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Abstract

Salient object super-resolution refers to enhancing the resolution and details of

salient objects or regions in an image. It is a sub-field of image super-resolution,

which aims to generate high-resolution salient object images from low-resolution

inputs. Several approaches have been used for either salient object detection or

image super-resolution, but no method employs both in a single mechanism.

The aim behind salient object super-resolution is to provide a more focused,

informative, and visually pleasing representation of images by prioritizing and

enhancing the most relevant and eye-catching regions. This can lead to improved

performance in various applications like surveillance, medical imaging etc. and a

better viewing experience for users.

We propose a salient object super-resolution approach that addresses the chal-

lenges inherent in this task, like fine details preservation, inconsistent saliency

map quality, computational complexity, ambiguity and uncertainty etc. This ap-

proach involves salient object detection, salient object segmentation, salient object

super-resolution, restacking of salient objects, and guided image smoothening.

Each step is designed to improve salient objects’ resolution and visual quality

while preserving the remaining image content.

For the super-resolution task, we employed three different models, namely

SRGAN (Super-Resolution Generative Adversarial Network) [26], NLSN (Non-

Local Sparse Attention Network) [39], and DRT (Deraining Recursive Transformer)

[32]. We used the "Salient Object Detection with Robust Background Detection"

method [58] for saliency detection.

Further, we explore the potential of a hybrid model that combines the DRT and

Non-Local Sparse Attention techniques for the super-resolution task. The DRT

model, initially designed for deraining tasks, is adapted for super-resolution to

restore fine details and textures within the low-resolution image effectively. The

Non-Local Sparse Attention mechanism is incorporated to selectively attend to

relevant spatial and channel information, improving the preservation of essential

features while suppressing noise and artefacts.

Overall, our work contributes to advancing salient object super-resolution tech-

v



niques and explores the potential of a hybrid model, TraNLSN, for further im-

provements. Analyzing the results from the ongoing training phase will provide

insights into the effectiveness of the hybrid model and its potential applications

in various domains.
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CHAPTER 1

Introduction

In recent years, image super-resolution has garnered significant attention in the

field of computer vision. The task of increasing the resolution and enhancing

the visual details of low-resolution images has various applications, including

surveillance, medical imaging, and satellite imagery analysis. Among the various

sub-fields of image super-resolution, the focus on salient object super-resolution

has emerged as a promising direction. This sub-field specifically aims to generate

high-resolution salient object images from low-resolution inputs, preserving the

essential features and improving visual quality.

Salient objects play a crucial role in human perception and cognition, as they

are the visually significant regions that attract immediate attention. However,

existing super-resolution methods often treat the entire image uniformly, neglect-

ing the importance of preserving salient object details. Addressing this limita-

tion, we propose a comprehensive salient object super-resolution approach that

incorporates salient object detection, salient object segmentation, salient object

super-resolution, restacking of salient objects, and guided image smoothening.

Each step is meticulously designed to improve the resolution and visual quality

of salient objects while maintaining the fidelity of the rest of the image content.

In salient object super-resolution, the primary focus is preserving and enhanc-

ing salient objects’ resolution while potentially omitting or downscaling non-salient

regions. This approach is motivated by the understanding that not all parts of an

image contribute equally to the overall visual quality or the informative content.

In some cases, only specific regions of interest within an image, which are rela-

tively small compared to the entire image, require high-resolution reconstruction.

Fig. 1.1 (b), (d), and (f) exemplify such scenarios, where the regions of interest are

confined to a very small portion of the image, rendering it unnecessary to perform

super-resolution on the entire image.

Salient object super-resolution has numerous applications in computer vision

and image processing. It can enhance image resolution in various domains, in-
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Figure 1.1: Images and their Respective masks displaying ROIs [10]

cluding surveillance, remote sensing, medical imaging, and digital photography.

Improving salient objects’ visual quality and details enables better analysis, inter-

pretation, and understanding of images in these domains.

The goal of salient object super-resolution is to generate high-resolution details

and textures while preserving the overall structure and context of the salient ob-

jects. This task is challenging due to the inherent limitations of low-resolution

images, such as loss of fine details, blurriness, and aliasing artefacts. Super-

resolution algorithms employ various computational methods to estimate and re-

construct the missing details, producing a high-resolution version of the salient

object.

Salient object detection often leverages low-level image priors, such as edge

information and local image statistics, and high-level semantic knowledge about

the salient objects. In contrast, image super-resolution uses patch-based, deep

learning, and hybrid approaches combining multiple strategies.

Patch-based methods divide the low-resolution image into patches and search

for similar patches in a high-resolution training set. The high-resolution patches

then reconstruct the salient object at a higher resolution. Deep learning-based

methods utilize convolutional neural networks (CNNs) to learn the mapping be-

tween low-resolution and high-resolution images. These neural networks are

trained on large datasets to effectively capture the complex relationships between

the input and output images. Hybrid approaches combine the strengths of both

patch-based and deep learning-based methods, often achieving superior results.

Salient object super-resolution is challenging due to several factors and limita-

tions associated with the process. Some of the critical challenges in salient object

super-resolution include:

1. Limited information in low-resolution images: Low-resolution images in-

herently contain less information and fewer details than their high-resolution
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counterparts. The loss of fine details and textures in salient objects poses a

significant challenge in accurately reconstructing them at a higher resolu-

tion.

2. Ambiguity and uncertainty: Salient objects can exhibit complex shapes, tex-

tures, and appearances. It can be challenging to disentangle the precise de-

tails of the salient objects from noise, artefacts, or background information

in low-resolution images. This ambiguity and uncertainty make the super-

resolution task challenging.

3. Non-uniform degradation: Low-resolution images can suffer from various

types of degradation, such as blurring, aliasing, and compression artefacts.

However, the degradation is not necessarily uniform across the entire image.

Different regions within the salient object may exhibit different types and

levels of degradation, making the super-resolution process more complex.

4. Limited training data: Training deep learning models for salient object super-

resolution often requires many paired high-resolution and low-resolution

images. However, obtaining such paired data can be challenging and time-

consuming, especially when capturing high-resolution ground truth images.

Limited training data can impact the generalization ability and performance

of super-resolution algorithms.

5. Computational complexity: Super-resolution algorithms can be computa-

tionally intensive, especially those based on deep learning. The complex-

ity increases further when dealing with salient object super-resolution, as

the algorithms must focus on specific regions of interest within the image.

Efficiently processing and enhancing the resolution of salient objects while

maintaining real-time or near-real-time performance can be a significant chal-

lenge.

6. The trade-off between details and artefacts: In enhancing the resolution of

salient objects, there is a delicate balance between generating high-quality

information and avoiding introducing artefacts. Super-resolution methods

must avoid over-sharpening artefacts, noise amplification, or unrealistic tex-

tures that can degrade the overall visual quality of the salient objects.

7. Subjectivity and perception: Salient object super-resolution is often evalu-

ated based on subjective visual quality assessments. Human perception and
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preferences play a crucial role in judging the success of super-resolution al-

gorithms. Accommodating the subjective nature of evaluation and meeting

diverse perceptual expectations pose additional challenges.

Addressing these challenges requires ongoing research and development of

innovative algorithms, data augmentation techniques, and evaluation method-

ologies. Advances in machine learning, deep learning, and computer vision are

continuously being explored to overcome these difficulties and improve the per-

formance of salient object super-resolution techniques.

In summary, salient object super-resolution is a specialized field within im-

age super-resolution that focuses on enhancing the resolution and details of vi-

sually important regions in an image. It utilizes various computational tech-

niques, including patch-based methods, deep learning-based approaches, and hy-

brid strategies, to generate high-resolution versions of salient objects while pre-

serving their overall structure and context.

Let’s delve a bit deeper into the basics of salient object detection and super-

resolution one by one.

1.1 Salient Object Detection

According to a survey paper [44], visual saliency prediction can be approached

from two main directions: visual-attention prediction and saliency detection in

computer vision. Each direction focuses on different aspects of saliency and em-

ploys distinct approaches to achieve accurate saliency prediction.

Visual-attention prediction models are primarily concerned with understand-

ing human visual attention and predicting eye-gaze patterns. These models typi-

cally utilize simple feature channels, such as colour, orientation, and intensity, to

capture salient regions in images. By analyzing these features, they aim to esti-

mate where humans will likely focus their attention.

On the other hand, saliency detection models can be categorized into heuristic-

based and learning-based approaches. Heuristic-based methods use bottom-up

features like contrast, location, and texture to identify salient regions. Within the

heuristic-based approach, several subcategories exist based on different feature

priors:

1. Local contrast-based methods [8, 16, 18, 21, 22, 29, 30, 36, 37, 57] calculate the

saliency value map by considering local features between different regions,
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such as colour, illumination, orientation, and motion information. By ana-

lyzing the contrast between neighbouring regions, these methods identify

salient regions.

2. Global contrast-based methods [1, 7, 9, 11, 15, 42, 49, 54] calculate the saliency

value map by considering global features. They assign high saliency scores

to regions with similar values indicating their salient nature. These methods

leverage overall contrast information to identify salient regions.

3. Center-prior methods [21, 22, 41, 48, 49] aim to highlight the centre region

of an image or combine centre-based cues with other features to identify

salient regions or objects. The central region is often considered a spatial

feature that attracts attention.

4. Background-prior methods [7, 19, 20, 27, 30, 47, 50, 59] treat the narrow bor-

der region as the background of the image. They calculate the saliency score

by considering the contrast against the background, using the background

seeds as a reference. This approach helps distinguish salient objects from

the background.

5. Objectness-prior methods [3, 6, 17, 23, 28, 45] employ object proposals to as-

sist in salient object detection. They measure the probability that a whole

object exists in an image by evaluating the objectness score for each ran-

dom window. Object proposals provide valuable information for identify-

ing salient objects.

6. Bayesian framework methods [35, 48] use Bayesian principles to estimate

the probability of pixels or regions being salient based on visual features

and prior knowledge about saliency. These methods typically involve prob-

abilistic models to compute the saliency maps.

Exploring these different approaches allows researchers to develop effective

saliency prediction and detection models. The survey paper [44] serves as a valu-

able resource, providing a comprehensive overview of these approaches and shed-

ding light on the advancements and trends in saliency prediction within the field

of computer vision.

1.2 Super-Resolution

The super-resolution survey paper [46] highlights the importance of formulating

an observation model that connects the original high-resolution (HR) image to the
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observed low-resolution (LR) images in the super-resolution image reconstruction

challenge. Typically, the observed LR images are obtained by sub-sampling and

blurring operations applied to the HR image, as depicted in Figure 1.2.

Figure 1.2: Observation model relating LR images to HR images [46]

The observation model can be represented by Equation 1.1 as follows:

f = KUg + m (1.1)

In this equation, f ∈ R
y represents the LR image, g ∈ R

x represents the origi-

nal HR image, K ∈ R
y×x is the downsampling operator, U ∈ R

x×x is the blurring

operator and m ∈ R
y is the noise component. Here, x > y. The block diagram

in Figure 1.2 illustrates the observation model. Since the matrix KU has more

columns than rows, there are infinitely many solutions, necessitating regulariza-

tion in super-resolution.

Figure 1.3: Overall Framework Sketch of LR Image formation [51]

Super-resolution can be categorized into two types based on the number of

LR images: multiple-image super-resolution and single-image super-resolution.

Multiple-image super-resolution utilizes multiple LR images of the same scene to

generate a high-resolution image, exploiting the redundancy present in the input
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images. These multiple images provide complementary information, such as fine

details and texture, which can be aligned and fused to generate high-resolution

images. However, in many cases, multiple LR images are unavailable, leading to

a focus on single-image super-resolution algorithms.

Single-image super-resolution relies on the self-similarity property, which states

that small patches within an image can exhibit similar patterns and structures

that recur in different parts of the same image. This property arises from com-

mon visual elements such as textures and edges present in natural scenes. Single-

image super-resolution algorithms leverage this property to infer missing high-

frequency information in LR patches by exploiting the redundancy within the

image.

Figure 1.3 provides a basic sketch of how an LR image can be represented

using a simple equation 1.2:

f = Kgb + m (1.2)

In this equation, f represents the LR image, g represents the unknown HR

image, b represents the blurry kernel, and m represents noise. An LR image is

formed by applying a blurry kernel to the HR image, downsampling, and adding

noise.

1.3 Objective

Salient object super-resolution aims to enhance the visual quality of salient objects

within an image and improve object recognition and understanding. Increasing

the resolution and reconstructing fine details make salient objects more visually

appealing and informative, making them easier to identify and distinguish from

the background. This enhancement in visual quality is essential for applications

such as image editing, object detection, tracking, and scene understanding, where

accurate recognition and understanding of salient objects are crucial.

Additionally, salient object super-resolution aims to preserve the semantics

and context of the salient objects during the resolution enhancement process. It

ensures that the reconstructed objects retain their original appearance and charac-

teristics, maintaining the integrity of the visual content. This preservation of se-

mantics and context is vital for maintaining the visual consistency and coherency

of the image.

Moreover, high-resolution salient objects enable detailed analysis and inspec-

tion of specific regions of interest. Researchers, professionals, and analysts often

need to examine particular areas within an image in detail, and by enhancing the
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resolution of salient objects, salient object super-resolution enables a more thor-

ough and comprehensive examination. This provides valuable insights and sup-

ports decision-making processes in various fields.

Furthermore, salient object super-resolution contributes to advancements in

graphics and visual communication applications. It enables the creation of visu-

ally appealing images with enhanced salient objects, which find applications in

domains such as advertising, digital media, and user interfaces. The improved

resolution and visual quality of salient objects enhance visual content’s overall

aesthetic appeal and impact.

Salient object super-resolution aims to enhance visual quality, improve object

recognition and understanding, preserve semantics and context, enable detailed

analysis and inspection, and advance graphics and visual communication appli-

cations. By achieving these objectives, salient object super-resolution contributes

to the broader field of image processing and computer vision, benefiting various

domains and applications.

1.4 Contribution

This thesis work makes several significant contributions to the field of salient ob-

ject super-resolution. The main contributions of this research can be summarized

as follows:

1. Selective Salient Object Super-Resolution Approach: The proposed ap-

proach introduces a novel selective strategy for salient object super-resolution.

By leveraging salient object detection and segmentation techniques, the method

identifies and isolates regions of interest within the low-resolution image

that require high-resolution reconstruction. This selective approach signifi-

cantly reduces computational complexity and processing time by avoiding

unnecessary super-resolution processing on non-salient areas.

2. TraNLSN: Hybrid Model for Effective Super-Resolution: The develop-

ment and analysis of the hybrid model TraNLSN represent a noteworthy

contribution. Combining the strengths of the DRT (Deraining Recursive

Transformer) model and the Non-Local Sparse Attention technique, TraNLSN

is specifically designed and optimized for super-resolution tasks. Its adap-

tation for restoring fine details and textures within the identified regions of

interest improves the overall quality of the salient object super-resolution

process.
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Overall, the contributions of this thesis work have implications for various

applications, including image analysis, object recognition, and computer vision

tasks where the emphasis on preserving and enhancing salient objects is crucial.

The proposed approach’s resource efficiency and improved visual quality open

up possibilities for real-world applications in domains such as surveillance, med-

ical imaging, and remote sensing, where accurate and visually appealing repre-

sentations are vital.

1.5 Organization

The remaining work is structured as follows to provide a comprehensive under-

standing of the research conducted.

Chapter 2 serves as a literature review, delving into the state-of-the-art models

for visual saliency prediction and super-resolution. This chapter examines the

different loss functions utilized in these models, their relationships with various

evaluation metrics, and their architectural complexity and training requirements.

By reviewing existing research, Chapter 2 sets the foundation for understanding

the advancements and challenges in the field.

In Chapter 3, our proposed method is presented, along with the introduction

of a new model called TraNLSN. This chapter outlines the different stages in-

volved in the salient object super-resolution process and provides a detailed de-

scription of the architecture of the TraNLSN model. Chapter 3 highlights our re-

search’s novel aspects and contributions by explaining the proposed method and

model.

Chapter 4 focuses on the experimental setup used to evaluate the presented

method. This chapter describes the datasets utilized, the evaluation metrics em-

ployed to assess the performance of the proposed method, and the results ob-

tained through comparisons with state-of-the-art methods. The experimental setup

provides insights into the effectiveness and superiority of our approach in enhanc-

ing salient object super-resolution.

Finally, Chapter 5 and Chapter 6 conclude the thesis by summarizing the main

findings and conclusions derived from the research. These chapters also discuss

the potential future directions and scopes for further improvement and applica-

tion of the presented method and the proposed model TraNLSN. By closing the

thesis with a reflection on the research outcomes and future possibilities, Chap-

ter 5 and Chapter 6 offer a comprehensive understanding of the contributions

made and the potential impact of the research in the field of salient object super-
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resolution.

Overall, the organization of the remaining work ensures a logical flow of in-

formation, starting with the literature review, followed by the presentation of the

proposed method, experimental evaluation, and finally, the conclusion and future

prospects.
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CHAPTER 2

Related Works

While super-resolution and salient object detection have been extensively stud-

ied as separate domains, the research on salient object super-resolution, explicitly

focusing on enhancing the resolution and visual quality of salient objects within

low-resolution images, is relatively limited. This specific combination of tasks

poses unique challenges and requires tailored approaches to address them effec-

tively.

Most existing super-resolution methods primarily focus on enhancing the res-

olution of the entire image without considering the saliency of objects within the

image. On the other hand, salient object detection methods aim to identify and

localize salient objects but do not explicitly tackle the problem of super-resolving

those objects. As a result, the integration of these two tasks to achieve salient

object super-resolution remains relatively unexplored.

The limited research in salient object super-resolution can be attributed to the

complexity of the task and the lack of available datasets and evaluation metrics

specifically designed for this purpose. Developing effective algorithms for salient

object super-resolution requires addressing challenges such as accurately iden-

tifying salient objects, preserving their structure and details during the super-

resolution process, and seamlessly integrating the enhanced objects back into the

original image.

Despite the scarcity of work in salient object super-resolution, recent advance-

ments in deep learning, attention mechanisms, and image processing techniques

provide a promising foundation for exploring and developing novel approaches

in this domain. By combining the strengths of salient object detection, super-

resolution, and related techniques, researchers can contribute to filling the gap in

the literature and advancing the field of salient object super-resolution.

Therefore, the proposed method in this thesis aims to bridge this research gap

by providing a comprehensive framework for salient object super-resolution. By

breaking down the task into stages and leveraging advanced techniques such as
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SRGAN, Non-Local Sparse Attention, and the Deraining Recursive Transformer,

we aim to enhance the resolution and visual quality of salient objects within low-

resolution images, thus contributing to the limited body of work in salient object

super-resolution.

2.1 Super-Resolution

SRCNN (Super-Resolution Convolutional Neural Network), VDSR (Very Deep

Super-Resolution), SRGAN (Super-Resolution Generative Adversarial Network),

EDSR (Enhanced Deep Super-Resolution), RCAN (Residual Channel Attention

Networks), and NLSN (Non-Local Sparse Attention) are all notable methods in

the field of image super-resolution.

2.1.1 SRCNN

SRCNN was one of the pioneering deep learning-based super-resolution methods

introduced by Dong et al. It utilizes a three-layer convolutional neural network

to learn the mapping between low-resolution and high-resolution image patches.

By effectively exploiting the hierarchical representations, SRCNN demonstrated

significant improvement in super-resolution performance [46].

The network of SRCNN is not deep. It consists of three parts as shown in

figure 2.1:

Figure 2.1: Architecture of Super-Resolution Convolutional Neural Network [46]

a) Patch Extraction and Representation: The low-resolution input is first up-

scaled to the required size using bicubic interpolation before being fed into

the SRCNN network. The first layer performs a convolution with Relu to

get E1(Y).

E1(Y) = max(0, W1 ∗ Y + B1) (2.1)
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Here, X is a High-resolution ground truth image, Y is a the low-resolution

image that has been bicubic up-sampled and size of W1 is c × f1 × f1 × n1

where c is number of channels, f1 is filter size and n1 is number of filters.B1

is a n1 dimensional bias vector.

b) Non-linear mapping: After calculating E1(Y), nonlinear mapping is per-

formed by:

E2(Y) = max(0, W1 ∗ E1(Y) + B2) (2.2)

Here, size of W2 is n1 × 1 × 1 × n2 and B2 is a n2 dimensional bias vector. So

here mapping of n1 dimensional vector to n2 dimensional vector is done.

c) Reconstruction: Reconstruction is required after the nonlinear mapping.

Thus convolution is again done here:

E(Y) = W3 ∗ E2(Y) + B3 (2.3)

Here size of W3 is n2 × f3 × f3 × c and B3 is bias of size c.

The standard loss function average of mean squared error is used in this

network for training. Loss function P(/theta) can be given as:

P(θ) =
1

n

n

∑
i=1

||E(Yi; θ)− Xi||
2 (2.4)

where E(Yi; θ) denotes reconstructed super-resolution image, Xi denotes

ground truth high resolution image and n denotes total no. of samples.

2.1.2 VDSR

VDSR, proposed by Kim et al., introduced a deep residual network architecture

for super-resolution. It utilizes a very deep network with residual learning to re-

cover high-resolution details. By employing a skip connection, VDSR effectively

addresses the vanishing gradient problem and enables the training of deeper net-

works. It achieved state-of-the-art results by surpassing the performance of pre-

vious methods [25].

2.1.3 SRGAN

SRGAN, an adversarial learning-based approach proposed by Ledig et al., com-

bines the power of generative adversarial networks (GANs) with super-resolution.
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It employs a generator network to produce high-resolution images and a discrim-

inator network to distinguish between generated and real high-resolution images.

SRGAN demonstrated the ability to generate photo-realistic and visually appeal-

ing super-resolved images with enhanced perceptual quality [26].

It consists of two major components:

• Generator: The generator uses residual networks which use skip connec-

tions. While training, First, an HR image is downsampled to an LR image,

and then the generator tries to upsample the LR image to SR. After that dis-

criminator tries to distinguish between an SR image and an HR image and

generates an adversarial loss, which is backpropagated into the generator.

• Discriminator: The task here is to discriminate between generated SR im-

ages and real HR images. To solve the the adversarial min-max problem of a

discriminator network DθD
is optimized in alternate manner with Generator

GθG
using following equation 2.5 where θD and θG denotes the weights and

biases of the deep network:

min
θG

max
θD

EIHR Pmin(IHR)[log DθD
(IHR)] +EILR PG(ILR)[log(1− DθD

(GθG
(ILR)))]

(2.5)

2.1.4 EDSR

EDSR (Enhanced Deep Super-Resolution) is a method that enhances the perfor-

mance of single-image super-resolution by making specific modifications to the

architecture used in SRGAN (Super-Resolution Generative Adversarial Network).

EDSR introduces a deeper network with more convolutional layers and utilizes

residual connections to capture intricate details and improve reconstruction. No-

tably, EDSR removes batch normalization, reducing computational complexity

and avoiding potential biases during inference. The model is trained efficiently

using pixel-wise mean squared error loss and gradient clipping. .

It modified the SR-Resnet block by removing the batch normalization layer,

due to which GPU memory usage was reduced by 40% while training compared

to SR-Resnet as shown in Figure: 2.2.
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Figure 2.2: SR-Resnet Modifications [33]

These modifications result in superior performance compared to SRGAN and

other state-of-the-art methods, as measured by the peak signal-to-noise ratio (PSNR)

and structural similarity index (SSIM). EDSR offers improved image quality and

fidelity, making it a promising approach for super-resolution tasks [33]

2.1.5 RCAN

RCAN [26], proposed by Zhang et al., introduced a residual channel attention

mechanism to improve super-resolution performance. By explicitly modelling the

interdependencies between channels, RCAN effectively enhances the representa-

tion capacity of the network. It introduces channel attention mechanisms to em-

phasize important image features during super-resolution selectively. By adap-

tively recalibrating channel-wise features, RCAN achieves significant improve-

ments in perceptual quality and quantitative measures. It outperforms several

other CNN-based methods, including SRCNN and EDSR.

As shown in architecture Figure 2.3 , RCAN consists of four parts:

Figure 2.3: Architecture of Residual Channel Attention Network [26]
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Figure 2.4: Architecture of Residual Channel Attention Block [26]

1. Shallow-Feature Extraction: In this part, only one convolutional layer is

used to extract the shallow features F0 from LR input.

F0 = HSF(ILR) (2.6)

Here HSF is the convolution function.

2. Residual in Residual (RIR): Also known as Deep Feature Extraction in this

step previous feature is used in the RIR module for deep feature extraction.

Here HRIR denotes the proposed RIR structure with G residual groups(RG).

HDF = HRIR(F0) (2.7)

This proposed RIR for deep feature extraction can achieve the largest depth

and provide a large receptive field size. Figure 5 describes the architecture

of the Residual Channel Attention Block(RCAB), which consist of a channel

attention mechanism.

3. Upscale module and reconstruction part: The output from RIR is then up-

scaled,

FUP = HUP(FDF) (2.8)

and the upscaled feature is then reconstructed using one convolution layer.

ISR = HREC(FUP) = HRCAN(ILR) (2.9)

Here HREC and HRCAN denote the reconstruction layer and the function of

the RCAN, respectively. The standard loss function used in this network is:

L(θ) =
1

N

N

∑
i=1

||HRCAN(Ii
LR)− Ii

HR||1 (2.10)
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2.1.6 NLSN

NLSN (Non-Local Sparse Attention) [39] is a method that utilizes non-local opera-

tions and sparsity regularization to capture long-range dependencies and enhance

fine details within images. It selectively attends to relevant spatial and channel in-

formation, preserving important features while suppressing noise and artefacts.

It offers a unique approach to super-resolution and can be combined with other

methods to enhance performance.

2.2 Visual Saliency

2.2.1 Global Contrast Based Salient Region Detection

Global Contrast Based Salient Region Detection [7] is a computer vision method

that automatically identifies visually salient regions in images. It operates by an-

alyzing the contrast differences between a region and its surroundings. The as-

sumption is that salient regions exhibit higher contrast compared to their neigh-

bours. The method involves preprocessing the image, constructing a contrast

map, computing a saliency map, refining the saliency map, and performing post-

processing. The resulting saliency map highlights the most visually interesting

areas. This method has been widely used, has inspired variations and extensions,

and has been evaluated against other state-of-the-art saliency detection methods.

It is an effective technique for automatic salient region detection in images, mak-

ing it valuable for various applications in computer vision.

They proposed a histogram-based method to detect the contrast of images.

According to the paper, the Saliency of a pixel is defined using its colour contrast

values to all other pixels in the image in L∗a∗b∗ (CIELAB) colour space. L∗ for

perceptual lightness; a* and b* for 4 unique colours red, green, blue, and yellow.

The saliency of an image pixel Ik is defined as:

S(Ik) =
N

∑
i=1

D(Ik, Ii) (2.11)

Here D() is the colour distance metric, i.e. the Euclidean colour distance be-

tween each pixel. Rearranging eq. As the same colour value, pixels will have the

same saliency.

S(Ik) = S(cl) =
n

∑
j=1

f jD(cl, cj) (2.12)
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Here n represents distinct pixels, and f j represents the probability of colour

pixel cj.

Since there are 2563 combinations possible in the worst case so, time com-

plexity would be very high to compute. They quantised the RGB space while

measuring distance in the L*a*b* colour space. So they quantized each colour

channel RGB into 12 different values to reduce complexity. They chose 95% most

frequently occurring colours, and the rest, 5%, were the colours they replaced by

the closest histogram colour.

Quantization may introduce artefacts as similar colours quantised to different

values, so they used a smoothing procedure to refine the saliency value for each

colour. they took the weighted average of the saliency value of similar colours

measured in L∗a∗b∗ colour space given as:

1

m − 1
T

m

∑
i=1

(T − D(c, ci))S(ci) (2.13)

here m = n
4 and T = ∑

m
i=1 D(c, ci) is the sum of distances between colour c

and its m nearest neighbours ci. They used a linearly-varying smoothing weight

(T − D(c, ci)) to assign larger weights to colours closer to c in the colour feature

space.

2.2.2 The Saliency Filtering

While the Global Contrast Based Salient Region Detection method calculates con-

trast values and generates a saliency map, The Saliency Filtering method [40]

takes a step further by applying contrast-based filtering operations, these opera-

tions aim to amplify the contrast differences between the salient regions and their

surroundings. By doing so, the Saliency Filtering method emphasizes the salient

regions more prominently, making them stand out even further.

The key distinction lies in the filtering step of the Saliency Filtering method,

where contrast-based techniques are employed to enhance the regions with high

contrast values. This additional step allows for a more refined and focused high-

lighting of the salient regions, resulting in a more robust detection of visually

significant areas in the image.

They break down their algorithm into 4 stages, each having its own impor-

tance.

(a) Abstraction: They decomposed the image into basic elements that preserve

the relevant structure but abstract undesirable detail. Specifically, each el-
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ement should locally abstract the image by clustering pixels with similar

properties (like colour) into perceptually homogeneous regions.

For this, they used K-means Clustering in geodesic image distance in Cielab

colour space.

(b) Element Uniqueness: In the first contrast measure, image regions, which

stand out from other regions in certain aspects, catch our attention and

should be labelled more salient.

Element uniqueness of the current pixel i, given its position pi. And color ci

is given as:

Ui =
N

∑
j=1

||(ci − cj)||
2.w

(p)
ij (2.14)

Ui =
N

∑
j=1

[D(Ii, Ij)]2.w
(p)
ij (2.15)

w
(p)
ij =

1

Zi
(exp−

1

2
(σ2

p)||(pi − pj)||
2)) (2.16)

σ2
p = 0.25 (2.17)

Where Zi is normalization factor ensuring:

n

∑
j=1

w
p
ij = 1 (2.18)

This way they handled both local and global contrast.

(c) Element Distribution: Ideally colours belonging to the background will be

distributed over the entire image exhibiting a high spatial variance, whereas

foreground objects are generally more compact. they define the element

distribution measure for a segment i using the spatial variance Di of its color

ci as,

Di =
N

∑
j=1

||pi − µi||
2.w

(c)
ij (2.19)

Where,
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w
(p)
ij =

1

Zi
(exp (−

1

2
(σ2

p))||(ci − cj)||
2)) (2.20)

µi = ∑ wc
ij pj (2.21)

σc = 20 (2.22)

(d) Saliency Assignment: They Normalized Ui and Di in the range [0, 1] and

further assigned saliency. They found the distribution measure Di of higher

significance and discriminative power. So they used exponential to empha-

size Di as,

Si = Ui exp (−k.Di)k = 6 (2.23)

Naive up-sampling assignment of Si, carries segmentation errors of abstrac-

tion. So they used,

S
′

i =
N

∑
j=1

wij.Sj

Where,

wij =
1

Zi
exp−

1

2
(α.||ci − cj||

2 + β.||pi − pj||
2)

α = β =
1

30

In summary, the Saliency Filtering method builds upon the Global Contrast

Based Salient Region Detection method by further incorporating contrast-based

filtering techniques to enhance salient regions’ detection and emphasis. This re-

finement step enables a more pronounced contrast between the salient regions

and their surroundings, ultimately improving the accuracy and quality of salient

region detection in images.

2.2.3 Frequency Tuned Salient Region Detection

The Frequency Tuned Salient Region Detection method [1] is a computer vi-

sion technique that identifies salient image regions by analyzing their frequency

components. It focuses on the understanding that salient regions exhibit dis-

tinct frequency characteristics compared to less significant areas. This method
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involves preprocessing the image, analyzing its frequency components, apply-

ing frequency tuning to enhance relevant frequencies, generating a saliency map

based on the tuned frequencies, and performing optional post-processing.

This method utilizes the Frequency-Tuned (FT) channel to highlight salient re-

gions based on their frequency content. They first convert image to CIELAB color

space. Then, The center-surround contrast is calculated for each pixel by taking

the absolute difference between its intensity value (L value) and the average in-

tensity of its surrounding pixels. This operation enhances the differences between

the center region and its surrounding regions.

C(x, y) = |L(x, y)− L(x, y)| (2.24)

where C(x, y) is the center-surround contrast at pixel (x, y), L(x, y)is the lumi-

nance value at pixel (x, y), and L(x, y) is the average luminance of the surround-

ing pixels.

Then, the center-surround contrast image is convolved with a Gaussian kernel

to introduce smoothing and reduce noise.

BlurC(x, y) = GaussianBlur(C(x, y)) (2.25)

The next step is to take the Fourier Transform of the Gaussian-blurred center-

surround contrast image.

F(u, v) = FourierTrans f orm(BlurC(x, y)) (2.26)

where F(u, v) represents the Fourier Transform at frequency (u, v).

Similar to the previous methods, the amplitude spectrum represents the mag-

nitudes of the frequency components in the Fourier domain. This is typically

obtained by calculating the absolute values of the Fourier Transform.

A(u, v) = |F(u, v)| (2.27)

After that, the amplitude spectrum is modulated by a weighting function that

is designed to emphasize the frequency components associated with salient re-

gions while suppressing others. The Frequency-Tuned (FT) channel is obtained

by applying the following frequency tuning function:

FT(u, v) = A(u, v) ∗ exp(−(D(u, v)/(2 ∗ σD)
2)) (2.28)

where D(u, v) is the Euclidean distance from each frequency component (u, v)
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to a center frequency (u0, v0), and σD controls the width of the Gaussian in fre-

quency domain.

The modulated amplitude spectrum (FT channel) is transformed back into the

spatial domain using the inverse Fourier Transform.

FTChannel(x, y) = InverseFourierTrans f orm(FT(u, v)) (2.29)

The final saliency map is obtained by normalizing the FT channel values to the

range [0, 1].

Saliency(x, y) =
(FTChannel(x, y)− min(FTChannel))

(max(FTChannel)− min(FTChannel))
(2.30)

When compared to the previous methods, the Frequency Tuned Salient Region

Detection method offers a different perspective by leveraging frequency informa-

tion. While the Global Contrast Based Salient Region Detection and Saliency Fil-

tering methods primarily rely on contrast analysis, the Frequency Tuned method

emphasizes the analysis of frequency components. It considers that salient re-

gions often possess unique frequency signatures, which can be enhanced to high-

light their significance.

2.2.4 Saliency Optimization from Robust Background Detection

Saliency Optimization from Robust Background Detection [58] is a computer

vision method that extracts salient regions from images by accurately detecting

the background and optimizing the saliency map. The method involves two main

steps: robust background detection and saliency optimization.

The robust background detection step focuses on identifying the background

regions using robust background modelling techniques. This helps differentiate

less visually significant parts of the image from foreground objects or salient re-

gions. The saliency optimization step then refines the saliency map by incorpo-

rating the detected background information. Optimization techniques are used

to assign low saliency scores to the background or suppress its influence on the

saliency map, ensuring that the salient regions stand out.

Basically, they calculated the ratio of a region’s perimeter on the boundary to

the region’s overall perimeter or square root of its area as shown in Equation 2.31.

BC(R) =
|{z|z ∈ R, z ∈ B}|
√

|{z|z ∈ R}|
(2.31)

where B is the set of image boundary patches, and z is an image patch.
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The image is first abstracted as a set of nearly regular superpixels using the

SLIC method. They then construct an undirected weighted graph by connecting

all adjacent superpixels (x, y) and assign their weight deuc(x, y) as the Euclidean

distance between their average colours in the CIE-Lab colour space.

The geodesic distance between any two superpixels dgeo(x, y) is defined as the

accumulated edge weights along their shortest path on the graph, as shown in

Equation 2.32.

dgeo(x, y) = min
x1=x,x2,...,xn=y

n−1

∑
i=1

deuc(xi, xi+1) (2.32)

For convenience, they define dgeo(x, x) = 0. Then they define the "spanning

area" of each superpixel x as shown in Equation 2.33.

A(x) =
N

∑
i=1

exp

(

−
d2

geo(x, xi)

2σ2
c

)

=
N

∑
i=1

Z(x, xi) (2.33)

where N is the number of superpixels, equation 2.33 computes a soft area of

the region that x belongs to. The operand Z(x, xi) in the summation is in the range

(0, 1] and characterizes how much superpixel xi contributes to x′s area.

Similarly, they define the length along the boundary as shown in Equation

2.34.

Lb(p) =
N

∑
i=1

Z(x, xi).δ(xi ∈ B) (2.34)

where δ(∗) is 1 for superpixels on the image boundary and 0 otherwise.

Finally, they compute the boundary connectivity similarly to Equation 2.31.

BC(x) =
Lb(x)
√

A(x)
(2.35)

They further add edges between any two boundary superpixels to enlarge the

boundary connectivity values of background regions, which has little effect on

the object regions. This is useful when a physically connected background region

is separated due to the occlusion of foreground objects. To compute Equation

2.35, the shortest paths between all superpixel pairs are efficiently calculated us-

ing Johnson’s algorithm [24] since their graph is very sparse.

Thus, they calculate the saliency map of the salient objects.

The Saliency Optimization from the Robust Background Detection method ex-

tracts salient regions by accurately detecting the background and optimizing the

saliency map. It combines robust background detection techniques with saliency
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optimization to ensure that the saliency map primarily highlights the visually

salient foreground objects. This method offers a distinct approach to saliency de-

tection when compared to frequency-based methods, emphasizing the accurate

separation of salient regions from the background.
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CHAPTER 3

Proposed Method

Our proposed method aims to generate a high-resolution output image that ex-

plicitly enhances the salient object while preserving the remaining regions of the

image in their original low-resolution form.

For the initials, instead of taking an overall deep-learning-based approach to

generate salient object super-resolution, we took the hybrid approach.

We divided the problem statement into multiple sub-tasks, each task having

its importance. By breaking down the problem statement into multiple sub-tasks,

each with its specific importance, we effectively tackled the challenge of dealing

with low training data in salient object super-resolution.

By approaching the problem in a modular manner, we were able to focus on

different aspects of the super-resolution task separately, addressing the specific

challenges associated with each sub-task. The division of the problem into smaller

components allowed us to leverage the limited training data more efficiently and

effectively.

These sub-tasks are:

1. Salient Object Detection

2. Salient Object Segmentation

3. Salient Object Super-Resolution

4. Re-stacking Salient Object

5. Image Smoothing using Guided Image Filter

By combining these stages, as illustrated in Fig.3.1, we achieve a high-resolution

output image that focuses on enhancing the salient object while maintaining the

remaining image as it is. This approach allows us to preserve important details

and features of the salient object while improving its visual quality and resolution.

Let’s expand every segment into a bit of detail.
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Figure 3.1: Overall Flow chart of the proposed method

3.1 Salient Object Detection

Here’s the modified text with the equations formatted:

As explained in Chapter 2, to begin the salient object super-resolution process,

we generate a saliency map for the low-resolution input image using a specific

method mentioned in reference [58] for the respective datasets.

The saliency map serves as a visual representation highlighting the regions

in the low-resolution image considered salient or visually distinctive. It helps to

identify the areas of interest or importance within the image most likely to contain

the salient object.

We can effectively extract the saliency information from the low-resolution

image and generate a corresponding saliency map by employing the mentioned

method. This map will provide valuable guidance for subsequent stages of the

salient object super-resolution process, aiding in the accurate reconstruction of

the salient object in high resolution.

We used saliency optimization from robust background detection to detect

salient object regions.

3.2 Salient Object Segmentation

After obtaining the saliency map from the previous step, which is a grayscale

image highlighting the salient regions, it requires further processing to segment

the salient object effectively. As a grayscale image, the saliency map cannot be

directly used for segmentation purposes. Therefore, it must be converted into a

binary map to facilitate the segmentation process.

The conversion from a grayscale saliency map to a binary map involves thresh-

olding, where a particular threshold value is applied to the saliency map to dis-

tinguish between salient and non-salient regions. Pixels in the saliency map with

values above the threshold are classified as belonging to the salient object, while

pixels below the threshold are considered non-salient.
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To get the appropriate threshold value, we employ Otsu’s thresholding method

[52], which calculates an optimal threshold value to separate foreground and

background pixels in an image. The threshold is determined by maximizing the

between-class variance or minimizing the within-class variance.

After computing the optimal threshold value, it can be used to separate the

foreground and background pixels by assigning them different labels or values.

By converting the saliency map into a binary map, we obtain a clear separation

between the salient object and the background, enabling more accurate segmenta-

tion. The resulting binary map represents a different mask where the salient thing

is represented by foreground (white) pixels, and the non-salient background is

represented by background (black) pixels. This binary representation allows for

easier identification and extraction of the salient object during the subsequent seg-

mentation steps.

Once the thresholding of the binary map is done, we need the proper connec-

tivity between the salient objects in order to extract the whole region as a single

region for further steps. In order to get the connectivity of salient objects, we em-

ployed the morphological closing operation [5]. Morphological closing is a fun-

damental operation in mathematical morphology, which is a branch of image pro-

cessing and analysis. It removes small dark regions or holes in an image’s bright

regions while preserving the objects’ overall structure and shape. We employed

morphological closing operation on the binary map obtained in the previous step,

enhancing the connectivity of the salient objects in the given image.

For segmentation, we calculate the minimum upright rectangle encompassing

all non-zero (foreground) pixels in the binary map obtained from the previous

step. By considering the position and size of this bounding rectangle, we can

accurately extract the salient object from the low-resolution image. The bound-

ing rectangle provides essential information regarding the spatial location and

dimensions of the salient object, allowing for its precise isolation.

Upon obtaining the bounding rectangle, we crop the region of interest from

the low-resolution image, discarding the non-salient background regions. This se-

lective extraction ensures that subsequent super-resolution processing is focused

solely on enhancing the details and quality of the salient object itself.

Utilizing robust salient object detection and segmentation methods helps iden-

tify and isolate visually significant regions. By focusing on these regions during

super-resolution, the limited available information in low-resolution is better pre-

served and enhanced.
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3.3 Salient Object Super-Resolution

After successfully segmenting the salient object from the low-resolution image,

the next step in our process is the salient object super-resolution. The objective

here is to enhance the resolution and quality of the extracted salient object while

keeping the remaining parts of the image unchanged.

By identifying and isolating the regions of interest (salient objects) within the

low-resolution image, the super-resolution process can be limited to only these

specific areas. This targeted approach significantly reduces the computational

burden, as the model does not need to process or enhance the entire image. In-

stead, it can concentrate its efforts on refining the resolution and visual quality of

the visually significant regions.

To achieve salient object super-resolution, we employ specific techniques and

algorithms that focus on the salient regions of the image. These techniques lever-

age the high-frequency information present in the salient object and aim to restore

its fine details and sharpness.

The super-resolution process involves generating a high-resolution version of

the salient object by exploiting the available low-resolution information and in-

corporating additional details from external sources or through sophisticated re-

construction methods. This allows us to enhance the visual quality and level of

detail specifically within the salient object, providing a more realistic and visually

appealing representation.

For salient object super-resolution, we have explored three approaches: SR-

GAN (Super-Resolution Generative Adversarial Network), Non-Local Sparse At-

tention, and a trained version of Deraining Recursive Transformer. Each approach

has its own distinct methodology and focuses on enhancing the resolution and

quality of the salient object in a unique way.

For the super-resolution step, we employed three different models.

3.3.1 SRGAN

SRGAN [26] is a deep learning-based approach that utilizes a generative adversar-

ial network to generate high-resolution images. It is trained to learn the mapping

from low-resolution to high-resolution images and produces visually realistic and

sharp results by leveraging adversarial training.

The SRGAN (Super-Resolution Generative Adversarial Network) architecture

is a deep learning model designed specifically for image super-resolution. It con-

sists of a generator network and a discriminator network, working together in an
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adversarial manner to enhance the resolution of low-resolution images.

The generator network takes a low-resolution image as input and aims to gen-

erate a corresponding high-resolution output. It uses convolutional layers with

activation functions to capture image features and progressively upsamples the

input to increase its resolution while preserving finer details, as shown in figure

3.2. Skip connections are often incorporated to facilitate the flow of information

across different levels of features, aiding in the reconstruction of fine details.

Figure 3.2: The architecture of Super-Resolution Generative Adversarial Network
[26]

On the other hand, the discriminator network is responsible for distinguish-

ing between generated high-resolution images and real high-resolution images. It

examines either the generated or real images and outputs a probability score indi-

cating the authenticity of the input image. The discriminator typically consists of

convolutional layers with activation functions and is trained to correctly classify

real and generated images.

During training, the generator and discriminator are trained in an adversar-

ial manner. The generator aims to generate high-resolution images that the dis-

criminator cannot distinguish from real images, while the discriminator aims to

classify the images correctly. This adversarial training encourages the generator

to produce visually convincing and realistic high-resolution outputs.

To guide the training process, SRGAN utilizes multiple loss functions. The

primary loss function is the adversarial loss, which pushes the generator to gen-

erate images that fool the discriminator. Additionally, a content loss is employed

to ensure that the generated images retain the content of the low-resolution input.

Other loss components, such as pixel-wise mean squared error (MSE), may also

be used to encourage similarity between the generated and target high-resolution

images.
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Overall, the SRGAN architecture harnesses the power of adversarial train-

ing to generate high-quality, visually appealing high-resolution images from low-

resolution inputs, making it a valuable tool for super-resolution tasks.

3.3.2 NLSN

Non-Local Sparse Attention [39] is a technique that employs non-local self-attention

mechanisms to capture long-range dependencies and improve the representation

of salient objects. Integrating non-local sparse attention modules into the super-

resolution pipeline enhances the reconstruction and preserves fine details by ef-

fectively modelling the relationships between salient object regions and their sur-

rounding context.

For the Non-Local Sparse Attention method, we utilized a pre-trained model.

This approach involves leveraging a model that has been trained on a large dataset

or specific task beforehand. In our case, we employed a pre-existing model that

was trained on a relevant dataset or task, which captures the essential features

and knowledge required for salient object super-resolution.

Using a pre-trained model offers several advantages. Firstly, it saves com-

putational resources and time as we don’t need to train the model from scratch.

Secondly, pre-trained models have already learned intricate patterns and repre-

sentations from a vast amount of data, enabling them to generalize well to new

unseen data. This can lead to improved performance and faster convergence dur-

ing the testing phase.

By utilizing a pre-trained model for the Non-Local Sparse Attention method,

we could take advantage of its learned knowledge and leverage it in the super-

resolution task, enhancing the quality and accuracy of the results.

The Non-Local Sparse Attention (NLSA) aims to improve the performance of

SISR models by leveraging the benefits of both non-local and sparse representa-

tions.

The key component of the NLSA approach is the Non-Local Sparse Attention

module, which incorporates a dynamic sparse attention pattern. This module lets

the model focus on important image features and exploit their correlations. By dy-

namically adjusting the sparse attention pattern, the NLSA model can adaptively

capture long-range dependencies and selectively attend to relevant information

while also reducing computational overhead.

In the context of SISR, the NLSA module is inserted after every eight residual

blocks, as shown in figure 3.3. This placement allows the NLSA module to en-

hance the representations learned by the preceding layers and contribute to the
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overall super-resolution process.

By combining non-local operations and sparse attention in the NLSA approach,

the model can effectively capture long-range dependencies and exploit the corre-

lations between image features, leading to improved super-resolution results.

Incorporating attention mechanisms can selectively focus on areas with non-

uniform degradation, one of the major challenges, directing the super-resolution

process to the regions that require more attention and mitigate the issue.

Figure 3.3: NLSN [26]

3.3.3 DRT

Although originally designed for deraining tasks, the Deraining Recursive Trans-

former (DRT) model [32] has been repurposed and trained for salient object super-

resolution in our approach. This trained version of the DRT model is utilized

further to enhance the quality and resolution of the salient object. By leveraging

the capabilities of the DRT model, we aim to address any rain-induced blur or

artefacts present in the salient object and restore its fine details.

We incorporate a specific network structure, as Figure 3.4 illustrates, for our

experiments. The model consists of several stages: patch embedding, image re-

construction, deep feature extraction, and hierarchical feature representations.

In the patch embedding and image reconstruction stages, only one convolu-

tion layer is used without any activation function. This layer helps capture im-

portant features from the input images.

The deep feature extraction stage comprises six Recursive Transformer Blocks

(RTBs), denoted as N = 6. Each RTB consists of three recursive calls (L = 3) on two

Spatial Transformer Blocks (STBs). At the end of each RTB, a single convolution

layer is employed without any activation function. It’s worth noting that all the

convolution operations maintain the input size, ensuring that there is no down-
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Figure 3.4: DRT [32]

scaling or upsampling of the image during the super-resolution process. This

approach prevents the loss of pixel-level information.

Each STB in our model has a fixed local window dimension of 7× 7 and a patch

size of size 4. Additionally, each STB employs two attention heads to capture

different aspects of the input.

The depth of the hierarchical feature representations, denoted as D, is set to

96. This depth value determines the level of abstraction and complexity in the

hierarchical features learned by the model.

The recursive design of the DRT allows it to iteratively refine the super-resolution

predictions. Each iteration updates the generated high-resolution output, pro-

gressively reducing ambiguity and uncertainty by incorporating more informa-

tion from the low-resolution input and learned features.

3.4 Re-stacking Salient Object

After performing salient object super-resolution, we proceed to the restacking

stage, where we recombine the enhanced salient object with the remaining parts

of the image to create the final output. Re-stacking aims to integrate the high-

resolution salient object back into its original context, ensuring that the overall

image maintains a coherent and visually pleasing appearance.

In our approach, we utilize the saliency map’s bounding rectangle to facilitate

the restacking process of the salient object. The saliency map provides valuable

information about the regions in the image that are deemed salient or attention-

worthy. By extracting the bounding rectangle of the salient object from the saliency

map, we obtain a tight and accurate representation of its spatial extent.
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The bounding rectangle is a reference for aligning and repositioning the high-

resolution salient object within the low-resolution image. By preserving the rela-

tive position and scale of the salient object, we ensure that it is reintegrated seam-

lessly into its original context.

We align the high-resolution salient object with the corresponding region in

the low-resolution image to achieve restacking using the saliency map’s bounding

rectangle. This alignment can involve resizing the salient object to match the size

of the bounding rectangle or translating it to the correct position within the image.

By utilizing the bounding rectangle, we can effectively merge the high-resolution

salient object with the remaining parts of the image while maintaining its spatial

coherence. This approach ensures that the salient object appears visually consis-

tent and integrated within the overall image, enhancing the overall quality and

realism of the final output.

3.5 Image Smoothing using Guided Image Filter

To achieve smoother blending and reduce artefacts around the boundaries of the

salient object after the restacking stage, we employ guided image smoothening. In

this process, we use the low-resolution image as guidance to guide the smoothing

operation.

The low-resolution image means preserving important details and structures

within the salient object while smoothing the sharp edges. By incorporating the

guidance image, we can ensure that the smoothing process considers the desired

level of detail and texture, resulting in a more natural and visually pleasing inte-

gration of the salient object.

The guided image smoothening [12] process involves applying a smoothing

algorithm or filter to the salient object region while considering the guidance im-

age. The algorithm considers the pixel values and features of both the salient ob-

ject and the guidance image to determine the degree of smoothing. By adjusting

the parameters of the smoothing algorithm, we can control the balance between

preserving details and achieving a smoother transition.

The guided image filtering technique can be mathematically described as a

weighted averaging process at each target image pixel; a local window is defined

around it. The weights for the averaging process are determined based on the

similarity between the pixel intensities in the guidance image and the pixels in

the local window of the target image.

The benefits of guided image filtering include edge preservation and reduced
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artefacts compared to traditional filtering methods like Gaussian filtering. This

makes it particularly useful for image enhancement, denoising, and tone-mapping

tasks.

3.6 Proposed Model TraNLSN

In our research, we propose a hybrid model TraNLSN, that combines the De-

raining Recursive Transformer (DRT) model and the Non-Local Sparse Attention

mechanism. The DRT model, initially developed for deraining tasks, is adapted

for super-resolution to restore fine details and textures within salient objects ef-

fectively.

In the context of salient object super-resolution, the challenges are distinct

from deraining tasks. Super-resolution involves the reconstruction of high-resolution

details within regions of interest, particularly salient objects, from low-resolution

input images. This task demands the extraction of intricate details and the preser-

vation of relevant information within salient regions.

The DRT model’s strength in capturing long-range dependencies becomes highly

relevant for salient object super-resolution, as it allows the model to understand

the spatial relationships and context between different regions within an image.

By incorporating the DRT model into our hybrid framework, we aim to exploit

this capability to enhance the resolution of salient objects while considering their

global context.

Furthermore, the DRT model’s recursive nature enables it to iteratively refine

feature representations iteratively, leading to more accurate and comprehensive

image reconstructions. This iterative process can be highly beneficial in dealing

with complex and diverse salient objects, as it allows the model to learn and refine

the fine details within these regions iteratively.

By integrating the DRT model into our hybrid framework for salient object

super-resolution, we expect to leverage its advanced feature extraction capabili-

ties and recursive refinement process to enhance the resolution of salient objects

in images effectively.

Additionally, we incorporate the Non-Local Sparse Attention mechanism into

our hybrid model. This mechanism lets the model selectively attend to the input

image’s relevant spatial and channel information. By attending to specific areas

and channels, the model can better preserve important features while suppressing

noise and artefacts that may be present in the low-resolution input.

The combination of the DRT model and the Non-Local Sparse Attention mech-
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anism results in a hybrid model that excels at the super-resolution of salient ob-

jects. The DRT model provides the foundation for capturing detailed information,

while the Non-Local Sparse Attention mechanism enhances the model’s ability to

focus selectively on important image features.

Our hybrid model offers a comprehensive solution for the super-resolution of

low-resolution images, effectively restoring fine details and textures and preserv-

ing important features while mitigating noise and artefacts.

In the super-resolution process of our proposed model TraNLSN, we have de-

signed a specific architecture, as depicted in Figure 3.5. This architecture com-

prises several key blocks, including patch embedding, RTB (Deraining Recursive

Transformer Block), patch unembedding, NLSA (Non-Local Sparse Attention) up-

sample, and more. Let’s delve into the details of each block.

Figure 3.5: Architecture for TraNLSN
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Figure 3.6: NLSA Block

Figure 3.7: Non-Local Sparse Attention (NLSA) [39]
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To integrate the Deraining Recursive Transformer (DRT) model and the Non-

Local Sparse Attention (NLSN) model, we introduced the NLSA Block as shown

in Figure 3.6. This block allows for the fusion of the NLSN attention modules

with the transformer architecture by incorporating patch unembedding, projec-

tion convolution, the original NLSN attention block, projection output convolu-

tion, and patch embedding layers. The NLSA Block seamlessly integrates the

NLSN attention mechanism, as shown in Figure 3.7, into the transformer archi-

tecture.

The overall architecture of our hybrid model, TraNLSN, is constructed by alter-

nating the Recursive Transformer Blocks (RTBs) and NLSA Blocks. This arrange-

ment is repeated N = 6 times to form the final architecture. Each RTB consists

of three recursive calls on two Spatial Transformer Blocks (STBs), followed by a

convolution layer without activation. The STBs have a fixed local window dimen-

sion of 7 × 7 and a patch size of 4. We also utilize two attention heads to capture

different aspects of the input data.

The hierarchical feature representations in TraNLSN have a depth of 96, deter-

mining the level of abstraction and complexity in the learned features. This depth

allows the model to capture intricate details and patterns in the image, contribut-

ing to more accurate super-resolution results.

The model incorporates two skip connections: an inner skip connection after

the first patch embedding, which is combined with the NLSA block output, and

an outer skip connection before the first patch embedding, added at the post-

patch embedding stage. An upsample and convolution block are then applied to

upsample the image to the desired scale and generate the final output.

By combining the strengths of the DRT model and the NLSN attention mecha-

nism in this modified architecture, TraNLSN aims to leverage the benefits of both

approaches for super-resolution tasks, enhancing the restoration of fine details,

preservation of important features, and suppression of noise and artefacts.
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CHAPTER 4

Experiment and Results

In this section, we describe the experimental setup and present the results ob-

tained from conducting salient object super-resolution experiments using three

different methods. Each method follows the same five basic steps, the only differ-

ence being the choice of super-resolution architecture.

4.1 Datasets

We utilized three benchmark datasets for our experiments: SET5 [4], SET14 [53],

and BSDS100 [38]. SET5, SET14 and BSDS100 consist of five, fourteen and a hun-

dred images, respectively, commonly used for image super-resolution evaluation,

while All these datasets are benchmark datasets for testing super-resolution algo-

rithms.

4.2 Methodology

4.2.1 Method-1 (SRGAN)

Experimental setup for SRGAN Model

During the training phase of the SRGAN model, the following steps are under-

taken:

1. Dataset Preparation: The training dataset is prepared by selecting appropri-

ate image datasets for super-resolution tasks, such as MIRFLICKR [14], Set5,

or Set14. The images in the dataset are resized to a specific resolution and

divided into patches of suitable sizes. Data augmentation techniques, such

as random flipping or rotation, may be applied to increase the diversity of

the training samples.
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2. Model Configuration: The SRGAN model architecture, as described earlier,

is implemented using a deep learning framework. The model’s hyperpa-

rameters are set based on prior research and empirical analysis. The opti-

mizer, such as Adam, is chosen for training the model.

3. Loss Function: During the training phase of the SRGAN model, the loss

function plays a crucial role in guiding the model’s learning process. We

utilise a perceptual loss function instead of using the traditional mean squared

error (MSE) loss commonly employed in super-resolution tasks.

The perceptual loss function is based on the concept of perceptual similarity,

which aims to measure the similarity between images based on high-level

perceptual features rather than pixel-level differences. This approach is mo-

tivated by the understanding that humans perceive images based on their

visual appearance and structure rather than the exact pixel values.

We employ a pre-trained deep neural network to compute the perceptual

loss, such as VGG-19 [43], which has been trained on large-scale image clas-

sification tasks. The network is utilized as a feature extractor to capture

high-level features from both the generated high-resolution images and the

corresponding ground truth images.

The perceptual loss is calculated as the mean squared error between the fea-

ture representations of the generated and ground truth images at multiple

layers of the VGG-19 network. The model is encouraged to generate images

with similar pixel values and high-level visual characteristics by comparing

the feature maps at different levels.

This perceptual loss function enables the SRGAN model to focus on cap-

turing and reproducing important perceptual features in the output images,

such as textures, edges, and structures. The model learns to produce visu-

ally pleasing and perceptually accurate high-resolution images by optimis-

ing this loss during training.

The perceptual loss function is defined as

Lper = Lc + 10−3Ladv (4.1)

where Lc is content loss and Ladv is adversarial loss.
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The following is how this loss is defined: Content loss 4.2:

psr
mse =

1

r2wh

rw

∑
x=1

rh

∑
y=1

(Ihr
x,y − Gθg

(I lr)x,y) (4.2)

VGG content loss 4.3:

psr
vgg/i,j =

1

wi,jhi,j

wi,j

∑
x=1

hi,j

∑
y=1

(φi,j(Ihr
x,y − φi,j(Gθg

(I lr)x,y))) (4.3)

Here r is the downsampling factor,wi,j and hi,j describe the dimensions of

the respective feature maps in the VGG network.And φi,j indicate the feature

map obtained by the jth convolution(after the activation) and before the ith

max-pooling layer within the VGG19 network.

The adversarial loss can be calculated as

Ladv =
N

∑
n=1

−logHθH
(JθJ

(ILR)) (4.4)

where HθH
(JθJ

(ILR)) is the probability that the super-resolution image JθJ
(ILR)

is a natural HR image.

In summary, using a perceptual loss function enhances the training process

of the SRGAN model by promoting the generation of images that closely

resemble ground truth images in terms of high-level perceptual features.

This leads to improved perceptual quality and visual fidelity in the super-

resolution output.

4. Training Iterations: The SRGAN model is trained using the prepared dataset

and loss function. Training is performed in iterations, where each iteration

involves feeding a batch of training samples to the model. The Adam op-

timizer updates the model’s parameters based on the computed gradients,

gradually improving the model’s performance.

By following these steps, the SRGAN model undergoes the training phase,

gradually learning to extract relevant features and enhance the resolution of input

images. The model’s performance is continuously evaluated and refined during

this phase to achieve the desired super-resolution capabilities.

40



Training Setup

In the SRGAN scratch training process, we trained the model using patches of size

96× 96 extracted from the Image-Celeb dataset. The training was performed with

a batch size of 16 and an Adam optimizer. The learning rate was set to 0.00008,

and we applied Adam’s decay with a first-order momentum decay (b1) of 0.5 and

a second-order momentum decay of 0.999. The training process was performed

for a total of 100 epochs for a scale factor of ×4.

Since the SRGAN model typically requires a large training dataset (around

350,000 images), but we had limited training samples available, we applied data

augmentation techniques to augment our dataset. Specifically, we employed ran-

dom horizontal flipping with a probability of 0.5 and random rotation of 90◦ to

increase the diversity and variability of our training data.

By incorporating data augmentation, we aimed to enhance the generalization

capability of the SRGAN model and improve its performance in handling varia-

tions and complexities present in salient object super-resolution tasks.

In our experiment, where the low-resolution images are upsampled, we modi-

fied the SRGAN architecture to adapt it to our objective. The SRGAN architecture

is primarily designed for single-image super-resolution, which involves enhanc-

ing the resolution of low-resolution images.

To align the SRGAN architecture with our objective of salient object super-

resolution, where the low-resolution image is already upsampled, we removed

the upsampling block from the SRGAN architecture. The upsampling block is

responsible for increasing the resolution of the input image.

Removing the upsampling block ensured that the modified SRGAN architec-

ture was suitable for our specific scenario, where the low-resolution images were

already upsampled. This modification allowed us to focus solely on the remaining

components of the SRGAN architecture, such as the generator and discriminator

networks, which play crucial roles in enhancing the quality of the salient object

super-resolution results.

Table 4.1 illustrates the sequential images depicting the various stages involved

in Method-1.
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Method Set5 Set14 BSDS100

LR Image

Map

Thresh

Fill

Segment

SOS

Restack

Smooth

Table 4.1: Stagewise Method-1 depiction
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4.2.2 Method-2 (NLSN)

Experimental setup for NLSN Model

In the experimental setup for the Non-Local Sparse Attention (NLSA) model, we

utilized a pre-trained model to evaluate its performance in the super-resolution

task. Here are the details of the setup:

1. Pre-Trained Model: We obtained a pre-trained NLSA model that was al-

ready trained on a large-scale dataset, such as DIV2K [2], which contains

high-resolution images. The model was trained using appropriate optimiza-

tion techniques and loss functions to learn the super-resolution task effec-

tively.

2. Datasets: To evaluate the performance of the pre-trained NLSA model, we

selected benchmark datasets commonly used in super-resolution, such as

Set5, Set14, and Urban100 [13]. These datasets consist of low-resolution

images along with their corresponding high-resolution ground truth im-

ages. The low-resolution images were used as input to the pre-trained NLSA

model for super-resolution.

3. Preprocessing: We performed the necessary preprocessing steps before feed-

ing the low-resolution images into the pre-trained NLSA model. This in-

volved resizing the low-resolution images to match the desired scale and ap-

plying any required transformations or augmentations to enhance the qual-

ity of the inputs.

4. Evaluation Metrics: To assess the quality of the super-resolved images gen-

erated by the pre-trained NLSA model, we used various evaluation metrics.

Commonly used metrics such as Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM) were calculated by comparing the super-

resolved images with their corresponding ground truth high-resolution im-

ages. These metrics provided quantitative measures of the similarity be-

tween the super-resolved and ground truth images.

5. Comparison to Baseline Models: In addition to evaluating the pre-trained

NLSA model, we compared its performance to baseline models and state-of-

the-art super-resolution techniques. The baseline models could include tra-

ditional interpolation methods like bicubic interpolation, while state-of-the-

art techniques could involve other deep learning-based models or advanced

algorithms. The comparison was made based on the evaluation metrics to
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assess the superiority of the pre-trained NLSA model in generating high-

quality super-resolved images.

By utilizing the pre-trained NLSA model and following this experimental setup,

we were able to assess its performance in the super-resolution task without the

need for training from scratch. This approach saves computational time and re-

sources while still allowing us to evaluate the capabilities and effectiveness of the

pre-trained model.

Testing Setup

We comprehensively evaluated the Non-Local Sparse Attention (NLSA) model

during our research’s testing phase. This evaluation aimed to assess the model’s

performance in super-resolution tasks. The testing setup involved the utilization

of a pre-trained NLSA model, which had been trained on a large dataset.

The NLSA model was set to inference mode during testing to ensure consistent

evaluation. This mode disabled any training-specific operations and ensured that

the model behaved consistently throughout the evaluation process. The model

was loaded with pre-trained weights, enabling it to produce reliable and accurate

results.

The attention mechanism of the NLSA model played a crucial role in its per-

formance. For testing purposes, we set the attention bucket size (also known as

the chunk size) to 144. Additionally, the number of hashing rounds was set to 4,

which determined how the attention mechanism operated and contributed to the

super-resolution process.

The NLSA model was built upon an Enhanced Deep Super-Resolution (EDSR)

backbone with 32 residual blocks. This architecture, combined with the specific

hyperparameters used during training, formed the basis of the model’s structure

during testing. The convolutional layers within the model had a kernel size of

3x3, and the intermediate features had 256 channels, consistent with the training

configuration.

During testing, the NLSA model was designed to upscale the resolution of

input images by a scale factor of 4. This meant that the model aimed to increase

the level of detail and clarity in the images, producing high-resolution outputs

that were four times larger than the input resolution.

The output configuration of the NLSA model was carefully considered. The

final convolutional layer transformed the deep features into RGB images with

three channels, ensuring compatibility with the evaluation metrics and compari-

son with the ground truth high-resolution images.
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Throughout the testing phase, we inputted preprocessed low-resolution im-

ages into the NLSA model and evaluated the model’s ability to generate super-

resolved images with improved resolution. The performance of the NLSA model

was assessed by comparing the generated high-resolution images against the cor-

responding ground truth high-resolution images, using appropriate evaluation

metrics.

For NLSN we used L1 loss which can be given in equation:

LNLSN(G) =
1

N

N

∑
i=1

||G(xi)− yi|| (4.5)

where G is the NLSN model, xi are the input data samples, yi are the corre-

sponding ground truth samples and N is the total no. of samples.

Table 4.2 illustrates the sequential images depicting the various stages involved

in Method-2. Each image represents a specific step in the overall process.
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Method Set5 Set14 Urban100

LR Image

Map

Thresh

Fill

Segment

SOS

Restack

Smooth

Table 4.2: Stagewise Method-2 depiction
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4.2.3 Method-3 (DRT)

Experimental Setup for DRT

During the training phase of the DRT (Deraining Recursive Transformer) model,

the following steps are undertaken:

1. Dataset Preparation: The training dataset is prepared by selecting appropri-

ate image datasets for super-resolution tasks, such as DIV2K, Set5, or Set14.

The images in the dataset are resized to a specific resolution and divided

into patches of suitable sizes. Data augmentation techniques, such as ran-

dom flipping or rotation, may be applied to increase the diversity of the

training samples.

2. Model Configuration: The DRT model architecture, as described earlier, is

implemented using a deep learning framework. The model’s hyperparam-

eters, including the number of RTBs, STBs, attention heads, and patch size,

are set based on prior research and empirical analysis. The optimizer, such

as Adam, is chosen for training the model.

3. Loss Function: The mean squared error (MSE) loss function is commonly

used for super-resolution tasks. It calculates the pixel-wise difference be-

tween the output image generated by the model and the corresponding

high-resolution ground truth image. The goal is to minimize this loss during

training. The loss function LDRT can be given as:

LDRT(T) =
1

N

N

∑
i=1

||T(xi)− yi||
2 (4.6)

where T is the DRT model, xi is the input data samples, yi is the ground

truth samples and N is total no. of data samples.

4. Training Iterations: The DRT model is trained using the prepared dataset

and loss function. Training is performed in iterations, where each iteration

involves feeding a batch of training samples to the model. The Adam op-

timizer updates the model’s parameters based on the computed gradients,

gradually improving the model’s performance.

5. Validation: During the training process, a separate validation dataset is

used to monitor the model’s performance and prevent overfitting. The val-

idation dataset consists of high-resolution images, and the model’s output
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is compared with the ground truth using evaluation metrics such as PSNR

and SSIM. This helps in selecting the best-performing model and adjusting

the hyperparameters if necessary.

6. Testing and Evaluation: Once the training is completed, the trained DRT

model is evaluated on a separate testing dataset. The low-resolution test

images are fed into the model, which generates high-resolution output im-

ages. The performance of the model is assessed using quantitative metrics

like PSNR and SSIM, which measure the similarity between the generated

images and the ground truth. Visual inspection and qualitative assessment

of the output images are also conducted to assess the perceptual quality and

the model’s ability to enhance image resolution.

7. Comparison with Baselines: The performance of the DRT model is com-

pared with other state-of-the-art super-resolution methods, including EDSR,

SRGAN, and others. The comparison is made in terms of quantitative met-

rics (PSNR, SSIM) and qualitative evaluation to demonstrate the superiority

and effectiveness of the proposed model.

By following these steps, the DRT model undergoes the training phase, grad-

ually learning to extract relevant features and enhance the resolution of input im-

ages. During this phase, the model’s performance is continuously evaluated and

refined to achieve the desired super-resolution capabilities.

Training Setup

During the training process of the Deraining Recursive Transformer (DRT) model,

we followed a specific setup to optimize its performance for super-resolution

tasks. We extracted non-overlapping high-resolution patches of size 56 × 56 from

the training dataset as the target output and downsampled it to the size 14 × 14,

then again upsampled it to the same size 56× 56, which served as the input for the

model. We utilized the Adam optimizer, a widely used optimization algorithm in

deep learning to optimise the model’s parameters.

The training was performed using a batch size of eight, meaning that eight

patches were processed simultaneously during each training iteration. This batch

size strikes a balance between computational efficiency and the model’s ability to

learn from diverse examples.

To measure the discrepancy between the model’s output and the target high-

resolution image, we employed the mean squared error (MSE) loss function. The
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MSE loss calculates the average squared difference between the predicted and tar-

get values, providing a measure of how well the model approximates the ground

truth image.

The initial learning rate was set to 1e-4, a common choice for training deep

learning models. The learning rate determines the step size at each optimization

iteration and influences the convergence of the model.

We utilized an NVIDIA RTX GEFORCE 2080 Ti GPU to accelerate the training

process, which offers high-performance computing capabilities suitable for train-

ing deep neural networks. The GPU’s parallel processing capabilities expedite the

model’s forward and backward computations, resulting in faster training times.

By following this training setup, we aimed to optimize the DRT model’s pa-

rameters, enabling it to learn and extract relevant features from the input patches

and enhance its performance in super-resolution tasks.

Table 4.3 illustrates the sequential images depicting the various stages involved

in Method-3. Each image represents a specific step in the overall process.
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Method Set5 Set14 BSDS100

LR Image

Map

Thresh

Fill

Segment

SOS

Restack

Smooth

Table 4.3: Stagewise Method-3 depiction
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4.2.4 Proposed Model (TraNLSN)

Experimental Setup

During the training phase of the TraNLSN (Transformer with Non-Local Sparse

Attention) model, the following steps are undertaken:

1. Dataset Preparation: The training dataset is prepared by selecting appropri-

ate image datasets for super-resolution tasks, such as DIV2K, Set5, or Set14.

The images in the dataset are resized to a specific resolution and divided

into patches of suitable sizes. Data augmentation techniques, such as ran-

dom flipping or rotation, may be applied to increase the diversity of the

training samples.

2. Model Configuration: The TraNLSN model architecture, as described ear-

lier, is implemented using a deep learning framework. The model’s hyper-

parameters, including the number of RTBs, STBs, attention heads, and patch

size, are set based on prior research and empirical analysis. The optimizer,

such as Adam, is chosen for training the model.

3. Loss Function: The mean squared error (MSE) loss function is commonly

used for super-resolution tasks. It calculates the pixel-wise difference be-

tween the output image generated by the model and the corresponding

high-resolution ground truth image. The goal is to minimize this loss during

training as mentioned in equation 4.6.

4. Training Iterations: The TraNLSN model is trained using the prepared dataset

and loss function. Training is performed in iterations, where each iteration

involves feeding a batch of training samples to the model. The Adam op-

timizer updates the model’s parameters based on the computed gradients,

gradually improving the model’s performance.

By following these steps, the TraNLSN model undergoes the training phase,

gradually learning to extract relevant features and enhance the resolution of input

images. During this phase, the model’s performance is continuously evaluated

and refined to achieve the desired super-resolution capabilities.

Training Setup

During the training process of the TraNLSN model, we followed a specific setup to

optimize its performance for super-resolution tasks. We extracted non-overlapping
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high-resolution patches of size 64 × 64 from the training dataset as the target out-

put and downsampled it to the size 16 × 16, which served as the input for the

model. We utilized the Adam optimizer, a widely used optimization algorithm in

deep learning to optimise the model’s parameters.

The training was performed using a batch size of eight, meaning that eight

patches were processed simultaneously during each training iteration. This batch

size strikes a balance between computational efficiency and the model’s ability to

learn from diverse examples.

To measure the discrepancy between the model’s output and the target high-

resolution image, we employed the mean squared error (MSE) loss function. The

MSE loss calculates the average squared difference between the predicted and tar-

get values, measuring how well the model approximates the ground truth image.

The initial learning rate was set to 1e-4, a common choice for training deep

learning models. The learning rate determines the step size at each optimization

iteration and influences the convergence of the model.

We utilized an NVIDIA RTX GEFORCE 2080 Ti GPU to accelerate the training

process, which offers high-performance computing capabilities suitable for train-

ing deep neural networks. The GPU’s parallel processing capabilities expedite the

model’s forward and backward computations, resulting in faster training times.

By following this training setup, we aimed to optimize the TraNLSN model’s

parameters, enabling it to learn and extract relevant features from the input patches

and enhance its performance in super-resolution tasks.
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4.3 Evaluation

To assess the effectiveness of our proposed method, we employed standard evalu-

ation metrics commonly used in the respective domains. Specifically, we utilized

two widely used metrics for image super-resolution tasks: peak signal-to-noise

ratio (PSNR) and structural similarity index (SSIM).

PSNR is a metric that measures the quality of the reconstructed image by com-

paring it to the ground truth. It quantifies the ratio between the maximum pos-

sible power of a signal (in this case, the original high-resolution image) and the

power of the noise or distortion in the reconstructed image. Higher PSNR values

indicate better reconstruction quality, indicating a smaller difference between the

reconstructed image and the ground truth.

SSIM, on the other hand, measures the structural similarity between two im-

ages by considering their luminance, contrast, and structural information. It eval-

uates the perceived similarity of the reconstructed image with respect to the ground

truth, taking into account both global and local image features. SSIM values range

from -1 to 1, with a value of 1 indicating a perfect match between the reconstructed

image and the ground truth.

By using these metrics, we aim to quantitatively evaluate the performance

of our proposed method and compare it with other state-of-the-art approaches.

These metrics provide valuable insights into the quality and similarity of the gen-

erated high-resolution images, helping us assess our method’s effectiveness in

enhancing image resolution.

4.4 Results

4.4.1 Method-1 (SRGAN)

Super-Resolution Model Results (SRGAN)

Following figures 4.1,4.2 and 4.3 contain low-resolution input images, high-resolution

reference images, and super-resolution output images of the respective dataset.
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(a) Bird-LR (b) Bird-HR (c) Bird-SR

(d) Butterfly-LR (e) Butterfly-HR (f) Butterfly-SR

Figure 4.1: SET5 (SRGAN)

(a) Comic-LR (b) Comic-HR (c) Comic-SR

(d) Face-LR (e) Face-HR (f) Face-SR

Figure 4.2: SET14 (SRGAN)
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(a) 38082-LR (b) 38082-HR (c) 38082-SR

(d) 41069-LR (e) 41069-HR (f) 41069-SR

Figure 4.3: BSDS100 (SRGAN)
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Proposed Method Results

Table 4.4 presents a breakdown of the time taken in seconds at each stage in

Method-1. The table provides an analysis of the time duration for each step, high-

lighting the relative time consumption for different stages of the method.

Method Set5(s) Set14(s) BSDS100(s)

Map Generation 3.07 4.19 2.94
Thresholding 0.008 0.004 0.004
Hole Filling 0.013 0.003 0.003
Segmentation 0.008 0.011 0.010
SOS 0.099 0.157 0.104
Restacking 0.015 0.019 0.015
Smoothing 3.27 6.69 4.56
Total Time 6.483 11.074 7.636
Entire SR 0.148 0.252 0.193

Table 4.4: Stagewise Time Analysis of Different Stages for Method-1

Table 4.5 shows a comparative analysis of our Method-1 with state-of-the-art

methods using two evaluation metrics: PSNR (Peak Signal-to-Noise Ratio) and

SSIM (Structural Similarity Index). The table provides a comparison of the per-

formance of different methods in terms of these metrics, indicating the quality of

the output generated by each method.

Method Scale Set5 Set14 BSDS100
PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675
SRCNN [46] ×4 30.48 0.8628 27.50 0.7513 26.90 0.7101
VDSR [25] ×4 31.35 0.8830 28.02 0.7680 27.29 0.7026
EDSR [33] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420
NLRN [34] ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306
RNAN [55] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7409
SRFBN [31] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409
RDN [56] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419
RCAN [26] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436
NLSN [39] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444
Entire SR ×4 22.59 0.6921 20.77 0.5907 20.91 0.5587
Cropped SR ×4 22.36 0.7022 20.31 0.5820 20.07 0.5344
SOS ×4 24.08 0.7518 21.94 0.6550 21.72 0.6273
Entire SR (Y) ×4 23.03 0.7112 21.15 0.6087 20.96 0.5629
Cropped SR (Y) ×4 22.90 0.7240 20.73 0.6009 20.10 0.5391
SOS (Y) ×4 24.72 0.7802 22.33 0.6760 21.78 0.6345

Table 4.5: Quantitative analysis of different Architectures (Scale 4) with Method-1
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4.4.2 Method-2 (NLSN)

Super-Resolution Model Results (NLSN)

Following figures 4.4,4.5 and 4.6 contain low-resolution input images, high-resolution

reference images, and super-resolution output images of the respective dataset.

(a) Bird-LR (b) Bird-HR (c) Bird-SR

(d) Butterfly-LR (e) Butterfly-HR (f) Butterfly-SR

Figure 4.4: SET5 (NLSN)
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(a) Comic-LR (b) Comic-HR (c) Comic-SR

(d) Face-LR (e) Face-HR (f) Face-SR

Figure 4.5: SET14 (NLSN)

(a) 38082-LR (b) 38082-HR (c) 38082-SR

(d) 41069-LR (e) 41069-HR (f) 41069-SR

Figure 4.6: BSDS100 (NLSN)
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Proposed Method Results

Table 4.6 presents a breakdown of the time taken at each stage in Method-2. The

table provides an analysis of the time duration for each step, highlighting the

relative time consumption for different stages of the method.

Method Set5(s) Set14(s) Urban100(s)

Map Generation 2.98 2.79 3.38
Thresholding 0.004 0.003 0.005
Hole Filling 0.011 0.005 0.005
Segmentation 0.007 0.007 0.009
SOS 3.85 1.78 1.35
Restacking 0.92 1.07 1.47
Smoothing 0.95 0.93 0.94
Total Time 8.722 6.585 7.159
Entire SR 3.94 2.06 1.82

Table 4.6: Stagewise Time Analysis of Different Stages for Method-2

Table 4.7 shows a comparative analysis of our Method-2 with state-of-the-art

methods using two evaluation metrics: PSNR (Peak Signal-to-Noise Ratio) and

SSIM (Structural Similarity Index). The table provides a comparison of the per-

formance of different methods in terms of these metrics, indicating the quality of

the output generated by each method.

Method Scale Set5(s) Set14(s) Urban100(s)
PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.8104 26.00 0.7027 23.14 0.6577
SRCNN [46] ×4 30.48 0.8628 27.50 0.7513 24.52 0.7221
VDSR [25] ×4 31.35 0.8830 28.02 0.7680 25.18 0.7540
EDSR [33] ×4 32.46 0.8968 28.80 0.7876 26.64 0.8033
NLRN [34] ×4 31.92 0.8916 28.36 0.7745 25.79 0.7729
RNAN [55] ×4 32.49 0.8982 28.83 0.7878 26.61 0.8023
SRFBN [31] ×4 32.47 0.8983 28.81 0.7868 26.60 0.8015
RDN [56] ×4 32.47 0.8990 28.81 0.7871 26.61 0.8028
RCAN [26] ×4 32.63 0.9002 28.87 0.7889 26.82 0.8087
NLSN [39] ×4 32.59 0.9000 28.87 0.7891 26.96 0.8109
Entire SR ×4 30.68 0.8842 25.60 0.7402 23.31 0.7517
Cropped SR ×4 30.92 0.8832 25.14 0.7374 22.95 0.7404
SOS ×4 28.31 0.8413 24.08 0.7026 22.24 0.6863
Entire SR (Y) ×4 31.26 0.8990 27.33 0.7906 25.76 0.8159
Cropped SR(Y) ×4 31.57 0.8764 25.63 0.7189 23.12 0.7150
SOS(Y) ×4 28.82 0.8339 24.40 0.6929 22.38 0.6752

Table 4.7: Quantitative analysis of different Architectures (Scale 4) with Method-2
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4.4.3 Method-3 (DRT)

Super-Resolution Model Results(DRT)

Following figures 4.7,4.8, and 4.9 contain low-resolution input images, high-resolution

reference images and super-resolution output images of the respective dataset.

(a) Bird-LR (b) Bird-HR (c) Bird-SR

(d) Butterfly-LR (e) Butterfly-HR (f) Butterfly-SR

Figure 4.7: SET5 (DRT)
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(a) Comic-LR (b) Comic-HR (c) Comic-SR

(d) Face-LR (e) Face-HR (f) Face-SR

Figure 4.8: SET14 (DRT)

(a) 38082-LR (b) 38082-HR (c) 38082-SR

(d) 41069-LR (e) 41069-HR (f) 41069-SR

Figure 4.9: BSDS100 (DRT)
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Proposed Method Results

Table 4.8 presents a breakdown of the time taken at each stage in Method-3. The

table provides an analysis of the time duration for each step, highlighting the

relative time consumption for different stages of the method.

Method Set5 Set14 BSDS100

Map Generation 2.73 3.03 2.76
Thresholding 0.032 0.002 0.001
Hole Filling 0.040 0.001 0.001
Segmentation 0.005 0.007 0.005
SOS 64.84 150.74 81.06
Restacking 0.11 0.018 0.012
Smoothing 2.461 4.840 3.258
Total Time 70.189 158.638 87.097
Entire SR 102.86 238.39 156.34

Table 4.8: Stagewise Time Analysis of Different Stages for Method-3

Table 4.9 shows a comparative analysis of our Method-3 with state-of-the-art

methods using two evaluation metrics: PSNR (Peak Signal-to-Noise Ratio) and

SSIM (Structural Similarity Index). The table provides a comparison of the per-

formance of different methods in terms of these metrics, indicating the quality of

the output generated by each method.

Method Scale Set5 Set14 BSDS100
PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675
SRCNN [46] ×4 30.48 0.8628 27.50 0.7513 26.90 0.7101
VDSR [25] ×4 31.35 0.8830 28.02 0.7680 27.29 0.7026
EDSR [33] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420
NLRN [34] ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306
RNAN [55] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7409
SRFBN [31] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409
RDN [56] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419
RCAN [26] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436
NLSN [39] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444
Entire SR ×4 30.06 0.8720 26.68 0.7678 26.35 0.7390
Cropped SR ×4 30.43 0.8735 26.20 0.7695 25.55 0.7295
SOS ×4 27.69 0.8343 24.74 0.7224 23.61 0.6878
Entire SR (Y) ×4 30.58 0.8872 27.13 0.7847 26.36 0.7436
Cropped SR(Y) ×4 31.03 0.8918 26.70 0.7876 25.55 0.7347
SOS(Y) ×4 28.15 0.8507 25.10 0.7394 23.65 0.6934

Table 4.9: Quantitative analysis of different Architectures (Scale 4) with Method-3
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Figure 4.15: Comparative Analysis of various used methods on Scale-4 (Set14)
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4.4.4 Proposed model TraNLSN Results

Table 4.10 shows a comparative analysis of our Proposed Model TraNLSN with

state-of-the-art methods using two evaluation metrics: PSNR (Peak Signal-to-

Noise Ratio) and SSIM (Structural Similarity Index). The table provides a com-

parison of the performance of different methods in terms of these metrics, indi-

cating the quality of the output generated by each method. Figures 4.16, 4.17, 4.18,

and 4.19 shows comparative qualitative analysis of our Proposed Model TraNLSN

with state-of-the-art methods.

Method Scale Set5 Set14 BSDS100
PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675
SRCNN [46] ×4 30.48 0.8628 27.50 0.7513 26.90 0.7101
VDSR [25] ×4 31.35 0.8830 28.02 0.7680 27.29 0.7026
EDSR [33] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420
NLRN [34] ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306
RNAN [55] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7409
SRFBN [31] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409
RDN [56] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419
RCAN [26] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436
NLSN [39] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444
Ours ×4 28.05 0.8305 25.25 0.7347 25.43 0.7117
Ours (Y) ×4 28.50 0.8462 25.60 0.7503 25.43 0.7161

Table 4.10: Quantitative analysis of different Architectures (Scale 4) with Model
TraNLSN
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CHAPTER 5

Conclusion

In this study, we explored three different methods for salient object super-resolution.

Each method employed a different approach to enhancing the resolution of salient

image objects.

The first method utilized the scratch-trained SRGAN (Super-Resolution Gen-

erative Adversarial Network) model for the super-resolution step. SRGAN is a

state-of-the-art deep learning model specifically designed for image super-resolution.

By training the SRGAN model on a large dataset of low-resolution and high-

resolution image pairs, it learns to generate high-resolution versions of low-resolution

images. Our method passed the segmented salient objects through the trained SR-

GAN model to obtain the enhanced super-resolution output.

The second method leveraged a pre-trained NLSN (Non-Local Sparse Atten-

tion Networks) model for the super-resolution step. The NLSN is a deep learn-

ing model incorporating non-local sparse attention mechanisms to capture long-

range dependencies and enhance image restoration tasks. In our approach, we

used a pre-trained NLSN model that was originally trained for a different task

and repurposed for salient object super-resolution. We fed the segmented salient

objects through the pre-trained NLSN model to obtain the super-resolved output.

The third method involved training a DRT (Deraining Recursive Transformer)

model from scratch for the super-resolution step. The DRT model is a transformer-

based architecture originally designed for deraining tasks. However, we adapted

the DRT model for salient object super-resolution by training it on a dataset specif-

ically curated for this task. The DRT model learns to extract relevant features and

restore fine details within salient objects during training. We used the trained DRT

model to process the segmented salient objects and generate the super-resolution

output.

We used these three different methods to compare their performance and as-

sess their effectiveness for salient object super-resolution. Experimental evalu-

ation, including quantitative metrics such as PSNR and SSIM, as well as visual
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comparisons, will be conducted to determine the strengths and limitations of each

method.

The utilization of multiple methods provides a comprehensive analysis and al-

lows us to identify the most suitable approach for salient object super-resolution.

This study contributes to the existing body of research by offering insights into

different techniques and their potential applications in enhancing the resolution

of salient objects in images.

In addition to the three aforementioned methods, we also propose a novel

TraNLSN (Transformer with Non-Local Sparse Attention) model for super-resolution.

The TraNLSN model combines the strengths of the Deraining Recursive Trans-

former (DRT) model and the Non-Local Sparse Attention (NLSN) mechanism to

enhance the resolution of low-resolution images.

The TraNLSN model architecture consists of several components, including

Recursive Transformer Blocks (RTBs), Spatial Transformer Blocks (STBs), and the

newly introduced NLSA (Non-Local Sparse Attention) Block. The RTBs, inspired

by the DRT model, capture long-range dependencies and hierarchically learn fea-

ture representations. Within each RTB, the STBs focus on local context and employ

attention mechanisms to extract relevant spatial and channel information.

The key innovation of the TraNLSN model lies in the NLSA Block, which al-

lows the fusion of the NLSN attention modules with the transformer architecture.

This block enables selective attention to relevant spatial and channel information,

improving feature preservation while suppressing noise and artefacts.

By integrating the DRT model and the NLSN attention mechanism, the TraNLSN

model aims to leverage the benefits of both approaches. The DRT model excels in

capturing fine details and textures within salient objects, while the NLSN atten-

tion mechanism enhances feature preservation and noise suppression. The fusion

of these two components in the TraNLSN model provides a comprehensive and

effective solution for super-resolution.

Through extensive experiments and evaluations, we will assess the perfor-

mance of the TraNLSN model and compare it with existing methods. We antici-

pate that the TraNLSN model will demonstrate superior performance in enhanc-

ing low-resolution image resolution and producing visually appealing results.

The introduction of the TraNLSN model contributes to the field of salient ob-

ject super-resolution by proposing a novel architecture that combines transformer-

based modelling and non-local attention mechanisms. This model has the po-

tential to advance the state-of-the-art in super-resolution and pave the way for

further research and development in this area.
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CHAPTER 6

Future Works

In the future, there are several avenues for further research and development in

the field of salient object super-resolution. Some potential areas for future work

include:

1. Specific Salient Object Super-Resolution Model: Develop a specialized

deep learning model designed specifically for salient object super-resolution.

This model could leverage the unique characteristics of salient objects, such

as their distinct shapes, textures, and structures, to improve the super-resolution

process. Tailoring the model to salient object characteristics can effectively

capture and enhance the details within salient regions while preserving their

perceptual quality.

2. Refinement of Existing Methods: Continuously improving and refining

the existing methods, such as SRGAN, NLSN, and the scratch-trained DRT

model, can lead to enhanced performance in salient object super-resolution.

Fine-tuning the models, exploring different training strategies, or incorpo-

rating additional components can help achieve better results.

3. Exploration of Hybrid Approaches: Investigating hybrid approaches that

combine multiple techniques or models can be a promising direction. For

example, combining the strengths of SRGAN, NLSN, and the DRT model,

or exploring the fusion of different deep learning architectures, could poten-

tially yield more powerful and effective solutions for salient object super-

resolution.

4. Incorporating Attention Mechanisms: Further exploration and develop-

ment of attention mechanisms can enhance the capability of models to fo-

cus on salient regions and prioritize important features during the super-

resolution process. Investigating different attention mechanisms, such as

self-attention or attention mechanisms specifically designed for salient ob-

ject detection, can lead to improved performance.
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5. Real-Time Applications: Adapting the proposed methods and models for

real-time applications can be an interesting area of future work. Optimizing

the models’ computational efficiency and memory requirements to enable

real-time super-resolution processing on resource-constrained devices can

open up new possibilities for practical applications.

By focusing on these future research directions, we can further advance the

salient object super-resolution field and continue improving the quality and res-

olution of salient object images, opening up new opportunities for various ap-

plications such as image enhancement, computer vision, and multimedia content

creation.
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