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Abstract

Ranking is an important problem for a variety of applications. Classical algo-
rithms for ranking may be unfair towards certain group of people or individuals.
Fairness may be jeopardized by ranking algorithms that produce discriminatory
results due to biased data or sampling methods. Hence in the past few years, al-
gorithms to enforce fairness in ranking have been proposed. However they are
computationally expensive. Hence it is better to train these on smaller samples of
data. In this empirical study, multiple sampling strategies for fair ranking algo-
rithms are compared and evaluated.

Uniform sampling, Leverage Score sampling, K -Medoid and Row Norm sam-
pling are the four sampling strategies that are the subject of this study. The thesis
tests and assesses the effectiveness of various sampling heuristics using a real-
world data set i.e. Yahoo Learning To Rank Challenge Data set.

Our work shows that all heuristics perform reasonably well when compared with
full data set, at the same time, giving impressive benefits in terms of computation
time. It is an open question to obtain some theoretical guarantees for these sam-
pling strategies for fair ranking algorithms.
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CHAPTER 1

Introduction

Ranking algorithms are vastly used in various domains. For e.g. search engines,
recommendation systems, and e-commerce platforms to help users find the most
relevant and useful information. However, the fairness of these algorithms has
been a growing concern due to their potential to discriminate against certain
groups of individuals. In recent years, the concept of fairness in ranking algo-
rithms has received significant attention from academia and industry.

Adding additional constraints or objectives to the ranking process is one way to
assure fairness in the algorithms used for ranking. However, this typically in-
creases the computational time required to implement the algorithms. It could be
beneficial to use sampling-based algorithms, which randomly choose a portion
of items from the population. However, the particular sampling heuristics em-
ployed determines how effective the fairness of the algorithm is.

In today’s multifaceted internet economies (such as online marketplaces, job searches,
rental markets, and media streaming), interfaces based on rankings are common.
It is well known that an item’s ranking position has a significant impact on its
exposure and financial success. In these systems, the things to be rated are prod-
ucts, job seekers, or other entities that convey economic benefits[2]. Unexpectedly,
the algorithms that are employed to learn these rankings are frequently unaware
of the impact they have on the products. There is evidence that the learning al-
gorithms do not necessarily produce rankings that would be viewed as fair or
desirable, but rather they aim to maximize the utility of the rankings to the users
making queries to the systems[2].

Despite the expanding impact of online information systems on our culture and
economy, fairness for rankings has received less attention than fairness in super-
vised learning for classification. Some of the work that has already been done
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takes into account group fairness in rankings along the lines of demographic par-
ity, proposing definitions and techniques that reduce the disparity in representa-
tion across groups in a prefix of the rating.

This thesis presents an empirical study of sampling heuristics for fair ranking al-
gorithms. The goal of this study is to investigate the impact of different sampling
heuristics on the fairness and performance of ranking algorithms. We mainly fo-
cus on a fair ranking algorithm called FAIR PG Rank.

In this study, we evaluate the performance of several sampling heuristics, includ-
ing uniform sampling, Row Norm sampling, K - medoid sampling, and Leverage
Score sampling. We apply these sampling heuristics to one fair ranking algorithm
- the Fair-PG-Rank algorithm which is defined by a of Plackett-Luce ranking pol-
icy, and compare their performance in terms of various metrics like NDCG, DCG,
Average Rank, and ERR .

The rest of this thesis is organized as follows. Chapter 2 provides an overview of
related work in the field of fairness in ranking. Chapter 3 describes the method-
ology used in this study the fair PG rank algorithm given by [2]. The chapter
describes the sampling strategies used. Chapter 5 gives the implementation de-
tails and Chapter 6 gives the results of the empirical study. Finally, Chapter 7
concludes the thesis and talks about future open directions for research in the
field.
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Ranking

Ranking refers to the process of arranging a set of items or entities in a partic-
ular order based on their relevance, importance, or value. When provided with
a collection of entities denoted as (i1, i2, . . . iN), a ranking algorithm generates a
ranking, represented by the assignment (mapping) of entities to specific ranking
positions, denoted as ’r’ [3].

The ranking process relies on an assessment of the entities’ relative quality in re-
lation to the specific task being performed.[3]. For example, the items returned by
a search query are sorted mostly according to how relevant they are to the query.
The utility will also be used to refer to the quality measure in the following. In
general, a fair ranking is one in which the values of the protected attributes of the
entities are not unjustifiably used to influence their placement [3].

Recommendation systems pull relevant content for users based on their histories
and profiles. The historical data used in recommendation systems can consist of
user ratings assigned to items or interactions with items, such as views or clicks,
depending on the specific application [3]. For an item i and user u , recommenders
typically estimate a rating, s(u,i), which indicates the user u’s preference for the
item i, or, in other words, the significance of item i for the user u.The items with
the highest projected score for user u are then included in a suggestion list that is
created for them. These ratings might be thought of as the recommenders’ useful-
ness ratings[3].

In general, a recommendation is considered fair if the protected attributes of the
user or item have no effect on the recommendation’s outcome.
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Fairness in Machine Learning

Fairness in machine learning refers to the idea that the algorithms and models
used to make decisions or predictions should not exhibit any biases or discrimi-
nation based on certain protected attributes such as race, gender, religion, age, or
disability [4].

A fair machine learning model should treat all individuals fairly and equally, re-
gardless of their background or characteristics. To ensure fairness in machine
learning, it is important to identify and mitigate any potential sources of bias or
discrimination in the data used to train the models. This may involve carefully
selecting the variables and features used in the models, testing for and correcting
any imbalances in the data, and monitoring the performance of the models to de-
tect and address any disparities in outcomes[4].

Ultimately, the goal of fairness in machine learning is to create models that are
transparent, accountable, and unbiased, and that promote equality and justice for
all individuals.

Algorithmic bias is a well-researched and well-known issue in machine learning.
Results may be biased by a variety of circumstances, and as a result, may be seen
unfairly by some groups or people[4]. Personalized news delivery on social me-
dia platforms is one example.

Training data and the learning algorithm, the two key building blocks of a ma-
chine learning system, are also the major sources of biases that might provide
unjust outcomes in machine learning tasks [4]. In light of this, biases are divided
into two categories: Algorithmic and Data bias

4



1.1 Algorithmic Bias

Unfairness may result from the biases inherent in algorithms, such as when cer-
tain optimization techniques are used improperly or biased estimators are used.
Here, we give two illustrative algorithmic biases that may result in injustice and
have an impact on user experience [5].

1.1.1 Presentation Bias

When information is presented in biased ways, presentation bias occurs. The top-
ranked results are typically thought of as the most relevant results by users and
will therefore receive more clicks, whereas the lower-ranked results will receive
less exposure even if they are also extremely relevant[5]. This is an example of
ranking bias, which is a common problem in ranking problems.

1.1.2 Evaluation Bias

The assessment bias often emerges when the wrong benchmarks are used to eval-
uate the model. Examples of standards that favor one gender or another when
assessing facial recognition systems are Audience and IJB-A.

1.2 Data Bias

The data itself contains the majority of the biases in machine learning. Data pro-
duction, data collecting, and data storage methods can all introduce bias into the
data.

1.2.1 Statistical Bias

The process of collecting data and analysis often results in statistical bias. storage.
It happens when errors are made in the design of the experiment or the gathering
of the data, and as a result, the results are not an accurate picture of the popula-
tion.

1.2.2 Pre-existing Bias

The bias may already be present in the data throughout the generating process,
even if the data are precisely sampled and chosen. Pre-existing bias can happen
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when the data itself reflects biased judgments, which often renders the system no
longer neutral and equitable[5].

1.2.3 Other Causes

It is significant to note that there may be other reasons for unfairness besides prej-
udice, thus researchers should use vigilance at all times. The conflict between
several fairness criteria is one instance. Because several fairness standards can-
not be met concurrently, research has demonstrated that maintaining one form of
fairness may prevent the violation of another.

1.3 Real World Example for Unfairness In Machine

Learning

Using a ranking algorithm in the criminal justice system is a real-world exam-
ple of COMPAS (Correctional Offender Management Profiling for Alternative
Sanctions)[4]. It is a tool that aids judges and parole boards in determining whether
to sentence or release a criminal by forecasting their propensity to commit new
crimes.

Though studies have proven that the COMPAS algorithm can provide biased re-
sults based on race, gender, and other factors, questions have been raised concern-
ing its fairness. For instance, a 2016 ProPublica analysis discovered that COMPAS
was twice as likely to incorrectly classify Black defendants as a high risk com-
pared to White defendants and that it was also twice as likely to classify low-risk
White defendants as High Risk compared to Black defendants[4].

Discussions about the function of algorithms in the criminal justice system and
the significance of ensuring that these algorithms are impartial and fair have re-
sulted as a result of this. The COMPAS example emphasizes the necessity for
thorough assessment and monitoring of ranking algorithms in practical applica-
tions to make sure that they are not maintaining biases or inequities that already
exist[4].
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1.4 Why Fairness is necessary?

Fairness is necessary for machine learning for several reasons. First, it is a mat-
ter of ethics and social responsibility. Machine learning algorithms and models
can have a significant impact on people’s lives, from hiring decisions to loan ap-
provals to criminal justice outcomes. If these models exhibit bias or discrimina-
tion, they can perpetuate and amplify existing inequalities and harm individuals
and groups who are already marginalized or disadvantaged.

Second, fairness is essential for the accuracy and reliability of machine learning
models. Biases in the data or model can lead to inaccurate predictions, misclassi-
fications, or false positives, which can have significant consequences for individ-
uals and society as a whole.

Finally, fairness is necessary to build trust in machine learning systems. If peo-
ple do not believe that the models are fair and impartial, they may not use or trust
them, which can limit the potential benefits that these systems can provide.

7



CHAPTER 2

Other Related Work

In this chapter, we describe some definitions and algorithms for fairness in rank-
ing. All the examples and mathematical formulation are from different papers
[6, 7] and others and are just reproduced here for completeness.

Fairness in ranking refers to making sure that there are no biases or discrimi-
nation present in the algorithms used to sort and display goods or people. To
guide customers to the most relevant and helpful products or information, rank-
ing algorithms are widely employed in a variety of applications, including search
engines, e-commerce platforms, and recommendation systems[8].

Fairness has become a crucial factor in algorithmic decision-making. This is un-
fair when an agent with higher merit receives a worse result than an item with
lower merit[9]. When a principal (or decision maker) must divide a finite resource
among several entities, a generally acknowledged fairness principle states that an
item should not receive more of a resource than item A if B does not have stronger
merits for the resource than agent A[9]. Merit may be a requirement (such as job
performance), a need (such as disaster relief), or another criterion of eligibility de-
pending on the situation.

When making judgments, a principal or algorithm never has access to an item’s
genuine worth; instead, they rely on proxy attributes that can only partially pre-
dict merit (such as a student’s GPA, star rating, or letter of recommendation)[9].
All of them fall short of accurately capturing an agent’s merit, although prior
methods have largely focused on defining fairness concepts based on actual fea-
tures and results.

Overall, encouraging equality and reducing any harm resulting from biased or
discriminatory ranking algorithms depend on fairness in ranking[8].

8



2.1 Unfairness in Ranking: An Example

Figure 2.1: Example of Ranking[1]

Figure 2.2: Unfairness in Ranking Example[1]
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2.2 Impact Based Fair Ranking

The entire section relies heavily on [7] and all proofs and examples are from the
paper. We first describe the Impact Based Fairness in Ranking. Fairness in ranking
may be thought of as an issue of resource distribution, where the resources are
the places in a ranking that must be distributed appropriately among the objects.
Here we describe fairness axioms that complement widely acknowledged ideas
from the fair-division literature in order to succinctly describe fairness:

2.2.1 Axioms for Fairness In Ranking

• A resource allocation is envy-free if for every pair of individuals i and j, i
does not prefer j’s allocation more than their own. In other words, no in-
dividual should feel envious or desire someone else’s allocation more than
their own[7].

• The second axiom, ”Dominance over Uniform Ranking” focuses on ensur-
ing that the ranking produced by an algorithm is not dominated by a uni-
form ranking, which provides equal scores or ranks to all individuals[7].

• The Pareto Optimality Principle: Pareto optimality represents an allocation
of resources or outcomes where it is impossible to improve the well-being of
one individual without reducing the well-being of another individual[7].

2.2.2 Utility To Users

The utility is the usefulness of the item to the user. So through a utility function of
the following design, we gauge the usefulness a policy π offers to its consumers.

where Xπ is the tensor whose (u,i,k) element

Xπ
u,i,k := P(σ(i) = k|π, u)

10



is marginal probability of item i being ranked at the k-th position for user u under
policy π, and (Xπ

u , ∗, ∗) should be the doubly stochastic matrix [7]. By utilizing
this approach, it is possible to express the impact of policy π with fewer param-
eters. Since all stochastic ranking strategies with the same matrix have the same
user utility, we specifically employ just I2 parameters for user u instead of the
exponential number of potential rankings[7].

2.2.3 Impact On items

Although rating things according to their likelihood of relevance increases user
value, several previous works have emphasized that this naive approach might
provide rankings that are unjust to the objects. It specifically proposes a notion of
fairness mandating that amortized exposure should be allocated proportionally to
their amortized merit and measures similarity between individual things by their
amortized merit[7]. This notion of fairness strives to distribute exposure equally
among items of comparable worth. This formulation, however, lacks a compelling
rationale for why exposure should be related proportionally to relevance or linked
via any other particular function, as we have already demonstrated[7]. As we
know, Exposure is merely a secondary concern for the products; instead, they are
primarily concerned with how the ranking would affect them. Therefore we will
focus on Fairness of Impact, where impact measures the influence a ranking pol-
icy has on a certain item i. So we will focus on Item centric Impact on matrix X∗,i,∗.
The Impact on each Item will be,

Where, vi(u, k) is an Impact function that specifies the amount of impact item
i has for user u when it is ranked at position k. Also, the utility of the user is equal
to the summation of Impacts on i ∈ I, a set of items.

2.2.4 Exposure Based Fairness Violates Axioms

In literature, it has been demonstrated in detail how the traditional fairness of
exposure paradigm may foster "envy" among the items and provide an unjust
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effect distribution in light of our axioms, demonstrating the necessity for new
algorithms to ensure fairness of impact [7]. Exposure must be allocated propor-
tionally to amortized merit under exposure-based fairness. So following modified
optimization was proposed in [7], which uses a more broad constraint in which
merit is measured using an application-dependent link function f(.)>0.

From the above formulae, we can clearly observe that if we take the "arg max "
of the Utility of the user then it will give us the Exposure based Fair Ranking on
the basis of policy π [7] where Meriti is the relevance of item i over all users and
Expi(Xπ) is the amount of exposure for item i under policy π. For proving that
Exposure based fairness violates axioms we will take a counterexample by refer-
ring to the table above in Fig.3. This example and table is taken from [7]. So let’s
assume two users u1 and u2 and item i1 and i2. Also, we’ll assume that the item
which is ranked at the top will get exposed to users. So e(1)=1 and e(2)=0. We’ll
focus on three ranking policies given in the above table in fig.3. which are utility
maximizing, Exposure Based, and Uniform Random Policy[7].

So from the above table, we can observe that the three policies’ exposure distribu-
tion and the degree of influence on each item are shown in Tables in Fig. (2.3). All
exposure is given to the item(i1) with the highest significance by ΠMax. This re-
sults in the unjust circumstance where i2 receives no exposure while having a sig-
nificant relevance and the maximum user utility (U π(max) = 1.3). πExpo− f air im-
plements the exposure limitation to address this unjust distribution. [7]In partic-
ular, it distributes some exposure to the item (i2) that is less important and makes
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Figure 2.3: An illustrative ranking problem example demonstrating the impact
fairness and exposure allocations of various ranking policies

sure that the exposure is distributed according to merit as indicated in Table. Our
example, however, shows that expo-fair is in violation of impact-based fairness.
In fact, i2 envies i1’s allocation since i2’s impact may be enhanced by exchanging
allocations with i1. Second, not all items are dominated by the πexpo− f air. It is
evident that the impact on i2 under πexpo− f air (0.28), as opposed to under πuni f ,
is lower (0.35). This suggests that πexpo− f air creates a significant discrepancy by
improving influence on i1 at the expense of impact on i2. Our counterexample
shows that exposure-based fairness permits an unequal allocation of impact and
the breeding of envy[7]. So from the above example taken, we can conclude that
Exposure Based Fairness will violate the three main Fairness axioms.

2.2.5 Nash Social Welfare (NSW) policy

In the previous section, it is demonstrated that the approach of traditional fairness-
of-exposure was unable to satisfy the fairness axioms due to which a big question
arises if there exists any effective algorithm to evaluate fair ranking. In order to
address this algorithmic query below-mentioned optimization problem [7] intro-
duces Nash social Welfare (NSW) which expands the notion of fair ranking.
The constraints are that each item must have a probability of 1 to be placed in
some location and that each position must have a probability of 1 to receive an
item, with the purpose being to maximize the product of impacts on the items[7].
This optimization issue differs from the typical NSW in the fair division due to the
constraint structure. However, [7] continue to believe that the optimization issue
is convex and hence efficiently solved, as is seen when substituting the sum of the
effects logarithms for the product of impacts in the goal. The policy that resolves
the optimization problem is referred to as the NSW policy and is denoted by the
symbol πNSW[7].

The NSW prevents any item from having zero impact, leading to a more fair im-
pact distribution, which is a valuable intuition. In particular, if there is even a
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single item with zero impact, the NSW is zero[7]. In contrast, the traditional goal
of maximizing user utility which equals the aggregate of impacts can be achieved
even if certain elements have no influence at all[7]. Empirical results in literature
have shown that πNSW is (almost) envy-free and Pareto optimum.

2.3 Exposure Based Fairness

To better understand Exposure Based Fairness we present two examples from lit-
erature that show how Biased Allocation of Opportunities can create unfairness
among the group of people or individuals themselves[6].

2.3.1 Job Seeker Example

Think about a website that links employers (users) with job candidates (items).
The example that follows shows how even slight changes in item relevance can
result in significant disparities in exposure and, consequently, in economic oppor-
tunity between groups. In this instance, the web service employs a ranking-based
approach to show a group of 6 candidates to pertinent firms for a software en-
gineering post (Figure 2.4). Three men and three women make up the set. For
the employers, the relevance of the male candidates is 0.80, 0.79, and 0.78, respec-
tively, whereas it is 0.77, 0.76, and 0.75 for the female applicants. Following the
conventional probabilistic definition of relevance, in this case, 0.77 denotes that
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Figure 2.4: A classic Job seeking Example

77% of the employers who are the subject of the inquiry consider the applicant
to be relevant. According to the Probability Ranking Principle, these candidates
should be ranked in decreasing order of significance, with the three male candi-
dates at the top, then the female candidates. What does this signify in terms of
the two groups’ exposure? Even if there is only an average difference in relevance
between male and female applications of 0.03, female applicants would receive
30% less exposure if we adopt the typical exposure drop-off (i.e., position bias) of
1/log(1 + j), where j is the position in the ranking[6], it seems appropriate to share
exposure more equitably[6].

2.3.2 Disproportionate CEO Example

Figure 2.5: Disproportionate number of male CEOs. Example

Fairly depicting the results’ distribution. Sometimes, either expressly or implic-
itly, the outcomes of a query are utilized as a statistical sample. For instance, a
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user would anticipate that a "CEO" search on a search engine will yield about the
proper number of executives, both male and female, representing the actual dis-
tribution of male and female CEOs in the globe. A search engine may be seen
as prejudiced if it returns a much higher proportion of males than females, as in
the hypothetical results in the above Figure(2.5). In fact, the research found that
gender bias was present in picture search results for a range of professions[6].
It has been demonstrated that these biases do in fact influence people’s beliefs
about different jobs. A biased information environment may have an impact on
users’ perceptions and behavior. This means that the best ranking according to the
Probability Ranking Principle may still appear in that way even if users’ relevance
distribution matches the actual distribution of female CEOs. Even though there
may be a decrease in utility for the consumers, it appears appropriate to distribute
exposure according to relevance rather than just depending on the PRP[6].

2.3.3 Diversity In Information Retrieval

Since they both produce more diverse ranks, fairness and variety in rankings may
initially appear to be mutually exclusive. However, their driving forces and op-
erating systems are essentially unlike. Diversified ranking, like the PRP, is only
focused on enhancing user utility, but this approach[6] to fairness strikes a balance
between users’ and goods’ demands. Particularly, only the utility measure that is
maximized differs between the PRP and diversified ranking; both maximize ben-
efit for the user alone. The utility metric takes into account uncertainty and de-
clining rewards from numerous relevant outcomes under extrinsic diversity. The
utility metric, which falls under intrinsic diversity, treats ranks like portfolios and
takes redundancy into account[6]. Additionally, the goal of exploration variety is
to increase user utility over time by facilitating more efficient learning. The work
on fairness in this paper[6] is significantly different in terms of its goal and tech-
nique since it adds rights to the objects that are being rated rather than changing
the utility measure for the user.

2.3.4 Fairness Constrained Ranking

Recognizing the prevalence of rankings across applications, [6] hypothesizes that
fairness is context- and application-dependent and that there is no universal de-
scription of what makes a fair rating. For example, shown below that various
concepts of fairness entail various utility trade-offs, which may be appropriate in
one circumstance but not in another. This part establishes a framework for artic-
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ulating fairness requirements on ranks and then computes the utility-maximizing
ranking according to these fairness constraints with verifiable guarantees in or-
der to handle this spectrum of potential fairness restrictions[6]. For the sake of
simplicity, let’s assume that there is just one query, q, and that we wish to offer
a ranking "r", of a collection of documents, D = (d1, d2, d3, .., dN). The problem
of optimum ranking under fairness constraints may be expressed as the follow-
ing optimization problem by denoting the utility of a ranking r for query q with
U(r|q)[6]:

r = argmaxrU(r|q),

r is fair. In this approach, the Probabilistic Ranking Principle’s objective which
manifests as the particular case of no fairness constraints is generalized. The fol-
lowing four elements will be specified in order to properly instantiate and solve
this optimization challenge. They begin by defining a broad category of utility
measures, U(r|q), which includes a number of widely used ranking metrics. Sec-
ond, they expand the class of rankings to probabilistic rankings in order to ad-
dress the issue of how to optimize over rankings, which are discrete combinatorial
objects[6]. Thirdly, they rephrase the optimization issue as an effectively solvable
linear program, which entails the need for a practical yet expressive language to
convey fairness restrictions. Finally, they demonstrate how to effectively extract a
probabilistic ranking from the linear program’s answer.

2.3.5 Probabilistic Ranking

Ranks are combinatorial objects, therefore it would take exponentially more
time in |D| to naively search the space of all rankings for a utility-maximizing
ranking under fairness restrictions[6]. Instead of using a single deterministic
ranking r, they examine probabilistic rankings R in order to prevent such combi-
natorial optimization[6]. So they readily applied the idea of utility to probabilistic
rankings since a probabilistic ranking (R) is a distribution across rankings[6].
where notations are:
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• u = user

• q = query entered by the user.

• d = document returned for the particular fired query.

• λ,v = These two are application dependent functions.

• v(rank(d|r) = It models how much attention document d gets at rank rank(d|r).

• λ(rel(d|u, q)) = It maps relevance of document for a user to its utility[6].

Let Pi,j be the probability that R places document di at rank j, so P will be a "doubly
stochastic" matrix [6]. Which means,
Σi Pi,j = 1 and Σj Pi,j = 1. So the Probabilistic Ranking Utility will be,

To make the notation more simple, we can write "utility of the ranking as a
matrix product" .So we will take two vectors "u" and "v", where,//

• ui =u(di|q)

• vj = v(j)

So, the Utility now can be written as,
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In sections (2.2) and (2.3) we discussed Impact based fairness and Exposure based
fairness respectively. In Impact-based fairness we observed that it was unable to
satisfy the fairness axioms so we went for Exposure-based fairness which proved
to somehow satisfies the fairness axioms. But in Exposure based fairness the ex-
posure allocated to the items is an accidental by-product in order to blindly max-
imize the utility to users which will ultimately be responsible for creating an en-
dogenous bias. Instead of this, the allocation of exposure should be based on
merit specified explicitly i.e. the exposure should be allocated explicitly. So for
this purpose, we further went for the Fair-PG-Rank[2] as it extends the work of
Exposure-based Fairness[6] to overcome the above-mentioned problem of explic-
itly exposure allocation.
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CHAPTER 3

Fairness In Ranking

Fairness in ranking can be defined as below mentioned points in a simplified way.

• Fairness in ranking refers to ensuring that the ranking algorithm does not
display any biases or discrimination that could cause certain items or people
to be unfairly disadvantaged or favored.

• In order to minimize the possible harm that can result from biased or dis-
criminatory outcomes, particularly in terms of exposure and visibility, fair-
ness in ranking entails constructing and optimizing ranking algorithms.

• By guaranteeing that comparable item individuals are ranked equally across
the board, regardless of their origins or individual traits, and that various
populations or groups are fairly represented in the ranking algorithm, fair-
ness in ranking seeks to advance equality.

• The qualities and criteria that are used to rank the items or the individuals
must be carefully chosen, any data imbalances must be tested for and cor-
rected, and the performance of the algorithms must be watched to identify
and address any discrepancies in results.

• Individual fairness, group fairness, and algorithmic transparency are three
ways to ensure that rankings are fair. These three methods also involve mak-
ing sure that the ranking algorithm is transparent to users and does not un-
fairly disadvantage any particular group or population.

Overall, as ranking algorithms are widely employed in many applications, includ-
ing search engines, e-commerce platforms, and recommendation systems, fairness
in ranking is a critical topic in machine learning and artificial intelligence. We
can lessen the potential harm that could result from biased or discriminatory out-
comes and make sure that these algorithms function for the advantage of all users
by encouraging fairness and equality in them.
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Fair PG Rank

Traditional Learning-to-Rank (LTR) techniques maximize the ranking’s useful-
ness to users, but they are unaware of how their actions affect the rated items.
However, there is growing recognition that the latter must be taken into account
for a variety of ranking applications. (e.g. online marketplaces, job placement, ad-
missions). In order to fill this gap, This paper[2] offers a generic LTR framework
that may optimize a variety of utility measures (such NDCG) while adhering to
the fairness of exposure restrictions with regard to the items.

This framework[2] adds stochastic ranking policies to the domain of learnable
ranking functions, creating a language for precisely expressing fairness require-
ments. Additionally, using a policy-gradient approach, they offer a new LTR algo-
rithm dubbed Fair-PG-Rank for directly exploring the space of fair ranking poli-
cies. They give empirical results on simulated and real-world data sets demon-
strating the effectiveness of the technique in individual and group-fairness con-
texts, in addition to the theoretical evidence used to derive the framework and the
algorithm[2].

Despite the expanding impact of online information systems on our society and
economy, the topic of ranking fairness has received comparatively little attention.
Some people view group fairness in rankings as being similar to demographic
parity, providing definitions and techniques that reduce the disparity in represen-
tation between groups in the prefix of the rating.

Recent studies like[6] have made the case that the fairness of ranking systems
is related to the way they distribute exposure to distinct items or groups of re-
lated items based on merit. The fairness requirements that are explicitly linked
between relevance and exposure in expectation or amortized over a group of in-
quiries are specified and enforced in these studies[2]. So LTR(Learning-To-rank)
algorithm comes into the picture in order to overcome and solve this problem of
explicit exposure allocation.
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3.1 Learning To Rank

The initial Learning-to-Rank (LTR) algorithm[2], called Fair-PG-Rank, focuses not
only on optimizing utility for users but also on enforcing strict limitations on
merit-based exposure for items. These fairness constraints are essential for com-
pliance with anti-trust laws, addressing winner-takes-all dynamics in music stream-
ing services, implementing anti-discrimination measures, or ensuring variations
of search neutrality. The algorithm[2] places emphasis on fairness in relation to
the allocation of exposure based on the merit of items, and it incorporates fairness
considerations into the learning process to identify biases in representation. This
information is based on the research findings in this paper[2].

3.2 Objective

The main objective is to develop ranking policies where the distribution of ex-
posure to items is not an unintended side effect of optimizing user utility, but
rather where a merit-based exposure-allocation restriction may be specified and
is imposed by the learning algorithm[2]. In a classic example, ranking 10 job can-
didates, where the probabilities of relevance (i.e., the likelihood that an employer
will invite a candidate for an interview) are respectively (0.89, 0.89, 0.89, 0.89)
for 5 male candidates and (0.88, 0.88, 0.88, 0.88) for 5 female candidates. If the
consumers’ utility were maximized for nearly all information retrieval measures,
these 10 choices would be sorted by likelihood of relevance[2].

Although having about the same significance, the female candidates (ranked 6,7,8,9,10)
would receive far less attention than the male candidates (ranked 1,2,3,4,5). Hence,
a large endogenous bias against female candidates is produced by the ranking
mechanism itself, greatly increasing any external prejudice that the employers
may have. Regarding the endogenous bias brought on by the system itself, we
contend that exposure allocation should be able to be explicitly specified (e.g.,
make exposure proportional to relevance) and that the ranking policy accurately
learns this specified exposure allocation[2]. They develop their fair LTR frame-
work as guided by the following three goals:
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In order to further refine these goals they first formulate LTR in context with ERM
i.e. "Empirical Risk Minimization" in the further upcoming section.

3.3 Learning to Rank as Policy Learning via ERM

Let Q be the distribution from which queries are drawn.

• dq = (dq
1, dq

2, ...., dq
n), where dq is the candidate set of the documents related

to q [2]. This candidate set has to be ranked.

• rq = (rq
1, rq

2, ...., rq
n) ,where rq is the relevance corresponding to the above

candidate set document[2].

• xq
i = Ψ(q, dq

i ) , where xq
i is a feature vector that explains the match between

dq
i and q[2] .

Now finding a ranking policy π∗ that maximizes the anticipated utility of π is the
standard objective in Learning To Rank.

where U(π|q) is the expectation of a ranking metric Delta over π, given below

Common choices for the ∆ are DCG, NDCG, Average Rank, and ERR.

3.4 Fair Ranking policies

Like in traditional LTR algorithms, They introduce a constraint into the learning
problem that imposes an application-dependent idea of fair distribution of expo-
sure rather than single-mindedly maximizing this utility metric.

They now describe the goal of fair LTR by limiting the set of acceptable ranking
strategies to those that have anticipated disparity smaller than some parameter δ

[2]. Where D(π|q) >= 0 is a measure of Unfairness or the Disparity.
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Using Lagrange’s Multiplier and avoiding minimization w.r.t λ for a chosen δ.
Instead, choose a specific λ and then compute the corresponding to control the
utility/fairness trade-off[2]. This indicates that all that need to do is to find

and then recover δλ = 1
N ∑N

q=1 D(ß∗
λ|q) afterwards.

So the third goal is implemented by this formulation but the concrete definition
of "D" Disparity is still not clear which is covered in further sections of Group
Fairness Disparity and Individual Fairness Disparity.

3.5 Fairness Measures for Rankings

In order to define Disparity or unfairness "D" clearly, a class of fairness measures
for ranking is discussed in the paper[6] "Fairness In Ranking" .These are Position
Bias, Exposure, Merit-Based Exposure Allocation, Individual Fairness Disparity,
and Group Fairness Disparity.

3.5.1 Position Bias

The percentage of users who visit a ranking and look at the item at position j is
known as the position bias of position j, or vj. Higher ranks are anticipated to
gain more attention than lower ones, capturing the amount of attention that a
result will garner[2].

3.5.2 Exposure

The expected attention that a document receives is referred to as its exposure[6].
This is the same as the anticipated position bias from every position the document
might be placed. Exposure is denoted as vπ(di) and defined as ,

where r(di) = position of document di under ranking r.
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3.5.3 Exposure Allocation On Merit Basis

The first two goals were that exposure should be based on an application-dependent
notion of merit. M(reli) >= 0 = Merit of document di. They assert that any can-
didate document should receive exposure proportional to its merit Mi.

∀di ∈ dq : Exposure(di|π) ∝ M(reli)

To overcome the problem of overabundance of Exposure, which is sometimes due
to very small merit i.e. ϵ of some documents, the allocation of exposure is more
than they deserve. This is called overabundance of Exposure[2]. So, They consid-
ered a particular inequality constraint.

Exposure(di|π)
M(reli)

≤ Exposure(dj|π)

M(relj)

where ∀di, dj ∈ dq and M(reli) ≤ M(relj) > 0

3.5.4 Individual Fairness Disparity

The following disparity measure D for the individual notion of fairness, which
measures the extent to which the fairness-of-exposure restrictions are violated,
may now be defined[2].

"where Hq = (i, j) s.t. Mi ≥ Mj > 0. The measure Dind(π|q) is always non-negative
and it equals zero only when the individual constraints are exactly satisfied"[2].

3.5.5 Group Fairness Disparity

While other applications call for a group-based notion of fairness, the disparity
measure from above implements an individual notion of fairness. In this case,
fairness is summed up among each group’s members.

A collection of papers may refer to bundles of items offered for sale by a sin-
gle vendor in an online marketplace, to articles written by a single author, or to
job applicants who identify as members of a protected class.
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They provide exposure to groups proportionate to their merit, much like in the
case of individual fairness. So they define the group fairness disparity for query
(q) as follows in the case of just two groups, G0andG1.

"where Gi and Gj are such that MGi ≥ MGj and Exposure(G|π) = vπ(G) =
1
|G| ∑di∈G vπ(di) is the average exposure of group G, and the merit of the group
G is denoted by MG = 1

|G| ∑di∈G Mi"[2].

3.6 Plackett-Luce Ranking Policies

In the previous section, a generic framework for learning ranking rules under
fairness-of-exposure restrictions is established. What has to be demonstrated is
that given the disparities D described above, there exists a stochastic policy class
and an associated training method that can achieve the objective in Equation
given in section(3.4). In order to introduce Fair-PG-Rank, Firstly "Plackett-Luce
Ranking Policies" has to be described specifically and then effectively optimize
training objective by a policy gradient method.

The following definitions of ranking policies π have two parts: a scoring model
that specifies a distribution over rankings and the corresponding sampling tech-
nique.By permitting any differentiable machine learning model with parameters
θ starting with the scoring models hθ, such as a linear model or a neural network.
xq is the input showing feature vectors of all query-document pairs of the can-
didate set[2]. hθ(xq) = (hθ(xq

1),hθ(xq
2),hθ(xq

3),...,hθ(xq
n)) is a vector of scores output

by the scoring model, so based on these score vectors the probability πθ(r|q) of
a ranking r =

〈
r(1), r(2), ...r(nq)

〉
under the Plackett-Luce model is the following

product of softmax distributions[2].
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the derivative of πθ(r|q) and logπθ(r|q) exists whenever the scoring model hθ

is differentiable.It is also effective to sample a ranking using the Plackett-Luce
model[2].

The next step is looking through this policy Π space for a model that maximizes
the goal in the aforementioned equation. So in the next section, a policy gradient
algorithm is proposed.

3.7 Policy Gradient Training Algorithm

This section[2] suggests a policy-gradient strategy that repeatedly enhances the
ranking policy using stochastic gradient descent (SGD) updates. Since U and D
are expectations over rankings sampled from, computing the gradient by brute
force is not possible.

In this section[2], the required gradients over expectations are obtained as an ex-
pectation over gradients. We then estimate this expectation as an average across
a small sample of ranks from the policy to provide a rough gradient.

In order to maximize user utility, traditional LTR approaches either use heuris-
tics to optimize over probabilistic formulations of rankings or are designed to
optimize over a smoothed version of a certain utility measure, such as SVMRank,
RankNet, etc[2].

While the LTR setup is similar to ListNet, they directly optimize over utility and
disparity metrics using a policy gradient technique rather than a heuristic loss
function. In contrast to most traditional LTR methods, which optimize upper lim-
its or heuristic proxy measures, policy-gradient learning directly optimizes the
ranking policy[2].

First off, there are no limitations on the information retrieval (IR) metric that may
be used because the learning system directly optimizes a given user utility mea-
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sure. Second, since disparity measure D is likewise an expectation over ranks,
The application of the same policy-gradient method to it as well is possible. Over-
all, the non-smoothness of ranks is simply handled by the application of policy-
gradient optimization in the space of stochastic ranking policies[2].

So the main objective to achieve Fairness In Ranking is to ultimately Minimise the
Unfairness or Disparity "D" and Maximising the Utility/Usefulness. In the next
sections, the algorithm for minimizing the disparity and maximizing the utility is
given by this paper[2].

3.8 Maximizing User Utility

Given that the space of ranks has an exponential cardinality, determining the gra-
dient with respect to θ this expectation is not an easy task. This is remedied
by sampling using the log-derivative technique pioneered by the REINFORCE
algorithm[2].

"The above transformation exploits that the gradient of the expected value of the
metric δ over rankings sampled from π can be expressed as the expectation of the
gradient of the log probability of each sampled ranking multiplied by the metric
value of that ranking".

3.9 Minimising Disparity

Calculation of the gradient of the fairness-of-exposure term D when it is part of
the training goal. Thankfully, it shares a structure with the utility term, making
the Monte-Carlo method applicable so for the individual-fairness disparity mea-
sure, in particular, the gradient can be computed as[2]:

And for Group Fairness Disparity, the gradient can be derived as
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"Another important point is that in both the case of individual disparity and group
disparity, the expectation can be estimated as an average over a sample of ranking
from a distribution".

Above are the two algorithms given by [2] for the minimization of Individual
Disparity and Group Disparity respectively.

3.10 Our Contribution

Impact-based fairness[7] and Exposure based fairness[6] have certain issues as
discussed previously. So we selected and implemented the Fair-PG-Rank[2] as it
overcomes the problems that arise in the previous two methods mentioned above.

We implemented the "Fair-PG-Rank" algorithm given in the paper[2] and ob-
served that the time taken to train the model for the large (19,944) row data of
the Yahoo Learning To Rank Challenge dataset is very large i.e. more than 13
hours . So we chose to go for the sampling techniques in order to check and ob-
serve if we can perform sampling on the above-mentioned large Yahoo dataset
and take appropriate samples by applying some sampling techniques and can get
desired near-about results in a comparatively small time as compared to a large
full dataset.

So our main contribution in this thesis is to conduct an empirical study of sam-
pling heuristics for the fair ranking algorithm. We aim to explore the performance
of different sampling techniques in terms of their effectiveness in achieving fair-
ness in the fair PG rank algorithm while maintaining accuracy and efficiency.
Specifically, we will evaluate the performance of several sampling heuristics, in-
cluding uniform sampling, Row Norm sampling, Leverage Score sampling, and
K-Medoid sampling, on a real-world dataset.
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Our contribution provides valuable insights into how various sampling techniques
perform for Fairness based ranking algorithms.

So in the further sections firstly we briefly discussed the four sampling tech-
niques which are Uniform Random Sampling, Row Norm Sampling, Leverage
Score Sampling, and K-Medoid Sampling which we used in our research work,
and then discussed the implementation and dataset information.
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CHAPTER 4

Sampling Techniques

4.1 Uniform Random Sampling

Uniform sampling ensures that each data point or data of the population has an
equal probability of being included in the sample, thereby minimizing bias and
providing a representative sample for analysis[10].

In this sampling technique, a random number generator is typically employed
to assign a random value to each individual or item in the population. These ran-
dom values are then sorted, and the top N values are selected to form the sample,
where N represents the desired sample size[11]. This process guarantees that ev-
ery individual or item has an equal probability of being selected, as the random
values distribute uniformly across the population[10]. This sampling approach
allows all possible combinations of n units to be produced from the population of
n units with the same chance of selection.

Ultimately this sampling ensures randomness and eliminating biases in order to
obtain reliable and accurate results, it also allows for generalization of findings
from the sample to the larger population, making it a fundamental tool in sta-
tistical inference[11]. So that this technique serves as a cornerstone in statistical
analysis, providing a fair and unbiased approach to selecting samples from pop-
ulations of interest.

By using this sampling technique, one can reduce the potential for selection bias
and improve the reliability and validity of their work and findings. It also pro-
vides a fair and unbiased approach to selecting samples, enabling more accurate
and robust analysis and interpretation of data[11].
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4.1.1 How Uniform Sampling is done?

A process known as uniform random sampling is used to arbitrarily and impar-
tially select a smaller group of objects or people from a larger population. The
following are the steps involved in conducting a uniform random sample:

• Define the population: Create a clear definition of the population from which
you intend to select a representative sample.

• Determine sample size: Determine the ideal sample size that you wish to
draw from the population.

• Assign identifiers: Each element in the population should have a unique
identification, hence these identifiers must be sequential and begin at a spe-
cific number.

• Generate Random Numbers: Use a random number generator or random
selection method and the produced random numbers ought to be equally
likely to be chosen and evenly distributed.

• Select Sample: Select from the population the objects or people that corre-
spond to the chosen random numbers. Continue doing this until you get the
desired number of samples.

• Conduct Analysis: Analyze the selected sample using the appropriate sta-
tistical techniques, or run experiments, surveys, etc.
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4.2 Row Norm Sampling

Row Norm Sampling is a technique used in the field of machine learning and data
analysis for selecting a subset of data points from a larger dataset based on their
row-wise norms. It aims to prioritize and sample data points that have larger
norms or magnitudes, which can be indicative of their importance or relevance in
the dataset.

By computing the Euclidean norm or another norm measure of the values in each
data point’s associated row, Row Norm Sampling determines the row norm for
each data point. The row norm denotes the size or length of the vector created by
the values in the row.

The data points are arranged in decreasing order according to their row norms
as part of the sampling procedure. In comparison to data points with smaller row
norms, those with bigger row norms are therefore chosen with a higher likelihood.
Data points with greater magnitudes or norms will have a better probability of be-
ing included in the sample thanks to this probabilistic selection procedure.

Numerous situations call for the usage of row norm sampling. For instance, Row
Norm Sampling can assist in the selection of possible anomalies for further analy-
sis in anomaly identification activities, where outliers or abnormal data points fre-
quently have larger magnitudes relative to normal data points. It can also be help-
ful when focusing on highly influential observations or when bigger row norms
are of particular interest or importance, such as when choosing features.

This method offers a mechanism to collect and prioritize data items based on
their relative magnitudes within the dataset by introducing row norms into the
sampling process. This enables effective sampling techniques that may be cus-
tomized to meet particular needs or goals and reveal significant or significant
data points.

4.2.1 How Row Norm Sampling is Done?

Row Norm Sampling is a technique used to select a subset of data points from
a dataset based on their row-wise norms. The process of conducting Row Norm
Sampling involves the following steps:
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• Define Dataset: The dataset from which you want to do Row Norm Sam-
pling should be specified in detail. Multiple data points are grouped in rows
and columns in the dataset.

• Compute Row Norms: For each data point in the dataset, compute the row
norms. Different norm measures, such as the Euclidean norm or the L1
norm, can be used to determine the row norm. It shows the size or length of
the vector created by the corresponding row’s values.

• Sort Data points: The data points are arranged in descending order accord-
ing to their row norms. From the greatest row norms to the lowest row
norms, the data points are arranged in this step.

• Determine Sampling Probability: Based on its row norm, assign a sampling
probability to each data point. It is possible to proportionally assign the
probability so that data points with higher row norms are more likely to be
included in the sample.

• Select Datapoints: Use a random sampling technique to choose data points
from the dataset in accordance with the prescribed sampling probabilities,
such as simple random sampling or stratified random sampling. The chosen
sample size should be in line with the amount of data points.

• Perform Analysis: To get insights or create judgments based on the sampled
subset, analyze the selected data points using appropriate statistical tech-
niques, machine learning algorithms, or any other pertinent approaches.
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4.3 Leverage Score Sampling

The calculation of leverage scores involves the use of matrix factorization tech-
niques, particularly the singular value decomposition (SVD) of the data matrix[12].
The leverage score of a data point is derived from the singular vectors obtained
during the SVD process. It is nothing but the, Squared norms of rows of the or-
thogonal basis of the data matrix[12].

The sampling process involves sorting the data points based on their leverage
scores in descending order. Data points with higher leverage scores are given a
higher probability of being selected for the sample, while those with lower scores
have a lower probability[13]. This probabilistic selection ensures that data points
with greater influence on the dataset’s structure have a higher chance of being
included in the sample.

For example, the leverage score of an observation i is calculated as the i-th di-
agonal element of the hat matrix (H), which is derived from the design matrix (X)
used in the regression model[14].
The leverage score (hi) for the i-th observation can be calculated as:
hi = Xi(XTX)(−1)XT

i

where Xi is the i-th row of the design matrix X[14]. The hat matrix (H) is then
constructed using the leverage scores, with H = X(XTX)(−1)XT.Leverage scores
provide a measure of the influence that each data point has on the overall struc-
ture of the dataset. These scores capture the importance of each data point in
terms of its contribution to the variance or structure of the dataset[15].

Leverage Score can be calculated generally by following steps, Let’s say we have a
data matrix X, where each row represents a data point and each column represents
a feature or attribute.

1. Perform the singular value decomposition (SVD) on the data matrix X. The
SVD decomposes the data matrix into three matrices: U, Σ, and VT.
U: The left singular vectors matrix. Each column of U represents an orthog-
onal basis vector that spans the column space of X.
Σ: The diagonal matrix of singular values. It contains the singular values
associated with each basis vector in U.
VT: The transpose of the right singular vectors matrix. Each row of VT rep-
resents an orthogonal basis vector that spans the row space of X[15].
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2. Then the leverage score of each data point is calculated as the squared Eu-
clidean norm of the corresponding row in the matrix U[15]. In other words,
for each row i, the leverage score Li is computed as:
Li = |Ui|2

where |Ui|2 represents the squared norm of the i-th row of U.

Leverage score sampling is an intriguing method for performing approximate
computations for big matrices. In fact, it enables the creation of accurate approx-
imations with a level of complexity appropriate for the given issue. However,
carrying out leverage scores sampling is a difficult task in and of itself that neces-
sitates further estimates[16].

Leverage Score Sampling is particularly useful in scenarios where the dataset con-
tains outliers, influential observations, or data points that significantly impact the
analysis or modeling results. By focusing on data points with higher leverage
scores, this technique allows for the selection of influential observations that play
a crucial role in capturing the dataset’s underlying patterns and characteristics[16].

By incorporating leverage scores into the sampling process, Leverage Score Sam-
pling provides a way to prioritize data points based on their influence on the
dataset’s structure. This enables the construction of efficient sampling strate-
gies that can effectively capture important and influential observations within
the dataset, leading to more accurate analysis and modeling results[16]. Despite
these advantageous characteristics, applying leverage score sampling presents a
problem in and of itself because it is as complex as an eigendecomposition of the
original matrix.

It is important to note that leverage score sampling requires careful consideration
of the specific analysis or modeling task, as well as the underlying assumptions
and properties of the data. Proper validation and evaluation procedures should
be employed to ensure the reliability and validity of the selected subset of data
points[17].
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4.4 K-Medoid Sampling

K-Medoid Sampling is a technique used in data analysis and clustering to select a
representative subset of data points from a larger dataset. It is an extension of the
K-Means clustering algorithm that focuses on selecting actual data points, known
as medoids, as representatives of the clusters.

The process of K-Medoid Sampling involves the following steps:

• Define the Dataset: The dataset that you want to analyze and execute K-
Medoid Sampling on must be specified precisely. The dataset should have
numerous data items with related qualities or features.

• Define the No. of Clusters: Enter the appropriate number of clusters (indi-
cated by the letter "K") that you want to locate in the dataset. The number
of clusters should be chosen based on the goals of your investigation or the
needs of a particular domain.

• Initialize Medoids: Choose K data points at random to serve as the start-
ing medoids in the dataset. These medoids will act as the clusters’ initial
representatives.

• Assign Data Points to Medoids: Use a suitable distance metric, such as Eu-
clidean distance, to determine the distance or dissimilarity between each
data point and the medoids. Establish the first clusters by associating each
data point with the closest medoid.

• Update Medoids: Analyse the overall dissimilarity or distance between each
data point and all other points in the same cluster for each cluster. Select the
new medoid for that cluster based on the data point with the lowest overall
dissimilarity.

• Repeat Steps 4 and 5: Steps 4 and 5 should be repeated until convergence is
obtained, which happens when the medoids stop changing or after a certain
number of rounds.

• Select Medoids as Sample: Choose the medoids as the representative subset
for your investigation once convergence has been reached. These medoids
act as representative data points and convey the central tendencies of the
clusters.
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Using K-Medoid Sampling, it is possible to choose representative medoids as data
points to represent the traits of the dataset’s clusters. It is frequently utilized
in tasks involving data summary, pattern detection, and grouping analysis. K-
Medoid Sampling offers a trustworthy method for gathering crucial information
from the dataset and aiding meaningful analysis by focusing on actual data points
as medoids.
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CHAPTER 5

Implementation and Dataset Details

5.1 Dataset Details

We utilised Set 1, which consists of 6, 983 test questions and 19, 944 training
queries from the Yahoo! Learning to Rank challenge (Chapelle and Chang, 2011).

Each query contains a candidate collection of documents, which varies in size,
that must be rated. The training set and test set each include a total of 473,134 and
165,660 documents, respectively.

A 700-dimensional feature vector serves as the representative for the query-document
pairings. Each query-document combination is given an integer relevance judg-
ment ranging from 0 (poor) to 4(perfect) for supervision.

5.2 Implementations Details

We basically do the Empirical Study Sampling techniques for the Fairness Al-
gorithm i.e. "Fair-PG-Rank" given in the paper[2] and check for the output and
timestamp for training the sampled dataset and full training dataset.

So initially we do training for the Four sampling techniques that are Uniform Sam-
pling, Row Norm Sampling, Leverage score, and K-medoid sampling taking the
sample size from the training dataset of Yahoo LTR dataset(300,500,1000,2500,5000)
for both sampling Techniques. Then we train for these sample sizes for all four
sampling techniques and analyze the output and timestamp for training the sam-
ples for these sampling techniques.

• Firstly, We train for the Set-1 training dataset of the Yahoo Learn to Rank.
In we train for the full training dataset of a linear model and all the weights
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were randomly initialized between (-0.001, 0.001) for the linear model.

• an Adam optimizer with a learning rate of 0.001, we set the entropy regular-
ization constant to γ = 1.0, use a baseline, and use a sample size of S = 10 to
estimate the gradient and the model is trained for 20 epochs over the train-
ing dataset, updating the model one query at a time. And then we check for
the output and Time stamp of the model to train the full dataset.

• Now we train for the Row Norm sampling technique for the 300 sample size
and check for the output and timestamp. Similarly, we do this for sampling
for all the rest of the sample sizes i.e. (500,1000,2500,5000)that we generated
and check for the same.

• Now we train for the Uniform Random Sampling technique for the 300 sam-
ple size and check for the output and the time is taken for the training of the
300 sampled data on the linear model.
Similarly, we do this for sampling for all the rest of the sample sizes i.e.
(500,1000,2500,5000) that we generated and check for the same.

• After this, train the model for the Leverage Score sampling technique for the
300 sample size and check for the output and timestamp. Similarly, we do
this for sampling for all the rest of the sample sizes i.e. (500,1000,2500,5000)that
we generated and check for the results.

• At last we train for the K-Medoid sampling technique for the 300 sample
size and check for the output and timestamp.
Similarly, we do this for sampling for all the rest of the sample sizes i.e.
(500,1000,2500,5000)that we generated and check for the same.

Also, we are checking for the Timestamps or time taken for training the variable-
size samples of different sampling strategies and comparing them with each other
and also with the time taken to train the full-size dataset. And then check for the
results if we are getting desirable and relevant results using different sampling
techniques for different sample sizes as compared to the full data size trained
results.
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CHAPTER 6

Results

In the result section we calculate four standard ranking performance measures
that are NDCG, DCG, Average Rank, and ERR respectively for the full training
data and then for different sampling techniques on different sample sizes respec-
tively, and check for results and analysis. Firstly we’ll describe these evaluation
metrics. These performance metrics are used to measure the effectiveness of rank-
ing algorithms.

1. DCG: DCG stands for Discounted Cumulative Gain and is a measure of the
relevance and ranking of a set of items or documents.

2. NDCG: NDCG stands for Normalized Discounted Cumulative Gain and is
a normalized version of DCG. It is calculated by dividing the DCG by the
maximum possible DCG for the same set of items.

3. Average Rank: Average Rank measures the average position of relevant
items in the ranked list.

4. ERR: ERR stands for Expected Reciprocal Rank. It measures the probability
that the user will stop looking at the list after encountering a relevant item.
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6.1 Uniform Sampling Results

6.1.1 NDCG Score
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6.1.2 DCG Score
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6.1.3 Average Ranking Measure
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6.1.4 ERR Score
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6.2 Row Norm Sampling Results

6.2.1 NDCG Score

Figure 6.1: NDCG scores for Row Norm Samplings

6.2.2 DCG Score

Figure 6.2: DCG scores for Row Norm Samplings
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6.2.3 Average Ranking Measure

Figure 6.3: Average Rank Measures for Row Norm Samplings

6.2.4 ERR Score

Figure 6.4: ERR scores for Row Norm Samplings
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6.3 Leverage Score Sampling Results

6.3.1 NDCG Score

Figure 6.5: NDCG scores for Leverage Score Samplings

6.3.2 DCG Score

Figure 6.6: DCG scores for Leverage Score Samplings
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6.3.3 Average Ranking Measure

Figure 6.7: Average Ranking Measures for Leverage Score Samplings

6.3.4 ERR Score

Figure 6.8: ERR scores for Leverage Score Samplings
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6.4 K-Medoid Sampling Results

6.4.1 NDCG Score

Figure 6.9: NDCG scores for K-medoid Samplings

6.4.2 DCG Score

Figure 6.10: DCG scores for K-medoid Samplings
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6.4.3 Average Ranking Measure

Figure 6.11: Average Ranking Measures for K-medoid Samplings

6.4.4 ERR Score

Figure 6.12: ERR scores for K-medoid Samplings
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6.5 Time Stamp Result

Figure 6.13: Time Stamps for Various Sample Sizes for Different Sampling Tech-
niques

From the above results, we can clearly observe that we are getting all the standard
ranking performance measures which are NDCG, DCG, Average Rank, and ERR
somehow nearly equal for the different sampling techniques for different sample
sizes as compared to the original full data size trained results.

We can clearly notice in the above Time Stamp table fig(6.17) that for training the
full-size dataset the time taken is very large i.e. more than 13 hours but also on
the other hand by using different sampling techniques and variable sample sizes
of the full dataset the time taken is very small as compared to the time taken by
full training dataset i.e. more than 13 hours, also we are getting near equal results
as of original full-size dataset trained result.
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CHAPTER 7

Conclusion and Future work

In conclusion, this empirical study on sampling heuristics for fairness in rank-
ing has shed light on the importance of selecting appropriate sampling methods
to ensure fairness in ranking algorithms. We have gained valuable insights into
their strengths and limitations by evaluating and comparing different sampling
heuristics.

We have found that sampling methods such as uniform random sampling, row
norm sampling, leverage score sampling, and K-Medoid Sampling all perform
reasonably well in terms of various evaluation measures for the fair PG Rank
algorithm. They all give significant time benefits also. It is crucial to keep inves-
tigating novel sampling strategies, assessing their efficiency, and comprehend-
ing how they affect the impartiality of ranking algorithms. Deriving theoretical
bounds and guarantees for various sampling algorithms for Fair PG Rank and
other fairness-based algorithms is an important open question.
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