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Abstract

This work explores the broad domain of the relationship between graphs with
the same degree sequence, aiming to find a degree sequence characterization for
certain graph classes. Degree sequences represent the sequence of degrees of ver-
tices in a graph. While degree sequences alone do not guarantee the structure of
a graph, they can provide a foundation for further development and offer condi-
tions that can be tested in linear time.

Earlier work in this domain includes graph classes that are degree determined,
meaning that their membership can be determined solely based on the degree
sequence. Examples of such classes include complete graphs, split graphs, and
threshold graphs. Linear time algorithms exist for recognizing whether a degree
sequence belongs to these classes. The concept of 2-switch operations was intro-
duced, which involve edge deletion and addition to change the adjacencies in a
graph. Performing a 2-switch operation may change the isomorphism class of the
graph. The configurations in a 2-switch operation that lead to a change in the
isomorphism class have been studied. Realization graphs are used to study the
relationship between different realizations of a degree sequence. It was shown
that realization graphs are always connected, as a consequence of the Fulkerson,

Hoffman, and McAndrew theorem.

In this thesis Our contribution to this domain involves solving two specific prob-
lems.These are : study of disconnected realizations and highly connected realiza-
tions of degree sequences. The definitions and notation used throughout the work
are presented, including the definitions of degree sequence, graphic sequence, un-

igraphic degree sequence, and the Havel-Hakimi construction method.

The abstract provides an overview of the study’s focus on degree sequences, graph
classes, 2-switch operations, realization graphs, and their properties.
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CHAPTER 1

Introduction

Degree sequence is one of the simplest terms associated with a graph. How-
ever, as most of the degree sequences belong to several pairwise non-isomorphic
graphs, the use of degree sequences in graph problems is limited since the de-
gree sequence does not guarantee the structure of a graph. Hence it is desirable
to find out the relationship between graphs with the same degree sequence. The
motivation for this work was to study various classes of graphs that can be stated
in terms of their degree sequence characterization that will provide us with some
foundation for further development. Also, such characterization is important be-
cause conditions depending only on the degree sequence can often be tested in

linear time.

A graph family is said to be degree determined if by knowing only the degree
sequence, we can determine whether the graph belongs to it or not. Most of the
graph classes are not degree determined. However, some are. For example com-
plete graphs, split graphs, and threshold graphs. Each of these graph classes has
a linear time algorithm for recognizing whether a degree sequence belongs to it
or not. We seek to characterize these degree sequence-determined classes using
2-switch operations. A 2-switch is an edge deletion and addition operation which
changes the adjacencies in the graph, as a result changing the isomorphism class
of the graph in many cases. We have also studied the configurations in a 2-switch

operation that will change the isomorphism class of the graph.

The relationship that exists between various realizations of a degree sequence can
be very well studied with the help of realization graphs. The best-known result
of a realization graph is that it is a connected graph for any degree sequence d;
this is a consequence of a theorem of Fulkerson, Hoffman, and McAndrew. This
naturally motivates us to find the characterization of such a graph.



1.1 Problem Statement

Study properties of disconnected realizations as well as high connectivity realiza-
tions of degree sequences.

1.2 Definitions and Notation

In this chapter, we present some definitions and notation which we will be using
throughout the thesis.

1.2.1 Degree Sequence

1.2.1.1 Definition

Given an undirected graph G on n vertices, a degree sequence d = (dy,dy, ..., dy)

is a monotonically non-increasing sequence of the vertex degrees[9]
1.2.1.2 General Characteristics of Degree Sequences

The sum of the elements of a degree sequence of a graph is always even due to
the fact that each edge connects two vertices and is thus counted twice.[2]

Y _d(i) = 2 x number_of _edges_in_graph (1.1)

Two graphs with different degree sequences cannot be isomorphic. For exam-
ple, the following two graphs are not isomorphic,

<7 7

Figure 1.1: Non-Isomorphic Graphs with Different Degree Sequences



Here, G; and G; have degree sequences (2, 2, 2, 2) and (1, 2, 2, 3) respectively.
Since Gp one has four vertices of degree 2 and G; has only two vertices with de-
gree 2. So we can say that G; and G, can never be isomorphic to each other.

However, having the same degree sequence is not sufficient for the isomorphism
of graphs. Even simple connected graphs with the same degree sequences can be

non-isomorphic. For example,

Figure 1.2: Non-Isomorphic Graphs with Same Degree Sequences

1.2.2 Graphic Sequence

1.2.2.1 Definition

A degree sequence d = (dy,dy, ...,d,) is said to be graphic if d is the degree se-
quence of some graph G = (V, E) on the vertex set V= {1, 2, ..., n}.such that deg(i)
= (d;) for all i.[8]

In this case, we say that G realizes d or is a realization of d. While it is easy
to determine if a sequence is graphic, a given graphic sequence can have many
different realizations. It is possible that the realizations of the same graphic se-
quences are nonisomorphic to each other. So it is important to the study proper-

ties of such graphic sequences and their overlap with various classes of graphs.



Figure 1.3: Different Realizations of same degree sequence (3,3,3,3,3,3)
1.2.2.2 Unigraphic Degree Sequence

A degree sequence d is said to be unigraphic if and only if it is uniquely realizable
i.e. only one realization can be obtained from d. In order words, d is said to be
uniquely realizable. For example, complete graphs are uniquely realizable. The
graph family of a unigraphic degree sequence can be determined in linear time[8].

1.2.2.3 Havel-Hakimi construction method

Havel-Hakimi has given a systematic approach for generating a realization from

a given non-increasing degree sequence d =(dy,dy, ..., d,) .

1. Select vertex with highest degree (d1) and connect it to next 1d; | followed

vertices in degree sequence and decrement degree of adjacent vertices by 1.

2. If degree sequence contains all 0’s then terminate else using stable sort rear-
range degree sequence into non-increasing order and repeat step 1.[4]

1.3 2-switch

1.2.3.1 Definition of an alternating 4-cycle

An alternating 4-cycle is an instance of four vertices a, b, ¢, d in a graph G such
that ab and cd are edges in G and bc and ad are not present in G. We denote this
alternating 4-cycle by < a,b:c,d >.[1]



Figure 1.4: An alternating 4-cycle
1.2.3.2 Definition of a 2-Switch

The 2-switch < ab:cd > is the operation of deleting edges ab and cd from and
adding edges ad and bc to G. (This operation has often also been called a transfer

or cycle exchange). A 2-switch on < a,b:c,d > is as shown below.

O-® OO

<>

OO

Figure 1.5: 2-Switch operation on < a,b:c,d >

Note that performing a 2-switch is an operation that changes the adjacencies in the
graph while preserving the degree of each vertex since the edges are deleted and
added at the same vertices. Hence, a 2-switch on G results in a graph G” in which
every vertex has the same degree as it had before; thus G’ is another realization
of the degree sequence of G. Since the 2-switch operation changes the adjacencies
in the graph, the new realization obtained after performing the 2-switch may be
non-isomorphic to the previous graph. Also as the 2-switch operation makes only
local changes, the rest of the graph remains unaffected.



1.2.3.3 Example

Performing a 2-switch operation on < 1,5: 3,4 > in the below figure:

o
N

Figure 1.6: Two realizations of (2, 2, 2, 2, 2) differing by a single 2-switch

1.2.3.4 Fulkerson Theorem

A well-known result of Fulkerson, Hoffman, and McAndrew links graphs hav-
ing the same degree sequence.

Theorem 1.1: Two unlabeled graphs G and H have the same degree sequence

if and only if there is a sequence of 2-switches that transforms G into H.[10]

Hence, it is possible to generate all possible realizations of a degree sequence us-
ing 2-switch operations.

1.2.3.5 Reversibility of 2-switch

A 2-switch operation is reversible because if given its output graph, it is always
possible to determine back its input graph. Suppose a 2-switch < a,b:c,d > is per-
formed on graph G and the output graph is G’, then graph G can be obtained back
from G’ by performing the following 2-switch on G”: < a,d:c,b >[1].

1.3.1 Degree Sequence Characterization

A graph class C is said to be degree determined, or that it has a degree sequence
characterization if it is possible to determine whether a graph G belongs to C from
just the degree sequence of G.



1.3.2 Closure under 2-switch

A graph class C is said to be closed under a 2-switch operation if and only if
performing a 2-switch on any graph G belonging to C results in a graph G” also
belonging to C. In other words, performing a 2-switch on the graphs of class C
produces a graph of the same class C.

1.3.3 Realization Graph

The realization graph G(d) is the graph (R, § ), where R is the set of realizations
of d, and two vertices G, G” of R are adjacent if and only if performing some 2-
switch changes G into G’. Since the operation of undoing a 2-switch is itself a
2-switch, G(d) may be thought of as an undirected graph. The best-known result
on G(d) is that for any degree sequence d, its realization graph is connected; this
is a consequence of a theorem of Fulkerson, Hoffman, and McAndrew [Theorem
1.11.[3]

1.3.4 Minimal edge cut

The minimal edge cut in a graph refers to the smallest set of edges that, when
removed from the graph, disconnects it into two or more separate components.

This cut divides the graph into two or more disjoint subgraphs.

1.3.5 Perfect Matching

Matching refers to a subset of edges in a graph such that no two edges share a
common vertex. In other words, a matching is a set of edges where each vertex is

incident to at most one edge in the set.

A perfect matching is a matching that covers all the vertices in a graph. In other
words, every vertex is incident to exactly one edge in the matching. Not all graphs
have perfect matchings, and determining whether a graph has perfect matching
is a well-studied problem.[10]

1.4 Max Flow

Maximum flow is a fundamental concept in graph theory that represents the max-
imum amount of flow that can be sent through a network from a source node to



a sink node. It has various applications, including network optimization, trans-

portation planning, and resource allocation.

The maximum flow problem aims to find the optimal flow configuration that
maximizes the amount of flow from the source to the sink while respecting the
capacities of the edges in the network. The Ford-Fulkerson algorithm, which has
different variations such as the Edmonds-Karp algorithm, is commonly used to

solve the maximum flow problem.

1.5 Min Cut

In graph theory, a minimum cut (also known as a min-cut) refers to the smallest
possible cut that can be made in a graph to disconnect it into two separate com-
ponents. The cut consists of a set of edges whose removal would result in two
disjoint subgraphs.

Finding the minimum cut in a graph is a well-studied problem with various al-
gorithms available. One common algorithm to solve this problem is the Ford-
Fulkerson algorithm, specifically the variant known as the Edmonds-Karp algo-
rithm, which is based on augmenting paths.



CHAPTER 2

Literature Survey

In this chapter, we have mentioned various properties and configurations related
to 2-switches.

2.1 Conditions for 2-switch

Theorem 2.1: Given a graph G, a 2-switch operation can be performed in G, if
and only if an induced sub-graph on any 4 vertices of G lies in one of these three

configurations: 2Ky, Py, Cj.

So, The presence of an alternating 4-cycle leads to the 2-switch operation. Hence,
four vertices are required to perform a 2-switch, also at least one perfect matching

must be present and one perfect matching must be absent

Following are the only three configurations (2Ky, Py, C4) on four vertices in which
a 2-switch can be applied:

1. 2K»

In 2K; since only one perfect matching is present and the rest four edges
are absent; two distinct 2-switches are possiblei.e. <AB:C,D>and < A,B:
D, C > (as shown in the below figure). In this case, the result after perform-
ing a 2-switch is also a perfect matching i.e. 2Kj.



® ® © @
an N

Figure 2.1: Two different possible 2-switches in 2K,
2. Py

In P4, only a single 2-switch operation is possible i.e. < A,B:D,C > (as shown
in the below figure). The result is also a P,

T

adiiPa
® © ®

Figure 2.2: Only one possible 2-switch in Py

3. Cy

In C4 since two perfect matching are present and rest two edges are * ab-
sent; two distinct 2-switches are possible i.e.< A,B:D,C > and < A,D:B,C >
as shown in the below figure. In this case, the result after performing a 2-
switch is also a Cy4

10
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Figure 2.3: Two different possible 2-switches in Cy

Also, there are no other graphs on four vertices on which the 2-switch can be
applied. Hence, in general, to perform a 2-switch on graph G, the induced sub-
graph on any four vertices must be in one of this three configurations:2Kj, P, and
Cy.

Hence, in graph G, if there is no induced sub-graph on four vertices containing
2K3, Py, and C4 then we can say that a 2-switch cannot be performed on G.

For a given graph there exists a unique degree sequence but from a given degree
sequence there exists, in general, more than one graph which is not isomorphic
to each other. Using a 2-switch operation it is possible to generate all possible
realizations of a degree sequence. However the application of a single 2-switch
might change the isomorphism class of the graph. So it is necessary to study the
configurations in which a 2-switch operation changes the isomorphism class of
the graph.

2.2 2-switch and Isomorphism

We give a necessary condition that if a 2-switch changes the isomorphism class of
a graph, then it must take place in one of four configurations. We also present a

sufficient condition for a 2-switch to change the isomorphism class of a graph.

Since a 2-switch changes the adjacencies in the graph, intuitively one can say that
it will most often change the isomorphism class of the graph. However, this is not
always the case. A 2-switch operation may not change the isomorphism class of

the graph. For example, performing a 2-switch on P, will result in another P.

11



2.2.1 Necessary condition for changing isomorphism class

Theorem 2.2 : If graph G admits a 2-switch that changes the isomorphism class of
the graph, then G contains one of the configurations in Figure 2.4, with vertices p,
g, 1, s as marked, such that the 2-switch is on < p,q:1,s >.

Figure 2.4: Configuration for isomorphism class changing 2-switches

2.2.2 Sufficient condition for changing isomorphism class

Theorem 2.3: If graph G contains one of the configurations shown in Figure 2.4,
and the 2-switch on < p,q:r,s > produces a graph isomorphic to G, then the ver-
tices of the configuration lie in one of the configurations in Figure 2.5, where the

alternating cycle < u,v:w,x > coincides with < p,q:1,s >.

Figure 2.5: Configuration for isomorphism class preserving 2-switches

12



2.3 Closure under 2-switch

A graph class C is said to be closed under a 2-switch operation if and only if
performing a 2-switch on any graph G belonging to C results in a graph G” also
belonging to C. In other words, performing a 2-switch on the graphs of class C
produces a graph of the same class C. If performing a 2-switch operation on a
graph G belonging to graph class C changes the graph class of the new graph to
C’, then we can say that both C and C’ are not closed under the 2-switch opera-

tion.

1. Complete Graph

A complete graph is a simple undirected graph in which every pair of dis-
tinct vertices are connected by a unique edge.

F—®

Figure 2.6: Complete graph on 5 vertices

In the case of complete graphs, an induced sub-graph on any four vertices
will always be complete since all vertices are connected to each other. As
there is no alternating cycle in a complete graph, no 2-switch operation can
be performed. Hence, we can say that complete graphs are degree deter-

mined.

2. Split Graph A split graph G is a graph in which the vertex set can be parti-
tioned into an independent set I and a clique C. A split graph can have more

13



than one partition to a clique and an independent set.
Split graphs are closed under a 2-switch operation.

Case i: All four vertices of the 2-switch are either selected from set I or
all are selected from set C.

As seen in the above section, no 2-switch operation can be performed in a
complete graph. Also, an independent set is an empty graph, so a 2-switch
cannot be performed on the vertices of an independent set. So, in the case
of split graphs, to perform a 2-switch we cannot select all four vertices from
the independent set (or clique).

Case ii: Three vertices are selected from set I and one from set C or three
vertices are selected from set C and one from set |

In both cases, two switch is not possible due to the absence of an alternating
4-cycle (Theorem 2.1).

© @+
\
© ®
Clique Is 1S Clique

Figure 2.7: Absence of an alternating 4 cycle on selecting three vertices from the
same set

14



Case iii: Two vertices are selected from set I and two from set C

Here, two vertices from a set I will be non-adjacent to each other as they
lie in an independent set and the two vertices from set C will be adjacent to
each other because they lie in a clique. The only configuration in which a
2-switch can be performed in a split graph is shown in the figure below.

OO ®) /@

IS Chique IS x Clhique

O—0® ®

Figure 2.8: 2-switch configuration in split graph

As we can see, the 2-switch only changes the crossing edges between the
independent set and the clique, the rest is unchanged. Hence, we can con-
clude that the resultant graph is also a split graph.

. Planar Graph

A planar graph is a graph that can be embedded in the plane, i.e., it can
be drawn on the plane in such a way that its edges intersect only at their
endpoints. In other words, it can be drawn in such a way that no edges
cross each other. Such a drawing is called a plane graph or planar embed-
ding of the graph.

Planar graphs are not closed under 2-switch operation i.e. are not degree

determined. For example,

15



Figure 2.9: Planar and Non-Planar drawing of (31°)

4. Bipartite graph

A simple graph G = (V, E) with vertex partition V = Vj, V; is called a bi-
partite graph if every edge of E joins a vertex in V; to a vertex in V;. In
general, a Bipartite graph has two sets of vertices, let us say, V; and V,, and
if an edge is drawn, it should connect any vertex in set V; to any vertex in
set V5.

Figure 2.10: 2-switch on Kp3

Bipartite graphs are not closed under a 2-switch operation since the adja-
cencies are changed due to which bi-partition may not be possible due to
the formation of odd cycles. The above figure shows the class changing 2-
switch on K 3. Hence, bipartite graphs are not degree-determined classes of
graphs.

16



5. Threshold Graph

A threshold graph is a graph that can be constructed from a single vertex
graph by repeated application of the following two operations

(a) Addition of a single isolated vertex to the graph.

(b) Addition of a single dominating vertex i.e. a single vertex that is con-

nected to all other vertices in the graph.
A threshold graph is a graph with no induced 2K, P4 or C4. Hence, by

Theorem 2.1, we can say that a 2-switch operation cannot be performed on

the threshold graph. So, threshold graphs are degree determined.

17



CHAPTER 3

Splittable Sequence

A splittable sequence refers to a sequence or a list that can be divided or split into
multiple smaller sequences while preserving the original order of elements. In
other words, a splittable sequence allows you to break it apart into smaller sub-

sequences without rearranging or altering the order of the elements.

For example, consider the sequence [1, 2, 3, 4, 5, 6]. This sequence can be split
into two smaller sequences: [1, 2, 3] and [4, 5, 6]. Each sub-sequence retains the

order of the elements from the original sequence.

Splitting a sequence can be useful in various scenarios, such as dividing a large
dataset into smaller batches for processing, partitioning a list for parallel compu-
tation, or organizing data into manageable chunks for analysis or manipulation.

3.1 Havel Hakimi Algorithm

3.1.1 theorem

For n>1, an integer list d of size n is graphic if and only if d” is graphic, where d’
is obtained from d by deleting its largest element X and subtracting 1 from its X

next largest elements. where The only 1-element graphic sequence is 0.[5] [6]

3.1.2 Method

The Havel-Hakimi algorithm is a mathematical algorithm used for solving certain
problems related to graph theory and sequence theory. Specifically, it is used to
determine if a given sequence of non-negative integers is graphical, meaning it

can represent the degree sequence of a simple undirected graph.

18



Here is a step-by-step explanation of the Havel-Hakimi algorithm:

1.

5.

6.

Start with a sequence of non-negative integers. Sort the sequence in non-

increasing order.

Check if the sequence is empty. If it is, then the original sequence is graphi-

cal.

Check if the first element of the sorted sequence is negative or greater than
the length of the sequence minus one. If either of these conditions is true,

then the original sequence is not graphical.
If the first element is zero, remove it from the sequence.
Subtract 1 from the first element of the sequence.

Repeat steps 2 to 5 with the modified sequence obtained in step 5.

By following these steps iteratively, you either arrive at an empty sequence, indi-

cating that the original sequence is graphical, or you encounter a situation where

the sequence fails one of the conditions, indicating that the original sequence is

not graphical.

The Havel-Hakimi algorithm relies on the fact that a sequence is graphical if and

only if a modified sequence obtained from it is also graphical. By reducing the

largest element in each step and checking the conditions, the algorithm progres-

sively simplifies the sequence until it reaches a clear conclusion.

3.2 Problem on Splittable Sequence

1.

Given a degree sequence, we have to split this sequence into two-degree

sequences.

. We first partition the input sequence with one part for each distinct degree.

We split each such part into two: part 1 and part 2.

Merge all parts 1 in one sequence and all parts 2 in another sequence. Then

check if it is a valid break or not.

Then count the number of valid breaks.

19



3.3 Implementation using Dynamic Programming

First, the Degree sequence of n vertices in non-increasing order.

In this sequence we have k different degree (di,dy,...,d;) with its frequency

(f1, f2,---, fx) where
L (it fat...+fi)=n
2. f>0
3. d;>0.

Now, we have to divide frequencies into two parts of degree sequence like [; to i
and rq to ry Where for every k, f; - [; = ;.

So, now we have to check both parts of the degree sequence using Havel-Hakimi

Algorithm for the valid split.

So we got total (f1+1)*(f2+1)........ *(fx+1) various no of degree sequences.

3.3.1 Code

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

bool isValidSequence(const vector<int>& deg_seq) {
int sum = accumulate(deg_seq.begin(), deg_seq.end(), 0);
if (sum % 2 == 1) |{
return false;
}
while (!deg_seq.empty()) {
int d = deg_seq[0];
if (d > deg_seq.size() — 1) {

return false;

20



deg_seq.erase(deg_seq.begin ());

vector<int> part_1(deg_seq.begin(), deg_seq.begin() + d);

deg_seq.erase(deg_seq.begin(), deg_seq.begin() + d);

vector<int> part_2 = deg_seq;

if (accumulate(part_1.begin(), part_1.end(), 0) % 2 == 0 &&
accumulate (part_2.begin(), part_2.end(), 0) % 2 == 0) {

return true;

}

return false;

int countValidSplits (const vector<int>& deg_seq) {
vector<int> sorted_seq = deg_seq;
sort(sorted_seq.rbegin(), sorted_seq.rend());
int count = 0;
do {
if (isValidSequence(sorted_seq)) {
count++;
)
} while (prev_permutation(sorted_seq.begin(), sorted_seq.end()));

return count;

int main() {
vector<int> degree_sequence = {2,2,3,3,3,4,5,6,6};
int count = countValidSplits(degree_sequence);

n

cout << "Number_of_valid_splits:_" << count << endl;

return 0;
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3.3.2 Explanation of code

The isValidSequence function checks whether a degree sequence is a valid split.
It takes a vector degseq representing the degree sequence as input. It calculates
the sum of all degrees in the sequence using accumulate. If the sum is odd (i.e.,
sum % 2 == 1), it returns false since a valid split requires an even sum of degrees.
The function then enters a loop that continues until the degseq vector is empty.
Inside the loop, it checks if the first element d in degseq is larger than the size
of the remaining elements in the vector. If it is, the function returns false since it
is not possible to split the remaining degrees properly. Otherwise, it creates two
vectors, partl, and part2, representing the first d degrees and the remaining de-
grees, respectively. It checks if both partl and part2 have an even sum of degrees.
If they do, it returns true, indicating a valid split. Otherwise, it continues with the

next iteration of the loop, removing the first element of degseq.

The countValidSplits function takes a degree sequence as input and counts the
number of valid splits. It first creates a sorted copy of the input degree sequence.
It uses sort in reverse order (rbegin and rend) to sort the degrees in descending
order. It initializes a counter count to keep track of the number of valid splits. The
function then enters a do-while loop. Inside the loop, it checks if the current sorted
sequence is a valid split using the isValidSequence function. If it is, it increments
the count variable. The loop continues generating the previous permutation of
the sorted sequence using prevpermutation until all permutations have been ex-

amined. Finally, it returns the count of valid splits.

The main function demonstrates the usage of the code. It initializes a degree se-
quence in the vector degreesequence. It calls the countValidSplits function with
the degree sequence and stores the result in the variable count. It then prints the

number of valid splits to the console using cout.
The overall purpose of the code is to determine the number of valid splits that can

be obtained from a given degree sequence, where a valid split is defined based on
specific criteria implemented in the isValidSequence function.
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3.4 Time Complexity

The time complexity is given by:

@ <(%—|—1)k-nzlogn-X>

where n : the number of vertices
k : the number of different degrees

X : the highest degree from all vertices
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CHAPTER 4

High Connectivity of Graph

High connectivity of network flow refers to a network or graph that allows for
a significant amount of flow to be sent between its vertices while maintaining
efficient and unrestricted movement. In other words, it indicates that the network
has a robust and flexible capacity for transmitting resources, information, or any
other form of flow.

Network flow is typically associated with flow networks, which consist of ver-
tices (nodes) and edges (links) that represent the flow paths. Each edge has a ca-
pacity that limits the amount of flow it can carry. The goal is to maximize the flow
that can be sent from a source vertex to a sink vertex while respecting the capacity
constraints of the edges.

In a highly connected network flow, there are abundant and diverse paths for
flow to traverse from the source to the sink. This allows for efficient distribution of
resources and facilitates communication between different parts of the network.
High connectivity ensures that even if some edges or vertices are disrupted or
unavailable, alternative paths can still be used to maintain the flow.

To measure the connectivity of network flow, one common metric is the max-
imum flow capacity. It represents the maximum amount of flow that can be sent
from the source to the sink in the network. A higher maximum flow capacity
indicates a more connected network that can handle larger volumes of flow.

In addition to the maximum flow capacity, other measures like minimum cut
and edge connectivity can also provide insights into the connectivity of network
flow. A smaller minimum cut value or a higher edge connectivity suggests a more
interconnected network, enabling the flow to bypass potential bottlenecks or fail-
ures.

In summary, a network with high connectivity of network flow possesses abun-
dant flow paths, high maximum flow capacity, and the ability to efficiently dis-
tribute resources or information throughout the network, even in the presence of

disruptions or limitations.
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4.1 Max Flow Min Cut Algorithm

1. In an Undirected graph, the maximum flow from a Source s to a Sink t is
equal to the minimum cut separating s and t(max-flow min-cut theorem).

2. At each iteration a path is found from s to t and every edge on that path
reduces its capacity by the minimum capacity among all edges of that path.
where All edges whose capacity of 0 is deleted.

3. Algorithm termites when there is no path left s-t.[7]

For Example,

E——-_3)

Figure 4.1: Example of Max Flow Min Cut

So, here we consider A as a source and F as a sink
1. First, we go with A->C->E->F with flow 3

2. Then A->B->D->F with flow 2

3. Atlast A->B->G->D->F with flow 3

4. So the total max flow is 8.

5. For min cut we remove edge AB and AC so we get min cut 8.
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4.2 Problem Statement of High Connectivity

Find the Global min-cut and increase it using the 2-switch Method.

4.2.1 Global Min-cut

In a flow network, a global minimum cut represents a partitioning of the vertices
into two sets, known as the source-side and sink-side, such that removing the
edges between these sets would result in the minimum possible capacity required
to disconnect the source from the sink. In other words, a global minimum cut
represents the smallest capacity needed to block all paths from the source to the
sink in the flow network.]

Here’s a step-by-step explanation of finding the global minimum cut in a flow

network:

1. Begin with an initial flow in the network. This flow can be determined using
various algorithms such as the Ford-Fulkerson algorithm or the Edmonds-
Karp algorithm.

2. Use the residual graph derived from the current flow to find an augmenting
path from the source to the sink. An augmenting path is a path in the resid-
ual graph that allows for additional flow to be sent from the source to the

sink.

3. Augment the flow along the augmenting path, increasing the overall flow in
the network.

4. Repeat steps 2 and 3 until no more augmenting paths can be found. At this

point, the flow is at its maximum capacity.

5. Create a residual graph based on the final flow. In the residual graph, assign
capacities to the edges that represent the remaining capacity available for
flow. These capacities are determined by subtracting the current flow from
the original edge capacities.

6. Perform a graph traversal, such as a depth-first search or a breadth-first
search, starting from the source vertex in the residual graph. Mark all reach-
able vertices as part of the source-side set.
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7. The remaining vertices that were not marked during the traversal are part

of the sink-side set.

8. The global minimum cut is defined by the set of edges that connect the
source-side and the sink-side.

The capacity of the global minimum cut represents the minimum capacity re-
quired to disconnect the source from the sink. Removing these edges would block
all possible paths from the source to the sink, effectively limiting the flow between

them.

Finding the global minimum cut is essential in network analysis as it helps iden-
tify critical edges or connections in the flow network that, if disrupted, would
significantly affect the overall flow and connectivity between the source and the

sink.
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4.3 Maximize the Global min-cut using 2-switch

1. Now, first find the global min-cut of the graph using the max flow min cut
algorithm.

2. choose two edges that were not cross the global min-cut suppose (x,y) and
(v,w). Remove the edges (x,y) and (v,w) from the graph.

3. Add the edges (x,v) and (y,w) to the graph.

4. Recalculate the min-cut of the new graph using the max flow min cut algo-

rithm

If the new min-cut is greater than the previous min-cut, then the 2-switch has in-

creased the global min-cut of the graph.

If the new min-cut is less than or equal to the previous min-cut, then the 2-switch
has not increased the global min-cut and should be undone by reversing steps 3
and 4.

You can repeat the 2-switch procedure by choosing different pairs of edges that
were not cross the current global min-cut until no further increase in the global

min-cut is possible.

4.3.1 code

#include <iostream>
#include <vector>
#include <queue>
#include <limits>

using namespace std;
// Structure to represent an edge in the graph

struct Edge {
int source, destination, capacity, flow;
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Edge(int source, int destination, int capacity) : source(source)
, destination(destination), capacity(capacity), flow(0) {}
¥

// Class for the graph
class Graph {
int numVertices;
vector <Edge> edges;

vector<vector<int>> adjacencyMatrix;

public:
Graph(int numVertices) : numVertices(numVertices) {
adjacencyMatrix.resize (numVertices,

vector<int >(numVertices, 0));

void addEdge(int source, int destination, int capacity) {
Edge edge(source, destination, capacity);
edges.push_back(edge);
adjacencyMatrix[source ][ destination] = edges.size() - 1;
// Index of the edge in the edges vector

bool bfs(vector<vector<int>>& residualGraph, vector<int>& parent
, int source, int sink) {
vector<bool> visited (numVertices, false);

queue<int> q;

q.push(source);
visited [source] = true;

parent[source] = -1;
while (!q.empty()) {
int u = q.front();

q-pop ();

for (int v = 0; v < numVertices; v++) {
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if (!visited[v] && residualGraph[u][v] > 0) {

q.push(v);
parent[v] = u;
visited [v] = true;

return visited|[sink];

int fordFulkerson(int source, int sink) {
vector<vector<int>> residualGraph (adjacencyMatrix);

int maxFlow = 0;
vector<int> parent(numVertices);

while (bfs(residualGraph, parent, source, sink)) ({

int pathFlow = numeric_limits<int >::max();

// Find the minimum residual capacity in the path
for (int v = sink; v != source; v = parent[v]) {
int u = parent[v];
pathFlow = min(pathFlow, residualGraph[u][Vv]);

// Update the residual capacities

and reverse edges along the path

for (int v = sink; v != source; v = parent[v]) {
int u = parent[v];
residualGraph[u][v] —= pathFlow;
residualGraph[v][u] += pathFlow;

maxFlow += pathFlow;
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return maxFlow;

};

// Function to find the global minimum cut
using max flow min cut algorithm
void findGlobalMinCut(Graph& graph, int source, int sink) {
// Step 1: Find the max flow using Ford—-Fulkerson algorithm

int maxFlow = graph.fordFulkerson (source, sink);

// Step 2: Iterate over all edges and
find those crossing the minimum cut
for (const auto& edge : graph.edges) {

int u = edge.source;

int v = edge.destination;

int capacity = edge.capacity;

// If the edge is from the source side and

leads to the sink side in the residual graph

if (graph.adjacencyMatrix[u][v] = -1

&& graph.adjacencyMatrix[v][u] == -1) {
// If the edge is saturated in the original graph
if (edge.flow == capacity) f{

" "

cout << "Edge (" << u << << v << ")

7

crosses,_the_global_minimum_cut." << endl;

S | [ By

}

// Step 3: Update the graph by removing and adding edges
for (auto& edge : graph.edges) {

int u = edge.source;

int v edge. destination;

// If the edge crosses the global minimum cut,

remove it and add the reversed edge

if (graph.adjacencyMatrix[u][v] != -1
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&& graph.adjacencyMatrix[v][u] == -1

&& edge.flow == capacity) {
graph.addEdge(u, v, edge.capacity);
graph.addEdge(v, u, 0);

// Step 4: Recalculate the minimum cut of the updated graph
int newMinCut = graph.fordFulkerson(source, sink);

cout << "Updated_minimum_cut:_" << newMinCut << endl;

int main() {
int numVertices = 4;

Graph graph(numVertices);

// Add edges to the graph
graph.addEdge(0, 1, 3);
graph.addEdge(0, 2
graph.addEdge(1, 2, 1
graph.addEdge(1, 3, 1
graph.addEdge(2, 3, 3

1
1
int source = 0;

int sink = 3;

// Find the global minimum cut and update the graph
findGlobalMinCut (graph, source, sink);

return 0;
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4.3.2 Explanation of code

This code begins with including necessary libraries and the definition of struc-
tures and classes. The Edge structure represents an edge in the graph, containing
information such as source, destination, capacity, and flow. The Graph class repre-
sents the graph itself and provides methods to add edges, perform a breadth-first

search (BFS), and find the maximum flow using the Ford-Fulkerson algorithm.

The Graph class maintains an adjacency matrix to store the graph connections
and a vector of edges to keep track of the edges added. The addEdge function
adds an edge to the graph by updating the adjacency matrix and the edges vector.

The bfs function performs a BFS on the residual graph (which is initially the same
as the adjacency matrix) to find an augmenting path from the source to the sink.
It uses a queue and a visited array to keep track of visited vertices and a parent

array to store the parent vertex of each visited vertex.

The fordFulkerson function implements the Ford-Fulkerson algorithm. It repeat-
edly calls the bfs function to find augmenting paths in the residual graph and
updates the flow along those paths. It returns the maximum flow obtained.

The findGlobalMinCut function uses the max flow obtained from the Ford-Fulkerson
algorithm to identify the global minimum cut. It iterates over all edges in the
graph and checks if an edge crosses the minimum cut by verifying if it is sat-
urated in the original graph and not in the residual graph. It then updates the
graph by removing the crossing edges and adding their reversed counterparts.
Finally, it recalculates the minimum cut of the updated graph.

In the main function, a sample graph is created, edges are added, and the find-
GlobalMinCut function is called to find the global minimum cut and update the
graph accordingly.

Overall, the code demonstrates the process of finding the maximum flow and

identifying the global minimum cut in a graph using the Ford-Fulkerson algo-

rithm.
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4.4 Find Number of 2-switch

1. Initialize the number of 2 switches to zero. Repeat the following steps until
no more than 2 switches can be performed: Compute the min-cut of the
current graph.

2. For each pair of edges (u,v) and (x,y) that are not adjacent, compute the min-
cut of the graph by removing the edges (u,v) and (x,y) and adding edges of
(u,x) and (v,y) or any other perfect matching which is not present.

3. After performing the graph have a smaller min cut than the previous graph,
then increment the number of 2 switches.

4. Return the number of 2 switches.

441 code

#include <iostream>
#include <vector>
#include <queue>

#include <limits >
using namespace std;

// Structure to represent an edge in the graph
struct Edge |{

int source, destination, capacity, flow;
Edge(int source, int destination, int capacity) : source(source),

destination (destination), capacity(capacity), flow(0) {}

b

// Class for the graph

class Graph {
int numVertices;
vector <Edge> edges;
vector<vector<int>> adjacencyMatrix;
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public:
Graph(int numVertices) : numVertices(numVertices) {
adjacencyMatrix.resize (numVertices,

vector<int >(numVertices, 0));

void addEdge(int source, int destination, int capacity) {
Edge edge(source, destination, capacity);
edges.push_back(edge);
adjacencyMatrix[source ][ destination] = edges.size() - 1;
// Index of the edge in the edges vector

bool bfs(vector<vector<int>>& residualGraph, vector<int>& parent
, int source, int sink) {

vector<bool> visited (numVertices, false);

queue<int> q;

q.push(source);
visited [source] = true;

parent[source] = -1;

while (!q.empty()) {
int u = q.front ();

q-pop ();
for (int v = 0; v < numVertices; v++) {
if (!visited[v] && residualGraph[u][v] > 0) {
q.push(v);
parent[v] = u;
visited [v] = true;

return visited|[sink];

35



int fordFulkerson(int source, int sink) {
vector<vector<int>> residualGraph(adjacencyMatrix);

int maxFlow = 0;
vector<int> parent(numVertices);

while (bfs(residualGraph, parent, source, sink)) {

int pathFlow = numeric_limits<int >::max();

// Find the minimum residual capacity in the path
for (int v = sink; v != source; v = parent[v]) {
int u = parent[v];
pathFlow = min(pathFlow, residualGraph[u][Vv]);

// Update the residual capacities

and reverse edges along the path

for (int v = sink; v != source; v = parent[v]) {
int u = parent[v];
residualGraph[u][v] —= pathFlow;
residualGraph[v][u] += pathFlow;

maxFlow += pathFlow;

return maxFlow;

int computeMinCut(int source, int sink) {

return fordFulkerson (source, sink);

void performTwoSwitches () {
int numTwoSwitches = 0;

bool twoSwitchesPerformed = true;
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while (twoSwitchesPerformed) {

twoSwitchesPerformed = false;

int previousMinCut

= computeMinCut(0, numVertices - 1);

for (int u = 0; u < numVertices; u++) {

for (int v = u

for (int x

+ 1, v < numVertices; v++) {

= 0; x < numVertices; x++) {

for (int y = x + 1; y < numVertices; y++) {

//

if
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Check if edges (u,v) and

(x,y) are not adjacent
(adjacencyMatrix[u][v] == -1

&& adjacencyMatrix[x][y] == -1) {
// Remove edges (u,v) and (x,y)

adjacencyMatrix[u][Vv]

adjacencyMatrix[v][u] = -1;
adjacencyMatrix[x][y] =
adjacencyMatrix[y][x] = -1;

// Add edges (u,x) and (v,y)

or any other perfect matching
adjacencyMatrix[u][x] =
adjacencyMatrix[x][u] = edges.size ();
edges.push_back(Edge(u, x, 1));
adjacencyMatrix[v][y] =
adjacencyMatrix[y][v] = edges.size ();
edges.push_back(Edge(v, y, 1));

// Compute the min cut of
the updated graph
int newMinCut =

computeMinCut (0, numVertices - 1);

// If the new min cut is smaller
than the previous min cut,
increment the number of 2 switches

if (newMinCut < previousMinCut) {



numTwoSwitches++;
twoSwitchesPerformed = true;
previousMinCut = newMinCut;

}

else |
// Revert the changes
adjacencyMatrix[u][x] =
adjacencyMatrix[x][u] = -1;
adjacencyMatrix[v][y] =
adjacencyMatrix[y][v] = -1;
adjacencyMatrix[u][v] =
adjacencyMatrix[v][u] =
edges.size ();
edges.push_back(Edge(u, v, 1));
adjacencyMatrix[x][y] =
adjacencyMatrix[y][x] =
edges.size ();
edges.push_back(Edge(x, y, 1));

"

cout << "Number_of 2 switches: " << numTwoSwitches << endl;

¥
int main() {

int numVertices = 5;

Graph graph(numVertices);
// Add edges to the graph

graph.addEdge(0, 1, 1);
graph.addEdge(0, 2, 1);
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graph.addEdge(1, 2, 1)
graph.addEdge(1, 3, 1)
graph.addEdge(2, 4, 1);
graph.addEdge(3, 4, 1)

7

// Perform the two switches and get the number of 2 switches

graph . performTwoSwitches ();

return 0;
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4.4.2 Explanation of code

This code implements the Two-Switches algorithm for finding the minimum num-
ber of edge-disjoint paths in a graph. The code starts with including necessary
libraries and declaring the required structures and variables.

The Edge structure represents an edge in the graph and stores the source, des-

tination, capacity, and flow of the edge.

The Graph class is defined to represent the graph and contains functions for adding
edges, performing the Ford-Fulkerson algorithm to find the maximum flow, and

performing the Two-Switches algorithm.

The Graph constructor initializes the adjacency matrix and takes the number of

vertices as a parameter.

The addEdge function adds an edge to the graph by creating an Edge object and

updating the adjacency matrix.

The bfs function performs a breadth-first search on the residual graph to find an
augmenting path from the source to the sink. It uses a queue and a visited array
to keep track of visited vertices.

The fordFulkerson function implements the Ford-Fulkerson algorithm to find the
maximum flow in the graph. It repeatedly calls the bfs function to find augment-
ing paths and updates the residual graph and flow along the path until no more

augmenting paths exist. It returns the maximum flow.

The computeMinCut function calculates the minimum cut in the graph by call-

ing the fordFulkerson function and passing the source and sink vertices.

The performTwoSwitches function implements the Two-Switches algorithm. It
iterates through all possible combinations of edges (u, v) and (x, y) where u, v, x,
and y are vertices. It checks if the edges (u, v) and (x, y) are not adjacent in the
graph and performs the switch operation by removing edges (u, v) and (x, y) and
adding edges (u, x) and (v, y). It then computes the new minimum cut and checks
if it is smaller than the previous minimum cut. If so, it increments the number of

two switches performed and continues to the next iteration. Otherwise, it reverts
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the changes.
In the main function, a Graph object is created, edges are added to the graph,
and the performTwoSwitches function is called to find the minimum number of

two switches needed.

Finally, the code outputs the number of two switches performed.
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CHAPTER 5

Conclusion

In this thesis, we have explored the inferences that can be made on the possible
number of components of a graph, on the basis of its degree sequence alone. This
is done by devising algorithms that obtain all possible ways to split a given degree
sequence into two parts and applying recursion on the fragments to further split
them. We have also explored the maximum possibility of a graph given only the
degree sequence. This was done using the concepts of 2 switches together with
standard max flow min cut algorithms.

This work constitutes a part of the broader research problem of inferences that
can be made about graphs on the basis of just their degree sequence. This prob-
lem is of interest since the degree sequence of a graph is one of its important
attributes, but at the same time, several pairwise non-isomorphic graphs often
share the same degree sequence. This work should help in a complete characteri-

zation of realization graphs, as defined in this thesis.

Work on characterizing realization graphs completely, will either directly or in-
directly build on the work done here, among other things. The results here will
lead to some immediate fallouts like some forced and/or forbidden structures in

realization graphs
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