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Abstract

This thesis examines the impact of image enhancement techniques on multi-object
tracking (MOT) performance using four deep learning models: Long Short-Term
Memory (LSTM), Vision Transformer, Siamese Network, and Convolutional Neu-
ral Network (CNN). The objective is to assess the effectiveness of these models
in handling challenging visual conditions and explore the benefits of image pre-
processing techniques for improving tracking accuracy.

The study utilizes various image enhancement approaches, including denois-
ing, deblurring, and super-resolution. Each deep learning model is implemented
and trained on a large-scale dataset specifically designed for multi-object track-
ing. Performance evaluation is conducted on benchmark datasets, comparing the
tracking accuracy of the base models with and without image enhancement tech-
niques. Evaluation metrics such as average precision, recall, tracking consistency,
and computational efficiency are considered.

The results demonstrate that image enhancement techniques have a signifi-
cant positive impact on multi-object tracking performance across all four models.
LSTM, known for capturing temporal dependencies, exhibits improved tracking
accuracy when combined with image enhancement. Vision Transformer, which
utilizes self-attention mechanisms, benefits from enhanced image quality, result-
ing in superior performance in challenging visual conditions. Siamese Networks
and CNN also show enhanced tracking capabilities when integrated with image
enhancement techniques.

Index Terms: Vision Transformer, Convolution Neural Network, Long Short term
Memory, Siamese Network
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CHAPTER 1

Introduction

1.1 Objectives

The objectives of this thesis are as follows:

1. Analyze how image enhancements impact model accuracy and robustness.

2. Optimize existing models by tuning key parameters to enhance accuracy,
speed, and efficiency in classification, object detection, and segmentation
tasks.

3. Explore novel models to advance the field, evaluating their advantages, lim-
itations, and suitability for specific tasks, aiming to enhance the state-of-the-
art.

1.2 Contributions

The main contributions of this thesis are as follows:

1. Investigating the impact and performance of various multi-tracking mod-
els on enhanced images. This contribution involves conducting a compre-
hensive evaluation of multiple multi-tracking models, such as DeepSORT,
SORT, or Tracktor, on images that have undergone enhancement techniques.
By systematically analyzing the results and comparing them with the per-
formance on non-enhanced images, this contribution provides insights into
the effectiveness of different models in handling enhanced images for the
task of object tracking.

2. Hyperparameter tuning of various multi-tracking models for fish tracking.
This contribution focuses on fine-tuning the hyperparameters of different
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multi-tracking models specifically for the task of fish tracking. By system-
atically exploring and adjusting key hyperparameters, such as detection
threshold, appearance model, or motion model, this contribution aims to
optimize the performance of the multi-tracking models for accurately track-
ing fish in enhanced images. The results of this tuning process contribute
to improving the overall accuracy, robustness, and efficiency of the multi-
tracking models in the context of fish tracking.

The ocean, as stated by the National Oceanic and Atmospheric Administration
(NOAA), is a vital component of our planet, covering more than 70% of Earth’s
surface and playing a crucial role in weather patterns, temperature regulation,
and sustaining all forms of life. Unfortunately, the marine environment has suf-
fered significant impacts due to human activities. This has led to an increased
focus on the study of marine ecosystems across various disciplines. Tracking ma-
rine animals is an essential part of monitoring environmental effects and under-
standing the intricate dynamics of these ecosystems.

Observing and tracking marine animals, particularly fishes, provide valuable in-
sights that support marine life investigations. These investigations encompass a
wide range of studies, including gathering species-specific statistics, precise mea-
surements of fish characteristics, analyzing group behavior, studying distribution
patterns, and examining mobility patterns. By understanding these aspects, we
can better comprehend how fishes are likely to respond to changes in their envi-
ronment.

In addition to its scientific significance, tracking marine animals offers numer-
ous benefits in commercial applications such as fish farming and fisheries man-
agement. The observations and data obtained through tracking contribute to op-
timizing fish farming practices, improving productivity, and ensuring the sus-
tainable management of fish populations. Understanding fish behavior and their
movements assists stakeholders in making informed decisions related to fishing
practices, resource allocation, and conservation efforts.

Fish behavior analysis is a critical aspect of tracking marine animals and serves
as a foundation for various high-end applications. By closely observing fish be-
havior, researchers gain valuable insights into their responses to environmental
changes, population dynamics, and the overall health of marine ecosystems. This
knowledge is essential for implementing effective conservation strategies, design-
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ing marine protected areas, and assessing the ecological impact of human activi-
ties. [8]

In conclusion, the study of marine ecosystems has gained significant attention
due to the critical role played by the ocean in sustaining life on Earth. Tracking
marine animals, particularly fishes, is an essential tool for monitoring environ-
mental effects, understanding fish behavior, and supporting marine life investi-
gations. Furthermore, tracking has practical implications in commercial sectors
such as fish farming and fisheries management. By combining scientific research
and commercial applications, we can work towards the preservation and sustain-
able management of our precious marine resources.

Figure 1.1: Various types of environment a) Constrained b) Unconstrained envi-
ronment

1.3 Constrained Environment

In Figure 1.2, an unconstrained environment is depicted, illustrating the con-
trast with laboratory settings. The majority of fish tracking research is conducted
within laboratory settings, where specific conditions can be controlled to facili-
tate accurate observations. In these controlled environments, cameras are often
mounted above aquariums, allowing for optimal tracking and monitoring of the
fishes’ movements. Furthermore, these laboratory settings typically involve a lim-
ited number of fishes, enabling researchers to focus on individual or small group
behavior analysis.

By conducting fish tracking studies in the laboratory, researchers gain several
advantages. The overhead camera placement provides a top-down view, allowing
for comprehensive coverage and minimizing occlusion issues that may occur with
other camera angles. This perspective enables precise tracking of fish trajectories
and the collection of detailed data on their swimming patterns, interactions, and
other behavioral characteristics.
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Moreover, laboratory settings offer the opportunity to control various envi-
ronmental parameters. Factors such as water temperature, light intensity, water
quality, and even the presence of specific stimuli can be manipulated to create
consistent and reproducible experimental conditions. This control enhances the
reliability and validity of the findings, as researchers can isolate and examine the
effects of specific variables on fish behavior.

The use of a limited number of fishes in these laboratory setups provides re-
searchers with a focused context for analysis. With a smaller population, indi-
vidual fish can be tracked more accurately, and their behavior can be studied in
detail. This controlled setting allows for the identification of specific patterns,
preferences, or responses to stimuli, aiding in the understanding of fish behavior
and its underlying mechanisms.

It is important to note that while laboratory settings offer controlled condi-
tions, there are limitations to consider. The artificial environment may not fully
replicate the complexities and dynamics of fish behavior in their natural habitats.
Therefore, findings from laboratory-based research should be complemented with
studies conducted in more ecologically relevant settings to ensure a comprehen-
sive understanding of fish behavior.

In conclusion, laboratory settings provide valuable advantages for fish track-
ing research. The overhead camera placement, limited number of fishes, and con-
trolled environmental parameters allow for precise tracking, detailed behavioral
analysis, and the isolation of specific variables. However, it is essential to balance
laboratory studies with field-based research to capture the full range of fish behav-
iors in natural habitats. The combination of controlled laboratory investigations
and ecologically relevant observations contributes to a more holistic understand-
ing of fish behavior and its ecological significance.

Figure 1.2: Constrained Environment inside the aquarium
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1.4 Unconstrained Environment

Figure 1.3 illustrates a constrained laboratory environment, contrasting with real-
world settings where fish tracking faces increased complexities. While a sig-
nificant portion of video-based fish tracking research is carried out within con-
strained laboratory settings, the practical or commercial applications of fish track-
ing often take place in environments characterized by high uncertainty and com-
plexity. The approaches discussed in Section II-A, which are designed for con-
strained environments, prove to be ineffective in such scenarios. As a result, re-
searchers have begun focusing on the challenging task of tracking fishes in real-
time videos captured in more realistic settings. [8]

Recognizing the limitations of existing approaches, efforts have been made
to develop novel methods specifically tailored for tracking fishes in real-world
conditions. These methods aim to overcome the complexities arising from factors
such as varying lighting conditions, underwater disturbances, occlusions, and the
unpredictable nature of fish behavior in natural habitats. By addressing these
challenges, researchers strive to achieve accurate and reliable fish tracking results
in practical applications.

To gather data in more realistic environments, researchers have undertaken
data collection efforts using underwater video-surveillance cameras deployed near
the Ken-Ding subtropical coral reef waters managed by Eco Grid in Taiwan. These
subtropical coral reef waters serve as an ideal site for studying fish behavior due
to their ecological significance and rich biodiversity. The data collected from
these underwater video-surveillance cameras provide valuable insights into the
dynamics of fish populations, their interactions, and responses to environmental
changes.

Tracking fishes in real-time videos obtained from such ecologically relevant
settings is crucial for various applications. For instance, it enables the monitor-
ing and assessment of marine ecosystems, aiding in conservation efforts and un-
derstanding the impacts of human activities on fish populations. Real-time fish
tracking is also valuable in fields such as fisheries management, where it assists
in assessing stock levels, implementing sustainable fishing practices, and making
informed decisions to ensure the long-term viability of fish populations.

However, it is important to acknowledge the inherent complexities associated
with tracking fishes in real-time videos. The unpredictable nature of fish behavior,
coupled with the challenging underwater conditions, presents significant techni-
cal and algorithmic hurdles. As a result, researchers continue to explore inno-
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vative approaches, leveraging advancements in computer vision, machine learn-
ing, and deep learning techniques to improve the accuracy and robustness of fish
tracking algorithms in practical applications. [16]

In conclusion, while a substantial portion of fish tracking research has been
conducted in constrained laboratory settings, efforts are being made to tackle the
challenges of tracking fishes in more complex and realistic environments. Re-
searchers are collecting valuable data using underwater video-surveillance cam-
eras in ecologically significant locations, such as the Ken-Ding subtropical coral
reef waters managed by EcoGrid in Taiwan. This data, along with advancements
in tracking algorithms, holds promise for addressing real-world fish tracking ap-
plications in areas such as marine ecosystem monitoring and fisheries manage-
ment.

Figure 1.3: Unconstrained scenario.

1.5 Organization

The remainder of this thesis is organized as follows:

1. Chapter 2: Literature Survey and Backgrounds

• This chapter provides a comprehensive literature survey and background
information on the research topic. It reviews relevant studies, theories,
and methodologies related to multi-tracking and fish tracking. The
chapter aims to establish a solid foundation of knowledge, highlight
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existing gaps in the field, and identify key challenges and opportuni-
ties for further research.

2. Chapter 3: Investigated Method

• This chapter presents the investigated method for multi-tracking and
fish tracking. It outlines the proposed approach, algorithms, and tech-
niques used in the research. The chapter details the methodology, in-
cluding data collection, preprocessing, feature extraction, and the ap-
plication of multi-tracking models. It also describes any enhancements
or modifications made to existing methods to suit the specific require-
ments of fish tracking. The chapter explains the rationale behind the
chosen method and justifies its suitability for the research objectives.

3. Chapter 4: Experiments and Results

• This chapter focuses on the experimental setup, data analysis, and the
presentation of results. It describes the datasets used, the metrics em-
ployed to evaluate the performance of the multi-tracking models for
fish tracking, and any other relevant experimental details. The chapter
presents the results obtained from the experiments, including quanti-
tative and qualitative analysis of the tracking performance. It may in-
clude visualizations, statistical analysis, and comparisons with baseline
methods or state-of-the-art approaches. The chapter aims to provide a
comprehensive assessment of the proposed method and its effective-
ness in achieving the research objectives.

4. Chapter 5: Future Work and Conclusion

• This chapter discusses the future work and concludes the thesis. It
highlights potential areas for further research and development in the
field of multi-tracking and fish tracking. The chapter may identify lim-
itations or shortcomings of the proposed method and propose possible
solutions or directions for improvement. It also summarizes the key
findings and contributions of the research, reiterating their significance
and implications. The chapter concludes with a concise summary of the
thesis, emphasizing the overall impact and potential future advance-
ments in the domain of multi-tracking and fish tracking.
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CHAPTER 2

Literature Survey and Background

Multiple object tracking (MOT) has been a widely studied area in computer vi-
sion, with significant advancements made in recent years. In this section, we pro-
vide an extensive overview of the existing literature on MOT, highlighting key ap-
proaches, methodologies, dataset, evaluation metrics, and challenges addressed
by previous research.

2.1 Background

2.1.1 Enhancement Methods

1. Contrast Enhancement: Contrast enhancement techniques aim to increase
the visual difference between the darkest and brightest areas of an image.
Methods such as histogram stretching, gamma correction, and adaptive con-
trast stretching are commonly used. Histogram stretching rescales the inten-
sity values of an image to cover the full dynamic range, while gamma cor-
rection adjusts the gamma value to control the mid-tone contrast. Adaptive
contrast stretching applies different contrast levels to different regions of the
image based on local characteristics.

2. Brightness Adjustment: Brightness adjustment methods modify the over-
all brightness level of an image. They can be as simple as linearly scaling
the intensity values or using more advanced algorithms such as histogram
equalization. Brightness adjustment is useful for correcting underexposed
or overexposed images and improving visibility in different lighting condi-
tions.

3. Histogram Equalization: Histogram equalization redistributes the pixel in-
tensity values in an image to achieve a more balanced distribution. It en-
hances the contrast and details, particularly in images with uneven lighting
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conditions or limited dynamic range. The algorithm works by mapping the
histogram of the image to a desired histogram, spreading out the pixel val-
ues and making the image visually more appealing.

4. Noise Reduction: Noise reduction techniques aim to reduce unwanted noise
or graininess in an image. Common methods include spatial filtering, such
as median filtering or Gaussian smoothing, which involve applying a filter
to the image to suppress noise while preserving important image details.
Frequency domain filtering techniques, such as Fourier-based denoising al-
gorithms, exploit the image’s frequency content to remove noise.

5. Sharpening: Sharpening techniques enhance the edges and fine details in
an image to improve its overall clarity and crispness. Unsharp masking
and edge enhancement algorithms are commonly used for sharpening. Un-
sharp masking involves subtracting a blurred version of the image from the
original to enhance edges, while edge enhancement techniques emphasize
high-frequency components to enhance image sharpness.

6. Color Correction: Color correction methods are used to adjust and balance
the color distribution in an image. White balance correction is commonly
applied to correct color casts and ensure accurate representation of white
and neutral colors. Other methods include adjusting color tones, such as
increasing or decreasing saturation or selectively enhancing specific color
channels to improve overall color fidelity and visual appeal.

Figure 2.1 depicts the impact of an enhancement technique on images. The appli-
cation of this enhancement method results in several notable effects, such as im-
proved brightness and contrast, enhanced color saturation, and enhanced sharp-
ness of the image details. Additionally, the enhancement technique effectively
reduces noise and improves the overall visual quality of the images. These en-
hancements play a crucial role in enhancing the model’s ability to extract mean-
ingful information from the images, leading to improved accuracy and robustness
in various computer vision tasks, including object detection and classification.

2.1.2 Siamese Network

A Siamese Network is a type of neural network architecture that is designed to
compare and measure the similarity or dissimilarity between pairs of inputs. It
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(a) Normal Image (b) Enhanced Image

Figure 2.1: Effects of Enhancement
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is commonly used in tasks such as image recognition, signature verification, fa-
cial recognition, and text similarity analysis. The network consists of two iden-
tical sub-networks that share the same weights and architecture. The two sub-
networks process each input independently and output a fixed-length vector rep-
resentation, often referred to as an embedding or a feature vector. [9]
The key equation in a Siamese Network is the distance metric used to measure
the similarity between the embedded feature vectors. One common distance met-
ric used is the Euclidean distance. Given two feature vectors, denoted as f1 and
f2, the Euclidean distance between them can be calculated using the following
equation:

d =

√
n

∑
i=1

( f1i − f2i)
2 (1)

where ’n’ represents the dimensionality of the feature vectors.
In addition to the Euclidean distance, other distance metrics such as the Man-

hattan distance, cosine similarity, or contrastive loss function can also be used
depending on the specific task and data characteristics.

By training a Siamese Network on a large dataset with carefully labeled pairs,
the network can learn to effectively discriminate between similar and dissimilar
inputs, enabling applications such as face recognition, object tracking, or docu-
ment similarity analysis.
The purpose of using a Siamese Network is to learn a similarity metric that can
accurately distinguish between similar and dissimilar pairs of inputs. By train-
ing the network on labeled pairs of inputs, it learns to map similar inputs closer
together in the embedding space while pushing dissimilar inputs further apart.
This allows the network to perform tasks such as identifying if two images con-
tain the same object or determining the similarity between two text documents.

The most commonly used loss function in Siamese Networks is the contrastive
loss function. The contrastive loss function encourages similar inputs to be em-
bedded close together in the feature space, while pushing dissimilar inputs fur-
ther apart. It is defined as follows: [7]

L(y, d) = (1 − y) · 1
2

d2 + y · 1
2

max(0, m − d)2 (2)

where:

• L(y, d) is the contrastive loss function.

• y is the label indicating whether the inputs are similar (y = 0) or dissimilar

11



(y = 1).

• d is the Euclidean distance between the predicted feature vectors of the in-
puts.

• m is the margin, a hyperparameter that determines the threshold for dissim-
ilarity. It is a positive value representing the minimum distance required to
consider two inputs as dissimilar.

In the contrastive loss function, when the inputs are similar (y = 0), the loss en-
courages the distance d to be small, aiming to make the predicted feature vectors
closer together. Conversely, when the inputs are dissimilar (y = 1), the loss pe-
nalizes small distances (d) that are below the margin (m), pushing the predicted
feature vectors further apart.

During training, the contrastive loss function is computed for each pair of in-
puts in the training set, and the network parameters are updated using backprop-
agation to minimize the overall loss across all pairs.

It’s important to note that the choice of loss function may vary depending on
the specific application and requirements. The contrastive loss function is com-
monly used in Siamese Networks, but other loss functions, such as triplet loss or
ranking loss, can also be used based on the specific task and dataset.

The most commonly used loss function in Siamese Networks is the contrastive
loss function. The contrastive loss function encourages similar inputs to be em-
bedded close together in the feature space, while pushing dissimilar inputs fur-
ther apart. It is defined as follows:

L(y, d) = (1 − y) · 1
2

d2 + y · 1
2

max(0, m − d)2 (3)

where:

• L(y, d) is the contrastive loss function.

• y is the label indicating whether the inputs are similar (y = 0) or dissimilar
(y = 1).

• d is the Euclidean distance between the predicted feature vectors of the in-
puts.

• m is the margin, a hyperparameter that determines the threshold for dissim-
ilarity. It is a positive value representing the minimum distance required to
consider two inputs as dissimilar.
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Figure 2.2: Siamese Network

In the contrastive loss function, when the inputs are similar (y = 0), the loss en-
courages the distance d to be small, aiming to make the predicted feature vectors
closer together. Conversely, when the inputs are dissimilar (y = 1), the loss pe-
nalizes small distances (d) that are below the margin (m), pushing the predicted
feature vectors further apart.

Figure 2.3: Siamese Network for predicting whether the two images is positive
pair or negative

During training, the contrastive loss function is computed for each pair of in-
puts in the training set, and the network parameters are updated using backprop-
agation to minimize the overall loss across all pairs.

It’s important to note that the choice of loss function may vary depending on
the specific application and requirements. The contrastive loss function is com-
monly used in Siamese Networks, but other loss functions, such as triplet loss or
ranking loss, can also be used based on the specific task and dataset.
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2.1.3 LSTM

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN)
architecture that is widely used for sequential data analysis, including time series
prediction and natural language processing. LSTM is particularly effective in cap-
turing long-term dependencies in the data, making it suitable for predicting the
trajectory of fish or any other time-varying sequence.

In the context of predicting the trajectory of fish, LSTM can be trained to learn
patterns and relationships from historical data, such as past positions and move-
ments of fish. By analyzing this sequential information, LSTM can capture tem-
poral dependencies and make predictions about the future trajectory of the fish.

LSTM accomplishes this by utilizing a memory cell and various gating mech-
anisms that allow it to selectively retain or forget information over time. The
memory cell serves as a long-term memory storage that can maintain relevant in-
formation about the fish’s trajectory, while the gating mechanisms, including in-
put gates, forget gates, and output gates, control the flow of information through
the network.

When predicting the trajectory of fish, LSTM takes as input the historical se-
quence of fish positions, velocities, or any other relevant features. It processes this
sequence through multiple LSTM units, updating the memory cell and producing
output predictions at each time step. The output can be the predicted position of
the fish at the next time step or a full trajectory forecast.

By training the LSTM model on labeled historical data, where the ground truth
trajectory is known, it learns to minimize the prediction error and improve its
ability to generalize to unseen data. This enables the LSTM to make accurate
predictions about the future trajectory of fish based on the learned patterns and
relationships in the training data.

LSTM can be applied in various fish-related applications, such as fish behav-
ior analysis, habitat modeling, and fisheries management. By accurately predict-
ing the trajectory of fish, researchers and practitioners can gain insights into their
movement patterns, migration routes, and potential responses to environmental
changes. This information is valuable for understanding ecological dynamics,
conservation efforts, and optimizing fishery operations.

Overall, LSTM’s ability to model temporal dependencies and capture long-
term patterns makes it a powerful tool for predicting the trajectory of fish, similar
to its effectiveness in predicting the next word in a sequence of text.
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2.1.4 Vision Transformer

The Vision Transformer (ViT) model revolutionizes computer vision by replac-
ing traditional convolutional neural networks (CNNs) with self-attention mech-
anisms, enabling the capture of global dependencies and long-range interactions
within an image.

The working principle of a Vision Transformer involves the following key
components:

1. Patch Embeddings: The input image is divided into smaller non-overlapping
patches, which are linearly embedded to generate a set of patch embed-
dings. Each patch embedding represents a meaningful representation of a
local region in the image.

2. Positional Embeddings: Similar to the original Transformer model, posi-
tional embeddings are added to the patch embeddings. These embeddings
encode the spatial information of each patch, allowing the model to under-
stand the relative positions of different patches within the image.

3. Transformer Encoder: The core of the Vision Transformer is the Transformer
encoder, which consists of multiple layers of self-attention and feed-forward
neural networks. The self-attention mechanism enables the model to attend
to different patches and learn their interactions, capturing global dependen-
cies and contextual relationships between patches.

4. Classification Head: The final layer of the Vision Transformer is a classifi-
cation head, which takes the output embeddings from the Transformer en-
coder and maps them to the desired output classes. This allows the model
to perform tasks such as image classification, object detection, or semantic
segmentation.

During training, the Vision Transformer is optimized using standard super-
vised learning techniques. The model learns to minimize the discrepancy be-
tween its predictions and the ground truth labels, and the weights are updated
using backpropagation and gradient descent.

To address computational complexity and memory requirements, techniques
such as the use of convolutional layers as initial feature extractors, hybrid archi-
tectures combining CNNs and Transformers, and efficient attention mechanisms
(e.g., sparse attention or linear attention) have been proposed to improve scalabil-
ity and performance.
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Overall, the Vision Transformer leverages self-attention mechanisms to capture
global dependencies and long-range interactions within images, providing an al-
ternative approach to traditional CNN-based models. It has demonstrated strong
performance on various computer vision tasks, showcasing its potential for ad-
vancing visual recognition and understanding.

Figure 2.4: Vision Transformer

2.1.5 Traditional Methods

Early MOT methods primarily relied on handcrafted features and heuristics to
track multiple objects. These methods often utilized techniques such as back-
ground subtraction, blob detection, and Kalman filtering. For instance, Smith et
al. [15] introduced the use of Gaussian Mixture Models (GMM) for background
subtraction and Kalman filters for object tracking. Other traditional approaches
include mean-shift tracking, particle filtering, and graph matching algorithms.

2.1.6 Detection-Based Methods

With the advancements in object detection algorithms, detection-based methods
emerged as a popular approach for MOT. These methods involve separately de-
tecting objects in each frame using object detectors, followed by associating the
detections across frames to form object tracks. Numerous techniques, such as data
association algorithms (e.g., Hungarian algorithm, graph matching), appearance-
based matching, and motion models, have been explored in this context. For ex-
ample, Breitenstein et al. [2] proposed a method based on a global optimization
framework that integrated appearance and motion information for robust MOT.
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2.1.7 Deep Learning-Based Methods

The advent of deep learning has revolutionized the field of MOT, enabling the de-
velopment of highly accurate and robust tracking systems. Deep learning-based
methods leverage Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs) to jointly perform object detection, tracking, and associa-
tion. For instance, the work by Redmon et al. [14] introduced the YOLO (You
Only Look Once) algorithm, which performs real-time object detection and track-
ing using a single CNN. Another notable approach is the DeepSORT algorithm
proposed by Wojke et al. [19], which combines a CNN-based detector with a deep
association network to achieve high precision and robustness in MOT.

2.1.8 Graph-Based Methods

Graph-based approaches have gained popularity in recent years for addressing
MOT challenges. These methods model the tracking problem as a graph, where
nodes represent object detections or tracks, and edges represent potential associ-
ations between them. Graph-based optimization techniques, such as minimum-
cost flow and network flow algorithms, are then employed to find the optimal
track assignments. For example, the work by Pirsiavash et al. [13] introduced a
globally-optimal method for data association based on network flows. Similarly,
Bergmann et al. [1] proposed a graph neural network architecture for joint object
detection and tracking.

2.1.9 Datasets and Evaluation Metrics

The availability of benchmark datasets and standardized evaluation metrics has
played a crucial role in advancing MOT research. Several popular datasets, such
as MOTChallenge [10], KITTI [6], and UA-DETRAC [18], provide annotated se-
quences with diverse challenges, including occlusions, scale variations, and crowded
scenes. Evaluation metrics, such as Multiple Object Tracking Accuracy (MOTA),
Multiple Object Tracking Precision (MOTP), and IDF1 score, are commonly used
to assess the performance of MOT algorithms.

2.1.10 Traditional Methods for Multi-Object Tracking

Traditional methods for MOT often rely on handcrafted features, motion models,
and data association techniques. These methods, such as Kalman filters, particle
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filters, and graph-based approaches, have shown reasonable performance in sim-
ple scenarios. However, they often struggle with complex scenes, occlusions, and
varying object appearances.

2.1.11 Transformer-Based Approaches in Computer Vision

The success of transformer models in natural language processing tasks, such
as machine translation and text generation, has inspired researchers to explore
their potential in computer vision. Transformer models, originally designed for
sequence-to-sequence tasks, have shown remarkable performance in image clas-
sification, object detection, and semantic segmentation. This has led to the inves-
tigation of transformer-based approaches in the domain of multi-object tracking.

2.1.12 TrackFormer: A Transformer-Based Approach to Multi-Object

Tracking

The recent work by Li et al. [11] introduced TrackFormer, a novel transformer-
based approach for multi-object tracking. TrackFormer leverages the self-attention
mechanism of transformers to capture global dependencies among object instances
and effectively model temporal information in video sequences. The proposed
method combines object detection, feature extraction, and trajectory prediction
in an end-to-end trainable framework, achieving state-of-the-art performance on
several benchmark datasets.

2.1.13 Datasets and Evaluation Metrics for Multi-Object Track-

ing

Benchmark datasets play a crucial role in evaluating the performance of MOT
algorithms. Commonly used datasets, such as MOTChallenge [10], MOT17 [12],
and MOT20 [4], provide annotated sequences with varying challenges, such as
occlusions, crowded scenes, and object interactions. Evaluation metrics, including
Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision
(MOTP), and ID F1 score, are employed to assess the accuracy and robustness of
different tracking methods.
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2.1.14 Comparative Analysis of Transformer-Based Approaches

Several transformer-based approaches have been proposed for multi-object track-
ing, each with its unique contributions and limitations. This section provides a
comparative analysis of these approaches, discussing their architecture designs,
training strategies, and performance on benchmark datasets. Notable works in-
clude TracTrans [20], TransTrack [3], and TransformerTrack [17].

2.1.15 Challenges and Future Directions

Despite the significant advancements in transformer-based multi-object tracking,
several challenges remain. These include handling occlusions, long-term track-
ing, real-time performance, and scalability to large-scale scenarios. Future re-
search directions may involve exploring novel attention mechanisms, incorpo-
rating spatio-temporal context, and designing efficient transformer architectures
specifically tailored for MOT.

2.1.16 Challenges and Open Problems

Despite the significant progress in MOT research, several challenges and open
problems remain. These include handling occlusions, dealing with crowded scenes
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CHAPTER 3

Investigated Methodology

3.1 Dataset Details

In prior work, most of the research has been focused on datasets of the constrained
environment (such as aquariums) with a fixed number of fishes. Such dataset
has a limited number of targets that are always present throughout the video se-
quence. In real time, objects’ appearance may vary across time instances. The
track has to be initialized for every new object entering the sequence and termi-
nated when an object does not get associated with any trajectory up to some n
number of frames. We have evaluated our method on the complex and challeng-
ing image sequence of the Fish4knowledge dataset.

Fish4Knowledge Project’s Repository [5] is publicly available for research pur-
poses in the area of Computer Vision and Marine Ecology. This dataset has been
recorded by nine static cameras installed at three different sites. A 10-minute
video clip from all working cameras has been recorded with a resolution of 320 ×
240 and a 24-bit color depth at a frame rate of 5 fps. Videos have captured com-
plex underwater scenarios like blurring due to suspended particles and turbidity
of the water, crowd due to abundance of coral reef and randomly moving fishes,
dynamic due to flowing nature of water, luminance change due to nonuniform
lighting and scattering, poor visibility, and color degradation. Apart from videos,
the dataset also contains images of 23 fish species which provide a basis for fish
recognition. These 23 fish species images are utilized to create the positive and
negative samples for Siamese network training in the proposed architecture. The
positive pairs are created with the same species and negative pairs are selected
from different folders belonging to different species. Furthermore, data augmen-
tation is done by using geometric transformations such as rotation, scaling, and
cropping.

The Fish4knowledge dataset offers a comprehensive collection of underwater
videos capturing fish behavior in various complex scenarios. It provides a valu-
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Figure 3.1: An example normal fish trajectory with detections

able resource for researchers in the field of computer vision and marine ecology
to develop and evaluate algorithms for fish tracking, recognition, and behavior
analysis. Figure 3.1 illustrates an example of a normal fish trajectory with de-
tections. The trajectory showcases the path of a fish’s movement over time, and
the detections indicate the points where the fish was successfully identified and
localized by the tracking system. This representation provides insights into the
fish’s behavior and movement patterns, which are crucial for understanding their
activities and interactions in a given environment.

3.2 Method

In our study, we utilize the widely recognized and effective Tracking-by-Detection
(TBD) paradigm. This approach entails detecting multiple fishes in each frame
and establishing their identities across subsequent frames by leveraging an affin-
ity score. At each step, the tracker calculates the affinity scores between the pre-
viously tracked objects and the newly detected fish in consecutive frames. To
achieve the best possible optimal assignment, we employ appropriate optimiza-
tion methods. The outcome of our approach is the generation of individual fish
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Figure 3.2: DFTnet Model

trajectories, each associated with a unique ID. By employing the TBD paradigm,
we enable the accurate tracking and identification of fishes over time, providing
valuable insights into their behavior and interactions.

Typically, input detections are generated using standalone object detectors. How-
ever, in our study, we take a different approach by directly utilizing the ground-
truth detections provided by the Fish4knowledge video repository. These videos
were captured using static cameras in complex scenarios, ensuring the authentic-
ity and accuracy of the detection data.

Our proposed approach focuses on modeling affinity measures that incorpo-
rate appearance, motion, and spatial similarity. These factors play a crucial role in
establishing a meaningful correspondence between successive detections in two
consecutive frames. The overall pipeline of our methodology is depicted in the
figure, showcasing how appearance, motion, and spatial location are utilized to
facilitate successful matching of detections.

In the subsequent sections, we will delve into the specific details of each com-
ponent, providing a comprehensive explanation of how appearance, motion, and
spatial information are leveraged to enhance the tracking process. By integrat-
ing these cues effectively, we aim to improve the robustness and accuracy of fish
tracking in challenging underwater environments.

By leveraging the ground-truth detections from the Fish4knowledge video
repository and incorporating multiple cues in our affinity measures, our proposed
methodology offers a promising approach for reliable fish tracking and analy-
sis.Figure 3.2 presents the DFTNet model, which is employed after applying the
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enhancement method to the input images. The DFTNet model leverages the en-
riched image data resulting from the enhancement process to perform its tasks
effectively. By incorporating the enhanced visual information, the DFTNet model
aims to achieve superior performance in various computer vision tasks, such as
object detection, tracking, or segmentation. The utilization of the enhancement-
preprocessed images helps optimize the model’s accuracy, robustness, and ability
to extract meaningful features, thereby enhancing the overall performance of the
system in fish tracking applications.

3.3 Appearance Similarity

Fishes of the same species often exhibit a high degree of similarity in their appear-
ance. This inherent similarity can also be beneficial in matching fishes belonging
to different species. Recognizing the significance of appearance information, we
incorporate it into our tracking framework through the use of a Siamese network.

By employing a Siamese network, we can effectively model the appearance
characteristics of fishes. This deep neural network architecture enables us to ex-
tract informative and discriminative features from fish images. The Siamese net-
work takes as input a pair of images, typically consisting of one fish from each
species, and learns to compare and measure the similarity between them.

Through training on a diverse set of fish species images, the Siamese network
becomes capable of capturing the distinctive visual patterns and features that dif-
ferentiate one species from another. By leveraging the learned appearance rep-
resentations, we can enhance the matching process not only for fishes within the
same species but also for fishes across different species.

The utilization of a Siamese network for appearance modeling empowers our
tracking system to robustly handle challenging scenarios where fish species may
exhibit variations in appearance due to factors such as lighting conditions, occlu-
sions, or background clutter. By effectively leveraging the inherent similarities
in appearance among fishes, our approach achieves improved tracking accuracy
and robustness in diverse underwater environments.

In summary, the integration of a Siamese network allows us to leverage the
similarity in appearance among fish species to enhance the matching capabilities
of our tracking framework. This approach enhances our ability to accurately and
robustly track fishes, even in challenging underwater conditions where appear-
ance variations are present.

Siamese networks have demonstrated outstanding performance in measuring
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similarity between two image inputs in various vision tasks. In our proposed ap-
proach, we utilize a Siamese network to compare the detections from frame t+1
with those from the previous frame t. The input pair with the highest match-
ing score is highly likely to belong to the same trajectory. The Siamese network
consists of two identical convolutional neural networks (CNNs) that share their
weights.

The Siamese network architecture includes three convolutional layers with 96,
64, and 64 filters, respectively. The kernel sizes for these layers are (7, 7), (5, 5),
and (5, 5). Following the convolutional layers, max pooling layers and batch nor-
malization are employed to stabilize the training process. Subsequently, three
dense layers and batch normalization are applied. The dimensions of the dense
layers are 4096, 1024, and 512, respectively. The rectified linear activation function
(ReLU) is used as the activation function for these dense layers. Each image patch
is transformed into a final output vector of dimensionality 512. The L1 distance
between these vectors is computed, and a dense prediction layer with size 1 and
a Sigmoid activation function is used. The Siamese network, when fed with two
image patches, generates a similarity label of "1" if the patches are similar and "0"
if they are dissimilar.

The network is trained using positive and negative pairs of fish images. Mean
square error (MSE) loss is utilized as the training objective, and the Adam op-
timizer is employed. A subset of the Fish4knowledge dataset, consisting of ap-
proximately 66,000 samples, is used for training. Positive and negative samples
are balanced in number, ensuring equal representation. During training, the net-
work weights are adjusted such that the embeddings of positive pairs are closer
together compared to the embeddings of negative pairs. Positive pairs correspond
to patches of fishes from the same species, while negative pairs consist of fish
patches from different species.

The proposed tracker takes as input the object bounding box bb[i]t, where i
denotes the number of detections in frame t. The bounding box bb[i]t can be
described by a four-tuple (xi, yi, wi, hi), where xi and yi represent the top-left co-
ordinates of the bounding box, and wi and hi represent the width and height, re-
spectively. By utilizing the bounding box coordinates, the corresponding cropped
patch of the object from frame t is matched with all cropped patches from frame
t+1. If the sizes of the bounding boxes differ, they are resized to ensure equal
dimensions for matching.

The appearance similarity score (AS) can be computed as

AS = Siamese(crop(Ft, bb[i]t), crop(Ft+1, bb[j]t+1)) (4)
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In our formulation, index i represents each object in frame t, while index j
represents each object in frame t + 1. For every object in frame t (i-th object), there
exist j matching detection candidates in frame t + 1.

3.4 Motion Similarity

The motion similarity model captures the movement patterns of fishes, which is
a crucial cue for multiple fish tracking, especially in cases where fishes may be
occluded. Incorporating motion information enhances tracking performance, as
appearance details alone are insufficient, particularly when fishes belonging to the
same species exhibit similar appearances. By considering motion cues, the search
space for finding the best possible match in future frames can be significantly
reduced. Predicting the positions of fishes based on their motion allows for a
more focused tracking approach, resulting in improved efficiency and accuracy.

Motion models can be broadly categorized into linear and nonlinear motion
models. Linear motion models assume a constant velocity and follow a linear
movement across frames.

The Kalman filter is a popularly used method for motion state prediction.
While it performs well with linear data, the movement of fishes exhibits highly er-
ratic and nonlinear patterns. As a result, relying solely on a filter-based approach,
such as the Kalman filter, may not be the most effective way to model the mo-
tion characteristics of fishes. Linear motion models often struggle to adequately
capture the complex and erratic motion patterns exhibited by fishes.

To address these limitations and account for the unpredictable nature of fish
motion, nonlinear motion models have been proposed. These models aim to pro-
vide a more accurate prediction of fish movement by incorporating nonlinearities
and accounting for the erratic behavior observed in their motion patterns. By
leveraging nonlinear motion models, it becomes possible to better represent the
intricate dynamics and capture the subtle changes in fish motion.

While linear motion models may not be sufficient to accurately model fish
motion, the introduction of nonlinear motion models offers a more suitable alter-
native, enabling improved predictions and enhanced tracking performance.

αij =
exp(hT

i Whj)

∑j′ exp(hT
i Whj′)

(5)

We incorporate an attention mechanism in our model to compute the affinity
score, denoted as αij, between the hidden states of consecutive LSTM cells. The

25



hidden state of the previous LSTM cell is represented as hi, while the hidden state
of the next LSTM cell is denoted as hj. The affinity score is calculated by applying
a weight matrix W to the inner product of hi and hj.

In our model, we utilize the attention weights αij to compute the context vector.
The context vector is obtained by taking the weighted sum of all input hidden
states hj, where the weights are given by the attention weights αij.

The context vector captures the relevant information from the input hidden
states based on their corresponding attention weights. By incorporating the atten-
tion mechanism, our model can dynamically focus on the most important hidden
states and effectively combine their information to produce the context vector.

In our training process, we utilize the bounding box coordinates bb[i]t with
a sequence length of 3. To prevent overfitting, we apply a dropout rate of 0.3
during training. A total of 62,094 trajectories are used for training our model, em-
ploying the adaptive moment estimation (ADAM) optimizer and mean squared
error (MSE) loss function. To validate the trained model, we use 6,900 trajectories.

The input vector (bb[i]t, bb[i]t−1, bb[i]t−2) is passed through the Attention-LSTM.
The trained attention LSTM model predicts the bounding box coordinates b̂b[i]t+1

in the next frame. Once the predicted location is obtained, we evaluate the over-
lap of the predicted bounding box with other bounding boxes in frame t + 1. The
motion similarity score is computed as MS = IOU(b̂b[i]t+1, bb[j]t+1), where IOU
represents the intersection over union.

3.5 Spatial Similarity

The Spatial Similarity Score (SSS) is based on the assumption that an object in
frame t spatially occupies neighborhood pixels in frame t + 1. It is expected that
the bounding box around the same object in consecutive frames will have some
degree of overlap. The Intersection over Union (IOU) metric provides a reliable
measure to assess the overlap between the bounding boxes.

The IOU score is computed by evaluating the ratio of the intersection area to
the union area of two bounding boxes. It ranges from 0 to 1, where a higher score
indicates a greater overlap. In our tracker, we utilize an IOU threshold value of
0.6. If the IOU score between the bounding boxes bb[i]t and bb[j]t+1 is above this
threshold, the objects are assigned the same IDs; otherwise, they are considered
different.

The SSS is calculated as SSS = IOU(bb[i]t, bb[j]t+1). The IOU is computed as:
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IOU(bb[i]t, bb[j]t+1) =
Area(bb[i]t ∩ bb[j]t+1)

Area(bb[i]t ∪ bb[j]t+1)
(6)

3.6 Joint Optimization

Furthermore, to generate tracks, we approach the problem as a track assignment
problem. For this purpose, we need an appropriate metric. To build the associ-
ation problem, we linearly combine all the three scores: Appearance score (AS),
motion score (MS), and SSS using a weighted sum. The impact of each metric on
the final score can be controlled by a hyperparameter λ. The final score is calcu-
lated as:

Score = λ · (AS) + (1 − λ) · (MS + SSS) (7)

The appearance score represents the similarity in appearance between objects,
the motion score captures the movement pattern of the objects, and the spatial
similarity score evaluates the spatial overlap between consecutive frames. Each of
these scores provides valuable information for associating objects across frames.

By adjusting the value of λ, we can assign different weights to the appearance
score and the combined motion and spatial similarity scores. This allows us to
control the influence of each metric on the final score and tailor the track assign-
ment process according to specific requirements.
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CHAPTER 4

Experiments and Results

.2 depicts the 3-D graphs of ground-truth trajectories and trajectories generated
by the proposed tracker DFTNet, V-IOU, IOU, DeepSORT, and MDP Tracker. Tra-
jectories generated by V-IOU [Fig. 4.2(c)] and IOU [Fig. 4.2(d)] are short-term
in nature. Incorporating appearance information with the IOU tracker as in the
case of V-IOU tracker does not make any significant improvement in this context.
Trajectories generated by DeepSORT are represented in Fig. 4.2(e). Most of the
trajectories have lost tracks due to motion prediction by the Kalman filter in the
DeepSORT. MDPTracker has covered most of the trajectories for the long-term;
however, it still loses tracks with abrupt motion. We observe that most trajectories
of DFTNet in Fig. 4.2(b) have been continuously covered over a longer duration
and are less fragmented in comparison to the other compared trackers. The tra-
jectories consisting of varying densities of fish clusters have been provided in the
supplementary material.

To ensure a fair comparison between the proposed tracker and other existing
trackers, we evaluate their performance using standard tracking metrics. These
metrics include:

The performance metrics are as follows:

• MOT precision (MOTP): This metric measures the intersection area over the
union area of bounding boxes, indicating the accuracy of object localization.

• MOT accuracy (MOTA): This metric combines false negatives (F.Neg.), false
positives (F.Pos.), and identity switching (IDS) to provide an overall accu-
racy score. Higher scores for metrics with an upward arrow (↑) indicate
better results, while lower scores for metrics with a downward arrow (↓)
indicate better results.

Tracking with LSTM has been widely used in various computer vision tasks,
including the tracking of objects such as fish. LSTM (Long Short-Term Memory)
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Figure 4.1: Impact of Enhancement on Images
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Figure 4.2: Ground-Truth Trajectories and Trajectories generated by (a) DFTNet ,
(b) V-IOU Tracker, (c) IOU Tracker, (d) DeepSORT, and (e) MDP Lacker.

is a type of recurrent neural network that can effectively model temporal depen-
dencies in sequential data.

In the context of fish tracking, LSTM can be used to predict whether two con-
secutive images are similar in terms of fish appearance. By training the LSTM
model on a large dataset of fish images, it can learn to capture the distinctive fea-
tures and patterns of fish species.

The process involves passing two consecutive images through the LSTM net-
work. The LSTM model analyzes the visual information encoded in the images
and produces a prediction regarding their similarity. The model’s ability to un-
derstand the spatial and temporal context allows it to detect subtle changes in fish
appearance, even when occlusions or variations in lighting conditions occur.

This tracking approach offers several advantages. Firstly, it eliminates the
need for explicit feature extraction or manual annotation of fish attributes, as the
LSTM network learns the relevant features directly from the input data. Secondly,
the LSTM’s memory cells enable the model to retain information about previ-
ously observed fish appearances, facilitating the accurate prediction of similarity
between consecutive images.

In conclusion, tracking with LSTM provides an effective solution for predict-
ing the similarity between two images in the context of fish tracking. By lever-
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aging the LSTM’s ability to model temporal dependencies, this approach enables
robust and accurate tracking of fish species, even in challenging scenarios.

Furthermore, the use of LSTM in tracking fish allows for the detection of com-
plex patterns and behaviors exhibited by fish species. The sequential nature of
LSTM enables the model to capture long-term dependencies and temporal dy-
namics in fish movement, aiding in accurate prediction and tracking. By consider-
ing the sequential information from previous frames, the LSTM-based tracker can
make informed decisions about the similarity between two images, taking into
account the context and history of fish appearances. This approach proves par-
ticularly beneficial when dealing with challenging scenarios, such as occlusions
or rapid changes in fish movement, as the LSTM can effectively learn and adapt
to these variations. Overall, the combination of LSTM-based tracking and simi-
larity prediction enhances the robustness and reliability of fish tracking systems,
providing valuable insights into fish behavior and population dynamics. The im-
pact of image enhancement on images is particularly significant when tracking
fish, as it directly influences the accuracy and efficiency of fish tracking systems.
Image enhancement techniques can greatly affect the visibility and distinguisha-
bility of fish, which in turn affects the performance of tracking algorithms. Here’s
an overview of the potential impact:

1. Visibility Improvement: Image enhancement techniques can enhance the
visibility of fish by increasing contrast, brightness, and sharpness. This can
be particularly beneficial in underwater environments where lighting con-
ditions may be challenging. Enhanced visibility helps tracking algorithms
detect fish more accurately, especially if the fish have natural camouflage or
blend into the background.

2. Noise Reduction: Noise reduction techniques can help remove unwanted
artifacts and speckles from images, resulting in clearer images. Reduced
noise can lead to better-defined fish outlines and boundaries, which im-
proves tracking accuracy. However, excessive noise reduction might also
lead to loss of fine details, impacting tracking if those details are essential
for identification

3. Edge Enhancement: Enhancing edges can make the boundaries of fish more
distinct. This can aid in tracking by providing better reference points for the
tracking algorithm. However, care must be taken to avoid over-enhancement,
which could create false edges and lead to inaccurate tracking.
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Figure 4.3: Odd rows shows the bounding boxes without enhancement and even
rows shows the trajectory with enhancement in frame t, t + 1, t + 2, t + 3 and t+4
of videos of Fish4knowledge dataset
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4. Motion Blur Reduction: Fish in underwater environments may exhibit mo-
tion blur due to their rapid movements and the water’s optical properties.
Image enhancement techniques that reduce motion blur can contribute to
more accurate tracking by providing clearer fish shapes and features.

5. Color Correction: Adjusting colors can help separate fish from the back-
ground and other objects. Correctly enhancing fish coloration can aid in
distinguishing fish of different species or sizes. However, improper color
adjustment might distort the appearance of fish and hinder accurate track-
ing.

6. Adaptive Enhancement: Fish tracking systems often require adaptability to
varying conditions. Applying enhancement techniques dynamically based
on factors like lighting, water clarity, and fish behavior can optimize track-
ing performance. Adaptive enhancement ensures that the techniques are
appropriately adjusted for each situation.

7. Challenges and Considerations: Over-Enhancement: While enhancement
can be beneficial, excessive enhancement can lead to unnatural images and
misrepresentation of fish features, negatively impacting tracking accuracy.
Computational Load: Some advanced enhancement techniques can be com-
putationally intensive, affecting the real-time capability of tracking systems.
Balancing enhancement and processing speed is crucial.
Evaluation: It’s important to evaluate the impact of different enhancement
techniques on tracking accuracy using relevant metrics. This evaluation
helps identify the most effective enhancements for the specific tracking sce-
nario.

As observed in table 4.1, when image enhancement methods were applied be-
fore feeding the images into the model, the tracking results showed significant
improvement. Specifically, the metric "IDswitch" experienced a notable enhance-
ment, decreasing from 710 to 196. This substantial reduction in IDswitch indicates
that the model’s ability to maintain consistent identities while tracking objects im-
proved significantly after image enhancement. The findings highlight the positive
impact of the enhancement techniques on the model’s performance and under-
score the potential benefits of utilizing such methods to improve object tracking
accuracy and robustness. The research conducted on enhancing images and reap-
plying them to models, particularly in the context of underwater object tracking,
has shown significant impact. By leveraging techniques such as the Transformer

33



Figure 4.4: Tracking results on Fish4Knowledge dataset using enhancement
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Table 4.1: Comparison of parameters on fish4knowledge dataset

Value

Without Enhancement With Enhancement

HOTA 34.20 41.89
DetA 28.26 29.47
AssA 41.38 59.55
DetRe 28.27 29.47
MTR 99.92 99.92
AssRe 65.4 87.54
AssPr 52.95 64.50
LocA 99.97 99.96
RHOTA 34.20 41.9
HOTA(0) 34.22 41.9
LocA(0) 99.92 99.92
MOTA 26.68 29.05
MOTP 99.96 99.97
MODA 28.29 29.5
CLR_Re 28.29 29.5
CLR_Pr 100 100
MTR 25.08 33.73
PTR 13.14 0.51
MLR 61.76 65.74
sMOTA 26.26 29.05
IDSW 710 196
MT 435 585
IDF1 26.089 32.52
IDR 16.735 21.057
IDP 59.148 71.378
IDTP 7397 9307
IDFN 36803 34893
IDFP 5109 3732
SFDA 33.725 34.316
ATA 20.619 26.062
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and LSTM models, we have observed promising results and gained valuable in-
sights into improving the accuracy and performance of underwater object track-
ing systems.

This research paves the way for future implementations and advancements in
the field. The exploration of underwater object tracking models and the applica-
tion of image enhancement techniques hold great potential for various real-world
applications, including marine research, underwater robotics, and surveillance
systems.

As we continue to delve deeper into this area of research, we aim to further
refine and optimize these models to achieve even better tracking capabilities in
challenging underwater environments. The integration of enhanced images into
the tracking process has the potential to unlock new possibilities and improve the
accuracy, robustness, and efficiency of underwater object tracking systems.

With ongoing advancements in technology and continued research efforts, we
are excited about the future prospects of this work. We look forward to imple-
menting these findings in practical applications, contributing to the development
of more effective and reliable underwater object tracking systems.

4.1 Enhancement Method used for enhancement

Histogram Equalization operates on the pixel intensities of an image. By apply-
ing Histogram Equalization as a pre-processing step within your model, you are
essentially enhancing the images before they are fed into the model for analysis
or processing.

When an image goes through the Histogram Equalization process, it under-
goes a transformation that redistributes the pixel intensities. This redistribution
aims to achieve a more uniform distribution across the entire intensity range.

By enhancing the contrast and dynamic range of the images, Histogram Equal-
ization ensures that important details and features are more pronounced and dis-
tinguishable. This can significantly improve the model’s ability to extract mean-
ingful information and make accurate predictions.

The enhanced images resulting from Histogram Equalization exhibit enhanced
visibility of details, improved color representation, and heightened contrast. These
enhancements effectively amplify the information contained in the images, allow-
ing the model to perceive and interpret the visual content more effectively.

As a result of using Histogram Equalization within your model, the output of
the model is likely to show drastic improvements. The enhanced images provide
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the model with a clearer and more comprehensive representation of the underly-
ing information. This, in turn, allows the model to make more accurate and robust
predictions, classifications, or analyses.

By incorporating Histogram Equalization as an image enhancement technique
within your model, you have effectively leveraged the power of this method to
bring about substantial changes in the output. The enhanced images provide a
richer and more informative input to the model, leading to enhanced performance
and improved results.

Figure 4.5: Histogram equlisation impacts

Histogram equalization is a widely used technique for enhancing the quality
and contrast of an image. It works by redistributing the intensity values of the
pixels in an image, making the overall histogram more uniform. This process
helps to increase the contrast and bring out the hidden details in the image. Here’s
a detailed explanation of how histogram equalization works:

Compute the Histogram: The first step is to calculate the histogram of the
input image. The histogram represents the frequency distribution of pixel inten-
sities. It shows how many pixels have a particular intensity value. For an 8-bit
grayscale image, the intensity values range from 0 to 255, and the histogram will
have 256 bins, each representing the number of pixels with a specific intensity
value.

Normalize the Histogram: The histogram values are normalized to convert
them into probabilities. This is done by dividing each bin’s value by the total
number of pixels in the image. As a result, the histogram is converted into a prob-
ability density function (PDF), which represents the probability of each intensity
value occurring in the image.
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Compute the Cumulative Distribution Function (CDF): The cumulative distri-
bution function is derived from the normalized histogram. It represents the cu-
mulative probability of each intensity value in the image. The CDF is calculated
by summing up the probabilities from the lowest to the highest intensity values.

Mapping Intensity Values: The CDF is then stretched or mapped to spread the
intensity values over the entire range (0 to 255 for an 8-bit image). This mapping
effectively redistributes the pixel intensities, making the dark areas lighter and the
bright areas darker. The goal is to achieve a more uniform distribution of intensity
values in the image.

Intensity Transformation: Finally, the intensity values of the input image are
transformed according to the mapping obtained in the previous step. Each pixel’s
intensity is replaced with its corresponding mapped intensity value. This trans-
formation results in an enhanced image with improved contrast and visual qual-
ity.

Histogram equalization is effective in bringing out details in images with poor
contrast or those having most of the intensity values clustered in a specific range.
However, it may not always produce the desired enhancement, especially in cases
where the input image has a bimodal or multi-modal histogram. In such situ-
ations, alternative enhancement techniques like contrast stretching or adaptive
histogram equalization can be used. Additionally, histogram equalization can be
applied to color images by converting them to different color spaces (e.g., HSV or
LAB) and performing histogram equalization on the intensity channel.

4.1.1 Quantitative Results

To highlight the importance of different components in our proposed methodol-
ogy, we conducted ablation experiments. Tracking solely based on appearance
information (AS) resulted in a high number of ID switches (Table I). However, re-
lying only on appearance is insufficient for fish tracking, as our dataset contains
multiple fish species with similar appearances, leading to frequent ID switches
when they cross paths. Incorporating motion information alongside appearance
proved essential in addressing this challenge.

We evaluated various motion models, including Vanilla LSTM, Bi-LSTM, and
attention-LSTM. Among them, attention-based LSTM (Attn-LSTM) demonstrated
the best performance, significantly reducing ID switches to 5536. We selected
Attn-LSTM as our base model for motion prediction. Combining appearance and
motion branches mutually benefited each other, resulting in improved tracking
accuracy, particularly in scenarios with similar-looking fish and crossing paths.
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To optimize the combination of Appearance Similarity (AS) and Motion Simi-
larity (MS), we experimented with different weight values. The best results were
obtained with λ = 0.2, indicating that motion information contributes more to the
tracking performance.

Furthermore, by incorporating Spatial Similarity Score (SSS), we achieved a
substantial reduction in ID switches by 95.16% compared to Siamese + Attn-LSTM
at λ = 0.2. This combination of three affinity scores played a crucial role in ensur-
ing a high number of mostly correct trajectories in our proposed tracker.
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CHAPTER 5

Conclusion and Future Works

In this study, we have proposed enhancements to the DFTNet architecture to
improve its performance and prediction accuracy. The integration of image en-
hancement techniques as a preprocessing step within the DFTNet model aims to
enhance the quality of input images and extract more meaningful features. By
incorporating image enhancement, we expect to achieve improved overall per-
formance and prediction accuracy of the DFTNet model. Furthermore, we have
explored the replacement of LSTM with a Transformer-based approach for motion
similarity. The Transformer model’s ability to capture complex temporal relation-
ships and long-range dependencies offers promising potential for improving the
motion similarity estimation and overall performance of the DFTNet model.

5.1 Future Works

Building upon the findings of this study, there are several avenues for future re-
search and development:

• Further investigation of different image enhancement techniques: While we
have explored the impact of histogram equalization and contrast stretching,
future work can explore other image enhancement techniques, such as adap-
tive histogram equalization or spatial domain methods, to further enhance
the quality of input images and improve the performance of the DFTNet
model.

• Investigation of alternative Transformer architectures: Future research can
explore different variations and architectures of the Transformer model, such
as the Transformer-XL or the Performer, to further improve the modeling of
motion similarity and capture long-range dependencies in the input frames.
Comparing different Transformer architectures and experimenting with vari-
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ations can help identify the most effective approach for enhancing the DFT-
Net model’s performance.

• Integration of additional data augmentation techniques: In order to enhance
the robustness and generalization capabilities of the DFTNet model, future
work can explore the integration of additional data augmentation techniques,
such as rotation, translation, or elastic deformations. These techniques can
help in increasing the variability in the training data and improve the model’s
ability to handle different real-world scenarios and variations.

• Evaluation on larger and more diverse datasets: The current study has fo-
cused on specific datasets for evaluation. Future research can consider con-
ducting experiments on larger and more diverse datasets, including differ-
ent environmental conditions, lighting variations, and fish species. This will
provide a more comprehensive evaluation of the proposed enhancements
and their effectiveness in real-world scenarios.

By addressing these future works, we can further enhance the DFTNet model’s
performance, expand its applicability, and contribute to advancements in the field
of motion similarity estimation and object tracking.
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