
Design Web Application For IoT Enabled
Agriculture Sensor Systems

by

YASH SHETH
202111046

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

May, 2023

Acknowledgments

First and foremost, I am deeply grateful to my supervisor Dr. Vinay S. Palaparthy,
whose expertise, dedication, and constant encouragement have been instrumen-
tal in shaping this thesis. I am indebted to him for his unwavering guidance,
insightful feedback, and patience throughout the entire process. He has been an
incredible mentor and has inspired me to strive for excellence in my academic
pursuits.

I would like to acknowledge the Dhirubhai Ambani Institute of Information
and Communication Technology for providing me with the resources, facilities,
and opportunities necessary to carry out this research. The academic environment
and support from the faculty and staff have been vital in shaping my understand-
ing of the subject matter and facilitating the completion of this thesis.

I would also like to express my gratitude to my family and friends for their
constant support, encouragement, and understanding throughout this journey.
Their unwavering belief in me has strengthened and motivated me during chal-
lenging times.

Lastly, I would like to thank all those individuals who may not be mentioned
here but have provided assistance, encouragement, and inspiration in various
ways. Their contributions, no matter how small, have played a significant role
in successfully completing this thesis.

In conclusion, I extend my heartfelt appreciation to all those who have sup-
ported me in this endeavor. Your contributions have been immeasurable, and I
am truly grateful for your presence in my life. Thank you for believing in me and
for being a part of my academic and personal growth.

ii

Contents

Abstract v

List of Figures vi

1 Introduction 1

2 Literature Review and Research Objective 4

3 Application Back-end Design 7
3.1 Hardware . 7
3.2 Development Server . 8
3.3 Application . 9

4 Application User Interface Design 13
4.1 User Management . 13

4.1.1 User Registration . 13
4.1.2 User SignIn . 14
4.1.3 User Profile . 15
4.1.4 Admin View . 16

4.2 Node Management . 18
4.2.1 Node Creation . 18
4.2.2 Node List View . 19
4.2.3 Feeds View . 20
4.2.4 Image Gallery . 22

5 Data Collection in application 23
5.1 Data Collection . 23
5.2 Data Preprocessing . 25

5.2.1 Leaf Wetness Duration Calculation 25
5.2.2 Gravimetric Water Content Calculation 29
5.2.3 Preprocessing . 30

iii

6 Results and Discussions 32

References 35

iv

Abstract

Application Design plays a crucial role in Internet of Things (IoT) systems, serv-
ing as the data repository for IoT nodes. Additionally, web applications are widely
utilized for data analysis and offer remote accessibility. In this study, we have de-
veloped a web application for an in-house IoT node. This application collects data
from various sensors and uploads it to the server. To achieve this, we have con-
figured a static IP and utilized a standard desktop as the server. The uniqueness
of our application design lies in its capability to collect data from over 100 nodes,
each containing 16 fields. This stands in contrast to existing open-source applica-
tions like ThingSpeakTM, which only support four nodes and eight fields for free
account users. We opted for 16 fields to incorporate sensor information and self-
diagnostic signals provided by our IoT system. Furthermore, our application also
displays the status of each IoT node (active or inactive), which is not a feature in
ThingSpeakTM.

v

List of Figures

1.1 Things Speak Dashboard . 3

3.1 Hardware Module . 7
3.2 Database schema for application . 11
3.3 User Verification flow . 12

4.1 User Registration . 14
4.2 User SignIn . 15
4.3 Users Profile . 16
4.4 Admin View for Users . 17
4.5 Node Creating Form . 19
4.6 Node Management . 20
4.7 Feed Visualization . 21
4.8 Image Gallery . 22

5.1 Field deployment and server workflow 23
5.2 Leaf wetness sensor data with baseline 26
5.3 Real-time Leaf wetness calculation 27
5.4 Gravimetric Water Content . 29
5.5 Calculation for GWC . 30
5.6 Preprocessing . 31

6.1 Feeds Table View . 33

vi

CHAPTER 1

Introduction

Agriculture is pivotal in India’s economy, supporting over 70% of the population
and contributing significantly to the Gross Domestic Product (GDP)[1]. However,
the country faces challenges in meeting the demands of its vast population, lead-
ing to significant grain and agro-product imports. To address these challenges and
improve the efficiency of farming practices, the modernization of the agricultural
sector becomes imperative [2].

Plant diseases, weeds, and pests account for roughly 36% of crop loss. This
causes a sharp drop in crop productivity, which puts farmers in dangerous and
epidemic conditions. The reason for the crop loss is a result of inconsistently used
farming techniques, the late discovery of plant disease, and attacks by weeds and
pests. Researchers have concentrated on sensor-based technology, the Internet
of Things (IoT), machine learning, and artificial intelligence algorithms to reduce
crop loss [3]. It has offered a sensible and cost-efficient answer that would im-
prove farming and guarantee its sustainability and financial success. Concern-
ing a variety of applications, including skin hydration, environmental monitor-
ing, explosive detection, biomedicine, and agriculture, sensor-based technology
has been crucial in enabling expert decision-making. Many farmers utilize an ex-
pert decision system with in-situ innovative sensor-based technologies to increase
agricultural output and decrease crop loss from plant disease.

Water is a vital input for plant growth and plays a crucial role in food security
in agricultural production. However, unregulated irrigation leads to soil water-
logging, which hampers the germination process by slowing down seed growth
due to excessive soil moisture. Insufficient air supply under waterlogged con-
ditions inhibits proper root growth, and excessive irrigation can cause crops to
collapse due to strong winds. Uncontrolled irrigation damages crops and dimin-
ishes both the quantity and quality of agricultural production.

Researchers worldwide have developed disease detection and warning mod-
els to reduce the massive crop loss caused by illnesses. For this purpose, soil

1

moisture, soil temperature, ambient temperature, and relative humidity are a few
essential elements in developing a model using these sensor data [4], and a prop-
erly developed system significantly helps predict the disease that harms the crop.
We can achieve early plant disease prediction using machine learning approaches,
and because of its incredibly precise forecasts and amity, We may use a variety of
datasets - numeric, image, etc. Deep Neural Networks include Artificial Neu-
ral Networks(ANN) [5] and Convolutional Neural Networks(CNN) [6]. ANN is
suitable for classification and regression problems, and datasets such as tabular,
image, and text datasets can be used. In contrast, CNN is the most popular for
image datasets.

Many techniques are available, and a lot of work is going on in this field. Still,
available solutions are currently inefficient from a usability perspective and are
not very cost-effective. Now, known solutions are challenging to purchase in de-
veloping nations. Some solutions have individual hardware and software setups
for disease prediction and water irrigation. Those are very costly for the majority
of farmers. At present many researchers have used the cloud-based platform to
store the sensor data. The reported work to date uses IoT-enabled technology to
store the data on the cloud platform. For this purpose, various open-source cloud
platforms have been used, such as Thingspeak [7] and ThingsBoard [8].

A few third-party systems support the development of these techniques; for
example, ThingSpeak provides cloud storage to store the sensor data directly from
the IoT sensors [7]. As a free user account, they provide up to four channels with
eight data fields. Likewise, ThingsBoard offers similar features. However, one of
the major limitations is the number of nodes, and the number of fields per account
is limited to 4 and 8, respectively. Below Figure 1.1 shows that there are four nodes
created in the free account, and there is a warning when trying to create a new
node.

This study aims to create a smart system that can identify plant illness and
enhance irrigation by utilizing some key metrics, including Leaf Wetness Sensor,
Soil Moisture Sensor, Soil Temperature, Ambient Temperature, and Relative Hu-
midity.

In our work, the developed hardware generates about 16 fields, which com-
prise sensor data and signals pertaining to the system healing mechanism. Be-
sides this, the number of systems deployed in the field is about 10. Thus, we
need an application compatible with our developed hardware to collect copious
data from the field. Considering the features offered by the aforementioned open-
source platform, there is a dearth of the server, which can collect more than 16

2

Figure 1.1: Things Speak Dashboard

inputs from the single node (required for the self-healing circuits). A digital sys-
tem with a self-healing mechanism is becoming very promising, and it is a kind
of system upon which one can rely. It can detect failures or faults in the digi-
tal system and fix them through self-healing or repair. The systems having such
kind of mechanism can recompense failures. Further, these open-source platform
does not provide any notifications for system failure, which hinders the system
deployed in remote locations.

3

CHAPTER 2

Literature Review and Research Objective

The literature [9]. presents the challenges faced by the agricultural sector in India,
such as excessive importation of grains and agro products due to the demand of
the country’s 1.2 billion population. The need for modernization becomes evident
to improve productivity and self-sufficiency in agricultural production. Several
architectural and technological improvements have been suggested in the past to
address these challenges.

Various architectural and technological improvements have been suggested
and adopted over the years to enhance productivity. Among the challenges, proper
monitoring of soil health, environment and optimized irrigation are crucial for
achieving sustainable agricultural practices. Traditionally, manual observation-
based techniques have been used, resulting in less efficient and less productive
crops. This literature survey aims to explore IoT-based solutions for modernizing
agriculture and improving crop productivity in India [2].

The survey [10] focuses on the role of IoT in revolutionizing agriculture. IoT
enables the interconnection of physical sensing devices in the field with cloud-
based platforms, providing real-time data collection and analysis capabilities. This
connectivity and data analysis offer farmers immense insights into their agricul-
tural fields, enabling informed decision-making for improved irrigation and crop
care.

A significant difficulty in farming is managing irrigation systems, environ-
mental monitoring, and soil health. IoT is used in Paper to discuss a strategy for
taking control of these problems. It links irrigation control systems and physi-
cal sensing equipment to the cloud. This aids in architecture analysis. Its final
findings show that low latency can attenuate real-time data. Agriculture has ex-
perienced a significant setback due to migration.

In the literature [11], it states the key aspect of modernizing agriculture is the
proper monitoring of soil health. IoT-based solutions utilize various sensors to
measure environmental factors critical for crop production, such as soil moisture,

4

temperature, and humidity. This information helps implement precision agricul-
ture techniques, leading to optimized water usage and reduced resource wastage.

In this study [12], they created an IoT-based smart agricultural model that can
address various issues that farmers encounter. This model has three modules-
crop selection module, crop monitoring system module, and crop maturity level
module. The results obtained demonstrate that the proposed work is very effec-
tive in making appropriate decisions based on the visualized data viewable at the
user end through a Web app. All three modules are adequately documented in
the study, along with each module’s architecture. Graphs are used to analyze and
display all of the data that has been gathered by the various sensors. Farmers
can make decisions based on the values, such as whether to irrigate crops if the
percentage of soil moisture is low.

In order to assist farmers in need, the paper [13] suggests a method that con-
tinuously monitors crop growth and leaf diseases. The proposed system applies
machine learning (ML) methods, such as support vector machine (SVM) and con-
volutional neural network (CNN), to give analytical statistics on plant growth and
disease patterns. This system generates effective crop condition notifications to
terminal Internet of Things components that help with irrigation, dietary plan-
ning, and environmental compliance pertaining to farming fields. In order to
identify plant diseases at an early stage, this work suggests using ensemble clas-
sification and pattern recognition for crop monitoring systems (ECPRC). For the
purpose of identifying leaf and crop diseases, the suggested ECPRC employs en-
semble nonlinear SVM (ENSVM).

In the work [3], a soil moisture sensor (SMS) and leaf wetness sensor (LWS)
with Internet of Things (IoT) support are constructed. In order to anticipate plant
diseases, commercial soil temperature (ST), relative humidity (RH), and ambi-
ent temperature (AT) are employed. The developed LWS has a response time of
around 20 seconds, a hysteresis of about 3%, and a response of roughly 250%
when exposed to air and water. When a 25-75 m thick acrylic protective lacquer
(APL) coating is applied on LWS, it is found that the sensor capacitance changes
by just 2% when the temperature changes from 20 to 650C. Likewise, fabricated
SMS offers a response of 10 kHz (F) with only a 2% change in frequency when
temperature varies from 20 ◦C to 65 ◦C and works with an accuracy of ±3%. Fur-
ther, the aforementioned sensors and an in-house developed IoT-enabled system
have been deployed under field conditions for about four months. In this work,
we considered Powdery mildew (D1), Anthracnose (D2), and Root rot (D3) dis-
ease in the Mango plant. Further, they have implemented the Long Short Term

5

Memory (LSTM) network, which performs better compared to the existing meth-
ods discussed on plant disease management. The proposed network achieves an
accuracy of 96%, precision-recall, and F1 score of 97%, 98%, and 99%, respectively.

The system [14] consists of a hardware board and a mobile application. The
mobile application connects to the IoT node via Bluetooth, enabling data collec-
tion, storage in the ThingSpeak database, control of connected devices, and moni-
toring their status. The system uses node sensors to detect temperature, humidity,
and soil moisture, facilitating data collection and interpretation through smart-
phone and web applications. The paper also discusses the challenges associated
with data preparation, analysis, visualization, and prediction using the Softmax
function. Python is utilized for necessary data analysis techniques. Our objective
is to eliminate the limitations of this paper as the focus of this paper is similar to
what we are planning to achieve.

Objective
The primary obstacle in the present field is ensuring that farmers have access to
essential information and timely assistance. Obtaining knowledge to support sus-
tainable agriculture can be challenging, as it may either be non-existent or diffi-
cult to locate. In this context, the web application proves to be intelligent, offering
effective solutions to improve the dissemination and acquisition of information
regarding sustainable agricultural practices.

With this motivation, we have designed the web application for the in-house
developed IoT-enabled systems in this work. To overcome all the issues associated
with ThingSpeak and ThingsBoard, such as more data fields per node, a more
significant number of nodes per user, node status (active or not), specific pieces of
hardware working correctly, email notifications on some particular event, runtime
prediction of diseases, and water irrigation on the fields. All these motivated us
to develop a new project system that includes all the requirements mentioned
earlier, works efficiently, and is cost-effective.

6

CHAPTER 3

Application Back-end Design

3.1 Hardware

Figure 3.1: Hardware Module

In this work, besides Leaf Wetness Sensors and soil moisture sensors, we have
considered the soil temperature, ambient temperature, and relative humidity, which
are essential and widely used for early plant disease forecasting. This work uses
a commercially available MCP 9701A temperature sensor and HIH 5030 humid-
ity sensor. Whereas the soil temperature sensor has been developed by Proximal
Soilsens Tech Pvt. Ltd. Fig. 3.1 (a) shows the developed hardware, which com-
prises the two USB connectors where LWS and soil moisture sensor are connected,
soil temperature, ambient temperature and humidity sensor, Wi-Fi module to es-
tablish IoT communication, signal processing unit (uC), and power management
section.

7

Fig. 3.1 (b) shows the fabricated LWS, soil moisture sensor, and soil temper-
ature sensors are connected to the section. Fig. 3.1 (b) shows that the fabricated
LWS, soil moisture sensor, and soil temperature sensors are connected to the de-
veloped hardware using an A to B USB connector. Developed hardware com-
prises onboard ambient temperature and humidity sensors and IoT-enabled data
transmission features.

Fig. 3.1 (c) shows the developed sensor system deployed in the field near the
young Mango plant. Efforts are made to attain waterproof packaging. Further,
considering the operational exposure of the LWS, the fabricated LWS has been
kept at a 45 ◦C angle, as depicted in Fig. 3.1 (d). In Fig. 3.1 (d), LWS acts as the
artificial leaves on the plant. Fig. 3.1 (e) shows the location of the soil moisture
and soil temperature sensor deployed in the field. We have deployed this system
for about four months.

3.2 Development Server

It is a specialized server environment developers use during the software devel-
opment process. It provides a controlled and isolated environment for us to build,
test, and debug our applications before deploying them to a production server. To
develop any web application, we require a server to host it on. Currently, we use
a local environment to host the application. Our setup includes an Intel i5 9th
generation (3 GHz) Hexa core processor, 8GB of RAM, and 512GB of SSD stor-
age. The operating system on the server is Ubuntu 20.04 LTS (Linux), a 64-bit
open-source environment preferred for server development. The server must be
connected to the internet to gather data from IoT sensors and always be available.
Additionally, it needs a static IP address that the IoT sensors can use.

Apart from the local environment, we have integrated the code with the ver-
sion control system. We used git to manage different versions of the code. Git
helps maintain the code and makes it easy for team members to collaborate. With
the help of this platform, all the members can work simultaneously while keeping
track of the changes made by others, which makes the development process more
seamless.

8

3.3 Application

We used Python to develop the application. Python is renowned for its under-
standable and clean syntax, which makes writing and maintaining code simpler.
It strongly emphasizes the readability of the code, which simplifies and stream-
lines development. Moreover, it has a large and active developer community,
making discovering many tools, frameworks, libraries, and support easier. This
community supports the language’s stability and progress, ensuring it is con-
stantly improved. Also, python is a versatile language that can be used for various
applications, including web development, data analysis, machine learning, arti-
ficial intelligence, scientific computing, and more. Its versatility will allow us to
use the same language for each project component.

We employed the Django framework to streamline web application devel-
opment with more functionality without manually implementing each feature.
Django’s high-level Python web framework has many built-in tools and capabil-
ities. It adheres to the DRY (Don’t Repeat Yourself) philosophy, which helps us
produce code more quickly and effectively. Django offers scalability by providing
database migration, caching, and load-balancing features. This simplifies the pro-
cess of scaling web applications, allowing them to handle increasing traffic and
data loads. Django has built-in security features, such as protection against com-
mon web vulnerabilities, such as cross-site scripting (XSS) and cross-site request
forgery (CSRF). It also provides authentication and authorization mechanisms,
making it easier to implement secure user-management systems.

The framework also offers a robust Object-Relational Mapping (ORM) system,
allowing developers to interact with the database using Python code rather than
writing SQL queries. Django also includes a pre-built administrative interface,
authentication, and authorization mechanisms, supporting various caching and
messaging frameworks. Django has a vast range of modules, with numerous es-
sential modules by default. The Model-View-Template (MVT) architectural pat-
tern is followed by Django, where the model represents the data, the view repre-
sents the business logic, and the template represents the user interface.

The proposed model requires a server to collect real-time data for analysis; to
do so, we connected a desktop computer to the Internet and assigned it a static
IP address. This allows the IoT hardware module to send data to the server by
using the fixed IP address of the computer. We also placed the hardware module
in the field at the DAIICT premises to begin collecting data from the IoT sensor.
Subsequently, a web application using Django was created.

9

A database and corresponding schema are crucial to developing a web appli-
cation. While Django primarily supports relational databases like PostgreSQL,
MySQL, and SQLite, however, these traditional relational database technologies
may not be suitable for storing and processing data generated by the Internet of
Things (IoT) due to their limitations in handling large amounts of unstructured
data, slow processing speeds, and high storage costs. These limitations can be en-
countered by integrating Django with MongoDB. MongoDB’s flexible document-
based data model allows us to store structured, semi-structured, and unstructured
data without rigid schema constraints. It is also designed to handle large-scale
applications and can scale horizontally across multiple servers. Hence it can op-
erate efficiently even when data is growing rapidly. Not only that, MongoDB’s
change stream functionality will help us capture real-time data changes within
the database. This feature will become handy while implementing real-time noti-
fications or activity feeds,

PyMongo is a Python library that makes it easy for Django developers to con-
nect to and interact with MongoDB, a NoSQL database. It provides a convenient
interface for performing CRUD operations on MongoDB documents. By integrat-
ing PyMongo, developers can take advantage of MongoDB’s document-oriented
data model, flexible schemas, and indexing capabilities. This allows them to effi-
ciently handle complex or dynamic data structures and utilize MongoDB’s perfor-
mance advantages for specific use cases. Additionally, PyMongo supports multi-
ple databases and empowers developers to perform advanced data analysis and
aggregation using MongoDB’s aggregation framework. The pillow is a Python
imaging library that makes it easy to manipulate images. It provides a wide range
of features, including resizing, cropping, rotating, adjusting image properties, ap-
plying filters, drawing shapes and text, and enhancing image quality. Pillow sup-
ports a wide range of image formats, making it a versatile tool for working with
images in Python.

Since we are utilizing a No-SQL database, there is no need for a strict schema.
However, we have designed a basic schema for our application in order to define
essential features and establish relationships between entities. Figure 3.2 displays
this schema, which illustrates the connections among the user, node (from a soft-
ware standpoint), and feeds. The schema is a valuable tool for designing and
developing our application. It helps us to define the essential features of the ap-
plication and to establish relationships between entities. The schema also helps
us to ensure that the application is scalable and flexible.

10

Figure 3.2: Database schema for application

11

Initially, we established user management within our web application to en-
sure that only authorized individuals can access it. This involves implementing
user registration and login procedures. To enhance our user management sys-
tem’s effectiveness and reduce duplicate accounts, we have incorporated email
verification. To accomplish this, we have employed the services of Zoho email.
When a user submits the registration form, our web application sends a verifica-
tion email to the provided email address. Only upon successful verification can
users fully utilize the web application. Access to the application is exclusively
granted to verified users. Once verified, users gain access to personalized pro-
files, enabling them to upload profile pictures and update select information. Ad-
ditionally, the system offers a password change feature, allowing users to modify
their passwords as desired. Figure: 3.3 illustrates the user registration and login
processes flow.

Figure 3.3: User Verification flow

12

CHAPTER 4

Application User Interface Design

The user interface (UI) is a crucial component of any application or system as it
serves as the main point of interaction between users and technology. It has sev-
eral important roles, including enhancing usability, improving the overall user
experience (UX), increasing efficiency and productivity, ensuring consistency and
familiarity, reducing errors, and contributing to branding and perception. A well-
designed UI should be intuitive, visually appealing, and easy to navigate, pro-
viding users with a seamless and enjoyable interaction. It should also streamline
workflows, prevent errors, and reflect the brand identity, ultimately leading to
higher user satisfaction and adoption.

In summary, the user interface is vital for creating a positive user experience
and ensuring the success of an application or system. It should prioritize usability,
efficiency, and consistency while also reducing errors and reflecting the brand’s
image. By focusing on these aspects, developers can create intuitive, visually ap-
pealing interfaces and are capable of providing a seamless interaction between
users and technology.

4.1 User Management

As explained in the previous section, user management consists of multiple func-
tionalities, including registration, login, logout, profile management, and admin-
specific view. The admin can view all the users in the system and can also handle
their configurations as needed.

4.1.1 User Registration

Figure 4.1 show the user registration UI page provides a user-friendly interface
for individuals to create new accounts and join the web application. It typically
includes a form where users can input their desired credentials, such as a unique

13

username, email address, and password. The form may also include additional
fields for personal information, such as name, email, or profile picture.

Figure 4.1: User Registration

Registration page often incorporates validation mechanisms to ensure that
users provide valid and secure information. This can involve checking the unique-
ness of the chosen username or email address, enforcing password complexity
requirements, and validating the format of input fields (e.g., email validation).

Once users have filled out the registration form accurately, they can submit
their details. At this point, the web application will initiate the email verification
process by sending a verification link or code to the provided email address. After
email verification, users can log into their portal using their credentials.

4.1.2 User SignIn

Upon accessing the application, individuals are directed to the SignIn interface,
which serves as the default page. Only authenticated users are allowed to Sign
In successfully; otherwise, they encounter an error based on the circumstances.
In case a user wishes to establish a new account, they can navigate to the user
registration view. Additionally, a redirection feature is available for users who
have forgotten their passwords. Figure 4.2 illustrates the interface used for the
Sign In process.

14

Figure 4.2: User SignIn

4.1.3 User Profile

The profile page is a central hub for users to manage their personal information
and access various functionalities. It includes fields such as first name, last name,
and date of birth (DOB), allowing users to view and update their essential details.
Users can easily modify their information by editing the corresponding fields on
the profile page.

In addition to basic profile information, the page provides additional function-
alities to enhance the user experience. One such feature is the ability to upload an
image, enabling users to personalize their profile and display a unique avatar or
photo. This functionality allows users to express their individuality and make
their profile visually appealing.

Another important functionality offered on the profile page is the option to
change the password. By providing a secure and convenient way to update their
password, users can maintain the privacy and security of their accounts. This
feature is crucial in protecting user data and accounts from unauthorized access.

Overall, the profile page combines essential user information with convenient
features like image uploading and password changing. It aims to provide users
with a seamless and personalized experience while maintaining their privacy and
security.

15

Figure 4.3: Users Profile

4.1.4 Admin View

The admin view is a powerful tool that grants administrators access to manage
and oversee the users in the system. It presents a comprehensive list of all the
users registered within the system, allowing the admin to have an overview of
the user base. This comprehensive list empowers the admin to locate and access
individual user profiles easily.

Within the admin view, administrators possess the authority to perform vari-
ous actions on user accounts. One such action is the ability to view user profiles,
enabling the admin to gain insights into each user’s details and settings. This
feature aids in understanding user behavior, preferences, and individual needs.

Furthermore, the admin view equips administrators with the capability to han-
dle any malicious or unauthorized activities within the system. Administrators
can identify and remove any users who engage in malicious behavior or violate
the system’s policies. This proactive approach ensures the security and integrity
of the system, protecting both the users and the overall user experience.

Additionally, administrators can modify certain user settings as deemed nec-
essary. This allows the admin to make adjustments to user accounts, ensuring
they align with the system’s guidelines and requirements. By having the ability

16

to change specific user settings, administrators can tailor the system to accommo-
date unique user needs or respond to emerging challenges effectively.

In summary, the admin view provides administrators with a centralized plat-
form to oversee and manage user accounts. It offers a comprehensive user list,
user profile viewing capabilities, the ability to handle malicious users, and the au-
thority to adjust user settings. This robust set of functionalities empowers admin-
istrators to maintain system security, optimize user experiences, and efficiently
manage the user base.

Figure 4.4: Admin View for Users

17

4.2 Node Management

Once the foundational modules were finished, we introduced a feature called
Node Management. This feature enables users to create software nodes and es-
tablish connections with the hardware module. Users can create, edit, and delete
the entire node setup as per their requirements.

A unique node ID is automatically generated when a user creates a new node.
This node ID acts as a crucial link between the hardware module and the web
application. It ensures that data from the hardware module is accurately received
and associated with the corresponding node ID in the web application. By estab-
lishing this connection, users can effectively monitor and manage the data coming
from the hardware module through the designated node ID.

4.2.1 Node Creation

To create a node, users can utilize a form that includes several fields to provide
the necessary information. The form typically consists of fields such as name,
latitude, longitude, description, and status.

In the form, users can enter a unique name to identify the node, enabling easy
reference and identification. The latitude and longitude fields allow users to spec-
ify the geographic coordinates of the node’s location, providing precise position-
ing information.

The description field allows users to provide additional details or notes about
the node, such as its purpose, function, or any relevant information that helps
in understanding its role within the system. This description can assist in better
organization and management of the nodes.

The status field indicates the current state or condition of the node. Users
can choose from predefined options, such as "active" or "inactive," to reflect the
operational status of the node accurately.

Users can successfully create a node by completing the form and providing
the necessary information. This process ensures the system has all the essential
details required to effectively manage and monitor the node. Figure 4.5 shows the
form to create a new node.

18

Figure 4.5: Node Creating Form

4.2.2 Node List View

Each node within the system possesses several fields, including name, descrip-
tion, latitude, and longitude. When a user registers the node ID with the hard-
ware module, the node becomes capable of receiving data from the designated
field. Users can conveniently access and view this data within the feeds section of
the corresponding node. The interface visually represents nodes as cards, provid-
ing an organized and easily navigable view.

In the event that a node fails to receive data for a period exceeding 30 minutes,
it will be displayed in a grayed-out state. This visual indication signifies that the
node is not functioning correctly, possibly due to external factors or a depleted
battery. Conversely, properly functioning nodes will be presented in a green state,
offering users a clear distinction between functioning and non-functioning nodes.

When a user decides to delete a node, all feeds associated with that node are
permanently removed as well. This ensures that the deletion process is compre-
hensive and eliminates any residual data from the system.

Suppose a node fails to receive data for more than 30 minutes. In that case, it
will be displayed in a grayed-out state, indicating that it is not functioning cor-
rectly due to external factors or battery depletion. Conversely, properly func-
tioning nodes will be presented in green. If a user decides to delete a node, all
associated feeds stored by that node will also be permanently removed.

19

Figure 4.6: Node Management

4.2.3 Feeds View

In the system, "feed" refers to the data generated by the hardware sensors. To
streamline the management of these feeds, the system incorporates a feature that
enables users to access their feed data. The hardware module transmits this data
to the database, and users can retrieve it by simply clicking on the "Feeds" button
within the node card view. This functionality empowers users to effectively com-
prehend and visualize the sensor data, facilitating the monitoring of changes over
time.

Users are presented with two visualization options when accessing their feed
data: a tabular view and a chart view. These options are thoughtfully designed
to be user-friendly and accessible to individuals with varying technical back-
grounds. The chart view displays a line chart representing the primary sensor
readings and battery levels, illustrating how these values change over time. On
the other hand, the tabular view provides a comprehensive display of the sensor
data, including additional information. While the tabular view is highly informa-
tive, it may be less easily understandable for non-technical users.

The system’s feed management feature allows users to access and interpret
their hardware sensor data. The chart view visually represents the data’s temporal
changes, while the tabular view provides detailed information. By presenting the
feed data in different formats, the system ensures a satisfactory user experience
that caters to both technical and non-technical users.

20

Figure 4.7: Feed Visualization

21

4.2.4 Image Gallery

We have implemented an Image Gallery feature that allows users to upload im-
ages for various purposes such as reference and record-keeping. Users can easily
add images to the gallery and also have the option to provide brief descriptions to
provide additional context or information about the uploaded images. This fea-
ture is particularly valuable for capturing and documenting the regular changes
of crops or any other relevant visual data. All uploaded images are organized and
displayed on the Image Gallery page, arranged in chronological order based on
their respective dates.

The images uploaded to the Image Gallery serve an additional purpose as they
are utilized to create an image dataset. This dataset plays a significant role in train-
ing machine learning algorithms, enabling the development of more accurate dis-
ease prediction models. By leveraging the images in the dataset, machine learning
algorithms can analyze and identify patterns, contributing to the enhancement of
disease prediction capabilities. This ultimately leads to improved accuracy in de-
tecting and predicting diseases affecting crops or other areas where image analysis
is applicable. Figure 4.8 shows a specific node’s galley view.

Figure 4.8: Image Gallery

22

CHAPTER 5

Data Collection in application

5.1 Data Collection

Figure 5.1: Field deployment and server workflow

A hardware module, referred to as the node, has been deployed in the field
within the premises of DAIICT. This location is where crops such as bananas,
cumin, groundnut, and cotton are cultivated. The node is connected to a WiFi
network and has been programmed to transmit data to a designated server at a
predetermined frequency. The server we have developed for our application is
responsible for storing the sensor readings obtained from the node.

During the development phase, both the hardware module and the server
were maintained on the same network. The node collects data from various sen-
sors and creates an HTTP POST request to communicate with the server’s API
endpoint. Upon receiving the request, the server validates the Node ID provided
and proceeds to store the received data under the corresponding node ID on the
server. This stored data is then used for making predictions and presented on the

23

web application dashboard, providing users with a visual representation of the
collected information.

Here are some further insights into the process of collecting data:

• The node gathers data from multiple sensors, including those measuring
temperature, humidity, soil moisture, soil temperature, and leaf wetness.

• Data collection occurs at regular intervals, specifically every 30 minutes.

• The collected data is stored in a database located on the server.

• The data serves as input for generating predictions related to crop yields.

• These predictions are subsequently showcased on a web application dash-
board.

Gaining a comprehensive understanding of the information and obtaining ini-
tial insights from the experimental data are vital prerequisites before applying
any machine learning technique. These insights play a crucial role in determin-
ing the preprocessing techniques necessary to prepare the data for input into the
neural network. In this particular study focusing on predicting plant diseases
in mango plants, five specific input features were monitored: soil moisture (F1),
leaf wetness duration (F2), ambient temperature (F3), relative humidity (F4), and
soil temperature (F5). Analyzing these features makes it possible to detect the
probability of these diseases occurring in the plant. Therefore, it is imperative to
emphasize the significance of conducting exploratory data analysis to capture all
relevant background knowledge.

Monitoring the distribution of plant diseases across different months is impor-
tant for early disease prediction models. It is crucial to understand the range of
values for all input features, as this can contribute to the development of plant
disease. The criteria for the germination of diseases, namely powdery mildew
(D1), anthracnose (D2), and root rot (D3), are tabulated in Table 5.1. These criteria
must be met in order for a disease to germinate.

We have used these criteria to label the data points in our dataset. Each data
point is labeled using three binary labels in a one-hot encoded manner, represent-
ing the presence or absence of each of the three diseases studied. A label of 1
indicates that the conditions mentioned in 5.1 are satisfied, while 0 indicates the
opposite. This labeling approach is suitable because a plant can simultaneously
be susceptible to multiple diseases.

Field deployments have yielded approximately 2675 self-collected data points
over a span of four months. Among these, around 2500 data points are tagged as

24

Table 5.1: Plant Disease

they meet the criteria for the presence of at least one of the three diseases listed
in Table 5.1. Data points are selected if they satisfy at least two out of the five
conditions mentioned in Table 5.1.

The numbers of data points tagged as D1, D2, and D3 are 277, 2495, and 1685,
respectively. These statistics indicate that D2 and D3 were more prevalent during
the experiment, which aligns with the findings in [4] considering the environmen-
tal factors.

5.2 Data Preprocessing

As mentioned previously, the model’s development and training involve five key
parameters. Among these parameters, the model can directly utilize ambient tem-
perature, ambient humidity, and soil temperature. However, the remaining two
parameters require derivation from the data collected by specific sensors.

The leaf wetness duration (LWD) can be obtained by analyzing the data col-
lected by the leaf wetness sensor. Similarly, the gravimetric water content (GWC)
can be derived from the frequency data obtained from the soil moisture sensor.
While these calculations are relatively straightforward when using historical or
long-range data, performing them in real-time poses challenges. To measure LWD
and GWC in real-time, we typically retrieve a CSV file from the cloud platform
and perform the necessary calculations to obtain a comprehensive dataset. How-
ever, for real-time measurement of LWD and GWC, we rely on point data, which
is primarily utilized for disease and irrigation prediction.

5.2.1 Leaf Wetness Duration Calculation

In the initial phase of data preprocessing, we utilize denoising techniques to refine
the data obtained from the first leaf wetness sensor (LWS). Subsequently, we cal-

25

culate the baseline value for the LWS. We identify specific events based on these
variations by computing the disparity between the baseline and the actual data
values. Each event corresponds to a distinct data frame, and the duration of each
event is a significant parameter used for prediction purposes. To visually repre-
sent this process, Figure 5.2 displays a plot showcasing the denoised signal repre-
sented by the line, the baseline illustrated by the orange line, and the highlighted
portion indicating the event captured by the red section.

Figure 5.2: Leaf wetness sensor data with baseline

In order to utilize the trained model for disease prediction, it is essential to pro-
vide the parameters in an appropriate format. To achieve this, the data received
from the hardware undergoes preprocessing. To facilitate this preprocessing, we
have developed a dynamic algorithm that calculates the leaf wetness duration
based on the current and previous data readings. This algorithm incorporates
additional variables, namely "duration" and "event." The "event" variable deter-
mines the current status of the event, indicating whether it is ongoing or has al-
ready concluded. On the other hand, the "duration" variable accurately captures
the precise length of the event, measured in hours. In the following section, we
outline the algorithm that we have implemented to calculate the duration.

Whenever fresh data is received from the hardware, the application performs
a verification process by checking the node ID. Upon successful verification, the
application retrieves the latest feed entry for that specific node from the stored
database. By comparing certain parameters from the previous entry with the cur-
rent values, the application calculates the leaf wetness duration. The flowchart
for this algorithm can be found in Figure 5.3, and the pseudo-code outlining the
leaf wetness duration calculation is provided in Algorithm 1.

26

Figure 5.3: Real-time Leaf wetness calculation

27

Algorithm 1 Leaf Wetness Duration
1: procedure FEED_PREPROCESSING(node_id, curr_lws)
2: fetch last feed for node using node_id
3: Read the value
4: if last_rec! = NULL then
5: duration = 0
6: event = 0
7: else
8: if (last_rec_lws ≥ 46000)&&(curr_lws < 46000) then
9: duration = time_diff

10: event = 1
11: else if (last_rec_lws < 46000)&&(curr_lws >= 46000) then
12: duration = time_diff + last_rec_duration
13: event = 0
14: else
15: if event == 1 then
16: duration = time_diff + last_rec_duration
17: event = 1
18: else
19: duration = last_rec_duration
20: event = 0

The Algorithm defines a procedure called ‘feed_preprocessing‘, which takes
two parameters: node_id and curr_lws. The procedure starts by fetching the last
feed for a given node using the nodeid. It reads the value from the fetched feed.
The algorithm checks if the fetched record (last_rec) is not NULL, which indicates
that there was a previous record. If there was a previous record, it means the
algorithm has some history to consider. In this case, it sets the duration and event
variables to 0. These variables are likely used to keep track of the duration of
leaf wetness events and the current state of the leaf (wet or dry). If there was
no previous record (i.e., last_rec == NULL), it means this is the first record or
the start of a new period of observation. The algorithm checks the current leaf
wetness value (curr_lws) against a threshold value of 46000. If the last recorded
leaf wetness value (last_rec_lws) is greater than or equal to 46000, and the current
leaf wetness value is less than 46000, it implies that there has been a transition
from a wet state to a dry state. In this case, the algorithm sets the duration to
the time difference between the current record and the last record (time_di f f) and
sets event to 1. This indicates that the leaf was wet in the previous record but has
become dry in the current one.

If the last recorded leaf wetness value is not equal to 46000, and the current
leaf wetness value is greater than 46000, it means there has been a transition from

28

a dry state to a wet state. In this case, the algorithm sets the duration as the time
difference between the current record and the last one plus the last_rec_duration,
which would be the duration of the last wetness event. The event is set to 0 in
this case. If none of the above conditions are met, it means there is no change
in the leaf wetness state. The algorithm checks the event variable. If event is 1,
it means the previous record indicated a wet state and the current record is also
in a wet state. In this case, the algorithm sets the duration as the time difference
between the current record and the last one plus the last_rec_duration. The event
remains set to 1, indicating that the leaf is still wet. If none of the conditions are
met, it means there is no change in the wetness state, and event is 0. In this case,
the algorithm simply assigns the duration as the last_rec_duration without any
changes, and event remains set to 0.

5.2.2 Gravimetric Water Content Calculation

Gravimetric Water Content (GWC) refers to the amount of water present in a
given soil sample relative to the mass of that sample. It is commonly expressed
as a percentage (%). GWC is a crucial parameter in soil science and agriculture,
providing insights into the soil’s water-holding capacity and moisture content.

Figure 5.4: Gravimetric Water Content

29

The Gravimetric water content (GWC) is determined by utilizing the frequency
data obtained from the soil moisture sensor. This frequency data is converted into
GWC readings expressed as a percentage (%) using predefined calibration data.
The calibration data is generated through experiments conducted in our labora-
tory by another member of our team.

However, it should be noted that the calibration data exhibits a non-linear re-
lationship. As a result, accurately determining the GWC for a specific frequency
requires precisely locating the corresponding data point on the calibration curve.
Figure 5.4 presents the calibration data chart for the particular sensor to visualize
this non-linear relationship. The chart visually represents the non-linear calibra-
tion curve, highlighting that the relationship between frequency and GWC is not
linear. This underscores the importance of accurately identifying the data point’s
position within the calibration curve to determine the appropriate GWC value for
a given frequency.

In order to convert the frequency data from the soil moisture sensor into Gravi-
metric water content (GWC), a piece-wise calculation method is employed. When
a frequency reading is obtained, the first step is to determine the range to which
the frequency belongs. Once the range is identified, the next step involves cal-
culating the slope for that particular piece of the calibration curve. By utilizing
this slope value and the equation of the calibration line, the corresponding GWC
value can be determined. This process enables the accurate conversion of fre-
quency data to the appropriate GWC value, considering the specific range and
characteristics of the calibration curve.

Figure 5.5: Calculation for GWC

5.2.3 Preprocessing

One of our fellow researchers in the lab developed an MLP (Multi-Layer Percep-
tron) model with the objective of disease prediction and irrigation management.
This model takes into account five input parameters, namely Leaf Wetness Du-
ration, Soil Moisture, Soil Temperature, Ambient Temperature, and Relative Hu-

30

midity. Based on these inputs, the MLP model generates two output classes. The
first class is dedicated to classifying diseases, while the second class determines
the optimal water amount required for irrigation. By leveraging this MLP model,
we aim to enhance disease detection and improve irrigation practices in our re-
search endeavors.

The model’s training process involved a dataset consisting of 23,000 data points.
The main focus of the training was on capturing the duration of leaf wetness,
which signifies the length of time a leaf retains moisture as detected by a sensor.
Although obtaining this information from the collected data is straightforward,
calculating it in real-time poses challenges due to various factors. Ensuring accu-
rate and timely calculation of the leaf wetness duration is crucial for the model’s
effectiveness in disease prediction and irrigation management.

To get the output in real-time, we need to give a data frame to the trained
model, and before that, we need to apply it to preprocess. For that, every time
application gets the data from the hardware, it will first go threw preprocessing,
and all five parameters will be generated. After that data frame is used with the
model, and it will generate the output. Once the output is generated, the sensor’s
data and output are stored in the database.[3]

Figure 5.6: Preprocessing

31

CHAPTER 6

Results and Discussions

Once the application is successfully connected to the hardware, it retrieves data
from the sensors every 30 minutes. This data undergoes preprocessing to ensure
its suitability for the MLP model. The model utilizes these parameters to generate
output, which consists of two classes: one indicating the presence of a disease and
the other indicating the recommended amount of irrigation water in liters. Ad-
ditionally, during the preprocessing stage, the leaf wetness duration is calculated
and stored in the database for future reference.

On the Feeds tabular view of the application, all these details are displayed
for easy access. Figure 6.1 shows an example of the table view, featuring the sen-
sor data and an additional column for the calculated leaf wetness duration. The
predicted diseases, such as Powdery Mildew, Anthracnose, and Root rot, are high-
lighted under the red label, while the irrigation amounts are presented under the
blue label.

This comprehensive display of information serves as a valuable tool for farm-
ers, providing them with insights into the necessary irrigation requirements for
their fields. By knowing the exact amount of water needed, farmers can opti-
mize their irrigation practices, leading to improved crop yields. Moreover, the
predicted diseases help farmers take proactive measures by applying appropriate
pesticides to prevent or mitigate the identified diseases. Overall, this functional-
ity empowers farmers with crucial information to make informed decisions and
enhance their agricultural practices.

The existing system [14] shares some similarities with our proposed system,
but it has certain limitations. Firstly, the system stores the collected data twice, lo-
cally and on the ThingSpeak server archive, leading to redundancy. Additionally,
the server only displays data for a two-week period, limiting long-term monitor-
ing and analysis. The system’s scope is limited to considering only temperature,
humidity, and soil moisture as features for enhancing plant growth conditions.
Furthermore, the paper lacks detailed information on the system’s reliability and

32

robustness in various environmental conditions, which is crucial for real-world
agricultural applications.

To address these limitations, our approach offers several advantages. We have
designed a web portal to eliminate the need for local data storage, reducing re-
dundancy issues. Moreover, we have expanded the consideration of environmen-
tal factors to achieve optimal growing conditions. Unlike the existing paper, we
have gathered data ourselves and trained the model on this data, enhancing the
system’s robustness and reliability. By bypassing ThingSpeak and implementing
our data collection and training approach, we have improved the system’s perfor-
mance and suitability for agricultural applications.

Figure 6.1: Feeds Table View

Our application provides a customized approach to managing sensor data,
offering greater flexibility compared to cloud-based alternatives. In traditional
cloud applications, when a hardware node ceases to function, manual interven-
tion is required to identify the issue. However, our application incorporates a
proactive solution by implementing a notification system. If the hardware node
fails to transmit data for more than an hour, our application automatically sends
an email notification to the user, ensuring prompt attention to any potential prob-
lems.

To facilitate efficient node management, our application includes a node list-
ing page that displays the status of each node using a color-coded system. Ac-
tive nodes are indicated by a green color, while deactivated nodes are shown in
grey. This visual representation simplifies the node management process, allow-
ing users to quickly identify and monitor the status of their nodes.

Additionally, our application is designed to be mobile-friendly, ensuring opti-
mal usability on smaller-screen devices such as tablets or smartphones. This mo-

33

Ref OS Compatibility Number of nodes Number of fields
Per channel Scalability Size

[15] Android 5 Channels 4 Easily deployable in any
software environment 10 MB

[14] Android 4 Channels 4 Easily deployable in any
software environment 2 GB

Our
work Web-based Max size of the server 16 Easily deployable in any

software environment 500 MB

bile accessibility enables end users to conveniently access and monitor the dash-
board on various devices, providing them with flexibility and convenience.

While our application may have lower computation power compared to other
available options, it is highly scalable. This means that as the demand for com-
putational resources increases, our application can dynamically adapt and utilize
additional computation power as needed. This scalability ensures that our appli-
cation can handle larger volumes of data and meet the requirements of hardware
systems with multiple sensor inputs.

In summary, our application offers customized data management, proactive
notification systems, intuitive node management, mobile accessibility, and scal-
ability. These features contribute to an enhanced user experience and provide
valuable capabilities for users with diverse hardware and data requirements.

34

References

[1] G. S. Nagaraja, A. B. Soppimath, T. Soumya and A. Abhinith, "IoT
Based Smart Agriculture Management System," 2019 4th International
Conference on Computational Systems and Information Technology for
Sustainable Solution (CSITSS), Bengaluru, India, 2019, pp. 1-5, doi:
10.1109/CSITSS47250.2019.9031025.

[2] Shruti A Jaishetty1, Rekha Patil2, "IOT SENSOR NETWORK BASED AP-
PROACH FOR AGRICULTURAL FIELD MONITORING AND CONTROL
", International Journal of Research in Engineering and Technology(IJRET),
2016, pISSN: 2321-7308.

[3] K. S. Patle, R. Saini, A. Kumar, S. G. Surya, V. S. Palaparthy and K. N. Salama,
"IoT Enabled, Leaf Wetness Sensor on the Flexible Substrates for In-Situ Plant
Disease Management," in IEEE Sensors Journal, vol. 21, no. 17, pp. 19481-
19491, 1 Sept.1, 2021, doi: 10.1109/JSEN.2021.3089722.

[4] K. S. Patle, R. Saini, A. Kumar and V. S. Palaparthy, "Field Evaluation of
Smart Sensor System for Plant Disease Prediction Using LSTM Network,"
in IEEE Sensors Journal, vol. 22, no. 4, pp. 3715-3725, 15 Feb.15, 2022, doi:
10.1109/JSEN.2021.3139988.

[5] M. Mishra and M. Srivastava, "A view of Artificial Neural Network,"
2014 International Conference on Advances in Engineering & Tech-
nology Research (ICAETR - 2014), Unnao, India, 2014, pp. 1-3, doi:
10.1109/ICAETR.2014.7012785.

[6] O’Shea, K., & Nash, R. (2015, November 26). An Introduction to Convolu-
tional Neural Networks. arXiv.org. https://arxiv.org/abs/1511.08458v2

[7] https://thingspeak.com/

[8] https://thingsboard.io/

35

[9] K. N. Bhanu, H. S. Mahadevaswamy and H. J. Jasmine, "IoT based Smart Sys-
tem for Enhanced Irrigation in Agriculture," 2020 International Conference
on Electronics and Sustainable Communication Systems (ICESC), Coimbat-
ore, India, 2020, pp. 760-765, doi: 10.1109/ICESC48915.2020.9156026.

[10] J. Boobalan, V. Jacintha, J. Nagarajan, K. Thangayogesh and S. Tamilarasu,
"An IOT Based Agriculture Monitoring System," 2018 International Con-
ference on Communication and Signal Processing (ICCSP), Chennai, India,
2018, pp. 0594-0598, doi: 10.1109/ICCSP.2018.8524490.

[11] G. S. Nagaraja, A. B. Soppimath, T. Soumya and A. Abhinith, "IoT
Based Smart Agriculture Management System," 2019 4th International
Conference on Computational Systems and Information Technology for
Sustainable Solution (CSITSS), Bengaluru, India, 2019, pp. 1-5, doi:
10.1109/CSITSS47250.2019.9031025.

[12] Bhowmick, S., Biswas, B., Biswas, M., Dey, A., Roy, S., Sarkar, S.K. (2019). Ap-
plication of IoT-Enabled Smart Agriculture in Vertical Farming. In: Bera, R.,
Sarkar, S., Singh, O., Saikia, H. (eds) Advances in Communication, Devices,
and Networking. Lecture Notes in Electrical Engineering, vol 537. Springer,
Singapore.

[13] G. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Danesh-
mand, and A. H. Gandomi, "Ensemble Classification and IoT-Based Pat-
tern Recognition for Crop Disease Monitoring System," in IEEE Internet
of Things Journal, vol. 8, no. 16, pp. 12847-12854, 15 Aug.15, 2021, doi:
10.1109/JIOT.2021.3072908.

[14] Amr, M. E., Al-Awamry, A. A., Elmenyawi, M. A., & Eldien, A. S. T.
(2022). Design and Implementation of a Low-cost IoT Node for Data Pro-
cessing, Case Study: Smart Agriculture. Journal of Communications, 99–109.
https://doi.org/10.12720/jcm.17.2.99-109

[15] Muangprathub, Jirapond, et al. "IoT and agriculture data analysis for smart
farm." Computers and electronics in agriculture 156 (2019): 467-474

[16] Y. -S. Kang, I. -H. Park, J. Rhee, and Y. -H. Lee, "MongoDB-Based Repository
Design for IoT-Generated RFID/Sensor Big Data," in IEEE Sensors Journal,
vol. 16, no. 2, pp. 485-497, Jan.15, 2016, doi: 10.1109/JSEN.2015.2483499.

36

	a797bd1ab9d534e7e47ae8b3a9c7c523cdd32aa0e9991db599a6717b61cbc207.pdf
	e5d435152a464816a5b478ad41b1222c8fd196860e82c950432f0c1924ff4453.pdf
	a797bd1ab9d534e7e47ae8b3a9c7c523cdd32aa0e9991db599a6717b61cbc207.pdf
	Abstract
	List of Figures
	Introduction
	Literature Review and Research Objective
	Application Back-end Design
	Hardware
	Development Server
	Application

	Application User Interface Design
	User Management
	User Registration
	User SignIn
	User Profile
	Admin View

	Node Management
	Node Creation
	Node List View
	Feeds View
	Image Gallery

	Data Collection in application
	Data Collection
	Data Preprocessing
	Leaf Wetness Duration Calculation
	Gravimetric Water Content Calculation
	Preprocessing

	Results and Discussions
	References

