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Abstract

It might be difficult to comprehend how the brain functions and how its struc-
ture and function interact because it is the body’s most complicated organ. Re-
cent advances in the non-invasive measurement techniques of brain signals and
large-scale computing originating from advances in complex systems have en-
abled high-resolution temporal and spatial data analysis, thereby providing new
insights into the functional connectivity of the different brain regions.

High-resolution temporal data, such as those obtained from EEG, can provide
significant insights into the dynamics of the brain at very short time scales. These
signals, however, are non-stationary and complex. This has resulted in applica-
tions of methods outside those of conventional statistics.

During the previous two decades, developments in the field of complex net-
works have provided a range of methods to analyze EEG data and thereby con-
struct a picture of the brain’s functional network. Complex networks provide
a simple representation of the connectivity between the different EEG channels
regarding nodes and edges. The connectivity is obtained by looking at the ampli-
tude or phase relationship between the signals from different channels. Different
network measures are then used to study the problem at the level of individual
channels or nodes, groups of nodes, and all the nodes. This provides an under-
standing of how the brain organizes itself as it performs different tasks and the
interrelationship between these different levels of description.

Deep learning techniques have also provided new opportunities and direc-
tions in studies of brain signals. It involves training a neural network to discover
patterns in massive datasets. Statistical methods and deep learning techniques
are usually used together. Statistical methods are typically used to pre-process
the data, identify essential features, and identify the data set’s dimensionality. At
the same time, deep learning techniques allow studying the intricate relationships
between the brain signals.
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Despite the plethora of different techniques, our understanding of the brain
is still in its nascent stage. Apart from the complexity originating from the brain
as an organ, the methods used have limitations. For example, the properties of
the network are sensitive to the methods used to construct the network itself. For
instance, Pearson correlation based network construction is a linear correlation,
and hence the network properties would be the ones that are best captured by
such linear correlations. While the deep learning methods are certainly promis-
ing since they consider any nonlinear correlations, the advantages they provide
compared to the other methods still need to be discovered.

Given the complexity of brain dynamics and the limitations of the different
methods, we explore how well the various ways correlate in this thesis. Specif-
ically, we have looked at the relationship between the fluctuations in the signals
at a channel, the channel represented as a node in the brain’s functional network,
and the observations from deep learning techniques. Based on sliding window
analysis, our main observation is that for resting state data, the mean and vari-
ance of the raw signal at a channel show a positive correlation to the fluctuations
in the weighted degree of the node in the corresponding network. And a scat-
ter plot of correlation values between different channels using simple statistical
methods and deep learning-based methods gives information about the associa-
tion and similarity between the two approaches in capturing the patterns of func-
tional connectivity in the brain.
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CHAPTER 1

Introduction

1.1 Brain

The human body’s most intricate organ is the brain [1]. It controls everything
we do, including our thoughts, feelings, and physical movements. It contains
around 100 billion neurons, which are specialised cells that communicate with
one another via electrical and chemical signals. These neurons are organised into
various zones, each with a specific function.

One of the brain’s primary functions is the processing of information. Our
brain converts sensory input from our environment, such as sights and sounds,
into signals, which are then interpreted to provide meaning. The brain signifi-
cantly influences the ability to recall and learn new information. Additionally, it
helps in memory development and information recall from the past.

Unfortunately, the brain can be impacted by numerous illnesses and ailments.
A few typical examples include stroke, Parkinson’s disease, and Alzheimer’s dis-
ease. These conditions may significantly harm a person’s quality of life.//

The brain can be spatially segregated into different regions based on the func-
tions being carried out. Each brain hemisphere has four sections called lobes that
control specific functions. The Frontal lobe [2] is the most significant part of the
brain and controls personality traits, judgment, and movement. It is situated in
the front of the head. The Parietal lobe [3], located in the middle of the brain,
aids in object identification, understanding spatial relationships, pain, and touch
in the body. The back portion of the brain that controls vision is called the Oc-
cipital lobe [4]. Short-term memory, speech, musical rhythm, and to some extent,
smell identification are all functions of the Temporal lobes [5] on the sides of the
brain.
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1.2 Methods to obtain Brain Signals

The brain can be imagined to function at different hierarchical scales. The small-
est part of the brain is known as the synapse, and the largest part is known as
a region of the brain. Many synapses make neurons, and many neurons make a
brain region. Many regions make the whole brain. Broadly, the different methods
used to measure brain signals can be characterized into:

1. Non-Invasive Methods [6] : Techniques in which instruments or probes are
not inserted into the brain or skull to obtain signals from the brain.

2. Invasive Methods [7]: Brain tissue or fluid is directly accessed using inva-
sive techniques to obtain brain signals.

The different methods to record brain signals can also be differentiated based
on their temporal and spatial resolution. The ability of a technology to record
changes in brain activity over time determines its temporal resolution. In other
words, it relates to the accuracy of determining when certain brain activities oc-
cur. Some techniques can quickly measure changes in brain activity on the order
of milliseconds and therefore provide a high temporal resolution, and some tech-
niques have a low temporal resolution. At the same time, some methods offer
solutions in seconds and have a comparatively lower temporal resolution.

Contrarily, the spatial resolution of a method relates to its accuracy in precisely
predicting the spatial location of a specific brain activity. A high spatial resolution
lets us pinpoint which brain areas are active during a particular task or stimulus.
Two of the standard non-invasive methods to record brain activities are fMRI and
EEG, while fMRI provides high spatial but poor temporal resolution. EEG data
has high temporal but poor spatial resolution.
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1.3 fMRI(Functional Magnetic Resonance Imaging)

Functional Magnetic Resonance Imaging [8], or fMRI, is a non-invasive method
of measuring brain activity. It uses a powerful magnet to generate magnetic
feild and radio waves to create detailed brain images. Precisely, fMRI measures
changes in blood flow and oxygenation levels in different brain areas in response
to various stimuli, such as visual or auditory stimuli, or during the performance
of specific tasks.

When neurons in the brain become active, they require more oxygen and glu-
cose to support their increased metabolic demands.The outcome is increased blood
flow to the brain, which activates an area and is known as the hemodynamic re-
sponse. fMRI takes advantage of this by using the magnetic properties of hemoglobin
to detect changes in the brain’s oxygenated and deoxygenated blood.

The images produced by fMRI are incredibly detailed, allowing researchers
and doctors to see which brain areas are most active during specific tasks or in
response to particular stimuli. These images can be analyzed using sophisticated
statistical methods to identify areas of the brain that are significantly more active
during certain conditions than others.

fMRI uses the BOLD (Blood Oxygen Level Dependent) [9] concept. The
BOLD signal measures the difference between the magnetic properties of oxy-
genated and deoxygenated hemoglobin. A higher BOLD signal is produced when
the brain’s neurons are engaged because more oxygenated hemoglobin is present
in the blood vessels. The brain regions active during a specific task or stimulus
are mapped using the BOLD signal. It may take several seconds to notice changes
in brain activity.

1.4 EEG(Electroencephalogram)

The electrical activity produced by the brain can be measured using electroen-
cephalography (EEG) [10]. EEG is a commonly used technique in clinical and
research settings to understand brain function, diagnose neurological disorders,
and track changes in brain activity over time. It involves placing electrodes on the
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scalp to measure the electrical signals generated by the brain’s neurons.

The brain’s millions of neurons produce EEG signals. These neurons generate
electrical currents as they communicate, which can be measured by the electrodes
placed on the scalp. EEG signals are typically recorded with the subject sitting or
lying down with their eyes closed or open, and they can also be recorded during
specific tasks or stimulation.

EEG signals are characterized by their frequency and amplitude. The signal
frequency refers to how often the electrical activity repeats per second, measured
in hertz (Hz). The signal’s amplitude refers to the strength of the electrical ac-
tivity, measured in microvolts (µV). Different frequency bands of EEG signals are
associated with varying states of brain and cognitive processes.

The excellent temporal resolution of EEG is one of its key benefits. EEG is ide-
ally suited for researching the timing of cognitive processes in the brain since it
can accurately record changes in brain activity. In contrast to other neuroimaging
methods, EEG has a lower spatial resolution, which restricts its capacity to pre-
cisely pinpoint the source of the electrical impulses in the brain.

1.5 Characteristics of Brain Signals

Brain signals have several characteristics that help in their analysis and interpre-
tation. Some of these characteristics are:

1. Amplitude : A brain signal’s amplitude describes its power or intensity. It
is the vertical separation of a signal’s highest and lowest points. The location
of the brain from which a signal is recorded, the signal type (such as EEG or
fMRI), and the activity being monitored can all affect the signal’s amplitude.

2. Frequency : A brain signal’s frequency is measured in oscillations or cycles
per second. It is expressed in Hz or Hertz. In EEG signals, different frequen-
cies, such as alpha, beta, theta, and gamma waves, are connected to various
types of brain activity.

3. Phase : The relative position of a wave cycle at a certain instant in time is
called the phase of a brain signal. It can be used to examine if certain brain
regions are synchronized or desynchronized.
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4. Time : A brain signal’s time is the instant that it is recorded. It can be ap-
plied to research how connections develop as well as the temporal dynamics
of brain activity.

5. Spatial Location : A brain signal’s spatial placement relates to the particular
brain area where it was captured. It can be used to examine how functionally
connected various brain regions are to one another.

6. Noise : Unwanted impulses are called noise, which might obstruct exam-
ining brain signals. Internal factors like muscle or eye movements and ex-
ternal factors like electromagnetic radiation can bring it on.

Signals are classified into two categories based on their statistical properties:

1. Stationary Signal :

A signal is considered stationary if its statistical characteristics don’t change
over time. In other words, the signal’s mean, variance, and correlation do
not change with time. Because stationary signals’ statistical characteristics
are constant and we can use statistical methods to analyze them, they are
simpler to understand and model.

2. Non-Stationary Signal :

Any signal whose statistical characteristics change over time is said to be
non-stationary. For instance, the signal’s mean, variance, and correlation
could change with time. Because non-stationary signals are more complex
than stationary signals, they must be analyzed using sophisticated signal
processing methods.

1.6 Network construction using EEG signals

Analyzing the functional connectivity between various brain regions is a step in
building networks using EEG readings. This can be accomplished by computing
pairwise correlations or coherence between the EEG time-series data acquired at
several electrode locations on the scalp. Since various frequency bands are be-
lieved to be connected to multiple brain networks and processes, these correla-
tions are typically calculated within a specific frequency range.
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The correlation values can then be used to build a network graph. Each node
corresponds to a particular EEG electrode position on the scalp, and each edge to
a statistically significant correlation between the time-series data from two elec-
trode locations. The weight of the edge often indicates the strength of the correla-
tion, with thicker or darker edges denoting more significant correlations.

The resulting network can be examined using graph theory tools to find signif-
icant nodes or hubs, sub-networks or communities, and patterns of connectivity
or communication between various brain regions. These network analyses can
show how the brain is functionally organized and adapts to multiple inputs or
cognitive demands.

It is significant to note that proper preprocessing and analysis of the data are
necessary when building networks using EEG signals to guarantee that the final
network appropriately depicts the underlying brain activity. The selection of fre-
quency bands, correlation measurements, and network analysis techniques can
also impact the outcomes. It should be made carefully based on the study subject
at hand.

1.7 Functional Connectivity

Functional connection [11] describes the statistical correlation or synchronization
of neuronal activity among several brain regions, regardless of how physically
distinct they are. In other words, when working on a task or relaxing, there is
synchronized movement between various brain regions.

EEG, fMRI, and other methods, among others, can all be used to measure func-
tional connectivity. Finding the degree of activity correlation between two brain
areas is the fundamental goal of functional connectivity studies. This can be ac-
complished by computing the correlation coefficient, a metric for comparing the
similarity of activity patterns across time, between the time series of each region.

Functional connectivity analysis is employed in neuroscience to understand
how different brain regions interact and pinpoint the functional networks that un-
derpin various cognitive processes, including attention, memory, language, and
emotion.
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There are two methods for analyzing functional connectivity: network-based
and seed-based. In a seed-based analysis, a specific part of the brain (the seed)
is chosen, and the functional connectivity of this part to the rest of the brain is
assessed. In network-based analysis, the entire brain is viewed as a network,
and multiple functional networks are identified by examining the connectivity
between different regions.

Functional connectivity analysis has several uses in both fundamental and ap-
plied research. It has been applied to study how various neurological and psy-
chiatric conditions affect the brain’s functional connectivity, how it develops dur-
ing childhood and adolescence, and how multiple interventions like medication,
brain stimulation, and cognitive training affect brain function.
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CHAPTER 2

Literature review

It is now possible to apply ideas from machine learning, neuroscience, and graph
theory to various problems relevant to studying the human brain and treating
disease, thanks to the advantages of non-invasive imaging techniques. Recent
papers that relate to our findings and utilize the machine learning idea include
the following:

1. Functional brain network classification for Alzheimer’s disease detection
with deep features and extreme learning machine [12]

2. EEG functional connectivity and deep learning for automatic diagnosis of
brain disorders: Alzheimer’s disease and schizophrenia [13]

The first article analyses AD (Alzheimer’s disease) identification using fMRI data.
A technique based on correlation is used to build a neural network. The definition
of the Pearson correlation coefficient is

rp =
cov(x, y)

σxσy
=

Σn
i=1(xi − x)(yi − y)√

Σn
i=1(xi − x)2(yi − y)2

(2.1)

where

• xi and yi are the i-th values of the two variables

• x̄ and ȳ are the means of the two variables

• rp is the Pearson correlation coefficient between the two variables, which
ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indi-
cates no correlation, and 1 indicates a perfect positive correlation.

is used to find the connectivity between different brain regions denoted as nodes
in the network.
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The authors of this study contend that methods that directly extract deep char-
acteristics from brain networks outperform shallow learning techniques. How
classifications based on brain network models compare to approaches based on
deep learning is a crucial question. Does a strong association exist between the
two?

In the first paper, they show the network model classification framework by
which they have classified the networks based on the input. Using the data, a con-
nectivity matrix was constructed from the fMRI images. The connectivity matrix
can generate networks whose properties are used for feature selection. Alterna-
tively, deep learning methods such as Convolutional Neural Network (CNN) [14]
and Recurrent Neural Network (RNN)[15] can be directly used at this stage.

To learn some features, we feed the network into the RNN network, provide
it to the fully connected layers, and then use the softmax activation function to
finish.

In this paper, they learn the features of the network using

• Regional connectivity positional features

• Adjacent positional features

They have employed the CNN layer in the deep learning-based methods to
learn Regional Connectivity Position Features. Convolution layers, max pool, av-
erage pool, and fully linked layers were all used in the design, along with ReLU as
the activation function. Additionally, they used the RNN model in deep learning-
based techniques to learn positional adjacency features.

The second paper investigates using EEG data to identify schizophrenia (SZ)
and Alzheimer’s disease (AD). They consider the network of connections between
various brain regions and deep neural networks to distinguish between individ-
uals with AD and SZ. We focus on the relationships between the electrodes that
record the time series when the neural network only accepts raw time series or
signals as input.

The strategy for categorizing EEG time series from healthy patients exhibiting
AD and SZ is suggested in this research. The accuracy for both illnesses is near
100% using a matrix of connections as input for a tailored convolutional neural
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network (CNN) model. This study also suggests that connection matrices pro-
duce more beneficial outcomes. The Granger Causality [16] and Pearson Correla-
tion Coefficient provide promising results for SZ. Any brain disorder’s EEG data
can be analyzed using the abovementioned framework.

EEG time series are used to create the first matrix of connections since they are
artifacts-free. The strength of links between two brain regions has been measured
using three different methods:

• Granger causality test [16]

• Pearson Correlation Coefficient [17]

• Spearman’s Rank Correlation [18]

The convolutional layer performs convolution, a mathematical operation that
can be done simultaneously in several dimensions. The weights of the artificial
neurons (or filter) are represented by a tensor called a kernel. The convolutional
layer outputs incorporate the input data’s main features. The results of the convo-
lution between neurons and kernels are feature maps. The convolutional layer’s
functionality is similar to that of the pooling layer, which decreases the dimen-
sionality. The max-pooling function in this example minimizes the size of the
feature map by returning the most significant value within an area of the tensor.
The fully connected layer divides input data into numerous classes based on a
training data set. Because the output correctly predicts the outcome of the input
EEG data as healthy or unhealthy, the artificial neurons in the fully connected and
max pooling layers are connected.

Here, two methods for the CNN architectures are suggested, one of which
(CNNtuned) employs a tuning procedure and the other which (CNNuntuned)
does not. Finding the values of hyperparameters to tune the CNN model’s per-
formance entails using optimization techniques. In the current work, three tuning
strategies are employed:

• Random search [19]

• Hyper-band [20]

• Bayesian Optimization[21]
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CHAPTER 3

Motivation

A node’s measurement in a network built using EEG data can reveal information
about the underlying brain activity at that particular brain region. For instance, a
higher degree of centrality or betweenness centrality may indicate that the node
is more significant in communicating information between other brain regions. A
larger clustering coefficient, on the other hand, may imply that the node is more
engaged in regional information processing inside a particular brain area.

We can better comprehend how these network measurements relate to the un-
derlying brain activity by comparing them to the matching EEG signal for that
node. An area of the brain with strong neural activity, as evidenced by a higher-
amplitude EEG signal, may correspond to a node with a high degree of centrality,
for instance. Additionally, alterations in network measurements over time might
also be reflected in the corresponding EEG signal, which would represent alter-
ations in the underlying brain activity.

The functional organization of the brain and the integration of neural activity
across different brain regions can be learned by examining the relationship be-
tween measures of nodes in EEG-based networks and matching EEG signals.

By analyzing the correlation between node measurements in EEG-based net-
works and corresponding EEG signals, it is possible to learn about the functional
organization of the brain and the integration of neural activity across various
brain areas.

On the other hand, deep learning-based models can capture intricate nonlin-
ear correlations between signals. These models, which may be applied to tasks
like signal prediction, classification, and clustering, use neural networks to un-
derstand the correlations between the signals. For instance, convolutional neu-
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ral networks (CNNs) can be used to categorize signals based on their features,
and recurrent neural networks (RNNs) can be used to forecast the future time
step of a signal based on its initial values. These models can also be applied
to unsupervised learning tasks like dimension reduction and clustering, which
can be utilized to find trends and connections in multivariate signals. However,
the training and testing of these models are often computationally expensive and
data-intensive.
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CHAPTER 4

Dataset

The dataset we have used for our work is from Large-scale functional networks
identified from resting-state EEG using spatial ICA [22] paper. The dataset is re-
lated to a study titled ”Mapping the human brain functional connectivity using
EEG: A graph theory-based analysis of functional networks.”The dataset includes
EEG recordings from 64 electrodes placed on the scalp of 13 individuals. The
recordings were obtained during resting-state conditions, with participants asked
to remain awake and relaxed with their eyes closed. To make it computationally
light, we have selected some specific channels out of the 64, which are Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Oz. So we are
working on these 19 channels for our work.

Figure 4.1: Brain Channels [23]
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4.1 Resting State

When a person is not engaged in any particular task or is not paying attention to
anything in particular, their brain is said to be in a "resting state." The brain is still
functioning during this period, and spontaneous changes in brain activity occur.
This state is crucial to study because it serves as a benchmark for understanding
how the brain behaves in other conditions, such as when performing a task or
experiencing different illnesses.

Several brain imaging methods, including fMRI and EEG, can be used to study
the brain’s resting state. Researchers use fMRI to detect changes in blood flow and
oxygenation levels in various brain regions. Researchers used EEG to track the
electrical activity produced by brain neurons. Both methods offer insightful data
regarding the resting state, although fMRI has a higher level of spatial resolution
while EEG has a higher temporal resolution.

Research on the brain’s resting state [24] has also been applied to examine indi-
vidual variations in brain activity. For instance, studies have revealed that people
with high levels of anxiety exhibit increased activity in the amygdala, a part of
the brain involved in processing emotions while resting. Additionally, individual
variations in cognitive abilities like attention and memory have been predicted
using resting state activity.

Research on the resting state is crucial to understanding how the brain func-
tions in different states and how neurological and mental problems could hamper
it.
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CHAPTER 5

Methods

5.1 Data Preprocessing

Before getting into the analysis, the data has to be pre-processed to ensure min-
imal overlap between signals from different channels, separating the amplitude
and phase components and looking at the signal in task-specific frequency bands.
The different methods used for this purpose are discussed below.

5.1.1 Independent Component Analysis(ICA)

A statistical method called independent component analysis (ICA) [25] [26] sep-
arates independent and significant sources of signals from a jumble of visual sig-
nals. ICA is frequently used to extract functional brain networks from measurable
data, such as EEG or fMRI signals, in the context of brain signals.

The basic idea behind ICA is to decompose measured signals into indepen-
dent, non-gaussian components. The method assumes that the observed signals
are a linear mixture of independent sources and uses a matrix factorization tech-
nique to estimate both the sources and the mixing matrix that produced the ob-
served signals. The resulting sources are statistically independent and represent
underlying neural processes not visible in the observed signals.

The cocktail party dilemma is a well-known illustration of the usefulness of
independent component analysis (ICA). This issue distinguishes different sound
sources in a noisy setting, similar to trying to make out a single conversation dur-
ing a party in a packed room.

The extraordinary ability of the human brain to carry out this separation au-
tomatically can make it difficult to mimic this process using computers. But ICA
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has proven to be a potent tool for addressing this issue.

Figure 5.1: Schematic showing the concept behind the ICA [27]. In the top figure,
each microphone has a mixture of the two human conversations. In contrast, the
bottom figure shows ICA is taking the mixed signals as an input and giving the
output as independent signals .

The cocktail party dilemma can be seen as a situation where various audio
signals are combined to create a complicated waveform in the context of ICA.
ICA assumes that the sources are statistically independent of one another and
attempts to decompose this mixed signal into its underlying source signals, as
seen in figure 5.1.

Using ICA, it is possible to decompose the mixed audio signal in the cocktail
party problem into its underlying sound sources, such as individual conversa-
tions. This is achieved by determining the statistical correlations between the
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various audio sources, as in the bottom of the figure 5.1.

Statistical regularities in the mixed signal, including correlations or non-gaussian
distributions, are recognized by ICA methods. The estimation of the mixing ma-
trix, which defines how the various sources contribute to the mixed signal, is done
using these regularities.

The mixed signal can be divided into its independent components using ICA
after the mixing matrix has been determined. Using the estimated mixing matrix,
this procedure includes splitting the mixed signal into a new group of statistically
independent signals.

Figure 5.2: ICA vs PCA [27]

PCA(Principle Component Analysis) [28] is a linear approach, meaning it can
only capture linear correlations in the data, but ICA can capture both linear and
non-linear interactions. This is an essential distinction between PCA and ICA.
While PCA assumes that the observed signal is a linear combination of gaussian
variables, ICA assumes that the observed signal is a linear combination of non-
gaussian and statistically independent source signals. As a result, ICA is better
suited for studying complex, non-linear phenomena like brain signals.

PCA and ICA further differ in that PCA can only recognize orthogonal com-
ponents while ICA can recognize non-orthogonal ones. In other words, whereas
ICA components can be oriented in any direction concerning one another, PCA
components are always perpendicular. These are the main reasons why we do
not use PCA instead of ICA.
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5.1.2 Band Pass Filter

A band-pass filter is a signal-processing instrument that attenuates (decreases)
frequencies outside a specific frequency range while allowing frequencies within
that range to pass through a signal. In other words, it removes the undesirable
components while selectively amplifying or attenuating the signal components
within a certain frequency range.

Combining low-pass and high-pass filters creates a band-pass filter. In contrast
to the high-pass filter, which blocks low-frequency components below a given
cutoff frequency, the low-pass filter eliminates high-frequency components above
that cutoff frequency. These filters enable the signal to flow through a particular
frequency range or passband. Band-pass filters are used to process EEG signals
to remove undesired noise and artifacts and identify particular frequency compo-
nents associated with brain activity.

Band-pass filters, such as Butterworth [29], Chebyshev [30], and Bessel [31] fil-
ters, come in various shapes and sizes. Each type has unique traits and trade-offs
between ripple, frequency response, and filter order. We are using Butterworth
Band Pass Filter in this thesis.

In the case of brain signals, the frequency components of interest are typically
within a specific range, such as the alpha (8-13 Hz) or beta (13-30 Hz) and many
more bands in EEG signals given in the figure.

Table 5.1: Frequency Bands and their Associated Brain Activities
Frequency Band Frequency Range Associated Brain Activities

Alpha 8-13 Hz Relaxation, Focused Attention, Creative Flow
Beta 13-30 Hz Alertness, Concentration, Problem Solving
Delta 0-4 Hz Deep Sleep, Emotions

Gamma 30-100 Hz Perception, Consciousness, Learning
Theta 4-8 Hz Meditation, Creativity, Memory Retrieval
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5.1.3 Hilbert Transform

The Hilbert Transform’s [32] mathematical technique transforms a complicated
time-domain signal into a frequency-domain output. The Hilbert Transform can
be used in brain signals to determine the amplitude and phase of the various fre-
quency components in a given signal.

Figure 5.3: Hilbert Envelope VS Raw Signal

The resulting plot shows in figure 5.3 that the signal and its envelope are in
the same plot, where the envelope appears as a smooth curve following the peaks
and troughs of the original signal. This demonstrates the ability of the Hilbert
transforms to extract the envelope of a signal, which can be useful in analyzing
non-stationary signals with rapidly changing frequencies.

5.1.4 Pearson Correlation

Pearson correlation is a statistical tool used to assess the degree of linear relation-
ship between two variables. Pearson correlation is utilized in the context of brain
signals to evaluate functional connectivity between various brain areas.
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rp =
cov(x, y)

σxσy
=

Σn
i=1(xi − x)(yi − y)√

Σn
i=1(xi − x)2(yi − y)2

(5.1)

where

• xi and yi are the i-th values of the two variables

• x̄ and ȳ are the means of the two variables

• rp is the Pearson correlation coefficient between the two variables, which
ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indi-
cates no correlation, and 1 indicates a perfect positive correlation.

We first extract time-series data from various brain regions using fMRI or EEG.
This data is then used to calculate Pearson correlation for brain signals. The de-
gree of similarity or correlation between the time-series data from each pair of
brain areas is then determined using Pearson correlation.
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5.2 Method to construct and analyze Functional Con-

nectivity at complete Network Level

In the first stage, we implemented a method to compute the correlation between
pairs of brain regions. The flow chart for this is shown in Figure 5.4.

Figure 5.4: Flow Chart of Method 5.2

To obtain a connectivity matrix to create the functional network, the following
steps are used, which are also mentioned in figure 5.4

• Independent Component Analysis

• Band Pass Filter

• Hilbert Transform

• Pearson Correlation Coefficient

All these components are explained in 5.1.
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Figure 5.4 shows the flowchart for computing the correlation between pairs
of brain regions in the first stage of the method. The steps involved include In-
dependent Component Analysis (ICA), band pass filtering using a Butterworth
filter, Hilbert transform, and calculating the Pearson correlation coefficient to ob-
tain a connectivity matrix for creating the functional network.

5.3 Method to construct and analyze Functional Con-

nectivity at Node Level

In this method, we utilized almost the same pipeline shown in Figure 5.4. Addi-
tionally, we have added some components to the pipeline, like Weighted Degree,
Mean, and Variance, and computed the correlation between each other. However,
we employed a Sliding Window based approach where the window length is set
to 30 seconds, and the overlapping window size is set to 15 seconds.

Figure 5.5 shows the flow of the Sliding Window based approach used in the
method, which involves calculating the correlation between pairs of brain regions
for each window at the node level, generating an adjacency matrix, and comput-
ing the weighted degree. Mean and variance for each window for different fre-
quency bands are also calculated, and the average correlation between weighted
degree, mean, and variance is used to infer that the variance drives the weighted
degree and that node-level connectivity influences functional connectivity.

The sliding window technique obtains time-varying functional connectivity
in EEG signals. EEG signals have non-stationary characteristics, which means
that the statistical properties of the signal, such as its mean and variance, are not
constant over time. Therefore, using a static window for calculating functional
connectivity may result in a loss of information, as the connectivity may change
over time.

To overcome this issue, the sliding window technique is used, which involves
dividing the EEG signal into several short segments and calculating the functional
connectivity for each segment. By sliding the window along the signal, overlap-
ping segments are obtained, which helps capture the connectivity’s time-varying
nature. This approach allows for examining dynamic changes in connectivity and
provides a more detailed and accurate representation of brain activity.
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Figure 5.5: Flow Chart Method 5.3
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The length of the sliding window can be adjusted depending on the frequency
band of interest. For example, for high-frequency bands such as gamma, a shorter
window length may be used to capture the rapid changes in connectivity. In con-
trast, for low-frequency bands such as alpha and theta, a longer window length
may be used to capture the slower changes in connectivity.

The reason behind this method is to get connectivity at the node level. By us-
ing this approach, we were able to calculate the correlation between pairs of brain
regions for that particular window at the node level and able to make an adjacency
matrix. We also calculated the weighted degree by using the same adjacency ma-
trix. We have also computed the mean and variance for each and every window
for each band, like Alpha, Beta, Theta, Gamma, and Delta for each channel on
the raw signals. And by calculating the correlation between the weighted degree
and mean, mean and variance, and variance and weighted degree of a particular
channel, we observe that the changes in the mean and the variance will also be
responsible for changing the weighted degree.

A negative correlation in functional connectivity represents an inverse rela-
tionship between the time series of two brain regions, indicating that when one
region is active, the other is inactive. However, a negative correlation is often
found to be artifactual in functional connectivity analysis due to various factors
such as head motion, physiological noise, and preprocessing techniques. These
factors can introduce spurious negative correlations between brain regions with-
out biological basis, leading to incorrect inferences about the brain’s functional
organization. That is the main reason we have removed or neglected the negative
correlation.

5.4 ANN based Approach

In this procedure, we employed a Deep Learning model known as an ANN (Ar-
tificial Neural Network) [33]. This form of a neural network has four completely
connected layers. The first layer uses the ’linear’ activation function and includes
nine input nodes. When using the linear activation function, the subsequent three
layers have 6, 6, and 9 nodes, respectively. An identity function, or "linear" acti-
vation function, returns the same value as its input.

The model summary lists the parameters in each layer, including the input
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Figure 5.6: Flow Diagram of Method 5.4
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Figure 5.7: ANN Model Diagram

layer’s 81 parameters (9 nodes x 9 input features). Just after the input layer, the
two hidden layers and the last output layer have 42, 42, and 63 parameters, re-
spectively. The model has 228 different trainable parameters in total. Figure 6.9
details the model’s architecture.

The ’Adam’ optimizer, a well-known optimization algorithm for training neu-
ral networks, is used to build the model. The loss function employed is the typical
loss function for regression issues, known as "mean_squared_error." Measuring
the average discrepancy between the predicted and actual values, "mse" (mean
squared error) is the statistic used to assess the model’s performance.

Our thesis work used a Z-score to normalize the brain signals. We separated
the signals into training and testing datasets after normalization. By their index,
this division randomly chose half of the signals. The testing set was then utilized
to assess the model’s performance once our model had been trained.
We employed the training and testing data to forecast the outcome as model input.
After that, we estimated the correlation between the expected and actual outputs
(the x_train and y_train signals). We could assess the model’s predictions’ accu-
racy thanks to this correlation.
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CHAPTER 6

Result

By performing all the mentioned methods in 5.2, 5.3, and 5.4, we got some output
as below:

6.0.1 Network obtained by Method mentioned in 5.2

By performing the steps mentioned in figure 5.4, we got the following kind of re-
sults for Alpha Band and Beta band mentioned in figures 6.1 and 6.3, respectively.
These figures are symmetric because there is no direction in the correlation. In the
context of functional connectivity analysis, each variable represents a brain region
or channel, and the correlation coefficients in the heatmap indicate the pairwise
correlations between these regions or channels. A high positive correlation co-
efficient suggests that the activity in the two regions or channels tends to vary
together, while a high negative correlation coefficient suggests that the activity
tends to vary in opposite directions. A correlation coefficient close to zero indi-
cates little or no relationship between the variables.

Visualizing the correlation matrix as a heatmap allows patterns of connectiv-
ity or functional relationships between different brain regions or channels to be
identified. This can help understand the brain’s underlying network structure
or functional organization and may provide insights into brain function, cogni-
tive processes, or neurological disorders. Since the correlation between the same
signals is significant, the maximum values are along the diagonal. The darker
regions depict a stronger correlation in comparison to lighter ones. Our current
work focuses on extracting the features corresponding to these networks.

28



1. Alpha Band

Figure 6.1: Connectivity Matrix using Alpha Band

Figure 6.2: Network obtained by connectivity matrix mentioned in figure 6.1
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2. Beta Band

Figure 6.3: Connectivity Matrix using Beta Band

Figure 6.4: Network obtained by connectivity matrix mentioned in figure 6.3
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6.0.2 Network obtained by Method mentioned in 5.3

By performing the steps mentioned in figure 5.5, we got the following kind of re-
sults for all frequency bands, but we are plotting only for some window for Alpha
frequency band:

Figure 6.5: Connectivity Matrix using Alpha Band for window 11

Figure 6.6: Network obtained by connectivity matrix mentioned in figure 6.5

The analysis of the figures 6.5, 6.7, and 6.9 shows variations in connectivity
or correlation strength at specific nodes and time windows using the sliding win-
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Figure 6.7: Connectivity Matrix using Alpha Band for window 51

Figure 6.8: Network obtained by connectivity matrix mentioned in figure 6.7
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Figure 6.9: Connectivity Matrix using Alpha Band for window 81

Figure 6.10: Network obtained by connectivity matrix mentioned in figure 6.9
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dow approach. The figures display lighter or darker shades, indicating changes
in connectivity or correlation patterns. Additionally, the network structure is ob-
served to change in figures 6.6, 6.8, and 6.10, with nodes exhibiting alterations in
properties such as degree.

Figure 6.11 demonstrates the weighted degree of the O1 channel across dif-
ferent windows. The slight variations in the weighted degree are responsible
for modifying the network. This provides node-level information regarding the
network, specifically highlighting nodes that can influence network dynamics
through their changing characteristics. Our current focus is on interpreting these
node-level representations in the context of complete network-level representa-
tions to determine their significance.

Furthermore, we investigated the relationship between Weighted Degree, Mean,
and Variance by calculating the average correlation for specific channels. Figure
6.11 depicts the positive outcome of this analysis. These findings enable a bet-
ter understanding of the network. Figure 6.12 presents the mean, variance, and
weighted degree plots for the O1 channel. Additionally, we computed the corre-
lation between mean and variance, variance and weighted degree, and weighted
degree and mean for individual channels, as shown in Figure 6.13.

We have used the sliding window approach to break down complete signals
into small windows and analyze them better at particular time intervals compared
to analyzing the whole signal at once. In figure 6.11, We have taken three differ-
ent windows, whose numbers are 11, 51, and 81, and plotted the weighted degree
of O1 channels for all the mentioned windows. Looking into figure 6.11, we can
see how the weighted degree changes in a particular time window, such as the
network. In figure 6.12, we plot the average of mean, average of variance, and
average of weighted degree of all the subjects that we have taken into the dataset
for each window.

In our study, we performed correlation analyses between the mean and vari-
ance, variance and weighted degree, and weighted degree and mean of functional
connectivity data. The correlation coefficients for each channel were compiled
in Figure 6.13. Moreover, we generated plots depicting the mean, variance, and
weighted degree values specifically for the O1 channel, as presented in Figure
6.12. This analysis aimed to examine the relationships between these metrics and
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Figure 6.11: weighted degree of O1 channel in different window
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Figure 6.12: Mean, Variance of raw signal of a O1 channel and Weighted Degree
of O1 channel after getting the adjacency matrix for all window
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their potential implications within the context of brain network dynamics. By ex-
ploring the correlations and visualizing the O1 channel characteristics, we gained
insights into the functional properties and dynamics of the occipital lobe, which
is primarily associated with visual processing.

As we know that the Occipital lobe of the brain manages vision-related things.
So as we selected 19 channels, O1 and O2 are on the brain’s occipital lobe. We have
used the resting state dataset in which subjects have to blink their eyes, which
means they perform vision-related activities. That is the main reason for plotting
the result related to the O1 channel.

The correlation between the mean and variance of EEG brain signals can pro-
vide insights into the Signal-to-Noise Ratio (SNR). SNR measures the strength of
the brain signal relative to the level of background noise present in the signals.

If the correlation between mean and variance is high, it indicates that the vari-
ability in the EEG signals (noise) is proportional to the mean activity level. This
suggests that the noise level increases as brain activity increases, potentially re-
ducing the SNR. In such cases, it becomes more challenging to separate the mean-
ingful brain signals from the noise, resulting in a lower SNR.

Conversely, if the correlation between mean and variance is low, it suggests
that the variability in the EEG signals is not strongly related to the mean activity
level. This implies that the noise level remains relatively constant regardless of
the brain activity level, which is favorable for SNR. In such scenarios, the brain
signals are more distinguishable from the background noise, resulting in a higher
SNR.

The Contrast-to-Noise Ratio (CNR) can be understood by looking at the corre-
lation between the mean and variance of EEG brain signals. The CNR measures
the difference in brain activity (contrast) about the signal’s amount of noise.

If the correlation between mean and variance is high, it indicates that the vari-
ability in the EEG signals (noise) is proportional to the mean activity level. This
suggests that the noise level is relatively consistent across different brain states
or conditions, which might impact the ability to distinguish meaningful brain ac-
tivity from noise. The CNR may be lower in such cases, making detecting and
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differentiating specific brain responses more challenging.

On the other hand, if the correlation between mean and variance is low, it sug-
gests that the variability in the EEG signals is not strongly related to the mean
activity level. This can indicate a favorable scenario for CNR, as the noise level
may be relatively independent of the brain activity, allowing for better differenti-
ation between meaningful signals and noise.

Figure 6.13: Correlation between Mean and Variance, Variance and Weighted De-
gree and Weighted Degree and Mean
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6.0.3 Network obtained by Method mentioned in 5.4

Figure 6.14: Alpha Frequency band using ANN

Figure 6.15: Network obtained by connectivity matrix mentioned in figure 6.14

In figure 6.14, we get a correlation matrix that is the average of all the subjects
for a symmetric alpha band. The diagonal elements have the highest and perfect
correlation. We can see in figure 6.14 that the correlation between the different
channels differs from the simple statistical method for the alpha band shown in
figure 6.1 because deep learning methods have the potential to capture non-linear
and complex relationships between variables that simple statistical methods may
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Figure 6.16: Scatter Plot of correlation between Deep Learning based and Pearson
Correlation Method

miss. So we have tried to plot a scatter diagram in figure 6.16 between the cor-
relation measured by the method mentioned in 5.2 and method 5.4. Figure 6.16
shows the correlation pattern between the simple statistical method and the deep
learning-based method. By identifying the patterns from the scatter plot, we can
also get information on the relation between the methods like a Positive Linear
Relationship, Negative Linear Relationship, Non-Linear Relationship, etc. If a
non-linear relationship is available, we can get information about it, which is our
main motive for using Deep Learning based methods. By analyzing it, we can get
information about the complex network.

The scatter plot visually compares the correlation values from simple statistical
and deep learning-based methods. It helps understand the degree of agreement,
consistency, and ability of the deep learning-based method to capture non-linear
relationships, highlighting its potential advantages over traditional statistical ap-
proaches in uncovering complex brain connectivity patterns.

Deep learning-based methods often capture complex patterns and relation-
ships in data, making them effective for various tasks, including brain signal
analysis. When it comes to functional connectivity between brain regions, deep
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learning methods can outperform simple statistical methods for several reasons:

1. Non-Linear Relationships : Brain signals are highly dynamic and non-linear
in nature. Simple correlation methods like Pearson are limited to capturing
linear relationships, whereas deep learning models can handle non-linear
dependencies, allowing them to capture more intricate interactions between
brain regions.

2. Feature Representation : Deep learning models can automatically learn rel-
evant features from the data, reducing the need for manual feature engineer-
ing. This ability to learn meaningful representations from raw brain signals
enables deep learning models to better extract the underlying patterns, con-
tributing to improved functional connectivity estimation.

3. Temporal Dependencies : Many deep learning models, such as Recurrent
Neural Networks (RNNs) or Long Short-Term Memory (LSTM) networks,
can capture temporal dependencies in time-series data. In brain signals,
temporal dependencies are crucial for understanding the sequential nature
of neural activity, which is not fully captured by simple correlation methods.

4. Robustness to Noise : Deep learning models can be designed to be robust to
noise and artefacts commonly present in brain signals. They can be trained
to focus on relevant signal components while suppressing noise, leading to
more accurate and robust functional connectivity estimates.

5. Handling Missing Data : Deep learning models can handle missing data
points more effectively, allowing for more flexible and complete analyses of
brain signals even with some missing or noisy data.

However, it’s essential to note that the success of deep learning methods heav-
ily depends on the quality and quantity of the data, appropriate model selection,
and hyperparameter tuning. In some cases, simple correlation methods might still
be sufficient, especially if the brain signals are relatively simple or linearly related.
Therefore, it is crucial to carefully consider the data characteristics and research
goals when choosing between deep learning-based methods and traditional cor-
relation techniques for functional connectivity analysis in brain signals.
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CHAPTER 7

Conclusions

Using EEG data and various analysis techniques, we have examined the func-
tional connectivity of brain networks in this thesis work. The primary study topic
was whether or not node-level analysis can be transferred into network-based
analysis. The research also investigated how to categorize the models or method-
ologies based on the input and how to determine the link between brain regions
that can also be non-linear.

This study used three methodologies one to get the network-level information,
one to get node-level information, and the last one based on the Deep Learning
model. The study used a dataset with 19 channels of interest and 13 individuals’
resting-state EEG recordings. This thesis presented functional connectivity ma-
trix results for various frequency bands and techniques for node and complete
network levels. However, it is important to note that deep learning methods have
the potential to capture non-linear and complex relationships between variables
that may be missed by simple statistical methods such as Pearson correlation.
Therefore, it is possible that the deep learning method may reveal important fea-
tures or relationships that were not captured by simple statistical methods.

The correlation between the mean and variance of EEG brain signals provides
valuable insights into the Signal-to-Noise Ratio (SNR) and the Contrast-to-Noise
Ratio (CNR). A high correlation suggests that the noise level increases with the
mean activity, potentially reducing the SNR and impacting the ability to distin-
guish meaningful brain signals from noise. Similarly, it may decrease the CNR,
making it more challenging to differentiate brain activity from background noise.
Conversely, a low correlation indicates a more favorable scenario for SNR and
CNR, where the noise level remains relatively constant regardless of brain activ-
ity, allowing for better detectability and distinguishability of brain signals. There-
fore, understanding the correlation between the mean and variance is crucial for
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assessing the reliability, quality, and interpretability of EEG signals in studying
brain activity.

Deep learning-based methods offer the potential to uncover complex brain
connectivity patterns, improve prediction accuracy, and advance our understand-
ing of brain function and neurological disorders.
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CHAPTER 8

Future Work

1. Use different datasets to understand the brain’s functional connectivity while
doing some different activities.

2. Analysing the node level network and complete network using graph-based
methods like degree centrality, betweenness centrality, and many more meth-
ods. These methods help identify the critical nodes in the network, which
can help in understanding the organization and function of the network.
They can be used to study the functional connectivity of the brain, etc. By
analyzing the node-level and complete network using these methods, we
can obtain insights into the organization and functioning of the network.

3. Implement 1D CNN and RNN to predict the next signals and compute their
non-linear correlation.

4. The classification of brain diseases based on EEG signals, because it is an
important task that can be achieved using machine learning and deep learn-
ing techniques. These methods can provide accurate and reliable diagnosis
of brain diseases, which can lead to better patient outcomes and improved
quality of life.
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