
by

RISHIKANT RAJDEEPAK
201521006

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

April, 2022

Study of Cubelike Graphs for Parallel and
Quantum Computation

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Doctor of
Philosophy at Dhirubhai Ambani Institute of Information and Communica-
tion Technology and has not been submitted elsewhere for a degree,

ii) due acknowledgement has been made in the text to all the reference material
used.

Certificate

This is to certify that the thesis work entitled STUDY OF CUBELIKE GRApHS
FoR PARALLEL AND QUANTUM coMpurATIoN has been carried out by
RISHIKANT RAIDEEPAK for the degree of Doctor of Philosophy at Dhirubhai
Ambani Institute of Information and Communication Technotogy under our supervi-
sion.

V (u^$r*- 4q"tr*

Rishikant Rajdeepak

Dr. V. Sunitha
Thesis Supervisor (joint)

Dr. Jaideep Mulherkar
Thesis Supervisor (joint)

Acknowledgements

I am very grateful to my supervisors, Prof. V. Sunitha and Prof. Jaideep Mul-

herkar, for their guidance and motivation all these years. I want to thank

Prof. Rahul Muthu and Prof. Gautam Dutta for patiently reviewing my research

work and suggesting a few ideas from time to time. I want to thank all members

of DA-IICT, both academic and non-academic staff, for providing commending

environment for the smooth flow of my Ph.D. courses. I thank my colleagues for

boosting my interest in research.

I thank my friends Rahul, Pankaj, Madhu, Nikita, and Purvi for sharing their

time and stories and creating memorable moments. I thank another set of close

friends, Jignesh, Kamal, Sumukh, Prashant, and Parth, for their presence in almost

every moment, like cooking food, sports, and movies. All these moments kept me

going all these years.

Last but not least, I would like to thank my mummy and papa, bhaiya and

bhabhi, didi, and my wife (Nisha Kumari), who support and believe in me in

pursuing my dreams.

ii

Contents

Abstract viii

List of Tables ix

List of Figures x

1 Introduction and Motivation 1

1.1 Hypercube multiprocessor systems and graph embeddings 2

1.2 Random walks and quantum walks on hypercubes 3

1.3 Cayley graph structure of hypercubes 4

1.4 Contribution of the thesis . 5

I Embedding Binary Trees into Cubelike Interconnection Net-
works 7

2 Spanning trees of a graph 8

2.1 The incidence matrix . 8

2.1.1 Generating spanning trees . 9

2.1.2 The tree-number . 10

2.2 Graph homomorphism . 11

2.2.1 Counting subgraphs . 12

2.3 Dynamic data structures . 13

2.3.1 Enumeration of spanning trees 14

3 Embedding binary trees into hypercubes and augmented 17

3.1 An embedding conjecture . 18

iii

3.2 A technique for embedding in augmeted cubes 18

3.3 Embedding k-caterpillars into hypercubes 20

3.3.1 Properties of k-caterpillars and hypercubes 20

3.3.2 The embedding theorem . 25

II Quantum walks on Cubelike Structures 36

4 Discrete-time coined quantum walks on regular graphs 37

4.1 Quantum walk evolution . 37

4.1.1 Regular graphs . 38

4.1.2 Cubelike graphs . 39

4.1.3 Hypercubes . 42

4.2 Hitting times . 43

4.2.1 An analysis of the evolution operator 44

4.2.2 Hitting times on complete graphs 47

4.3 Implementation of discrete-time coined quantum walks on cube-

like graphs . 49

4.3.1 Quantum circuits . 49

4.3.2 Application to hitting times 56

4.3.3 A conjecture on hitting times and target vertex 60

4.4 Summary . 64

5 Continuous-time quantum walks on Cayley graphs 65

5.1 Perfect state transfer . 66

5.2 Cayley graphs over Zn
r that have the same eigenvectors 69

5.2.1 Construction of graphs that have the same eigenvectors . . 69

5.2.2 Eigenvalues and eigenvectors of Cayley graphs over Zn
r . . 73

5.3 Continuous-time quantum walks on Cayley graphs over Zn
r 80

5.3.1 Perfect state transfer in weighted cubelike graphs 81

5.3.2 Periodicity in Cayley graphs over Zn
r 84

5.4 Identifying pair of vertices in multipartite graphs that admit perfect

state transfer . 85

iv

5.5 Simulation of continuous-time quantum walks on cubelike graphs 91

5.5.1 Decomposition of the evolution operator 92

5.5.2 Quantum circuits . 94

5.5.3 The Quantum Simulation . 96

5.6 Summary . 99

6 Conclusion 100

References 102

Appendix A Abstract Algebra 109

A.1 Group Theory . 109

A.1.1 Cyclic group . 110

A.1.2 Group homomorphism . 111

A.1.3 Direct products . 112

A.1.4 Group action . 112

A.2 Linear Algebra . 113

A.2.1 Linear Transformation . 114

A.2.2 Hilbert spaces . 115

A.2.3 Orthonormal basis and Eigenvectors 115

A.2.4 Spectral theorem . 116

A.2.5 Discrete Fourier Transform 118

A.2.6 Dirac notation . 118

A.2.7 Tensor products . 119

A.3 Representation Theory of finite abelian group 120

Appendix B Quantum Computation 121

B.1 Postulates of quantum mechanics . 121

B.1.1 The first postulate . 121

B.1.2 The second postulate . 121

B.1.3 The third postulate . 122

B.1.4 The fourth postulate . 122

B.2 Quantum Fourier Transform . 123

v

B.3 Quantum Circuits . 124

B.3.1 Quantum gates . 125

List of Publications 128

vi

Abstract

In this thesis, we study Cayley graphs over Zn
r for their utility in multiprocessor

computing and quantum computing. For multiprocessor computing, we inves-

tigate problems of graph embedding on cubelike interconnection networks such

as hypercubes and augmented cubes. These embeddings are required for effi-

cient simulation of divide-and-conquer based algorithms on multiprocessor sys-

tems built on such interconnection networks. In particular, we discuss Havel’s

conjecture which states that an equibipartite binary tree on 2n vertices spans the

n-dimensional hypercube. We develop an efficient embedding technique to prove

the conjecture for a subfamily of equibipartite binary tree. We also worked on

a related conjecture which states that a binary tree on 2n vertices spans the n-

dimensional augmented cube. For this, we propose a recursive technique to em-

bed and a method to count the spanning binary trees of the augmented cube. For

exploring the utility of cubelike graphs for quantum computation, we study quan-

tum walks that can be used to develop quantum algorithms for searching and

communication. We study both theoretical and experimental aspects of quantum

walks on cubelike graphs as well as Cayley graphs over Zn
r . For discrete-time

quantum walk, our work gives a closed form for the quantum state of the system

associated with cubelike graphs, after finitely many time steps; this work is the

key to studying hitting times on the graphs which is a measure of how quickly the

walker reaches a specific target node. We also decompose the quantum circuits of

the corresponding evolution operators that were run on IBM’s quantum comput-

ing platform. We conjecture that there is a linear relation between the quantum

hitting times and dimension of cubelike graphs. For continuous-time quantum

walk, we investigate weighted Cayley graphs over Zn
r in order to classify them

vii

into three categories of graphs - those that admit PST, those that do not admit PST

but are periodic, and those that are not periodic. In continuation to this work, we

constructed quantum circuits of the evolution operators for CTQW on weighted

cubelike graphs.

viii

List of Tables

4.1 Transformation of coin states . 53

4.2 Hitting time T with target vertex and target probability p corre-

sponding to dimensions of Hypercubes Qn and Augmented cubes

AQn. 60

ix

List of Figures

1.1 The 3-dimensional hypercube. 2

1.2 A complete binary tree (left) and 4-dimensional hypercube (right). 3

1.3 Cay(Sym(3), {(12), (13), (23)}). 5

2.1 T0 obtained by depth-first search . 15

2.2 Depth-first search in T (G). 15

3.1 A recursive construction of AQ3. 18

3.2 (a) A partition of AQn into four AQn−2. (b) An embedding of a

binary tree into AQ5. 19

3.3 A 2-caterpillar. 20

3.4 Extension and reduction of a backbone in a 2-caterpillar. 21

3.5 A strictly 1-caterpillar. 22

3.6 A strictly 2-caterpillar. 22

3.7 The first leg of odd length from an matching edge in a perfectly

balanced 1-caterpillar. 24

3.8 Perfectly balanced 2-caterpillars on 2, 4 and 8 vertices. 25

3.9 (a) A perfectly balanced 2-caterpillar with three fixed vertices x, y

and z on its first leg and (b) An embedding ϕ mapping x, y and z

into some fixed patterns in Qn. 27

3.10 Partition of a perfectly balanced 2-caterpillar. 28

3.11 Deleting two matching edges (for Case 2). 29

3.12 Two non-matching edges are deleted and one new edge is added

to construct two perfectly balanced 2-caterpillars, each of order 2n

(for case 3.1.1). 30

x

3.13 Two non-matching edges are deleted and one new edge is added

to construct two perfectly balanced 2-caterpillars, each of order 2n

(for case 3.1.2). 31

3.14 Two matching edges (y1, y2) and (z1, z2) are deleted and compen-

sated by adding one matching edge (y2, z2) (for case 3.2.1). 31

3.15 Adding edges (x2, y2) and (y2, z2) to form perfectly balanced 2-

caterpillar on 2n vertices (for case 3.2.1. (i)). 32

3.16 Adding an edge (y2, z2) to form perfectly balanced 2-caterpillar on

2n vertices (for case 3.2.1. (ii)). 32

3.17 Deleting three non-matching edges (for case 3.2.2). 33

3.18 Deleting three non-matching edges (for case 3.2.3). 33

3.19 Joining subtrees containing x2, y2 and z2 (for case 3.2.3 (i)). 34

4.1 A labeling of cubelike graphs . 40

4.2 The 2-dimensional hypercube. 41

4.3 A quantum circuit for DTQW on cubelike graphs. 50

4.4 A decomposition of the Grover operator. 51

4.5 A shift operator for DTQW on Q4 . 52

4.6 A quantum circuit for the shift operator on Q3. 56

4.7 Probability distribution of DTQW on Q2 after two steps when run

on Qiskit simulator (a) qasm_simulator and on IBM’s quantum com-

puter (b) ibmq_manila. 57

4.8 DTQW on Q3 with steps T = 3, target vertex 111, and target prob-

ability p = 0.804. 57

4.9 DTQW on AQ3 with T = 9, target 011, and p = 0.812. 58

4.10 DTQW on Q4 with T = 6, target 1111, and p = 0.562. 58

4.11 DTQW on AQ4 with T = 11, target 0100, and p = 0.993. 58

4.12 DTQW on Q5 with T = 7, target 11111, and p = 0.722. 58

4.13 DTQW on AQ5 with T = 13, target 01011, and p = 0.953. 59

4.14 Plot of hitting time T vs the degree (a) Qn and (b) AQn. 59

xi

4.15 Plots of steps T required to attain the target probability verses the

degree | Ω |= n + k of cubelike graphs, where k is fixed and n is

the dimension. 61

4.16 Plots of steps T requried to attain the target probability verses the

degree | Ω |= n + k of cubelike graphs of fixed dimension n. 62

4.17 (a) Probability distribution of Q3 after step T = 23, and (b) Plot for

hitting time T verses degree 2n − 1 of complete graph on 2n vertices. 63

5.1 Cubelike graphs on four vertices having the same set of eigenvectors. 72

5.2 A quantum circuit to implement e−ιtA, where A = Z ⊗ Z ⊗ Z. . . . 94

5.3 A quantum circuit for U(x, t) = e−ιt f (x)ρreg(x). 95

5.4 An illustration of quantum circuit for CTQW on weighted cubelike

graph . 96

5.5 A quantum circuit for CTQW on Cay(Z3
2, {001, 010, 100}). 97

5.6 A quantum circuit for CTQW on Cay(Z3
2, {001, 010, 011, 100, 111}). 97

5.7 A quantum circuit for CTQW on Cay(Z3
2, { f (001) = 4, f (011) =

8, f (101) = 3}). 98

5.8 Probability distribution of CTQW on the hypercubes Cay(Z3
2, {01, 10})

(left) and Cay(Z3
2, {001, 010, 100}) (right) after time π

2 98

B.1 A quantum circuit for DTWQ on Q2. 125

B.2 Generalized Toffoli gates. 127

B.3 The swap gate . 127

xii

CHAPTER 1

Introduction and Motivation

Graphs are among the most powerful mathematical tools used to model many

practical problems in basic sciences and engineering, computer science, social sci-

ence, network science, and linguistics. In the world of computing, it gives a visual

interpretation of algorithms and helps in analyzing them. Effective use of prop-

erties of graphs improves the design of network structure, which speeds up com-

putation and optimizes memory. A well-known method of using graphs is via the

stochastic or random process called random walks on graphs. Random walks on

graphs are used to analyze and simulate the randomness of objects and describe

their statistical properties. Some typical applications of random walks are diffu-

sion of information, generating random samples, measuring the characteristics of

the world wide web and social networks, and searching problems in a database.

One of the recent applications of graphs is in quantum computation, which is

based on quantum walks on graphs. A quantum walk is a quantum counterpart

of (classical) random walk, where the underlying graph describes the evolution of

the associated quantum system. Its algorithmic applications are recent, and their

implementations are very challenging. The central idea in quantum computing

is to build quantum algorithms that may outperform their classical counterparts.

A comparison of algorithms based on quantum walks and random walks are dis-

cussed in [68].

In this thesis, our work is closely related to hypercubes and its variants. We

study Cayley graphs over the direct product of n copies of a cyclic group, Zn
r ,

for their utility in multiprocessor computing and quantum computing. For mul-

tiprocessor computing, we investigate problems of graph embedding on cubelike

1

000 001

011010

100 101

111110

Figure 1.1: The 3-dimensional hypercube.

interconnection networks such as hypercubes and augmented cubes. In quan-

tum computation, we study about quantum walks on hypercubes. We also study

quantum walks on Cayley graphs which is a generalization of cubelike graphs.

1.1 Hypercube multiprocessor systems and graph em-

beddings

An n-dimensional hypercube is a graph whose vertices are represented by binary

strings of length n and two vertices are adjacent if their binary representations

differ at exactly one position (see Fig. 1.1). A multiprocessor system whose ar-

chitecture is based on hypercube topology is widely used on parallel comput-

ing machines. Hypercubes serve as efficient interconnection networks because

of their low degree of regularity, logarithmic distance, and the existence of many

edge-disjoint paths between a pair of nodes, which help develop adaptive and

fault-tolerant parallel algorithms. The vertex-symmetry (and edge-symmetry) of

hypercubes allow interchanging the roles of a vertex (or an edge) with proper

permutations of vertices (or edges). Some of the typical computational problems

solved by hypercube algorithms are sorting, merging, parallel prefix computation,

and matrix multiplication.

Hypercube machines are capable of emulating other interconnection networks

such as trees, rings, torus, and meshes with minimum overhead. This simulating

problem is a graph embedding problem that deals with the portability of algo-

rithms from one architecture to another. The recursive structure of hypercubes is

appropriate for running recursive or divide-and-conquer algorithms. Many par-

2

Figure 1.2: A complete binary tree (left) and 4-dimensional hypercube (right).

allel algorithms adopt binary tree structures for communication, and therefore it

is important to study their embeddings into hypercubes. In general, graph em-

beddings do not respect the structure of a guest graph into the host graph, i.e., an

edge in the guest graph can be mapped to a path in the host graph. In this thesis,

an embedding is restricted to an injective graph homomorphism.

Each binary tree is embeddable into a hypercube of dimension n, for some n,

where the n-dimensional hypercube has 2n nodes. However, the optimum benefit

of an embedding is obtained if the dimension of the hypercube is minimum. For

instance, the complete binary tree (see Fig. 1.2) on 8 vertices is embeddable into

the n-dimentional hypercube for n ≥ 4. A better approach would be finding a

subclass of binary trees on m vertices, with 2n−1 < m ≤ 2n, that covers most of

the computational problems based on binary trees and are embeddable into the

hypercube of dimension n. One such subfamily is the equibipartite binary trees,

i.e., the binary trees whose vertex-set can be partitioned into two sets of equal size

such that each part contains non-adjacent vertices, i.e., the bipartition of these

binary trees are of equal size.

1.2 Random walks and quantum walks on hypercubes

A random walk on a graph is described by a Markov chain, where nodes denote

possible states of the associated state space and the probability of the walker to

move from a given node to any of its neighbors is non-zero and to a non-adjacent

node is zero. It has revolutionized the study of classical algorithms by providing

3

techniques to create better approximation algorithms for PageRank and 2-SAT

problems. A quantum generalization to a random walk is a quantum walk on

a graph. Quantum walks based algorithms have the potential to speed up com-

putational problems compared to random walks based algorithms because of the

unique properties of quantum parallelism equipped with quantum interference

and entanglement.

Quantum walks are broadly of two types, discrete-time coined quantum walk

(DTQW) and continuous-time quantum walk (CTQW). In [62], Shenvi et al. de-

scribe a quantum search algorithm based on DTQW on hypercubes that perform

an oracle search on a database of N = 2n items with O(
√

N) calls to the oracle.

Routing based on DTQW on regular graphs has potential applications in quantum

information theory [70]. A CTQW based algorithm is developed by Campos et al.

that solves a hard k-SAT problem [19], where the underlying graph is a hyper-

cube. Another important feature is mixing time of random walk, whose quantum

counterpart is discussed in [4, 33, 57].

In this thesis, we focus on well studied properties of quantum walks on graphs,

quantum hitting times and perfect state transfer. The quantum hitting time of

the DTQW on the n-dimensional hypercube from a node to its antipodal node

is linearly proportional to n [49], whereas in the classical case the hitting time is

approximately 2n [55]. A good study on perfect state transfer of CTQW on cube-

like graphs can be found in [14, 22]. An implementation of quantum walks on

hypercubes are discussed in [32, 64].

1.3 Cayley graph structure of hypercubes

The n-dimensional hypercube represents the abstract structure of the Boolean

group Zn
2 , viz., two vertices are adjacent if their XOR sum has exactly one non-

zero bit. A Cayley graph is a generalization to this notion that represents the ab-

stract structure of a group. A Cayley graph is a graph defined over a pair (G, Ω),

where G is a finite group and Ω is a generating set of G, with the properties: (1)

Ω does not contain the identity element, and (2) Ω is closed under the group in-

4

(1)

(12)

(13)

(123)

(132)

(23)

(12)

(13)

(13)

(12)

(12)

(13)

Figure 1.3: Cay(Sym(3), {(12), (13), (23)}).

verse, i.e., x−1 ∈ Ω for all x ∈ Ω. The Cayley graph, denoted by Cay(G, Ω),

is a graph whose vertices are the elements of G and the edge set is given by

{(x, y) : xy−1 ∈ Ω}.

The Cayley graph is connected because the generating set Ω defines each edge.

If it is assumed that Ω does not generate G, then the Cayley type graph con-

structed as above is disconnected, and each component is a coset of the subgroup

generated by Ω. For any vertex x, the cardinality of {xa : a ∈ Ω} is equal to that of

Ω; hence the graph is regular with |Ω| being the degree of regularity. The graph is

vertex-transitive, i.e., for every pair of vertices {x, y} there is a graph isomorphism

that maps one to the other. The Cayley graph defined over the symmetric group

of order three, Sym(3), with the generating set consisting of three permutations

{(12), (13), (23)} is a connected 3-regular graph (see Fig 1.3).

An essential subfamily of Cayley graphs is defined over the direct product

of n copies of a cyclic group Zn
r , where r and n are positive integers. The case

r = 2 defines the cubelike graph Cay(Zn
2 , Ω) over the Boolean group Zn

2 . The

n-dimensional hypercube is a cubelike graph with the generating set Ω = {0i10j :

i + j = n − 1}. An important variant to the n-dimensional hypercube is the n-

dimensional augmented cube whose generating set consists of Ω = {0i10j : i +

j = n − 1} ∪ {0n−i1i : 1 ≤ i ≤ n}.

1.4 Contribution of the thesis

This thesis is divided into two parts; we study Cayley graphs from the perspective

of multiprocessor computing and quantum computing in these parts. In partic-

5

ular, Part I discusses embedding problems in interconnection networks based on

hypercube topology or augmented cube, and Part II describes quantum walks on

cubelike graphs. More specifically;

• Part I is divided into two chapters. In chapter 2, we study some proper-

ties of spanning trees and their relation with linear algebra. We enumerate

spanning binary trees of a graph using a couting method and a dynamic

data structure. We have used these approaches to verify a conjecture about

spanning binary trees of augmented cubes. In chapter 3, we present an ef-

ficient embedding algorithm that maps a subfamily of equibipartite binary

trees on 2n vertices into the n-dimensional hypercube via an injective graph

homomorphism.

• Part II is divided into two chapters. Chapter 4 addresses theoretical and

experimental aspects of discrete-time coined quantum (DTQW) walks on

cubelike graphs. In section 4.1, we give an expression for a generic quan-

tum state after finitely many evolutions that is essential to compute hitting

times in DTQW. In section 4.3, we decompose quantum circuits for DTQW

on cubelike graphs that were run on IBM’s quantum computing platform,

and based on observations, we conjecture about the linear relation between

hitting times and dimension of cubelike graphs. This work is an extension

of the work by Kempe [49]. In chapter 5, we study continuous-time quan-

tum walks (CTQW) on Cayley graphs over Zn
r . In section 5.2, we study

properties of normal matrices, which are used to define a family of graphs

having the same eigenvectors; in particular, weighted Cayley graphs hav-

ing the same eigenvectors are constructed. In section 5.3, we investigate

weighted Cayley graphs over Zn
r in order to classify them into three cate-

gories of graphs - those that admit PST, those that do not admit PST but are

periodic, and those that are not periodic. This work generalizes the work by

Cheung and Godsil [22]. In section 5.5, we decompose quantum circuits for

the evolution operator of CTQW on weighted cubelike graphs and verified

the existence of perfect state transfer in them.

6

Part I

Embedding Binary Trees into

Cubelike Interconnection Networks

7

CHAPTER 2

Spanning trees of a graph

A spanning tree of a connected graph Γ is a subgraph containing N − 1 edges and

no cycles. If an edge e is not present in a spanning tree T of Γ, then there is a

unique cycle containing the edge e and edges in T only. On the other hand, if e is

an edge in T, then there is a unique cut of Γ containing e and edges not in T.

2.1 The incidence matrix

Let Γ be a connected graph on N vertices. We assign an orientation to Γ by as-

signing arbitrary directions to the edges of the graph. The incidence matrix of the

oriented graph Γ is an N × M matrix, where rows correspond to N vertices and

columns correspond to M edges. The incidence matrix I is defined by;

Ixy =

+1 ; if x is the head of the edge xy

−1 ; if y is the tail of the edge xy

0 ; if xy is not an edge.

(2.1)

The determinant of any square submatrix of I is 0 or −1 or +1. Notice that each

column has exactly two non-zero entries corresponding to an edge and the sum

of all rows in I is the zero row vector 0. Suppose the linear combination of rows

of I is zero, i.e., ∑x λxrx = 0, then λx = λy if (x, y) is an edge. Thus, if there

exists a path from a vertex x to another vertex z, then λx = λz. Since the graph

Γ is connected, the linear combination ∑x λxrx is the multiple of ∑x rx and hence

the rank of I is N − 1. The incidence matrix and spanning trees of the graph Γ are

8

related by the following result.

Lemma 1. [17] Let Γ be a connected graph on N vertices, and U be a subgraph containing

N − 1 edges. Let IU be a (N − 1)× (N − 1) submatrix of D whose columns correspond

to edges in U and contains any (N − 1) rows. Then, IU is invertible if and only if the

subgraph U is a spanning tree of Γ.

Proof. If U is a spanning tree, then it is a connected graph on N vertices, which

implies its incidence matrix has rank N − 1; thus IU is invertible. Conversely, if

IU is invertible, then the incidence matrix of U has rank N − 1, which implies U

is connected. Thus, U is a tree on N − 1 vertices and it spans the graph.

2.1.1 Generating spanning trees

Each set of N − 1 linearly independent columns of I corresponds to a unique

spanning tree. The following algorithm generates a spanning tree of a graph.

Algorithm 1. Let the input be an incidence matrix I of a connected graph Γ. Then, the

following steps output maximal linearly independent column vectors.

(i) Select a column.

(ii) For each selected column c mark the two rows of I corresponding to non-zero entries

of c.

(iii) If there is a column c that has a marked row corresponding to its non-zero entry and

the other is not marked, then select the column and go to step (ii); else go to step

(iv).

(iv) Output all selected columns and end the algorithm.

Proof. We prove the correctness of the algorithm by induction on the number m

of columns selected. If N = 1, then m = 0, and if N = 2, then m = 1. Assume

that N > 2. For m = 1 ≤ N − 1, a single column vector is linearly independent.

Suppose, a set of m > 1 columns are linearly independent and m < N − 1, then,

since the graph is connected there exists a required column in step (iii), which is

mutually linearly independent of the selected columns. Thus, the step (iii) gives

9

m + 1 linearly independent set of columns. Since, the number of rows are finite

the algorithm terminates after a finite number of steps.

Let C be the set of column vectors of I with the lexicographic order. Let T be

the set of ordered subset of C, each of fixed size N − 1. Under the lexicographic

order of T , spanning trees of the graph can be obtained linearly without duplica-

tion. This approach will enumerate all spanning trees.

Example 1. Consider the Cayley graph on the symmetric group over three elements, with

the generating set {(12), (13), (23)}, see Fig. 1.3. Let the incidence matrix of the graph

be

I =

1 1 1 0 0 0 0 0 0

−1 0 0 1 1 0 0 0 0

0 0 0 −1 0 1 1 0 0

0 −1 0 0 0 −1 0 1 0

0 0 0 0 −1 0 0 −1 1

0 0 −1 0 0 0 −1 0 −1

Applying algorithm 1, the sequence of N − 1 linearly independent column vectors ob-

tained is {(1, 2), (1, 4), (1, 6), (2, 3), (2, 5)}.

2.1.2 The tree-number

Sometimes we are interested in counting total number of spanning trees of a graph

without knowing the exact form of spanning trees. The matrix-tree theorem gives

the tree number κ(Γ) of the graph Γ, where the tree number is the total number of

spanning trees. The Laplacian matrix L is defined by L = IIT, which is also equal

to D − A, where D is the diagonal matrix whose diagonal entry corresponding to

a vertex is its degree and A is the adjacency matrix.

Theorem 1. [17] Let L be the Laplacian matrix of a graph. Then, every cofactor of L is

equal to the tree-number of the graph.

Theorem 2. [17] The tree-number of a graph on N vertices is given by

κ =
| J + L |

N2 ,

10

where L is the Laplacian matrix and J is the matrix with all entries equal to 1.

If we know the list of eigenvalues of the Laplacian matrix, then we can calcu-

late the tree-number using the following result.

Corollary 1. [17] Let 0 ≤ µ1 ≤ · · · ≤ µN−1 be the eigenvalues of the Laplacian matrix

of a graph with N vertices. Then, the tree-number is given by

κ =
µ1µ2 · · · µN−1

N
. (2.2)

Notice that if the graph is not-connected then µ1 = 0 and it has zero span-

ning tree, and if the graph is connected then µ1 > 0. The following result relates

the eigenvalues of the adjacency matrix (called the spectra of the graph) with the

eigenvalues of the Laplacian matrix.

Theorem 3. [17] Let Γ be a r-regular graph on N vertices with the Laplacian matrix L

and the adjacency matrix A. Suppose µ0 ≤ µ1 ≤ · · · ≤ µn−1 are the eigenvalues of L

and λ0 ≥ λ1 ≥ · · · ≥ λN−1 are the eigenvalues of A, then

µi + λi = r.

Remarks

We have seen a method to generate spanning trees of a graph, sequentially, using

an incidence matrix. If the graph is not connected then algorithm 1 generates a

tree that spans a component of the graph. Applying the algorithm 1 to each com-

ponent generates a spanning forest. The tree-number of an unconnected graph

is zero; we can instead, compute the number of spanning forests by computing

tree-number for each component and multiplying them.

2.2 Graph homomorphism

A graph homomorphism is a function ϕ from a guest graph G to a host graph H

that preserves the adjacency structure of G, i.e., if (x, y) is an edge in G, then f (x)

11

is adjacent to f (y). In this section, we will study the application of graph homo-

morphism to degree constraint spanning trees (DCST) problem, i.e., we answer

the question of whether for a given degree sequence s there exists a spanning tree

of G. We use hom(G, H), inj(G, H), and sub(G, H) to denote the set of homomor-

phisms from G to H, the set of injective homomorphisms from G to H, and the set

of distinct copies of G in H, respectively.

Definition 1. A tree decomposition of a graph G is a mapping of G into a tree DG such

that

(i) the vertex-set of DG is a collection of subsets of vertex-set of G,

(ii) each vertex of G is present in all vertices of a subtree of DG,

(iii) each pair of adjacent vertices are present in a vertex of DG.

It is clear that the union of all vertices of DG equals the vertex-set of G. The

width of a tree decomposition DG is one less than the maximum cardinality of a

vertex, i.e., max{| X | −1 : X ∈ V(DG)}. The treewidth of a graph G is the

minimum width over all the tree decompositions of G, denoted by tw(G). For

example, the treewidth of a tree, a cycle, and a complete graph on N vertices have

treewidth one, two, and N − 1, respectively. A chordal graph has treewidth equal

to the size of the largest clique minus one.

2.2.1 Counting subgraphs

We will discuss a method to count injective homomorphism from a graph G to

another graph H that will allow us to compute the number of subgraphs given by

| sub(G, H) |= | inj(G, H) |
| aut(G, H) | , (2.3)

where aut(G, G) is the set of automorphism (bijective isomorphism from a graph

to itslef) of G. The size of aut(G, G) can be computed in time 2
√

N log N [10, 21].

12

Theorem 4. [7] Let G and H be two graphs on N vertices. Then,

| inj(G, H) |= ∑
W⊂V(G)

(−1)|W| | hom(G, H[W ′]) |, (2.4)

where H[W ′] is the subgraph of of H induced by the complement of W.

Theorem 5. [34] Let G and H be two grapsh on N and M vertices, respectively. If there

is a tree decomposition of G with width t, then | hom(G, H) | can be computed in time

O(N · Mt+1min{t, M}) and space O(log N · Mt+1).

Theorem 6. [60] The number of unlabelled trees on N vertices is asymptotically CαnN− 5
2 ,

where C = 0.53495 . . . and α = 2.95576

Theorem 7. [15] All unlabelled rooted trees of size N can be generated in time CαnN− 5
2 ,

where C = 0.53495 . . . and α = 2.95576

Theorem 8. [7] Let G be a graph on N vertices and s = (s1, s2, . . . , sN) be a sequence of

N positive values. Then, the number of spanning trees of G with i-th vertex of degree at

most si for all i, can be computed in time O(5.912N).

Remarks

The counting method via graph homomorphism is applicable to embedding bi-

nary trees into an n-dimensional cubelike graph Γ. Since the treewidth of a tree

T on N = 2n vertices is one, the size of hom(T, Γ) is computable in time O(23n),

by Theorem 5. Consider the hypercube Qn or the augmented cube AQn, and

enumerate all unordered trees on N = 2n by using Theorem 7. Then after, we

compute | sub(T,Qn) | or | sub(T,AQn) | by using Theorem 8, where the degree

sequence is bounded by s = (3, 3, . . . , 3).

2.3 Dynamic data structures

A dynamic graph algorithm is useful in answering the question of connectivity,

bipartiteness, 2-edge connectivity and minimum spanning trees. It works on the

13

framework of dynamic data structures that aid graph operations such as insertion

and deletion of an edge or a vertex. Various data structures are suitable for effi-

cient graph operations such as Biased search trees, Euler tour trees (ET-trees) and

Top trees [13, 45, 47]. To generate spanning trees of a connected and unweighted

graph Γ, we require three types of graph operations, viz., (1) deletion of an edge,

(2) finding a replacement edge, and (3) insertion of an edge. Suppose T is a span-

ning tree, then its edges are called tree edges and other edges are called non-tree

edges. We can choose any of the data structures mentioned before to store the

spanning tree T along with additional information about edges which are useful

in finding a replacement edge efficiently.

2.3.1 Enumeration of spanning trees

Suppose Γ is a connected and unweighted graph on N vertices. Define a graph

T (Γ), where the node-set is the set of all spanning trees and two spanning trees

are adjacent if one can be obtained from the other by exchaning exactly one edge.

The main idea to enumerate all spanning trees is to find the spanning tree of the

graph T (Γ). We obtain the first spanning tree T0 by applying depth-first search

on the graph Γ and label the vertices and edges in the same order they are vis-

ited during the search, viz., the vertices are labeled as v1 < v2 < · · · < vN and

the edges are labeled as e1 < e2 < · · · < eN−1. The remaining edges are labeled

lexicographically and hence the node-set of T (Γ) can be ordered in increasing lex-

icographic order. Beginning at T0 we apply breath-first search on T (Γ) to obtain

its spanning tree D. During the search the following operations are performed

(see Fig. 2.1 and Fig. 2.2);

(i) For the current node T the next least child Tc of T is obtained by deleting

the highest index edge ek ∈ T ∩ T0 for which the replacement edge el exists

such that el ∈ Tc
0 is the next least index edge, i.e. if ei was the previous

replacement edge for ek then ei < el. Visit Tc and repeat the process.

(ii) If we do not get any replacement edge then we delete the next highest index

edge ej ∈ T ∩ T0 such that ej < ek and continue the search.

14

G

v1

v2

v3 v4

e1

e4 e5

e2 e3

Figure 2.1: T0 obtained by depth-first search

T0

T1

T2 T3

T4

T5

T6 T7

Figure 2.2: Depth-first search in T (G).

(iii) If no replacement edge for any edge in T∩T0 is found then we visit its parent

Tp and continue the process such that if e ∈ Tp was replaced with f ∈ T then

the search starts by deleting e ∈ Tp and finding the least index replacement

edge g > f in Tc
0 .

(iv) If the current node is T0 and no child is found then we stop algorithm.

Remarks

The enumerating technique is efficient, discussed in [63] by Shioura et al., which

can be improved if we consider poly-logarithmic deterministic dynamic algo-

rithms from [47]. Out objective was to use these algorithms to identify the number

15

of spanning binary trees of the n-dimensional augmented cubes and compare it

with the number of binary trees on 2n vertices. For small values of n, we could

run the algorithm and found that the two numbers coincide; thereby verifying for

these values of n the conjecture that binary trees span augmented cubes.

16

CHAPTER 3

Embedding binary trees into hypercubes and

augmented

Graph embeddings over hypercubes are among the most studied problems in the

interconnection network. In this chapter, we discuss about embedding a subfam-

ily of binary trees into the hypercubes, where the recursive property of the hy-

percubes is used. An n-dimensional hypercube, denoted by Qn, is defined recur-

sively, as follows; Q1 is the complete graph on two vertices, with vertices labeled

by 0 and 1, and Qn is defined as the Cartesian product of Qn−1 and Q1, denoted

by Qn−1 × Q1, where,

• a vertex a in Q1 and a vertex x in Qn−1 concatenate to form the vertex ax in

Qn,

• two vertices, ax and by, are adjacent in Qn if either a = b and (x, y) is an

edge in Qn−1 or x = y and (a, b) is an edge in Q1.

This definition helps in breaking down a task graph into two subtasks and as-

signing them to two disjoint subcubes Qn−1 in such a way that the communica-

tion overhead is low. Augmented cubes have the same potential as hypercubes

and have similar recursive definition. The 1-dimensional augmented cube AQ1

has two vertices Z2 = {0, 1} and one edge (0, 1). For n > 1, the n-dimensional

augmented cube AQn is obtained from the (n − 1)-dimensional augmented cube

AQn−1 as follows;

(i) Take two copies of AQn−1 and label them by AQ0
n−1 and AQ1

n−1. Relabel

each vertex x = xn−1 . . . x2x1 in AQ0
n−1 by 0x = 0xn−1 . . . x2x1, and each

17

0 1

00 01

10 11

000 001

011010

100 101

111110

Figure 3.1: A recursive construction of AQ3.

vertex x in AQ1
n−1 by 1x = 1xn−1 . . . x2x1.

(ii) For each vertex 0x ∈ Zn
2 , AQn has two additional edges (0x, 1x) and (0x, 1x̄),

see Fig. 3.1.

In this chapter, we talk about an embedding technique based on recursive method.

3.1 An embedding conjecture

In 1984, Havel [43] conjectured that an equibipartite binary tree on 2n (n ≥ 1)

vertices is a spanning tree of the n-dimensional hypercube. It attained attention

of researchers after Havel and Liebl [44] proved the result for equibipartite binary

caterpillars, wherein a caterpillar is a tree such that if all leaves are removed then

the remaining subgraph is a path. Such caterpillars are also called one-legged

caterpillars where legs are its leaves. In [16] it is shown that binary caterpillars

with each leg of same parity is a subgraph of its optimal hypercube, where, for a

graph on m (2n−1 < m ≤ 2n) vertices, the hypercube of dimension n is its optimal

hypercube. This was generalized in [56] for equibipartite binary caterpillars with

legs of arbitrary length. A variation to Havel’s conjecture is that a binary tree is a

subgraph of its optimal augmeted cube.

3.2 A technique for embedding in augmeted cubes

We adopt a recursive approach to define an embedding of binary trees into aug-

mented cubes. Let T be a binary tree on 2n vertices. We partition T into atmost

18

AQ00
n−2 AQ01

n−2

AQ10
n−2 AQ11

n−2

AQn

a1 b1

c1 d1

(a)

0 1

2 3

4 5

6 7

8 9

10
11

12 13

14 15

16 17

18 19

20
21

22 23

24

25

26 27

28 29

30 31

(b)

Figure 3.2: (a) A partition of AQn into four AQn−2. (b) An embedding of a binary
tree into AQ5.

five subtrees X, X1, X2, X3, X4, X5, by removing at most 4 edges, such that X has

2n−1 vertices. Assume that the deleted edges are (a1, a2), (b1, b2), (c1, c2) and

(d1, d2) with P = {a1, b1, c1, d1} ∈ X. The n-dimensional augmented cube AQn is

partitioned into four (n − 2)-dimensional augmented cubes, denoted by AQ00
n−2,

AQ01
n−2, AQ10

n−2 and AQ11
n−2, such that the first two bits of vertices in AQab

n−2 is

the constant ab, where a, b ∈ {0, 1}. Then, the embedding is so defined that X is

mapped to AQ00
n−2 and AQ01

n−2 such that P lies in the second part AQ01
n−2. Since

each element in AQ01
n−2 has two adjacent vertices in AQ1

n−1, one in AQ10
n−2 and the

other in AQ11
n−2, and no two vertices in AQ01

n−2 has a common adjacent vertex in

AQ1
n−1, the mapping conditions seem feasible (see Fig. 3.2a). As seen in Fig. 3.2b,

we can apply this embedding technique on the pair {AQ0
n−1, X}, i.e., AQ0

n−1 is

further divided into four sub-augmented cubes of dimension (n − 3) and X can

be partitioned into at most five subtrees, and so on. In this embedding method,

we need to show that given a binary tree on m vertices, there exists a partition of

the tree into at most five subtrees, such that one subtree has m
2 vertices.

19

1 2 3

N1

N2
N3

Figure 3.3: A 2-caterpillar with a backbone of order 3. It has three legs, each of
which is a 1-caterpillar.

3.3 Embedding k-caterpillars into hypercubes

A 0-caterpillar is a path. For k ≥ 1, a k-caterpillar is a binary tree consisting of a

path with j-caterpillars (0 ≤ j ≤ k− 1) emanating from some of the vertices on the

path. The path is called the backbone and its vertices the backbone vertices of the

k-caterpillar. A leg of the k-caterpillar is a j-caterpillar, 0 ≤ j ≤ k − 1, originating

from a backbone vertex, including the backbone vertex (see Fig. 3.3).

The order of a graph is its number of vertices, and its size is the number of

edges. Let C be a k-caterpillar on m vertices and N be the order of its backbone.

We denote the qth leg of C by Cq and the order of the backbone of Cq by Nq (see

Fig. 3.3). Similarly, the jth leg in Cq will be denoted by Cq,j and the order of the

backbone of Cq,j by Nq,j.

3.3.1 Properties of k-caterpillars and hypercubes

A perfectly balanced graph is a graph with a perfect matching, i.e., the vertex set

can be partitioned into pairs such that each pair is an edge. A tree has at most

one perfect matching. A path of odd length is perfectly balanced. Deleting a non-

matching edge in a perfectly balanced tree partitions the tree into two perfectly

balanced subtrees. A path connecting two distinct vertices x and y, denoted as

[x, y]-path, is unique in a tree.

A k-caterpillar is also a j-caterpillar for all j ≥ k. A strictly k-caterpillar is a

k-caterpillar which is not a j-caterpillar, for any j ≤ k − 1. A backbone of a k-

caterpillar is not unique. It can be extended to another backbone of higher order

by including the backbone of the first leg or that of the last leg (see Fig. 3.4). Such

20

1 N

N1
NN

N1
1 N NN

Extension
Reduction

Figure 3.4: Extension and reduction of a backbone in a 2-caterpillar.

extension reduces the order of the first leg or that of the last leg. The following

result is imminent.

Proposition 1. If C is a k-caterpillar, with k ≥ 1, on m vertices, then

(a) a backbone of C may not be unique,

(b) there is a backbone with the first leg and the last leg, each of order strictly less than
m
2 (for m > 2),

(c) if there is a backbone of order 2 then C is a (k − 1)-caterpillar.

Proof. (a) In Fig. 3.3, the backbone of C can be extended by including the back-

bone of its first leg. Thus, the backbone is not unique.

(b) Let B0 be a backbone of order n0. Since C is a k-caterpillar, its first leg C1

is a (k − 1)-caterpillar. If C1 has one vertex, then part (b) of the proposition

is true. If C1 has more than one vertex, then by adding the backbone of C1

to B0, we obtain a backbone B1 containing B0. If B1 has n1 vertices, then

n1 > n0. Since C1 is a (k − 1)-caterpillar, the first leg of C with the backbone

B1 is a (k − 2)-caterpillar. By extending the backbone in this way, we obtain

a sequence of backbones B0 ⊂ B1 ⊂ B2 ⊂ Since, C is finite there exists a

maximal backbone Br, for some r ≥ 1. Clearly, the order of the first leg in C

with the backbone Br is one. Hence, part (b) of the proposition holds true.

(c) Suppose B is a backbone of C of order 2, then by including the backbone of

its only two legs, viz., C1 and C2, into B, we obtain a new backbone B′ of

C. Since legs of C1 and C2 are (k − 2)-caterpillars, the legs of C with respect

21

1 2 3 4

Figure 3.5: A strictly 1-caterpillar with unique backbone upto isomorphism.

(a) (b)

Figure 3.6: (a) A strictly 2-caterpillar and (b) a strictly perfectly balanced 2-
caterpillar. A matching edge is drawn as double line segment.

to the new backbone B′ are (k − 2)-caterpillars. Therefore, C is a (k − 1)-

caterpillar.

Remark 1. Consider a strictly 1-caterpillar C on 6 vertices with the degree sequence

(2,2,1,1,1,1). C has a unique backbone of order 4, upto graph isomorphism.

A backbone of a k-caterpillar can also be reduced to a backbone of smaller

order if there is a backbone vertex of degree 2 and all legs before or after this

vertex are at most (k − 2)-caterpillars, in which case, the vertex becomes the first

or the last backbone vertex (see Fig. 3.4). A strictly 2-caterpillar has order at least

12 (see Fig. 3.6 (a)), and if, in addition, it is perfectly balanced then the order is at

least 16 (see Fig. 3.6 (b)).

Consider a k-caterpillar on m vertices with a backbone B of order N. Suppose x

is the first backbone vertex and y is any backbone vertex, we define fB(y) to be the

order of the first l legs of C, where l is the order of the [x, y]-path. If the backbone

vertices are labeled from 1 to N, then we simply write fB(l). Clearly, fB is a strictly

increasing function. We use this function to prove the following results. Unless

explicitly specified, we assume that the backbone vertices are labeled from 1 to N.

Proposition 2. Let C be a k-caterpillar on m > 2 vertices with a backbone B of order N

such that C1 and CN are both of order strictly less than m
2 . Then, ∃q, with 1 < q < N,

such that fB(q) ≥ m
2 and fB(q − 1) < m

2 .

Proof. Since fN is a strictly increasing function with fB(1) < m
2 and fB(N) = m >

m
2 , we get the required result.

22

Proposition 3. Let C be a perfectly balanced k-caterpillar on m > 2 vertices with a

backbone B of order N. If there exists q, with 1 < q < N, such that fB(q) > m
2 and

fB(q − 1) < m
2 , then we can deduce that (q − 1, q) is not a matching edge.

Proof. If fB(q) > m
2 then fB(N) − fB(q) < m

2 . So, if (q − 1, q) is not a matching

edge, we are done, otherwise by reversing the labels of the backbone vertices, i.e.

the backbone vertex i (1 ≤ i ≤ N) is relabeled by N − i + 1, we get the required

result.

A maximal backbone B of a k-caterpillar C is a backbone which can not be

extended to a larger backbone of C containing B. The first and the last legs in

a maximal backbone are each of order one. If C is of order m = 2, then it has

exactly two backbones, viz., (a) a backbone with one leg of order two and (b) a

backbone with two legs, each of order one. In either case the first leg or the last

leg can not have order strictly less than m
2 , therefore, in the previous propositions

we assumed m > 2.

Suppose q is a backbone vertex of a perfectly balanced k-caterpillar C. If the

order of the leg Cq is even then it is perfectly balanced, else Cq\{q}, i.e., q is re-

moved from Cq, is perfectly balanced. Moreover, if Cq is of odd order then either

(q, q + 1) or (q − 1, q) is a matching edge, in which case, Cq+1 or Cq−1 is of odd

order.

Proposition 4. Let C be a perfectly balanced k-caterpillar with N backbone vertices and

M be its perfect matching. Suppose (i, j) ∈ M is a backbone edge with 1 ≤ i < j < N,

then, either the first leg of even order lies at an odd distance from j or N − 1 is at odd

distance from j with (N − 1, N) ∈ M.

Proof. Let Cq be the first leg of even order from j, i.e., q > j is the minimum integer

for which Cq is of even order. Then Cq is perfectly balanced and alternate edges

on [i, q]-path are matching edges, with (q − 1, q) /∈ M, so q − j is odd (see Fig. 3.7).

If no such path exists then N − i is odd with (N − 1, N) ∈ M.

Proposition 5. Let C be a perfectly balanced 1-caterpillar on m (m ≥ 2) vertices with a

backbone B of order N. Let x be the first backbone vertex on B, then there exist backbones

23

C1 Ci Cj Cq CN

Figure 3.7: (i, j) is a matching edge drawn as double line segment. Cq is the first
leg of odd length from the backbone vertex j.

B′ and B′′ of orders N′ and N′′, respectively, both having x as its first backbone vertex,

such that

(a) the [x, N′]-path is of even length and,

(b) the [x, N′′]-path is of odd length.

Proof. The result can be obtained by extending and reducing the backbone B. Sup-

pose the order of B is odd. If the order of the last leg CN is greater than 1, then

B can be extended to a backbone of even order by including the second vertex on

CN. If the order of CN is one, then the order of CN−1 is odd. Exchange the edge

(N − 1, N) by the path CN−1 to form a new backbone of even order. By the similar

approach we get a backbone of odd order, if B were of even order.

Remark 2. We can apply Propositon 5 on a leg of a 2-caterpillar. However, if a leg is of

order 2, then the leg has unique backbone, which is of odd length.

A hypercube Qn of dimension n is a graph with the vertex set Zn
2 and two ver-

tices being adjacent if and only if the Hamming distance between them is exactly

one. We use the following properties of the hypercube in this paper.

Lemma 2. [27] A hypercube of dimension n ≥ 1, is

1. K1 symmetric, i.e., vertex symmetric,

2. K2 symmetric, i.e., edge symmetric,

3. K1,2 symmetric for n ≥ 2, i.e., P3 symmetric,

4. K1,3 symmetric for n ≥ 3, i.e., claw symmetric,

5. C4 symmetric for n ≥ 2.

24

1 2 1 2 3 4 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

8

1 2 3 4 5 6

7
8

1 2 3 4 5 6

7 8

Figure 3.8: Perfectly balanced 2-caterpillars on 2, 4 and 8 vertices.

where Kn is a complete graph, Pn is a path and Cn is a cycle, all on n vertices, and Kp,q is

a complete bi-partite graph with parts of order p and q.

3.3.2 The embedding theorem

An embedding is an injective graph homomorphism. In this paper, we show that

any perfectly balanced 2-caterpillar on m vertices, where 2n−1 < m ≤ 2n (n ≥ 1),

is embeddable into a hypercube of dimension n. It is sufficient to show that a

perfectly balanced 2-caterpillar on 2n vertices span the hypercube of dimension n.

Theorem 9. Let C be a perfectly balanced 2-caterpillar on 2n (n ≥ 1) vertices. Then C

is a subgraph of the hypercube Qn of dimension n.

Proof. For n ≤ 3, there are exactly 6 perfectly balanced 2-caterpillars as shown in

Fig. 3.8, viz., two perfectly balanced 0-caterpillars on 2 and 4 vertices, and four

perfectly balanced 1-caterpillars on 8 vertices. Each of them are embeddable into

the respective optimal hypercubes. For n = 4, we have, using the brute force

method, verified that the theorem holds. For n ≥ 5, we prove a stronger result as

given in the following theorem.

The following theorem states that a perfectly balanced 2-caterpillar, on at least

32 vertices, is embeddable into its optimal hypercube, with at most four fixed

vertices being mapped to some fixed graph patterns, where K1, K2, K1,2, K1,3 and

C4 are among the fixed graph patterns.

25

Theorem 10. For n ≥ 5, let C be a perfectly balanced 2-caterpillar on 2n (n ≥ 1)

vertices with a backbone B on N vertices. Let x be the first backbone vertex on C, y be the

jth (2 ≤ j ≤ N1) backbone vertex on C1, z be the end vertex on the path C1,j and α be the

(j − 1)th vertex, if it exists, on C1 (see Fig. 3.9 (a)). Then, there exists an embedding ϕ

of C into Qn such that ϕ({x, y, z}) induces some fixed graph patterns (see Fig. 3.9 (b)),

viz.,

1. if [x, y]-path is of odd length and

(i) if [y, z]-path is of odd length then the sequence [ϕ(x), ϕ(y), ϕ(z)] is P3.

(ii) else, if [y, z]-path is of even length then the sequence [ϕ(y), ϕ(x), ϕ(z)] is P3.

2. else, [x, y]-path is of even length, in which case,

(i) if [y, z]-path is of even length then {ϕ(x), ϕ(y), ϕ(α), ϕ(z)} induces a claw

K1,3, with ϕ(α) as its central vertex.

(ii) else if [y, z]-path is of odd length then the sequence [ϕ(x), ϕ(α), ϕ(y),

ϕ(z), ϕ(x)] is C4.

Proof. We prove by induction on n. For the base case of n = 5, the result can be

verified by the brute force method1. We now proceed with the induction step.

Assume that any perfectly balanced 2-caterpillar on 2n (n ≥ 5) vertices is

embeddable into Qn with an embedding satisfying the conditions 1 or 2, as given

in the theorem. Let C be a perfectly balanced 2-caterpillar on 2n+1 vertices. Let

M be the perfect matching of C. Without loss of generality, assume that the order

of the backbone of C is N ≥ 3 and the order of C1 and CN are both strictly less

than 2n (by Proposition 1). The proof that C has an embedding ϕ into Qn+1, as

required, is exhibited by performing the following two steps.

I. Partition of the 2-caterpillar: C is partitioned into at most four subtrees, say

X, X2, Y2 and Z2, such that if {(x1, x2), (y1, y2), (z1, z2)} are deleted edges

then, as seen in Fig. 3.10,

1GitHub link: https://github.com/rishikantrajdeepak/EmbeddingBinaryTreeIntoHypercube

26

1
x

2 q N

2

α

jy

N1

N1,j

z

ϕ

ϕ(x)
ϕ(y)

ϕ(z)
1.(i)

ϕ(y)
ϕ(x)

ϕ(z)
1.(ii)

ϕ(α)

ϕ(x) ϕ(y)

ϕ(z)

2.(i)

ϕ(x) ϕ(α)

ϕ(y)ϕ(z)

2.(ii)

(a) (b)

Figure 3.9: (a) A perfectly balanced 2-caterpillar with three fixed vertices x, y and
z on its first leg and (b) An embedding ϕ mapping x, y and z into some fixed
patterns in Qn.

(a) (x1, x2) lie on the backbone of C, (y1, y2) lie on the backbone of the leg

Cx1 and (z1, z2) lie on the leg Cx1,y1 , and

(b) x1, y1 and z1 are contained in X and x2, y2 and z2 are contained in X2, Y2

and Z2, respectively,

such that X is perfectly balanced 2-caterpillar of order 2. The remaining

subtrees, i.e. X2, Y2 and Z2, are joined by some new edges to form a perfectly

balanced 2-caterpillar, say Y, of order 2n, such that {x2, y2, z2} lie on one of

the fixed patterns.

II. Extension of embeddings: By the induction hypothesis, there exists an em-

bedding ϕ1 : X → Qn such that ϕ1({x1, y1, z1}) lie on one of the fixed

patterns satisfying one of the four conditions, as mentioned in the theo-

rem. By construction, {x2, y2, z2} lie on one of the fixed pattern, so any

embedding ϕ2 : Y → Qn, which exists by the induction hypothesis, will

preserve the pattern. By Lemma 2, there exists automorphisms π1 and π2

on Qn such that π1 ◦ ϕ1(x1) = π2 ◦ ϕ2(x2), π1 ◦ ϕ1(y1) = π2 ◦ ϕ2(y2) and

27

1 x2 x1 N

y1

y2

Nx1

z1z2
x′

/

/ —

Figure 3.10: Partition of a perfectly balanced 2-caterpillar.

π1 ◦ ϕ1(z1) = π2 ◦ ϕ2(z2). Define an embedding ϕ : C → Qn+1 by

ϕ(x) =

0π1 ◦ ϕ1(x); if x ∈ X,

1π2 ◦ ϕ2(x); if x ∈ Y.
(3.1)

It then follows that ϕ is an embedding and (ϕ(x1), ϕ(x2)), (ϕ(y1), ϕ(y2)) and

(ϕ(z1), ϕ(z2)) form edges in Qn+1. Thus, once a partition, {X, Y} of C, is obtained,

embeddings ϕ1 and ϕ2 exist by the induction hypothesis. So, we only need to

show that C can be partitioned as required in step I.

We adopt some notations to be used in the proof. The order of a graph G

is denoted by o(G). A subgraph induced by X, where X is a subgraph of G, is

denoted by ⟨X⟩. Recall that fB(y) is the order of the first l legs of a k-caterpillar

with a backbone B of N vertices, where y is the l-th backbone vertex. We discuss

the proof in cases, as follows.

By Proposition 2, there exists an integer q, with 1 < q < N, such that fB(q) ≥

2n and fB(q − 1) < 2n. As seen in Fig. 3.10, the value of fB(q) determines the

following three cases.

1. If fB(q) = 2n, then (q, q + 1) /∈ M. Put x1 = q + 1 and x2 = q. Delete (x1, x2)

to get X = ⟨Cx1 , . . . , CN⟩ and Y = ⟨C1, . . . , Cx2⟩. By the induction hypothe-

sis, X and Y can be embedded into Qn via maps ϕ1 and ϕ2, respectively. By

vertex-symmetry of Qn, we get ϕ1(x1) = ϕ2(x2). Hence, the extended em-

bedding ϕ, as defined in Eq. 3.1, maps {x1, x2} into an edge (ϕ(x1), ϕ(x2))

of Qn+1.

28

1 x1 x2 N

y1

Nx1

z1 z2

/

/

Figure 3.11: Case 2. fB(q) = 2n + 1 and two matching edges are deleted.

2. If fB(q) = 2n + 1, then (q, q + 1) ∈ M. Put x1 = q and x2 = q + 1. Let

Cx1,y1 be the first path of odd length from x1, on the leg Cx1 , and (z1, z2)

be the last edge on this path (see Fig. 3.11). Then, [x1, z1]-path is of odd

length. Delete (x1, x2) and (z1, z2) to obtain X = ⟨C1, . . . , Cq−1, Cx1\z2⟩. All

the matching edges edges along the [x1, z1]-path in C become non-matching

edges in X and vice-versa. Add (x2, z2), which becomes a new matching

edge, to obtain Y = ⟨(x2, z2), Cx2 , . . . , CN⟩. By the induction hypothesis

1.(ii), we get (ϕ1(x1), ϕ1(z1)) as an edge in Qn. By construction (x2, z2) is

an edge in Y, so (ϕ2(x2), ϕ2(z2)) is an edge in Qn. By edge-symmetry of

Qn, we get ϕ1(x1) = ϕ2(x2) and ϕ1(z1) = ϕ2(z2). Thus, (ϕ(x1), ϕ(x2)) and

(ϕ(z1), ϕ(z2)) form edges in Qn+1, via the map ϕ.

3. If fB(q) > 2n + 1 then put x1 = q and x2 = q − 1. Without loss of generality,

assume (x1, x2) is a non-matching edge, by Proposition 1. Delete (x1, x2) to

get a part X2 = ⟨C1, . . . , Cx2⟩. This case is further divided into two subcases

3.1 and 3.2.

3.1. If ∃(y1, y2), with y1 ̸= x1, on the backbone Bx1 of Cx1 , such that

fB(x2) + fBx1 (Nx1)− fBx1 (y1) = 2n,

then delete (y1, y2) to get Y2 = ⟨Cx1,y2 , . . . , Cx1,Nx1 ⟩. The remaining part is

X = ⟨C\X2 ∪ Y2⟩. To join the parts X2 and Y2, we add a new edge, as de-

scribed in the following sub-cases 3.1.1 and 3.1.2.

3.1.1. If [x1, y1]-path is of odd length, then add the edge (x2, y2) to get second part

29

1 x2 x1 N

y1

y2

Nx1

/

—

Figure 3.12: Case 3.1.1. Two non-matching edges are deleted and one new edge is
added to construct two perfectly balanced 2-caterpillars, each of order 2n.

Y = ⟨X2, (x2, y2), Y2⟩, as shown in Fig. 3.12. By the induction hypothesis

1, {x1, y1} and {x2, y2} are mapped to an edge in Qn via maps ϕ1 and ϕ2,

respectively. By edge-symmetry of Qn, we get ϕ1(x1) = ϕ2(x2) and ϕ1(y1) =

ϕ2(y2). Thus, (ϕ(x1), ϕ(x2)) and (ϕ(y1), ϕ(y2)) are edges in Qn+1.

3.1.2. If [x1, y1]-path is of even length, then by Proposition 5 [y2, Nx1]-path is of odd

length. By the induction hypothesis 2, {x1, y1} is mapped to end vertices of

a path P3 in Qn. As seen in Fig. 3.13, we further have two subcases.

(i) If o(Cx2) = 1 then add edge (x2, Nx1) to get Y = ⟨X2, (x2, Nx1), Y2⟩.

(ii) If o(Cx2) > 1 then [x2, Nx2]-path is of odd length (by Proposition 5).

Add (Nx2 , y2) to get Y = ⟨X2, (Nx2 , y2), Y2⟩.

In both the subcases, by the induction hypothesis 2, {x2, y2} is mapped to

end vertices of a path P3 in Qn, via map ϕ2. By P3-symmetry of Qn, we see

that ϕ1(x1) = ϕ2(x2) and ϕ1(y1) = ϕ2(y2). Thus, the extended map ϕ form

edges (ϕ(x1), ϕ(x2)) and (ϕ(y1), ϕ(y2)) in Qn+1.

3.2. If ∃ (y1, y2) on the backbone of Cx1 and (z1, z2) on Cx1,y1 such that

fB(x2) + (fNx1 (Nx1)− fNx1 (y1)) + (fNx1,y1 (Nx1,y1)− fNx1,y1 (z1)) = 2n,

then these two edges are unique. Delete (y1, y2) and (z1, z2) to get the parts

Y2 = ⟨Cx1,y2 , . . . , Cx1,Nx1 ⟩ and Z2 = [z2, Nx1,y1]-path. The first part obtained

30

1 x2

Nx2

x1 N

y1
y2

Nx1

/

—

1 x2

Nx1

y2

(i) o(Cx2) = 1

1 x2

Nx2

y2

Nx1

or

(ii) o(Cx2) > 1

Figure 3.13: Case 3.1.2.Two non-matching edges are deleted and one new edge is
added to construct two perfectly balanced 2-caterpillars, each of order 2n.

1 x2 x1

Nx2

N

y1

y2

Nx1

z1 z2 Nx1,y1

α

—

/

/

Figure 3.14: Case 3.2.1. Two matching edges (y1, y2) and (z1, z2) are deleted and
compensated by adding one matching edge (y2, z2).

is X = ⟨C\X2 ∪ Y2 ∪ Z2⟩. Since the degree of y1 is 3, so there are three

possible matching edges it can be incident to, as discussed below.

3.2.1. If (y1, y2) ∈ M then (z1, z2) ∈ M and [y1, z1]-path is of odd length. Add the

new matching edge (y2, z2) (see Fig. 3.14). The non-matching edges along

the [y1, z1]-path become matching edges and vice-versa. Furthermore,

(i) if [x1, y1]-path is of even length, add (x2, z2) to get the required 2- caterpillar

Y = ⟨X2, (x2, z2), Z2, (y2, z2), Y2⟩ (Fig. 3.15). Since the sequence [x2, z2, y2] is

P3, so its image [ϕ2(x2), ϕ2(z2), ϕ2(y2)] is P3 in Qn. By induction hypothesis

2(ii), the sequence [ϕ1(x1), ϕ1(z1), ϕ1(y1)] form P3 in Qn. By P3-symmetry

of Qn, we get ϕ1(x1) = ϕ2(x2), ϕ1(y1) = ϕ2(y2) and ϕ1(z1) = ϕ2(z2).

Thus, the extended map phi form edges (ϕ(x1), ϕ(x2)), (ϕ(y1), ϕ(y2)) and

(ϕ(z1), ϕ(z2)) in Qn+1, as required.

(ii) if [x1, y1]-path is of odd length, then, as seen in Fig. 3.16,

31

x2 z2 y2

X2

ϕ1(x1) ϕ1(α)

ϕ1(z1) ϕ1(y1)

ϕ1({x1, y1, z1})

Figure 3.15: Case 3.2.1. Adding edges (x2, y2) and (y2, z2) to form perfectly bal-
anced 2-caterpillar on 2n vertices. Thus, (i) ϕ2({x2, z2, y2}) and ϕ1({x1, z1, y1}) are
both K1,2.

x2

Nx2

Nx1y1

z2

y2

Cx2 > 1

x2

Nx1

y2

z2

Cx2 = 1

Figure 3.16: Case 3.2.1. (ii) Adding an edge (y2, z2) to form perfectly balanced
2-caterpillar on 2n vertices .

• if o(Cx2) > 1 then [x2, Nx2]-path is of odd length (by Proposition 5).

Add (Nx2 , Nx1,y1) to get Y = ⟨X2, (Nx2 , Nx1,y1), Z2, (y2, z2), Y2⟩. Here, it

is possible that z2 = Nx1y1 .

• if o(Cx2) = 1 then [y1, Nx1]-path is of odd length (by Proposition 5).

Add (x2, Nx1) to get Y = ⟨X2, (x2, Nx1), Y2, (y2, z2), Z2⟩. Here, y2 = Nx1

is possible.

In both the cases, by the induction hypothesis 2 and since (y2, z2) is an

edge, the sequence [ϕ2(x2), ϕ2(y2), ϕ2(z2)] form P3 in Qn. By the induc-

tion hypothesis 1(i), the sequence [ϕ1(x1), ϕ1(y1), ϕ1(z1)] form P3 in Qn.

Using P3-symmetry of Qn, we get ϕ1(x1) = ϕ2(x2), ϕ1(y1) = ϕ2(y2) and

ϕ1(z1) = ϕ2(z2). Thus, the extended map phi form edges (ϕ(x1), ϕ(x2)),

(ϕ(y1), ϕ(y2)) and (ϕ(z1), ϕ(z2)) in Qn+1, as required.

3.2.2. If (y1, y′) is a matching edge on Cx1,y1 then [y1, z1]-path is of odd length. Also

32

1 x2

Nx2

x1 N

y1

y2

y′

Nx1

z1 z2 Nx1,y1

α

/

— /

Figure 3.17: Case 3.2.2. Deleting three non-matching edges.

1 x2

Nx2

x1 N

y1

y2

y′

Nx1

z1 z2 Nx1,y1

— /

Figure 3.18: Case 3.2.3. Deleting three non-matching edges.

[y2, Nx1]-path is of odd length (by Proposition 5). Add (y2, z2). As seen in

Fig. 3.17,

(i) If [x1, y1]-path is of even length then add (x2, z2) to get the second part Y =

⟨X2, (x2, z2), Z2, (y2, z2), Y2⟩.

(ii) If [x1, y1]-path is of odd length then,

• if s(Cx2) > 1 then [x2, Nx2]-path is of odd length (by Proposition 5).

Add (Nx2 , Nx1) to get Y = ⟨X2, (Nx2 , Nx1), Y2, (y2, z2), Z2⟩.

• if s(Cx2) = 1 and since [z2, Nx1,y1]-path is of odd length, (x2, Nx1,y1) is

added to get Y = ⟨X2, (x2, Nx1,y1), Y2, (y2, z2), Z2⟩.

3.2.3. If (y′, y1) ∈ M on the backbone of Cx1 , with y′ ̸= y2, then [y1, z1]-path and

[z2, Nx1,y1]-path are both of even length. Add (y2, Nx1,y1) (see Fig 3.18). We

further discuss two sub-cases.

33

x2

Nx2

Nx1

y2
Nx1,y1z2

s(Cx2) > 1

x2

Nx1

y2
Nx1,y1z2

s(Cx2) = 1

ϕ2(α)

ϕ2(x2)

ϕ2(y2)ϕ2(z2)

or

Figure 3.19: Case 3.2.3. (i). Joining subtrees containing x2, y2 and z2.

(i) If [x1, y1]-path is of even length then, as seen in the Fig. 3.19,

• if o(Cx2) > 1 then [x2, Nx2]-path is of odd length (by Proposition 5).

By Proposition 5, [y2, Nx1]-path is of even length. If o(Y2) > 2 then

add (Nx2 , Nx1) to get Y = ⟨X2, (Nx2 , Nx1), Y2, (y2, Nx1,y1), Z2⟩, other-

wise add (Nx2 , y2) to get Y = ⟨X2, (Nx2 , y2), Y2, (y2, Nx1,y1), Z2⟩.

• if o(Cx2) = 1 then add (x2, Nx1), since [y2, Nx1]-path is of odd length by

Proposition 5, to get Y = ⟨X2, (x2, Nx1), Y2, (y2, Nx1,y1), Z2⟩.

(ii) If [x1, y1]-path is of odd length then,

• If o(Cx2) > 1 then [x2, Nx2]-path is of odd length (by Proposition 5).

Add (Nx2 , Nx1) to get Y = ⟨X2, (Nx2 , Nx1), Y2, (y2, Nx1,y1), Z2⟩.

• If o(Cx2) = 1 then add (x2, z2) to get Y = ⟨X2, (x2, z2), Z2, (y2, Nx1,y1),

Y2⟩.

Remarks

As a next improvement of the result presented in this chapter, we can consider em-

bedding perfectly balanced k-caterpillars (k ≥ 3). However, the proof technique

of creating sub-caterpillars may not be appropriate for these caterpillars. This is

because, we will have to then delete more than 3 edges from the k-caterpillars to

34

obtain a perfectly balanced sub-caterpillar. But then, there do not exist any more

path symmetries in Qn to embed the sub-caterpillar as desired.

35

Part II

Quantum walks on Cubelike

Structures

36

CHAPTER 4

Discrete-time coined quantum walks on reg-

ular graphs

Discrete-time quantum walks are quantum counterpart of random walks on graphs.

The first quantum random walk models were proposed in [5]. It has since been

observed that there are some startling differences between classical and quantum

walks. For instance, it has been shown that the hitting time from one vertex to

the antipodal vertex is linear in the dimension of the hypercube, which is expo-

nentially fast in quantum walks compared to classical walks [49]. Moreover, there

is also a quadratic speed-up obtained in the mixing time of quantum versus the

classical walks [57]. These differences between classical and quantum walk led to

a search for quantum walk-based algorithms that can outperform classical coun-

terparts. Some of the quantum algorithms that have been developed based on

quantum walks are searching a marked element on a grid, the element distinct-

ness problem, and the triangle finding problem in a graph [6].

In this chapter, we investigate quantum hitting times on cubelike graphs in

two different ways; one by giving a closed form for the system’s evolution after T

steps, and the other by constructing quantum circuits for the evolution operator

and implementing on IBM’s computing platform.

4.1 Quantum walk evolution

A discrete-time coined quantum walk (DTQW) on a graph Γ on N vertices is de-

scribed by the evolution of an associated quantum system in a Hilbert space. The

37

position state of the system is a unit vector in the Hilbert space. The Hilbert space

is spanned by N orthonormal vectors where each basis vector is represented by

a node in the graph. The evolution is assisted by an auxiliary Hilbert space of

dimension ∆ called the coin space, where ∆ is the maximum degree of the graph.

The coin space is spanned by edges, where each edge corresponds to a normal-

ized directional vector along which the quantum system evolves. A coin state is

a normalized linear combination of all directions that determines the pathway of

the quantum system. The total Hilbert space of the associated graph is the tensor

product of the coin space and the position space, and the state of the system is a

unit vector in the joint Hilbert space. This can be paraphrased classically as; if the

walker is at node v of degree dv, then we toss a dv-dimensional coin whose output

is an adjacent edge (direction) along which the walker moves. Equivalently, in the

quantum case, we say that there is an operator, called the coin operator, that op-

erates on the coin space and transforms a coin state |ψ⟩ to another coin state |ψ′⟩.

Then after another operator, called the shift operator, shifts the quantum walker

from one position state to another position state along the direction |ψ′⟩.

4.1.1 Regular graphs

Suppose Γ is ∆-regular with N vertices, then the associated Hilbert space is the

joint Hilbert space H = HC ⊗HP , where HC ∼= C∆ is known as the coin space,

and HP ∼= CN is known as the position space. Suppose vertices and edges are

labeled by {v0, v1, . . . , vN−1} and {α0, α1, . . . , α∆−1}, respectively, then the compu-

tational basis of H is given by

{|αk⟩ |va⟩ : 0 ≤ k ≤ ∆ − 1, 0 ≤ a ≤ N − 1}. (4.1)

This association between Γ and H is such that vertex va represents the position

state |va⟩ in HP , and edge αk represents the coin state |αk⟩ in HC . The evolution

of the system is described by a unitary operator U , called the evolution operator,

defined by

U = S(C ⊗ I), (4.2)

38

where, C is the coin operator analogous to a ∆-dimensional classical coin and S is

the shift operator that shifts the quantum state |αk⟩ |va⟩ to a neighboring quantum

state |αk⟩ |vb⟩ such that αk is the label of the edge (va, vb).

4.1.2 Cubelike graphs

The Cayley graph Cay(Zn
2 , Ω) defined over the Boolean group Zn

2 is called cube-

like graph of dimension n. For a cubelike graph Cay(Zn
2 , Ω) when the ordering on

Ω is not specified then we assume the lexicographical ordering, i.e., we assume

that the cubelike graph is given in its canonical form. A vertex (xn−1, . . . , x1, x0) ∈

Zn
2 is denoted by the binary string xn−1 · · · x1x0, and is given the label va, where

a = xn−12n−1 + · · ·+ x121 + x020. An edge (va, vb) is labeled by αk−1, 1 ≤ k ≤ ∆,

if the XOR operation of va and vb, i.e. va ⊕ vb, is the k-th element Ω(k) of Ω. Sup-

pose 2m−1 < ∆ ≤ 2m, for some integer m, then the edge labeled by αk−1 can be

denoted by the k-th binary string ym−1 · · · y1y0 in Zm
2 , i.e., k − 1 = ym−12m−1 +

· · ·+ y121 + y020.

Some special subfamily of cubelike graphs of interest are (a) Hypercubes Qn

with Ω = {0i10j : i + j = n − 1}, and (b) Augmented cubes [28] AQn with

Ω = {0i10j : i + j = n − 1} ∪ {0n−i1i : 1 ≤ i ≤ n}. In Fig. 4.1a, edge (v0, v4)

is labeled by α2 because v0 ⊕ v4 = 100 is the third element of its generating set

{001, 010, 100}, while in Fig. 4.1b it is labeled by α3 as 100 is the fourth element of

its generating set {001, 010, 011, 100, 111}. The binary representations of α0, α1, α2

in Q3 (Fig. 4.1a) are 00, 01, 10, respectively, while in AQ3 (Fig. 4.1b), the binary

representations of α0, α1, α2, α3, α4 are 000, 001, 010, 011, 100, respectively.

The evolution operator

Any unitary operator on HC = C∆ can be chosen as the coin operator. A popu-

lar coin operator is the Grover coin which is invariant under permutations of all

39

v0000 v1 001

v3 011v2010

v4100 v5 101

v7 111v6110

α0

00

α1 01

α2

10

α101

α2

10

α0

00

α2

10

α2

10

α0

00

α1 01 α101

α0

00

(a) Q3

v0 v1

v3v2

v4 v5

v7v6

α0

α1

α3

α2

α4

α1

α3

α2

α4

α0

α3

α4α4

α3

α0

α1

α2

α1

α2

α0

(b) AQ3

Figure 4.1: A pictorial representation of (a) Q3 = Cay(Z3
2, {001, 010, 100}) and (b)

AQ3 = Cay(Z3
2, {001, 010, 011, 100, 111}). In both the cases, a vertex x2x1x0 is rep-

resented by va, where a = x222 + x121 + x020, and an edge (va, vb) is represented
by αk−1, if va ⊕ vb is the k-element of the corresponding lexicographically ordered
generating set. The edge αk−1 is also represented by the binary string (of length 2
in (a)) of the integer k − 1.

directions. The Grover coin, denoted by C, is defined by 2 |D⟩ ⟨D| − I, where,

|D⟩ = 1√
∆

∆

∑
k=1

|αk−1⟩ =⇒ C =

2
∆ − 1 2

∆
2
∆ · · · 2

∆

2
∆

2
∆ − 1 2

∆ · · · 2
∆

...
...

...
. . .

...

2
∆

2
∆

2
∆ · · · 2

∆ − 1

. (4.3)

The shift operator S is defined by

S =
∆

∑
k=1

2n−1

∑
a=0

|αk−1, va ⊕ Ω(k)⟩ ⟨αk−1, va| , (4.4)

The following example illustrates the DTQW on the 2-dimensional hypercube.

Example 2 (DTQW on Q2 = Cay(Z2
2, {01, 10})). The Hilbert space associated with

the graph (see Fig. 4.2) is C2 ⊗ C4, and the computational basis is

{|0⟩ |00⟩ , |1⟩ |00⟩ , |0⟩ |01⟩ , |1⟩ |01⟩ , |0⟩ |10⟩ , |1⟩ |10⟩ , |0⟩ |11⟩ , |1⟩ |11⟩}.

40

1 2

43

Figure 4.2: The 2-dimensional hypercube.

The evolution operator U is S(C ⊗ I), where,

C =

0 1

1 0

 ,

and,

S =
2

∑
k=1

3

∑
a=0

|αk−1⟩ |va ⊕ Ω(k)⟩ ⟨αk−1| ⟨va| .

The evolution, with the initial state |D⟩ |00⟩ = |0⟩+|1⟩√
2

|00⟩, occurs as:

1. The first time step;

U |D⟩ |00⟩ = S(C ⊗ I)
(

1√
2
(|0⟩ |00⟩+ |1⟩ |00⟩)

)
=

1√
2
(|1⟩ |10⟩+ |0⟩ |01⟩) .

2. The second time step;

U 2 |D⟩ |00⟩ = S 1√
2

[(
2
|0⟩+ |1⟩√

2
1√
2
− |1⟩

)
|10⟩

+

(
2
|0⟩+ |1⟩√

2
1√
2
− |0⟩

)
|01⟩

]
= S 1√

2
(|0⟩ |10⟩+ |1⟩ |01⟩) = |0⟩ |11⟩+ |1⟩ |11⟩√

2

= |D⟩ |11⟩ .

41

4.1.3 Hypercubes

We compare the classical random walk with the discrete-time coined quantum

walk on the n-dimensional hypercube. The classical transition matrix M for the

random walk on a r-regular graph is given by M = 1
r A, where A is the adjacency

matrix, viz.,

Mi,j =

1
d ; i = j

0 ; otherwise.
.

Suppose Π0 is the probability distribution of vertices at the initial time t = 0, then

after time t the probability distribution of vertices is given by Πt = MtΠ0. The

hitting time H(i, j) is the expected number of steps taken by the walker to reach

the vertex vj from the vertex vi. The following result computes the hitting time in

a regular graph.

Theorem 11. [55] If Γ is a r-regular graph with the spectral decomposition of the transi-

tion matrix M given by

M =
N

∑
k=1

λk |Pk⟩ ⟨Pk| ,

then the hitting time is given by

H(i, j) = N
N

∑
k=1

1
1 − λk

(Pk(j)2 − Pk(i)Pk(j)). (4.5)

Theorem 12. [42] The spectrum of the n-dimensional hypercube is (n − 2k), 0 ≤ k ≤ n,

with the multiplicity (n
k).

Using Theorem 11 and Theorem 12, the hitting time between a pair of antipo-

dal vertices, say v0 and vN−1, is rewritten as

H(0, N − 1) = n
n

∑
k=1

(
n
k

)
1
2k

(1 − (−1)k). (4.6)

Thus, we get the following result.

Theorem 13. The hitting time between antipodal vertices in the n-dimensional hypercube

is asymptotically 2n.

42

The corresponding quantum hitting time of the DTQW on the hypercube is

a measure of how quickly the quantum walker reach the target vertex, starting

from an initial vertex. Among the various definitions of a quantum hitting time,

we adopt the definition given by Kempe [49].

Definition 2 ([49]). The discrete-time quantum walk is said to admit (T, p) one-shot

(|v0⟩ , |v⟩) hitting time if | ⟨v| UT |v0⟩ |2≥ p.

In Example 2, Q2 has (2, 1) one-shot (|00⟩ , |11⟩) hitting time. The following

result stated by Kempe [49] shows that the quantum hitting time is linear in n

which is exponentially faster than its classical counterpart.

Theorem 14 ([49]). The discrete-time quantum walk with Grover coin on the hypercube

of dimension n has a (T, p) one-shot (|x⟩ , |x̄⟩) hitting time, i.e. | ⟨x̄| UT |x⟩ |2≥ p,

where T is either ⌊π
2 n⌋ or ⌈π

2 n⌉ and p = 1 −O(
log3 n

n).

Remarks

In Example 2, we get the probability distribution of the quantum states as; after

the first step, the quantum system is at state |01⟩ or |10⟩ with probability 1
2 , and

after two steps the probability of the quantum system to be at |11⟩ is 1. The value 1

is remarkable and we want to find other cubelike graphs in which such probability

is attained at least asymptotically. Kempe [49] generalizes the result to hypercubes

where he states that the one-shot hitting time is asymptotically proportional to the

dimension of the hypercube with the probability ≈ 1.

4.2 Hitting times

The DTQW starts from a particular starting vertex v0 and evolves under the dy-

namics of the evolution operator given in Eq. (4.4) and (4.3). Letting the system

evolve for a finite number of steps T is equivalent to applying UT to an initial state

|v0⟩ of the system. A measurement is then performed in the position space basis

to see if the walker is in a specific target vertex. At time T, if we find the walker

in the state |v⟩ corresponding to the target vertex v with probability at least p,

43

then we say (T, p) is the quantum hitting time for v, starting from vertex v0. This

hitting time, defined by Kempe in [49], is the one-shot hitting time.

In this section, we compute the closed form for the quantum state of the system

after applying the evolution operator finitely many times. As a result we calculate

the hitting times on the complete graphs on 2n vertices.

4.2.1 An analysis of the evolution operator

We want to compute the quantum state of the system after applying the evolution

operator finitely many times at a given initial state. This will allow us to get the

coefficients of all computational basis vectors and hence the amplitude square can

be calculated to get the probability of the quantum system to be at a particular

vertex. If the probability pv attained at any vertex v for any time step T is higher

than the fixed value p, then we say the vertex v is a target vertex with a target

probability pv and a hitting time T.

Notice that the action of the Grover coin operator C on a coin state |αk⟩ and the

diagonal state |D⟩ is described as

C |αk⟩ =
2√
∆
|D⟩ − |αk⟩ ,

C |D⟩ = |D⟩ ,
(4.7)

and the action of S on a quantum state of the system is given by

S |αk⟩ |va⟩ = |αk⟩ |va ⊕ Ω(k)⟩ ,

S |D⟩ |va⟩ =
1√
∆

∆

∑
k=1

|αk⟩ |va ⊕ Ω(k)⟩ .
(4.8)

Assume that the DTQW begins at the origin |v0⟩ ≡ |0⟩⊗n. We use the following

notations for further discussions; let Xk and Yk be defined as

Xk ≡
∆

∑
i1=1

· · ·
∆

∑
ik

|αik⟩ |v0 ⊕ Ω(i1)⊕ · · · ⊕ Ω(ik)⟩

Yk ≡
∆

∑
i1=1

· · ·
∆

∑
ik

|D⟩ |v0 ⊕ Ω(i1)⊕ · · · ⊕ Ω(ik)⟩
(4.9)

44

With these notations, the action of the evolution operator U on Xk and Yk is writ-

ten as;

U (Xk) =
2
∆
Xk+1 −

√
∆Yk−1,

U (Yk) =
1√
∆
Xk+1.

(4.10)

To understand the above expressions see the first few iterations of the evolution;

UY0 = U |D⟩ |v0⟩ =
1√
∆
X1

U 2Y0 =
2

∆
√

∆
X2 −Y0

U 3Y0 =
22

∆2
√

∆
X3 −

2
∆
Y1 −

1√
∆
X1.

U 4Y0 =
23

∆3
√

∆
X4 −

22

∆2Y2 −
2 · 2

∆
√

∆
X2 + Y0

U 5Y0 =
24

∆4
√

∆
X5 −

23

∆3Y3 −
3 · 22

∆2
√

∆
X3 +

2 · 2
∆

Y1 +
1√
∆
X1.

(4.11)

Notice the pattern in Eq 4.11 that encourages us to define a recursive set that will

determine each term in a particular evolutionary step. Define a recursive set ST,

for the step number T ≥ 1, by;

ST(T − 2k) =
1√
∆

ST−1(T − 2k) +
2
∆

ST−1(T − 2k − 1)

ST(T − 2k − 1) = −
√

∆ST−1(T − 2k − 1),
(4.12)

where 0 ≤ k ≤ ⌊T−1
2 ⌋, with the initial condition S1 = { 1√

∆
}. Notice that if l > T

or l < 1 then ST(l) is undefined; assume ST(l) = 0 for those values of l. The

following lemma shows that ST consists of coefficients of Xk and Yk in UTY0.

Lemma 3. For T ≥ 1, let ST be the recursive set defined by Eq. 4.12. Then, the terms in

UTY0 are given by

UTY0 =
⌊ T−1

2 ⌋

∑
k=0

(
ST(T − 2k)XT−2k + ST(T − 2k − 1)YT−2k−2

)
. (4.13)

45

Proof. We prove by using the mathematical induction on T. For T = 2, use Eq. 4.12

to compute S2 as

S2(2) =
1√
∆

S1(2) +
2
∆

S1(1) =
2

∆
√

∆
,

S2(1) = −
√

∆S1(1) = −1.

Thus, we get U 2Y0 as required. Assume that the expression in Eq. 4.13 is true for

T > 2. Using the expression for UTY0, compute the coefficients of XT+1−2k and

YT+1−2k−2 in UT+1Y0 as;

U (ST(T − 2k)XT−2k) = ST(T − 2k)
(2

∆
XT−2k+1 −

√
∆YT−2k−1

)
U (ST(T − 2k + 1)YT−2k) = ST(T − 2k + 1)

(1√
∆
XT−2k+1

) (4.14)

It can be seen that the coefficients of XT+1−2k and YT+1−2k−2 in UT+1Y0 are com-

puted by using the coefficients of XT−2k and YT−2k in UTY0, viz.,

(1√
∆

ST(T − 2k + 1) +
2
∆

ST(T − 2k)
)
XT−2k+1 = ST+1(T + 1 − 2k)XT+1−2k

−
√

∆ST(T − 2k)YT−2k−1 = ST+1(T − 2k)YT+1−2k−2.

(4.15)

This proves that ST defines all terms in UTY0, which is given by Eq. 4.13.

The previous lemma tells that the recursive set ST determines all terms in

UTY0. The recursive set consists of two subsets, one corresponding to the coef-

ficients of Xk and the other to Yl, where 0 ≤ k, l ≤ ⌊T−1
2 ⌋. Substitute the second

equation of Eq. 4.12 into the first equation to get;

ST(T − 2k) = −ST−2(T − 2k) +
2
∆

ST−1(T − 2k − 1). (4.16)

Thus, the recursive set ST is decomposed into two recursive subsets S(1)
T and S(2)

T

corresponding to the coefficients of Xk and Yl, respectively. Since the two recur-

sive subsets are related by the second part of Eq. 4.12, the solution for the first part

46

(Eq. 4.16) gives the solution for the other. The following lemma gives the required

solution set.

Lemma 4. Given T ≥ 1, the evolution after T steps is given by

UTY0 =
⌊ T−1

2 ⌋

∑
k=0

[
(−1)k

(
T − k − 1

k

)
1√
∆

(
2
∆

)T−2k−1

XT−2k

+ (−1)k+1
(

T − k − 2
k

)(
2
∆

)T−2k−2

YT−2k−2

(4.17)

The expression given in Eq. 4.17 can be obtained by using generating function

on two variables. Alternatively, we can use mathematical induction on T to prove

the above result; see the inductive steps for ST in Eq. 4.14 and 4.15.

4.2.2 Hitting times on complete graphs

The complete graph on 2n vertices is the Cayley graph Cay(Zn
2 , Ω), where Ω =

Zn
2\{0}.

Lemma 5. The complete graph on 2n vertices is periodic with minimum period 4.

Proof. The first three steps in Eq. 4.11 do not allow periodicity in the complete

graph. At the fourth step, we compute the coefficients of the final state |D⟩ |v0⟩,

which is the initial state in the current scenario, whose amplitude square gives the

return probability of the quantum walker. We do so by calculating the coefficient

of |D⟩ |v0⟩ in each term of the summation

U 4Y0 =
23

∆3
√

∆
X4 −

22

∆2Y2 −
2 · 2

∆
√

∆
X2 + Y0.

1. Rewrite the first term 23

∆3
√

∆
X4 in the expanded form (use Eq. 4.9) as

23

∆3
√

∆

∆

∑
i1=1

∆

∑
i2=1

∆

∑
i3=1

∆

∑
i4=1

|αik⟩ |Ω(i1)⊕ Ω(i2)⊕ Ω(i3)⊕ Ω(i4)⟩ ,

in which the subterms where Ω(i1) ⊕ · · · ⊕ Ω(i4) = 0 = v0 are grouped

47

together as

23

∆3
√

∆

∆

∑
i4=1

 ∑
Ω(i1)⊕Ω(i2)⊕Ω(i3)=Ω(i4)

|αi4⟩ |v0⟩

=

23

∆3
√

∆

∆

∑
ik=1

∆2 |αik⟩ |v0⟩

=
23

∆
|D⟩ |v0⟩ ,

(4.18)

where we have used two facts (1) 1√
D ∑∆

i4=1 |αik⟩ |v0⟩ = |D⟩ |v0⟩, and (2) the

number of terms satisfying Ω(i1)⊕ · · · ⊕ Ω(i4) = 0 is ∆2.

2. In the second term − 22

∆2Y2 and the third term − 22

∆
√

∆
X2 we require subterms

satisfying Ω(i1)⊕Ω(i2) = |v0⟩, which gives −22

∆ as the coefficient of |D⟩ |v0⟩

in both the cases.

3. In the fourth term |D⟩ |v0⟩, the coefficient is 1.

Adding all the coefficients obtained above, we get

23

∆
− 22

∆
− 22

∆
+ 1 = 1.

Thus, the return probability after steps T = 4 is 1, which implies that all complete

graphs on 2n vertices are periodic with minimum period 4.

Remarks

The closed form of the state of the quantum system corresponding to a regular

graph can be deduced using similar method as given in Lemma 4, with proper

expression for Xk and Yk in Eq. 4.9. The exact form for Xk and Yk depends on the

graph under consideration and the time step T as described in the special case of

the complete graph on 2n vertices. In general, it is hard to retrieve a target vertex

using the given expression in Eq. 4.17 because for each value of T, we need to

compute the coefficients of all vertices untill the probability for a vertex is larger

than a fixed value p. Therefore, Lemma 4 is not useful unless we find a way to

48

predict a limited number of possible values for T and target vertices. Next section

gives a partial solution to this problem.

4.3 Implementation of discrete-time coined quantum

walks on cubelike graphs

Because of their universality and potential use in developing algorithms, there is

a need for exemplary physical implementations of DTQW. Physical implementa-

tions based on ion-traps, optical cavities, and optical lattices have been suggested

in [52, 61, 69]. Circuit implementations of various standard quantum algorithms

using IBM’s Qiskit platform were done in [1]. Recently in [3] implementation

of staggered quantum walks on cycles, two-dimensional lattices, and complete

graph was studied on IBM quantum computers. A comparison on two different

implementation approaches of quantum walks is given in [38]. An implementa-

tion of DTQW on hypercubes, complete graphs, complete bipartite graphs, and

2-d lattice is recently given in [67].

In this section, we decompose the unitary operator for the DTQW on cubelike

graphs and construct the corresponding quantum circuits. We run these circuits

on IBM’s quantum simulators and quantum computers, and explore the hitting

times and target vertices.

4.3.1 Quantum circuits

A general quantum circuit representing the DTQW on Cay(Zn
2 , Ω), with degree

∆ =| Ω |, is depicted in Fig. 4.3. An unitary operator that can be appended to

a quantum circuit has dimension 2m, for some positive integer m. Since the coin

operator acting on the coin space is of dimension ∆, we first study the case where

∆ = 2m, for some positive integer m. All the qubits are initialized to state |0⟩.

The position state is represented by the first n qubits, which is initially |v0⟩ =

|0⟩⊗n. The coin state, represented by the last m qubits, is initialized to diagonal

state |D⟩ = 1√
∆ ∑∆

k=1 |αk−1⟩ by applying the Hadamard gate H to each coin qubit.

49

|0⟩

Shift

· · ·

Shift

|1⟩ · · ·

...
...

... · · · ...
...

|n − 1⟩ · · ·

|n⟩ H

Grover

· · ·

Grover...
... · · ·

|n + m − 1⟩ H · · ·

c : /n
0 1 n − 1

Figure 4.3: A quantum circuit for DTQW on cubelike graph. H is applied to each
coin qubit to initialize the coin state to |D⟩. The evolution operator U = S(C ⊗ I)
is applied for a finite number of times. Each application of U is separated by a
barrier. Finally, measurement operators are applied to the position qubits.

After the initialization, the evolution operator U , which is the composition of the

Grover operator C and the shift operator S , is applied to the circuit for a specific

number of times before the measurement is taken. It is important to decompose

the evolution operator to run the circuit more efficiently.

Decomposition of the Grover operator

The decomposition of the Grover operator C has been discussed in [12, 53] (see

Fig. 4.4), which is;

C = H⊗mX⊗mH ⊗ I⊗m−1C(m−1)
X ([0, 1, . . . , m − 2], m − 1)H ⊗ I⊗m−1X⊗mH⊗m,

where, C(m−1)
X (c, t) is the generalized Toffoli gate with a set of m− 1 control qubits,

denoted by c, and a target qubit t, i.e., it flips the value of the target only if each

qubit in c is at state |1⟩.

50

|0⟩ H X • X H

|1⟩ H X • X H
...

...
...

...
...

...
...

|m − 2⟩ H X • X H

|m − 1⟩ H X H H X H

Figure 4.4: A decomposition of the Grover operator.

Decomposition of the Shift operator

The shift operator S can be expressed as

S =
∆

∑
k=1

Sk−1, where Sk−1 =
2n−1

∑
a=0

|αk−1⟩ |va ⊕ Ω(k)⟩ ⟨αk−1| ⟨va| . (4.19)

The operator Sk−1 shifts the walker only along the edge αk−1. Suppose Ω(k) has

non-zero entries at positions p1, p2, . . . , pl, then we append the extended Toffoli

gates C(m)
X (c, pj − 1), 1 ≤ j ≤ l, to the quantum circuit corresponding to Sk−1,

where, c is the control consisting of all coin qubits and pj-th position qubit is the

target. These gates do not flip the values of the target qubits unless the coin state

|αk−1⟩ is |1m⟩. Therefore, we need to first apply X gate to each coin qubit with

value zero in |αk−1⟩ and then apply the extended Toffoli gates. Thus, the sequence

of gates appended to the quantum circuit corresponding to Sk−1 is given by

S̃k−1 = (f (k))(C(m)
X (c, pl − 1) . . . C(m)

X (c, p2 − 1)C(m)
X (c, p1 − 1)), (4.20)

where, f (k) is an operator equivalent to appended X gates that transforms |αk−1⟩

to |1m⟩. Thus, the sequence of operators appended to the quantum circuit corre-

sponding to S is

S ≡ S̃0S̃1 · · · S̃∆−1. (4.21)

where, Sk−1, 1 ≤ k ≤ ∆, is expressed by Eq. (4.20).

Example 3. We can understand the decomposition of the shift operator through an exam-

ple of DTQW on Cay(Z4
2, Ω), with Ω = {0101, 0111, 1001, 1010}. Suppose the walker

51

0

1

2

3

4 X • • X • • • X • • X • •

5 X • • • • • X • • • •

Figure 4.5: A quantum circuit for the shift operator used in DTQW on
Cay(Z4

2, {0101, 0111, 1001, 1010}).

is at vertex v = 1101, then the shift operation at position state |v⟩ = |1101⟩ is described

as;

S |α0⟩ |1101⟩ = |α0⟩ |1101 ⊕ 0101⟩ = |α0⟩ |1000⟩

S |α1⟩ |1101⟩ = |α1⟩ |1101 ⊕ 0111⟩ = |α1⟩ |1010⟩

S |α2⟩ |1101⟩ = |α2⟩ |1101 ⊕ 1001⟩ = |α2⟩ |0100⟩

S |α3⟩ |1101⟩ = |α2⟩ |1101 ⊕ 1010⟩ = |α3⟩ |0110⟩ .

(4.22)

The shift operator, mentioned in Eq. (4.22), can be decomposed as shown in Fig. 4.5. For

each edge αk−1, 1 ≤ k ≤ 4, we transform |αk−1⟩ to |α3⟩ ≡ |11⟩ by applying NOT gates,

and then apply Toffoli gates to flip the value of position qubits corresponding to non-zero

entries in Ω(k). See Table 4.1, where we have illustrated the transformation of coin qubits.

The shift along each direction is given by;

S0 = (X ⊗ X)(C(2)
X ([4, 5], 0)C(2)

X ([4, 5], 2))

S1 = (I ⊗ X)(C(2)
X ([4, 5], 0)C(2)

X ([4, 5], 1)C(2)
X ([4, 5], 2))

S2 = (X ⊗ X)(C(2)
X ([4, 5], 0)C(2)

X ([4, 5], 3))

S3 = (I ⊗ X)(C(2)
X ([4, 5], 1)C(2)

X ([4, 5], 3))

(4.23)

We now discuss how we keep track of changes made to each coin state while

52

X ⊗ X I ⊗ X X ⊗ X I ⊗ X
00 11 10 01 00
01 10 11 00 01
10 01 00 11 10
11 00 01 10 11

Table 4.1: Transforming each coin state |αk−1⟩, 1 ≤ k ≤ 4, to |11⟩ by applying NOT
gates.

implementing the shift operation. For y ∈ Zm
2 , define permutations Py by

Py(x) = y ⊕ x, ∀x ∈ Zm
2 .

We construct a sequence of binary strings B(αk−1) = 0m−rk1rk , 1 ≤ k ≤ 2m, where

m − rk is the position of the last non-zero bit of the k-th binary string αk−1 in Zm
2 .

Note that B(0m) = 1m.

Claim:

PB(αk−1)
(PB(αk−2)

(· · · (PB(α0)(αk−1)) · · ·)) = 1m. (4.24)

If the claim is true, then f (k) = Im−rk Xrk , 1 ≤ k ≤ 2m, transforms each coin

state |αk−1⟩ to |1m⟩, one at a time and therefore the operator given by Eq. (4.20) is

correct.

We now prove the claim by induction on k. For k = 1, we have α0 = 0m and

B(α0) = 1m. Thus,

PB(α0)(α0) = 1m ⊕ 0m = 1m.

Assume that at k-th iteration, αk−1 gets transformed to 1m. In lexicographical order

of binary strings, the next binary string αk is obtained by

1. finding the last bit which is zero,

2. changing this bit to 1 and all the following bits to 0s.

Thus, αk−1 and αk differ at the last r positions, for some 1 ≤ r ≤ m, and B(αk) =

0m−r1r. Therefore, αk gets transformed to 1m−r0r at k-th iteration, and at (k + 1)-th

iteration we get B(αk)⊕ αk = 1m. Hence, the claim is True.

Notice that, the transformation of a coin state corresponding to an edge alters

other coin states corresponding to other edges. At the end of the shift operation in

53

Example 3 we retrieve the original generic coin state as shown in the last column

of Table 4.1. Indeed, after the 2m-th iterations, notice that the i-bit of αk−1, 1 ≤

i ≤ m and 1 ≤ k ≤ 2m, flips only if B(αj−1), 1 ≤ j ≤ 2m, is of the form 0m−s1s,

with s ≥ i, which corresponds to binary strings of the form xm−1 · · · xi0i. Since the

number of such binary strings are 2m−i, the i-th bit of αk−1 flips even number of

times. Therefore, each coin state |αk−1⟩, 1 ≤ k ≤ 2m, remains unchanged after the

2m-th iterations. Therefore, the shift operation is performed successfully without

altering the coin state.

Analysis of the quantum circuit for the shift operator

The number of X gates Num(X) used in the decomposition of the shift operator

is equal to

Num(X) = ∑
x∈Zm

2

wt(B(x)) = 2m+1 − 2, (4.25)

where wt(B(x)) is the Hamming weight of B(x). This can be proved by induction

on m. For m = 1, Num(X) = 2 because B(0) = 1 and B(1) = 1. Assume by way

of induction that, for m = k, Num(X) = 2k+1 − 2. Then, for m = k + 1, notice that

if x ∈ Zm
2 then 0x, 1x ∈ Zm+1

2 and,

B(bx) =

B(x), if x ̸= 0m

B(x) + 1, if x = 0m.
(4.26)

where b = 0 or 1. Therefore, Num(X) for m = k + 1 is equal to

2 × (2k+1 − 2) + 2 = 2k+2 − 2.

Num(X) is of order O(| Ω |). For most practical purposes sparse Cubelike graphs

are used. In particular, if we take m = O(log n), then Num(X) is of order O(n).

This implies that the circuit is efficient for most cubelike graphs of interest. The

number of generalized Toffoli gates used is equal to the sum of Hamming weights

54

of all elements of the generating set Ω, which is

Num(C(m)
X) = ∑

x∈Ω
wt(x), wt(x) = number of 1s in x. (4.27)

Quantum circuits for cubelike graphs of arbitrary degree

If the degree of the cubelike graph is not a power of 2 (for example Q3) then we

have to make certain modifications to implement our circuit. Consider a cubelike

graph Cay(Zn
2 , Ω), with ∆ =| Ω |. Let m be a positive integer satisfying 2m−1 <

∆ ≤ 2m. The Grover coin C = 2 |D⟩ ⟨D| − I is a ∆ × ∆ matrix, where ∆ may not be

equal to 2m. We, therefore, define a new 2m × 2m operator C ′ by

C ′ =

2 |D⟩ ⟨D| 0

0 0

− I = 2 |D′⟩ ⟨D′| − I,

where,

|D′⟩ = 1√
∆

∆

∑
k=1

|αk−1⟩ ∈ C2m

is a projection of the diagonal state |D⟩ in the higher dimensional Hilbert space

HC ′ = C2m
that contains the coin space HC = C∆ as a subspace. In other words,

HC ′ is a new coin space with the computational basis

{|αk−1⟩ : 1 ≤ k ≤ 2m},

and the quantum walk occurs in Cay(Zn
2 , Ω′), where Ω′ has 2m elements contain-

ing Ω, i.e., Cay(Zn
2 , Ω) is a subgraph of Cay(Zn

2 , Ω′). The new coin operator C ′

changes the coefficients of the initialized vector, which is |D′⟩, and therefore, the

coefficents of coin states |αk−1⟩, with k ≥ ∆ + 1, remain 0 throughout the evolu-

tion, i.e. the generic coin state |c⟩, in our case, is

|c⟩ =
∆

∑
k=1

λk |αk−1⟩+
2m

∑
k=∆+1

0 |αk−1⟩ .

55

0

1

2

3 X • X • X • X

4 X • • X •

Figure 4.6: A quantum circuit for the shift operator on Q3.

We define a new shift operator S ′ by

S ′ =
∆

∑
k=1

2n−1

∑
a=0

|αk−1⟩ |va ⊕ Ω(k)⟩ ⟨αk−1| ⟨va|

+
2m

∑
k=∆+1

2n−1

∑
a=0

|αk−1⟩ |va⟩ ⟨αk−1| ⟨va| .

(4.28)

The new shift operator S′ fixes |αk−1⟩ |va⟩, 0 ≤ a ≤ 2n − 1, if k ≥ ∆ + 1, i.e.,

S′ |αk−1⟩ |va⟩ =

|αk−1⟩ |va ⊕ Ω(k)⟩ ; 1 ≤ k ≤ ∆,

|αk−1⟩ |va⟩ ; k ≥ ∆ + 1.

The Fig. 4.6 represents the quantum circuit for Q3. Notice that the circuit does not

shift a position state along the direction |α3⟩ ≡ |11⟩. Finally, the original coin state

is retrieved at the end of the shift operation because each quantum wire contains

even number of X gates.

4.3.2 Application to hitting times

We use Qiskit [2] to implement DTQW on IBM’s Quantum simulators and quan-

tum computers. The Qiskit simulator qasm_simulator runs locally and other IBM’s

simulators such as simulator_mps, simulator_extended_stabilizer, etc, are accessed

via IBM provider ibm-q.

56

11

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

ie
s

1.000

step2

(a) qasm_simulator

00 01 10 11

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

ie
s

0.011
0.062 0.070

0.857

step2

(b) ibmq_manila

Figure 4.7: Probability distribution of DTQW on Q2 after two steps when run
on Qiskit simulator (a) qasm_simulator and on IBM’s quantum computer (b)
ibmq_manila.

0

1

2
4

3
5

6

7

00
1

01
0

10
0

11
1

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

ie
s

0.061 0.061 0.073

0.806

step3

Figure 4.8: DTQW on Q3 with steps T = 3, target vertex 111, and target probabil-
ity p = 0.804.

Discrete-time coined quantum walks on Quantum computers

The quantum circuit for DTWQ on Q2, see Fig. B.1, was run on IBM’s quan-

tum computer ibmq_manila v1.0.3, the result of which is compared with the result

on qasm_simulator, as shown in Fig. 4.7. The quantum circuits corresponding to

higher dimensional cubelike graphs could not be run successfully on real quan-

tum computers due to unavoidable gate errors and noise from the environment

around the quantum computer. In case of Q3, the errors and noise were low and

therefore could be run successfully.

57

0

1

2

3

4

7

5

6

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

ie
s

0.013 0.016 0.024

0.828

0.039 0.033 0.021 0.025

step9

Figure 4.9: DTQW on AQ3 with T = 9, target 011, and p = 0.812.

0

1

2

4

8

3

5

9

6

10

7

11

12

13

14

15
00

00

00
11

01
01

01
10

10
01

10
10

11
00

11
11

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.059 0.063 0.074 0.065 0.062 0.069
0.053

0.554

step6

Figure 4.10: DTQW on Q4 with T = 6, target 1111, and p = 0.562.

0

1

2

3
4

7

8
15

5

6

9

1410

13
11

12

00
01

00
11

01
00

01
10

10
10

10
11

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

ie
s

0 0.003

0.993

0 0 0

step11

Figure 4.11: DTQW on AQ4 with T = 11, target 0100, and p = 0.993.

0 1

2

4

8

16

3

5

9

17

6

10

18

7

11

19

12

20

13

21

14

22

15

23

24 25

26 27

28 29

30 31

00
00

1

00
01

0

00
10

0

00
11

1

01
00

0

01
01

1

01
10

1

01
11

0

10
00

0

10
01

1

10
10

1

10
11

0

11
00

1

11
01

0

11
10

0

11
11

1

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

ie
s

0.016 0.016 0.020 0.019 0.016 0.013 0.023 0.024 0.015 0.019 0.016 0.018 0.014 0.020 0.022

0.732

step7

Figure 4.12: DTQW on Q5 with T = 7, target 11111, and p = 0.722.

58

0

1

23

4

78

15

16 31
5

69

14

17 30

10

13

18 29

11

12

19 28

20 27 21 26

22 25

23 24

00
00

0
00

00
1

00
01

0
00

10
0

00
10

1
00

11
1

01
00

0
01

00
1

01
01

1
01

10
0

01
10

1
01

11
0

01
11

1
10

00
0

10
01

1
10

10
0

10
10

1
10

11
0

11
00

0
11

00
1

11
01

0
11

10
0

11
11

1

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

ie
s

0.002 0.003 0.003 0.003 0.003 0.006 0.003 0.002

0.946

0.004 0.003 0.004 0 0.003 0.002 0.003 0 0 0 0.002 0 0.003 0

step13

Figure 4.13: DTQW on AQ5 with T = 13, target 01011, and p = 0.953.

0 5 10 15 20 25 30 35
Degree |Ω|=n

0

10

20

30

40

50

St
ep

s (
T)

Hitting times on H percubes
T=nπ/2
Data: T vs degree n

(a)

0 5 10 15 20 25 30 35
Degree |Ω|=2n-1

0

10

20

30

40

50

St
ep
s (
T)

Hitting times on A gmented c bes
T=(2n-1)π/2
Data: T vs degree 2n-1

(b)

Figure 4.14: Plot of hitting time T vs the degree (a) Qn and (b) AQn.

Hitting times of Hypercubes and Augmented cubes

Upon implementing quantum circuits for DTQW on cubelike graphs, we have

observed that the specific vertex, called the target vertex, to which the walker

reach with highest probability, is unique and equal to the binary XOR operations

of elements of the generating set Ω, i.e.,

target vertex =
⊕
x∈Ω

x. (4.29)

Therefore, the target vertex in the Hypercube of dimension n is 1n and in Aug-

mented cube of dimension n the target vertex is (01)x1, where x = n−1
2 , if n is odd

and (01)y00, where y = n−2
2 , if n is even. In Fig. 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13

the target probabilities for Augmented cubes are higher than that of Hypercubes

of same dimensions. In Table 4.2, we have displayed the hitting time T along

59

Table 4.2: Hitting time T with target vertex and target probability p corresponding
to dimensions of Hypercubes Qn and Augmented cubes AQn.

Hypercubes Qn
n = ∆ T Target p

3 3 111 0.804
4 6 1111 0.562
5 7 11111 0.722
6 10 16 0.816
7 11 17 0.912
8 12 18 0.954
9 13 19 0.950

10 14 110 0.901
11 17 111 0.927
12 18 112 0.956
13 19 113 0.947
14 22 114 0.929
15 23 115 0.961
16 24 116 0.960

Augmented cubes AQn
n ∆ T Target p
3 5 9 011 0.812
4 7 11 0100 0.993
5 9 13 01011 0.953
6 11 17 (01)200 0.928
7 13 19 (01)31 0.919
8 15 23 (01)300 0.969
9 17 25 (01)41 0.926
10 19 29 (01)400 0.955
11 21 31 (01)51 0.919
12 23 35 (01)500 0.954
13 25 39 (01)61 0.958
14 27 41 (01)600 0.962
15 29 45 (01)71 0.977
16 31 47 (01)700 0.961

with target and target probability corresponding to dimensions of Qn and AQn.

In either case, the target probability gets closer to 1 as the dimension increases.

In case of Hypercubes, T is linear with n that tallies with the theoretical result

stated by Kempe in [49], while in Augmented cubes it is linear with the degree of

the graph. See Fig. 4.14b, where we have shown that T is linear with the degree

2n − 1 of AQn.

4.3.3 A conjecture on hitting times and target vertex

The result mentioned by J. Kempe in [49] can be generalized to other cubelike

graphs. In Fig. 4.15 and 4.16 we have shown plots of steps T verses degrees n + k

of some cubelike graphs, where T is the number of iterations required to hit the

target vertex, and n is the dimension of cubelike graph of degree n + k. In the first

figure, we fix the value of k and increase n, and in the second figure, we fix the

dimension n and increase the value of k. In either case, we find that T verses n + k

plot is linear and follows the relation;

T ≈ (n + k)× π/2. (4.30)

60

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Degree |Ω|=n+2

0

5

10

15

20

25

30

St
e
s (
T)

Hitting times on Cubelike gra hs of degree n+2
T=(n+2)π/2
Data: T vs degree n+2

(a)

0 5 10 15 20
Degree |Ω|=n+3

0

5

10

15

20

25

30

St
ep

 (
T)

Hitting time on Cubelike graph of degree n+3
T=(n+3)π/2
Data: T v degree n+3

(b)

0 5 10 15 20
Degree |Ω|=n+4

0

5

10

15

20

25

30

St
ep

s (
T)

Hitting times on Cubelike g aphs of deg ee n+4
T=(n+4)π/2
Data: T vs deg ee n+4

(c)

0 5 10 15 20 25
Degree |Ω|=n+5

0

5

10

15

20

25

30

35

St
ep

 (
T)

Hitting time on Cubelike graph of degree n+5
T=(n+5)π/2
Data: T v degree n+5

(d)

0 5 10 15 20 25 30
Degree |Ω|=n+11

0

10

20

30

40

St
ep

s (
T)

Hitting times on Cubelike g aphs of deg ee n+11
T=(n+11)π/2
Data: T vs deg ee n+11

(e)

25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5
Degree |Ω|=n+26

40

45

50

55

60

65

70

St
ep

s (
T)

Hitting times on Cubelike graphs of degree n+26
T=(n+26)π/2
Data: T vs degree n+26

(f)

Figure 4.15: Plots of steps T required to attain the target probability verses the
degree | Ω |= n + k of cubelike graphs, where k is fixed and n is the dimension.

61

0 5 10 15 20 25 30 35
Degree |Ω|=5+k

0

10

20

30

40

50

St
ep

s (
T)

Hitting times on Cubelike g aphs of dimension 5
T=(5+k)π/2
Data: T vs deg ee 5+k

(a)

0 20 40 60 80 100 120 140 160
Degree |Ω|=8+k

0

50

100

150

200

250

St
e
s (
T)

Hitting times on Cubelike gra hs of dimension 8
T=(8+k)π/2
Data: T vs degree 8+k

(b)

0 20 40 60 80 100 120 140 160
Degree |Ω|=11+k

0

50

100

150

200

250

St
e
s (
T)

Hitting times on Cubelike gra hs of dimension 11
T=(11+k)π/2
Data: T vs degree 11+k

(c)

0 20 40 60 80 100 120 140 160
Degree |Ω|=16+k

0

50

100

150

200

250

St
e
s (
T)

Hitting times on Cubelike gra hs of dimension 16
T=(16+k)π/2
Data: T vs degree 16+k

(d)

Figure 4.16: Plots of steps T requried to attain the target probability verses the
degree | Ω |= n + k of cubelike graphs of fixed dimension n.

It is to be noted that it is just a coincidence that T vs dimension plot is same as T

vs degree plot for DTQW on Hypercubes. The observations and remarks made

above lead to the following conjecture.

Conjecture 1. Let Γ = Cay(Zn
2 , Ω) be an n-dimensional Cubelike graph with degree

∆ =| Ω |. Define the target vertex by;

vtarg =
⊕
x∈Ω

x. (4.31)

Then, there exists a hitting time T ≈ π∆
2 such that the target probability ptarg, the proba-

bility by which DTWQ reaches vtarg, is asymptotically equal to 1. Moreover, the parity of

T is same as that of ∆, i.e., T is even only if ∆ is even.

62

11
1

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili
tie

s

1.000

step23

(a)

0 500 1000 1500 2000
Degree |Ω|=2n-1

3.80

3.85

3.90

3.95

4.00

4.05

4.10

4.15

4.20

St
ep

s (
T)

Hitting times on Complete g aphs
T=(2n-1)π/2
Data: T vs deg ee 2n-1

(b)

Figure 4.17: (a) Probability distribution of Q3 after step T = 23, and (b) Plot for
hitting time T verses degree 2n − 1 of complete graph on 2n vertices.

Remarks

We implemented efficient quantum circuits for discrete quantum random walks

on families of cubelike graphs such as hypercubes and augmented cubes. Our

implementations show that the hitting times of all cubelike graphs are asymptot-

ically linear in the degree ∆ of the graphs. That is, for the hitting time ≈ π∆
2 , the

probability that the walker is at the target vertex approaches 1 as ∆ approaches

infinity. Our circuits run on IBM’s quantum computing platform Qiskit, both on

real quantum computers and simulators. We note that T ≈ ∆π
2 is not necessar-

ily the minimum hitting time or its multiple for a ∆-regular cubelike graph. For

example, in DTQW on Q3, see Fig. 4.17a, the walker hits the target vertex |111⟩

after steps T = 23 with probability 1. Another example is that of complete graphs

Cay(Zn
2 , Ω), with Ω = Zn

2\{0n}. In Fig. 4.17b, the hitting time for the complete

graphs on 2n vertices has been shown constantly with T = 4 and target proba-

bility equal to 1, which we have proved analytically. It will be interesting to find

other hitting times for a cubelike graph, particularly the minimum one for which

the walker hits the target with high probability. Further, studying this problem on

other regular graphs would be interesting, particularly Cayley graphs.

63

4.4 Summary

In section 4.1, we computed a closed form for the state UT |D⟩ |v0⟩ (see Eq. 4.17)

of the quantum system associated with a cubelike graph. Through Conjecture 1,

we are aware of the unique target vertex vtarg in a cubelike graph. Therefore, we

only need to extract the coefficient of |D⟩ |vtarg⟩ from the expressions for Xk and

Yk given in Eq. 4.9. Thus, we can obtain the expression for the amplitude of the

target vertex and subsequently verify our experimental results. We did try this

approach for hypercubes but could not derive the result for hitting times.

64

CHAPTER 5

Continuous-time quantum walks on Cayley

graphs

Continuous-time quantum walks (CTQW) are generalization of continuous-time

classical random walks into the quantum world. CTQW is universal for quantum

computation [23, 26, 36] and is hence predominantly used in designing quantum

algorithms. Some of the earlier work on CTQW can be found in [4, 24, 25, 35, 57].

An important feature of a quantum walk is the quantum state transfer from one

vertex to another. It has been found that many families of graphs allow transmis-

sion of quantum states with fidelity equal to unity, i.e., the state transfer is perfect

(see [14, 18, 20, 22, 29, 39, 40, 48]). Among these graph families, cubelike graphs

are the most versatile ones and their properties have been characterized for de-

termining the existence and identifying the pair of vertices admitting perfect state

transfer in constant time. It can be easily shown that not all cubelike graphs ad-

mit perfect state transfer (PST). For instance, K2n is a cubelike graph that does not

admit PST. However, all cubelike graphs are periodic with period dividing π [40];

in fact, all integral graphs are periodic and cubelike graphs are integral graphs.

In this chapter, we investigate weighted Cayley graphs over Zn
r in order to

classify them into three categories of graphs - those that admit PST, those that

do not admit PST but are periodic, and those that are not periodic. We have also

constructed efficient quantum circuits for the CTQW on weighted cubelike graphs

and have run these circuits on IBM’s quantum computing platform and verified

the results on PST [58].

65

5.1 Perfect state transfer

Let Γ be an undirected and weighted graph with loops and A be the adjacency

matrix. A quantum walk on Γ is described by an evolution of the quantum system

associated with the graph. Suppose the graph has N vertices, then it is associated

with a Hilbert space HP
∼= CN, called the position space, and the computational

basis for HP is represented by;

{|v⟩ : v is a vertex in Γ}.

The continuous-time quantum walk on Γ is described by the transition matrix

U (t) = eιtA, where ι =
√
−1, i.e., if |ψ(0)⟩ is the initial state of the system then, at

time t, the state of the system is given by

|ψ(t)⟩ = eιtA |ψ(0)⟩ .

The matrix exponential of ιtA can be seen as

U (t) =
∞

∑
k=0

ιk
tk Ak

k!
.

Since A is symmetric, U (t) is symmetric, and eιtA = e−ιtA implies U (t) is unitary.

Moreover,

U (t1 + t2) = eι(t1+t2)A = eιt1 Aeιt2 A = U (t1)U (t2).

As a special case of the spectral theorem for normal matrices, see Theorem 33 in

Appendix A, we express the transition matrix U (t) in a more useful way.

Remark 3. Let Γ be a graph on N vertices with the adjacency matrix A. Suppose P is

an orthogonal matrix such that D = PT AP is real diagonal, and let P∗k denote the k-th

66

column of P, then the transition matrix U (t) = eιtA is expressed as

U (t) = PeιtDPT

=
N

∑
k=1

eιtDk,k |P∗k⟩ ⟨P∗k|

=⇒ U (t)u,v =
N

∑
k=1

eιtDk,k Pu,kPv,k.

(5.1)

Definition 3. A graph is said to admit perfect state transfer, if the quantum walker begin-

ning at some vertex u reaches a distinct vertex v with probability 1, i.e., U (τ) |u⟩ = λ |v⟩,

for some λ ∈ C, satisfies

⟨v|eιτA|u⟩ = |λ|2 = 1, for some real time τ.

Alternatively, we say perfect state transfer occurs from the vertex u to the vertex v.

Example 4. Consider the graph on Q2, see Fig. 4.2. The adjacency matrix A of the graph

is given by

A =

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 ,

with spectral decomposition

A = PDPT, where P =
1
2

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 , and D =

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −2

 .

67

Therefore, the spectral decomposition for the transition matrix with time t = π/2 is

U (t = π/2) =
4

∑
k=1

eι π
2 Dk,k |P∗k⟩ ⟨P∗k| =

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

 .

Thus, perfect state transfer occur between the pairs (1, 4) and (2, 3), both in time π
2 .

Lemma 6. If perfect state transfer occurs from a vertex u to a vertex v in a graph, then

perfect state transfer occurs from v to u.

Proof. Suppose for some real τ and scalar λ, U (τ) |u⟩ = λ |v⟩, with |λ| = 1. Since

U (τ) is symmetric,

U (τ) |v⟩ = λ |u⟩ .

Notice that U (τ)2 |u⟩ = λ2 |u⟩. But, U (τ)2 = U (2τ). Therefore, the quantum

walker returns back to the starting vertex u after time 2τ. Such property is termed

as periodicity.

Definition 4. If a quantum walker beginning at a vertex u in a graph and returns back

after time τ with one probability, i.e.,

U (τ) |u⟩ = λ |u⟩ , |λ| = 1,

we say the graph is periodic at u or it is periodic relative to u, with period τ. If the graph

is periodic relative to every vertex with the same period τ, we say the graph is periodic.

Lemma 7. If a graph admits perfect state transfer from vertex u to v, then the graph is

periodic at u.

Lemma 8. If perfect state transfer occurs between u and v, and between u and w, then

v = w.

There are graphs which are periodic at a vertex, or periodic at each vertex but

do not admit perfect state transfer. For example, star K1,n is periodic at one vertex

68

and complete graph Kn is periodic, but none of them has PST pairs. In general,

simple graphs do not admit perfect state transfer. However, by assigning weights

to edges some of them may show the occurrence of perfect state transfer. In [9], it

is shown that the join of a weighted two-vertex graph with any regular graph has

perfect state transfer. For more reference on weighted graphs allowing PST, see

[8, 37, 66].

5.2 Cayley graphs over Zn
r that have the same eigen-

vectors

In this section, we study complex-weighted undirected graphs whose adjacency

matrix is a normal matrix. We use this to identify Cayley graphs which have the

same set of eigenvectors. The motive is to study continuous-time qauntum walk

on these graphs.

5.2.1 Construction of graphs that have the same eigenvectors

Given a unitary matrix P, we want to find all normal matrices whose eigenvectors

form columns of P. The simplest way is to choose any complex diagonal matrix D

that gives a normal matrix A = PDP†. The following lemma does the same thing

but in a different manner.

Theorem 15. Let P be an N × N unitary matrix. Then,

1. there exists an N × N invertible matrix Q, whose each row is the Hadamard product

(entrywise product) of a row of P with the complex-conjugate of another row of P,

2. for every column matrix Z ∈ CN×1, there is a normal matrix A whose eigenvectors

form columns of P and its eigenvalues are given by X = Q−1Z.

Proof. Define the matrix S by

S =
[

P∗1 ⊗ P̄∗1 · · · P∗N ⊗ P̄∗N

]
, (5.2)

69

where the j-th column of S is the tensor product of the j-th column of P with its

complex-conjugate. Clearly, S has rank N, and each row of S is the Hadamard

product of two rows of P. Suppose rows corresponding to N paired indices I =

{(rj, cj) : 1 ≤ j, rj, cj} are linearly independent, then the submatrix Q, given by

Q =

Pr1,1P̄c1,1 · · · Pr1,N P̄c1,N

...
. . .

...

PrN ,1P̄cN ,1 · · · PrN ,N P̄cN ,N

 , (5.3)

is invertible. Let Z ∈ CN×1 and put X = Q−1Z. We now construct the normal

matrix A uniquely associated with Z with eigenvalues X. Assign values to N

entries in A corresponding to the index set I as;

Ar1,c1

...

ArN ,cN

 = Z. (5.4)

Then, the two system of linear equations

QX = Z and SX = Y, where Y =

A∗1

...

A∗N

 , (5.5)

have same solutions for X. Alternatively, SX = Y can be written as

Ai,j =
N

∑
k=1

Xk,1Pi,kP̄j,k, 1 ≤ i, j ≤ N

=⇒ A = PDP†, where D is diagonal with Dk,k = Xk,1

(5.6)

Thus, for every Z we get a normal matrix A whose eigenvectors form columns of

P and has eigenvalues Q−1Z.

Theorem 15 gives a method to construct a family of graphs that have the same

set of eigenvectors. For each column matrix Z in the theorem, there is a unique

70

graph Γ associated with Z, with the fixed set of eigenvectors forming the columns

of P. Thus, the adjacency matrix A is uniquely determined by P and Z, with the

eigenvalues X = Q−1Z. Notice that, the invertible matrix Q need not be unique.

In fact, if Q1 and Q2 are two distinct invertible matrices in Theorem 15, then they

are row-equivalent matrices, i.e., Q2 can be obtained from Q1 by performing ele-

mentary row operations on Q1.

Example 5. Consider the 4 × 4 normalized Hadamard matrix

P =
1
2

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .

Then, the first four rows of S, see Eq. 5.2, are linearly independent. Hence, the matrix

Q = 1
4 P, see Eq. 5.3, is invertible. Suppose Z =

0

0

1

1

, then the associated adjacency

matrix A has eigenvalues X = Q−1Z =

2

0

−2

0

. The corresponding graph is the 2-

dimensional hypercube Q2. If Z =

0

1

1

1

, then the associated graph is a complete graph

on 4 vertices with eigenvalues X =

3

−1

−1

−1

. For Z =

0

1

0

0

, we get a disconnected graph

71

0 1

2 3

0 1

2 3

0 1

2 3

Figure 5.1: All the three graphs, on four vertices each, have the same set of eigen-

vectors forming the columns of P in Example 5, with the associated Z =

0
1
0
0

,

0
0
1
1

, and

0
1
1
1

, respectively.

K2 ∪ K2, the union of two complete graphs on two vertices, with eigenvalues X =

1

−1

1

−1

.

Corollary 2. Suppose P is orthogonal in Theorem 15, then for every Z ∈ RN×1, the

associated matrix A is real and symmetric, with real eigenvalues.

Lemma 9. If a row of P in Theorem 15 has all entries non-zero, say the k-th row, then the

matrix Q is given by

Q =
[

P̄k,1P∗1 · · · P̄k,NP∗N

]
. (5.7)

Proof. Suppose the k-th row of P has all entries non-zero, and for some scalars

λ1, . . . , λN,
N

∑
j=1

λjP̄k,jP∗j = 0.

Since, the columns of P form a linearly independent set, λjP̄k,j = 0 for all 1 ≤ j ≤

N. But, P̄k,j ̸= 0 implies λj = 0, for all values of j. Hence, the columns of Q form a

linearly independent set and thus Q is invertible.

Corollary 3. If the k-th row of P has constant entries
[
µ · · · µ

]
, for some scalar µ,

then the invertible matrix Q is given by Q = µ̄P and its inverse is Q−1 = 1
µ̄ P†.

72

5.2.2 Eigenvalues and eigenvectors of Cayley graphs over Zn
r

Consider the Cayley graphs over Zn
r , where r and n are positive integers. The

following result shows that this graph family has the same set of eigenvectors.

Theorem 16. Let r and n be positive integers, and put N = rn. Define an N × N matrix

P by

Pi,j =
1√
N

ω⟨ρ(i)|ρ(j)⟩, 1 ≤ i, j ≤ N. (5.8)

where, ω = e
2πι

r is the r-th root of unity, and ρ(i) is the i-th element in the lexicograph-

ically ordered Zn
r . Let Z ∈ RN×1 such that Zh,1 = Zl,1, 1 ≤ h, l ≤ N, whenever

ρ(h) = −ρ(l). Then, the associated matrix A, appearing in Theorem 15, is real and

symmetric with real eigenvalues X =
√

NP†Z.

Proof. The matrix P is unitary, viz.,

(PP†)i,j =
N

∑
k=1

Pi,kP†
k,j =

N

∑
k=1

Pi,kP̄j,k

=
1
N

N

∑
k=1

ω⟨ρ(i)|ρ(k)⟩ω−⟨ρ(j)|ρ(k)⟩

=
1√
N

N

∑
k=1

ω⟨ρ(i)−ρ(j)|ρ(k)⟩

(5.9)

Recall that the r-th root of unity ω satisfies

1 + ωs + ω2s + · · ·+ ω(r−1)s = 0, (5.10)

where s is a fixed non-zero integer. Thus, for a fixed n-tuple (x1, x2, . . . , xn) ∈ Zn
r ,

we get

1
N ∑

y∈Zn
r

ω⟨x|y⟩ =

0 x = 0

1 x ̸= 0.
(5.11)

Using this fact, we get

(PP†)i,j =

1 ρ(i) = ρ(j)

0 ρ(i) ̸= ρ(j)
(5.12)

73

Thus, PP† = I is the identity matrix. Since, the value of ⟨ρ(1)|ρ(j)⟩ is zero, the first

row of P equals 1√
N

[
1 1 · · · 1

]
. Thus, by Corollary 3, the invertible matrix Q

is given by 1√
N

P, which implies Q−1 =
√

NP†. Given a column matrix Z ∈ RN×1,

the associated matrix A, see Theorem 15, has eigenvalues X = Q−1Z =
√

NP†Z.

Thus, the (k, 1)-th entry of X is given by

Xk,1 =
N

∑
l=1

Zl,1ω−⟨ρ(l)|ρ(k)⟩. (5.13)

Substituting the value of Xk,1 and P in Eq. 5.6, the (i, j)-entry of A is computed as

Ai,j =
N

∑
k=1

Xk,1Pi,kP̄j,k

=
1
N

N

∑
k=1

(N

∑
l=1

Zl,1ω−⟨ρ(l)|ρ(k)⟩
)

ω⟨ρ(i)|ρ(k)⟩ω−⟨ρ(j)|ρ(k)⟩

=
1
N

N

∑
l=1

Zl,1

N

∑
k=1

ω⟨ρ(i)−ρ(j)−ρ(l)|ρ(k)⟩

=⇒ Ai,j = Zl,1, where ρ(l) = ρ(i)− ρ(j).

(5.14)

Since, ρ(h) = −ρ(l) implies Zh,1 = Zl,1, we get Ai,j = Aj,i. Thus, A is real and

symmetric. Therefore, the eigenvalues of A must be real, viz., for 1 ≤ k ≤ N,

Xk,1 =
N

∑
l=1

Zl,1ω−⟨ρ(l)|ρ(k)⟩

= ∑
1≤l≤N

ρ(l) ̸=−ρ(l)

Zl,1

(
ω−⟨ρ(l)|ρ(k)⟩ + ω⟨ρ(l)|ρ(k)⟩

)

+ ∑
1≤l≤N

ρ(l)=−ρ(l)

Zl,1ω−⟨ρ(l)|ρ(k)⟩.

(5.15)

We know that sum of a complex number with its complex-conjugate is real, i.e.,

ω−⟨ρ(l)|ρ(k)⟩ + ω⟨ρ(l)|ρ(k)⟩ = 2 cos(2π
r ⟨ρ(l)|ρ(k)⟩) is real. Secondly, if a complex

number is equal to its complex-conjugate then it is real, i.e., ρ(l) = −ρ(l) implies

ω−⟨ρ(l)|ρ(k)⟩ is real. Notice that, if x = −x, x ∈ Zn
r , then xi = 0 or r

2 , for all

74

1 ≤ i ≤ n. Let x̃ denote the n-tuple in Zn
2 with x̃i = xi mod 2. Then, we get

ω−⟨ρ(l)|ρ(k)⟩ = e−
2π
r

r
2 ⟨ρ̃(l)|ρ(k)⟩ = cos

(
π ⟨ρ̃(l)|ρ(k)⟩

)
. (5.16)

Thus, the k-th eigenvalue is real, given by

Xk,1 = ∑
1≤l≤N

ρ(l) ̸=−ρ(l)

Zl,1 × 2 cos
(2π

r
⟨ρ(l)|ρ(k)⟩

)

+ ∑
1≤l≤N

ρ(l)=−ρ(l)

Zh,1 × cos
(

π ⟨ρ̃(l)|ρ(k)⟩
)

.
(5.17)

Remark 4. The real-symmetric matrix A obtained in Theorem 16 is the adjacency matrix

of a weighted Cayley graph Cay(Zn
r , Ω), where

Ω = {ρ(l) : 1 ≤ l ≤ N, Zl,1 ̸= 0},

and weight of an edge (u, v) is given by Zh,1, where ρ(h) = u − v. The underlying

unweighted Cayley graph is present as a subgraph containing all vertices and edges such

that edges have weights 1. If entries in Z belong to {0, 1}, then the associated Cayley

graph is unweighted. If r = 2, then the associated matrix A is the adjacency matrix of a

weighted cubelike graph.

Remark 5. Notice that the inner product ⟨x|y⟩ is an element of Z, so one need to be

careful while using modulo r with the inner product. Suppose ⟨x|y⟩ = pr + q, with

0 ≤ q < r. Then,

ω⟨x|y⟩ = e
2πι

r (pr+q) = e2πι(1+q/r)

= e2πe
2πι

r = e
2πιq

r

= e
2πι

r ⟨x|y⟩ mod r = ω⟨x|y⟩ mod r.

(5.18)

Remark 6. In Theorem 16;

1. Since, the entries of A depends solely on Z, if Z ∈ ZN×1
2 then A is a 0 − 1 matrix

and thus corresponds to an unweighted Cayley graphs over Zn
r .

75

2. Suppose r is not even, then no element of Zn
r , except for 0, is its own inverse. In

this case, the k-th eigenvalue is given by

Xk,1 = ∑
1≤l≤N

ρ(l) ̸=−ρ(l)

Zl,1 × 2 cos
(2π

r
⟨ρ(l)|ρ(k)⟩

)
. (5.19)

Moreover, each eigenvalue, except for X1,1, occurs in pair because if ρ(k) = −ρ(s)

for k ̸= s, then cos(2π
r ⟨ρ(l)|ρ(k)⟩) = cos(2π

r ⟨ρ(l)|ρ(s)⟩) for all l. This implies

Xk,1 = Xs,1.

3. If r = 2, then each n-tuple x ∈ Zn
2 is its own inverse. In this case, the k-th

eigenvalue is given by

Xk,1 =
N

∑
l=1

Zl,1 × cos
(

π ⟨ρ(l)|ρ(k)⟩
)

. (5.20)

Since the cos function has values 0 or 1 or −1, if Z has integer entries then all

eigenvalues are integers.

Suppose r is prime, then with further restrictions over Z, in Theorem 16, we

obtain integral eigenvalues for the associated adjacency matrix A. Before our next

result, we study an equivalence relation over Zn
r . Define a relation ∼ on Zn

r by;

u ∼ v if v = iu, for some 1 ≤ i ≤ r − 1.

The relation ∼ is reflexive and transitive, but may not be symmetric. For example,

if r = 4 and n = 2 then (0, 2) = 2(0, 1) but for no power i we get (0, 1) = i(0, 2).

Lemma 10. The relation ∼ defined on Zn
r is an equivalence relation only if r is prime.

Proof. The additive identity 0 is related to itself alone. Let u, v, w ∈ Zn
r be three

non-zero n-tuples. Then, u = 1u implies ∼ is reflexive. If v = iu and w = jv

for some 1 ≤ i, j ≤ r − 1, then w = (ij mod r)u with 1 ≤ ij mod r ≤ r − 1,

which implies ∼ is transitive. Since r is prime, there is unique integer k, 1 ≤ k ≤

r − 1, such that ik mod r = 1. Thus, kv = (ik mod r)u = u, and the relation ∼ is

symmetric. Hence, ∼ is an equivalence relation on Zn
r .

76

Lemma 11. Let r be a prime, and L be the equivalence classes of the equivalence relation

∼ on Zn
r . Let Lu ∈ L be an equivalence class with a non-zero representative u, then

1. L has r − 1 elements,

2. the set {⟨x|v⟩ mod r : v ∈ Lu}, x ̸= 0, is either equal to {1, 2, . . . , r − 1} or {0}.

Proof. Let u = (u1, . . . , un), then Lu = {(iu1, . . . , iun) : 1 ≤ i ≤ r − 1}. Since

the group operation occurs component-wise and at least one coordinate of u is

non-zero, u generates exactly r − 1 distinct element because ur = 0. Next, for any

non-zero element x = (x1, . . . , xn) ∈ Zn
r ,

⟨x|iu⟩ =
n

∑
j=1

xj(iuj) = i

(
n

∑
j=1

xjuj

)
= i ⟨x|u⟩ .

Thus, ⟨x|iu⟩ mod r = 0 iff ⟨x|u⟩ mod r = 0, so if ⟨x|u⟩ mod ̸= 0 then it generates

the group Zr.

Example 6. Let r = 3 and n = 2. Define the equivalence relation ∼ on Z2
3 by

u ∼ v if v = iu, for some i, with 1 ≤ i ≤ 2.

Then, the equivalence classes on Z2
3 relative to ∼ are {(0, 0)}, {(0, 1), (0, 2)},

{(1, 0), (2, 0)}, {(1, 1), (2, 2)} and {(1, 2), (2, 1)}.

Theorem 17. In Theorem 16, assume r is prime. Let ∼ be the relation on Zn
r defined by;

u ∼ v iff v = iu for some 1 ≤ i ≤ r − 1. Let Z ∈ RN×1 such that Zg,1 = Zh,1 whenever

ρ(g) ∼ ρ(h). Then,

1. the matrix A associated with Z is real and symmetric with real eigenvalues X =
√

NP†Z,

2. if Z has integer entries then entries in A are integers and corresponding eigenvalues

are integers.

Proof. Let R be the set of representatives of equivalence classes of the relation ∼

77

such that if x, y ∈ R then x ̸∼ y. Suppose A is the matrix associated with Z, then

Xk,1 =
√

N
N

∑
l=1

P†
k,lZl,1

=
N

∑
l=1

Zl,1ω⟨ρ(l)|ρ(k)⟩

= ∑
ρ(h)∈R

Zh,1

 ∑
ρ(h)∼ρ(l)

ω⟨ρ(l)|ρ(k)⟩

= ∑

ρ(h)∈R
⟨ρ(h)|ρ(k)⟩=0

(r − 1)Zh,1 + ∑
ρ(h)∈R

⟨ρ(h)|ρ(k)⟩̸=0

−Zh,1.

(5.21)

Thus, X has real (or integer) entries if Z has real (or integer) entries. Since ρ(h) =

−ρ(l) implies ρ(h) ∼ ρ(l), the (i, j)-th entry of A is computed same as in Theorem

16. Thus, A is real and symmetric, and has integer entries if Z has integer entries.

Example 7. Let r = 3, n = 2, and let ∼ be the equivalence relation defined in Example

6. From Theorem 16, the 9 × 9 unitary matrix P is given by

P =
1
3
×

1 1 1 1 1 1 1 1 1

1 ω ω2 1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω 1 ω2 ω

1 1 1 ω ω ω ω2 ω2 ω2

1 ω ω2 ω ω2 1 ω2 1 ω

1 ω2 ω ω 1 ω2 ω2 ω 1

1 1 1 ω2 ω2 ω2 ω ω ω

1 ω ω2 ω2 1 ω ω ω2 1

1 ω2 ω ω2 ω 1 ω 1 ω2

.

We have assumed the lexicographic order of elements in Z2
3, i.e.,

Z2
3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

78

Suppose Z ∈ R9×1 is a column matrix satisfying

Z1,1 = a, Z2,1 = Z3,1 = b, Z4,1 = Z7,1 = c, Z5,1 = Z9,1 = d, Z6,1 = Z8,1 = e,

for some real a, b, c and d. Then, the associated matrix A has eigenvalues X = 3P†Z, i.e.,

X =

a + 2b + 2c + 2d + 2e

a − b + 2c − d − e

a − b + 2c − d − e

a + 2b − c − d − e

a − b − c − d + 2e

a − b − c + 2d − e

a + 2b − c − d − e

a − b − c + 2d − e

a − b − c − d + 2e

. (5.22)

We have used the equation 1 + ω + ω2 = 0 to evaluate the value of X. Notice that, if

the values of a, b, c, d, and e are integers, then all eigenvalues are integers. So, we have

computed the eigenvalues for the adjacency matrix A. In other words, we have constructed

the graph whose eigenvectors form columns of P by assigning weights to edges adjacent

to the first vertex.

Corollary 4. In Theorem 17,

1. If ρ(k) ∼ ρ(s) then Xk,1 = Xs,1.

2. If r > 2 and entries in Z are integers, then

(a) X1,1 is even, viz.,

X1,1 = (r − 1)× ∑
ρ(h)∈R

Zh,1, since ∀h, ⟨ρ(h)|ρ(1)⟩ = 0. (5.23)

79

(b) The difference of an eigenvalue with the first eigenvalue is a multiple of r, viz.,

X1,1 − Xk,1 = r × ∑
ρ(h)∈R

⟨ρ(h)|ρ(k)⟩̸=0

Zh,1. (5.24)

3. If r = 2 and entries in Z are integers, then all eigenvalues have same parity.

Proof. 1. Since Ai,j = Zl,1, where ρ(l) = ρ(i)− ρ(j), the result follows.

2. If ρ(k) ∼ ρ(s), then ⟨ρ(h)|ρ(k)⟩ = 0 iff ⟨ρ(h)|ρ(s)⟩ = 0. Thus, Xk,1 = Xs,1,

whenever ρ(k) ∼ ρ(s). In Example 7, we see that X2,1 = X3,1, X4,1 = X7,1,

X5,1 = X9,1 and X6,1 = X8,1.

3. Using Eq. 5.21, we get the required expression.

4. Substituting r = 2 in Eq. 5.24, we see that X1,1 − Xk,1 is even for all k. Thus,

all eigenvalues have same eigenvalues.

Remarks

The study of normal matrices in Theorem 15 has applications to generating graphs

having the same eigenvectors. This can be done by assigning values to N selected

pairs of vertices and calculating the eigenvalues of the corresponding graph with-

out actually computing its adjacency matrix. We looked for a way to generate

undirected connected graphs and studied the family of Cayley graphs over Zn
r in

Theorem 16. Notice that, if we lessen the conditions on Z, i.e. Z ∈ CN×1, then the

corresponding graphs are complex-weighted Cayley graphs over Zn
r .

5.3 Continuous-time quantum walks on Cayley graphs

over Zn
r

In this section, we study the CTQW on Cayley graphs over Zn
r . Suppose perfect

state transfer occurs between vertices a and b with time τ, then the (a, b)-th entry

80

of the transition matrix U (τ) has absolute value 1, i.e.,

|U (τ)a,b| =
∣∣∣∣∣ N

∑
k=1

eιτXk,1 Pa,kP̄b,k

∣∣∣∣∣ = 1

=⇒
∣∣∣∣∣ 1
N

N

∑
k=1

eιτXk,1e
ι2π

r ⟨a|ρ(k)⟩e−
ι2π

r ⟨b|ρ(k)⟩

∣∣∣∣∣ = 1

=⇒
∣∣∣∣∣ N

∑
k=1

eιτXk,1+
ι2π

r ⟨a−b|ρ(k)⟩

∣∣∣∣∣ = N

=⇒
∣∣∣∣∣ N

∑
k=1

eιτXk,1+
ι2π

r ⟨σ|ρ(k)⟩

∣∣∣∣∣ = N, where σ = a − b.

(5.25)

The absolute value of the summation is equal to N only if each term is equal to

one another, i.e.,

eιτXk,1+
ι2π

r ⟨σ|ρ(k)⟩ = eιτX1,1

=⇒ eι[τ(Xk,1−X1,1)+ 2π
r ⟨σ|ρ(k)⟩] = 1.

=⇒ τ (Xk,1 − X1,1) +
2π

r
⟨σ|ρ(k)⟩ = 2πmk, mk ∈ Z

=⇒ τ

2π
× r(Xk,1 − X1,1) + ⟨σ|ρ(k)⟩ = rmk, mk ∈ Z.

(5.26)

In general, eigenvalues are not integers, and it is not straightforward to check if

PST or periodicity occur in these graphs. If all eigenvalues are integers, then with

time τ = 2π and σ = 0, we get

r(Xk,1 − X1,1) mod r = 0. (5.27)

This implies that if all eigenvalues are integers then the graph is periodic with

period dividing 2π.

5.3.1 Perfect state transfer in weighted cubelike graphs

Suppose r = 2, then the associated graphs are weighted cubelike graphs. Recall

that, Xk,1 − X1,1 is even for all k, see Corollary 4. Thus, by substituting σ = 0 and

81

τ = π in Eq. 5.25, we get

(Xk,1 − X1,1) mod 2 = 0. (5.28)

This implies weighted cubelikes graphs are periodic with period τ = π.

Theorem 18. Suppose r = 2 in Theorem 16 and let Z ∈ ZN×1. Define

σ = ∑
Zl,1 ̸=0

Zl,1ρ(l). (5.29)

1. If σ = 0, then the associated weighted cubelike graph is periodic with period τ = π
2 .

2. If σ ̸= 0, then the associated weighted cubelike graph admits perfect state transfer

between vertices a and b, satisfying σ = a − b, with time τ = π
2 . The graph is

periodic with period dividing π.

Proof. Using Eq. 5.20, we compute the difference of eigenvalues as

Xk,1 − X1,1 =
N

∑
l=1

Zl,1

(
cos(π ⟨ρ(l)|ρ(k)⟩)− 1

)
. (5.30)

Perfect state transfer occurs between a and b with time τ = π
2 if the solution for

the following equation exist for all k, i.e.,

(Xk,1 − X1,1

2
+ ⟨σ|ρ(k)⟩

)
mod 2 = 0, ∀k. (5.31)

Without loss of generality, see Remark 5, assume that all inner products and ad-

82

ditions are taken under modulo 2. Thus, for 1 ≤ k ≤ N, we compute σ as

⟨σ|ρ(k)⟩ =
N

∑
l=1

Zl,1

(
1 − cos(π ⟨ρ(l)|ρ(k)⟩)

)
mod 2

= ∑
Zl,1 ̸=0

⟨ρ(l)|ρ(k)⟩̸=0

Zl,1

(
1 − cos(π ⟨ρ(l)|ρ(k)⟩)

)
mod 2

= ∑
Zl,1 ̸=0

⟨ρ(l)|ρ(k)⟩ mod 2=1

Zl,1 mod 2

= ∑
Zl,1 ̸=0

Zl,1 ⟨ρ(l)|ρ(k)⟩ mod 2

=⇒ ⟨σ|ρ(k)⟩ = ⟨ ∑
Zl,1 ̸=0

Zl,1ρ(l)|ρ(k)⟩ mod 2.

(5.32)

Thus, σ = ∑Zl,1 ̸=0 Zl,1ρ(l). If σ = 0, then the graph is periodic with period divid-

ing τ = π
2 , otherwise the graph admits PST between a and b with time τ = π

2 .

Example 8. In Theorem 18, let n = 3 and Z =
[
0 1 2 3 4 1 2 3

]T
. Then, σ is

computed as

σ = 0 × (0, 0, 0) + 1 × (0, 0, 1) + 2 × (0, 1, 0) + 3 × (0, 1, 1)

+ 4 × (1, 0, 0) + 1 × (1, 0, 1) + 2 × (1, 1, 0) + 3 × (1, 1, 1)

= (0, 0, 0).

(5.33)

By Theorem 18, the graph associated with Z is periodic with period τ = π
2 , with time π

2 .

Suppose we alter the values Z as Z2,1 = 2 and Z5,1 = 3. Then, the newly computed σ is

σ = (1, 0, 1).

In this case, PST occurs between {a, b} if σ = a − b. Thus, PST pairs are

{{(0, 0, 0), (1, 0, 1)}, {(0, 0, 1), (1, 0, 0)}, {(0, 1, 0), (1, 1, 1)}, {(0, 1, 1), (1, 1, 0)}}.

Remark 7. In Theorem 18, the associated graph is weighted cubelike graph Cay(Zn
2 , Ω),

83

where ρ(l) ∈ Ω iff Zl,1 ̸= 0, 1 ≤ l ≤ N. An alternate definition of σ is given by

σ = ∑
x∈Ω

x f (x), (5.34)

where, f is the weight function defined by f (ρ(l)) = Zl,1. Since, σ belongs to Zn
2 , i.e.,

each entry σi is taken under modulo 2, we can re-write the expression for σ as

σ = ∑
Zl,1 mod 2 ̸=0

Zl,1ρ(l). (5.35)

5.3.2 Periodicity in Cayley graphs over Zn
r

Suppose r is prime, then the Cayley graphs over Zn
r have integral eigenvalues, by

Theorem 17, and thus are periodic graphs [40]. We discuss the period of CTQW

on this graph in the following result.

Theorem 19. With the assumptions made in Theorem 17; let Z contains integer values.

Then, the associated weighted Cayley graphs over Zn
r , where r is prime, is periodic with

period dividing 2π
r . However, these graphs do not admit PST for r > 2.

Proof. Since (Xk,1 − X1,1) is a multiple of r (by Corollary 4), substituting σ = 0 and

τ = 2π
r in Eq. 5.26, we get

(Xk,1 − X1,1) mod r = 0. (5.36)

Thus, Cayley graphs over Zn
r , where r is prime, are periodic with period dividing

τ = 2π
r . Next, assume PST occurs between distinct vertices a and b. Let ρ(k) ∼

ρ(s) for k ̸= s such that ⟨σ|ρ(k)⟩ ̸= 0, where σ = a − b. By Lemma 11, if σ ̸= 0

then ⟨σ|ρ(k)⟩ = i ⟨σ|ρ(s)⟩ for some 1 < i < r. Substituting this expression in Eq.

5.26, we get

(τ

2π
× r(Xk,1 − X1,1) + ⟨σ|ρ(k)⟩

)
mod r = 0(τ

2π
× r(Xs,1 − X1,1) + i ⟨σ|ρ(k)⟩

)
mod r = 0.

(5.37)

Since Xk,1 = Xs,1, by Corollary 4, all terms are same except for the factor i. Thus,

84

two equations are not consistent and hence PST can not occur in such graphs for

any value of τ and σ.

Example 9. In Example 7, suppose Z =
[
0 1 1 0 1 0 0 0 1

]T
, i.e., a = 0,

b = 1 c = 0, d = 1 and e = 0. Thus, set of eigenvalues, obtained using Eq. 5.22,

is X =
[
4 −2 −2 1 −2 1 1 1 −2

]
. We see that X2,1 − X1,1 = −6, X4,1 −

X1,1 = −3, X5,1 − X1,1 = −3 and X6,1 − X1,1 = −3. Thus, the Cayley graph associated

with Z is periodic with period τ = 2π
3 .

Remarks

We studied the case where r is prime in Theorem 16 and 17. For other values of r,

i.e., r is not prime, eigenvalues may not be integral. If we show that eigenvalues

are not a multiple of the square root of a square-free integer, then the correspond-

ing graph is not periodic [40]. For the existence of PST, notice that in Eq. 5.25

even if for some value of τ the first term τr
2π (Xk,1 − X1,1) is integer for all k then

the existence of σ satisfying

⟨σ|ρ(k)⟩ = τr
2π

(Xk,1 − X1,1) mod r, ∀k, (5.38)

may not hold true, in general. If such σ exists for some Z ∈ RN×1 then the corre-

sponding graph admits PST and the vertex-set is partitioned into PST pairs, i.e.,

{{a, b} : σ = a − b}. Clearly, if r is odd then the size of the vertex-set is odd and

they can not be partitioned into PST pairs.

5.4 Identifying pair of vertices in multipartite graphs

that admit perfect state transfer

The n-dimensional hypercube is a bipartite graph and a Cayley graph is a multi-

partite graph. The minimum partition of a Cayley has each part of same size. We

discuss another subfamily of multipartite graphs that admit perfect state transfer

or periodicity and study properties of graphs that may be helpful in determining

a pair of vertices between which PST occurs.

85

Theorem 20. The complete bipartite graphs that admit perfect state transfer are K1,1 and

K2,n for n ≥ 1. The star K1,n is periodic for n ≥ 3.

In [41], Godsil states that if a graph G admits perfect state transfer from a ver-

tex u to a vertex v, then any automorphism that fixes u must fix v. With this

fact, one can derive the results of Theorem 20. We, on the other hand, present an

alternate proof to Theorem 20 by the use of spectral decomposition of the corre-

sponding adjacency matrix.

Proof of Theorem 20. Assume that if {X, Y} is the partition of a complete bipartite

graph Km,n, then the vertices in X are labeled by x1, . . . , xm and the vertices in Y

are labeled by y1, . . . , yn. The adjacency matrix A of Km,n is of the form

O1 I1

I2 O2

where O1 is m × m zero-matrix, O2 is n × n zero-matrix, I1 is m × n matrix of ones

and I2 is n×m matrix of ones. The eigenvalues of A are {θ1 = −
√

mn, θ2 = 0, θ3 =
√

mn}, where θ2 has multiplicity m + n − 2. The eigenvector corresponding to the

eigenvalue θ1 is

v1 =
1

n
√

2m

n
...

n

−
√

mn
...

−
√

mn

,

86

the eigenvector corresponding to θ3 is

vm+n =
1

n
√

2m

n
...

n
√

mn
...

√
mn

,

and the eigenvectors corresponding to θ2 are

v2 =
1√
2

1

−1
...

0

−

0
...

, v3 =

1√
2

0

1

−1
...

0

−

0
...

, · · · , vm =
1√
2

0
...

1

−1

−

0
...

,

vm+1 =
1√
2

0
...

0

−

1

−1
...

, · · · , vm+n−1 =

1√
2

0
...

0

−

0
...

1

−1

.

Note that the the mth row of vm is −1. The orthogonal projection on the eigenspace

87

belonging to θ1 and θ3 are,

E1 =
1

2mn2

n2 · · · n2 −n
√

mn · · · −n
√

mn
...

. . .
...

...
. . .

...

n2 · · · n2 −n
√

mn · · · −n
√

mn

−n
√

mn · · · −n
√

mn mn · · · mn
...

. . .
...

...
. . .

...

−n
√

mn · · · −n
√

mn mn · · · mn

,

and

E3 =
1

2mn2

n2 · · · n2 n
√

mn · · · n
√

mn
...

. . .
...

...
. . .

...

n2 · · · n2 n
√

mn · · · n
√

mn

n
√

mn · · · n
√

mn mn · · · mn
...

. . .
...

...
. . .

...

n
√

mn · · · n
√

mn mn · · · mn

.

The orthogonal projection on the eigenspace belonging to θ2 = 0 is

E2 =
1
2

1 −1

−1 2 −1

−1 2 −1 0
. . .

−1 2 −1

−1 1

1 −1

−1 2 −1

0 . . .

−1 2 −1

−1 1

88

Let X, Y, and Z be the m × m, m × n, and n × m submatrices of E3 satisyfing

E3 =
1

2mn2

X Y

Y Z

 .

Then, E1 can be rewritten as

E1 =
1

2mn2

 X −Y

−Y Z

 .

Let P and Q be the m × m and n × n submatrices of E2 satisfying

E2 =
1
2

P 0

0 Q

 .

The matrix H(t) for a time t is

H(t) =e−ι
√

mntE1 + eι
√

mntE3 +
1
2

E2

=
cos

√
mnt

2mn2

2X 0

0 2Z

+
ι sin

√
mnt

2mn2

 0 2Y

2Y 0

+
1
2

P 0

0 Q

 (5.39)

As seen in equation 5.39, if m = n = 1, then K1,1 admit PST between x1 and y1.

If m = 1 and n ≥ 3 (or m ≥ 3 and n = 1), then the graph is periodic at x1 with

period π/
√

n. For m = 2 and n ≥ 1 (or m ≥ 1 and n = 2), the graph admits PST

between the pair {x1, x2} with time π/
√

2n. Since there is no other possible PST

pair for m, n ≥ 3, the result is proved.

Remarks

To study PST in multipartite graph Kn1,n2,...,nk we can adopt the similar approach.

Without loss of generality assume n1 ≤ n2 ≤ · · · ≤ nk and k ≥ 3, then the

89

adjacency matrix A of Kn1,n2,...,nk is given by

A =

O1 J12 · · · J1k

J21 O2 · · · J2k
...

... · · ·
...

Jk1 Jk2 · · · Ok

where, for 1 ≤ i, j ≤ k, Jij is ni × nj matrix of ones and Oi is ni × ni zero matrix.

Let λ be an eigenvalue of A with an eigenvector X of the form

[x11, . . . , x1n1 , x21, . . . , x2n2 , . . . , xk1, . . . , xknk
]T,

then for 1 ≤ l ≤ k, AX = λX gives

∑
i ̸=l

xij = λxls; 1 ≤ i ≤ k, 1 ≤ j ≤ ni, 1 ≤ s ≤ nl. (5.40)

Hence, we get xl1 = xl2 = · · · = xlnl
= xl. Thus, for l with 1 ≤ l ≤ k, we get

∑
i ̸=l

xij = λxl; 1 ≤ i ≤ k, 1 ≤ j ≤ ni. (5.41)

For λ = 0, there are ∑i(ni − 1) = n1 + . . . nk − k eigenvectors which are of the

form Vij = [0, · · · , 0, 1,−1, 0, · · · , 0]T, with 1 ≤ i ≤ k, 1 ≤ j < ni, where the value

1 occurs at the row n1 + · · · + ni−1 + i. Thus, the orthogonal projection on the

eigenspace belonging to λ = 0 is of the form

E0 =

P1 0 · · · 0

0 P2 · · · 0
...

... · · ·
...

0 0 · · · Pk

where, Pk is nk × nk matrix with entries

90

Pk =

1 −1

−1 2 −1

−1 2 −1
. . .

−1 2 −1

−1 1

It may not be possible to give a general statement about PST in the graph as it

depends on particular values of n1, n2, . . . , nk.

5.5 Simulation of continuous-time quantum walks on

cubelike graphs

We simulate continuous-time quantum walk on weighted cubelike graphs and

verify the existence of perfect state transfer or periodicity as mentioned in Theo-

rem 18. Suppose f : Zn
2 → Z is an integer-valued function defined by; f (ρ(h)) =

Zh,1, then f is the weight function for the cubelike graph associated with Z such

that weight on an edge (x, y) is given by f (x ⊕ y). Using these notations, rewrite

the Theorem 18 as follows;

Theorem 21. With the assumptions made in Theorem 18 for r = 2, let f : Zn
2 → Z

be an integer-valued function such that f (ρ(h)) = Zh,1. For x ∈ Zn
2 , define a subset

Ox = {y ∈ Zn
2 : ⟨x|y⟩ mod 2 = 1}. Let ei, 1 ≤ i ≤ n, denote the n-tuple with entry 1

at position i and zero everywhere else. Let σ ∈ Zn
2 such that

σi = ∑
y∈Oei

f (y) mod 2. (5.42)

Then, the associated weighted cubelike graph satisfies;

1. if σ = 0, then the graph is periodic with period π
2 ,

2. if σ ̸= 0, then PST occurs between every pair {u, v} satisfying u ⊕ v = σ, with

time τ = π
2 .

91

Proof. Notice that, for k = 2n−i + 1, ρ(k) = ei. This implies, ⟨σ|ρ(2n−i + 1⟩ = σi.

Thus, using Eq. 5.32, we get

σi = ∑
Zl,1 ̸=0

Zl,1 ⟨ρ(l)|ρ(2n−i + 1)⟩ mod 2

= ∑
Zl,1 ̸=0

Zl,1ρ(l)i mod 2

= ∑
ρ(l)∈Oei

f (ρ(l)) mod 2.

(5.43)

Notice that Zl,1 ̸= 0 and ρ(l)i ̸= 0 implies ρ(l) ∈ Oei . Thus, Eq. 5.32 and 5.42 are

equivalent, and the results follow.

5.5.1 Decomposition of the evolution operator

Group representations

An m-degree representation of a finite group G is a homomorphism ρ from G into

the general linear group GL(V) of an m-dimensional vector space V over the field

F, where F is a complex or real field. Since GL(V) is isomorphic to GLm(F), the

general linear group of degree m that consists of m × m invertible matrices, an

equivalent definition for the group representation is the group homomorphism

ρ : G → GLm(F).

The group algebra C[G] is an inner product space whose vectors are formal linear

combinations of the group elements, i.e.,

C[G] =

{
∑

g∈G
λgg : λg ∈ C

}
,

92

with the vector addition, the scalar multiplication, and the inner product defined

by;

∑
g∈G

λgg + ∑
g∈G

µgg = ∑
g∈G

(λg + µg)g, (addition),

λ ∑
g∈G

λgg = ∑
g∈G

(λλg)g (scalar multiplication),〈
∑

g∈G
λgg, ∑

g∈G
µgg

〉
= ∑

g∈G
λgµ̄g, (inner product).

The regular representation on G, ρreg : G → GL(C[G]), is defined by;

ρreg(x)

(
∑

g∈G
λgg

)
= ∑

g∈G
λg(xg) = ∑

y∈G
λx−1yy.

The decomposition

If G = Zn
2 , then for x ∈ Zn

2 the regular representation acts on Zn
2 as

ρreg(x)y = x ⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn), y ∈ Zn
2 .

Let X, Y and Z denote the three Pauli matrices that acts on the computational

basis {|0⟩ , |1⟩} of the two dimensional Hilbert space C2 as

X |a⟩ = |a ⊕ 1⟩ , Y |a⟩ = (−1)aι |a ⊕ 1⟩ , Z |a⟩ = (−1)a |a⟩ , a ∈ {0, 1}.

The group element y is also a vector in C[Zn
2] whose matrix representation is |y⟩ =

|y1⟩ ⊗ · · · ⊗ |yn⟩. Hence, the action of ρreg(x) over y can be rewritten as

ρreg(x)y = (Xx1 |y1⟩)⊗ · · · ⊗ (Xxn yn), where Xxi |yi⟩ = |xi ⊕ yi⟩ ,

= (Xx1 ⊗ · · · ⊗ Xxn) (|y1⟩ ⊗ · · · ⊗ |yn⟩).

The adjacency matrix A of Cay(Zn
2 , f) is decomposed by using the regular repre-

sentation on Zn
2 , viz., given x, y ∈ Zn

2 , the value ρreg(x)y = x ⊕ y corresponds to

93

• •
• •

• •

|0⟩ e−ιtZ |0⟩

Figure 5.2: A quantum circuit to implement e−ιtA, where A = Z ⊗ Z ⊗ Z.

the (x, y)-entry of A, so A can be expressed as;

A = ∑
x∈Zn

2

f (x)ρreg(x). (5.44)

Since ρreg(x) commutes with ρreg(y) for all x, y ∈ Zn
2 , the evolution operator

U (t) = e−ιtA is decomposed into;

U (t) = ∏
x∈Zn

2

U(x, t), U(x, t) = e−ιt f (x)ρreg(x). (5.45)

5.5.2 Quantum circuits

The idea to design a quantum circuit for CTQW on a cubelike graph has been

taken from [59]; if the Hamiltonian is given by A = Z1 ⊗ · · · ⊗ Zn, where Zi = Z,

then the phase shift applied to the system is e−ιt if the parity of the n qubits in

the computational basis is even, otherwise, the phase shift applied is eιt. Fig. 5.2

illustrates the quantum circuit for e−ιtA, where A = Z ⊗ Z ⊗ Z.

Let x ∈ Zn
2 , then the regular representation ρreg(x) is given by

ρreg(x) = ⊗n
i=1Xxi = H⊗n (⊗n

i=1Zxi) H⊗n, since X = HZH.

94

|x1⟩ H · · · · · · H
...

...
. . .

...
...

...
...

...
|xi1⟩ H • · · · · · · • H

...
...

. . .
...

...
...

...
|xik⟩ H · · · • • · · · H

...
...

. . .
...

...
|xn⟩ H · · · · · · H

|0⟩ Rẑ(2tf(x))

Figure 5.3: A quantum circuit for U(x, t) = e−ιt f (x)ρreg(x).

Applying the changes to the operator U(x, t) in Eq. 5.45, we get

U(x, t) = e−ιt f (x)ρreg(x) = e−ιt f (x)[⊗n
i=1Xxi]

=
∞

∑
l=0

(−ιt f (x))l

l!
[⊗n

i=1Xxi]l

=
∞

∑
l=0

(−ιt f (x)))2l

(2l)!
I⊗n +

∞

∑
l=0

(−ιt f (x))2l+1

(2l + 1)!
[⊗n

i=1Xxi]

= H⊗nV(x, t)H⊗n, V(x, t) = e−ιt f (x)[⊗n
i=1Zxi].

We see that,

(
Zx1

1 ⊗ · · · ⊗ Zxn
n
)
|y⟩ = (−1)x1y1 |y1⟩ ⊗ · · · ⊗ (−1)xnyn |yn⟩

= (−1)∑n
i=1 xiyi |y1⟩ ⊗ · · · ⊗ |yn⟩

=

|y⟩ , if ⟨x|y⟩ mod 2 = 0

− |y⟩ , if ⟨x|y⟩ mod 2 = 1.

This implies,

V(x, t) |y⟩ =

e−ιt f (x)Z |y⟩ if ⟨x|y⟩ mod 2 = 0

eιt f (x)Z |y⟩ if ⟨x|y⟩ mod 2 = 1.

Thus, the action of the operator V(x, t) is equivalent to the application of the rota-

95

q0 = |0⟩

U(x(1), t)

· · ·

U(x(∆), t)

q1 = |0⟩ · · ·

... · · · . . .

qn−1 = |0⟩ · · ·

|0⟩ · · ·

c : /
2 0 1 n−1

Figure 5.4: An illustration of quantum circuit for CTQW on weighted cubelike
graph

tion operator Rẑ(2t f (x)) about the ẑ-axis if ⟨x|y⟩ is even, and Rẑ(−2t f (x)) if ⟨x|y⟩

is odd. Hence, if x has non-zero entries at positions i1, . . . , ik, then the quantum

circuit for the operator e−ιt f (x)ρreg(x) is depicted by Fig. 5.3. Suppose elements in

Ω f = {y : f (y) ̸= 0} are represented by Ω f = {x(1), . . . , x(∆)}, where ∆ is the car-

dinality of Ω f , then the quantum circuit for the continuous-time quantum walk is

as shown in Fig. 5.4, where the initialized state, in general, is |0⟩⊗n along with an

ancilla qubit with state |0⟩.

Remark 8. As seen in Fig. 5.4, the Hadamard gates H applied at the end of U(x(i), t)

and the beginning of U(x(i+1), t), 1 ≤ i < ∆, are not required, because H2 = I, thus

the actual number of H gates required are 2n. Secondly, the number of rotation opera-

tors used are ∆. Lastly, for each x ∈ Ω f , the number of CNOT gates applied are equal

to the Hamming weight wt(x) of x. Thus, the total number of CNOT gates used are

∑x∈Ω f
wt(x).

5.5.3 The Quantum Simulation

Recall that, if u ⊕ v = σ, where σ is given by Eq. 5.42 in Theorem 21, then {u, v}

is the PST pair. This partitions the vertex set into PST pairs. The graph shown in

Fig. 4.1a admits PST between pairs {000, 111}, {001, 110}, {010, 101}, {011, 100},

and the other graph in Fig. 4.1b has PST pairs {000, 011}, {001, 010}, {100, 111},

96

Figure 5.5: A quantum circuit for CTQW on Cay(Z3
2, {001, 010, 100}).

Figure 5.6: A quantum circuit for CTQW on Cay(Z3
2, {001, 010, 011, 100, 111}).

{101, 110}. Since weighted cubelike graphs, as described in Theorem 21, are

vertex-transitive, the study of PST between the pair {0, σ} is equivalent to any

other pair. Therefore, every quantum circuit is initialized to state |0⟩⊗n, see Fig. 5.5

and Fig. 5.6 which illustrate quantum circuits for the above graphs mentioned.

Suppose the weight function f is defined by; f (001) = 4, f (011) = 8, f (101) = 3,

and zero on other elements, then the 3-tuple σ is computed as (using Theorem 21);

O001 = {001, 011, 101} =⇒ f (001) + f (011) + f (101) mod 2 = 1

=⇒ σ1 = 1

O010 = {011} =⇒ f (011) mod 2 = 0

=⇒ σ2 = 0

O100 = {101} =⇒ f (101) mod 2 = 1

=⇒ σ3 = 1

Thus, σ = 101 and {000, 101} is a PST pair. The same is obtained by simulating

the quantum circuit shown in Fig. 5.7.

97

Figure 5.7: A quantum circuit for CTQW on Cay(Z3
2, { f (001) = 4, f (011) =

8, f (101) = 3}).

Figure 5.8: Probability distribution of CTQW on the hypercubes Cay(Z3
2, {01, 10})

(left) and Cay(Z3
2, {001, 010, 100}) (right) after time π

2 .

On the other hand, if f is defined by

f (010) = 4, f (011) = 7, f (100) = 8, f (101) = 2, f (110) = 5, (5.46)

then σ = 101, and {000, 101} is a PST pair.

Remark 9. Given a pair in a cubelike graph, we can assign weights to edges such that

PST occurs between the given pair.

Note 1. Quantum circuits displayed in Fig. 5.4 can not be run on real quantum comput-

ers due to some techincal issues such as quantum decoherence and state fidelity. We have,

however, tested small graphs on the computer ibmq_manila as shown in Fig. 5.8.

Remarks

The unitary matrix P, in Eq. 5.8, is the Fourier transformation that diagonalizes the

adjacency matrix of the Cayley graph over Zn
r . For r = 2, the transformation is the

98

Hadamard transform which has been decomposed and simulated in IBM’s quan-

tum simulators and computers. The decomposition of quantum Fourier transform

(QFT) is discussed in [59]; however, it can not be used for all Cayley graph over

Zn
r because the number of qubits must be of the form 2k, for some k.

5.6 Summary

In section 5.2, we studied properties of normal matrices and constructed weighted

Cayley graphs over Zn
r having same eigenvectors. We studied the CTQW on these

graphs in section 5.3 and extended the work by Cheung et al. [22]. We further

discuss the decomposition of the CTQW on weighted cubelike graphs in section

5.5 and verfied the results on IBM’s computing platform.

99

CHAPTER 6

Conclusion

In this thesis, we have shown the utility of Cayley graphs for computations. The

Cayley graphs considered are constructed over Zn
r .

The first part of the thesis focuses on their utility for multiprocessor comput-

ing. The interconnection network of a multiprocessor computing system can be

modeled as a graph. Cubelike graphs being Cayley graphs, make a good choice

as the graph for these interconnection networks. Further, the parallel algorithms

for multiprocessor/parallel computation too can be modeled as a graph. Paral-

lel algorithms that use the divide-and-conquer technique are usually represented

as a binary tree. Efficient implementation of a parallel algorithm on a parallel

computer is dependent on the presence of the graph of the parallel algorithm as

a subgraph of the graph of the interconnection network. Embedding one graph

into another helps in showing the extent to which the parallel algorithm can be

implemented on an interconnection network. In this thesis, we have studied the

embedding of a binary tree as a subgraph in cubelike graphs - particularly hy-

percubes and augmented cubes. In section 3.3 (Theorem 10), we developed an

embedding technique using the recursive structure of hypercubes, which carries

out divide-and-conquer algorithms efficiently. This settles a long-standing con-

jecture by Havel [43], albeit for some special families of binary trees. A similar

technique described in section 3.2, if shown correct, can be used to emulate all

binary trees on augmented cubes and improve the efficiency of parallel machines

which have an augmented cube as their interconnection network.

The second part of this thesis is the study of quantum walks on Cayley graphs,

with emphasis on cubelike graphs. Both discrete-time and continuous-time, quan-

100

tum walks are universal for quantum computation [23, 54], and are useful in de-

signing quantum algorithms. In [50], V. Kendon discusses efficient ways of quan-

tum computing via quantum walks on graphs.

We have implemented quantum circuits for discrete-time coined quantum walks

and continuous-time quantum walks on cubelike graphs to study hitting times

and perfect state transfer, respectively. We decomposed the evolution operators

for DTQW and CTQW on cubelike graphs and constructed corresponding quan-

tum circuits in section 4.3 and 5.5, respectively; thus, the quantum walks on cube-

like graphs can be encoded into qubits efficiently, and by running the quantum

circuits, we can solve many practical problems in quantum information theory. In

the case of CTQW, we have studied PST and periodicity on the weighted Cayley

graph over Zn
r . In the case of DTQW on cubelike graphs, we can compute hitting

times using Eq. 4.17, section 4.2, and the conjecture 1, section 4.3. Suppose Γ is a

cubelike graph with regularity ∆, then the conjecture gives the target vertex vtarg,

the approximate value for the evolution step, i.e., T = π∆
2 , and states that the par-

tity of T and ∆ is same. This fact is used to fix the possible values for T in Eq 4.17,

Lemma 4, and so, we only need to compute the coefficient of |D⟩ |vtarg⟩.

We can study the implementation of DTQW on regular and non-regular graphs.

The quantum circuits for the corresponding shift operators can be constructed us-

ing the similar technique discussed in section 4.3. Suppose we label each edge

using binary strings of fixed length, then the shift can be applied using an ex-

pression similar to Eq. 4.28. For the continuous case, we can construct quantum

circuits for CTQW on abelian and non-abelian Cayley graphs. The quantum cir-

cuit for the quantum Fourier transform is discussed in [59]. Recall that the unitary

matrix P that diagonalizes the adjacency matrix A of the Cayley graph is related to

Fourier matrices; it is, therefore, reasonable to think of constructing the quantum

circuit of the evolution operator for CTQW on Cayley graphs.

101

References

[1] J. Abhijith et al. Quantum Algorithm Implementations for Beginners.

arXiv:cs.ET/1804.03719, 2020.

[2] H. Abraham et al. Qiskit: An Open-source Framework for Quantum Computing,

2019, qiskit.org.

[3] F. Acasiete, F. Agostini, J. Khatibi Moqadam, and R. Portugal. Implementa-

tion of quantum walks on IBM quantum computers. Quantum Information

Processing, 19(426), 2020.

[4] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum Walks on

Graphs. In STOC ’01: Proceedings of the Thirty-Third Annual ACM Symposium

on Theory of Computing, pages 50–59, 2001.

[5] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Phys-

ical Review A, 48(2):1687–1690, 1993.

[6] A. Ambainis. Quantum walks and their algorithmic applications. Interna-

tional Journal of Quantum Information, 1(4):507–518, 2003.

[7] O. Amini, F. V. Fomin, and S. Saurabh. Counting Subgraphs via Homomor-

phisms. SIAM Journal on Discrete Mathematics, 26(2):695–717, 2012.

[8] R. Angeles-Canul, R. Norton, M. Opperman, C. Paribello, M. Russell, and

C. Tamon. Perfect state transfer, integral circulants, and join of graphs. Quan-

tum Information & Computation, 10(3-4):325–342, 2010.

[9] R. J. Angeles-canul, R. M. Norton, M. C. Opperman, C. C. Paribello, M. C.

102

https://arxiv.org/abs/1804.03719
https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1007/s11128-020-02938-5
https://doi.org/10.1007/s11128-020-02938-5
https://doi.org/10.1145/380752.380758
https://doi.org/10.1145/380752.380758
https://link.aps.org/doi/10.1103/PhysRevA.48.1687
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1137/100789403
https://doi.org/10.1137/100789403
https://doi.org/10.26421/QIC10.3-4-10

Russell, and C. Tamon. Quantum Perfect State Transfer on Weighted Join

Graphs. International Journal of Quantum Information, 7(8):1429–1445, 2009.

[10] L. Babai, W. M. Kantor, and E. M. Luks. Computational Complexity and the

Classification of Finite Simple Groups. In 24th Annual Symposium on Founda-

tions of Computer Science, pages 162–171, 1983.

[11] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,

T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum

computation. Physical Review A, 52(5):3457–3467, 1995.

[12] M. Batty, S. Braunstein, A. Duncan, and S. Rees. Quantum algorithms in

group theory. arXiv:quant-ph/0310133v2, 2003.

[13] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased Search Trees. SIAM Journal

on Computing, 14(3):545–568, 1985.

[14] A. Bernasconi, C. Godsil, and S. Severini. Quantum networks on cubelike

graphs. Physical Review A, 78(5):052320, 2008.

[15] T. Beyer and S. M. Hedetniemi. Constant Time Generation of Rooted Trees.

SIAM Journal on Computing, 9(4):706–712, 1980.

[16] S. Bezrukov, B. Monien, W. Unger, and G. Wechsung. Embedding ladders

and caterpillars into the hypercube. Discrete Applied Mathematics, 83(1):21–

29, 1998.

[17] N. Biggs. Algebraic Graph Theory. Cambridge University Press, London, 2nd

edition, 1974.

[18] S. Bose. Quantum Communication through an Unmodulated Spin Chain.

Physical Review Letters, 91(20):207901, 2003.

[19] E. Campos, S. E. Venegas-Andraca, and M. Lanzagorta. Quantum tunneling

and quantum walks as algorithmic resources to solve hard K-SAT instances.

Scientific Reports, 11:16845, 2021.

103

https://doi.org/10.1142/S0219749909006103
https://doi.org/10.1142/S0219749909006103
https://doi.org/10.1109/SFCS.1983.10
https://doi.org/10.1109/SFCS.1983.10
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://arxiv.org/abs/quant-ph/0310133
https://arxiv.org/abs/quant-ph/0310133
https://doi.org/10.1137/0214041
https://doi.org/10.1103/PhysRevA.78.052320
https://doi.org/10.1103/PhysRevA.78.052320
https://doi.org/10.1137/0209055
https://doi.org/10.1016/S0166-218X(97)00101-7
https://doi.org/10.1016/S0166-218X(97)00101-7
https://doi.org/10.1103/PhysRevLett.91.207901
https://doi.org/10.1038/s41598-021-95801-1
https://doi.org/10.1038/s41598-021-95801-1

[20] W.-F. Cao, Y.-G. Yang, D. Li, J.-R. Dong, Y.-H. Zhou, and W.-M. Shi. Quan-

tum state transfer on unsymmetrical graphs via discrete-time quantum walk.

Modern Physics Letters A, 34(38):1950317, 2019.

[21] R. Chang, W. Gasarch, and J. Toran. On finding the number of graph au-

tomorphisms. In Proceedings of Structure in Complexity Theory. Tenth Annual

IEEE Conference, pages 288–298, 1995.

[22] W. Cheung and C. Godsil. Perfect state transfer in cubelike graphs. Linear

Algebra and its Applications, 435(10):2468–2474, 2011.

[23] A. M. Childs. Universal Computation by Quantum Walk. Physical Review

Letters, 102(18):180501, 2009.

[24] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman.

Exponential Algorithmic Speedup by a Quantum Walk. In STOC ’03: Proceed-

ings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages

59–68, 2003.

[25] A. M. Childs, E. Farhi, and S. Gutmann. An Example of the Difference Be-

tween Quantum and Classical Random Walks. Quantum Information Process-

ing, 1:35–43, 2002.

[26] A. M. Childs, D. Gosset, and Z. Webb. Universal Computation by Multipar-

ticle Quantum Walk. Science, 339(6121):791–794, 2013.

[27] S. Choudum, L. Sivakumar, and V. Sunitha. Graph Embedding and Inter-

connection Networks. In K. Thulasiraman, S. Arumugam, A. Brandstädt, and T.

Nishizeki (ed.), Handbook of Graph Theory, Combinatorial Optimization, and Algo-

rithms, pages 653–688. Chapman and Hall/CRC, 2015.

[28] S. A. Choudum and V. Sunitha. Augmented cubes. Networks, 40(2):71–84,

2002.

[29] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl.

Perfect transfer of arbitrary states in quantum spin networks. Physical Review

A, 71(3):032312, 2005.

104

https://doi.org/10.1142/S0217732319503176
https://doi.org/10.1142/S0217732319503176
https://doi.org/10.1109/SCT.1995.514867
https://doi.org/10.1109/SCT.1995.514867
https://doi.org/10.1016/j.laa.2011.04.022
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1145/780542.780552
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1126/science.1229957
https://doi.org/10.1126/science.1229957
https://doi.org/10.1201/b19163
https://doi.org/10.1201/b19163
https://doi.org/10.1002/net.10033
https://doi.org/10.1103/PhysRevA.71.032312

[30] D. E. Deutsch and R. Penrose. Quantum computational networks. Proceedings

of the Royal Society of London A, 425(1868):73–90, 1989.

[31] D. P. DiVincenzo. The Physical Implementation of Quantum Computation.

Fortschritte der Physik, 48(9-11):771–783, 2000.

[32] B. Douglas and J. Wang. Complexity Analysis of Quantum Walk Based

Search Algorithms. Journal of Computational and Theoretical Nanoscience,

10(7):1601–1605, 2013.

[33] M. Drezgich, A. P. Hines, M. Sarovar, and S. Sastry. Complete Characteriza-

tion of Mixing Time for the Continuous Quantum Walk on the Hypercube

with Markovian Decoherence Model. Quantum Information and Computation,

9(9):856–878, 2009.

[34] J. Díaz, M. Serna, and D. M. Thilikos. Counting H-colorings of partial k-trees.

Theoretical Computer Science, 281(1):291–309, 2002.

[35] E. Farhi and S. Gutmann. Quantum computation and decision trees. Physical

Review A, 58(2):915–928, 1998.

[36] R. P. Feynman. Quantum Mechanical Computers. Foundations of Physics,

16:507–531, 1986.

[37] Y. Ge, B. Greenberg, O. Perez, and C. Tamon. Perfect state transfer, graph

products and equitable partitions. International Journal of Quantum Informa-

tion, 9(3):823–842, 2011.

[38] K. Georgopoulos, C. Emary, and P. Zuliani. Comparison of quantum-walk

implementations on noisy intermediate-scale quantum computers. Physical

Review A, 103(2):022408, 2021.

[39] C. Godsil. Periodic Graphs. The Electronic Journal of Combinatorics, 18(1), 2011.

[40] C. Godsil. State Transfer on Graphs. Discrete Mathematics, 312(1):129–147,

2012.

105

https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1166/jctn.2013.3095
https://doi.org/10.1166/jctn.2013.3095
https://dl.acm.org/doi/abs/10.5555/2011804.2011812
https://dl.acm.org/doi/abs/10.5555/2011804.2011812
https://dl.acm.org/doi/abs/10.5555/2011804.2011812
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1007/BF01886518
https://doi.org/10.1142/S0219749911007472
https://doi.org/10.1142/S0219749911007472
https://doi.org/10.1103/PhysRevA.103.022408
https://doi.org/10.1103/PhysRevA.103.022408
https://doi.org/10.37236/510
https://doi.org/10.1016/j.disc.2011.06.032

[41] C. Godsil. When can perfect state transfer occur? Electronic Journal of Linear

Algebra, 23:877–890, 2012.

[42] F. Harary, J. P. Hayes, and H. Wu. A survey of the theory of hypercube

graphs. Computers & Mathematics with Applications, 15(4):277–289, 1988.

[43] I. Havel. On Hamiltonian circuits and spanning trees of hypercubes. Časopis

pro pěstování matematiky, 109(2):135–152, 1984.

[44] I. M. Havel and P. Liebl. One-legged caterpillars span hypercubes. Journal of

Graph Theory, 10(1):69–77, 1986.

[45] M. R. Henzinger and V. King. Randomized Fully Dynamic Graph Algorithms

with Polylogarithmic Time per Operation. Journal of the ACM, 46(4):502–516,

1999.

[46] K. Hoffman and R. A. Kunze. Linear Algebra. Prentice-Hall, New Jersey, 2nd

edition, 2004.

[47] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-Logarithmic Determin-

istic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning Tree,

2-Edge, and Biconnectivity. Journal of the ACM, 48(4):723–760, jul 2001.

[48] M. Štefaňák and S. Skoupý. Perfect state transfer by means of discrete-time

quantum walk search algorithms on highly symmetric graphs. Physical Re-

view A, 94(2):022301, 2016.

[49] J. Kempe. Discrete Quantum Walks Hit Exponentially Faster. Probability

Theory and Related Fields, 133(2):215–235, 2005.

[50] V. Kendon. How to Compute Using Quantum Walks. Electronic Proceedings

in Theoretical Computer Science, 315:1–17, 2020.

[51] D. Kielpinski, C. Monroe, and D. Wineland. Architecture for a large-scale

ion-trap quantum computer. Nature, 417:709–11, 2002.

[52] P. Knight, E. Roldán, and J. Sipe. Optical cavity implementations of the quan-

tum walk. Optics Communications, 227(1-3):147–157, 2003.

106

https://doi.org/10.13001/1081-3810.1563
https://doi.org/10.1016/0898-1221(88)90213-1
https://doi.org/10.1016/0898-1221(88)90213-1
http://dx.doi.org/10.21136/CPM.1984.108506
https://doi.org/10.1002/jgt.3190100110
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1103/PhysRevA.94.022301
https://doi.org/10.1103/PhysRevA.94.022301
https://doi.org/10.1007/s00440-004-0423-2
https://doi.org/10.4204/eptcs.315.1
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1016/j.optcom.2003.09.024
https://doi.org/10.1016/j.optcom.2003.09.024

[53] C. Lavor, L. Manssur, and R. Portugal. Grover’s Algorithm: Quantum

Database Search. arXiv:quant-ph/0301079v1, 2003.

[54] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon. Universal

quantum computation using the discrete-time quantum walk. Physical Re-

view A, 81(4):042330, 2010.

[55] L. Lovász. Random walks on graphs: A survey. In D. Miklós, V. T. Sós, and

T. Szőnyi (ed.), Combinatorics, Paul Erdős is Eighty, volume 2, pages 353–398.

Bolyai Society Mathematical Studies, Budapest, 1993.

[56] B. Monien and G. Wechsung. Balanced caterpillars of maximum degree 3

and with hairs of arbitrary length are subgraphs of their optimal hypercube.

Journal of Graph Theory, 87(4):561–580, 2018.

[57] C. Moore and A. Russell. Quantum Walks on the Hypercube. In Randomiza-

tion and Approximation Techniques in Computer Science, pages 164–178, 2002.

[58] J. Mulherkar, R. Rajdeepak, and V. Sunitha. Perfect State Transfer in Weighted

Cubelike Graphs. arXiv:quant-ph/2109.12607, 2021.

[59] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-

mation. Cambridge University Press, New York, 10th anniversary edition,

2011.

[60] R. Otter. The Number of Trees. Annals of Mathematics, 49(3):583–599, 1948.

[61] E. Roldán and J. Soriano. Optical implementability of the two-dimensional

quantum walk. Journal of Modern Optics, 52(18):2649–2657, 2005.

[62] N. Shenvi, J. Kempe, and K. B. Whaley. Quantum random-walk search algo-

rithm. Physical Review A, 67(5):052307, 2003.

[63] A. Shioura, A. Tamura, and T. Uno. An Optimal Algorithm for Scanning All

Spanning Trees of Undirected Graphs. SIAM Journal on Computing, 26(3):678–

692, 1997.

107

https://arxiv.org/abs/quant-ph/0301079
https://arxiv.org/abs/quant-ph/0301079
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1002/jgt.22175
https://doi.org/10.1002/jgt.22175
https://doi.org/10.1007/3-540-45726-7_14
https://arxiv.org/abs/2109.12607
https://arxiv.org/abs/2109.12607
 https://doi.org/10.1017/CBO9780511976667
 https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.2307/1969046
https://doi.org/10.1080/09500340500309873
https://doi.org/10.1080/09500340500309873
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1137/S0097539794270881
https://doi.org/10.1137/S0097539794270881

[64] S. Singh, B. Adhikari, S. Dutta, and D. Zueco. Perfect state transfer on hyper-

cubes and its implementation using superconducting qubits. Physical Review

A, 102(6):062609, 2020.

[65] A. J. Skinner, M. E. Davenport, and B. E. Kane. Hydrogenic Spin Quan-

tum Computing in Silicon: A Digital Approach. Physical Review Letters,

90(8):087901, 2003.

[66] L. Vinet and H. Zhan. Perfect state transfer on weighted graphs of the John-

son scheme. Letters in Mathematical Physics, 110(9):2491–2504, 2020.

[67] E. Wanzambi and S. Andersson. Quantum Computing: Implementing Hit-

ting Time for Coined Quantum Walks on Regular Graphs. arXiv:quant-

ph/2108.02723, 2021.

[68] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong. Random Walks: A Re-

view of Algorithms and Applications. IEEE Transactions on Emerging Topics

in Computational Intelligence, 4(2):95–107, 2020.

[69] P. Xue, B. C. Sanders, and D. Leibfried. Quantum Walk on a Line for a

Trapped Ion. Physical Review Letters, 103(18):183602, 2009.

[70] X. Zhan, H. Qin, Z.-h. Bian, J. Li, and P. Xue. Perfect state transfer and ef-

ficient quantum routing: A discrete-time quantum-walk approach. Physical

Review A, 90(1):012331, 2014.

108

https://doi.org/10.1103/PhysRevA.102.062609
https://doi.org/10.1103/PhysRevA.102.062609
https://doi.org/10.1103/PhysRevLett.90.087901
https://doi.org/10.1103/PhysRevLett.90.087901
https://doi.org/10.1007/s11005-020-01298-6
https://doi.org/10.1007/s11005-020-01298-6
https://arxiv.org/abs/2108.02723
https://arxiv.org/abs/2108.02723
https://doi.org/10.1109/TETCI.2019.2952908
https://doi.org/10.1109/TETCI.2019.2952908
https://doi.org/10.1103/PhysRevLett.103.183602
https://doi.org/10.1103/PhysRevLett.103.183602
https://doi.org/10.1103/PhysRevA.90.012331
https://doi.org/10.1103/PhysRevA.90.012331

CHAPTER A

Abstract Algebra

A.1 Group Theory

Definition 5. A group is a non-empty set G equipped with a binary operation ⋆ that

satisfy; (a) ∀a, b ∈ G, a ⋆ b ∈ G (closure), (b) ∀a, b, c ∈ G, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)

(associativity), (c) ∃e ∈ G, such that a ⋆ e = e ⋆ a = a ∀a ∈ G (identity), and (d) for

each a ∈ G, ∃b ∈ G such that a ⋆ b = b ⋆ a = e (inverses).

The element e is called identity and it is unique. The inverse of an element, say

a ∈ G, is unique and denoted by a−1. The group G is called abelian or commuta-

tive if a ⋆ b = b ⋆ a for all a, b ∈ G. The i-th power of a, where i ∈ Z, represents

the product of a with itself, repeated i times, i.e., ai = a ⋆ a · · · ⋆ a︸ ︷︷ ︸
i

.

Note 2. We usually write a ⋆ b as ab, unless the group operation is to be specified.

Example 10. Let n be a positive integer. The set of integers modulo n, denoted by Zn, is

a group under operation of addition modulo n. The element 0 is the additive identity.

Example 11. Let A be a set on n > 0 elements. The set of all permutations (bijective

maps on A) of A, denoted by Sym(A), is a group under the composition of functions.

Definition 6. Let G be a group and H be a subset of G. We say H is a subgroup of G if

H is a group under the product of G.

Example 12. The set of all n × n invertible matrices over F = R (the real numbers)

or C (the complex numbers), denoted by GLn(F), is a group under the matrix multipli-

cation, called the general linear group. The subset SLn(F) consisting of matrices with

determinant one is a subgroup, called the special linear group of degree n.

109

Theorem 22. Let G be a group and S be subset of G. Let ⟨S⟩ be the smallest subgroup of

G containing S. Then the followings are equivalent.

(i) ⟨S⟩ is the set of all elements of G representable as a product of elements of S raised

to positive, zero, or negative integer exponents.

(ii) ⟨S⟩ is the intersection of all subgroups of G containing S.

We say S generates the subgroup ⟨S⟩. If S generates the group G, then S is a

generating subset of G. The order of a group G, denoted by | G |, is its cardinality.

The order of a group element g, denoted by | g |, is the order of the subgroup

generated by g. The order of the identity element is one. If the order of g is finite,

then ⟨g⟩ = {e, g, g2, . . . , gr−1}.

Proposition 6. If G is a group and g ∈ G. Then the order of g is the minimum positive

integer r such that gr is the identity.

Theorem 23 (Lagrange’s theorem). Let G be a finite group and H be a subgroup. Then,

| H | divides | G |.

A.1.1 Cyclic group

Definition 7. A group G is said to be cyclic if it is generated by a single element. Suppose

g is a generator then elements in G is represented by gi for some i ∈ Z.

The set of integers Z, under the addition operation, is a cyclic group generated

by 1 or −1. The additive identity is 0. The order of every non-zero element is

infinite. The subgroup generated by an element m ̸∈ {−1, 0, 1}, has infinite order,

i.e., ⟨m⟩ = {mi : i ∈ Z}.

Theorem 24. Let G be a group. Let g ∈ G with finite order r =| g |, and H = ⟨g⟩.

Then the following holds.

1. If gn = 1 and gm = 1, for some n, m > 0, then gd = 1, where d = gcd(n, m) is

the greatest common divisor of n and m.

2. | gn |= r
gcd(r,n) .

3. H = ⟨gn⟩ if and only if gcd(n, r) = 1

110

A.1.2 Group homomorphism

Definition 8. A (group) homomorphism ϕ from a group G1 to another group G2 is a

map satisfying ϕ(gh) = ϕ(g)ϕ(h), ∀g, h ∈ G1. An (group) isomorphism is a bijective

homomorphism, in which case, G1 and G2 are called isomorphic, denoted by G1
∼= G2. If

G1 = G2, then the isormorphism is known as automorphism.

Proposition 7. The kernel ker ϕ is a subgroup of G and the image of ϕ, denoted by Im ϕ,

is a subgroup of G2.

Proposition 8. Let ϕ : G1 → G2 be a group homomorphism. Let e1 and e2 be identities

of G1 and G2, respectively. Then the following holds.

• ϕ(e1) = e2.

• ϕ(g−1) = ϕ(g)−1.

• ϕ(gi) = ϕ(g)i, i ∈ Z.

• The kernel of ϕ, ker ϕ = {g ∈ G : ϕ(g) = 1}, is a subgroup of G1.

• The image of ϕ, im ϕ = {ϕ(g) : g ∈ G}, is a subgroup of G2.

Example 13. Let G be a group. Let g ∈ G.

• If | g |= ∞, then ⟨g⟩ ∼= Z, where the group homomorphism is given by ϕ(gn) = n.

• If r =| g |< ∞, then ⟨g⟩ ∼= Zr, where the group homomorphism is given by

ϕ(gi) = ni mod r with gcd(n, r) = 1.

Theorem 25 (Cayley’s theorem). Every group is isomorphic to a subgroup of Sym(A)

for some appropriate A.

Since symmetric groups on two distinct sets of same cardinality are isomomor-

phic, we use Sym(n) to denote the symmetric group of degree n, where n is the

cardinality of a set.

111

A.1.3 Direct products

Definition 9. Let G1, G2, . . . , Gm be m groups. The direct product G1 × G2 × · · · × Gm

is a group consisting of n-tupes (g1, g2, . . . , gm), where gi ∈ Gi, with operation defined

componentwise, viz.,

(g1, g2, . . . , gm)(h1, h2, . . . , hm) := (g1h1, g2h2, . . . , gmhm).

The direct product of m copies of a group G is denoted by Gm = G × G × · · · × G.

Example 14. Let G = Z2. Then, the direct product of m copies of Z2, denoted by Zm
2 , is

a group with operation

(x1, . . . , xm)⊕ (y1, . . . , ym) = (x1 ⊕ y1, . . . , xm ⊕ ym),

where xi ⊕ yi is the addition modulo 2.

Theorem 26 (Fundamental theorem of finitely generated abelian groups). Let G

be a finitely generated group, i.e., G = ⟨S⟩ for some finite subset S ⊂ G. If G is abelian

then

G ∼= Zr × Zn1 × Zn2 × · · · × Zns , (A.1)

for some integers r, n1, n2, . . . , ns satisfying;

• r ≥ 0 and nj ≥ 2, 1 ≤ j ≤ s,

• nj+1 divides nj.

The expression in Eq. A.1 is unique upto rearrangement.

Example 15. A group of order four is either isomorphic to Z4 or Z2 × Z2.

A.1.4 Group action

Definition 10. A group action of a group G on a set A is a function σ : G → S satisfying;

∀a ∈ A, (i) σ(e)a = a, and (ii) σ(gh)a = σ(g)(σ(h)a) (compatibility).

112

Theorem 27. For a fixed group element g, σ(g) : A → A is a permutation of A and the

map ψ : G → Sym(A), defined by g 7→ σ(g), is a group homomorphism.

Note 3. We usually write σ(g)a as ga.

A.2 Linear Algebra

A field F is a non-empty set equipped with two operations, namely, addition +

and multiplication ·, such that F is abelian group under both operations, and

multiplication is distributive over addition. A vector space V is a non-empty set,

whose elements are called vectors, equipped with two operations, namely, vector

addition + and scalar multiplication · satisfying (a) V is abelian group under the

addition operation, (b) F acts on V, and (c) scalar multiplication is distributive

over vector addition and vice-versa.

Note 4. We use the convention, mentioned in many books, of using the symbol + for

addition and · for multiplication between two entities in any field or a vector space. We

do not mention the field if it is clear from the context which field is considered.

Example 16. The real numbers R and the complex numbers C are infinite fields. The

integers modulo p, Zp, where p is prime, is a finite field.

Example 17. The cartesian product of fields F, denoted by Fn, is a vector space where

vector addition and scalar multiplication are induced by field operations and they are

defined componentwise, viz., λ(x1, . . . , xn) + (y1, . . . , yn) = (λx1 + y1, . . . , λxn + yn).

Definition 11. A subspace W of a vector space V, over the field F, is a subset which is

itself a vector space, over the same field, equipped with the operations on V.

Example 18. The set of all n × n matrices over the field F, denoted by Mn(F), is a

vector space. The set of symmetric matrices is a subspace of Mn(F). If F = C, the set of

Hermitian (self-adjoint) matrices is not a subspace.

Definition 12. A vector v in a vector space V is a linear combination of the vectors v1, v2,

. . . , vm if there exist scalars λ1, λ2, . . . , λm such that v = λ1v1 + λ2v2 + · · ·+ λmvm.

113

Definition 13. Let S be a subset of a vector space V. The subspace spanned by S is the

set of all vectors which are linear combinations of finitely many vectors in S.

Note 5. A linear combination is a sum of finitely many non-zero vectors.

Definition 14. A subset S of a vector space V is said to be linearly dependent if the zero

vector 0 (the additive identity) is a linear combination of some distinct vectors in S. If S

is not linearly dependent then it is called linearly independent.

Definition 15. A basis B for a vector space V is a linearly independent set of vectors that

spans the space.

Example 19. A basis for Fn, is the set of vectors ϵ1, ϵ2, . . . , ϵn, where ϵj is the n-tuple

with value 1 at j-th position and zero elsewhere. This basis is called the standard basis of

Fn.

Theorem 28. If a basis of a vector space has finitely many vectors then any basis is finite

and has the same number elements.

Definition 16. The dimension of a vector space is the cardinality of its basis.

Definition 17. Let B be an ordered basis of a vector space V of dimension n, then the

coordinate of a vector v relative to B is represented by the n-tuple (λ1, λ2, . . . , λn), where

λ1, λ2, . . . , λn are coefficients in the linear combination of vectors in B.

Note 6. Whenever we use the term basis, we imply an ordered basis.

A.2.1 Linear Transformation

Definition 18. A linear transformation is a function T from a vector space V1 to another

vector space V2, over the field F, satisfying; T(λu + v) = λTu + Tv. A bijective linear

transformation is called (linear) isomorphism.

Note 7. In quantum physics, a linear transformation from a vector space to itself is called

an (linear) operator.

Theorem 29. Every n-dimensional vector space over the field F is isomorphic to Fn.

114

Theorem 30. Let V be an n-dimensional vector space and W be an m-dimensional vector

space, over the field F, with respective (ordered) basis B and B′. There is one-one corre-

spondence between the set of all linear transformation from V into W and the set of all

m × n matrices over F.

A.2.2 Hilbert spaces

Definition 19. An inner product on a vector space V, over the field C or R, is a function

⟨·, ·⟩ × V → F satisfying; ∀u, v, w ∈ V (a) ⟨u, u⟩ > 0 only if u ̸= 0 and ⟨u, u⟩ = 0

only if u = 0, (b) ⟨u, λv + w⟩ = λ⟨u, v⟩+ ⟨u, w⟩, ∀λ ∈ F, (c) ⟨u, v⟩ = ⟨v, u⟩. A vector

space equipped with an inner product is called an inner product space.

Example 20. The complex vector space Cn is an inner product space, wherein inner

product of u = (λ1, . . . , λn) and v = (µ1, . . . , µn) is defined by ⟨u, v⟩ := ∑n
j=1 λ̄jµj.

Definition 20. A norm induced by an inner product is defined by ∥x∥ :=
√
(x, x). The

distance between two vectors u and v is given by d(u, v) := ∥u + (−v)∥.

Definition 21. A sequence of vectors v1, v2, v3, . . . , in a vector space V is called Cauchy

if for every positive real number ϵ there is a positive integer N such that for all integers

m, n > N, the distance satisfies d(vm, vm) < ϵ. The vector v is said to be a limit of the

sequence if for every real number ϵ > 0, there exists a positive integer N such that for all

n ≥ N, d(vn, v) < ϵ. Alternatively, we say the sequence converges to v.

Definition 22. A Hilbert space is a complete inner product space, i.e., every Cauchy

sequence in the space has a limit in it.

Definition 23. A vector space V is separable if it contains a countable dense subset S,

i.e., there exists a sequence of vectors such that every non-empty open subset of the space

contains atleast one vector of the sequence.

A.2.3 Orthonormal basis and Eigenvectors

Definition 24. In an inner product space V, two vectors u and v are said to be orthogonal

if their inner product is zero, i.e., ⟨u, v⟩ = 0. A vector w is normal if its norm induced by

115

the inner product is 1, i.e., ∥w∥ = 1. A set of vectors is called orthonormal set if they are

mutually orthogonal and each vector is normal.

Proposition 9 (Fourier expansion). Let B = {v1, v2, . . . , vn} be an orthonormal basis

for an inner product space V, then each vector v ∈ V can be expressed as

v = ⟨v1, v⟩v1 + ⟨v2, v⟩v2 + · · ·+ ⟨vn, v⟩vn.

Theorem 31 (Gram-Schmidt Orthonormalization). Every finite dimensional vector

space has orthonormal basis.

Definition 25. Let A be n × n matrix over the field F. A scalar λ is an eigenvalue of A

if there exists a non-zero vector u satisfying Au = λu. The eigenspace relative to λ is the

subspace spanned by corresponding eigenvectors of A.

Theorem 32. If A has an eigenvalue λ, then A − λI is singular (not invertible), i.e.,

det(A − λI) = 0, where I is the (multiplicative) identity of GLn(F).

Definition 26. Let V be a finite inner product space.. Let W be a subspace of V with

orthonormal basis {v1, v2, . . . , vm}. The orthogonal projection of a vector v ∈ V on W

is defined by ∑n
j=1⟨vj, v⟩vj. The function that maps each vector in V to its orthogonal

projection on W is called the orthogonal projection of V on W.

A.2.4 Spectral theorem

An n × n normal matrix N ∈ Cn × Cn is defined by

NN† = N†N,

where N† is the adjoint (complex-conjugate transpose) of N. If NN† = I, then

N is called unitary matrix. Suppose N = N† then N is Hermitian (also known as

self-adjoint). If entries in N are real and N is Hermitian then N is a real-symmetric

matrix, i.e., N = NT. The spectral theory diagonalizes a normal matrix as stated

below.

116

Theorem 33 (Spectral theorem). [46] Let N be an n × n normal matrix. Then, the

following statements hold true.

1. There is an n × n unitary matrix P such that D = P−1NP is diagonal.

2. Suppose λ1, . . . , λm are distinct eigenvalues of N, and Ej is the orthogonal pro-

jection on the eigenspace associated with λj, then the spectral decomposition (also

called spectral resolution) of N is given by

N = λ1E1 + · · ·+ λmEm. (A.2)

The set S = {λ1, . . . , λm} of eigenvalues is called the spectrum of N. In The-

orem 33, the j-th column of P, denoted by P∗j, is an eigenvector of N with eigen-

value dj = Dj,j, i.e., NP∗j = djP∗j. The spectral theory for unitary, Hermitian and

real-symmetric matrices can be formulated as;

Theorem 34. [46] If N is a normal matrix with unitary matrix P satisfying D =

P−1DP, such that D is diagonal, then,

1. N is self-adjoint iff its eigenvalues are real,

2. N is unitary iff its eigenvalues are of absolute value 1.

3. P is orthogonal and D is real iff N is real-symmetric matrix.

Another useful result from linear algebra associates spectra of normal matrix

N with its matrix exponential eN.

Theorem 35. [46] Let N be a normal matrix with unitary matrix P satisfying D =

P−1NP, such that D is diagonal. Let N = ∑m
j=1 λjEj be the spectral decomposition of

N. Suppose f is a complex-valued function defined over S, then the following statements

hold true.

1. The linear operator f (N) defined by

f (N) =
m

∑
j=1

f (λj)Ej

117

is a diagonalizable normal operator with spectrum f (S). In other words,

f (D) = P−1 f (N)P

is diagonal with the same unitary matrix P, i.e., the j-th column P∗j of P is eigen-

vector of f (N) with eigenvalue f (dj), 1 ≤ j ≤ n.

A.2.5 Discrete Fourier Transform

Definition 27. Let ω be an n-th root of unity, i.e., ω = e2π/n. The Fourier matrix of

order n is the n × n matrix, denoted by Fn, with (i, j)-th entry ω̄. The discrete Fourier

transform of a vector v ∈ Cn is the product Fnv, and the inverse Fourier transform of v is

F−1
n v.

The Fourier matrix is symmetric and F†
n = F̄n. The matrix 1√

n Fn is unitary with

the inverse 1√
nF̄n

. The k-th entry of Fnv is ∑n
j=1 λjω̄

jk and that of F−1
n v is ∑n

j=1 λjω
jk,

where λj is the j-th entry of v.

A.2.6 Dirac notation

This notation is usually used in quantum mechanics where a vector space is a

separable Hilbert space. A vector v is denoted by |v⟩ and pronounced as ket-v. A

linear transformation f : V → F is called a linear functional and the space of all

linear functionals is called the dual space of V, denoted by V∗. A linear functional

f is denoted by ⟨ f | and pronounced as bra-f.

Theorem 36. Let V be a finite-dimensional vector space with a basis B = {v1, . . . , vn},

then there is a unique dual basis B∗ = { f1, . . . , fn} such that fi(vj) = δij. Moreover,

a linear function f can be expressed as f = ∑n
j=1 f (vj) f j and a vector v ∈ V can be

expressed as v = ∑n
j=1 f j(v)vj.

Theorem 37. Let V be a finite-dimensional inner product space, and f be a linear func-

tional on V. There there is a unique vector u ∈ V such that f (v) = ⟨u, v⟩ for all v ∈ V.

We use Theorem 37, to define bra-u by ⟨u| := f and let ⟨u|v⟩ denote the inner

product ⟨|u⟩ , |v⟩⟩, i.e., ⟨u|v⟩ := ⟨u, v⟩.

118

Example 21. In the vector space Cn×1, a vector |v⟩ is a column matrix and ⟨v| is a row

vector in C1×n. Notice that ⟨v|† = |v⟩ and |v⟩† = ⟨v|.

We use the convention that |u⟩ is always a column vector and ⟨u| is complex-

conjugate of |u⟩.

Definition 28. The outer product of vectors |u⟩ and |v⟩ in Cn is an n × n matrix |u⟩ ⟨v|

whose (i, j)-th entry is λiµ̄j, where λi is the i-th coordinate of |u⟩ and µj is the j-th

coordinate of |v⟩.

A.2.7 Tensor products

Definition 29. Let V and W be Hilbert spaces over the field C, with basis {|v1⟩, . . . , |vn⟩}

and {|w1⟩, . . . , |wm⟩}, respectively. The tensor product of V and W, denoted by V ⊗ W,

is an nm-dimensional Hilbert space with the basis {|v1⟩ ⊗ |w1⟩, |v1⟩ ⊗ |w2⟩, . . . , |vn⟩ ⊗

|wm⟩}.

A generic vector |ψ⟩ in V ⊗ W is a linear combination of the basis vectors,

|ψ⟩ =
n

∑
i=1

m

∑
j=1

aij|vi⟩ ⊗ |wj⟩.

The tensor product is bilinear, i.e., for v, v1, v2 ∈ V and w, w1, w2 ∈ W and a ∈ C,

|v⟩ ⊗ (a|w1⟩+ b|w2⟩) = a|v⟩ ⊗ |w1⟩+ b|v⟩ ⊗ |w2⟩,

(a|v1⟩+ b|v2⟩)⊗ |w⟩ = a|v1⟩ ⊗ |w⟩+ b|v2⟩ ⊗ |w⟩.

The scalar multiplication is given by,

a(|v⟩ ⊗ |w⟩) = (a|v⟩)⊗ |w⟩ = |v⟩ ⊗ (a|w⟩) a ∈ C, v ∈ V, w ∈ W.

The tensor product of a linear operator A on V and B on W, denoted by A ⊗ B, is

a linear operator defined by

(A ⊗ B)(|v⟩ ⊗ |w⟩) = (A|v⟩)⊗ (B|w⟩).

Remark 10. An outer product is a tensor product.

119

Let A1, A2 be operators in V and B1, B2 be operators on W, then

(A1 ⊗ B1) ◦ (A2 ⊗ B2) = (A1 ◦ A2)⊗ (B1 ◦ B2).

The inner product of vectors is given by

〈
|v1⟩ ⊗ |w1⟩, |v2⟩ ⊗ |w2⟩

〉
= ⟨v1|v2⟩⟨w1|w2⟩.

Let A be an m × n matrix and B be a p × q matrix. Then, A ⊗ B is mp × nq matrix

given by,

A ⊗ B =

a11B · · · a1nB

. . .

am1B · · · amnB

 .

A.3 Representation Theory of finite abelian group

Definition 30 (Group representation). A representation of a group G is a (group) ho-

momorphism from G into general linear group GLn(F), for some positive integer n.

Let G be a finite abelian group, and σ be a representation of G. Fix g ∈ G, then,

σ(gx)v = σ(xg)v ∀x ∈ G

=⇒ σ(g)σ(x)v = σ(x)σ(g)v

Thus, σ commutes will all invertible transformations.

120

CHAPTER B

Quantum Computation

B.1 Postulates of quantum mechanics

A quantum mechanical particle moves according to specific rules called postu-

lates of quantum mechanics, which came by experiments. There are four rules as

follows.

B.1.1 The first postulate

A quantum state of an isolated quantum system is a unit vector in a Hilbert space.

The associated Hilbert space is known as the state space of the quantum system.

Example 22. A spin-1
2 particle has quantum state a linear combination of a spin up |↑⟩

state and a spin down |↓⟩ state. The quantum state of the spin particle can be realised

as a unit vector in C2 with the computational basis {|0⟩ , |1⟩}, where |0⟩ and |1⟩ denote

|↑⟩ and |↓⟩, respectively. Thus, if |ψ⟩ is a quantum state of the particle then there exists

a, b ∈ C satisfying |a|2 + |b|2 = 1 such that |ψ⟩ = a |0⟩+ b |1⟩.

In general, the computational basis of an N-dimensional Hilbert space is de-

noted by {|0⟩ , |1⟩ , . . . , |N − 1⟩}, and a quantum state of the associated system is

written as |ψ⟩ = ∑N−1
i=0 ai |i⟩, for some scalars satisying ∑N−1

i=1 |ai|2 = 1.

B.1.2 The second postulate

A closed quantum system evolves according to the Schrödinger equation

ι
d
dt

|ψ(t)⟩ = Ĥ |ψ(t)⟩ , ι =
√
−1,

121

where ψ(t) is the state of the system at time t, and Ĥ is the Hamiltonian of the

system. If Ĥ is time-independent then the solution of the Schrödinger equation is

given by

|ψ(t)⟩ = e−ιtĤ |ψ(0)⟩ .

In general, if |ψ(0)⟩ is the initial state of the system, then the state of the system

after time t is obtained by a unitary operator U , i.e. |ψ(t)⟩ = U |ψ(0)⟩.

B.1.3 The third postulate

Projective quantum measurement of a quantum state of the system is described

by applying an observable M, which is a Hermitian operator, on the state space

of the quantum system. The result obtained is one of the real eigenvalues of the

observable. The measurement destroys the state, and the system acquires a new

state. Suppose ∑λ λEλ is the spectral decomposition of M, then the probability

that the measurement gives a value λ is ⟨ψ|Eλ|ψ⟩. If λ occurs then the state of the

system immediately after the measurement is 1√
⟨ψ|Eλ|ψ⟩

Eλ |ψ⟩.

Example 23. Consider the system of the spin-1
2 particle. Define two operators Eλ =

|0⟩ ⟨0| and Eµ = |1⟩ ⟨1|. Clearly, they are projective operators. Suppose the state of

the qubit is |ψ⟩ = a |0⟩ + b |1⟩, then upon measuring the state the value λ occurs

with probability ⟨ψ| |0⟩ ⟨0| |ψ⟩ = |a|2. Similarly, the value µ occurs with probability

⟨ψ| |1⟩ ⟨1| |ψ⟩ = |b|2. The state after the measurement is either a
|a| |0⟩ or b

|b| |1⟩.

B.1.4 The fourth postulate

A composite quantum system consists of two or more quantum systems. The as-

sociated state space is the tensor product of Hilbert spaces associated with each

quantum system. Suppose a system of m quantum states are respectively asso-

ciated with Hilbert spaces H1, . . . ,Hm, then the composite system has the state

space H = H1 ⊗ · · · ⊗ Hm. The computational basis for H is given by {|i⟩ : 0 ≤

i ≤ N − 1}, where N is the dimension of H, and |i⟩ = |i1⟩ ⊗ · · · ⊗ |im⟩, where |ij⟩

is a computational basis vector for the j-th component state space Hj.

122

Example 24. In quantum computing and quantum information theory, quantum bit

(popularly known as qubit) is the functional unit, which is a unit vector in C2. A spin-1
2

particle is an example of a qubit. A system of n qubits evolves in the Hilbert space
(
C2)⊗n,

where each qubit has the state space C2. The corresponding computational basis is denoted

by

{|k⟩ ≡ |xn−1 · · · x1x0⟩ : k =
n−1

∑
i=0

xi2i, 0 ≤ k ≤ 2n − 1},

where the vector |xn−1 · · · x1x0⟩ is the short form for |xn−1⟩ ⊗ · · · ⊗ |x1⟩ ⊗ |x0⟩ and

|k⟩ is the decimal notation for the vector. The projective measurement in this basis is the

observable M = ∑2n−1
k=0 λk |k⟩ ⟨k|, for some real scalars λk, 0 ≤ k ≤ 2n − 1. Let |ψ⟩ =

∑2n−1
k=0 ak |k⟩ be a quantum state of the composite qubits, where ∑2n−1

k=0 |ak|2 = 1. Then,

the measurement outputs a real value λk with the probability ⟨ψ| |k⟩ ⟨k| |ψ⟩ = |ak|2, and

the state after the measurement is |k⟩, where the global phase ak
|ak|

has been ignored. We

see that, the state of the n-qubit system after the measurement is represented by one of its

computational basis vector.

Note 8. A quantum state of a composite system may not be separable, i.e., some quan-

tum states can not be written as tensor product of individual particle’s state in respective

Hilbert spaces. For example, it is impossible to write 1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩ as

(a |0⟩+ b |1⟩)⊗ (a′ |0⟩+ b′ |1⟩).

Such phenomena is called entangled state.

B.2 Quantum Fourier Transform

Given an orthonormal basis {|0⟩ , |1⟩ , . . . , |N − 1⟩}, the quantum Fourier trans-

form (QFT) is a linear operator that acts on an arbitrary state as

F :
N−1

∑
j=0

xj |j⟩ 7−→
N−1

∑
k=0

yk |k⟩ , (B.1)

123

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj,

i.e.,

yk =
1√
N

N−1

∑
j=0

xjω
jk |k⟩ , ω = e

2πι
N , (B.2)

where ω is the N-th root of unity. The quantum Fourier transform FN is unitary,

viz.,

(FF †)rs =
N−1

∑
k=0

FrkF̄sk

=
1
N

N−1

∑
k=0

ωrkω−sk

=
1
N

N−1

∑
k=0

ωk(r−s) =

1 ; if r = s

0 ; otherwise.

(B.3)

B.3 Quantum Circuits

We describe an abstract model, and not the actual quantum computer, for quan-

tum computation that is discussed in [11, 30]; however one can find some earlier

works on the physical realization of quantum computers in [18, 31, 51, 65].

A quantum circuit is a model for quantum computation that consists of (1)

quantum register that stores quantum information as inputs, (2) quantum gates

that operate on input values, (3) meters that yield classical values as outputs, and

(4) quantum wires through which quantum information travels. Quantum in-

formation is the quantum state of the system under consideration. A quantum

register is a system of multiple qubits, where each qubit is a two-level quantum

system. So, if the size of a register is n, then it stores information in the form of

a unit vector in C2⊗n. Quantum information, including entangled state, travels

through quantum wires at an arbitrary distance. A quantum gate is a unitary ma-

trix; it is a reversible operator that maps the space of a register to itself. A pictorial

representation of a quantum circuit for a discrete-time quantum walk on the cycle

of size four is shown in Fig. B.1, wherein double horizontal lines at the bottom of

the circuit and double vertical lines attached to each meter represent the classical

124

q0 :

q1 :

q2 : H • X • • X •
c : /2

0 1

Figure B.1: A quantum circuit for DTWQ on Q2.

channel through which classical values travel.

B.3.1 Quantum gates

Any unitary matrix of order 2k, for some k, serves as a quantum gate. However,

only the gates of smaller dimensions, i.e. k = 1 or k = 2, are useful for practical

purposes, i.e., larger quantum gates are not efficient. It is, therefore, important

to decompose large unitary gates into smaller ones. In [11], it is shown that all

unitary gates can be expressed as a composition of one-qubit gates and two-qubit

gates. Therefore, it is enough to study at most two-qubit gates. The most com-

monly used one-qubit gates are;

1. Pauli matrices X =

0 1

1 0

, Y =

0 −ι

ι 0

 and Z =

1 0

0 −1

,

2. Hadamard gate H = 1√
2

1 1

1 −2

,

3. Phase gate S =

1 0

0 ι

,

4. π/8 gate T =

1 0

0 eι π
4

,

125

5. Rotation operators about x̂, ŷ and ẑ axes, respectively, are

Rx̂(θ) = e−ιθ X
2 = cos

θ

2
I − ι sin

θ

2
X,

Rŷ(θ) = e−ιθ Y
2 = cos

θ

2
I − ι sin

θ

2
Y,

Rẑ(θ) = e−ιθ Z
2 = cos

θ

2
I − ι sin

θ

2
Z.

The rotation operator about an arbitrary direction n̂ = xx̂ + yŷ + zẑ is given by

Rn̂(θ) = e−ιθ
⟨n̂|σ̄⟩

2 = cos
θ

2
I − ι sin

θ

2
(xX + yY + zZ),

where σ̄ = (X, Y, Z). An arbitrary one-qubit gate has a phase difference from the

general rotation operator, i.e.,

U = eιαRn̂(θ), for some real α and θ.

Each quantum gate is represented by a capital letter inside a square box, and the

number of quantum wires entering into the gate is equal to the leaving wires; see

Fig. B.1 where the symbol X represents the Pauli X gate. The X gate is the

quantum analog of classical NOT gate that sends a quantum state |x⟩ to |x ⊕ 1⟩,

where x ∈ {0, 1}.

There are operations that one-qubit gates can not perform, such as controlled-

NOT (CNOT) operation, in which |y⟩ |x⟩ is sent to |y ⊕ x⟩ |x⟩. The operator is

denoted by CX(x, y)), where x is the control qubit and y is the target qubit (see

Fig. B.2). A generalization to this operation is the generalized Toffoli gates, which

are denoted by CX(c, t), where c is the set of control qubits, and t is the target.

Another generalization to controlled-NOT gate is controlled-U gate, where U is

any unitary gate acting on n qubits. So, there is exactly one control qubit and more

than one target qubits in a controlled-U gate. Using CNOT gate we develop an

useful operation of swapping the qubits, i.e., |y⟩ |x⟩ is sent to |x⟩ |y⟩; the operator

is denoted by SWAP(x, y). The SWAP gate is constructed using three controlled-

NOT gates (see Fig. B.3).

126

x • x

y y ⊕ x

(a) Controlled-NOT

x • x

y • y

z z ⊕ y ⊕ x

(b) Toffoli gate

x • x

y • y

z • z

w w ⊕ z ⊕ y ⊕ x

(c) A generalized Toffoli
gate

Figure B.2: Generalized Toffoli gates.

x • • y

y • x

(a)

x × y

y × x

(b)

Figure B.3: (a) SWAP gate. (b) Notation for the SWAP gate used in quantum
circuit.

127

List of Publications

• Journal publication

1. J. Mulherkar, R. Rajdeepak, and V. Sunitha. Implementation of quantum

hitting times of cubelike graphs on IBM’s Qiskit platform. International

Journal of Quantum Information, Vol. 20, No. 07, 2250020 (2022).

• Conference publications

1. J. Mulherkar, R. Rajdeepak, and V. Sunitha. Quantum simulation of per-

fect state transfer on weighted cubelike graphs. International Conference on

Mathematics and Computing. Vellore Institute of Technology, Vellore, India

(January 6-8, 2022).

(This article is to be printed in the book series Springer Proceedings in Math-

ematics and Statistics.)

2. J. Mulherkar, R. Rajdeepak, and V. Sunitha. Perfect state transfer in weighted

cubelike graphs. International Conference on Discrete Mathematics. Manonma-

niam Sundaranar University (MSU), Tirunelveli, India (October 11-13, 2021).

3. R. Rajdeepak, and V. Sunitha. Embedding perfectly balanced 2-caterpillar

into its optimal hypercube. Conference on Graphs, Networks, and their Applica-

tions. Moscow Institute of Physics and Technology (MIPT), Moscow, Russia

(May 13-15, 2019).

128

	Abstract
	List of Tables
	List of Figures
	Introduction and Motivation
	Hypercube multiprocessor systems and graph embeddings
	Random walks and quantum walks on hypercubes
	Cayley graph structure of hypercubes
	Contribution of the thesis

	I Embedding Binary Trees into Cubelike Interconnection Networks
	Spanning trees of a graph
	The incidence matrix
	Generating spanning trees
	The tree-number

	Graph homomorphism
	Counting subgraphs

	Dynamic data structures
	Enumeration of spanning trees

	Embedding binary trees into hypercubes and augmented
	An embedding conjecture
	A technique for embedding in augmeted cubes
	Embedding k-caterpillars into hypercubes
	Properties of k-caterpillars and hypercubes
	The embedding theorem

	II Quantum walks on Cubelike Structures
	Discrete-time coined quantum walks on regular graphs
	Quantum walk evolution
	Regular graphs
	Cubelike graphs
	Hypercubes

	Hitting times
	An analysis of the evolution operator
	Hitting times on complete graphs

	Implementation of discrete-time coined quantum walks on cubelike graphs
	Quantum circuits
	Application to hitting times
	A conjecture on hitting times and target vertex

	Summary

	Continuous-time quantum walks on Cayley graphs
	Perfect state transfer
	Cayley graphs over Zrn that have the same eigenvectors
	Construction of graphs that have the same eigenvectors
	Eigenvalues and eigenvectors of Cayley graphs over Zrn

	Continuous-time quantum walks on Cayley graphs over Zrn
	Perfect state transfer in weighted cubelike graphs
	Periodicity in Cayley graphs over Zrn

	Identifying pair of vertices in multipartite graphs that admit perfect state transfer
	Simulation of continuous-time quantum walks on cubelike graphs
	Decomposition of the evolution operator
	Quantum circuits
	The Quantum Simulation

	Summary

	Conclusion
	References
	Appendix Abstract Algebra
	Group Theory
	Cyclic group
	Group homomorphism
	Direct products
	Group action

	Linear Algebra
	Linear Transformation
	Hilbert spaces
	Orthonormal basis and Eigenvectors
	Spectral theorem
	Discrete Fourier Transform
	Dirac notation
	Tensor products

	Representation Theory of finite abelian group

	Appendix Quantum Computation
	Postulates of quantum mechanics
	The first postulate
	The second postulate
	The third postulate
	The fourth postulate

	Quantum Fourier Transform
	Quantum Circuits
	Quantum gates

	List of Publications

