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Abstract

In our research, we introduce an innovative approach to the segmentation of brain
tumors, utilizing a convolutional neural network (CNN) architecture that incor-
porates localization awareness. This approach represents a significant advance-
ment in tumor segmentation, as it effectively addresses two critical challenges en-
countered in this field: limited resources and the requirement for precise localiza-
tion. To overcome these challenges, our methodology leverages 2D slices during
training and integrates registration operations for MRI images during application.
The proposed method is evaluated extensively on the BRATS-2018 dataset and
its augmented dataset version, encompassing distinct variations of CNN-based
models. Furthermore, it exhibits computational efficiency during inference, en-
abling the segmentation of the entire brain in a matter of seconds. The outcomes of
our research position our deep learning model as a promising tool with immense
potential for both research purposes and clinical applications, offering good seg-
mentation outcomes.
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CHAPTER 1

Introduction

Image segmentation is the process where we divide an image into meaningful
and distinct regions or segments. It aims to partition an image into different
regions based on their visual characteristics, such as color, texture, intensity, or
object boundaries. The goal of image segmentation is to extract relevant and se-
mantically meaningful information from an image, allowing for a more detailed
analysis and understanding of its contents.

The process of image segmentation typically involves the following steps:

Initially, the image may undergo preprocessing steps to enhance its quality and
remove any noise or artifacts that could affect the segmentation process. Com-
mon preprocessing techniques include denoising, contrast enhancement, and im-
age normalization.

Depending on the characteristics of the image and the desired segmentation out-
come, different segmentation techniques can be employed. These techniques can
be categorized into two types: threshold-based methods and advanced methods.

Threshold-based methods : These methods use a threshold value to divide the im-
age into foreground and background regions. Pixels with intensity values above
the threshold are classified as foreground, while those below the threshold are
considered background [8].

Advanced methods: These methods utilize more complex algorithms and tech-
niques to segment the image. They may involve edge detection[13] , region growing[13]
or machine learning-based approaches like watershed transformation[14] , active
contours (snakes)[14] , or convolutional neural networks (CNNs)[10].
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In some cases, additional features may be extracted from the segmented regions to
provide more detailed information about the objects or regions of interest. These
features can include shape, texture, color, or spatial information.

After segmentation, post-processing steps can be applied to refine the results and
improve the accuracy. This can involve techniques like noise removal, filling
small gaps or holes, morphological operations (such as dilation or erosion), or
connected component analysis.

Finally, the segmented regions can be evaluated and validated based on specific
criteria or ground truth data. This step helps assess the quality and accuracy of
the segmentation results.

The process of image segmentation plays a crucial role in various fields, includ-
ing computer vision, medical imaging, object recognition, autonomous driving,
and many more. It enables applications such as object detection, image under-
standing, image-based measurements, and subsequent analysis of the segmented
regions.

Now lets move from generic image segmentation to our main focus which is brain
tumor segmentation.

Gliomas represent the most prevalent primary neoplasms affecting the brain in
the adult population.These tumors originate from the glial cells of the brain and
are typically classified into distinct grades: High-Grade Gliomas (HGG) exhibit
rapid growth and possess greater malignancy, whereas Low-Grade Gliomas (LGG)
are characterized by slower growth rates and a more favorable prognosis for pa-
tients. Magnetic Resonance Imaging (MRI) plays a crucial role in the assessment
of gliomas, enabling the evaluation of disease progression, treatment planning,
and overall disease management. Various MRI sequences can be employed to vi-
sualize brain tumors, including T1-weighted, T2-weighted, contrast-enhanced T1-
weighted images with contrast enhancement(T1ce), and FLAIR images. T2 and
FLAIR images primarily highlight the entirety of the tumor region, encompassing
infiltrative edema, whereas T1 and T1ce images provide enhanced contrast specif-
ically for the tumor core region, excluding infiltrative edema. Consequently, by
integrating these distinct imaging sequences, which offer complementary infor-
mation, it becomes feasible to analyze different subregions within brain tumors.
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The automated segmentation of brain tumors holds great importance in the field
of medical image processing, as timely detection of such tumors greatly enhances
the prospects of successful therapy and patient survival. Nonetheless, the manual
segmentation of brain tumors from vast quantities of MRI data acquired during
routine clinical procedures proves to be a labor-intensive and time-consuming en-
deavor. Hence, there is a pressing need for automated segmentation techniques
to expedite the process and improve its efficiency.

1.1 Motivation

For automatic brain tumor segmentation using machine learning models, train-
ing these models on MRI data can be a time-consuming process for several rea-
sons. Firstly, the inherent three-dimensional nature and high resolution of MRI
data contribute to a large number of features per sample. This substantial feature
count significantly extends training times, often requiring several hours or even
days to complete a single run. Additionally, the abundance of features can sur-
pass the available memory capacity, leading to the need for data retrieval from
disk during training. This further prolongs the training process and adds to the
computational load.

Considering these challenges, there is an urgent need to address the issue of
reducing computation time and optimizing resource utilization for ML models
trained on MRI data. Finding solutions to improve the efficiency of training pro-
cesses becomes crucial. By minimizing training time, researchers and practition-
ers can save valuable computational resources and accelerate the overall work-
flow. This optimization not only benefits the researchers by enabling faster exper-
imentation and analysis but also contributes to enhancing the practical applica-
bility of ML models in clinical settings.

1.2 Problem Statement

Our research aims to address the challenges associated with the segmentation
task by introducing a patch-based approach that takes into account the specific
location of the image being segmented. Our primary focus is on improving the
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accuracy of tumor segmentation by correcting the brain’s orientation and location
prior to analysis. To achieve this, we will utilize Image Registration techniques,
employing a carefully selected template image as a reference point.

By incorporating a localization-aware CNN-based neural network, we seek to
leverage the spatial information present in the images and enhance the precision
of tumor segmentation. This approach allows us to better capture the distinct fea-
tures and boundaries of tumor regions within the brain.

Furthermore, we aim to enhance the segmentation process by incorporating con-
trol images, which are normal brain images. By including these control images
in our model, we enable it to learn the specific characteristics that differentiate
tumor regions within normal brain images. This integration establishes a corre-
spondence between normal and abnormal images, contributing to the refinement
and optimization of the segmentation process.

Through our comprehensive methodology, we strive to advance the field of med-
ical image analysis and promote improved accuracy in tumor segmentation. By
addressing the complexity associated with the segmentation task and incorpo-
rating location-specific information, we aim to enhance the performance of seg-
mentation models and ultimately provide more accurate and reliable results in
medical imaging.

1.3 Outline of the Thesis

The organization of the thesis is as follows:

Chapter 1 introduces the very basic image segmentation and specifically what is
brain tumor segmentation and why it is necessary. We also discuss motivation of
our research and formed problem statement.

Chapter 2 presents detailed literature survey of previous methods proposed to
solve brain tumor segmentation problem.

In Chapter 3 we have discussed about dataset we are using for our problem.
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Chapter 4 is the one where we discuss variouus preprocessing techniques we have
applied, how our dataset is stored,execution sequence of our proposed method
and model configuration.

Chapter 5 discusses the performance metric we’ve used and the results on our
test dataset.

Chapter 6 gives the conclusion of our research work and future scopes.
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CHAPTER 2

Literature Surevey

The upcoming section provides pertinent background information regarding prior
research efforts on brain tumor segmentation utilizing the BRATS dataset.

According to this study conducted in [7] during the initial stages of the BraTS
challenge, the most successful models relied on Random Forest (RF) techniques
(BraTS 2012-2014). However, the advent of deep learning revolutionized this
trend, and the majority of submissions for BraTS 2015-2018 were based on deep
learning models. Recent advancements in deep learning, such as non-linear ac-
tivation, batch normalization, and dropout, have significantly improved the ac-
curacy of these models and consequently increased their popularity. Since 2015,
deep learning-based models, particularly Convolutional Neural Network (CNN)
models, have demonstrated the highest performance in the task of segmentation.

CNN models can be developed with either 2D or 3D inputs. In the context of
the BraTS dataset, 3D CNNs are anticipated to achieve higher accuracy because
they consider valuable information along the z-axis. However, the amount of
available GPU memory for training can impose limitations. Consequently, many
participants in the BraTS challenge opted to train their models using 2D slices
extracted from MRI scans. To address the loss of z-axis information, some partici-
pants trained multiple CNNs using slices from different views like coronal,sagittal
and axial and subsequently combined the predictions of these CNNs to obtain the
final segmentation result. This approach has proven effective in enhancing the
accuracy of Dice scores for such models.[17],[4],[3].

The recent advancements of CNN-based models in various image segmentation
tasks have motivated researchers to make modifications to further enhance their
performance. As a result, networks such as ResNet and DenseNet have been pro-
posed. Several participants in the BraTS17 and BraTS18 challenges leveraged
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these architectures to develop their models and reported improved accuracy in
terms of Dice scores.[9],[11]

The paper [5] describes the development of a brain tumor segmentation approach
utilizing a combination of 3D U-Nets. The method involves training and ensem-
bling six networks, each with varying numbers of encoding/decoding blocks, in-
put patch sizes, and different weights assigned to the loss function. The final
prediction probabilities are obtained by averaging the outputs of these ensem-
bled networks.[5]

Automatic glioma segmentation methods in the traditional approach face difficul-
ties in converting prior knowledge into probabilistic maps or selecting highly rep-
resentative features for classifiers. Nonetheless, convolutional neural networks
(CNN) offer an advantage by autonomously acquiring complex features that ef-
fectively represent both healthy brain tissues and tumor tissues directly from
multi-modal MRI images. The future enhancements and modifications in CNN
architectures, along with the incorporation of complementary information from
other imaging techniques like Positron Emission Tomography (PET), Magnetic
Resonance Spectroscopy (MRS), and Diffusion Tensor Imaging (DTI), hold the po-
tential to enhance existing methods. Ultimately, these advancements could lead
to the development of automatic glioma segmentation methods that are clinically
acceptable, enabling improved diagnosis.[15]

Based on [12], it was evident that affine transformations remain the most com-
monly utilized technique in practice. This preference stems from their ease of
implementation and their ability to generate anatomically accurate brain tumor
examples. However, it is worth noting that there are alternative augmentation
methods available that incorporate a combination of different approaches, includ-
ing elastic transformations.
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CHAPTER 3

Dataset Description

This chapter presents details regarding the utilization of the Brats 2018 dataset in
our study.

For our study, we utilized the BraTS 2018 dataset [1], which offers a valuable
collection of MRI scans obtained from 285 patients with brain tumors. Within
this dataset, there were 210 high-grade glioblastomas (HGG) and 75 low-grade
gliomas (LGG) available for training purposes. The provided annotations in the
dataset focused on three tumor sub-regions, namely the enhancing tumor, peri-
tumoral edema, and the necrotic and non-enhancing tumor core. To simplify the
analysis, we combined these annotations into three nested sub-regions: the whole
tumor (WT), tumor core (TC), and enhancing tumor (ET). This consolidation al-
lowed for a more comprehensive understanding of the tumor characteristics and
their spatial relationship within the brain.

The BraTS dataset includes multimodal scans that are available in NIfTI file for-
mat (.nii.gz). Each scan consists of four modalities, namely T1, T1c, T2, and
FLAIR.Each modality in MRI has its own unique characteristics and provides
valuable information about different aspects of the human body. By combin-
ing information from multiple modalities, radiologists and researchers can gain
a comprehensive understanding of the structure and function of organs and tis-
sues, aiding in the diagnosis and treatment of various medical conditions. Here
are the information of modalities we have used in our dataset:

1. T1-weighted (T1): T1-weighted images provide good anatomical details with
high contrast between different tissues. They are often used to visualize the struc-
ture and morphology of organs and tissues. T1 images are typically acquired in
the axial or sagittal planes.
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2. T1-weighted post-contrast (T1CE): T1-weighted post-contrast images are ob-
tained after the administration of a contrast agent, such as Gadolinium. Contrast
agents highlight certain structures, such as blood vessels or tumors, which appear
brighter in the image. T1CE images help in enhancing the visibility of abnormal
tissues, such as tumors and lesions.

3. T2-weighted (T2): T2-weighted images are sensitive to differences in water
content and provide good contrast between different soft tissues. T2 images are
particularly useful for detecting edema, inflammation, and fluid-filled structures.
They are commonly acquired in the axial, coronal, or sagittal planes.

4. Fluid-attenuated inversion recovery (FLAIR): FLAIR images are a variant of
T2-weighted images that suppress the signal from cerebrospinal fluid (CSF). By
nullifying the signal from CSF, FLAIR images enhance the visibility of abnormali-
ties, such as lesions and brain tissue changes. FLAIR images are useful for detect-
ing white matter lesions and evaluating conditions like multiple sclerosis.

In our study, we unified the annotations with three distinct classes, assigned with
labels 1, 2, and 4, into a single tumor class by labeling it as 1. The background
region was designated as label 0. This merging of labels facilitated the binary seg-
mentation process, focusing on distinguishing the tumor region from the back-
ground. This simplification is depicted in figure 3.1 part (f), illustrating the com-
bined tumor class and background assignment.

By using this dataset and considering the simplified binary segmentation task,
our model aims to accurately identify and segment the tumor regions within the
brain. The availability of multiple modalities and the comprehensive annotations
provided in the BraTS 2018 dataset enable us to train our model effectively and fa-
cilitate the development of an accurate and robust tumor segmentation approach.
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Figure 3.1: a) T1 image (b) T1ce (c) T2 (d) Flair (e) Control Image (f) Seg Im-
age(Tumor mask) - Black: Background and Healthy tissue, White: Tumor tissue
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CHAPTER 4

Proposed Method

Our research introduces a novel approach we call location-aware tumor segmen-
tation. Unlike conventional techniques that rely solely on pixel-to-pixel mapping,
our approach recognizes the importance of spatial information within MRI data,
as the orientations of normal and abnormal brain images may differ significantly.
In order to achieve precise and reliable segmentation results, a more sophisticated
strategy is required.

A simple pixel-to-pixel mapping approach fails to consider the fact that a voxel at
a particular location in one image may not correspond to the same brain region in
another image. To address this challenge, we have devised a solution that incor-
porates the spatial context of the MRI data. Our technique involves performing
image registration, specifically affine registration, to correct for variations in ori-
entation and location across the images.

By incorporating affine registration into our methodology, we overcome the lim-
itations of a simplistic pixel-to-pixel mapping and achieve a more robust and ac-
curate tumor segmentation outcome.

4.1 Image Registration

Image registration in medical imaging refers to the process of aligning and match-
ing two or more medical images of the same patient or region of interest. It
involves finding a spatial transformation that brings the images into correspon-
dence, allowing for a comprehensive analysis and comparison of the information
contained in each image.

Affine registration is a technique used in medical image processing and image

11



registration to align and match two or more medical images. It applies an affine
transformation to spatially transform one image to match the other image. The
affine transformation consists of translation, rotation, scaling, and shearing oper-
ations.

In affine registration, the goal is to find the optimal set of transformation param-
eters that minimize the differences between corresponding features or structures
in the images being registered. By applying the affine transformation, the images
can be aligned in a way that compensates for differences in position, orientation,
and scale.

Example of image registration operation on a 2d slice of a patient’s MRI image is
shown in Figure 4.1 from the brats 2018 dataset

Figure 4.1: Example of how query image will look like without registration and
after registration with given template image

4.2 Preprocessing the dataset

In our approach, illustrated in figure 4.2, we employ image registration technique
to ensure consistent orientation and location across all MRI images in our dataset.
This involves obtaining a transformation matrix for each patient’s MRI picture
based on the orientation of a fixed template image. By aligning the images to a
common reference frame, we establish a unified coordinate system for the dataset.

To implement this image registration process, we utilize the powerful capabili-
ties of the dipy library[2]. Dipy is a popular Python library that provides various
tools and algorithms for diffusion MRI analysis and image registration. It offers
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Figure 4.2: Preprocessing flow: based on template image orientation, We’ll apply
affine registration on query image, and based on calculated transformation, we’ll
get the transformed image.

a comprehensive set of functions for image transformation, registration, and ma-
nipulation, making it an ideal choice for our task.

Firstly, we obtain a fixed template image that serves as the reference image for
orientation and location. The transformation matrix is then calculated by align-
ing each patient’s MRI image to this fixed template. This matrix captures the
necessary translation, rotation, and scaling parameters required to transform the
patient’s image to match the template’s orientation and location.

Next, we apply this transformation matrix to both the MRI image and its asso-
ciated mask. By performing the transformation on both the image and the mask
simultaneously, we ensure that the spatial relationship between the image and the
corresponding segmentation mask is preserved. This step is crucial for accurate
analysis and subsequent segmentation tasks.

As a result of this image registration procedure, we create a modified image dataset
in which all the images share the same orientation and location. This standard-
ized dataset eliminates any variations or inconsistencies in image positioning, en-
abling fair and reliable comparisons across patients. This alignment facilitates
subsequent analysis and segmentation tasks, ensuring consistent and accurate re-
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sults.

To ensure compatibility with our image registration process, we applied zero
padding to the original images from the Brats 2018 dataset. The original images
had dimensions of 240x240x150, but we extended them using zero padding to
achieve a uniform image size of 256x256x256. This adjustment was necessary as
our image registration technique relies on a static image size of 256x256x256.

4.2.1 Folder structure of dataset

In order to optimize runtime performance, it may not be efficient to load the entire
3D image into memory. To address this issue, we implemented a strategy where
we organized the images into separate folders based on their content. This ap-
proach allowed us to enhance the efficiency of image retrieval and processing.

More specifically, we created image-wise folders, where each folder contained a
set of 10 carefully selected image slices. These slices were strategically chosen to
include a slice from the tumor’s centroid, as well as the adjacent slices immedi-
ately above and below it. The selection of these specific slices aimed to capture
the essential tumor region while minimizing the memory footprint required for
processing.

By adopting this approach, we were able to load and process a smaller subset of
the 3D image at a time, reducing the memory usage and enhancing runtime effi-
ciency. It made training process much faster.

Folders structure of the dataset is made as follow:

img_0,img_1,..., img_n : MRI image / features slices are stored in each img folder
mask_0,mask_1,...,mask_n : MRI image mask/ labels slices are stored in each
mask folder
fixed_0,fixed_1,...,fixed_n : MRI image control image but one particular fix image
common for all corresponding input image
var_0,var_1,...,var_n : MRI image control image but variable image for corre-
sponding input image

Here n represent number of input image of different patients available in our
dataset. In our case n= 285.
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The naming of all the sliced data ensures their correspondence with each other.
The folders are numbered at the end of their names, allowing us to access corre-
sponding images across multiple folders.

4.2.2 Normalization of dataset

Due to the inclusion of four modalities (T1, T1-CE, T2, and FLAIR) in our dataset,
we encounter a challenge related to varying contrast levels. This contrast discrep-
ancy can lead to the loss of gradient information during the training phase. To
address this issue, we employ a standardization technique to preprocess the im-
ages. By performing image-level standardization, we normalize the image data
by subtracting the mean value and dividing it by the standard deviation. Formu-
lation is as follows:

X̂ =
X − µ

σ
(4.1)

In the given context, µ represents the mean of the image, σ represents the standard
deviation, X represents the image matrix, and X̂ denotes the normalized image
matrix.

4.3 Execution sequence of our proposed method

To begin with, we will sequentially load 3D MRI images of all four modalities
for each patient. These images, depicted as gray-colored cubic volumes in Figure
4.3, serve as our input data. Additionally, there will be a common mask for each
variant of MRI images, represented by blue-colored cubic volumes in Figure 4.3,
which will act as our label. For Model Architecture 1, we will also load a control
image volume, denoted as a light green-colored cubic volume in figure 4.3, which
represents a normal image.

After loading the image, we will first do preprocessing as mentioned in section
4.2 and will save the slice data in corresponding folders.

Once the preprocessing step is complete, we proceed to obtain the training dataset,
which consists of image slices sized (256,256,4). This dimension signifies that we
have 2D image slices with dimensions (256,256) from all four modalities. Subse-
quently, we combine the individual slices to create image batches with a size of
(n,256,256,4), where ’n’ represents the batch size.This is illustrated in Figure 4.4.
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Figure 4.3: 3d input volume of each type of images

Figure 4.4: 2d slices to make batch of images for training data

16



Our approach is mainly divided into two models based on its structure and dataset:

1. Model with control path :In this case, our convolutional neural network
(CNN)-based model will be structured with two separate paths. Each path
will receive distinct inputs, namely the query image and the control image.
The query image is sourced from the Brats 2018 dataset, while the control
image is an MRI image devoid of any abnormalities, as illustrated in the ac-
companying figure 4.5

2. Model without control path : In this scenario, our CNN-based model will
adopt a single path architecture, incorporating normal CNN blocks at in-
termediate stages. The input for the model will consist solely of the query
image, as depicted in the accompanying figure 4.6

Figure 4.5: Model flow with control path

Figure 4.6: Model flow without control path
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In our approach, we introduce a modification by incorporating two input images
into our model. This addition is motivated by the objective of training our model
to effectively differentiate between normal and abnormal images. By providing
two input images, we enable the model to gain a comprehensive understanding
of the features and patterns present in both types of images. Consequently, this
enhanced input configuration enhances the model’s ability to accurately discern
between normal and abnormal instances, leading to improved classification per-
formance and more reliable diagnostic outcomes.

At present, our CNN-based model utilizes 2D slices extracted from MRI images as
input, with a size of (256, 256, 4). The model processes these slices and generates
a segmented 2D mask as output, with a size of (256, 256, 1). This configuration
allows the model to analyze and extract relevant information from the MRI slices,
ultimately producing a mask that highlights and delineates specific regions of in-
terest within the images.

Our primary CNN-based approach can be categorized into three variations, each
dependent on the dataset being utilized. Each three variations with different
datasets are described below:

1. Model with the Registered dataset:

(a) Fixed Control Image on Registered Dataset : In this model, we main-
tain a fixed control image throughout the training process. At each
training iteration, the same control image is provided consistently. This
approach ensures that the model receives a constant reference point for
comparison and enables it to learn and adapt based on the consistent
presence of the control image.

(b) Variable Control Image on the Registered Dataset: In this approach,
during the training process, we introduce a random control image se-
lected from a pool of 15 available control images. This randomness
allows for a diverse set of control images to be utilized, enhancing
the model’s ability to generalize and adapt to various scenarios dur-
ing training.

(c) Without Control Image on the Registered Dataset : It adopts a dif-
ferent approach. In this case, the model does not incorporate a control
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path. Instead, it solely relies on the query image as input, derived from
the registered dataset.

2. Model with the unregistered dataset:

(a) Fixed Control Image on Unregistered Dataset : similar to variation a)
but with unregistered dataset

(b) Variable Control Image on the Unregistered Dataset : similar to vari-
ation b) but with unregistered dataset

(c) Without Control Image on the Unregistered Dataset : No control in-
put, only query image will be provided from the unregistered dataset

4.4 Model Configuration

To train our model, we employed the 5-fold cross-validation technique. For each
fold, we conducted testing on all 256 2D slices of the test image. Subsequently, we
calculated the Dice score by comparing the actual 3D volume with the combined
predicted 3D volume obtained from the predicted 2D slices.

Model configuration information is as follow:

No. of total parameters in model 1: 50,145
No. of total parameters in model 2: 17,009
Optimizer : Adam
Loss function : Dice loss
No of epochs for training: 300
Training set : 10 slices from each 228 3d image volumes
Test set: 57 3d image volumes
Model evaluation technique: 5 fold cross validation

Figure 4.7 shows model with control path and Figure 4.8 shows model architech-
ture without control path with all the parameters in each layers. We can see our
model consist of convolution blocks, batch normalization and some skip connec-
tions.
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Figure 4.7: Model architecture with control path
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Figure 4.8: Model architecture without control path
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CHAPTER 5

Experiments and Results

The figure 5.1 displays a comparison between the actual mask and the predicted
mask for a set of test images. The actual mask represents the ground truth seg-
mentation of the target object or region within each image, while the predicted
mask represents the segmentation output obtained from a trained model or algo-
rithm.

5.1 Performance Metric

The Dice score, referred to as the Dice coefficient or Dice similarity coefficient, is a
widely used metric for assessing how well image segmentation tasks perform. Its
purpose is to gauge the resemblance between the predicted segmentation mask
and the ground truth mask of an image.

The formula for calculating the Dice score between two image masks is as follows:

Dice score =
2 × |Y ∩ Y pred|
|Y|+ |Y pred|

where:

• Y represents the pixels (or voxels) in the True mask.

• Y pred represents the pixels (or voxels) in the predicted mask.

• |Y| refers to the total number of pixels (or voxels) in mask A.

• |Y pred| refers to the total number of pixels (or voxels) in mask B.

• |Y ∩ Y pred| represents the number of pixels (or voxels) that are correctly
classified as both A and B (the intersection of Y and Y pred).

22



Figure 5.1: Comparision of actual mask and predicted mask
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The Dice score is extensively employed in image segmentation tasks due to its
ability to provide a reliable assessment of segmentation accuracy, particularly in
situations involving imbalanced classes or when the foreground objects represent
a small fraction of the image. It takes into account both false positives (pixels inac-
curately labeled as foreground) and false negatives (pixels inaccurately labeled as
background) during evaluation, making it well-suited for tasks that require pre-
cise boundary delineation.

By using the Dice score, researchers and practitioners can compare different seg-
mentation models or techniques, optimize model parameters, and monitor the
progress of their segmentation algorithms during development. It helps to quan-
tify the performance of the segmentation task and guide improvements in the
algorithm or model design.

5.2 Dice scores of all the models

The following Table 5.1 shows the average dice score of all the folds, calculated
for each models with batch size = 4, meaning we’ve taken four slices out of ten
slices for training.

Model Type Average dice score
Fixed control(registered) 0.8111 ± 0.03
Variable control(registered) 0.8153 ± 0.02
Without control(registered) 0.8076 ± 0.02
Fixed control(Unregistered) 0.8098 ± 0.02
Variable control(Unregistered) 0.8188 ± 0.02
Without control(Unregistered) 0.8057 ± 0.02

Table 5.1: Dice score on our proposed models when trained on batch size=4

Table 5.2 shows the average dice score of all the folds,calculated for each models
with batch size = 10 meaning we’ve taken all the 10 slices out for training.

Table 5.3 shows the average dice score of all the folds,calculated for 3 models
containing unregistered and augmented dataset in which we have rotated and
translated the dataset with batch size = 10 meaning we’ve taken all the 10 slices
out for training.
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Model Type Average dice score
Fixed control(registered) 0.8063 ± 0.04
Variable control(registered) 0.8146 ± 0.03
Without control(registered) 0.8193 ± 0.03
Fixed control(Unregistered) 0.8165 ± 0.02
Variable control(Unregistered) 0.8050 ± 0.03
Without control(Unregistered) 0.8141 ± 0.03

Table 5.2: Dice score on our proposed models when trained on batch size=10

Model Type Average dice score
Fixed control(Uregistered) 0.8223±0.02
Variable control(Unregistered) 0.7940±0.04
Without control(Unregistered) 0.8126±0.03

Table 5.3: Dice score on our proposed models when trained on batch size=10 with
augmented dataset

While our hypothesis has proven to be accurate and reliable in numerous cases,
it is important to acknowledge that there are instances where it may not hold
true. Embracing these exceptions as valuable learning opportunities, we gain a
deeper understanding of the complexities within our research. By recognizing the
deviations from our hypothesis, we can refine our approach, explore alternative
explanations, and uncover new insights that contribute to the advancement of
knowledge in our field.
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5.3 Comparision with other related work

Quantitative evaluation with the BraTS 2018 validation of our method and other
research are shown in Table 5.4.

Model Type Average dice score
Zhou et al [18] 0.75
Ensemble 3D Unet[6] 0.84
Cascaded CNN [16] 0.80
Variable control(registered) batch-
size=4

0.81

Fixed control(Unregistered) 0.82

Table 5.4: Avg dice score comparison of our method and other related models on
brats 2018 dataset

The crux of our research revolves around conducting a thorough comparative
analysis of results through the incorporation of a control path. Furthermore, an
essential aspect of our investigation involves assessing the effectiveness of the
registration process on the obtained results. So we are less focused on comparing
with other model’s dice score.Though we have mentioned few in above table.
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CHAPTER 6

Conclusion and Future works

During our study, we have thoroughly examined the effectiveness of our pro-
posed approach. While the obtained results may not have provided the optimal
solution for our specific problem statement and the initial hypothesis we formu-
lated, we are determined to enhance our analysis by incorporating cross-data
analysis techniques.

Thus far, our primary focus has revolved around evaluating the advantages of
including control images and performing binary class segmentation. We have ob-
served the impact of these factors on the segmentation process, which has helped
us gain valuable insights into their contributions to the overall accuracy of our
model. However, we recognize the need to expand our analysis to encompass all
four class labels. By considering each class label individually, we aim to gain a
more comprehensive understanding of the segmentation results and the capabili-
ties of our approach across different tissue types.

Furthermore, we are particularly interested in exploring the potential benefits of
training our model directly on 3D data. This approach has the potential to capture
the spatial information and inter-slice relationships more effectively, which could
potentially lead to improved segmentation accuracy. By investigating the impact
of this training strategy, we aim to assess whether it results in an enhanced Dice
score, which serves as a crucial measure of the segmentation quality. Through
this analysis, we can determine the feasibility and benefits of leveraging 3D data
directly in our approach.

In conclusion, while our current study has shed light on the functionality of our
proposed approach, there is still room for improvement and further analysis. By
incorporating cross-data analysis, exploring all class labels, and investigating the
benefits of training on 3D data, we aim to advance our understanding of glioma
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segmentation and develop a more accurate and reliable automatic segmentation
method for clinical applications.
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