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Abstract

The utilization of mobile robots to solve global problems in a distributed manner
is an intriguing and novel approach to problem solving. In this paradigm, each
robot operates independently while collaborating with other robots to achieve a
goal that would be impossible to achieve using a centralised global approach.
This method can be used to simulate a variety of real-world problems, such as
toxic hazard cleanup, large-scale maze exploration, and collective gathering in a
single location.

The Dispersion problem on a Triangular Grid with a particular set of config-
urations is introduced in this thesis. We present a five-Round algorithm that can
solve the problem in O(max(HG, WG)) time rounds, using only O(log k) bits for
the mobile robots, where HG is height of grid, WG is width of grid and k is num-
ber of the mobile robots. Our solution provides an optimal solution in terms of
both time and memory complexity for Dispersion on a given configuration of a
triangular grid.
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CHAPTER 1

Introduction

1.1 Distributed Computing

We have seen extraordinary growth in distributed systems and networks over the
last two decades, and distributed computing now incorporates many activities
in today’s computer and telecommunications environment. Almost every size-
able computerized system in use today is distributed to some extent. Distributed
computing applications range from computer and communications networks to
distributed database systems, significant financial and economic systems, and in-
dustrial control mechanisms. One of the most challenging issues encountered by
the application’s designers and operators in all of those applications is maintain-
ing the seamless, coordinated, and non-interfering working of multiple remote
processors.

One of the significant areas of recent study in distributed network algorithms
is a better understanding and management of the locality problem. Most classic
network algorithms do not consider locality or leverage it nontrivially. As net-
works become more prevalent, using several traditional protocols for conducting
various network control and management activities becomes significantly more
difficult. On the other hand, such global knowledge is only seldom required, and
many supposedly global control tasks can be accomplished efficiently while al-
lowing processors to know more about their immediate surroundings and less
about the rest of the world. Furthermore, when contemplating a local subtask
that only involves vertices in a limited network section, one would prefer it to be
executed at a cost proportional to its locality level.

Distributed computing refers to situations in which several processors placed
at separate locations must operate non-interfering and cooperatively. Each pro-
cessor has some autonomy: it runs its own protocol on private hardware and fre-
quently has independent tasks. Nonetheless, the processors must share specific
common resources and information, and some coordination is required to ensure
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the proper fulfillment of their unique duties.
The utilization of mobile robots to solve global problems in a distributed man-

ner is a unique and intriguing approach to problem-solving. In this paradigm,
each robot operates independently, yet collaborates with other robots to accom-
plish a goal that would be unattainable through a centralized global approach.
This approach can be applied to model numerous real-world problems, including
toxic hazard cleanup, large-scale maze exploration, and collective gathering at a
single location.

This approach has practical applications in the context of self-driving electric
cars and charging stations. Recharging an electric vehicle takes time, and when
multiple charging stations are nearby, it is more efficient to locate the nearest avail-
able station rather than wait for a specific one. As self-driving cars continue to
become more commonplace, it is advantageous to devise strategies to automate
this process and leverage knowledge about a broader range of public charging
stations.

1.2 What is Dispersion?

The problem at hand involves the placement of n robots within a graph compris-
ing n nodes. Initially, the robots are positioned arbitrarily across the nodes, and
their task is to coordinate their movements effectively. The objective is to achieve
a final configuration where each node of the graph is occupied by exactly one
robot, requiring them to work together to accomplish this goal.

Figure 1.1: Dispersion on the graph

We identify significant linkages between dispersion and other related issues
such as scattering, mobile robot exploration, and load balancing. The problem of
n-robot collaborative graph exploration, in which the goal is for the group of n
robots to explore the whole graph in the fewest rounds feasible, can be compared
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to that of dispersion. It is important to note that, given the same circumstances,
any dispersion problem solution can be converted into a solution for n-robot ex-
ploration. As a result, n-robot exploration can benefit directly from the findings
and understandings obtained through studying dispersion. Results of exploration
often fall into one of two categories: reducing the number of rounds necessary
to complete exploration or proving that exploration is feasible even with limited
memory or communication resources.

The problem of robot scattering or uniform-deployment on graphs, where the
goal is to evenly disperse robots among the nodes of the graph, demonstrates
a strong correlation with dispersion. In particular, assuming a similar modelling
approach, the dispersion problem becomes equivalent to the uniform-deployment
problem when the number of robots is equal to the number of nodes in the net-
work. Although they have different initial setups and restrictions, both issues
ultimately aim to achieve a balanced distribution of robots around the graph.

Similar to load balancing on graphs, where nodes initially carry various loads
and attempt to transfer the weight across edges until an approximately equal dis-
tribution is attained, the problem of dispersion involves nodes carrying varying
loads. When it comes to load balancing, the issue is equivalent to dispersion if
the burdens have memory and computing power and are labelled, but the nodes
are unlabeled and lack these resources. Both issues entail redistributing items
(burdens or robots) among the graph’s nodes while taking restrictions and re-
source availability into account. Dispersion concentrates on achieving a distinct
presence of robots at each node in the graph, whereas load balancing primarily
concentrates on achieving an equitable distribution of loads.

1.3 Thesis Objective

The Dispersion problem, which is centred on a triangular graph G(L) with N
nodes and L layers, is what we aim to solve. At first, the nodes of G are occupied
by k mobile robots that are randomly positioned. The main goal of these robots is
to autonomously move to a configuration where each robot resides in a different
node of G. Our goal in solving this issue is to optimise two vital performance
indicators: time, which is gauged by the quantity of rounds needed, and memory,
which is determined by the amount of bits held at each robot. The final objective
is to create methods that reduce the robots’ memory usage and the amount of time
needed for dispersion.
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1.4 Thesis Outline

The proposed thesis structure encompasses several key chapters that adhere to a
common and well-established format. It consists of the following components:

1.4.1 Chapter 2: Literature Survey

This chapter serves as a thorough analysis and synthesis of pertinent academic
research findings and literature with regard to the subject matter of this thesis. Its
main goal is to create a full understanding of the state of the field’s knowledge at
the moment. This chapter aims to provide a thorough review of the topic and add
to the body of knowledge in the field by looking at existing theories, techniques,
and empirical studies.

1.4.2 Chapter 3: Model and Definitions

The conceptual framework and definitions that serve as the thesis’s cornerstone
are the main topics of Chapter 3. It seeks to make the theoretical frameworks,
ideas, and variables essential to the study more understandable. This chapter
helps readers comprehend the theoretical foundations upon which the analysis
and conclusions of the thesis are built by clearly defining these important compo-
nents. It creates a strong foundation for the later analysis and interpretation of the
research results.

1.4.3 Chapter 4: Algorithm

The design of an algorithm employed in the study are the focus of Chapter 4. It
gives a thorough account of the steps taken in the methods, procedures, or strate-
gies used to answer the research questions or accomplish the desired goals. In
order for readers to duplicate or comprehend the research process, the chapter
strives to provide a thorough and understandable description. Visual aids like
pseudocode, flowcharts, or diagrams may be used to help the reader understand.
The chapter acts as a manual, giving readers all the details they need to precisely
follow and duplicate the study technique.

1.4.4 Chapter 5: Conclusions

We deliver a thorough summary of the research conducted and the findings from
the study in the last chapter, Chapter 5. The main conclusions, their ramifica-
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tions, and how they relate to the study’s goals or questions are all summarised in
this part. The author also outlines potential directions for future research and ac-
knowledges any limitations observed throughout the study. This chapter makes
sure that readers have a thorough comprehension of the research contributions
and their significance by briefly summarising the entire thesis. It acts as a sum-
mative reflection on the research process, stressing the most important lessons
learned and putting an end to the thesis.
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CHAPTER 2

Literature Survey

According to the [15, 16], the challenge of distributing autonomous mobile robots
to achieve an even distribution across a particular region has garnered a lot of
interest. Recently, Augustine and Moses Jr. [1] used the structure of graphs to ap-
proach this issue. The following is a description of their formulation: The robots
autonomously alter their placements to reach a final configuration in which each
robot occupies a different node within the graph, starting with an arbitrary be-
ginning configuration in which k ≤ n robots are positioned on the nodes of an
n-node graph. Beyond its own merits, this problem is significant because it is
strongly related to a number of other thoroughly researched difficulties in au-
tonomous robot coordination, such as exploration, scattering, load balancing, cov-
ering, and self-deployment [1, 18]. The examination of the dispersion problem is
vital in furthering our understanding of more general difficulties in the area of
autonomous robot coordination since these related problems have similar themes
and goals. Understanding how to use the resource-constrained robots to complete
some huge tasks in a distributed manner is one of the most important elements of
mobile-robot research [10, 11].

The dispersion problem is closely related to the issue of mobile robot graph
exploration. Numerous studies [2, 4, 8, 13, 19] show that graph exploration has
gotten a lot of attention in the literature and may be applied to both specified and
arbitrary graphs. With a memory need of Θ(D log ∆) bits, a robot was shown to
be able to navigate an anonymous graph using an exploration technique. The run-
time complexity of the algorithm is O(∆D+1) [13]. Cohen et al. [4] suggested two
techniques in circumstances where the graph nodes have memory. In comparison
to the second technique, which uses O(log ∆) bits at the robot and 1 bit at each
node, the first algorithm uses O(1) bits at the robot and 2 bits at each node.Both
techniques have an O(m) runtime complexity and an O(mD) preprocessing time.
The trade-off between exploration time and robot count is examined in [19]. Col-
lective robot exploration in the setting of tree structures is looked at in [12]. The
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scattering of k robots within graphs, which has been investigated in prior works,
is also a related issue to dispersion. Numerous studies have been done on the scat-
tering problem using rings [9, 21] and grids [3]. A Θ(

√
n)-algorithm approach for

achieving uniform scattering in a grid [7] was presented by Poudel and Sharma
[20]. The load balancing problem, which requires dividing a given load among a
number of processors (nodes), also shares ties with the dispersion problem. Ac-
cording to earlier studies [22, 5], this load balancing issue has drawn a lot of in-
terest in the study of graphs. We advise referring to [10, 11] for more recent dis-
coveries and advancements in these fields. As the major subject of these studies,
the gathering problem has been examined in relation to a number of fundamental
network topologies. Recent years have seen a great amount of research into the
gathering of mobile robots. Mobile robots need to be directed in the direction of
the gathering place in order to solve the problem of gathering. By investigating
a number of key network topologies, researchers expect to get insight into the
complexities and nuances involved with creating successful gathering settings. In
[14], with any initial configuration, they have described the gathering issue for
robots with 1-hop vision on a triangular grid. They are informed that the gather-
ing process on an unending triangular grid must run for Ω(n) epochs when there
are n robots. As a result, they offered an algorithm that, when used with a semi-
synchronous scheduler, gathers all the robots to a single location in O(n) epochs.
One epoch is a period of time during which each robot has been turned on at least
once.

In [17] by Klasing et al. and [6] by D’Angelo et al. for two studies that looked
at the gathering issue in various network configurations. The ring network was
the focus of Klasing et al.’s study, which showed that assembling all entities in
one place is impossible without being able to tell if many entities are occupying
the same position. In other words, it is impossible to achieve a gathering config-
uration on a ring network without multiplicity detection. D’Angelo et al. defined
the gathering problem and looked at several scenarios in their study on tree and
finite grid networks. They notably looked at the effects of periodic layouts and
configurations with symmetry lines running through the grid’s edges. They dis-
covered that gathering is not achievable in certain network topologies even with
global-strong multiplicity detection.
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CHAPTER 3

Model and Definitions

3.1 Graph

A graph is a mathematical concept used to depict connections or relationships
between different objects. It consists of two main elements: vertices (also called
nodes) and edges. Vertices represent the objects themselves, while edges represent
the connections or links between the objects.In graphs, vertices and edges can
possess additional attributes or properties. For instance, edges can have weights
assigned to them, indicating the strength or distance of the relationship between
the vertices. These attributes are helpful in solving specific problems or analyzing
the characteristics of the graph.

Definition 1 (Graph). A graph is a mathematical structure composed of vertices (also
called nodes) and edges. It is represented by the ordered pair G = (V, E), where V represents
the set of vertices and E represents the set of edges.

Vertices represent distinct objects or entities, while edges represent the connec-
tions or relationships between them. These relationships can be direct or indirect
and can represent various types of associations, dependencies, or interactions.
Graphs can be visualized as diagrams, with vertices represented as points or cir-
cles, and edges represented as lines or arcs that connect the vertices. The arrange-
ment of vertices and edges in a graph provides valuable insights into the structure
and relationships of the system or problem being modeled. Graphs can possess
additional characteristics. For instance, edges can be assigned weights to indicate
the strength, distance, or cost associated with the connections. Graphs can also
be directed, where edges have specific orientations, or undirected, where edges
represent symmetric relationships.

Graphs serve as a powerful tool for studying and analyzing complex systems
across various fields such as computer science, social networks, transportation
networks, and biology. They allow researchers and analysts to comprehend the
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connectivity, patterns, and behaviors of these systems, enabling the development
of efficient algorithms, network analysis methods, and problem-solving strate-
gies.

Definition 2 (Degree). The degree of a vertex in a graph refers to the number of edges
that are incident to that vertex. The degree of a vertex v is denoted as deg(v).

The maximum degree of a graph G is represented by ∆(G), which corresponds
to the highest degree among all the vertices in the graph. It provides valuable
information about the connectivity and structural characteristics of the graph.
Graphs can be categorized into different types based on their characteristics. Some
common types include:

1. Directed Graph : In a directed graph, each edge has a specific direction as-
sociated with it. The connection between two vertices is one-way, and the
edge is represented by an arrow.

2. Undirected Graph: In an undirected graph, edges have no inherent direc-
tion. The relationship between vertices is symmetrical, and the edge is typi-
cally represented by a line or curve.

3. Weighted Graph: A weighted graph assigns numerical values, known as
weights, to edges. These weights can represent various properties, such as
cost, distance, or capacity associated with the connection between vertices.

4. Connected Graph: A connected graph is one where there is a path between
any two vertices. In simpler terms, it is possible to reach any vertex from
any other vertex by following a sequence of edges.

5. Complete Graph: A complete graph is one where there is an edge between
every distinct pair of vertices. In a complete graph with n vertices, there are
n(n − 1)

2
edges.

3.2 Grid

We will now present a definition for the finite triangular grid, which is analogous
to the definition of the infinite triangular grid presented in [14].

Definition 3 (Finite Triangular Grid). Let G be a geometric graph represented by G
= (V, E), where V is a set of vertices and E is a set of edges. The finite triangular grid

9



G is defined within a bounded region of the Euclidean plane R2. The vertices of G are
positioned according to the following coordinates:

V = {(k,

√
3

2
i) : k ∈ Z, i ∈ 2Z, 0 ≤ k ≤ K, 0 ≤ i ≤ I}

⋃
{(k + 1

2
,

√
3

2
i) : k ∈ Z, i ∈ 2Z + 1, 0 ≤ k ≤ K, 0 ≤ i ≤ I},

where K and I are positive integers representing the dimensions of the grid. For two
vertices u and v in G, u and v are considered adjacent if and only if the Euclidean distance
between them is equal to 1 unit.

In a finite triangular grid, the coordinates of the vertices are arranged based on
a triangular lattice structure. The vertices are positioned in the Euclidean plane R2

according to a specific pattern. The coordinates of the vertices can be expressed
using two integers, (k, i), where k represents the horizontal position and i repre-
sents the vertical position of a vertex. These integers correspond to the indices of
the vertices in the grid. For the first set of vertices, the coordinates are given by:

{(k,

√
3

2
i) : k ∈ 2Z, i ∈ Z, 0 ≤ k ≤ K, 0 ≤ i ≤ I}

corresponds to the vertices in rows where the vertical index i is an even number
(2Z). These vertices have an even spacing along the vertical axis (

√
3

2 i). The second
set of vertices is given by:

{(k + 1
2

,

√
3

2
i) : k ∈ 2Z + 1, i ∈ Z, 0 ≤ k ≤ K, 0 ≤ i ≤ I}

In this case, represents the vertices in rows where the vertical index i is an odd
number (2Z + 1). These vertices are positioned halfway between the columns
of the even rows, resulting in a staggered arrangement. The parameters K and
I define the maximum values for the horizontal index k and the vertical index i,
respectively, ensuring that the grid has finite dimensions. By incorporating these
coordinates into the definition, the vertices of the finite triangular grid are cor-
rectly positioned, enabling the establishment of adjacency relationships and the
construction of the corresponding geometric graph.

Definition 4 (Layer). A layer ’l’ in a graph is defined as a set of points that share the
same y-coordinate value. In other words, given a graph with points represented as (xi, yi),
a layer consists of all points (xi, y) in the graph, where y is a constant value that is equal
for all points within the layer.
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The number of layers in graph G, can be denoted as |L| = k, where the layers
L of graph G is set layers l0, l1, ..., lk.

In the thesis, the terms ”nodes” and ”vertices” are used interchangeably to refer
to the individual elements within the triangular grid, which represent the funda-
mental units of the graph structure. We have classified these nodes of the trian-
gular grid into three distinct categories. As shown in Fig. 3.1,

Definition 5 (Internal Node). A node v has deg(v) = 6 is called internal node in the
triangular grid, This means that it is connected to exactly six neighboring nodes.

Definition 6 (Boundary Node). A node v has deg(v) < 6 is called boundary node in
the triangular grid, this is a node that lies on the boundary of the grid.

Definition 7 (Corner Node). A node v is called corner node if:

1. Node v has deg(v) = 2.

2. Node v has deg(v) = 3 and it does not have any adjacent node u such that deg(u) =
5.

By categorizing the nodes of the triangular grid based on their degrees, we
distinguish between internal nodes with a degree of 6, boundary nodes with fewer
than six neighbors, and corner nodes that are endpoints of the boundary. These
definitions provide a clear understanding of the different types of nodes within
the triangular grid based on their connectivity and placement.

Figure 3.1: Classification of the nodes and layers

Let L is the number of layers of a triangular grid vertically. In this paper, we
have taken the configuration of a triangular grid as G(L).
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Figure 3.2: All possible configurations of the triangular grid

There are eight possible configurations for a triangular grid which are shown
in figure 3.2.

Definition 8 (Configuration). For the triangular grid G, a configuration is a specific
arrangement or state of the grid, determined by the degrees of its corner nodes. It is
denoted as config(a, b, c, d), where ’a,’ ’b,’ ’c,’ and ’d’ represent the degrees of the corner
nodes of the triangular grid G. Specifically:

• ’a’ represents the degree of the top-left corner node in the configuration.

• ’b’ represents the degree of the top-right corner node in the configuration.

• ’c’ represents the degree of the bottom-right corner node in the configuration.

• ’d’ represents the degree of the bottom-left corner node in the configuration.

Lemma 1. For any triangular grid G(l), where l represents the number of layers, there
exist 8 possible configurations. Among these configurations, only 5 are unique.

Proof. For triangualr grid G(l), let’s denote configuration as con f ig(a, b, c, d). As
per definition of corner nodes there are only 2 possible degrees for conrers nodes
- 2 and 3. Now there are 16 combinations are possible using these two degrees.
Now we need to check that how many configurations are possible out of these 16
combinitions.

By the definition of triangular grid, it lies on R2 which has the dimensions K
and I. So there is no possibility that corner nodes have the same degree with odd
occurrences. Using this fact, there are eight configurations are possible, which are:

1. con f ig(2, 2, 2, 2)

2. con f ig(2, 2, 3, 3)
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3. con f ig(2, 3, 2, 3)

4. con f ig(3, 2, 3, 2)

5. con f ig(3, 3, 2, 2)

6. con f ig(3, 2, 2, 3)

7. con f ig(2, 3, 3, 2)

8. con f ig(3, 3, 3, 3)

Among these eight configurations, three pairs have mirror configurations, mean-
ing they are symmetric or identical when reflected or rotated. These pairs are:

• co f ig(2, 3, 2, 3) and (3, 2, 3, 2)

• con f ig(2, 2, 3, 3) and (3, 3, 2, 2)

• con f ig(2, 3, 3, 2) and (3, 2, 2, 3)

Therefore, out of the eight possible configurations, only (8 - 3) = 5 unique config-
urations exist.

3.3 Robots

The robots in the system possess three distinct characteristics. Firstly, they are au-
tonomous, indicating that there is no centralized control governing their actions.
Each robot operates independently, making decisions based on local information
and their own internal algorithms without relying on a central authority.

It should also be observed that the dispersion problem robots demonstrate ho-
mogeneity, i.e., they all follow the same deterministic method. The coordination
and communication processes amongst the robots are made easier by the uni-
formity of algorithmic behaviour, which guarantees consistency. The robots can
efficiently cooperate and work together to accomplish the dispersion target by
adhering to a standardised strategy.

Finally, it is crucial to note that each robot in the dispersion problem is given a
unique identifier (ID). Individual robots within the system can be identified and
tracked using these special IDs. The robots can successfully coordinate, communi-
cate, and manage data because they have allocated IDs. Additionally, the distinc-
tive IDs allow for the monitoring of particular robot behaviours or tasks, which
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Figure 3.3: Movement of the robot

offers important insights into the overall dynamics and performance of the sys-
tem.

The robots are positioned on the corners of a triangle grid designated as G in
the context of the dispersion problem. It is interesting to observe that the robots do
not have a common understanding of a global coordinate system. Instead, each
robot has its own distinct localised coordinate system, with the origin or reference
point being the robot itself. Each robot also follows its own specific handedness,
which adds to the uniqueness of their local coordinate systems. The robots may
work autonomously while preserving their own reference frames for navigation
and spatial orientation by using this decentralised approach to coordinate sys-
tems.

The robots function in the k-hop visibility model under limited visibility con-
ditions, with a particular emphasis on the scenario where k is set to 1. Each robot
in this example, denoted by the letter r has a limited field of vision. In particular,
a robot can only see the six nearby vertices that are directly related to it when it is
placed on a vertex v located within the triangular grid G. The robot can only see
the immediately neighbouring vertices in the grid structure since the sight range
is limited to a single hop distance. The robot’s vision and awareness of its imme-
diate surroundings are shaped by the confined visibility framework, which limits
the robot’s knowledge to the surrounding area.

The one-hop visibility model with (k = 1) serves as the basis for the analysis
and debates. It is crucial to keep in mind that robots have a limited ability to see
when they are situated on a specific vertex within the triangular grid G. The six
nearby vertices that are directly linked to v are the only vertices that these robots
can see, and they are unable to see any vertices that are farther away.
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Time Cycle: The operational framework of the robots follows a systematic and
cyclical process known as the CHECK-COMPUTE-MOVE (CCM) cycle, which
comprises three distinctive Rounds. These Rounds, namely CHECK, COMPUTE,
and MOVE, are integral to the decision-making and movement behaviors of the
robots within the system.

Each robot assesses its present node during the CHECK step and acquires per-
tinent data on both the node and its surrounding nodes. This process entails gath-
ering information on a variety of variables, including the number of robots cur-
rently occupying the present node and the configuration of ports on neighbour-
ing nodes. The robots build a thorough grasp of their immediate environment by
careful observation of their surroundings, setting the foundation for later actions.

The robots move on to the COMPUTE step after the CHECK round, when
they perform a deterministic algorithmic process. The information obtained in the
preceding CHECK round is analysed and processed by the robots in this round.
They may also converse with other robots connected to the same node in order
to share pertinent information and ideas. The robots jointly deliberate, weigh
their options, and arrive at well-informed judgements via this local computation.
Depending on what is considered to be the best course of action, these choices
may involve staying on the present node or choosing a particular port for leave.

The robots execute their judgements from the COMPUTE round in the last
round, referred to as the MOVE round. A robot begins a movement by leaving
the present node through the chosen port if it has identified the best port to exit
through. Through this mobility, the robots are able to move around the system
and switch between nodes based on their calculated decisions. The robots must
move physically within the graph during the MOVE round in order to carry out
the chosen tactics and advance towards the dispersion aim.

The iterative CHECK-COMPUTE-MOVE cycle, which is what distinguishes it,
is crucial in enabling the robots’ autonomous decision-making and coordinated
behaviours. The robots continually assess their surroundings during the CHECK
round, calculate local strategies during the COMPUTE round, and carry out the
necessary motions during the MOVE round thanks to this cyclic process. The
robots are constantly adapting and responding to dynamic changes in the sys-
tem thanks to this iterative cycle, which enables efficient and effective dispersion.
The robots continue a synchronised and coordinated effort to achieve the desired
target of dispersion by continuously assessing, computing, and moving.
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3.4 Scheduler

The Fully Synchronous (FSYNC) scheduler is one particular kind of scheduler
that was the subject of this investigation. All robots are concurrently activated
at the start of each of the equal-length global rounds that the FSYNC scheduler
creates. All robots complete their calculations and moves in synchrony because
to this synchronised activation.It is important to note that alternative scheduler
types, such as the Semi-Synchronous (SSYNC) scheduler and the Asynchronous
(ASYNC) scheduler, are frequently mentioned in the literature. Although the
SSYNC scheduler similarly divides time into rounds, it allows for more flexibil-
ity in the activation patterns because not all robots are activated at the beginning
of each round. The ASYNC scheduler, on the other hand, runs without a con-
cept of global rounds and enables the independent activation of any robot at any
time.The FSYNC and SSYNC schedulers offer valuable models for theoretical re-
search, but because of their strict synchronisation requirements, they are viewed
as less useful in real-world applications. However, investigating dispersion un-
der the FSYNC scheduler sheds light on how dispersion algorithms behave and
operate in synchronised activation situations.

In this research, we presupposed synchronous operation of the scheduler. The
scheduler is a key component in determining when and how the robots are acti-
vated. As a result, the scheduler’s activities are intended to test the robots and
maybe impede their ability to achieve dispersion. In order to investigate the ro-
bustness and effectiveness of the dispersion algorithms under adversarial circum-
stances, where the robots must adjust to the scheduler’s actions.

3.5 Problem Definition

The problem pertains to a triangular gird graph G(l) consisting of N nodes, where
l represents the number of layers. Within this graph, there exists a set of k ≤ n
mobile robots that are initially positioned in an arbitrary manner on the nodes of
G. The main objective of the Dispersion problem is to enable the robots to repo-
sition themselves autonomously, ultimately achieving a configuration in which
each robot occupies a distinct node within the graph G. In addressing this prob-
lem, the primary focus is on optimizing two key performance metrics: Time and
Memory. Time refers to the number of rounds or steps required for the robots to
accomplish the dispersion task, while Memory denotes the amount of bits that
need to be stored at each individual robot for effective execution.
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CHAPTER 4

Algorithm

We describe the algorithm Disperse(k), where k denotes the number of robots
participating and k is in order equivalent to the number of nodes N, to address the
dispersion problem in triangular grid graphs. The algorithm, which was created
expressly to speed up the dispersion process, runs through a sequential execution
procedure with five unique steps.

The robots are first positioned on the border nodes of the triangular grid net-
work during Round 1, which is the first phase of the algorithm. The robots are
evenly dispersed along the graph’s outer edges according to this calculating posi-
tioning.

In Round 2, the robots begin to advance from the boundary positions towards
the triangular grid graph’s four corner nodes. Consolidating the robots at these
particular corner nodes will serve as a centralised starting point for the subse-
quent dispersion actions.

The algorithm attempts to assemble all n robots in Round 3 at a preset corner
node in the triangular grid graph, where n is the total number of robots. A vital
stage in the dispersion process, this grouping of robots at a particular corner node
prepares them for the upcoming activities.

The algorithm then shifts its attention to Round 4, when it focuses on dispers-
ing the previously gathered robots onto the nodes of a single boundary of the
triangular grid graph. The goal of this redistribution is to achieve a perfect dis-
persion pattern over the graph. The algorithm seeks to dispersion of the robots
within the graph by carefully arranging the robots along a certain boundary.

The robots further disperse from a triangle grid graph boundary in the final
round 5. In order to achieve the intended dispersion outcome, this dispersion
aims to make sure that each node in the graph has exactly one robot. The algo-
rithm ensures that each node is occupied by a single robot by carefully redistribut-
ing the robots from the boundary, achieving the problem’s dispersion aim.

By following the sequential execution of these five rounds, Algorithm Disperse(k)
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effectively tackles the Dispersion problem in triangular grid graphs. The algo-
rithm’s systematic approach guarantees the efficient and comprehensive disper-
sion of the k robots, ultimately resulting in a distributed configuration where each
node of the graph is occupied by precisely one robot. Our algorithm solves rounds
1-5 in O(O(max(HG, WG))) rounds.

Figure 4.1: Rounds of the algorithm

Due to the robots’ absence of a predetermined path to direct them towards
the boundary nodes of the graph, Round 1’s execution presents the first hurdle.
The robots must use techniques to overcome this challenge, including methods
for figuring out the best routes to take in order to successfully reach the boundary
nodes.

In Rounds 2-4, the robots must only navigate and carry out tasks on the bound-
ary nodes. This is the next challenge. This restriction restricts their movement and
behaviours, necessitating the use of effective strategies to complete the needed ob-
jectives within this constrained environment.In Round 5, the third and final chal-
lenge appears. Its goal is to distribute the robots across the graph’s nodes while
making sure that each node is occupied by just one robot. To avoid numerous
robots converging on the same node, this dispersion design requires precise co-
ordination and synchronisation between the robots. The solution to this problem
entails creating methods and algorithms that let the robots move around the net-
work while avoiding collisions and making sure that each node is occupied by a
single robot.

4.1 Functions and Variables

• portCount(v): It will return the number of ports of that port or given node
v.
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• isCorner(v) : It will check whether the node is a corner node.

• portMap : It stores all ports of the node.

• portEntered : It keeps the port where the robot entered the node.

• Li : Local leader robot Id chosen by all robots of the current node.

• ai : Local anchor robot Id chosen by all robots of the current node.

• globalLeader : Global Leader Id of all robots.

• currentLocalLeader : Local Leader Id of the current node.

• idO f Rank(N) : Returns the Id of an Nth number of the robot from the as-
cending list of robots’ Ids.

• settle() : Robot will settle on the current node and terminates the algorithm.

4.2 Round 1

Algorithm 1: Move_To_Boundary(r)
input : ri at arbitrary node
output: ri at boundary node

1 Choose random port w and exit through that port
2 while portCount(w) == 6 do
3 exit through port that clockwise 3rd port from the
4 port robots entered.

Algorithm 2: isCorner(v)
1 if portCount(v) == 2 then
2 return True

3 if portCount(v) == 3 then
4 for porti ∈ portMap do
5 if portCount(porti) == 4 then
6 return True

7 return False

The main goal of Round 1 is to move every robot to a boundary node in the
triangular grid graph G. The robots choose a random port on their current node
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and leave through that port in the first round. The goal of this operation is to
initialise the variable portEntered, which will be used in Round 1’s next phase.The
robots on nodes with a degree of 6 will navigate towards the third port in relation
to the port they entered through in the second round of Round 1. The robots go
through this procedure repeatedly until they reach boundary nodes with degrees
of 2, 3, 4, or 5. By continuing this process, the robots move strategically within the
triangular grid graph, gradually approaching the required boundary nodes.

Figure 4.2: Flow of round 1

Lemma 2. At the end of Round 1, all k robots will reach a boundary node of the Graph G
with a time complexity of O(max(HG, WG)).

Proof. In start of the Round 1, For each robot r ∈ R where R is set of all robots.
r will choose random port pu which takes robot to node v from the node u. If
node v does not have exactly six ports, it means the robot has reached a bound-
ary node and round ends for this robot. However, if node v does have six ports,
the robot needs to select a new port to exit through. The robot can move to an
adjacent node w by utilizing one of the available ports of node v, denoted as
pv1, pv2, pv3, pv4, pv5, pv6. To determine the exit port, the robot r remembers the
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port pu it used to enter node v from u and chooses the port that is three positions
clockwise from pu. Let say this exit port is pv and robot moves to the node w
using the passing edge E which is between node v and w. Let

−→
Evw is the direction

of E starting from v to w. This make r to move same direction untill it reaches to
a boundary node. The maximun possible distance travelled by robot r is diagonal
of grid O(

√
N) which is O(max(HG, WG)).

Figure 4.3: Initial Configuration of the triangular grid

Figure 4.4: Transition of the robots to the boundary nodes in round 1

4.3 Round 2

The goal of Round 2 is to move every robot to one of the grid graph’s four corner
nodes. Based on the degree of the nodes that the robots are positioned on, the
approach comprises unique movement rules for the robots. Details are as follows:

A robot that is situated on a node with a degree of 3 will travel to a node with
a degree of 5 that is adjacent to it, omitting the port it entered through previously.
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The robot keeps going through this process until it reaches a corner node. A robot
will also go to an adjacent node with a degree of 5 if it is currently on a corner
node with a degree of 3, except the entry port.A robot will only choose nodes
with a degree of 4 as its next destination if it is currently on a node with a degree
of 4, avoiding the port it used to enter the current node. Up until it encounters a
corner node, the robot will go along degree-4 nodes. The robot will move to the
adjacent node with a degree of 4, except the entry port, if it is currently on a corner
node with a degree of 4.

Algorithm 3: Move_To_Any_Corner(r)
input : ri at boundary node v
output: ri at any corner node

1 while isCorner() do
2 if portCount(v) == 3 then
3 for porti ∈ portMap do
4 if portCount(porti) == 3 and porti ̸= portEntered then
5 exit through porti

6 if portCount(porti) == 5 and porti ̸= portEntered then
7 exit through porti

8 if portCount(v) == 4 then
9 for porti ∈ portMap do

10 if portCount(porti) == 2 or 3 then
11 exit through porti

12 if portCount(porti) == 4 and porti ̸= portEntered then
13 exit through porti

14 if portCount(v) == 5 then
15 for porti ∈ portMap do
16 if portCount(porti) == 2 then
17 exit through porti

18 if portCount(porti) == 3 and porti ̸= portEntered then
19 exit through porti

In fig 7, there is given result after Round 2 executes on G(5) configuration.

Lemma 3. At the end of Round 2, all k robots will be positioned at the boundary corner
nodes of graph G with a time complexity of O(max(HG, WG)).

Proof. The objective is to relocate all the robots to the boundary corner nodes that
have a specific number of ports, namely 2 and 3. The goal is to move the robots in
such a way that they reach these designated corner nodes.
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Figure 4.5: Flow of round 2

Case 1: When the robot ri is positioned at port 4 on a node, it will assess the port
count of that node. If the port count is either 2 or 3, the robot ri will move towards
the corresponding port that leads to a boundary corner node. On the other hand,
if the port count is 4, the robot ri will move to the neighboring node through
a port that is not the same as the one it entered from portEntered. It will then
continue following the same process of moving towards the port opposite to the
one it entered, until it eventually reaches a boundary corner node.The maximum
distance robot will travel in this Round is O(max(HG, WG)).
Case 2: When the robot ri is on port 3 or 5. The three nodes portCount is p1, p2, p3.
If any port counts are 2 or 3, then the ri robot moves to that node as a boundary
corner node. If not, then he will choose the port whose count is 5 because if he
chooses a port with a count of 6 then we have to rerun Round 1, and at the end, it
may be only the boundary node again. Similarly, for a port whose count is 5, either
he will choose a port whose count is 2 or 3 or either port whose port count is 3, and
following the same procedure, all the robots at the end of this Round will reach to
boundary corner node. The time complexity of this is O(max(HG, WG)).

4.4 Round 3

In this Round, all robots at the corners of the grid need to be gathered at a single
corner. To accomplish this, each corner has a local leader, identified as the robot
with the minimum ID. The local leaders move towards the intersection of the
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Figure 4.6: Transition of the robots to the corner nodes in round 2

boundaries to find the global leader. Once all robots see the global leader, they
move towards it and stop upon reaching it.

Algorithm 4: Move_To_One_Corner(r)
input : ri at any corner node v
output: ri at corner node which have robot with smallest ID

1 Choose a local leader Li = min(∀id ϵ Slocal Id)
2 Set an anchor robot ai = max(∀id ϵ Slocal Id)
3 if Li == ID then
4 leader = True

5 if leader == True and robotCount ≥ 2 then
6 for porti ∈ portMap do
7 if portCount(porti) == 4 then
8 exit through porti

9 while leader == True and ai ̸= acurrent do
10 globalLeader = min(globalLeader, currentLocalLeader)
11 run Move_To_Any_Corner(r)

12 while currentLocalLeader ̸= globalLeader do
13 run Move_To_Any_Corner(r)

Lemma 4. At the end of Round 3, all k robots will be positioned on a single corner node.
The time complexity of Round 3 can be described as O(max(HG, WG)) .

Proof. First, we will choose the local leader that is the minimum ID at that port
from all boundary corner nodes ai; we move the robots by using the idea similar
to Round 2 to other boundary corner nodes to choose a global leader. For that,
we will use leader election in a ring network where each node with a local leader
sends its ID around the grid using Round 2, and a node forwards a received ID
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Figure 4.7: Flow of round 3

to its neighbor only if the received ID is smaller in value compared to its ID. If a
node gets its ID, it elects itself a leader and broadcasts the message to other nodes,
and then another node moves to that node using Round 2. The longest distance
that a robot can travel is 4 ∗ (O(max(HG, WG))).

Figure 4.8: Transition of the robots to any one corner in round 3

4.5 Round 4

In this Round, all the robots are already on one of the four corners of the Grid.
This Round aims to distribute robots on the adjacent boundary of the corner node
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Figure 4.9: Distribution of the robots to the adjacent boundary nodes in round 4

where all robots are. At the corner, the node has two adjacent nodes, one with 4
degrees and one with a 5-degree node. In our algorithm, robots are distributed
over the boundary, which has degrees 3 and 5 nodes. At the start of this Round,
there are k robots, which are there at the node. Now there are two types of node
columns: one with p = ceil(L/2) number of nodes and the other with q = L − p
number of nodes. So alternatively, we will distribute p and q robots according to
the columns of the Grid. In fig 13, there is given result after Round 4 executes on
G(5) configuration.

Figure 4.10: Flow of round 4

Lemma 5. At the end of Round 4, all k robots are distributed along the boundary of G in
such a way that each node on the boundary contains precisely either p or q robots, where
p and q are values that satisfy the equation p + q = l, where l is number of the layers.
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Algorithm 5: Distribute_Over_Boundary(r)
input : ri at corner node v
output: ri at boundary node

1 p = ceil(L/2) /* Number of nodes in odd vertical line */
2 q = L − p /* Number of nodes in even vertical line */
3 if portCount(v) == 3 then
4 swap(p, q)

5 turn = 1
6 N =Number of robots at current node
7 lastId = idO f Rank(N − p)
8 if id > lastId then
9 for porti ∈ portMap do

10 if portCount(porti) == 3 or 5 then
11 exit through porti

12 turn = 2
13 while isCorner() do
14 if turn == 1 then
15 lastId = idO f Rank(N − p)
16 if id > lastId then
17 for porti ∈ portMap do
18 if portCount(porti) == 5 then
19 exit through porti

20 turn = 2

21 if turn == 2 then
22 lastId = idO f Rank(N − q)
23 if id > lastId then
24 for porti ∈ portMap do
25 if portCount(porti) == 3 then
26 exit through porti

27 turn = 1

Proof. All robots at the corner node will exit through ports 3 or 5, whichever is
available in the configuration, except the lowest p robots. So all robots will choose
the same direction as there is only one possible way. On each node, p or q robots
will stay on the node, and the rest of N − (p or q) will leave the node. So till the
corner node, all robots will be distributed on the nodes. For con f ig(2, 2, 2, 2), Total
robots distributed = p ∗ (L) + q(L − 1) = N Similarly, we can prove this for other
configurations. The maximum distance robot will travel is O(WG).
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Figure 4.11: Distribution of the robots to the inner nodes in round 5

4.6 Round 5

In the final round, robots are placed along one of the four boundaries of a given
configuration. The objective is to distribute all the robots from the boundary to
the inner nodes. The given figure 27 illustrates the outcome after executing Round
2 on a configuration represented by graph G(5).

Figure 4.12: Flow of round 5
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Algorithm 6: Distribute_Over_Grid(r)
input : ri at boundary node v
output: ri at node where robotCount = 1

1 if isCorner() then
2 while robotCount(v) > 1 do
3 if id == min(∀id ϵ Slocal Id) then
4 settle() break

5 for porti ∈ portMap do
6 if portCount(porti) == 4 then
7 exit through porti

8 settle()
9 break

10 if portCount(v) == 3 then
11 if id == min(∀id ϵ Slocal Id) then
12 settle() break

13 for porti ∈ portMap do
14 if portCount(porti) == 6 then
15 exit through porti

16 if portCount(v) == 5 then
17 if id == min(∀id ϵ Slocal Id) then
18 settle() break

19 porta = 2nd port clockwise from portEntered
20 portb = 2nd port countrer clockwise from
21 portx such that portCount(portx) == 3 and
22 portx ̸= portEntered
23 if porta == portb then
24 exit through porta

25 else
26 exit through 3rd port counter clockwise from portEntered

27 if portCount(v) == 6 then
28 while robotCount(v) > 1 do
29 if id == min(∀id ϵ Slocal Id) then
30 settle() break

31 exit through port that clockwise 3rd port from the port robots
entered.

32 settle()
33 break

Lemma 6. At the conclusion of Round 5, in configuration G with k = Ω(n) robots, the
distribution of robots over the triangular grid G ensures that each node contains at most

29



one robot.

Proof. In the case of corner nodes, the nodes’ robots will move to the node with
degree 4, and the robot with minimum id will settle on the node in each iteration.
In the case of degree 3 and 5 nodes, they need to find the correct port to move
the rest robots. So they will check porta and portb, which are found from adjacent
ports of the boundary nodes. Using this method, we can see the next port to move,
and robots can distribute vertically. The maximum distance robot will travel HG,
so the upper bound for Round 5 is O(HG).

Theorem 1. The Disperse(k) algorithm can effectively solve the dispersion problem on
a triangular grid within a time complexity of O(max(HG, WG)) rounds while utilizing
only O(log k) bits for the mobile robots. Here, HG represents the height of the grid and
WG denotes the width of the grid.

Proof. To establish the correctness of the Disperse(k) algorithm, we combine the
correctness proofs for Lemmas 1 through 6. Each lemma contributes to ensuring
the correctness of the algorithm in solving the dispersion problem on the triangu-
lar grid. The total time requires for running the whole algorithm is O(max(HG, WG))

as each round takes O(max(HG, WG)). Regarding memory bits, variables portEntered,
portExited, turn, portCount, portMap will take O(1) bits as ∆ = 6 and id, localLeader,
globalLeader will take O(log k) bits.

30



CHAPTER 5

Conclusions and Future Work

This Dispersion problem on a Triangular Grid holds great importance due to its
close connection to various fundamental robot coordination problems. Through
the introduction of a specific set of configurations, we addressed this problem
and presented an algorithm consisting of five Rounds. Notably, our algorithm
achieves an optimal solution in terms of both time complexity, requiring only
O(max(HG, WG)) rounds, and memory usage, utilizing merely O(log k) bits for
the mobile robots. This result establishes an optimal solution for the Dispersion
problem on a given configuration of a triangular grid, satisfying the constraints
of time efficiency and memory optimization.

It indeed holds significant interest to explore further avenues related to the
Dispersion problem. One intriguing direction involves proving a lower bound of
Ω(k) in terms of time complexity, or alternatively, devising an algorithm with a
time complexity of O(

√
k) for configurations where k < Ω(N) on both square and

triangular grid graphs. Additionally, extending our algorithms to address Disper-
sion in semi-synchronous and asynchronous settings presents another promising
avenue for research.

Furthermore, considering the Dispersion problem on arbitrary graphs, it would
be compelling to develop an algorithm that can solve it within a time complexity
of O(k) or improve the existing time lower bound from Ω(k) to Ω(min(m, k)),
where m represents the number of edges in the graph. These directions open up
new possibilities for advancing our understanding of the Dispersion problem and
its applicability to various graph structures and computational models.
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CHAPTER A

Implementation in C++

/ * *
* a u t h o r : Yash J o s h i

* * /

# include < b i t s /s tdc ++.h>

using namespace std ;

s t r u c t Node {
i n t x ;
i n t y ;

Node ( ) {
x = 0 ;
y = 0 ;

}

Node( i n t xx , i n t yy ) {
x = xx ;
y = yy ;

}
} ;

i n t leaderOfNode (Node node ) ;

i n t anchorOfNode (Node node ) ;

void broadcastGlobalLeader ( i n t l eader ) ;

i n t l a y e r s = 0 ;

c l a s s Grid {
i n t rows ;
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i n t c o l s ;

public :
vector <vector < int >> c e l l s ;
vector <vector < int >> robotCount ;

Grid ( i n t rows , i n t c o l s ) {
this −>rows = rows ;
this −> c o l s = c o l s ;

c e l l s . r e s i z e ( rows ) ;
for ( i n t i = 0 ; i < rows ; i ++)

c e l l s [ i ] . r e s i z e ( co ls , 0 ) ;

robotCount . r e s i z e ( rows ) ;
for ( i n t i = 0 ; i < rows ; i ++)

robotCount [ i ] . r e s i z e ( co ls , 0 ) ;
}

/ * Check ing t h e c o r d i n a t e s a r e v a l i d or not * /
bool i s V a l i d (Node node ) {

i n t i = node . x , j = node . y ;
i f ( i < 0 || j < 0 || i >= rows || j >= c o l s )

return f a l s e ;
e lse return true ;

}

/ * Number o f P o r t s f o r t h e g i v e n Node * /
i n t portCount (Node node ) {

vector <Node> portMap = getPortMap ( node ) ;
return portMap . s i z e ( ) ;

}

vector <Node> getPortMap (Node node ) {
vector <Node> portMap ;

/ * 6 p o s s i b l e d i r e c t i o n s f o r node * /
vector <vector < int >> d i r s = {

{ −2 , 0 } ,
{ −1 , 1 } ,
{ 1 , 1 } ,
{ 2 , 0 } ,
{ 1 , −1} ,
{ −1 , −1} ,

} ;
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for ( auto d i r : d i r s ) {
Node tempNode ( node . x + d i r [ 0 ] , node . y + di r [ 1 ] ) ;
i f ( i s V a l i d ( tempNode ) ) {

portMap . push_back ( tempNode ) ;
}

}

return portMap ;
}

/ * Check ing node i s c o r n e r node or not * /
bool i sCorner (Node node ) {

i f ( portCount ( node ) == 2) return true ;
e lse i f ( portCount ( node ) == 3) {

vector <Node> portMap = getPortMap ( node ) ;
for (Node i : portMap ) {

i f ( portCount ( i ) == 2 || portCount ( i ) == 4)
return true ;

}
}
return f a l s e ;

}

void setRobotCount (Node node , i n t val ) {
robotCount [ node . x ] [ node . y ] = val ;

}

i n t getAnchor (Node node ) {

return 0 ;
}

i n t getLeader (Node node ) {

return leaderOfNode ( node ) ;
}

i n t getRobotCount (Node node ) {
return robotCount [ node . x ] [ node . y ] ;

}

~Grid ( ) { }
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} ;

Figure A.1: Sample input file

c l a s s Robot {
private :

i n t robotID ;

i n t portEntered = 0 ;
Grid * grid ;
bool l eader = f a l s e ;
bool anchor = f a l s e ;

public :
i n t globalLeader = −1;
Node currNode ;
Node prevNode ;
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Robot ( ) { }

void s e t P o s i t i o n ( i n t x , i n t y ) {
currNode . x = x ;
currNode . y = y ;

}

/ * S e t p o i n t e r t o g r i d t o use Grid methods * /
void setGrid ( Grid * pGrid ) {

this −>grid = pGrid ;
}

void s e t I d ( i n t id ) {
this −>robotID = id ;

}

bool isSameNode (Node a , Node b ) {
return ( a . x == b . x ) && ( a . y == b . y ) ;

}

void se tPor tEntered ( vector <Node> &portMap , Node node ) {
for ( i n t index = 0 ; index < portMap . s i z e ( ) ; index ++) {

i f ( isSameNode ( prevNode , portMap [ index ] ) ) {
portEntered = index ;
return ;

}
}

}

void printPos (Node node ) {
cout << node . x << " : " << node . y << endl ;

}

void ex i tToPor t ( vector <Node> &portMap , Node node ) {
prevNode = currNode ;
currNode = node ;
portMap = grid −>getPortMap ( currNode ) ;

grid −>setRobotCount ( prevNode ,
grid −>getRobotCount ( prevNode ) − 1 ) ;
grid −>setRobotCount ( currNode ,
grid −>getRobotCount ( currNode ) + 1 ) ;

}
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/ * Round 1 * /
void moveToBoundary ( ) {

/ * Choose random p o r t and e x i t th rough t h a t p o r t * /
i n t random = 1 ;
vector <Node> portMap = grid −>getPortMap ( currNode ) ;

ex i tToPor t ( portMap ,
portMap [ ( random ) % portMap . s i z e ( ) ] ) ;

se tPor tEntered ( portMap , prevNode ) ;
/ * E x i t th rough 3 rd Node from p o r t E n t e r d * /
while ( grid −>portCount ( currNode ) == 6) {

ex i tToPor t ( portMap ,
portMap [ ( portEntered + 3) % portMap . s i z e ( ) ] ) ;
se tPor tEntered ( portMap , prevNode ) ;

}

/ * P r i n t P o s i t i o n * /

}

Figure A.2: Output of round 1

/ * Round 2 * /
void moveToAnyCorner ( ) {

while ( ! grid −>isCorner ( currNode ) ) {
vector <Node> portMap = grid −>getPortMap ( currNode ) ;
i f ( grid −>portCount ( currNode ) == 3) {

for (Node node : portMap ) {
i f ( ( ( grid −>portCount ( node ) == 3) ||
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( grid −>portCount ( node ) == 5 ) )
&& ( ! isSameNode ( node , portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap , prevNode ) ;
break ;

}
}

}
i f ( grid −>portCount ( currNode ) == 4) {

for (Node node : portMap ) {
i f ( ( ( grid −>portCount ( node ) == 2) ||

( grid −>portCount ( node ) == 3) ||
( grid −>portCount ( node ) == 4 ) )

&& ( ! isSameNode ( node , portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap , prevNode ) ;
break ;

}
}

}
i f ( grid −>portCount ( currNode ) == 5) {

for (Node node : portMap ) {
i f ( ( ( grid −>portCount ( node ) == 2) ||
( grid −>portCount ( node ) == 3 ) )

&& ( ! isSameNode ( node , portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap , prevNode ) ;
break ;

}
}

}
}

}

/ * Round 3 * /
void moveToOneCorner ( ) {

i n t myLeader = leaderOfNode ( currNode ) ;

i f ( myLeader == robotID )
leader = t rue ;

i n t myAnchor = anchorOfNode ( currNode ) ;

i n t currAnchor = −1;
i n t currLeader = myLeader ;
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Figure A.3: Output of round 2

i f ( myAnchor == robotID )
anchor = t rue ;

i f ( anchor && leader )
leader = f a l s e ;

i f ( l eader ) {
i n t tempLeader = myLeader ;
while ( currAnchor != myAnchor ) {

/ / go t o i n t i a l f i r s t node near t o c u r r e n t c o r n e r
vector <Node> portMap = grid −>getPortMap ( currNode ) ;
for (Node node : portMap ) {

i f ( ( ( grid −>portCount ( node ) == 3) ||
( grid −>portCount ( node ) == 5) ||
( grid −>portCount ( node ) == 4 ) )

&& ( ! isSameNode ( node , portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap , prevNode ) ;
break ;

}
}
moveToAnyCorner ( ) ;
tempLeader = min ( tempLeader , leaderOfNode ( currNode ) ) ;
currAnchor = anchorOfNode ( currNode ) ;

}
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broadcastGlobalLeader ( tempLeader ) ;
}

currLeader = leaderOfNode ( currNode ) ;

while ( currLeader != globalLeader ) {
/ / go t o i n t i a l f i r s t node near t o c u r r e n t c o r n e r
vector <Node> portMap = grid −>getPortMap ( currNode ) ;
for (Node node : portMap ) {

i f ( ( ( grid −>portCount ( node ) == 3) ||
( grid −>portCount ( node ) == 5) ||
( grid −>portCount ( node ) == 4 ) )

&& ( ! isSameNode ( node , portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap , prevNode ) ;
break ;

}
}

moveToAnyCorner ( ) ;
currLeader = leaderOfNode ( currNode ) ;

}

}

Figure A.4: Output of round 3
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/ * Round 4 * /
void distributeOverBoundary ( ) {

i n t p = c e i l ( l a y e r s / 2 ) ;
i n t q = l a y e r s − p ;

i f ( grid −>portCount ( currNode ) == 3)
swap ( p , q ) ;

bool turn = 1 ;

i n t robotCount = grid −>getRobotCount ( currNode ) ;

i n t currentLot = p ;
vector <Node> portMap = grid −>getPortMap ( currNode ) ;

i f ( robotID >= currentLot ) {
for (Node node : portMap ) {

i f ( ( ( grid −>portCount ( node ) == 3) ||
( grid −>portCount ( node ) == 5 ) ) ) {

ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap , prevNode ) ;
break ;

}
}

}
currentLot += q ;

while ( robotID >= currentLot ) {
i f ( turn ) {

for (Node node : portMap ) {
i f ( ( ( grid −>portCount ( node ) == 3)
|| ( grid −>portCount ( node ) == 5 ) )

&& ( ! isSameNode ( node ,
portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap ,
prevNode ) ;
break ;

}
}
currentLot += p ;

} e lse {
for (Node node : portMap ) {

i f ( ( ( grid −>portCount ( node ) == 3)
|| ( grid −>portCount ( node ) == 5 ) )
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&& ( ! isSameNode ( node ,
portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap ,
prevNode ) ;
break ;

}
}
currentLot += q ;

}
turn = ! turn ;

}
}

Figure A.5: Output of round 4

/ * Round 5 * /
void dis t r ibuteOverGrid ( ) {

while ( grid −>getRobotCount ( currNode ) != 0) {
vector <Node> portMap =
grid −>getPortMap ( currNode ) ;

i f ( leaderOfNode ( currNode ) == robotID ) {
cout << robotID << " s e t t l e d on : " ;
pr intPos ( currNode ) ;
return ;

}
i f ( ( grid −>portCount ( currNode ) == 2) ||

( ( grid −>portCount ( currNode ) == 3) &&
( grid −>isCorner ( currNode ) ) ) ||
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( grid −>portCount ( currNode ) == 4 ) ) {
for (Node node : portMap ) {

i f ( ( ( grid −>portCount ( node ) == 2)
|| ( grid −>portCount ( node ) == 3) ||
( grid −>portCount ( node ) == 4 ) )

&& ( ( ! isSameNode ( node ,
portMap [ portEntered ] ) ) ||
( grid −>isCorner ( currNode ) ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap ,
prevNode ) ;
break ;

}
}
continue ;

} e lse i f ( grid −>portCount ( currNode ) == 3) {
for (Node node : portMap ) {

i f ( ( grid −>portCount ( node ) == 6)
&& ( ! isSameNode ( node ,
portMap [ portEntered ] ) ) ) {
ex i tToPor t ( portMap , node ) ;
se tPor tEntered ( portMap ,
prevNode ) ;
break ;

}
}
continue ;

} e lse i f ( grid −>portCount ( currNode ) == 5) {
bool hasCorner = f a l s e ;
for (Node node : portMap ) {

i f ( grid −>isCorner ( node ) ) {
hasCorner = t rue ;
break ;

}
}

i f ( hasCorner ) {
/ / 6 d e g r e e node a f t e r 4 d e g r e e node
for ( i n t i = 0 ; i < portMap . s i z e ( ) ; i ++) {

i f ( grid −>portCount ( portMap [ i ] ) == 4) {
Node prev , next ;
i f ( i == 0) {

prev = portMap [ portMap . s i z e ( ) − 1 ] ;
} e lse prev = portMap [ i − 1 ] ;
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i f ( i == portMap . s i z e ( ) − 1) {
next = portMap [ 0 ] ;

} e lse next = portMap [ i + 1 ] ;

i f ( grid −>portCount ( prev ) == 6) {
ex i tToPor t ( portMap , prev ) ;
se tPor tEntered ( portMap , prevNode ) ;

} e lse i f ( grid −>portCount ( next ) == 6) {
ex i tToPor t ( portMap , next ) ;
se tPor tEntered ( portMap , prevNode ) ;

}
}

}

} e lse {
/ / 2nd 6 d e g r e e node
bool f i r s t T i m e = t rue ;
Node prev = portMap [ portMap . s i z e ( ) − 1 ] , next ;
for ( i n t i = 0 ; i < portMap . s i z e ( ) ; i ++) {

i f ( i == portMap . s i z e ( ) − 1) {
next = portMap [ 0 ] ;

} e lse next = portMap [ i + 1 ] ;

i f ( ( grid −>portCount ( portMap [ i ] ) == 6) &&
( grid −>portCount ( prev ) == 6) &&
( grid −>portCount ( next ) == 6)

) {
ex i tToPor t ( portMap , portMap [ i ] ) ;
se tPor tEntered ( portMap , prevNode ) ;

}
prev = portMap [ i ] ;

}
}

continue ;
} e lse i f ( grid −>portCount ( currNode ) == 6) {

ex i tToPor t ( portMap ,
portMap [ ( portEntered + 3) %
portMap . s i z e ( ) ] ) ;
se tPor tEntered ( portMap , prevNode ) ;
continue ;

}
}
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}

i n t get Id ( ) {
return robotID ;

}

void setGlobalLeader ( i n t x ) {
this −>globalLeader = x ;

}

~Robot ( ) { }
} ;

Figure A.6: Output of round 5

void printRobotsPos ( ) ;

void i n i t I O ( ) {
char i n p u t F i l e [ ] = { " input . t x t " } ,
ou tput F i l e [ ] = { " output . t x t " } ;
freopen ( i np ut F i l e , " r " , s t d i n ) ;
freopen ( outputFi le , "w" , s tdout ) ;

}

Robot robots [ 1 0 ] ;
i n t noOfRobots ;

i n t main ( ) {
i n i t I O ( ) ;
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/ * Take C o n f i g u r a t i o n * /
i n t rows , c o l s ;
c in >> rows >> c o l s ;
l a y e r s = rows ;

Grid grid ( rows , c o l s ) ;
for ( i n t i = 0 ; i < rows ; i ++) {

for ( i n t j = 0 ; j < c o l s ; j ++) {
c in >> grid . c e l l s [ i ] [ j ] ;

}
}

c in >> noOfRobots ;

i n t xx , yy ;

for ( i n t i = 0 ; i < noOfRobots ; i ++) {
c in >> xx >> yy ;
robots [ i ] . s e t P o s i t i o n ( xx , yy ) ;
robots [ i ] . se tGrid (& grid ) ;
robots [ i ] . s e t I d ( i ) ;

}

/ * Round 1 * /
for ( i n t i = 0 ; i < noOfRobots ; i ++)
robots [ i ] . moveToBoundary ( ) ;

/ * Round 2 * /
for ( i n t i = 0 ; i < noOfRobots ; i ++)
robots [ i ] . moveToAnyCorner ( ) ;

/ * Round 3 * /
for ( i n t i = 0 ; i < noOfRobots ; i ++)
robots [ i ] . moveToOneCorner ( ) ;

/ * Round 4 * /
for ( i n t i = 0 ; i < noOfRobots ; i ++)
robots [ i ] . distributeOverBoundary ( ) ;

/ * Round 5 * /
for ( i n t i = 0 ; i < noOfRobots ; i ++)
robots [ i ] . d is t r ibuteOverGrid ( ) ;
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/ * F i n a l P o s i t i o n s o f Robo t s * /
return 0 ;

}

i n t leaderOfNode (Node node ) {
i n t l eader Id = INT_MAX;
for ( i n t i = 0 ; i < noOfRobots ; i ++) {

i f ( ( robots [ i ] . currNode . x == node . x ) &&
( robots [ i ] . currNode . y == node . y ) ) {

l eader Id = min ( robots [ i ] . get Id ( ) , l eader Id ) ;
}

}
return l eader Id ;

}

i n t anchorOfNode (Node node ) {
i n t l eader Id = INT_MIN ;
for ( i n t i = 0 ; i < noOfRobots ; i ++) {

i f ( ( robots [ i ] . currNode . x == node . x ) &&
( robots [ i ] . currNode . y == node . y ) ) {

l eader Id = max( robots [ i ] . get Id ( ) , l eader Id ) ;
}

}
return l eader Id ;

}

void broadcastGlobalLeader ( i n t l eader ) {
for ( i n t i = 0 ; i < noOfRobots ; i ++) {

i f ( robots [ i ] . globalLeader == −1)
robots [ i ] . globalLeader = leader ;

e lse break ;
}

}
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