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Abstract

Facial Recognition (FR) systems based on deep neural networks (DNNs) are widely
used in critical applications such as surveillance and access control necessitat-
ing their reliable working. Recent research has highlighted the vulnerability of
DNNs to adversarial attacks, which involve adding imperceptible perturbations
to the original image. The presence of these adversarial attacks raises serious
concerns about the security and robustness of deep neural networks. As a re-
sult, researchers are actively exploring and developing strategies to strengthen
the DNNs against such threats. Additionally, the object used should look natu-
ral and not draw undue attention. Attacks are carried out in white-box targeted
as well as untargeted settings on Labeled Faced in Wild (LFW) dataset. Attack
success rate of 97.76% and 91.78% are achieved in untargeted and targeted set-
tings, respectively demonstrating the high vulnerability of the FR systems to such
attacks. The attacks will be evaluated in the digital domain to optimize the adver-
sarial pattern, its size and location on the face.

v



List of Tables

2.1 Type of attacks and categorization of adversarial attacks on ML
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Attack success rate in impersonation and dodging attacks on FaceNet 31

vi



List of Figures

1.1 Overview of the adversarial attack . . . . . . . . . . . . . . . . . . . 2
1.2 Targeted attack [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Untargeted attack [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Types of adversarial attacks . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Adversarial patch off-and-around a car [8] . . . . . . . . . . . . . . 10
2.2 Optimisation process for adversarial attack on an aerial imagery

object detector [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Laser beam attack [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Adversarial patch [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 The pipeline of the adversary objective function. [11] . . . . . . . . 13
2.6 Overall pipeline of Universal physical camouflage (UPC) [12] . . . 14
2.7 Effects of triggers with different locations [21] . . . . . . . . . . . . . 15

(a) Trigger placement . . . . . . . . . . . . . . . . . . . . . . . . 15
(b) Attack success rate . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Impersonation using eyeglass frame [17] . . . . . . . . . . . . . . . . 16
(a) Original image . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(b) Perturbed image . . . . . . . . . . . . . . . . . . . . . . . . . 16
(c) Misclassified class . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 The physical-world attacks on FR systems using adversarial stick-
ers crafted by FaceAdv [18] . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Samples of dodging and impersonating attacks [18] . . . . . . . . . 17

3.1 Triplet loss [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Architecture of Inception Resnet v1 . . . . . . . . . . . . . . . . . . . 22

4.1 LFW dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Targeted adversarial bandage . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Original bandage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Bandage mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Epochs vs. Attack Success Rate . . . . . . . . . . . . . . . . . . . . . 32

vii



4.6 Targeted attack on the class of LFW dataset . . . . . . . . . . . . . . 33
4.7 Targeted attack on the class of LFW dataset . . . . . . . . . . . . . . 33
4.8 Untargeted adversarial bandage . . . . . . . . . . . . . . . . . . . . 34
4.9 Untargeted attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10 Untargeted attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



List of Acronyms

FR Facial Recognition

DNNs deep neural networks

LFW Labeled Faced in Wild

SVM Support Vector Machine

UPC Universal physical camouflage

TV Total Variation

FGSM Fast Gradient Sign Method

ASR Attack Success Rate

NPS Non-printability score

ix



CHAPTER 1

Introduction

The ability of DNNs to achieve high classification accuracy is the primary motiva-
tion in image classification applications. DNNs have proven to be exceptionally
effective at reliably classifying images, making them popular in various applica-
tions. Although DNNs have obtained respectable prediction accuracy, they are
still susceptible to flaws that attackers can use to craft adversarial examples. An
image that has been altered by adding deliberate noise to the original input image
is referred to as an adversarial example. The perturbed input has slight aesthetic
differences from the original image but is purposefully altered to produce mis-
classification by a DNN. An adversarial attack is the process of producing such
adversarial examples. Various conditions or traits can be used to categorize ad-
versarial attacks. These attacks take advantage of DNNs’ sensitivity to minute
changes in input data to exploit their weaknesses and limitations. In the context
of enhancing the security and robustness of DNN-based image classification sys-
tems, understanding adversarial attacks and their various types is crucial. How-
ever, the scope of adversarial attacks is not limited to image classification alone.
To generate an adversarial bandage that misleads the face recognition model un-
der targeted and untargeted attacks in white-box settings, researchers must delve
into the intricacies of face recognition technology. This involves understanding
the unique challenges posed by face recognition systems and the potential vul-
nerabilities that can be exploited. Building on this knowledge, researchers can
develop innovative defense strategies to protect against adversarial manipulation,
ultimately contributing to the broader field of computer vision and machine learn-
ing. To improve the security and robustness of DNN-based image classification
and face recognition systems, researchers can create techniques to understand the
effects of various adversarial attacks and construct more resilient models. The
discussion will go into greater detail about adversarial attacks in both image clas-
sification and face recognition and provide an overview of various types of attacks
in the next segments.
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Figure 1.1: Overview of the adversarial attack

1.1 What is an adversarial attack?

An adversarial attack occurs when data inputs are purposefully altered or per-
turbed to trick or mislead a machine learning model. Adversarial attacks aim
to make the model generate inaccurate or unexpected outputs by taking advan-
tage of weaknesses in its decision-making process. These attacks typically make
minute adjustments to the input data but significantly impact the model’s pre-
dictions, as shown in Figure 1.1. The adjustments can involve changing specific
photo pixels, introducing undetectable noise to audio signals, or altering partic-
ular elements in textual data. They are meticulously designed to take advantage
of the model’s flaws. The attack goal can change depending on the attacker’s ob-
jectives. It might be done to misclassify a picture, fool a spam filter, tamper with
sentiment analysis, or even fool autonomous vehicles by changing traffic lights or
road signs. The security and resilience of machine learning systems have come
under scrutiny due to adversarial assaults, particularly in areas as important as
healthcare, banking, and autonomous systems. Researchers are working hard to
understand the mechanisms behind these attacks better and create strategies to
counter them.
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1.2 Types of adversarial attacks

Adversarial attacks can be broadly classified according to adversarial aim, adver-
sarial knowledge, realizability, and scope of perturbation, as discussed below and
shown in Figure 1.4. [4]

1.2.1 Adversarial knowledge

• White-box attack: In a white-box attack, an attacker has full access to or
knowledge of the internal workings of a model. This details the model’s pa-
rameters, training data, and architecture. Using this information, the adver-
sary can create adversarial inputs, or adversarial examples, in a white-box
attack that can trick the machine learning model [14].

• Black-Box attack: In a black-box attack, an attacker has limited knowledge
of how a machine learning model functions internally. The attacker doesn’t
have access to the machine learning model’s parameters, architecture, or
training data, which makes it a black-box in this situation. Typically, the at-
tacker can access the input-output pairs, which can be leveraged to produce
adversarial examples. The attacker uses methods like gradient estimation,
query-based attacks, or transferability to carry out a black-box attack [14].

1.2.2 Adversarial aim

Given an image x of class j, we want to misclassify it to target class t using dis-
criminant function g(x).

• Targeted attack: Targeted attacks in adversarial machine learning is inten-
tional and malicious attempts to trick or influence machine learning mod-
els using adversarial examples. Adversarial examples are deliberately pro-
duced inputs that are slightly modified from regular data samples to de-
ceive the machine learning model into producing incorrect predictions. In
targeted attacks, the attacker aims to make the model produce the desired
inaccurate output by manipulating it to do so. Following Equation (1.1) [5]
denotes targeted attack. Here, Ω represents set.

Ω = {x|max
j ̸=t

{gj(x)} − gt(x) ≤ 0} (1.1)

3



Figure 1.2: Targeted attack [5]

• Untargeted attack: Untargeted attacks aim to trick a machine learning model
without explicitly aiming at a particular output or class label. The attacker
seeks to produce adversarial examples, which are samples of input deliber-
ately created to lead the model to make false predictions. No matter which
specific incorrect prediction is made in an untargeted attack, the attacker’s
goal is to get the model to make a mistake. In order to trick the model, the
attacker usually manipulates the input data in a human-imperceptible man-
ner. The perturbations are deliberately designed to exploit weaknesses or
blind spots in the model’s decision-making process. Equation (1.2) [5] for
untargeted attack can be defined as:

Ω = {x|gi(x)− max
j ̸=i

{gj(x)} ≤ 0} (1.2)

Figure 1.3: Untargeted attack [5]
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1.2.3 Realizability

• Digital attack: They manipulate the original images present in the dataset
and generally performed in controllable lab environments which focus on
improving the performance of attack algorithms.

• Physical attack: They mostly focus on physical world deployed DNN mod-
els. Such attacks are comparatively more challenging to carry out due to
complex physical environments like brightness, occlusion, viewpoints, etc.
[18]

1.2.4 Scope of perturbation

• Individual attack: The optimization problem is solved for each sample, and
the perturbation for each sample is different.

• Universal attack: The optimization problem is solved for the whole dataset,
and the same perturbations can be used for different input samples to mis-
classify them to the wrong class. [25]

Figure 1.4: Types of adversarial attacks

1.3 Attack deployment strategies

Adversarial attacks can also be classified into the three following categories: Poi-
soning attacks, Extraction attacks, and Evasion attacks. Each attack type targets
different stages of the machine learning pipeline, from the training phase to the
testing or deployment phase.

5



1.3.1 Poisoning attack

The attacker can strategically alter the training data by inserting malicious sam-
ples specifically designed to fool the model. These samples might have subtle
modifications or perturbations that are meant to fool the learning algorithm. By
adding these contaminated samples into the training procedure, the attacker aims
to bias the model towards making incorrect predictions or exhibiting undesirable
behavior when deployed in practical situations. The fact that Machine Learning
systems frequently have the ability to incorporate data obtained during operation
for re-training raises serious concerns about data poisoning attacks. This implies
that the attacker inserted malicious samples may affect the re-training procedure,
continuing the negative effect even after the first deployment. This emphasizes
the significance of strong data poisoning defenses, as the presence of poisoned
samples during the training phase of model can have a great impact on the per-
formance of the model.

1.3.2 Evasion attack

In evasion attacks, the attacker tampers with the data during the deployment
phase to deceive trained classifiers. By manipulating the classifier’s decision-
making process, these attacks aims to force it to make erroneous or unwanted
predictions [2]. Evasion attacks are common in many situations, but they are espe-
cially common in intrusion and malware detection. Attackers use evasion tactics
to change spam emails or malicious code so that they can avoid being detected
by deployed classifiers. Attackers try to evade detection by security systems that
rely on classification algorithms by altering the content or structure of malware.
Evasion attacks concentrate on perturbing samples during inference time instead
of poisoning attacks targeting the training data.

1.3.3 Extraction attack

An attacker engages in model extraction when they want to learn more about
how a machine learning model functions internally but are not readily accessible
[1]. In order to learn more about the model’s architecture, parameters, or deci-
sion boundaries, the attacker probes the black box system with carefully prepared
queries or inputs. Model extraction can have a variety of motivations. Attackers
may occasionally be motivated to recreate the model, which has many implica-
tions. For instance, the stolen model may represent confidential information.

6



1.4 Motivation

The motivation behind generating adversarial bandages is rooted in the neces-
sity of understanding and addressing the vulnerabilities of deep neural networks
(DNNs) to enhance defense mechanisms. Creating potent adversarial attacks aids
in uncovering DNN weaknesses and fosters the development of robust defenses.
Adversarial bandages serve two key purposes: impersonation, enabling attack-
ers to mimic high-authority target persons, and evasion, allowing identity con-
cealment. With the increasing prevalence of face recognition technology, privacy
concerns arise, making adversarial bandages a vital tool to protect one’s iden-
tity from unauthorized recognition. Furthermore, ethical concerns regarding face
recognition in various applications, including surveillance and law enforcement,
underscore the need for adversarial bandages as a means for individuals to assert
control over their representation and guard against potential bias and discrim-
ination. The development of adversarial bandages not only enhances privacy
and security but also drives innovation in computer vision and machine learn-
ing by challenging researchers to bolster the robustness of face recognition algo-
rithms. Consequently, robust adversarial attacks and defense mechanisms play a
pivotal role in advancing the security and reliability of deep neural networks in
real-world scenarios.

1.5 Objective

DThe objective of this research is to address the critical problem statement: To
generate an adversarial bandage that misleads the face recognition model under
targeted and untargeted attacks in white-box settings.. This multifaceted prob-
lem statement encompasses several key challenges and objectives. The primary
aim of this research is to design and develop adversarial bandages, specialized
image overlays, or modifications with the capacity to deceive face recognition
models. These bandages should be capable of effectively misguiding the model’s
predictions, leading to instances of incorrect or unauthorized identification. The
research will investigate two fundamental modes of adversarial attacks: targeted
and untargeted. In targeted attacks, the adversarial bandage will be tailored to
specifically deceive the model into recognizing a predetermined individual. Con-
versely, untargeted attacks involve the creation of bandages aimed at causing gen-
eral misidentification without a specific target in mind. This differentiation will
enable a comprehensive understanding of the bandages’ versatility and effective-
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ness. The research will operate within white-box settings, implying that the at-
tacker has full access to the architecture and parameters of the face recognition
model. This setting allows for a deeper exploration of vulnerabilities and the de-
velopment of highly effective adversarial bandages.

1.6 Contributions

The main contributions of the our thesis are listed as follows:

• The primary contribution of this research lies in assessing the vulnerability
of the face recognition systems to patch-based adversarial attacks.

• Secondly, adversarial bandages were generated in the white-box attack set-
ting for targeted and untargeted attacks.

• Reconstruction loss and total variation loss was incorporated in the attack
framework to minimize patch conspicuousness and maximize smoothness.

1.7 Thesis outline

The rest of the thesis is organised as follows. Chapter 2 discusses the literature
survey on similar works. Chapter 3 discusses about the architecture and loss func-
tions which are used in FaceNet [15]. We are using FaceNet as the state-of-the-art
architecture for facial recognition to perform attacks. It also describes the possible
threats and the proposed algorithms to attack on FaceNet. Chapter 4 discusses
the experiments performed to craft adversarial bandages. We conclude in Chap-
ter 5.

8



CHAPTER 2

Literature Review

The development in adversarial machine learning by Szegedy et al. [10] was sig-
nificant in exposing the flaws in state-of-the-art DNNs. Even extremely accurate
DNNs have blind spots or flaws that adversaries can use to create adversarial
samples. One important finding is that a machine learning model, particularly a
DNN, can be easily tricked by making small changes to the distribution of input
data. This property of DNNs is used in adversarial attack techniques to create
adversarial samples, which are purposely produced inputs intended to trick the
model and yield false or unexpected results. Important concerns regarding the
reliability and security of machine learning systems are raised by the prevalence
of vulnerabilities in DNNs and the ease with which adversarial samples can be
produced.

One such attack was proposed by Cheng et al. [6] on emails to bypass spam de-
tection model. Authors converted email texts into feature vectors using Word2vec,
Doc2vec, or Term Frequency - Inverse Document Frequency (TF-IDF) vectoriza-
tion methods. They used projected gradient descent on the set of spam email
feature vectors. Perturbations are obtained, which are later converted back into
words named magic words. These words are then added to spam emails and fed
to spam detectors to verify the effectiveness of bypassing the detection. They
have also discussed a black-box scenario where they obtain magic words using
Support Vector Machine (SVM) classifier and use it on another classifier where
the type and weights of classifiers are unknown.

Similarly, Yoshida and Okuda [24] proposed an approach to produce adver-
sarial examples to fool image cropping systems that Twitter and Netflix use. They
used a gradient-based attack on the model, which predicts a salience map to shift
the cropping images. They also introduced a novel method to evaluate the effec-
tiveness of the image cropping model.

Xu et al. [23] proposed an efficient attack against scene text recognition. This
attack includes operations on character and word levels. For instance, the word

9



Tiger is manipulated by insertion (Timger), substitution (Tigar) and deletion (Tigr).
Previous research made changes in random pixels, while Du et al. [8] suggested a
patch-based physical adversarial attack on aerial imagery object detectors. They
proposed an on-body attack, which is physically realizable, where the generated
patch is applied on the roof of a car to stay undetected from detectors. Figure 2.2
shows optimisation process to generate the patch. They have even proposed novel
attack which surrounds the target object with generated adversarial patterns as
shown in Figure 2.1. They also devised novel metrics to evaluate the efficiency of
physical attacks. The loss function is defined as:

Li(p) = max
(
SU

i

)
+ δ · NPS(P) + γ · TV(P) (2.1)

where SU
i is the predicted objectness score, and δ, γ are weights for the Non −

printabilityscore(NPS) and Total Variation (TV) of P respectively. Here P denotes
patch. The NPS term is used to enforce colors in the patch P to be as similar as
possible to colors that a printing device can accurately reproduce as shown in
Equation (2.2). It encourages spatially smooth and printable colors in the output
image.

NPS(P) = ∑
u,v

(
min
cϵC

∥pu,v − c∥2

)
(2.2)

Here, pu,v is the pixel at (u, v) index in P, and colour vector from the set of print-
able colours is denoted by c. TV contributes to the physical realizability of P by
penalizing sharp changes or abrupt transitions between neighboring pixel values
as shown in Equation (2.3).

TV(P) = ∑
t,u,v

√
(pt,u,v − pt,u+1,v)2 + (pt,u,v − pt,u,v+1)2 (2.3)

where pt,u,v represents the pixel value of channel t (red, green, or blue) at position
(u, v) in P.

Figure 2.1: Adversarial patch off-and-around a car [8]
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Figure 2.2: Optimisation process for adversarial attack on an aerial imagery object
detector [8]

Although adversarial patches off and on the car are physically realizable, car-
rying them out requires a lot of effort by the attacker. On the other hand, attack
proposed by Duan et al. [9] is the first light-based attack which employs laser
beams to fool DNNs within a blink. They trained the laser’s wavelength, layout,
width, and intensity to attack as shown in Figure 2.3. This attack introduces a
dominant feature in the acquired image that leads to the prediction of classes re-
lated to lighting such as candle and lamps. They have used 1000 correctly classi-
fied classes from ImageNet and crafted adversarial examples for each image with
a simulated laser beam for which the success rate is 95.1% for digital settings and
77.43% for real-world scenarios. However, their approach requires using different
laser beams for different input images.

Contrary to several previous works that involve generating input-specific ad-
versarial patterns, Brown et al. [3] worked on creating a universal adversarial
patch that can be used in the real world simply by pasting it near the input image.
They used the following objective function shown in Equation (2.4) to generate
adversarial patches:

p̂ = arg max
p

Ex∈X,t∈T,l∈L [log Pr(ŷ|A, p, x, l, t)] (2.4)

where X is a training set of images, T is a distribution over transformations of
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Figure 2.3: Laser beam attack [9]

the patch, L is a distribution over locations in the image, A(p, x, l, t) is a patch
application operator where x is input image, ŷ is target class, p is patch, l is patch
location and t is transformation. They showed that even small patches caused
misclassification. A trained patch p̂ is shown in Figure 2.4.

Figure 2.4: Adversarial patch [3]

Although attack success rate of physically realizable attacks such as [3] is high,
it is dependent on the viewpoint. On the other hand, Hu et al. [11] proposed
a cloth-based multi-angle attack to evade person detector. The textural pattern
of the cloth is adversarially generated. Authors have proposed a novel Toroidal-
Cropping-based Expandable Generative attack, which consists of two main stages.
Firstly, adversarial patterns are generated using a fully convolutional network,
and in the second stage, the best latent pattern is selected which is repeatedly
printed on cloth and can be used in real life to fool a person detector.

Previous works have focused on fooling either a detection or recognition model.
However, Lifeng et al. [12] proposed a UPC attack that consists of attacks on both.
The first stage of UPC fools the Region Proposal Network (RPN) to reduce fore-
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Figure 2.5: The pipeline of the adversary objective function. [11]

ground proposals. The loss function for fooling the RPN is given as:

Lrpn = E
pi∼P

(L(si, yt) + si||
−→
di − ∆

−→
di ||p) (2.5)

where yt is the target score, and they set y1 for background and y0 for foreground;
L is the Euclidean distance; P is the output proposals; si is the confidence score for
the i-th bounding box; d⃗i represents the coordinates of i-th bounding box; ∆d⃗i is
a pre-defined vector, which is used for attacking proposals by shifting the center
coordinate and corrupting the shape of original proposals.

In the second stage, these proposals are misclassified by fooling the classifier
and regressor as shown in given Figure 2.6. Equation (2.6) and (2.7) are to fool the
classifier and regressor respectively are as below:

Lcls = E
x∼P̂

C(x)y + E
x∼P∗

L(C(x), y′) (2.6)

Lreg = ∑
x∼P∗

||R(x)y − ∆
−→
d ||l (2.7)

where L is the cross-entropy loss, C(x) and R(x) are the outputs of the classifier
and the regressor, respectively. P̂ is the subset containing top k proposals after
applying non-maximum suppression on the output of region proposal network.
P∗ is the set of proposals corresponding to the true label y, and y′ is the target
label. ∆d⃗ denotes the distortion offset. Additionally, they employ TV loss to make
the adversarial patch look natural. After combining all the above loss functions
and adding TV loss, final objective function is as shown in Equation (2.8).

arg min
∆δ

E
x̂∼X̂

(Lrpn + λ1Lcls + λ2Lreg) + TV(δt) (2.8)
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where δ and X̂ denotes the universal pattern and the set of perturbed images,
respectively.

TV(r) = ∑
i,j
((ri,j − ri+1,j)

2 + (ri,j − ri,j+1)
2))

1
2 (2.9)

Equation (2.9) represents the total variation loss (TV) where ri,j indicates pixel
intensity at the (i, j)th location in the patch. It ensures minimal Euclidean distance
between adjacent pixel values so that the overall bandage looks more natural and
becomes natural.

Figure 2.6: Overall pipeline of UPC [12]

Authors also contributed the first standardized virtual database namely, At-
tackScenes to make a fair comparison between attacks on object detectors.

Majority of the prior works focus on attacking the models after deployment.
On the other hand, Wenger et al. [21] proposed a poisoning attack which involves
corrupting the database at the time of training the model. Specifically, they fooled
a face recognition model by considering seven physical objects including dots,
tape, bandana and earrings as triggers. During training of model, they appended
the trigger objects on benign inputs digitally and mislabeled them to the target
class. Particularly, they assigned a single target label to all images of different
subjects containing a particular trigger. In this manner, they trained the models
for all the triggers. During testing, to realize a physical attack, an object similar to
the trigger is worn by the subject resulting in misclassification to the target class
assigned to the trigger. Additionally, they found out in their research that their
attack efficiency is reduced when trigger objects are used far from the center of
the face as shown in Figure 2.7.
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(a) Trigger placement (b) Attack success rate

Figure 2.7: Effects of triggers with different locations [21]

Another attack on face recognition model proposed by Sharif et al. [17] is
based on generating a perturbed eyeglass frame as shown in Figure 2.8. The eye-
glass frame with the adversarial pattern is 3D printed and is worn by the attacker
at the time of testing. To generate the adversarial pattern, authors first digitally
rendered solid colored frames onto the subject, trying to attack and update frame
color iteratively using Gradient Descent. They employed the loss funtion for tar-
geted attack Equation (2.10) and untargetd atatck Equation (2.11), respectively:

arg min
δ

( softmaxloss( f (x + δ), yt)) (2.10)

arg min
δ

(− softmaxloss( f (x + δ), yx)) (2.11)

where x is the input image, δ is the perturbation and, yt and yx denote the target
and original class, respectively. here, softmaxloss is,

softmaxloss (a, b) = − log

(
e⟨a,b⟩

∑N
c=1 e⟨c,b⟩

)
(2.12)

In order to accommodate the errors introduced by the movement in the physical
world, authors moved the frame up to three pixels horizontally or vertically and
rotated it slightly.

15



(a) Original image (b) Perturbed image (c) Misclassified class

Figure 2.8: Impersonation using eyeglass frame [17]

Unlike previous adversarial patches that relied on designing perturbations,
Wei et al. [20] used real stickers that already exist in our daily life. The position
and rotation angle of the sticker is less affected by printing loss and color distor-
tion, providing a key advantage in maintaining the attacking performance in the
physical world. The attacks were conducted in a black-box setting with limited
information about the targeted system, making the adversarial stickers more prac-
tical. To effectively determine the sticker’s parameters, the authors proposed the
Region-based Heuristic Differential Evolution Algorithm. This algorithm utilized
regional aggregation of effective solutions and an adaptive adjustment strategy
for evaluation criteria. The method is verified in face recognition and later ex-
tended to image retrieval and traffic sign recognition tasks. In contrast, our pro-
posed method is fixing the position of a patch and training it to look off-the-shelf
bandage that is used in day-to-day life.

Moreover, Xiao et al. [22] suggested a method that evaluates the robustness
of face recognition models against adversarial patches using transferability with
limited attacker access to the target models. The effectiveness of the proposed
method in a black-box setting is showcased through extensive experiments con-
ducted in the digital world. The authors extend transfer-based attack techniques
to generate transferable adversarial patches. They observed that transferability is
sensitive to initialization and degrades with large perturbation magnitudes, indi-
cating overfitting to substitute models. To overcome this, they proposed a regu-
larization approach that utilizes a low-dimensional data manifold represented by
generative models pre-trained on legitimate human face images. By optimizing
face-like features as adversarial perturbations on the manifold, they successfully
reduced the gaps between substitute responses of models and target models, en-
hancing transferability.
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Figure 2.9: The physical-world attacks on FR systems using adversarial stickers
crafted by FaceAdv [18]

Unlike existing attacks that primarily operate in the digital realm or rely on
specialized equipment, Shen et al. [18] proposed a novel approach FaceAdv in-
volving the creation of adversarial stickers. The attack consists of two main com-
ponents: a sticker generator and a converter as shown in Figure 2.9. The sticker
generator is responsible for crafting stickers with various shapes, while the con-
verter digitally attaches these stickers to human faces as shown in Figure 2.10 and
provides feedback to the generator for enhancing its effectiveness. To evaluate the
performance of FaceAdv, the authors conducted extensive experiments targeting
three typical face recognition systems: ArcFace, CosFace, and FaceNet. The re-
sults indicate that FaceAdv outperforms a state-of-the-art attack by significantly
improving the success rates of both dodging (untargeted) and impersonating at-
tacks.

Figure 2.10: Samples of dodging and impersonating attacks [18]
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The literature survey is summarised and compared in the following Table 2.1
using Adversarial knowledge, Adversarial aim, and type of Realizations.

Table 2.1: Type of attacks and categorization of adversarial attacks on ML models

Papers Application Adversarial knowledge Adversarial aim Realizations

[12] Object detection White-box - Both
[11] Person detection White-box - Both
[21] Person Recognition White-box Targeted Both
[17] Person Recognition Both Both Both
[24] Image cropping White-box Targeted Both
[9] Object recognition Both Untargeted Both
[8] Aerial imagery object detection White-box - Physical
[6] Email Spam Detection Both - Digital
[23] Text Recognition Both Both Both
[3] Object Recognition White-box Targeted Both
[20] Object Recognition Both Untargeted Both
[22] Tranferability Both - Both
[18] Person Recognition Both Both Both
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CHAPTER 3

Methodology

Prior work has fooled face detectors using adversarial patches. Unlike previous
work that mainly focused on fooling person detectors, we explored more about
fooling person recognition models [20]. We generated an adversarial patch in
such a manner that by imposing it on any images, the classifier will output as
chosen target class. We used weights of classifiers during training of the adver-
sarial patch, which will come under white-box settings. Initially, we experiment
by generating a general adversarial patch. Later, during the training phase of a
patch, we restricted its shape and size to make the patch look more like bandages.
We added deformations and transformations on adversarial patches during train-
ing, making patches robust against different viewpoints or locations of patches.

In this chapter, the methodology adopted in our work is dicussed. Section 3.1
discusses the threat model, Section 3.2 describes the target model’s architecture,
and the proposed approach is presented in Section 3.3.

3.1 Threat model

3.1.1 Attacker’s goal

The purpose of creating an adversarial bandage is to trick or deceive a facial recog-
nition system like FaceNet, ArcFace [7], or CosFace [19] into misclassifying or fail-
ing to recognise the person wearing the bandage. The objective of the attacker is
to take advantage of flaws or weaknesses in the decision-making or algorithmic
processes of the facial recognition system.

3.1.2 Attacker’s knowledge

The target machine learning model’s architecture, parameters, and access to train-
ing data are all believed to be known to the attacker. They might also be familiar
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with the precise distribution of the input data or have access to a subset of the
training data. This assumption is true, for instance, where the targeted detector
is known to be derived from an open-source implementation, and the attacker
has access to and can reverse-engineer an implementation of a black-box detec-
tor. However, the most significant benefit of this assumption is that it reflects the
worst-case situation for the defender, allowing us to calculate the greatest harm
the attacker may inflict.

3.1.3 Attacker’s capabilities

The attacker is adept at manipulating images and is aware of the aspects of fa-
cial images that affect facial recognition. The targeted facial recognition system’s
limitations and weaknesses are known to the attacker. An attacker can take ad-
vantage of particular vulnerabilities with this knowledge and may employ strate-
gies to guarantee that the changed bandage looks similar to off-the-shelf bandages
making it difficult for the system to distinguish between the real bandage and the
adversarially crafted bandage.

3.1.4 Attacker’s strategy

To produce the desired adversarial effect, the attacker may employ several meth-
ods to perturb or modify the small region of the image referred to as an adver-
sarial patch. This may include methods such as generative models, evolutionary
algorithms, or gradient-based optimisation. In order to increase the effectiveness
of the adversarial patch, the attacker iteratively improves it by modifying its pa-
rameters and optimisation strategies. The patch must be regularly assessed and
modified during this process to overcome any defences put in place by the facial
recognition system. The attacker wants to render the adversarial patch visually
not too conspicuous and resistant to changes in light, image transformations, and
noise. This makes sure that the patch is still reliable and challenging to detect in
practical situations.

3.2 Facenet

Google researchers created FaceNet [15], a deep-learning network with the goal
of producing high-dimensional embeddings for facial images. It is made to ex-
tract and represent facial features so that face recognition and verification tasks
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Figure 3.1: Triplet loss [13]

are made easier. FaceNet’s main goal is to develop a mapping from facial im-
ages to a small, continuous vector space, where the distances between the vectors
represent similarity or dissimilarity between the associated faces. A deep convo-
lutional neural network architecture is used to learn this mapping. FaceNet gains
the ability to train itself to optimize the embedding space so that similar faces
are mapped close together, and dissimilar faces are mapped far apart. This is ac-
complished by using triplet loss, which promotes the network to maximise the
distance between an anchor face and a negative face (of a different identity) while
minimising the distance between the anchor face and a positive face (of the same
identity) as shown in Figure 3.1. The triplet loss L is defined as follows:

L =
N

∑
i=1

[∥∥ f (xa
i )− f

(
xp

i

)∥∥2
2 − ∥ f (xa

i )− f (xn
i )∥

2
2 + α

]
(3.1)

where f
(
xa

i
)
, f
(
xp

i
)
, f
(
xn

i
)

are embeddings of anchor, positive and negative sam-
ples, respectively, and α is the margin that is enforced to differentiate between
positive and negative pairs. Here, N denotes total number of images present in
the dataset. The aim is to ensure that the embeddings of positive images (photos
of the same person as the anchor) are closer to the anchor embedding than the
embeddings of negative images (images of different persons). An anchor image
is chosen as a reference. Several convolutional and pooling layers are commonly
used in the FaceNet architecture to extract hierarchical features from facial images,
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and then fully connected layers are used to create the final embedding vector as
shown in Figure 3.2. After being trained, FaceNet embeddings can be applied
to a variety of tasks involving faces, including face verification (figuring out if
two faces belong to the same person), face clustering, and face recognition. The
compact and discriminative character of the embeddings makes large-scale face
matching across databases possible.

After FaceNet creates the embeddings, they can be used as feature vectors to
represent an individual’s facial traits. This enables the use of common methods
from diverse fields, such as SVM or clustering. The produced embeddings can be
used as feature vectors for face recognition and compared using cosine distance or
Euclidean distance. The system may determine the closest neighbours (matching
faces) based on the distances between the embeddings by using SVM or compara-
ble methods. Similar to face verification or authentication, it is possible to specify
a threshold value to assess whether or not two embeddings belong to the same
person. The faces are a match if the distance between two embeddings is less than
the threshold, indicating that they belong to the same individual.
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Figure 3.2: Architecture of Inception Resnet v1

3.3 Proposed approach

Based on the threat model, this section discusses optimisation of adversarial ban-
dages. The goal of Fast Gradient Sign Method (FGSM) is to perturb the input
image by adding a small noise vector to it in such a way that the resulting per-
turbed image causes the FaceNet model to misclassify the image, while still being
visually similar to the original image. FGSM works by perturbing the input data
in a way that is most likely to cause misclassification. It does this by computing
the gradient of the model’s loss function with respect to the input data and then
adjusting the input data in the direction that increases the loss the most for a given
magnitude of perturbation. The idea is that by making a small modification to the
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input data, the model’s decision boundary can be crossed, resulting in a differ-
ent prediction. The FGSM attack on FaceNet involves the following steps: Given
an input image x, patch p is appended on x using mask m, and the output of
the FaceNet model for that image is computed. The gradient of the loss function
with respect to the obtained embedding is calculated. The loss function is the Eu-
clidean distance between input and output embedding.The sign of the gradient
is computed to determine the direction in which to perturb the input image. The
perturbation is a small value multiplied by the sign of the gradient. The pertur-
bation is added to the input image to generate the adversarial example. Patch is
extracted from the resulting adversarial example and is used for the next images
in the dataset to make it universal.

3.3.1 Algorithm

Algorithm 1: Universal Targeted Adversarial Bandage
Input: Image x ϵ X; target image t; embedding of t t_embed; epoch = 20;

max_iter = 500; step_size = 0.3; model = Inception ResNet v1;
Classifier cls = SVM ;patch p; mask m

Output: patch
1 Initialize patch p
2 t_embed = model(t)
3 for i = 1 to epoch do
4 for each x in X do
5 for i = 1 to max_iter do
6 x̂ = (1 − m)⊙ x + m ⊙ p
7 x̂_embed = model(x̂)
8 if cls(t_embed) = cls(x̂_embed) then
9 break

10 L = ∥x̂_embed − t_embed∥+ δ · RC(p) + γ · TV(p)
11 ∇L = sign(grad(L, x̂_embed))
12 ∇L = ∇L ⊙ m
13 p = p + step_size ∗ ∇L
14 p = clip(p, 0, 1)

15 end

16 end

17 end
18 return p
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The provided algorithm is a procedure for generating a patch image that can
be embedded into a target image in such a way that it is classified as belonging
to the same class as the target image by a pre-trained classifier. This algorithm
aims to optimize the patch in terms of its similarity to the target image and cer-
tain constraints. The algorithm takes several input parameters, including an input
image x, a target image t, an embedding of the target image t_embed, the number
of training epochs, maximum iterations per epoch, step size for updates, a pre-
trained model (Inception ResNet v1), a classifier (SVM), an initial patch p, and
a mask m. It initializes the patch p and computes the embedding of the target
image t using the specified model. The algorithm iterates through a specified
number of training epochs, and for each epoch, it iterates through all images x in
the dataset X. For each x, it conducts an inner loop for a maximum number of
iterations. Within this loop, it blends the input image x with the patch p using the
mask m to create a modified image x̂. It computes the embedding of x̂ using the
same model. If the classifier’s prediction on x̂ matches that on the target image
t, the loop breaks. Otherwise, it calculates a loss function L that balances the em-
bedding similarity between x̂ and t_embed with additional terms that encourage
regularization (represented by RC(p) for some regularization term and TV(p) for
total variation). It computes the gradient of L with respect to x̂_embed and scales
it by the mask to focus on the patch region. The patch p is updated using gradi-
ent ascent with a specified step size and is clipped to ensure pixel values remain
within a valid range (0 to 1). This process repeats for the specified number of
epochs, and the final optimized patch p is returned as the output. The algorithm
aims to generate a patch that can be added to an input image in a way that fools
the classifier into classifying the modified image as belonging to the same class as
the target image t while adhering to certain constraints.

3.3.2 Loss function for targeted

The main aim of the loss function is to reduce the distance between input embed-
ding and target embedding. Thus, loss function obtained is as shown below in
Equation (3.2):

L =
∥∥ f (xo)− f

(
xt)∥∥+ δ · RC(p) + γ · TV(p) (3.2)

where f (xo) and f
(
xt) denote embeddings of original and target images, respec-

tively and p denotes patch. Reconstruction RC; Total variation loss TV; γ and δ

are regularization parameters.
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Algorithm 2: Universal Untargeted Adversarial Bandage
Input: Image x ϵ X; embedding of x x_embed; embedding of x̂ x̂_embed;

epoch = 20; max_iter = 500; step_size = 0.3; model = Inception
ResNet v1; Classifier cls = SVM ; patch p; mask m

Output: patch
1 Initialize patch p as shown in Figure 4.3
2 for i = 1 to epoch do
3 for each x in X do
4 x_embed = model(x)
5 for i = 1 to max_iter do
6 x̂ = (1 − m)⊙ x + m ⊙ p
7 x̂_embed = model(x̂)
8 if cls(x_embed) ̸= cls(x̂_embed) then
9 break

10 L = −∥x̂_embed − x_embed∥+ δ · RC(p) + γ · TV(p)
11 ∇L = sign(grad(L, x̂_embed))
12 ∇L = ∇L ⊙ m
13 p = p + step_size ∗ ∇L
14 p = clip(p, 0, 1)

15 end

16 end

17 end
18 return p

The algorithm presented is designed for generating adversarial patches to de-
ceive a pre-trained image classification model. It begins by taking several inputs,
including an image x from a set of images X, embeddings of the original image
x_embed, embeddings of the adversarial image x̂_embed, and various hyperpa-
rameters like the number of training epochs, maximum iterations per image, step
size for gradient descent, the pre-trained image classification model (Inception
ResNet v1), a classifier (SVM), an initial patch p, and a mask m. To start, the algo-
rithm initializes the adversarial patch p. This patch is a modification that will be
applied to the original image to craft an adversarial image that can fool the model.
The initial patch p is formed based on some reference or pre-defined pattern, il-
lustrated in Figure 4.3. The core of the algorithm is a nested loop structure. It first
iterates through each epoch, and within each epoch, it processes each image x in
the dataset X. For each image x, it creates an adversarial image x̂ by blending the
original image x and the patch p, with the blending controlled by the mask m.
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This blending gradually alters the original image to craft an adversarial example.
Next, the algorithm computes embeddings for both the original image x and the
adversarial image x̂ using the pre-trained model. These embeddings represent
the underlying features of the images in a lower-dimensional space, capturing es-
sential characteristics. Within the inner loop, it iterates a maximum number of
times specified by max_iter. During each iteration, it checks if the predictions of
the classifier on the original image x and the adversarial image x̂ differ. If they
do, it exits the loop, indicating that the adversarial patch is successful. Otherwise,
it calculates a loss function L, which comprises terms related to the difference be-
tween embeddings, regularization on the patch p (controlled by the RC(p) term),
and total variation (TV) of the patch (controlled by the TV(p) term). The algo-
rithm then computes the gradient of the loss with respect to the embedding of the
adversarial image, x̂_embed, and multiplies it by a mask. This gradient is used to
update the patch p. The step size for this update is controlled by step_size, and
the patch values are clipped to ensure they remain within a valid range (typically
between 0 and 1). The training process continues for multiple epochs, with the
goal of finding a patch p that, when applied to an image, makes the classification
model misclassify it. The final adversarial patch p is returned as the output of the
algorithm.

3.3.3 Loss function for untargeted

The main aim of the loss function is to increase the distance between input em-
bedding and embeddings generated after applying a perturbed bandage. Recon-
struction loss (RC) is added to penalize large differences between the original in-
put and its reconstructed version, where reconstruction is performed using the
adversarial example as input. Total variation loss (TV) is employed to make the
bandage look natural and imperceptible. Thus, loss function obtained is as shown
below in Equation (3.3):

L = −∥ f (xo)− f (xa)∥+ δ · RC(p) + γ · TV(p) (3.3)

where f (xa) denotes embedding of input image before applying bandage.

Reconstruction Loss

RC(p , p̂) = ∥p − p̂∥ (3.4)

26



Here p denotes the original patch, and p̂ denotes the updated patch after adding
perturbations. The reconstruction loss, as shown in Equation (3.4) is computed
by comparing the modified or adversarial input data with the original input data.
It quantifies the differences between the two and shows the amount of distortion
that was caused by the attack. The attack becomes more undetectable to human
observers as the reconstruction loss decreases.

Total Variation Loss

TV(p) = ∑
i,j
((pi,j − pi+1,j)

2 + (pi,j − pi,j+1)
2))

1
2 (3.5)

The TV loss, as shown in Equation (3.5) calculates the degree of variation or gra-
dient between adjacent pixels. It captures the overall variations in brightness or
color values throughout the image. The TV loss is minimal, indicating a smoother
region when adjacent pixels have values that are similar to one another. One can
encourage the resulting images to have smoother differences between nearby pix-
els by including the TV loss in the optimization or training process. The TV loss
can be employed as a regularizer in adversarial bandage production to urge the
resulting bandage picture to have smooth transitions and prevent sharp artifacts.
It facilitates the development of coherent and plausible adversarial patches that
seamlessly integrate with the original image.
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CHAPTER 4

Experiments

4.1 Dataset description

The LFW dataset is a collection of human face photos gathered from various
sources on the web as shown in Figure 4.1. It consists of 13,229 images, com-
prising 5,749 different classes with associated labels. These images exhibit a wide
range of variations in poses, expressions, lighting conditions, ethnicities, ages,
and genders. To conduct specific experiments, a subset of the dataset was created,
consisting of 5,885 images from 483 classes. The selection criteria for this subset
involved choosing classes with more than 5 images. In the LFW dataset, each face
photo is linked to the identity of the person depicted, resulting in pictures of more
than 5,000 different individuals. The images are in JPEG format and come in var-
ious resolutions. For consistency in experiments, the images are standardized to
a size of 160x160 pixels. Typically, the LFW dataset is divided into a training set
and a test set. The training set is used to train facial recognition algorithms and
typically includes 4 photographs per individual. The test set is then utilized to
evaluate the performance of the facial recognition algorithm.

The LFW dataset poses significant challenges for face recognition systems due
to the diverse variations present in the photos. These challenges include differ-
ences in lighting conditions, facial poses (frontal vs. non-frontal faces), facial ex-
pressions, occlusions, and image quality. Successfully addressing these challenges
and achieving accurate face recognition on the LFW dataset requires the develop-
ment of robust algorithms capable of effectively handling these variations. As a
benchmark dataset, LFW plays a crucial role in evaluating the performance of face
recognition algorithms in real-world scenarios.
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(a) Vladimir Putin (b) Michael Jackson

(c) Tom Cruise (d) Tiger Woods

Figure 4.1: LFW dataset

After adding perturbations to the bandage, the adversarial bandage for tar-
geted attack looks like below, as shown in Figure 4.2.

Figure 4.2: Targeted adversarial bandage

4.2 Evaluation metrics

The attack success rate is a measure of the efficiency of adversarial attacks on ma-
chine learning models. It measures the proportion of adversarial examples that
the model incorrectly classifies. While a lower success rate means that the model
is more resistant to adversarial attacks, a greater success rate suggests that the
model is more susceptible to such attacks. There are two different types of Attack
Success Rate (ASR) as shown in Equation (4.1) and (4.2).

ASRtargeted =
Nt

classi f ied

Ndataset
(4.1)
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Here, Nt
classi f ied denotes the total number of images that are classified as target

class t, and Ndataset denotes the total number of images present in the dataset.

ASRuntargeted =
Nmisclassi f ied

Ndataset
(4.2)

Here, Nmisclassi f ied is the total number of misclassified images.

4.3 Experimental setup

The chosen model for face recognition was FaceNet, and a SVM classifier was
utilized. The training dataset consisted of 1692 samples, while the test dataset
contained 4293 samples. The initial accuracy achieved on the test set was recorded
at 99.03%.The adversarial attacks employed in the experiment aimed to achieve
both targeted and untargeted results. The attacks were carried out with white box
attack knowledge, meaning the attackers had access to the internal workings of
the model. Universal perturbations were applied, affecting the entire dataset. The
experiment spanned 10 epochs, with a total of 4000 iterations. A main loss weight
of 0.6 was assigned to emphasize the importance of the primary loss function.
Additional parameters, such as gamma, delta, and epsilon, were set to 0.2, 0.2, and
0.03, respectively, influencing the adversarial perturbations. By examining these
attributes and their corresponding values, the experiment’s setup and parameters
can be better understood, providing insights into the approach and techniques
used for face recognition in the given context.

4.4 Location and size of bandage

The face image is resized to 160px × 160px and the bandage image is considered
to be of size 30px × 80px. Consequently, the total area occupied by the adversarial
stickers is 9.375% of the original image. Larger stickers generally improve attack
success rates but they will look less inconspicuous. So, there is a trade-off between
the size of sticker and inconspicuousness. The location of the bandage is fixed at
such that the bandage usually covers part of the lower forehead. The upper left
corner of the bandage (40,18). The bandage is initialized with the following Figure
4.3.
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Figure 4.3: Original bandage

We have generated a binary mask of dimension 160px × 160px using the fixed
coordinates and image of the bandage. The mask of the bandage is as shown in
Figure 4.4.

Figure 4.4: Bandage mask

The bandage is superimposed using mask as shown in the given Equation
(4.3). Here, m denotes the mask, x denotes the input image, and p denotes the
bandage image.

x̂ = (1 − m)⊙ x + m ⊙ p (4.3)

4.5 Results

In this subsection, we will discuss the experimental results to evaluate the effec-
tiveness of our method. The experiments have been carried out in two settings
namely, targeted attack and untargeted attack. as discussed below.

Table 4.1: Attack success rate in impersonation and dodging attacks on FaceNet

Mode Method ASR(%)

Targeted attack (Impersonation)
Ours 97.51
FaceAdv [18] 94.56
AGNs [16] 60.33

Untargeted Attack (Dodging)
Ours 91.78
FaceAdv [18] 100.00
AGNs [16] 96.00
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4.5.1 Targeted attack

Goal of a targeted attack or impersonation attack is to deceive the system into
recognizing the attacker as a specific target individual. We have considered two
targets namely, Adrien Brody and Colin Powell in our study, Table 4.1 compares the
performance of different methods for impersonation in terms of the ASR on the
FaceNet face recognition system. As can be seen, the proposed method achieves
the highest ASR compared to FaceAdv and AGNs methods. For both target in-
dividuals, our method achieves ASR of 97.76% and 97.26%, respectively, outper-
forming the other methods. Figure 4.6 shows the adversarial example for imper-
sonating against FaceNet.

The generation of bandages involves extracting a patch at the end of each ex-
ecution on the entire dataset and reapplying it for the next epoch. The results, as
depicted in the provided bar graph in Figure 4.5 show the ASR for each epoch. In-
terestingly, the ASR does not exhibit significant changes across epochs, indicating
consistent performance. However, it is noteworthy that the number of iterations
required to achieve misclassification decreases as the epochs progress. This im-
plies that the bandages become more efficient in achieving their intended purpose
over time. Overall, the experimental findings suggest that the bandages maintain
a stable ASR while demonstrating improved efficiency in achieving misclassifica-
tion with each subsequent epoch.

Figure 4.5: Epochs vs. Attack Success Rate

In Figure 2.10, the authors [18] demonstrate their approach of applying three
noticeable stickers on the face, occupying a substantial portion of the facial area.
The stickers exhibit discernible shapes and sizes, and their generated patterns are
easily distinguishable. In contrast, our method utilizes a single patch as shown in
Figure 4.6 resembling a bandage, making it an off-the-shelf bandage commonly
used in everyday situations. The generated patterns on our patch maintain a more

32



natural and inconspicuous appearance. Furthermore, it is worth noting that cer-
tain classes in the dataset remain unaffected by the bandage, implying a higher
Euclidean distance between the target class and the original class. This observa-
tion indicates that some classes may possess distinct features that are resilient to
the perturbation caused by the bandage, potentially requiring further investiga-
tion to improve the effectiveness of the approach on those specific classes.

(a) Input image class: Sophia Loren (b) Input image class: Naji Sabri

(c) Input image class: George Bush (d) Target class: Adrien Brody

Figure 4.6: Targeted attack on the class of LFW dataset

After adding perturbations to the bandage, the adversarial bandage for tar-
geted attack looks like below, as shown in Figure 4.7.

(a) Bandage at epoch = 1 (b) Bandage at epoch = 10

Figure 4.7: Targeted attack on the class of LFW dataset

4.5.2 Untargeted attack

The goal of the untargeted attack or dodging attack is to evade recognition alto-
gether. FaceAdv achieves a perfect ASR of 100%, indicating that it successfully
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evades detection by the FaceNet system. The proposed method achieves an ASR
of 91.78%, while AGNs performs slightly better with an ASR of 96.00%. The rea-
son behind comparatively lower ASR for dodging attacks is that we generate uni-
versal bandage while other methods are examples of Individual attacks. Based
on the ASRs, the given approach consistently shows competitive performance
across both impersonation and dodging attacks, with high ASRs in each category.
FaceAdv also performs well in dodging attacks but lags behind in impersonation
attacks compared to the given proposed method. AGNs has the lowest ASRs in all
attack scenarios. Figure 4.9 and 4.10 show the adversarial example for imperson-
ating against FaceNet. For untargeted attack, bandage looks like below as shown
in Figure 4.8.

Figure 4.8: Untargeted adversarial bandage

(a) Adversarial image: Salma Hayek (b) Misclassified as: Wayne Ferreira

Figure 4.9: Untargeted attack

(a) Adversarial image: Gonzalo Sanchez (b) Misclassified as: Clint Eastwood

Figure 4.10: Untargeted attack
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CHAPTER 5

Conclusion

5.1 Conclusion

The targeted adversarial bandages are designed to strategically place specific pat-
terns or designs on bandages to exploit vulnerabilities in facial recognition sys-
tems. When attached, these bandages can deceive facial recognition systems,
causing misclassification or failure to recognize the attacker’s identity. Attack
success rate of 97.76% and 91.78% are achieved in untargeted and targeted set-
tings, respectively. This poses a significant challenge to the widespread use and
reliability of facial recognition systems. The achieved adversarial success rates
through targeted adversarial bandages emphasize the pressing need for robust
defenses and countermeasures to protect facial recognition systems from such at-
tacks. To ensure the reliable and trustworthy operation of facial recognition algo-
rithms in critical applications like security, access control, and law enforcement,
it is essential to develop mitigation measures that enhance their robustness and
accuracy. Acknowledging that the development of targeted adversarial bandages
raises ethical concerns regarding surveillance, privacy, and the potential misuse
of facial recognition systems.

5.2 Future work

One typically needs access to the database of images to execute the attack, mak-
ing it an unrealistic assumption in practical situations. On the other hand, phys-
ically realizable attacks involve generating adversarial examples in a more real-
istic manner, assuming no prior access to the original input. Investigate meth-
ods to make adversarial targeted bandages universal is significant as they can
be deployed on multiple individuals, amplifying the impact and effectiveness of
the adversarial attack. We can apply various transformations during the training
phase to make it robust for physical attack.
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