are present in the CNN
model for the classification. Further, CNN model extracts the feature similar to the
human brain by using the convolutional layers and activation functions. CNN has
been widely utilized for the image classification and pattern recognition. Hence,
in this study to capture the energy-based features, the CNN model has been im-
plemented.

Convolution Operation

In CNN, convolution operations are processed by sliding the kernel through the
input matrix and processing the data. The kernel size is smaller than the input
matrix. The convolution operator is represented as [56]:

G[gh, gw] = (F ∗ K)[gh, gw] =
kh

∑
i=1

kw

∑
j=1

K[i, j].F[gh − i, gw − j], (3.7)

where F ∈ R fh× fw is the input matrix, K ∈ Rkh×kw is the kernel matrix, which is
initialized randomly, and G ∈ Rgh×gw ∈ R fh−kh+1× fw−kw+1 is the output matrix.
The convolution operation is performed by the elementwise multiplication of be-
tween the kernel (which slides to the next region after every operation) and the
input matrix masked by the kernel. Further through the convolution operation
the feature is extracted from the input matrix through the kernel, such as shapes,
edges, patterns, etc.
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Padding Operation

The output matrix obtained by the convolution operation has lower dimension
w.r.t the input matrix. Hence, for deeper convolution networks, the output will
diminish. Furthermore, by applying the convolution operation, it can be ob-
served that the effects of the boundary elements are less in comparison to the
elements placed at the center, which is disadvantageous if the prominent features
are present at the boundaries. Hence, to overcome these disadvantages, the in-
put matrix is padded with random values (generally zeros). Hence, the dimen-
sion of the input matrix is increased and assist in capturing the information from
the boundary elements. The padding size p, for a kernel size, k × k is calculated
as [56]:

p =
k − 1

2
. (3.8)

Stride Convolution

In the convolution operation, the kernel overlaps each element in the input ma-
trix. However, in the larger input matrix, this represents the computational in-
efficiency, because the calculations are done multiple times on every element of
matrix, which consumes time and memory. Further, the capturing of the global
feature and local are effected through the stride values. Additionally, the stride
convolution contributes in dimensionality reduction resulting in a fewer calcula-
tions, which is desirable in many cases. The output dimension, nout of convolution
operation implemented by padding and striding, is estimated as [56]:

nout =
nin + 2.p − k

s
+ 1, (3.9)

where nin is the input matrix to the convolution layer, and k, p, and s are the
kernel size, padding size, and stride length, respectively.

Activation Layers

In neural network, the output of each smallest computation unit, namely, percep-
tron is passed through an activation function, which introduces the non-linearities
in the neural network models. Hence, the output is differentiable, which assist in
the back propagation and optimization of the weights. Activation function makes
the deep neural networks suitable for the complex tasks, and generalized and
adaptable to the data. The activation function makes the decision of enabling the
perceptron in the next layer. For the activation function σ(.), the output z for an
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input, x is defined as [81]:
z = σ(w.x + b), (3.10)

where w and b are the weights and bias of the perceptron, respectively. Depend-
ing on the problem, different activation selected, such as Sigmoid function, Tanh
function, and Rectified Linear Unit (ReLU) function. Furthermore, the various
activation functions can be used for various layers of deep neural network.

Pooling Layer

Pooling layer is utilized for the dimensionality reduction without any significant
reduction in the information present. The convolution layer output is generally
provided as input to the pooling layer, through which the computational com-
plexity of the CNN reduced, making the model faster to operate. The pooling
layer captures the important features and make the network less susceptible to
spatial movement from its kernel size. Therefore, the pooling layer do not affect
the model performance, however, it increases the efficiency of the model.

Architecture Details

• Replay SSD: In this study which consists of four convolutional blocks, namely,
Convolution 1, Convolution 2, Convolution 3, and Convolution 4, where
each convolution block consists of 2-D convolutional layer, an activation
layer, namely, Rectified Linear Activation (ReLU), and a max-pool layer. The
input feature is of size D × 400, where D represents the dimension of the
feature vector. Convolution 1 and 4, each consist of a convolutional layer
of kernel size of 3 × 3 with stride of 1 and padding of 2. Convolution 2
and 3 consist of convolutional layer of kernel size 5 × 5 with stride of 1 and
padding of 2. Each of these convolutional layers is followed by ReLU and
max-pool layer of kernel size 2 × 2. Lastly, the output of Convolution 4 is
fed to Fully-Connected (FC1) linear layer with different hidden units. The
model is trained using the Stochastic Gradient Descent (SGD) with a batch
size of 32 and a learning rate of 0.001. Binary cross-entropy is selected for
the loss calculation. Further, 10000 iterations are considered for training the
model, which results in 106 number of epochs.

• Dysarthria Severity-Level Classification: In this study, CNN model was
trained using Stochastic Gradient Descent (SGD) algorithm and 3 convolu-
tional blocks each with kernel size 5 × 5, and 1 Fully-Connected (FC) layer
[56]. The input feature is made of uniform size of D × 300, where D is the
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dimension of the feature vector. Learning rate of 0.001 and cross-entropy
loss is selected for loss estimation.

3.4.3 Light Convolutional Neural Network (LCNN)

Light-CNN (LCNN), a modified version of the neural network, has performed
exceptionally for SSD task [95]. In LCNN, the non-linear activation functions are
replaced with the Max-Feature-Map (MFM) activation layer, which is briefly dis-
cussed next.

Max-Feature-Map (MFM) Activation

MFM is a modified max-out function, which produces better generalization for
distinct data distribution by learning with a small number of parameters. The
MFM function is defined as [95]:

yk
ij = max(xk

ij, xk+ N
2

ij ), (3.11)

where k, i, and j represents the channel feature component, and frame num-
ber, respectively. Each convolution layer in our LCNN models applies a separate
convolution operation to its input. The element-wise maximum value is selected
from these two convolution layers and an output matrix is generated, which is
provided as input to the next layer.

Architecture Details

• Dysarthria Severity-Level Classification: In this study, we utilized seven
convolutional layers having MFM activation function followed by two-fully
connected layers. The 1st convolutional layer uses the kernel size of 5 × 5
and stride of, 1 × 1 and the following convolutional layer has a kernel size
of 3 × 3 and stride of 2 × 2 with learning rate of 0.001. Weights of the LCNN
are initialized using Xavier weight initialization technique [29].

3.4.4 Residual Neural Network (ResNet)

The vanishing gradient problem in CNN introduced a new classifier, namely,
ResNet, which includes the skip connections into the architecture [21].
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Skip Connection

The skip connections are implemented to resolve the vanishing gradient problem
of deep neural networks. The vanishing gradient occurs in several layered neu-
ral networks [21]. The gradient estimation using the back propagation is usually
less than 1, which provides mode stability to the model. However, in the large net-
works the gradient value is very small for the initial layers, which makes the effect
of initial layer insignificant. Hence, the skip layer is utilized where it passes over
one or more layers in neural network layers. This provides the gradient to flow
during the back propagation, such that the initial layer gradient is not 0. Further,
skip connections also enable the latter layers to learn information from the initial
layers. The skip connections are of two types, namely, addition and concatena-
tion. In the addition mode, the skip connection is added to the output from the
layer of the network in an elementwise manner. In concatenation mode, the out-
put is concatenated with the skip connection and used in the densely-connected
networks. This forms the residual block of the ResNet model.

Residual Blocks

The Residual blocks implemented in the ResNet model consist of two types, nor-
mal and downsampling residual blocks. The normal residual block the skip con-
nection is connected directly with the output after skip two layers. However, in
the downsampling residual block, the skip connection is connected to the output
after being downsampled by the convolution layer.

Architecture Details

• Dysarthria Severity-Level Classification: In this study we, have utilized 12
residual blocks out of which 9 are regular residual and 3 are downsampling
residual blocks. The convolution layer of 5 with stride 2 is applied along
with max pool layer of 2 × 2. The downsampling blocks are utilized to re-
duce the dimensionality of the feature maps. In the end, 1 fully connected is
utilized for the multi-class classification. Similar to CNN and LCNN model,
SGD with a batch size of 32 and a learning rate of 0.001 with 200 epochs.

3.5 Performance Measures

The performance of various feature sets was compared against the baseline fea-
ture set using various performance evaluation metrics, such as % classification Ac-
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curacy, Equal Error Rate (EER), Confusion Matrix, F1− Score, J-Measure, Mathew’s
Correlation Coefficient (MCC), Jaccard’s Index, Hamming Loss, and Linear Dis-
criminant Analysis (LDA).

3.5.1 Confusion Matrix

Confusion matrix provides the overall performance of the classification models.
It consists of l × l, where l is the number of classes the data need to be classified.
Confusion matrix arranges the prediction into following categories:

• True Positive (TP) :These are the samples which belong to a certain class
and are correctly predicted.

• True Negative (TN): These are the samples which do not belong to a certain
class and are not predicted to that class but to any other class.

• False Positive (FP): These are sample that do not belong to a certain class
but are predicted to belong to that class.

• False Negative (FN): These are the samples that belong to a certain class but
are predicted to belong to any other class.

Confusion matrix is useful in evaluating the precision, recall, F1-score, J-Measure,
Jaccard index, Hamming loss, and Mathews’ Correlation Coefficient (MCC) of
classification models.

3.5.2 % Classification Accuracy

Accuracy is the most simplified and powerful performance metrics used for the
performance evaluation of deep learning models. % Classification Accuracy met-
ric provides a fair evaluation for the balanced datasets. The accuracy (in %) is
defined as:

Accuracy =
Number of correct prediction

Number of total prediction
× 100 %. (3.12)

3.5.3 Equal Error Rate (EER)

The EER is derived from the detection error trade-off (DET) curve, which repre-
sents the performance on detection tasks that involve the trade-off of error types
[64]. In binary classification task, there are two types of errors, namely, false alarm
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rate (Pf a(s)) and miss rate (Pmiss(s)). For arbitrary threshold s, these error rates are
defined as [64]:

Pf a(s) =
number of class 1 trials with score > s

total number of class 1 trials
, (3.13)

Pmiss(s) =
number of class 2 trials with score ≤ s

total number of class 2 trials
. (3.14)

The EER refers to the threshold sEER at which both the error rates are equal, i.e.,

EER(%) = Pf a(sEER) = Pmiss(sEER). (3.15)

3.5.4 F1−Score

It is a widely used statistical parameter for evaluating the performance of a model.
It is estimated as the harmonic mean of the model’s precision and recall [27]. In
particular:

F1 − score =
2TP

2TP + FP + FN
. (3.16)

The F1-score value ranges from 0 to 1, with a score closer to 1 signifying better
performance.

3.5.5 J-Measure

J-statistic also known as Youden’s J-statistic captures the performance of a di-
chotomous diagnostic test. It ranges between -1 and 1, where -1 indicates no
agreement and +1 indicated full agreement between observation and prediction.
Youden’s J-statistic is given by [7]:

J − statistic =
TP

TP + FN
+

TN
TN + FP

− 1. (3.17)

3.5.6 Mathews’ Correlation Coefficient (MCC)

It shows the degree of association between the expected and actual class [65]. It is
usually considered a balanced measure when comparing models. MCC is in the
range of −1 to 1. It is given as [65]:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TN + FN)(TPFN)(TN + FP)
. (3.18)
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3.5.7 Jaccard Index

The Jaccard index is a measure of how similar and dissimilar the two classes are.
Its value is in between 0 and 1. It is given in [11]:

JaccardIndex =
TP

TP + FP + FN
. (3.19)

3.5.8 Hamming Loss

It takes into account incorrectly predicted class labels. All the classes and test data
are normalized for prediction error (prediction of an inaccurate label) and missing
error (prediction of a relevant label). Hamming loss can be calculated as [22]:

Hamming Loss =
1

nL

n

∑
i=1

L

∑
j=1

I(yj
i ̸= ŷj

i), (3.20)

where yj
i and ŷj

i are the actual and predicted labels, and I is an indicator function.
The more it is close to 0, the better is the performance of the algorithm.

3.5.9 Linear Discriminant Analysis (LDA)

LDA is primarily used for the data classification, dimensionality reduction, and
data visualization, through the learning of the features, namely, Fisherfaces. LDA
increases the ratio of between-class variation to within-class variance in every
given dataset, assuring maximum separability. Hence, through the LDA plot, the
feature discriminative capabilities can be observed through the clusters formed
and the distance between them.

3.6 Chapter Summary

In this chapter, the details of the experimental setup for the replay SSD, and
severity-level classification. Additionally, the speech processing methodologies,
classifiers used, and the performance measures were also discussed. In the next
chapter, we discuss the Teager Energy-based Teager energy cepstral coefficients
features.
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CHAPTER 4

TECC Feature Set

4.1 Introduction

In this chapter, brief description of Teager Energy Cepstral Coefficients (TECC)
is presented for the development of the CM system for replay SSD, and severity-
level classification of dysarthria. Furthermore, the cross-database evaluation is
performed between the VSDC, ASVspoof 2017, and ASVspoof 2019 using the
TECC feature set with CQCC as baseline feature set. Further, TECC is extended
toward the multichannel audio input by using the relative change in the energy
between the microphone arrays on ReMASC dataset. Finally, the TECC is ex-
tended severity-level classification of dysarthric speech.

4.2 Teager Energy Operator (TEO)

In the production and perception of the speech signal, energy established a con-
necting link. The energy is transmitted through the sound medium through the
vibration mechanism depicted through the mass-spring simple harmonics mo-
tion (SHM). For a mass-spring system, the energy is proportional to the squared
product of amplitude and frequency [33]. In particular,

E =
1
2

mA2ω2, (4.1)

E ∝ A2ω2, (4.2)

where m is the mass of the suspension, A is the amplitude of oscillation, and
ω is the frequency of oscillation. This analogy, as in [69], has been used to model
amplitude modulated frequency modulated (AM-FM) signal with the help of an
energy operator called Teager Energy operator (TEO) [85]. Teager’s work on non-
linear modelling of the human speech production in [86] are used to model, and
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detect modulations in speech resonances.
TEO captures the running estimates of the signal energy, which can be repre-

sented for a continuous-time domain signal as [85]:

Ψ{x(t)} =
(dx

dt

)2
− d2

dt2 x(t). (4.3)

Furthermore, the TEO for the discrete-time signal is estimated as [85]:

Ψ{x[n]} = x2
n − xn−1xn+1 = A2sin2ω ≈ A2ω2, (4.4)

where xn be a discrete-time signal expressed as xn = Acos[ωn + θ], the xn−1 =

Acos[ω(n − 1) + θ], and xn+1 = Acos[ω(n + 1) + θ]. Additionally, the TEO cap-
tures the reverberation present in the signal and also suppresses the additive
noise, which is discussed in the next Section.

4.3 Properties of TEO

4.3.1 Capturing of Reverberation

A speech signal, especially in a closed space, such as a small room, gets reflected
multiple times due to infinite transmissions and reflections from surfaces, such as
wall, furniture, and even people. However, this is not limited to closed spaces,
and can even occur in open spaces, such as in a forest [47]. The formation of these
multiple transmissions and reflections is called as reverberation. These reflections
tend to decay with distance and time as they are absorbed by the surrounding
surfaces in the space. The majority of reverberation energy is found in reflections
of the 1st order (i.e., with only one deviation from the original path) and 2nd order
(i.e., with two deviations). These reverberation effects of 1st order and 2nd order
reverberation can be observed from the utterances of VSDC, shown in Fig. 4.1.
The Panel-II of Fig. 4.1 shows the Teager energy profiles of genuine (i.e., 0PR),
1PR, and 2PR speech utterances. It can be observed that the 0PR has substantially
less effect of reverberation as compared to the 1PR and 2PR utterances. Hence, the
capturing the reverberation acts as the discriminating acoustic cues for the replay
SSD.
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Figure 4.1: Time-domain Signal (Panel I) and its corresponding Teager Energy
Profiles (Panel II) for the Three Types of Utterances: (a) 0PR, (b) 1PR, and (c) 2PR.
After [87].

Figure 4.2: The Power Spectral Density (PSD) of the (a) 0PR, (b) 1PR, and (c) 2PR
Speech Segment. After [87].

4.3.2 Noise Suppression by TEO

Let us consider a speech signal x(n) corrupted with various types of additive
noises, such as Gaussian, Poisson, and uniform, so that the resultant output sig-
nals for 1PR and 2PR are defined as [37], [38]:

y1[n] = x[n] + η1[n], (4.5)

y2[n] = x[n] + η1[n] + η2[n]. (4.6)

where η1[n] and η1[n] + η2[n] represents the additive noise present in 1PR and
2PR scenarios, respectively. The TEO of these 1PR and 2PR resultant signal is
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calculated as:

Ψ{y1[n]} = Ψ{x[n]}+ Ψ{η1[n]}+ 2 ∗ Ψ̃{x[n], η1[n]}, (4.7)

Ψ{y2[n]} = Ψ{x[n]}+ Ψ{η1[n]}+ Ψ{η2[n]}+ 2 ∗ Ψ̃{x[n], η1[n] + η2[n]}+
2 ∗ Ψ̃{η1[n], η2[n]},

(4.8)

η[n] = η1[n] + η2[n], (4.9)

where Ψ̃ represents the cross-Teager energy operator (CTEO) between the two
signals a[n], and b[n] and it is defined as [12]:

Ψ̃{a[n], b[n]} = a[n]b[n]− 0.5.[a[n + 1]b[n − 1]

+a[n − 1]b[n + 1]].
(4.10)

Moreover, in eq. (4.7) and eq. (4.8) the x[n], η1[n], η2[n], and η[n] are zero-mean
and statistically-independent signals. Therefore, the expected value of Ψ̃{x[n], η[n]},
Ψ̃{x[n], η[n]} is zero. Further the E[Ψ{η1[n]}] = E[Ψ{η2[n]}] ≈ 0. Hence, the ex-
pected value of resultant TEO equation is defined as [60]:

E[Ψ{y1(n)}] ≈ E[Ψ{x[n]}]. (4.11)

E[Ψ{y2(n)}] ≈ E[Ψ{x[n]}]. (4.12)

Fig. 4.2 shows the Power Spectral Density (PSD) of TEO (orange line) and without
TEO (blue line) of 0PR, 1PR, and 2PR for the same speech segment as shown in
Fig. 4.2. The noise suppression capabilities of the TEO can be observed through
the power difference between the TEO and without TEO segment. The power
difference between PSD of TEO of signal and without TEO signal decreases as the
frequency increases for the 0PR, 1PR, and 2PR. Hence, the key idea for using the
TECC feature set is to exploit the noise suppression capabilities of TEO for the
classification of the genuine vs. replay utterance.

4.4 TECC Feature Extraction

The functional block diagram of the TECC feature set is shown in Fig. 4.3 [49].
Given that speech is a multicomponent signal and that the hearing is a process
of detecting energy in subbands [45], practically it should be decomposed into
several subbands. Therefore, the speech signal is first bandpass filtered using a
linearly-spaced Gabor filterbank, resulting in N narrowband (subband) filtered
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signals. Due to the Heisenberg’s uncertainty principle in signal processing frame-
work, the Gabor filter is known to have optimal time-frequency resolution [61].
Moreover, it has been found that the linearly-spaced frequency bins enable good
resolution both in lower and higher frequency regions of characteristics desired
to capture attributes of replay spoof. Furthermore, in order to estimate the en-
ergy of each of the narrowband filtered signals, TEO is used to estimate energy
with high temporal resolution, utilizing only three consecutive samples for energy
estimation. To that effect, the application of TEO to each of the filtered narrow-
band signal results in N TEO profiles. These TEO profiles are passed through
frame-blocking, and averaged with a short window of 20 ms and with a window
shift of 10 ms, followed by logarithmic operation to compress the data. Lastly,
Discrete Cosine Transform (DCT) is applied for feature decorrelation and energy
compaction along with Cepstral Mean Normalization (CMN) to derive TECC fea-
ture set [47].

Figure 4.3: Functional block diagram of TECC feature extraction. After [87].

4.5 Cross-Teager Energy Cepstral Coefficients (CTECC)

4.5.1 Analysis of Cross-Teager Energy Operator (CTEO)

In sub-Section 4.2, TEO is implemented for single channel analysis. Hence, to
track the cross-energies between two channels, CTEO is developed in [46], and
can be denoted as Ψcr[·]. CTEO is a nonlinear quadratic operator, which esti-
mates the relative rate of change of energies between signals. The Cross-Teager
Energy (CTE) between the two real-valued signals, x(t) and y(t) in continuous-
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time-domain is represented as [57]:

Ψcr{x(t), y(t)} = (ẋ(t)ẏ(t))− (x(t)ÿ(t)), (4.13)

Ψcr{y(t), x(t)} = (ẏ(t)ẋ(t))− (y(t)ẍ(t)). (4.14)

From eq. (4.13) and eq. (4.14), the non-commutative property of CTEO is ob-
served, i.e., Ψcr[x(t), y(t)] ̸= Ψcr[y(t), x(t)] [46], [12]. Using eq. (4.13), the aver-
age CTEO (Ψavg

cr [·]) between the continuous-time real-valued signals is estimated
as [12]:

Ψavg
cr {x(t), y(t)} =

1
2
(Ψcr{x(t), y(t)}+ Ψcr{y(t), x(t)}). (4.15)

However, the definition of CTEO can be extended to complex-valued signals
as given in [19]. Furthermore, for the discrete-time signals x(n) and y(n), average
cross-Teager energies are estimated as:

Ψavg
cr {x(n), y(n)} = x(n)y(n)− 0.5[x(n + 1)y(n − 1)

+x(n − 1)y(n + 1)].
(4.16)

From eq. (4.16), the excellent time resolution of the CTEO can be observed.
Subsequently, the later part of the thesis deals with the real-valued continuous-
time-domain representation of speech signal, which can be further extended in
discrete-time.

Let us consider the signal xi(t) in N-sensor microphone array, where i ∈ [1, N]

and xi(t) is represented as:

xi(t) = si(t) + ni(t), i = 1, 2, ..., N, (4.17)

where si(t) and ni(t) represent the original speech signal and additive noise in
ith the sensor, respectively. The additive noise component is assumed to be zero-
mean and Wide Sense Stationary (WSS) Gaussian random process. The impact of
reverberation is neglected because acoustical reverberation are spectrally similar
and cannot be separated from the natural speech.

The output signal of each sensor xi(t) is decomposed using a suitable filter-
bank into L subband signals, and subband filtered signal is represented as:

xij(t) = xi(t) ∗ gj(t), j = 1, 2, ..., L, (4.18)

where ’*’ represents the convolution and xij(t) represents the subband filtered
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signal obtained for the ith channel and jth subband filter in the filterbank. Consid-
ering two sensor input (p, q) and jth subband filter of the filterbank, the CTE will
be expressed as:

Ψcr{xpj(t), xqj(t)} = (ẋpj(t)ẋqj(t))− (xpj(t)ẍpj(t)). (4.19)

From the eq. (4.4), eq. (4.17), and eq. (4.19), we obtain:

Ψcr{xpj(t), xqj(t)} = Ψcr{sj(t)}+ Ψcr{npj(t), nqj(t)}

+ Ψcr{sj(t), nqj(t)}+ Ψcr{npj(t), sj(t)}.
(4.20)

The replay noise is represented by the last three terms on the Right-Hand Side
(RHS) of eq. (4.20). Taking expectation operator (E[·]) on eq. (4.20), we get:

E[Ψcr[xpj(t), xqj(t)}] = E{Ψcr[sj(t)]}+ E{Ψcr[npj(t), nqj(t)]}. (4.21)

The last two terms of RHS side in eq.(4.20) are zero-mean and hence, the ex-
pectation operator is zero [57]. However, the second term represents the error in
eq. (4.21) [62]. Hence, the modified equation is given as:

E{Ψcr[xpj(t), xqj(t)]} = E{Ψcr[sj(t)]}+ error. (4.22)

Let us denote τ the concentration of noise power within the subband filter’s pass-
band. Using Cauchy–Schwartz inequality for two random variables X and Y, we
have [9]:

|E(XY)|2 ≤ E(X2)E(Y2), (4.23)

where (XY) is the inner product between the random variables X and Y. There-
fore, using eq. (4.23), the relation between the noise power, we obtain:

|τ(pq)j
| ≤ τpj τqj , (4.24)

where τpj is the noise power concentration of the jth subband and pth channel.
Moreover, τpj is proportional to the error term in eq. (4.22), where the error term
is the varying whereas the source signal through the bandpass filter remains the
same throughout the analysis. For ASR application, the desirable speech signal
representation should contain the least amount of noise component. Hence, the
representation with minimum error is chosen for ASR application as explained
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in [77]. Whereas, for replay SSD, it is necessary to emphasize the distorted chan-
nel information and hence, we have chosen the channels, which corresponds to
maximum error in eq. (4.22).

By maximizing the error, the additional acoustical representation can be ob-
tained. With respect to the analysis of CTEO, we have NC2 possibilities of channel-
pairs for each ith subband. Estimating average CTE for all channel-pairs and then
choosing the one with the highest average energy is a feasible, however, compu-
tationally expensive approach. To reduce the computational complexity, the two
channels with the highest average Teager energy can be chosen and CTE between
those two channels can be utilized, represented by the first block of mean and
max in Fig. 4.4. Furthermore, among the set of the one average CTE and two Tea-
ger energies, the subband filtered signal with the maximum energy is selected for
classification between genuine and replay utterances, namely, Maximum Energy
Signal (MES) represented by second block of mean and max in Fig. 4.4. Mathe-
matically, MES can be represented as:

MES =max(p,q)(E{Ψavg
cr [xpj(t), xqj(t)]}, E{Ψcr[xpj(t)]},

E{Ψcr[xqj(t)]}).
(4.25)

From eq. (4.25), the MES contains the maximum distortions, such as acous-
tical environment and intermediate device responses, these non-linearities are
captured by the MES. Hence, for the replay SSD, the MES is selected for fur-
ther processing. However, for the severity-level classification of dysarthria the
linguistic information has greater significance w.r.t. the environmental acoustic
cues. Hence, among the set of the one average CTE and two Teager energies, the
subband filtered signal with the minimum energy is selected for severity-level
classification, namely, Minimum Energy Signal (MiES), represented as :

MiES =min(p,q)(E{Ψavg
cr [xpj(t), xqj(t)]}, E{Ψcr[xpj(t)]},

E{Ψcr[xqj(t)]}).
(4.26)

4.5.2 CTECC Feature Extraction Procedure

Fig. 4.4 and Fig. 4.5 shows the functional block diagram of the CTECC for the de-
velopment of CM system for replay attacks and classification of dysarthria based
on severity, respectively. Input speech signal is recorded using different micro-
phone arrays with different sampling frequencies. Hence, the input speech of each
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channel is re-sampled at 16 kHz sampling frequency. Each of the signal from N-
channel microphone array is processed through a Gabor filterbank, which possess
excellent time-frequency resolution (because the Fourier transform of a Gaussian
function is also a Gaussian). Further, Gaussian belongs to the class of infinitely
differentiable functions, in particular, C∞ and hence, they have faster decay in
frequency-domain [61]). The Gabor filterbank consist of linearly-spaced 160 and
40 subband filters for replay SSD and severity-level classification of dysarthria, re-
spectively. Further, TEO profile for each subband filtered signal is obtained. Fur-
thermore, average of the TEOnj are compared, where n ∈ [1, N] and j ∈ [1, 160] for
replay SSD and j ∈ [1, 40] for dysarthric severity-level classification. Further, from
the discussion in sub-Section 4.5.1, the two channels p and q are selected such that
they have maximum average TEO which provides the maximum environmental
acoustic cues. However, for the dysarthric classification based on severity-level,
the two channels p and q are selected such that they have minimum average TEO,
which contains maximum linguistic information. Further, using eq. (4.16) on the
p and q, the average CTEO is estimated. Windowing is performed on the subband
filtered signal with window size of 25 ms and window shift of 10 ms, which pro-
vides m frames. Averaging on each frame is performed, which provides the aver-
age energy for a frame in consideration. Then logarithm operation is performed,
which is followed by Discrete Cosine Transform (DCT) to obtain the cepstral rep-
resentation. The input feature for the classifier is obtained by the concatenation of
the static, ∆, and ∆∆ components, described in Table 4.1.

Table 4.1: Dimension of CTECC Feature for Various Application. After [89].

Application Subband
Filter Static ∆ ∆∆

Replay
SSD 40 40 40 40

Severity-level
Classification 160 70 70 70

Figure 4.4: Functional Block Diagram of CTECC Feature Extraction for Replay
SSD. After [89].
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Figure 4.5: Functional Block Diagram of CTECC Feature Extraction for Severity-
Level Classification of Dysarthria. After [89].

4.6 Experimental Results of TECC on Cross-Database

Evaluation

In this Section, we present the experimental results for various cases of cross-
dataset evaluation. We trained our model for three datasets, results of which are
explained next:

4.6.1 Training on Complete VSDC Dataset

For this case, we utilized the complete VSDC dataset for training. Evaluation was
performed on ASVSpoof 2017 v2.0 dataset and ASVSpoof 2019 PA dataset. The
experimental results for these cases are described in this sub-Section.

Testing on ASVSpoof 2017 v2.0

• With GMM classifier: From Table 4.2, it can be observed that the TECC (lin-
ear) feature set achieves an EER of 27.63% on the evaluation set of ASVSpoof
2017 dataset and outperforms the rest of the feature sets. In particular, TECC
feature set achieves a relative improvement of 38.21% EER on the evaluation
set w.r.t. the baseline CQCC feature set.

• With CNN classifier: From Table 4.2, it can be observed that the TECC (lin-
ear) achieves EER of 24.07% and 26.19% on the development and evaluation
sets, respectively.

Testing on ASVSpoof 2019 PA

• With GMM classifier: From Table 4.5, it can be observed that TECC variants
achieve better performance as compared to the CQCC, MFCC, and LFCC.
Furthermore, out of the three variants of TECC, TECC (inv-Mel) achieves
relatively the best performance of 44.11% EER. One of the potential rea-
sons for high EERs in the case of testing on ASVSpoof 2019 PA dataset is
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that VSDC consists of real replay signals, whereas the replay utterances in
ASVSpoof 2019 PA dataset are simulated.

Table 4.2: Results (in % EER) training on VSDC and testing on ASVSpoof 2017.
After [87].

Classifier
Training Dataset VSDC

Testing Dataset ASVSpoof 2017
Dev. Eval.

GMM

CQCC 31.74 44.72
MFCC 39.17 35.88
LFCC 30.41 37.27

TECC (Linear) 20.01 27.63
TECC (Mel) 28.87 34.84

TECC (Inv-Mel) 33.14 36.59

CNN
TECC (Linear) 24.07 26.19

TECC (Mel) 28.68 33.05
TECC (Inv-Mel) 33.15 33.51

4.6.2 Training on ASVSpoof 2017 Training Dataset

For this case, we trained our model on the training set of the ASVSpoof 2017 v.20
dataset. For evaluation, binary classification was performed for two cases: 1) 0PR
and 1PR as genuine and spoof class, respectively. 2) 0PR and 2PR as genuine and
spoof class, respectively.

Evaluation on VSDC with 0PR and 1PR as Genuine and Spoof (i.e., 0-1PR)

• With GMM classifier: From Table 4.3, it should be noted that minimum EER
of 31.65% is achieved using TECC (Mel) leading to a relative improvement
of 39.27% in ERR as compared to the CQCC baseline. It should also be noted
that the remaining two variants of TECC, i.e., TECC (linear), and TECC (inv-
Mel) also performed reasonably well as compared to the CQCC, MFCC, and
LFCC.

• With CNN classifier: When CNN is used as the classifier, it can be observed
that out of the three variants of TECC, TECC (linear) achieves relatively the
best performance of 34.60% EER. Further, TECC (linear) gave the best per-
formance on CNN. This was also the case when the training dataset was
VSDC and the testing dataset was ASVSpoof 2017 v2.0.
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Table 4.3: Results (in % EER) training on ASVSpoof 2017 and testing on VSDC.
After [87].

Classifier Training Dataset ASVSpoof 2017

Testing Dataset VSDC
(0PR, 1PR)

VSDC
(0PR, 2PR)

GMM

CQCC 52.12 43.16
MFCC 45.28 46.87
LFCC 47.78 49.13

TECC (Linear) 41.29 40.88
TECC (Mel) 31.65 31.96

TECC (Inv-Mel) 38.04 34.45

CNN
TECC (Linear) 34.6 22.97

TECC (Mel) 43.83 27.27
TECC (Inv-Mel) 43.39 36.61

Evaluation on VSDC with 0PR and 2PR as Genuine and Spoof (i.e., 0-2PR)

• With GMM classifier: From Table 4.3, TECC (Mel) achieves relatively the
best performance of 31.96% EER, with relative improvement of 25.94% in
EER w.r.t. CQCC baseline system.

• With CNN classifier: Amongst the three variants of TECC, TECC (linear)
achieves relatively the best performance of 22.97% with CNN. However, the
remaining variants, i.e., TECC (Mel) and TECC (linear) also perform rela-
tively better than the rest of the feature sets.

4.6.3 Training on ASVSpoof 2019 Training Dataset

Evaluation on VSDC with 0PR and 1PR as Genuine and Spoof (i.e., 0-1PR)

• With GMM classifier: From Table 4.4, it can be observed that TECC and its
variants outperform the CQCC, MFCC, and LFCC feature sets. In particular,
TECC (Mel) achieves relatively the best performance of 33.45% EER, which
leads to percentage improvement of 26.33% in EER w.r.t. the CQCC baseline.

Evaluation on VSDC with 0PR and 2PR as Genuine and Spoof (i.e., 0-2PR)

• With GMM classifier: From Table 4.4, it is noted that TECC (inv-Mel) achieves
relatively the best performance of 34% EER, which leads to percentage im-
provement of 17.31% in EER w.r.t. the CQCC baseline.
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Table 4.4: Results (in % EER) training on ASVSpoof 2019 PA and testing on VSDC
dataset using GMM classifier.After [87].

Training Dataset ASVSpoof 2019 PA

Testing Dataset VSDC
0PR-1PR 0PR-2PR

CQCC 45.41 41.12
MFCC 47.03 38.59
LFCC 41.88 41.52

TECC (Linear) 41.65 39.97
TECC (Mel) 33.45 40.60

TECC (Inv-Mel) 35.07 34.00

Table 4.5: Results (in % EER) training on VSDC and testing on ASVSpoof 2019 PA
dataset using GMM Classifier. After [87].

Training Dataset VSDC

Testing Dataset ASVSpoof 2019 PA
Dev. Eval.

CQCC 48.66 49.46
MFCC 49.97 49.80
LFCC 49.70 49.45

TECC (Linear) 47.34 48.17
TECC (Mel) 46.38 47.59

TECC (Inv-Mel) 42.96 44.11

Figure 4.6: Latency period vs. % EER between the MFCC, LFCC, CQCC, and
TECC (Mel) feature sets. After [87].

4.6.4 Analysis of Latency Period

In this study, we have also investigated the latency period for TECC feature set
w.r.t the other feature sets considered in this study. Latency period, represents
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the performance evaluation w.r.t different durations of speech segment in an ut-
terance and estimating the % EER. The utterance duration ranges from 20 ms to
2 seconds, with an interval of 200 ms. Further, the utterance duration is selected
by considering the number of frames. Fig. 5.4 shows comparison between the
MFCC, LFCC, CQCC, and TECC (Mel) for training on ASVSpoof 2017 and testing
on VSDC 0PR-1PR. It can be observed that the TECC feature set outperformed
the state-of-the-art features for the cross-database evaluation. Moreover, it can be
observed that TECC feature set gave reduced % EER in short duration of speech
utterance compared to the other feature sets. Furthermore, the % EER converges
to the minimum value as the speech duration provided to the model of SSD sys-
tem increases. This is due to the fact that more information is provided to the
CM system for the classification and hence, the decreases in % EER is observed.
Additionally, the performance of feature set is better if for a low latency period,
the performance is high, which indicates the faster classification by the model
and thus, indicating suitability of a SSD system from the perspective of practical
deployment.

4.7 Results using CTECC

In this study, experiments are performed using the proposed CTECC feature set
with GMM as a classifier and compared against the performance of the deep
learning-based approach utilized in [32]. The proposed CTECC-GMM architec-
ture and the deep learning-based architecture reported in [32], both exploits the
multi-channel information representation for replay SSD, and the performance
comparison for these two approaches is shown in Table 4.6 w.r.t. the number
of channels utilized in each device. The architecture in [32] was considered as
baseline architecture in our work. It can be observed that the proposed CTECC
feature set performs relatively better than the baseline architecture for devices D1,
D2, and D4, when all the available channels in the microphone array were utilized
for feature representation. Whereas, the comparable performance is observed for
the device D3. Furthermore, the results obtained using proposed CTECC feature
set are compared against the other state-of-the-art feature sets, such as MFCC,
CQCC, LFCC, and TECC. The results are shown in Table 4.7. It can be observed
that the proposed CTECC feature set performs better than the other feature sets,
except for device D1. On the whole, the proposed CTECC feature set is useful
representation for the replay SSD for VAs, where multi-channel information can
be exploited.
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Table 4.6: Results (in % EER) on evaluation set for the proposed CTECC-GMM
architecture vs. architecture proposed in [32] for various devices.

Device
Channels Utilized for Replay SSD

1 2 3 4 5 6 7
[32] CTECC [32] CTECC [32] CTECC [32] CTECC [32] CTECC [32] CTECC [32] CTECC

D1 16.6 22.0 14.9 8.84 - - - - - - - - - -
D2 23.7 25.80 19.5 15.74 16.7 16.33 15.4 13.01 - - - - - -
D3 23.7 24.63 19.1 17.31 17.6 19.755 17.0 19.10 17.1 19.71 16.5 16.53 - -
D4 27.5 29.79 21.5 21.47 20.6 21.19 21.3 20.3 20.7 20.25 19.9 21.15 19.8 16.41

Table 4.7: Results (in % EER) on development and evaluation set w.r.t. various
feature sets and for various devices. After [89].

Device D1 D2 D3 D4
Feature Set Dev Eval Dev Eval Dev Eval Dev Eval

MFCC 9.16 7.98 16.87 26.02 19.71 20.37 12.23 26.99
CQCC 2.88 11.9 4.59 28.68 4.07 23.91 1.88 29.392
LFCC 2.26 8.04 3.45 20.09 4.75 19.32 3.43 23.18
TECC 9.15 22.0 12.34 25.80 10.85 24.63 13.72 29.79

CTECC 0.86 8.84 1.25 13.01 0.87 16.53 0.67 16.41

Table 4.8: Performance Measure for classification experiments for genuine and
replay utterances. After [89].

Devices Used for Replay SSD
D1 D2 D3 D4

Dev Eval Dev Eval Dev Eval Dev Eval
Feature F-Measure
MFCC 0.9245 0.9165 0.9070 0.8139 0.8889 0.8738 0.9160 0.7998
CQCC 0.9705 0.9110 0.9492 0.7763 0.9578 0.8057 0.9677 0.7355
LFCC 0.9646 0.9386 0.9613 0.8396 0.9605 0.8719 0.9727 0.8090
TECC 0.9746 0.9449 0.9425 0.8988 0.9575 0.9339 0.9327 0.8813

CTECC 0.9843 0.9438 0.9827 0.8980 0.9851 0.8710 0.9941 0.7975
J-measure

MFCC 0.8358 0.7843 0.7862 0.5143 0.7031 0.6008 0.7767 0.4918
CQCC 0.9368 0.7418 0.8907 0.4534 0.9038 0.4917 0.9260 0.4261
LFCC 0.9258 0.8297 0.9065 0.5557 0.8984 0.6055 0.9317 0.5178
TECC 0.8812 0.5577 0.8496 0.5618 0.8571 0.5199 0.8107 0.5105

CTECC 0.9690 0.8304 0.9629 0.7286 0.9657 0.6412 0.9847 0.9103

4.7.1 Analysis of Latency Period

In this study, we have also considered the analysis of latency period, where speech
segment of different durations ranging from 20 ms to 2 seconds with an interval of
200 ms is presented to the model and the % EER is calculated. The utterance dura-
tion is selected by considering the number of frames. Fig. 5.4 shows comparison
between the CTECC, MFCC, CQCC, LFCC, and TECC feature sets w.r.t latency
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period. It can be observed that the CTECC provides the lowest % EER w.r.t the
other single channel feature sets. Further, the CTECC considers the multi-channel
input, which assist in capturing the cues of acoustical environment. However,
the response of CM system (in terms of % EER) converges as the speech duration
increases. This is due to the fact that more information is provided to the CM
system for the classification and hence, the decrease in % EER is observed.

Figure 4.7: Latency period vs. % EER comparison between MFCC, CQCC, LFCC,
TECC, and CTECC. After [89].

4.8 Results on Severity-Level Classification

4.8.1 Results using TECC

The results obtained in % classification accuracy using various features sets and
classifiers are reported in Table 5.1. It can be observed that the TECC performs rel-
atively better than the baseline MFCC feature set with classification accuracy of
97.18%, 94.63% and 98.02% (i.e., absolute improvement of 1.98 %, 1.41 %, and 1.69
%) for CNN, LCNN, and ResNet classifiers, respectively. Furthermore, it was also
observed that there was decrease in % classification accuracy by varying parame-
ters in CNN model. This might be due to overfitting of the model. Furthermore,
TECC performs the better than then baseline MFCC feature set for CNN, LCNN,
and ResNet classifiers explored in [41]. Moreover, it was observed that optimum
results of TECC were obtained on linear scale. The analysis provided in Section
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4.3 along with experimental results obtained using various classifiers shows that
the TECC can be the best possible choice for the severity-level classification of
dysarthric speech.

Figure 4.8: Scatter plots obtained using LDA for (a) MFCC, (b) LFCC, and (c)
TECC. After [43]. Best viewed in colour.

Table 4.9: Results (in % Classification Accuracy) for various classification systems.
TECC → Linear frequency scale used. After [43].

Feature Set ↓ % Classification Accuracy
CNN LCNN ResNet

MFCC 95.20 93.22 96.33
LFCC 96.32 94.07 97.17

TECC-Mel 92.37 85.87 93.09
TECC 97.12 94.63 98.02
MelFB 96.04 91.24 97.45
LinFB 94.91 89.26 97.17

Subband-TE 95.48 93.22 95.12

Table 4.10: Results (in % Accuracy) between deep learning classifiers.

Feature Set % Classification Accuracy
SVM CNN LCNN ResNet

MFCC 75.70 95.20 93.22 96.33
LFCC 77.40 96.32 94.07 97.17
TECC 79.37 97.12 94.63 98.02

As mentioned in [54], the cepstral features perform better on noisy signal.
In [101], the noise in dysarthric speech increases with increase in severity-levels.
Hence, experiments were also performed on the spectral features w.r.t proposed
and baseline features with all the three classifiers. It was observed that the cep-
stral features gave remarkably better % classification accuracy on all the classi-
fiers. Further, the CNN classifier is compared with the traditional SVM classifier
in one-versus-one approach, shown in Table 4.10. Hence, it can be inferred that
more the severity-level, more is the speech production noise.
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Furthermore, Table 4.11 shows the confusion matrices for the TECC, MFCC,
and LFCC for ResNet model. It can be observed that TECC reduces the misclas-
sification errors, especially for high severity-level dysarthria, and overall perfor-
mance of the TECC is relatively better than the MFCC, and LFCC. Furthermore,
F1-score, MCC, Jaccard index, and Hamming loss are estimated for all the cepstral
features as shown in Table 4.12. It can be observed from Table 4.12 that the TECC
feature set outperforms the other cepstral features for all the evaluation metrics,
indicating relatively better feature discriminative power of TECC.

Table 4.11: Confusion matrix obtained for MFCC, LFCC, and TECC using ResNet.
After [43].

Feature Severity High Medium Low Very Low
High 72 0 2 1

Medium 1 90 2 0
Low 1 1 88 3MFCC

Very Low 1 0 0 92

High 74 0 1 0
Medium 1 88 2 2

Low 0 1 91 1LFCC

Very Low 1 0 0 92

High 74 1 0 0
Medium 1 92 0 0

Low 0 1 92 0TECC

Very Low 1 0 0 92

Table 4.12: Various statistical measures for MFCC, LFCC, and TECC. After [43].

Feature Sets F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 0.96 0.95 0.93 0.033
LFCC 0.97 0.96 0.95 0.025
TECC 0.98 0.97 0.96 0.019

4.8.2 Analysis of Latency Period

We analysed latency period for TECC, LFCC, and MFCC feature sets as shown
in Figure 5.4. The latency period of the trained model is estimated by computing
the % classification accuracy w.r.t. varying durations of test speech segment in a
test utterance. For analysis of latency period, we chose the duration of the utter-
ances varying from 100 ms to 3000 ms. The better performing model w.r.t. latency
period should produce the larger accuracy for short speech segments. Moreover,
it can be observed that the TECC gave significant % classification accuracy in a
limited duration speech utterance of < 500 ms. On the contrary, MFCC and LFCC
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shows increment in accuracy after a relatively longer utterance duration of 1000
ms. Hence, these results signifies the suitability of TECC for practical dysarthric
speech classification system deployment.

Figure 4.9: Latency period vs. % classification accuracy comparison between
MFCC, MelFB, LFCC, LinFB, TECC, and Subband-TE. After [88]. Best viewed
in colour.

4.8.3 Results using CTECC

The % classification accuracy of baseline STFT and CTECC on CNN is shown in
Table 4.13. It can be observed that the CTECC (min) performs better with clas-
sification accuracy of 95.76% than the baseline STFT and CTECC (max) on CNN
model. Furthermore, the performance analysis shown in the Table 4.14 using sta-
tistical parameters, such as F1−Score, MCC, Jaccard Index, and Hamming Loss,
also shows that the CTECC (min) shows better linguist information capturing ca-
pabilities from the dysarthric speech compared to then CTECC (max) and STFT
feature set on CNN model. In addition to it, Table 5.2 shows the confusion matrix
of STFT, CTECC (max), and CTECC (min) feature set. It can be observed from the
Table 4.12 that the false prediction is reduced by the CTECC (min) in comparison
to baseline STFT and CTECC (max) feature set, which all the more supports the
fact that CTECC (min) is capable of capturing the linguistic or relevant discrimi-
nant information better than STFT and CTECC (max) feature set.

Table 4.13: % Classification Accuracy for Baseline STFT and CTECC Feature Set.
After [88].

Feature Set CNN
Spectrogram 91.72
CTECC_max 91.24
CTECC_min 95.76

47



Table 4.14: Performance Evaluation for Various Feature Set. After [88].

Feature Set F1-Score MCC Jaccard
Index

Hamming
Loss

STFT 0.87 0.83 0.776 0.124
CTECC_max 0.91 0.88 0.84 0.087
CTECC_min 0.96 0.94 0.91 0.042

Table 4.15: Confusion Matrix for STFT, and CTECC Feature Set. After [88].
Feature Set Severity High Medium Low Very Low

High 63 6 3 3
Medium 10 79 3 1

Low 3 4 79 7STFT

Very Low 1 2 1 89

High 62 10 2 1
Medium 4 85 1 1

Low 1 3 88 1CTECC (Max)

Very Low 1 4 2 86

High 70 3 2 0
Medium 3 90 0 0

Low 1 3 87 2CTECC (Min)

Very Low 0 1 0 92

4.8.4 Analysis of Latency Period

Finally, we also analysed the latency period for CTECC (Min) and CTECC (Max)
feature sets as shown in Figure 5.4. The latency period of the trained model is esti-
mated by computing the % classification accuracy w.r.t. varying durations of test
speech segment in a test utterance [80]. For latency period analysis, we chose the
duration of the utterances varying from 20 ms to 400 ms. The better performing
model w.r.t. latency period should produce the larger accuracy for short speech
segments. Moreover, it can be observed that the CTECC gave significant % clas-
sification accuracy in a short duration of w.r.t CTECC_max. Hence, these results
signifies the suitability of CTECC for deployment of practical dysarthric speech
classification system.

4.9 Chapter Summary

In this chapter, we presented the significance of TECC feature set for development
of CM system for replay SSD, and severity-level classification of dysarthria. Fur-
ther, the potential application of TECC in the generalization of the CM system and
severity-level classification of dysarthria has been supported through the perfor-
mance measures, such as Hamming loss, J-measure, and latency period. Further-
more, CTECC, an extension of the TEO was utilized for the replay SSD for VAs
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Figure 4.10: Latency Period vs. % Accuracy Comparison Between CTECC min
and CTECC max. After [88].

and severity-level classification of dysarthria, where the impact of multi-channel
microphone in capturing the relative change in energy was observed. Finally, the
next chapter proposes the Squared Energy Cepstral Coefficients (SECC) for the
severity-level classification of dysarthria.
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CHAPTER 5

SECC Feature Set

5.1 Introduction

In this chapter, we discuss the Squared Energy Cepstral Coefficients (SECC), which
is an extension of our work on TECC for dysarthria as discussed in chapter 4. The
sub-Section 5.2 describe the feature extraction procedure of SECC. Further, sub-
Section 5.3 discusses the Squared Energy Operator (SEO) and TEO profiles for the
dysarthric speech. Next, the Section 5.4 and Section 5.5 presents the experimental
results on the UA-corpus and the performance analysis obtained by the SECC,
respectively. Finally, Section 5.6 summarizes the chapter.

5.2 Proposed Work

In the signal processing literature, the energy of the speech signal x(t) is estimated
by calculating the integral of square of absolute operation across the entire signal
under consideration, i.e., estimating the squared L2 norm of the signal, referred
to as SEO [68]. This energy estimation method is based on linear filtering the-
ory (specifically, Parseval’s energy equivalence, the total energy of a signal, i.e.,
L2 norm is conserved in the frequency-domain and this is also the condition of
existence of inverse for several linear transforms, such as Fourier, Gabor (STFT),
and wavelet transforms), which can only represent the linear components of the
speech generation process [86].

For SECC extraction, these narrowband output signals from Gabor filterbank
are squared to estimate corresponding energies. Next, these narrowband energies
are segmented with similar number of frames and window overlap. Temporal av-
eraging for each frame is estimated (i.e., L2 norm of each subband signal) to get N-
D subband Squared Energy representation (subband-LE). Discrete Cosine Transform
(DCT) is applied on subband Squared energy representations to obtain the SECC. The
functional block diagram representation of TECC and SECC feature sets is shown
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Figure 5.1: Functional block diagram of the proposed TECC and SECC feature
sets. (SF: Subband filtered signal, SE: Squared linear energies, TE: Teager energies,
AE: Averaged energies over frames). After [42].

in Fig 5.1. Throughout this paper, TECC and SECC features extracted using linear
frequency scale and for both the feature sets, DCT does the job of feature decorre-
lation, energy compaction, and feature vector dimensionality reduction.

5.3 Squared Energy Operator Profile Analysis

Here, we analyse the TEO profiles around the 1st formant frequency (i.e., F1 =

500Hz) for the utterance w.r.t. the same text material for normal vs. severity-
levels. Panel I of Fig. 5.2 shows the subband filtered signal around 1st formant (F1)
frequency using a linearly-spaced Gabor filter, and Panel II shows corresponding
TEO profiles. Fig. 5.2(a), Fig. 5.2(b), Fig. 5.2(c), Fig. 5.2(d), and Fig. 5.2(e)
shows the analysis for normal, very low, low, medium, and high severity-levels,
respectively. It can be observed that the TEO profile for normal speech shows
bumps within two consecutive Glottal Closure Instants (GCIs), which are known
to indicate non-linearities in speech production mechanism [74]. Furthermore,
it can also be observed that the quasi-periodicity in glottal excitation source de-
creases with increase in severity-level (as observed via aperiodic TEO profile) in-
dicating disruption in the rhythmic quasi-periodic movements of vocal folds due
to dysarthria. Moreover, it is all the more significant in high severity dysarthric
condition. Furthermore, as the severity-level increases, the neuro-motor impair-
ment also increase, which leads to increased disruption in vocal fold closure and
loosing structural periodicity. From Panel III of Fig. 5.2, which shows the SEO
profiles around 1st formant frequency for vowel /e/, it can be observed that the
SEO is capable of maintaining the periodicity in the speech wave produced by
dysarthric speaker, which are not captured by TEO due to possible decrease in
non-linearities. Hence, it can be said that as the dysarthric severity-level increases,
the linearities in speech signal increases.
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Figure 5.2: Subband filtered signal (for vowel /e/) for male speakers around
1st f ormantF1 = 500Hz (Panel I), corresponding TEO profile (Panel II), and corre-
sponding |.|2 envelope (Panel III) for (a) normal, dysarthic speech with severity-
level as (b) very low, (c) low, (d) medium, and (e) high. After [42].

5.4 Experimental Results

The results obtained as % classification accuracy using various feature sets are
reported in Table 5.1. It can be observed that SECC performs relatively better than
the baseline MFCC and TECC with classification accuracy of 1.7% (4.23% / 0.99%)
than baseline MFCC and 0.1.41% (0.56% / 0.28%) than TECC on CNN (LCNN /
ResNet) classifier systems, respectively. Furthermore, SECC performs better than
the baseline MFCC explored in [41]. The analysis in the next Section, along with
the % classification accuracy obtained using various classifiers, indicate that the
linearities in speech production mechanism increases with increase in dysarthric
severity-level.

% Please add the following required packages to your document preamble:
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Table 5.1: Results (in % Classification Accuracy) For various Classification Sys-
tems. After [42].

Feature Set % Classification Accuracy
CNN LCNN ResNet SVM

MFCC 96.32 92.09 95.33 75.70
TECC 96.61 95.76 96.04 79.37
SECC 98.02 96.32 96.32 88.31

5.5 Performance Evaluation

Furthermore, Table 5.2 shows the confusion matrices for MFCC, TECC, and SECC
for ResNet model. It can be observed that SECC reduces the misclassification
errors corresponding to the different severity-levels, indicating the better perfor-
mance of SECC w.r.t. TECC and MFCC. Furthermore, performance of SECC w.r.t.
TECC and MFCC is also analysed using F1-Score, MCC, Jaccard Index, and Ham-
ming Loss as shown in Table 5.3. It can be observed from Table 5.3 that SECC
performs better than the TECC for the dysarthic severity-level classification.

Table 5.2: Confusion matrix for MFCC, TECC, and SECC using CNN. After [42].
Feature Severity High Medium Low Very Low

High 67 4 3 1
Medium 2 90 0 0

Low 1 1 91 0MFCC

Very Low 1 0 0 92

High 72 1 2 0
Medium 2 90 0 0

Low 1 1 91 0TECC

Very Low 0 0 0 93

High 74 1 0 0
Medium 2 90 0 0

Low 1 0 92 0SECC

Very Low 0 0 0 93

Table 5.3: Various Statistical Measures of MFCC, TECC, and SECC. After [42].

Feature Set F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 0.96 0.95 0.82 0.036
TECC 0.97 0.96 0.95 0.025
SECC 0.98 0.97 0.96 0.019
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5.5.1 Linear Discriminate Analysis (LDA)

Capability of SECC to classify severity-level is also validated by LDA scatter plots,
which projects the higher-dimensional feature space to the lower-dimension [36].
Here MFCC, TECC, and SECC features are projected to the 2-D space to get the
scatter plots for various severity-levels of dysarthria. Fig. 5.3(a), Fig. 5.3(b), and
Fig. 5.3(c) shows the LDA plots of MFCC, TECC, and SECC, respectively. From
the Fig. 5.3, it can be observed that for SECC, the variance of each severity-level
clusters is less resulting in relatively better performance of SECC, which increases
the interclass distance between the clusters than the MFCC and TECC.

Figure 5.3: Scatter plots obtained using LDA for (a) MFCC, (b) TECC, and (c)
SECC. After [42]. Best viewed in colour.

5.5.2 Latency Period Analysis

Figure 5.4: Latency period vs. % classification accuracy comparison between
MFCC, TECC, and SECC. After [42]. Best viewed in colour.

Latency period for SECC w.r.t. TECC and MFCC were also analysed as shown
in Fig. 5.4. The latency period was calculated using the % classification accuracy
on varying test utterance. The utterance was varied from 50 ms to 300 ms. For
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short speech segments, the better performing model should produce higher accu-
racy in terms of latency period. From the Fig. 5.4, it can be observed that SECC
gives consistent and relatively better classification accuracy in short duration of
time as 60 ms. Furthermore, TECC and MFCC gives increased classification accu-
racy for speech segment of 100 ms and 250 ms, respectively. Hence, these results
signifies the practical suitability of SECC in dysarthric speech severity-level clas-
sification.

5.6 Chapter Summary

This chapter presented the usefulness of the SECC feature set for the severity-level
classification of dysarthria. Furthermore, we analysed the effect of the linear vs.
non-linear energy operator for the analysis and classification of the severity-level
of the dysarthric speech, indicating the presence of linearities in the dysarthric
speech. Lastly, these hypotheses are tested and supported by performing the ex-
periments using CNN, LCNN, and ResNet classifiers and the performance mea-
sures. Lastly, the next chapter concludes with the chapter summary and conclu-
sion of this thesis.
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CHAPTER 6

Summary and Conclusions

6.1 Summary of the Thesis

The work presented in the thesis aims at developing CM for replay SSD, and
severity-level classifier for dysarthria using feature-based approach. The prac-
tical potential of TECC was observed from the generalization of the CM sys-
tem through cross-database evaluation. Similarly, the TECC feature set provides
the significant improvement in the classification of dysarthric speech-based on
severity-level, which supports the hypothesis of TECC on capturing of source ex-
citation information during speech production mechanism. In addition to TECC,
CTECC was also introduced, which utilizes the multi-channel input for capturing
the discriminative environmental acoustic cues for the replay SSD by selecting
the optimum channel, which has the maximum relative energy. Similarly, for the
severity-level classification of dysarthria, CTECC selects the optimum channel,
which has the minimum relative energy (maximum linguistic energy). Finally,
SECC feature set is implemented for the severity-level classification of dysarthria,
through which the direct proportionality between presence of linearity and the
severity-level of dysarthria was observed.

6.2 Conclusions

The following conclusions can be drawn from the thesis works:

• Significance of TECC feature set in developing the CM for replay detection
and severity-level classification of dysarthria.

• The generalization of CM provides practical relevance for the deployment
of the SSD systems.

• The testing database has greater significance in the cross-database evalua-
tion.
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• The concept of CTEO for selecting optimum channel for designing the coun-
termeasure system for replay SSD and severity-level classification of dysarthria.

• The SEO-based feature aids in justifying the direct proportionality relation
between severity-level of dysarthria and the presence of linearities.

• Various data augmentation techniques for dysarthria classification.

• Cross-database evaluation for dysarthria for generalization

6.3 Limitations of Thesis Work

• The generalization of the CM system by TECC feature set is dependent on
the testing scenarios.

• Analysis of CTECC in the replay SSD and dysarthric severity-level classifi-
cation.

• The presence of linear component in dysarthria is not generalized through
cross-database evaluation.

• The motor control distortion between brain and primary speech mechanism
or brain and secondary speech producing mechanism remains unknown.

6.4 Future Research Direction

• Explore CM model to generalize the SSD systems using various signal pro-
cessing and deep learning methods.

• The significance of source-filter interaction feature for developing replay
SSD and severity-level classification of dysarthria.

• Cross database evaluation of dysarthria for generalization of severity-level
classification.

• Dysarthric speech enhancement for voice assistant and ASR systems.

• Automatic Speech Recognition models for Dysarthric patients.

57



CHAPTER 7

List of Publications from Thesis

(1) Anand Therattil, Priyanka Gupta, Piyushkumar K. Chodingala, Hemant A.
Patil, “Cross-Database Evaluation for Detection of one point and two point
replay attacks,” accepted in: The Speaker and Language Recognition Work-
shop, Speaker Odyssey, Bejing, China, June 28-July 1 2022.

(2) Aastha Kachhi, Anand Therattil, Ankur T. Patil, Hardik B. Sailor, Hemant A.
Patil “Dysarthric Speech Severity-Level Analysis and Classification Using
Teager Energy Cepstral Features”, submitted in: September INTERSPEECH
Incheon Korea, 28-22 September 2022.

(3) Aastha Kachhi, Anand Therattil, Ankur T. Patil, Hardik B. Sailor, Hemant
A. Patil “Analysis of Non-Linearities in Normal vs. Dysarthric Speech For
Severity-Level Classification”, submitted in: Signal Processing and Com-
munications (SPCOM), IISc, Bangalore, 11-15 July 2022.

(4) Aastha Kachhi, Anand Therattil, Priyanka Gupta and Hemant A. Patil “Con-
tinuous Wavelet Transform for Severity-Level Classification of Dysarthria”
submitted in: Signal Processing and Communications (SPCOM), IISc, Ban-
galore, 11-15 July 2022,

(5) Hemant A. Patil, Ankur T. Patil, Aastha Kachhi and Anand Therattil “Novel
Constant-Q Cepstral Features for Infant Cry Classification” submitted in:
Signal Processing and Communications(SPCOM), IISc, Bangalore, 11-15 July
2022.

(6) Madhu R. Kamble, Anand Therattil, Hemant A. Patil, M. Ali Basha Shaik,
and Vikram Vij “Impact of Acoustic Environment and Microphone Array for
Voice Assistant Systems using Smoothed Teager Energy Features”, Rejected
in: The Speaker and Language Recognition Workshop (Speaker Odyssey)
Bejing, China, June 28-July 1 2022,

58



(7) Anand Therattil, Ankur T. Patil and Hemant A. Patil “On Significance of
Cross-Teager Energy Cepstral Coefficients for Replay Spoof Detection on
Voice Assistants”, Rejected in: The Speaker and Language Recognition Work-
shop (Speaker Odyssey), Bejing, China, June 28- July 1 2022.

(8) Anand Therattil, Aastha Kachhi, Hemant A. Patil, “Cross-Teager Energy
Cepstral Coefficients For Dysarthric Severity-Level Classification”, submit-
ted in: INTERSPEECH Workshop, Korea, 18-22 Sept 2022.

59



References

[1] Alexa’s drop in feature makes eavesdropping easy.
https://www.wfmynews2.com/article/news/local/2-wants-to-
know/alexas-drop-in-feature-makes-eavesdropping-easy/83-528254751
{Last Accessed: 26-02-2022}.

[2] Amazon disputes claims that echo show’s drop-in feature is a security
risk. https://techcrunch.com/2017/06/28/amazon-disputes-claims-that-
echo-shows-drop-in-feature-is-a-security-risk/ {Last Accessed: 26-02-2022}.

[3] How to call another alexa device in a different house.
https://robotpoweredhome.com/how-to-call-another-alexa-device-in-
a-different-house/ {Last Accessed: 26-02-2022}.

[4] R. Acharya, H. Kotta, A. T. Patil, and H. A. Patil. Cross-Teager energy cep-
stral coefficients for replay spoof detection on voice assistants. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, Ontario, Canada,pp. 6364–6368, 6-11 June 2021.

[5] S. R. Atcherson, A. E. DeLaune, K. Hadden, R. I. Zraick, R. J. Kelly-
Campbell, and C. P. Minaya. A computer-based readability analysis of
consumer materials on the american speech-language-hearing association
website. Contemporary Issues in Communication Science and Disorders, vol.41,
pp.12–23, 2014.

[6] R. Baumann, K. M. Malik, A. Javed, A. Ball, B. Kujawa, and H. Malik. Voice
spoofing detection corpus for single and multi-order audio replays. Com-
puter Speech & Language, vol.65:pp.101132, January 2021.

[7] V. Bewick, L. Cheek, and J. Ball. Statistics review 10: further nonparametric
methods. Critical care, vol.8,pp.1–4, 2004.

[8] C. Bhat and H. Strik. Automatic assessment of sentence-level dysarthria
intelligibility using blstm. IEEE Journal of Selected Topics in Signal Processing,
vol. 1, 4pp. 322–330, 2020.

60



[9] R. Bhatia and C. Davis. A Cauchy-Schwartz inequality for operators with
applications. Linear Algebra and Its Applications, vol.223, pp.119–129, 1995.

[10] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[11] M. Bouchard, A.-L. Jousselme, and P.-E. Doré. A proof for the positive def-
initeness of the Jaccard index matrix. International Journal of Approximate
Reasoning, vol.54,pp.615–626, 2013.

[12] A.-O. Boudraa, J.-C. Cexus, and K. Abed-Meraim. Cross ψ b-energy
operator-based signal detection. The Journal of the Acoustical Society of Amer-
ica (JASA), vol.123,pp.4283–4289, 2008.

[13] H. Byeon. Comparing ensemble-based machine learning classifiers devel-
oped for distinguishing hypokinetic dysarthria from presbyphonia. Applied
Sciences, vol. 11, pp. 2235, 2021.

[14] W. Cai, D. Cai, W. Liu, G. Li, and M. Li. Countermeasures for automatic
speaker verification replay spoofing attack: On data augmentation, feature
representation, classification and fusion. In INTERSPEECH, pp.17–21, Stock-
holm, Sweden, 2017.

[15] R. Cardoso, I. Guimarães, H. Santos, R. Loureiro, J. Domingos, D. de Abreu,
N. Gonçalves, S. Pinto, and J. Ferreira. Frenchay dysarthria assessment (fda-
2) in parkinson’s disease: cross-cultural adaptation and psychometric prop-
erties of the european portuguese version. Journal of neurology, vol. 264, pp.
21–31, 2017.

[16] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner,
and W. Zhou. Hidden voice commands. In 25th (USENIX) Security Sympo-
sium (USENIX) Security 16), pp.513–530, Austin, TX, USA, 2016.

[17] N. Carlini and D. Wagner. Audio adversarial examples: Targeted attacks on
speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW), pp. 1–7,
SAN FRANCISCO, CA. IEEE, 2018.

[18] N. Carlini and D. Wagner. Audio Adversarial Examples: Targeted Attacks
on Speech-to-Text, pp. 1-7, san francisco, ca. In 2018 IEEE Security and Pri-
vacy Workshops (SPW), San Francisco, CA, USA, 24-24 May 2018.

[19] J.-C. Cexus and A.-O. Boudraa. Link between cross-Wigner distribution and
cross-Teager energy operator. Electronics Letters, vol. 40pp. 778–780, 2004.

61



[20] H. Chandrashekar, V. Karjigi, and N. Sreedevi. Spectro-temporal represen-
tation of speech for intelligibility assessment of dysarthria. IEEE Journal of
Selected Topics in Signal Processing, vol. 14, pp. 390–399, 2019.

[21] Z. Chen, Z. Xie, W. Zhang, and X. Xu. Resnet and model fusion for auto-
matic spoofing detection. In INTERSPEECH, pp. 102–106, Stockholm, Swe-
den, August 2017.
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