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Abstract

The rapid growth of conversational recommendation systems has revolutionized
how users interact with recommender systems. However, accurately capturing
and understanding user intent in dynamic conversational settings remains a sig-
nificant challenge. This thesis addresses the problem of user intent modeling in a
conversational recommendation by proposing a dynamic approach that adapts to

evolving user preferences and context.

The first contribution of this research is developing a dynamic intent modeling
framework using Long Short-Term Memory (LSTM) incorporates both explicit
and implicit user signals. By leveraging deep learning algorithms, the proposed
framework extracts user intent from conversational data, considering explicit user

requests, implicit preferences, and contextual cues.

This thesis introduces a context-driven intent update mechanism to enable dy-
namic intent modeling. The proposed mechanism updates user intent representa-
tions in real time by continuously monitoring user interactions, contextual factors,
and item recommendations. This dynamic modeling approach allows the system
to adapt and refine user preferences as conversations progress, enhancing the ac-

curacy of subsequent recommendations.

The proposed dynamic intent modeling framework is evaluated through exten-
sive experiments on real-world conversational recommendation datasets. The ex-
perimental results demonstrate that the dynamic modeling approach significantly
improves recommendation accuracy compared to traditional static intent model-
ing methods. Moreover, the Conversational recommendation approach outper-
forms baseline methods, confirming the effectiveness of integrating intent model-
ing with LSTM.

This thesis explores user intent modeling in recommendation systems by com-
paring navigation by preference heuristic algorithm with a proposed LSTM algo-

rithm. The study demonstrates that the LSTM algorithm outperforms navigation



by preference, providing more accurate recommendations and higher user satis-
faction. The LSTM algorithm leverages sequential modeling to capture temporal
dependencies in user-item interactions, resulting in a comprehensive understand-
ing of user intent. The experimental results and user feedback validate the su-
periority of the LSTM-based approach, emphasizing its potential for improving

recommendation accuracy and personalization in recommendation systems.
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CHAPTER 1

Introduction

This Chapter introduces the key concepts of intent, conversational recommenda-
tion, and user intent modeling. It explores the notion of intent as the underly-
ing driver of human behavior and emphasizes its importance in domains such
as information retrieval, recommendation systems, and conversational interac-
tions. The chapter further delves into conversational recommendation, a special-
ized field that focuses on generating recommendations through conversations.
It highlights these systems’ interactive nature and ability to provide personalized
recommendations based on user preferences. Additionally, the chapter introduces
user intent modeling, which involves capturing and predicting user intentions,
motivations, and preferences. This process enhances recommendation systems
and conversational interactions by leveraging natural language processing and
machine learning techniques. Chapter 1 sets the stage for the subsequent explo-
ration and analysis conducted throughout the thesis by providing an overview of

these interconnected areas.

1.1 Intent

Throughout history, the concept of intention has garnered significant attention
and application across various fields. The understanding of intention has evolved,
but its fundamental importance in comprehending human behavior and decision-

making has remained a central aspect of research and study.

The exploration of intention began with early psychological theories by influential
figures such as Sigmund Freud and Carl Jung[11]. These theories delved into the
unconscious motivations and intentions that drive human actions and behaviors.
They emphasized the underlying forces behind human choices and shed light on

the complex interplay between conscious and unconscious intentions.



The significance of intention in the realm of information retrieval (IR) became ap-
parent from the inception of IR systems. Early IR systems aimed to match user
queries with relevant documents, highlighting the need to understand user in-
tent and information needs. Techniques like the Vector Space Model and Boolean
Retrieval were developed to grasp user intent and improve the accuracy of docu-

ment retrieval.

As web search engines gained popularity, understanding user intent became in-
creasingly crucial in providing relevant search results. While early search engines
relied on simplistic keyword-based approaches, the complexity of user queries
necessitated a deeper understanding of user intent. This led to the development
of techniques like query understanding, query expansion, and semantic analysis,
which aimed to decipher user intent more effectively and deliver more accurate

search results.

The concept of user intent extended beyond IR to the realm of recommender sys-
tems. Recommender systems suggest relevant items or content to users based on
their preferences and interests. User intent is pivotal in personalizing these recom-
mendations and enhancing user satisfaction. Early recommendation approaches
predominantly relied on explicit user feedback, such as ratings or reviews, to infer

user preferences and intentions.

With the progression of research, the importance of implicit user intent became in-
creasingly apparent. Implicit signals like browsing behavior, click-through rates,
and social media interactions offered valuable insights into user preferences and
intentions. These signals were harnessed to improve recommendations” accuracy

and overcome explicit feedback limitations.

The emergence of conversational recommendation systems further emphasized
the need to comprehend user intent within dynamic conversations. These systems
employ natural language processing and machine learning techniques to capture
user intent expressed through conversational interactions. Dynamic intent model-
ing techniques enable the system to adapt and refine user preferences in real-time

conversations, resulting in more accurate and personalized recommendations.

1.1.1 Early Psychological Theories

The study of intention has deep roots in early psychological theories, where renowned
psychologists like Sigmund Freud and Carl Jung delved into the concept as a fun-

damental driving force behind human actions and behaviors.



Sigmund Freud[11], a prominent figure in psychoanalysis, proposed that uncon-
scious desires and intentions shape human behavior. He introduced the notion
of the unconscious mind, highlighting the hidden motivations and intentions that
influence human actions. Freud believed that unconscious intentions, such as re-
pressed desires or unresolved conflicts, play a significant role in shaping behavior

and influencing decision-making.

Similarly, Carl Jung[11], another influential psychologist, built upon Freud’s work
and developed his theories on intention. Jung emphasized the concept of the col-
lective unconscious, which consists of shared archetypes and symbolic represen-
tations that influence human behavior. He believed individuals are driven by
deep-seated intentions rooted in universal, collective patterns of the human psy-
che.

Both Freud and Jung recognized the importance of unconscious intentions and
motivations in understanding human behavior. Their theories highlighted that in-
tentions often operate beneath the surface of conscious awareness, shaping thoughts,
emotions, and actions in intricate ways. By exploring these hidden intentions,
psychologists aimed to gain deeper insights into human cognition, motivation,

and decision-making processes[11].

The exploration of intention in early psychological theories paved the way for
further investigations in fields such as cognitive psychology and behavioral sci-
ences. It laid the groundwork for understanding the complex interplay between
conscious and unconscious intentions and their impact on individual behavior

and psychological well-being.

Today, the concept of intention continues to be a central focus in various branches
of psychology and related disciplines. It serves as a framework for understand-
ing and analyzing human actions, motivations, and goal-directed behaviors. The
early insights provided by Freud and Jung have influenced subsequent research,
shaping our understanding of intention as a core aspect of human psychology[11].
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Figure 1.1: Correlation between Intention and behavior[1]

1.1.2 User Intent in Information Retrieval (IR)

In the field of Information Retrieval (IR), understanding user intention has been a
fundamental aspect since the early days of IR system development. The primary
goal of IR systems is to match user queries with relevant documents based on the

user’s information needs and intentions.

Early IR systems recognized that accurately capturing and interpreting user inten-
tion is crucial for improving document retrieval accuracy. These systems aimed
to go beyond simple keyword matching and delve into the underlying intention
behind user queries.

To address this, several models were developed to understand and capture user
intent effectively. Two notable models are the Vector Space Model and Boolean
Retrieval.

The Vector Space Model (VSM) represents both the user query and document col-
lection as vectors in a high-dimensional space. The similarity between the query
vector and document vectors is computed to determine the relevance of docu-
ments to the user’s intention. VSM takes into account various factors such as term
frequency and inverse document frequency to weigh the importance of terms in
capturing user intent.

Boolean Retrieval, on the other hand, focuses on capturing user intent through
the use of logical operators such as AND, OR, and NOT. Users can express their

intentions by specifying Boolean queries using these operators to combine or ex-



clude certain terms or concepts from their search. Boolean Retrieval provides a
flexible and explicit way for users to convey their intent and retrieve documents

accordingly.

Both the Vector Space Model and Boolean Retrieval aimed to improve document
retrieval accuracy by considering user intent. These models provided ways to
match user queries with relevant documents based on the underlying intention

behind the queries, allowing for more precise and tailored search results.

Over time, these early models have evolved, and newer approaches have emerged
to capture user intent more effectively. Techniques such as query understanding,
query expansion, and semantic analysis have been developed to grasp user inten-

tion better and improve the accuracy and relevance of document retrieval.

1.1.3 User Intent in Recommender Systems

The concept of user intention extended to recommendation systems, which are
designed to suggest relevant items or content to users based on their preferences
and interests. Recommender systems leverage user intention to personalize rec-

ommendations and enhance user satisfaction.

Early recommendation approaches primarily relied on explicit user feedback, such
as ratings or reviews, to infer user preferences and intentions. By collecting ex-
plicit feedback, these systems aimed to directly capture user intent and use it as a

basis for generating personalized recommendations.

Explicit user feedback provides valuable information about users” explicit prefer-
ences, likes, and dislikes. It allows recommendation systems to understand users’
explicit intentions and tailor recommendations accordingly. For example, if a user
rates a movie positively or negatively, the system can use this feedback to under-

stand the user’s preference for similar or dissimilar items.

However, relying solely on explicit feedback has limitations. Users may not al-
ways provide explicit ratings or reviews for every item they consume or interact
with. This can lead to sparse feedback, making it challenging to capture the full

spectrum of user preferences and intentions.

As research progressed, the importance of implicit user intent became increas-
ingly recognized. Implicit signals, such as browsing behavior, click-through rates,
purchase history, and time spent on certain items, offer valuable insights into user

preferences and intentions. These implicit signals go beyond explicit feedback



and provide a more comprehensive understanding of user intent.

By analyzing implicit signals, recommendation systems can infer user intentions
even when explicit feedback is not available or limited. For example, if a user
frequently clicks on articles related to technology, the system can infer an intention

or preference for technology-related content and recommend similar articles.

The incorporation of both explicit and implicit user signals allows recommenda-
tion systems to capture a broader range of user intentions. This leads to more
accurate and personalized recommendations, as the systems consider a holistic

view of user preferences and intentions.

1.2 Conversational Recommendation Systems

Conversational Recommendation Systems have emerged as a compelling approach
to enhance the personalized recommendation experience by incorporating dy-
namic user interactions. These systems leverage conversational interactions be-
tween users and the recommendation system to capture and model user intent
in real-time conversations. By understanding and adapting to user preferences
expressed in these conversations, conversational recommendation systems can
provide more accurate and context-driven recommendations.Conversational rec-
ommender systems cater for a user who is not satisfied with the initial top-n rec-

ommendations.

Traditional recommendation systems have primarily relied on static user pro-
files or historical interactions to generate recommendations. However, these ap-
proaches often overlook the dynamic nature of user preferences and fail to capture
the evolving intents and needs of users. Conversational recommendation systems
address this limitation by engaging users, allowing for a more interactive and re-

sponsive recommendation process.

Conversational recommendation systems employ techniques from machine learn-
ing to interpret and understand user intents expressed in conversations. They
dynamically model and update user preferences based on the evolving context,
enabling the system to provide recommendations that align with the user’s chang-

ing interests.

The integration of conversational capabilities also enables users to engage in multi-
turn dialogues with the system, facilitating a more interactive and personalized

recommendation process. Users can provide feedback, clarify their preferences, or



request additional information through natural language interactions. This con-
versational approach enhances user engagement and satisfaction by offering a

more intuitive and interactive recommendation experience.
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Figure 1.2: Typical architecture of a conversational recommender system[15]

1.3 User Intent Modeling

User Intent Modeling is a crucial process in understanding and predicting the in-
tentions, motivations, and preferences of users across different contexts. Whether
it is in the realm of information retrieval, recommendation systems, or conver-
sational interactions, the aim is to uncover the underlying goals and desires that

influence user actions and behaviors.

User intent plays a pivotal role in generating personalized recommendations. By
analyzing user behavior, preferences, and feedback, recommender systems can
gain insights into users” underlying intentions and preferences. For instance, if a
user consistently selects action movies and rates them positively, the intent might
be to receive more recommendations in that genre. By modeling user intent,
recommendation systems can offer highly relevant and personalized suggestions

that align with user interests, improving user satisfaction and engagement.

The structure of user intents is not flat and each intent is not isolated in this struc-
ture. As shown in Fig. 1.3, ul prefers the actor and category, whereas u2 pays
more attention to the visual quality and storylines of videos. Whereinto the vi-
sual quality and actors are shown by frames, while the storyline and category are
summarized with the whole video. In a mathematical formulation, intent is rep-

resented as a vector that captures the user’s preferences and interests. The intent

7



vector consists of multiple dimensions, each corresponding to a specific aspect or
feature of the items or recommendations. The values within the intent vector indi-
cate the user’s preference or level of interest in each aspect, allowing for efficient

computation and comparison in recommendation algorithms.

The process of user intent modeling involves leveraging various data sources,
such as explicit user feedback, implicit signals, and contextual information, to cap-
ture and predict user intentions. It often requires applying techniques from fields
like natural language processing, machine learning, and user behavior analysis.
By understanding and predicting user intent, systems can tailor their responses,
recommendations, or search results to meet individual users’ needs and prefer-

ences.

In conclusion, Chapter 1 has provided an overview of the research problem and
the motivation behind this thesis. The significance of user intent modeling in rec-
ommendation systems has been highlighted, emphasizing the need for effective
approaches to understand and predict user preferences and intentions. The ob-
jectives and research questions that guide this study have been identified. The
subsequent chapters will delve into a comprehensive review of related work in
Chapter 2, followed by a detailed exploration of navigation by preference and the
proposed LSTM model in Chapter 3. Finally, Chapter 4 will present the dataset,
experimental results, and findings. Together, these chapters aim to contribute
to the field of intent modeling by comparing and analyzing the performance of
different approaches, ultimately enhancing the accuracy and relevance of recom-

mendation systems.
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CHAPTER 2

Related Work

Recently, there has been some good research in the domain of user Intent model-
ing. As previously said, there are three main types of representation for intention
representation, each with its own technique and pros and cons. “Fig. A.1" was pro-
vided for a better understanding and classification of representation and method-
ology. Mention all three representations, their methodology, and their contribu-
tions in the “Fig. A.1".

We will go over all three types of representation in depth and try to give a general
concept of how each approach relies on a particular representation, the evolution
of the method, and its benefits and downsides. There are specific gaps in the
methods, such as one method overcoming the disadvantage of another. By re-
viewing these, we can generate some new ideas, such as adding two methods or

using methods in alternative representations.

2.1 Types of Intent Modeling

After an extensive review of 30-40 research papers on intent modeling, a taxon-
omy has been developed to classify these approaches into three main categories:
aspect-based, item-based, and sequential-based. Each of these categories offers its

own advantages and limitations.

Aspect-based modeling can be further divided into explicit and latent aspect-
based modeling. Explicit aspect-based modeling focuses on predefined aspects
or features of items, while latent aspect-based modeling aims to discover hidden

aspects or categories from user-item interaction data.

Item-based modeling encompasses clustering and structural modeling techniques.
Clustering groups items based on similarities, while structural modeling capture

the relationships and dependencies between items.

10



Sequential-based modeling is currently considered a state-of-the-art approach. It
utilizes the sequential nature of user data, such as previous interactions, to capture
user intentions. By analyzing the sequence of user actions, such as the movies they
watched or the items they purchased, the model can infer the user’s current intent

or preferences.

Fusion-based modeling combines long-term and short-term user context to cap-
ture the user’s current intention. By considering both the user’s historical data
and their immediate context, such as current browsing or session information, the

model aims to provide more accurate and relevant recommendations.

This taxonomy provides a comprehensive framework for understanding and clas-
sifying different intent modeling approaches. By exploring the advantages and
limitations of each category, researchers and practitioners can make informed de-
cisions when selecting the most suitable method for their specific recommenda-

tion system.

2.1.1 Aspects-based Modeling

What exactly is an aspect? We consider two cases:

Explicit Aspects

Aspect information is directly available in the input data. Aspects are synony-
mous with item features, such as genres in the case of movies. In particular, from
the input data it is possible to directly identify for each item i a set of aspects
Ai[36].

The availability of aspect information directly in the input data is valuable for un-
derstanding the characteristics and features of items. This direct identification of
aspects from the input data provides crucial information for modeling and under-
standing user preferences and intent. By associating items with specific aspects,
the system can capture the fine-grained details and nuances of user preferences.
For example, in a movie recommendation system, aspects such as comedy, action,
or romance can be identified for each movie, enabling a more precise understand-

ing of user preferences within those genres.

Latent Aspects

Aspect information is not explicitly available in the input data. Instead, aspects

are latent categories, which are learned from the user-item interaction data [36].

11



In certain cases, aspect information may not be explicitly available in the input
data. Instead, aspects are considered latent categories that are learned from the
user-item interaction data. In this context, latent categories refer to hidden or

underlying characteristics that represent different aspects or features of the items.

In certain cases, aspect information may not be explicitly available in the input
data. Instead, aspects are considered latent categories that are learned from the
user-item interaction data. In this context, latent categories refer to hidden or

underlying characteristics that represent different aspects or features of the items.

Learning latent aspects from user-item interaction data enables a more data-driven
and adaptive approach to user intent modeling. Rather than relying on prede-
fined aspects or features, the system can discover and adapt to the unique char-
acteristics and preferences present in the data. This approach allows for a more

comprehensive and flexible representation of user intent.

The above two approaches have limitations in that diversity is formulated in
terms of coverage of aspects, where aspects are either explicit such as movie gen-
res, or implicit such as the la-tent factors found during matrix factorization. Typ-
ically, the same set of aspects is used across all users [17]. In [17] They propose a
form of personalized intent-aware diversification called SPAD (SubProfile-Aware
Diversification). The aspects they use in SPAD are sub-profiles of the user’s pro-
file. They are not defined in terms of explicit or implicit features.

2.1.2 Item-based Modeling

Item-based representation primarily encompasses two main methods: clustering
and structural modeling. These techniques aim to organize items into meaningful

groups based on similarities or capture the structural relationships between items.

Clustering

In SPAD [17], along with diversification, it is based on user sub-profiles rather
than item features. A sub-profile is simply a subset of a user’s profile items. It
clusters user-like items. The SPAD [17] combines both item-based representation
and diversification framework. Another paper that used clustering is [8]. It in-
troduces a latent variable to represent users’ intents and learns the distribution
function of the latent variable via clustering. The [8] is the combination of the

sequential recommendation model along with the clustering.

12



Structured Modeling

The utilization of structured modeling, which involves comprehending structured
connections within unprocessed sensory data, plays a significant role in human
cognition. Graphs serve as a natural means to represent such structured relation-
ships. The research paper by Li et al. (2021)[19] introduces an intention-aware se-
quential recommendation model (ISRec) that effectively identifies user intentions
and acknowledges the process of transitioning between structured user intents.
This, in turn, facilitates the provision of more transparent and explainable inter-
mediate outcomes for sequential recommendations. Nonetheless, the potential
of leveraging graph structures to identify user intentions and deduce their re-
lationships, thereby enhancing the quality of recommendations, remains largely

unexplored [19].

2.1.3 Sequential-based Modeling

The sequential recommendation model seeks to anticipate users” future behav-
iors, such as next clicks or purchases, based on observed activities in a sequential
way. The sequential recommendation aims to characterize users’ accurately dy-
namic interests by modeling their past behavior sequences [9], [16], [29]. Early
works on SR usually model an item-to-item transaction pattern based on Markov
Chains [12], [29]. FPMC [29] combines the benefits of Markov Chains and ma-
trix factorization to integrate both sequential patterns and the general interest of

consumers.

With the recent advances of deep learning, many deep sequential recommenda-
tion models are also developed [34], [44]. Such as Convolutional Neural Networks
(CNN)-based [31] and RNN-based [9] models. The recent success of the Trans-
former also motivates the development of pure Transformer-based SR models.
SASRec [16] utilizes a unidirectional Transformer to assign weights to each inter-
acted item adaptively. BERT4Rec [30] improves that by utilizing a bidirectional
Transformer with a Cloze task to fuse user behaviors information from left and
right directions into each item. LSAN [19] improves SASRec on reducing model

size perspective.

It proposes a temporal context-driven embedding and twin-attention network,
which are light weighted. ASReP [25] reduces data sparsity by using a pre-trained
Transformer on the improved user behavior sequences to enhance short sequences.

In [8], They study the potential of addressing data sparsity issues and improving

13



SR via self-supervised learning [8].

Many ways have recently been developed to evaluate users’ intentions in order to
improve recommendations.. MCPRN [34] constructs multi-channel purpose rout-
ing networks to adaptively learn consumers’ diverse acquisition purposes of each
item over several channels (sub-sequences) for a sessionbased recommendation.
MITGNN [25] presents a multi-intent translation graph neural network to mine
users’ numerous intentions by taking into account intent correlations. ICMSR
[27] creates an intent-guided neighbor detector to find appropriate neighbor ses-
sions for neighbor representation Unlike session-based suggestion, another line
of research focuses on simulating the sequential dynamics of users’ interaction

patterns across a longer time period.

DSSRec [38] proposes a seq2seq training technique with many future encounters
as supervision and an intent variable derived from her past and future behavior
sequences The intent variable is used to collect mutual information between a
user’s past and future behavior sequences. In representation space, two users

with comparable intents may be far apart.

In contrast to previous work, our intent variable is learned across all user se-
quences and is used to optimize mutual information across users with comparable
learned intents. ASLI [32] captures intent via a temporal convolutional network
with side information (e.g., user action types such as click, add-to-favorite, etc.),
The taught intentions are then used to aid the SR model in predicting the next
item. Instead, our technique can only learn users’ intents from user interaction
data.

Long-short term fusion

Although existing approaches for sequential recommendation have made signif-
icant development, certain difficulties still need to be addressed and improved.
To begin with, most research constructs end-to-end models that use the final loss
function to optimize parameters. When rich contextual information is integrated,

all important parameters are optimized through this single goal.

An increasing amount of research has revealed that increasing the representa-
tional power of training data is critical in improving the performance of existing
models. Second, past research has mostly focused on developing unidirectional
sequential models to capture users’ changing preferences(e.g., RNNs, CNN, At-

tention models). Certain constraints apply to unidirectional models.

14



The fundamental drawback is that unidirectional models limit the hidden rep-
resentation capacity of things in the historical sequence. Each item can only get
information from items that came before it. Another drawback is that prior unidi-
rectional models were developed for sequential data with the natural order, such
as text and time series data. They often presume a strictly ordered sequence on
the data, although this is not true for real-world application user behaviors. Fi-
nally, models that consider contextual information often fuse it with item IDs into
hybrid embedding representations, resulting in the irreversible fusing of side in-

formation into the item’s representation space, although with increased efficiency.

Hidasi et al. [14] begin by employing a gated recurrent unit (GRU) to produce
recommendations based on the users’ current short sessions. Following that, Li
et al. [20] apply the attention mechanism to extract users’ principal objective,

particularly for longer sessions, and gets superior outcomes.

Liu et al. [24] then develop a fresh short-term attention priority model instead
of RNNs, emphasising the significance of the final click in a session. Yuan et
al. [41] offer convolutional sequence embedding recommendation models as an
alternative to RNNs. Zhang et al. [42] encode user activity history using self-
attention-only architecture.

It is equally critical to consider customers’ long-term consistent preferences. Li
et al. [23] offer the BINN model, which is constructed by concatenating users’
session behaviour representations and stable preferences of history purchasing
behaviours. Ying et al. [40] propose a unique two-layer hierarchical attention
network for recommending the next item that a user may be interested in. Bai
et al. [5] uses multi-time scales to define long-short time needs and incorporate

them into a hierarchical framework.

Recurrent Collaborative Filtering [10], which combines an RNN sequence model
and a matrix factorization approach in a multi-task learning framework, is an-
other example of combining general and sequential interests. And Zhao et al.
[43] use adversarial training to achieve the same result. Simple combinations are
insufficient for fusing short/long preferences, and multi-tasking and adversarial

approaches are inapplicable in industrial situations.

[26] propose multi-head self-attention to capture different user interests in short-
term session behaviors and apply a gating mechanism to effectively and effi-
ciently include long-term preferences in a real-world application. [39] leverage

RNN structures for model users’ short-term preference, and further propose an
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attentionbased adaptive fusion schema to dynamically combine users’ both short-

term and long-term preference.

Index Intent Representation
of the table | Aspect | Items Sequential data
1. [33,36] | [19, 8] | [29, 12,9, 31, 41, 16, 30, 21, 38, 44]
[17,7] [35, 32,22, 18, 34, 6, 27, 25]

Table 2.1: List of Reviewed articles by representation
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CHAPTER 3

Methodology

The chapter focuses on two main approaches: navigation by preference and the
proposed LSTM-based conversational recommendation method. The chapter be-
gins by examining navigation by preference, specifically distinguishing between
navigation by immediate preference and navigation by cumulative preference.
Navigation by immediate preference involves generating recommendations based
on the user’s most recent preferences, while navigation by cumulative preference
takes into account the user’s entire preference history. The advantages and limi-

tations of these approaches are discussed.

Subsequently, the chapter introduces the LSTM-based conversational recommen-
dation method. This approach leverages the power of Long Short-Term Memory
(LSTM), a state-of-the-art deep learning model, to capture the sequential nature
of user-item interactions. The LSTM model is designed to effectively capture tem-
poral dependencies and long-term user preferences, enhancing the accuracy and

relevance of recommendations.

The proposed LSTM-based conversational recommendation method integrates
the strengths of both navigation by preference and LSTM modeling. It leverages
the user’s preference history while incorporating sequential modeling to capture
the dynamic nature of user intents. The chapter provides a detailed explanation
of the methodology, including the architecture and training process of the LSTM
model.

By comparing navigation by preference and the proposed LSTM-based approach,
the chapter aims to highlight the advantages and effectiveness of utilizing LSTM
in conversational recommendation systems. The LSTM-based method offers the
potential for improved recommendation accuracy and personalized user expe-
riences by capturing both short-term and long-term preferences. The chapter

concludes with a discussion of the potential implications and future directions
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of LSTM-based conversational recommendation approaches.

3.1 Navigation-by-Preference

The approach presented here serves as our baseline model, known as Navigation-
by-Preference or n-by-p. This novel conversational recommender incorporates
the concept of preference-based feedback, as documented in existing literature.
By starting with a seed item, the recommender assists the user in navigating
through the item space to uncover an item that aligns with both her enduring,
long-term preferences (as inferred from her user profile) and her transient, short-
term preferences (as indicated through her input during the conversation) (Rana
et al., 2020).[28].

Designed for domains with unstructured item representations, Navigation-by-
Preference (n-by-p) is a conversational recommender system that leverages preference-
based feedback. Its novelty lies in its ability to handle such domains effectively.
In broad terms, n-by-p operates as follows: the user initially chooses a seed item,
typically sourced from her user profile. Subsequently, n-by-p provides recom-

mendations by suggesting n candidate items to the user[28].

In their paper [28], two variations of the n-by-p approach are introduced: Navigation-
by-Immediate-Preference (n-by-i-p) and Navigation-by-Cumulative-Preference (n-
by-c-p). Both versions utilize the user’s long-term preferences denoted as L, but
they differ in how they handle short-term preferences. In n-by-i-p, only feedback
from the most recent cycle influences the subsequent cycle, whereas in n-by-c-p,
feedback from earlier cycles also impacts the next cycle. Now let’s delve into each

version in detail.

For the purposes of this discussion, we will focus solely on n-by-i-p, which in-
corporates feedback solely from the most recent cycle to influence the subsequent
cycle. The authors propose a heuristic method to create conversational recom-

mendations within the short-term context..

3.1.1 Navigation-by-Immediate-Preference

The n-by-i-p algorithm is presented as Algorithm 1 in the paper. It begins by ini-
tializing the selection-consistent candidates, denoted as S, which consists of can-
didate items neighboring the user-provided seed, Ns. The algorithm iteratively

generates a set of n recommendations, R, selected from S. In each cycle, the user

18



makes a selection, denoted as s, from R. Additionally, the user chooses an action,
denoted as a. If a = STOP, the dialogue concludes as the user has chosen to con-
sume item s. If a = CONTINUE, it implies that s is not the ideal choice, but it
is the closest item from R that satisfies the user’s preferences, and the dialogue
continues. In the latter case, S is updated based on the item selected by the user
(s), the items not chosen (R \s), and an updated policy denoted as 7r, which is
explained further in the paper. It is important to note that recommending an item
more than once within the same dialogue is avoided. This is achieved by main-
taining a record of all recommendations made thus far (Tabu) and excluding them

from S.

Given a seed item, denoted as s, which the user chooses, and a set of candidate
items, L, that are neighbors of items in P (the set of user preferences), along with
the update policy, 77, and the desired number of recommendations per cycle, n,
the algorithm aims to output a candidate item, i, from the set I, which is suitable

for consumption.

To begin, the algorithm initializes S as the set of candidate items neighboring the
seed item, Ns. It also sets Tabu as an empty set to keep track of previously recom-
mended items. The algorithm then enters a loop while the size of S is larger than

n.

Within each iteration, the algorithm generates a set of n recommendations, R, by
utilizing the Recommend function, which considers S, L, and n as inputs. The
user is prompted to select an item, s, from the set R and also choose an action, a,
which can be either STOP or CONTINUE.

If the user chooses to STOP, indicating the selection of item s for consumption,
the algorithm returns s as the output. Otherwise, if the user selects CONTINUE,
indicating that s is not the ideal choice but the closest item from R that satisfies
their preferences, the algorithm proceeds to update S using the Update function.
The Update function takes into account the selected item (s), the remaining items
in R (R \s), and the update policy 7.

Furthermore, the algorithm includes the recommendations made so far (R) in the
Tabu set to avoid recommending the same item multiple times within the dia-

logue. Finally, S is updated by removing the items in the Tabu set from it.

By following this algorithm, the conversational recommender system aims to pro-
vide a candidate item (i) from the set I that is appropriate for consumption based
on the user’s preferences and choices.
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Algorithm 1 Navigation-by-Immediate-Preference (n-by-i-p)

Input: s: seed item, chosen by the user
L: candidate items that are neighbours of items in P
;: update policy
n: number of recommendations per cycle

Output: i € I, a candidate item to consume

1: S« N

2: Tabu «— @

3: while |S| > n do

4: R <« RECOMMEND(S, L, n)

5: s,a < user chooses s € R and a € {STOP, CONTINUE}
6: if a = STOP then

7: return s

8: S < UprDATE(s, R \ {s}, 7)

9: Tabu < TabuU R

10: S « S\ Tabu

Figure 3.1: Algorithm of Navigation-by-immediate-prefrence[28]

3.1.2 Navigation-by-Cumulative-Preference

Navigation-by-Cumulative-Preference (n-by-c-p) is introduced as an alternative
to Navigation-by-Immediate-Preference (n-by-i-p) in order to address certain lim-
itations. While n-by-i-p only considers the most recent cycle of feedback in the
dialogue, n-by-c-p takes into account cumulative feedback from earlier cycles as
well. This means that n-by-c-p considers the entire history of user feedback, in-
cluding both selected and rejected items.

To implement n-by-c-p, each candidate item i from the set I is assigned a weight
w;. Initially, all weights are set to zero. However, as the user provides feedback
during the conversation, the weights of items are adjusted accordingly. This al-

lows the system to prioritize or de-prioritize certain items based on the user’s
feedback.

When scoring items for recommendation, n-by-c-p takes into consideration the
weight of overlap between items. This means that the degree of overlap be-

tween recommended items and the user’s preferences is sensitive to the weights
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assigned to those items. By incorporating the weight-sensitive overlap scoring, n-
by-c-p aims to provide more personalized and context-driven recommendations,

considering the user’s cumulative feedback throughout the dialogue.

By formalizing n-by-c-p, the goal is to enhance the user experience, reduce confu-
sion, and potentially shorten the duration of the conversation by utilizing a more

comprehensive understanding of the user’s preferences and feedback..

Certainly! Let’s delve into the recommendation and re-weighting processes in
more detail for the n-by-c-p algorithm (Algorithm 3).

Recommendation: The recommendation process in n-by-c-p is similar to n-by-i-p.
It involves selecting a set of n recommendations, denoted as R, from the selection-
consistent candidates, S. These candidates are determined based on the Open up-
date policy. The Open policy ensures that the candidates for the next cycle are all
items that are neighbors of the most recently selected item. This approach aims to
maintain consistency in the selection process and guide the user through a coher-

ent sequence of item recommendations.

Re-weighting: In n-by-c-p, re-weighting plays a crucial role in adjusting the weights
assigned to candidate items based on the user’s feedback. The algorithm calls the
Reweight function twice: once at the beginning and again after the user has pro-
vided feedback.

Initial re-weighting: At the start of the dialogue, the algorithm calls Reweight to
assign initial weights to the candidate items. These initial weights are determined
based on the user’s choice of the seed item. This step ensures that the item weights
reflect the user’s preferences right from the beginning of the conversation.

Updated re-weighting: After the user has given feedback by selecting an item dur-
ing the conversation, the algorithm calls Reweight again. This time, the weights
of candidate items are updated to reflect the user’s most recent selection. This
step aims to adjust the item weights based on the user’s current preferences and

ensure that the recommendations align more closely with their evolving choices.

By incorporating the re-weighting process, n-by-c-p aims to adapt the recommen-
dations dynamically based on the user’s feedback, providing a more personalized

and responsive conversational recommendation experience.

Overall, the n-by-c-p algorithm combines recommendation based on the Open
update policy and re-weighting of candidate items to deliver tailored recommen-

dations that consider the user’s most recent preferences while maintaining con-
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sistency throughout the dialogue..

The provided algorithm represents the n-by-c-p (Navigation-by-Cumulative-Preference)
approach, which takes into account re-weighting of candidate items based on the
user’s feedback. Here is an explanation of the algorithm:

Given a seed item, denoted as s, chosen by the user, a set of candidate items, L,
which are neighbors of items in P (the set of user preferences), a re-weighting
policy denoted as p, and the desired number of recommendations per cycle, n, the
algorithm aims to output a candidate item, i, from the set I, which is suitable for

consumption.

The algorithm begins by initializing S as the set of candidate items neighboring
the seed item, Ns. It also sets Tabu as an empty set to keep track of previously

recommended items.

The Reweight function is called with the seed item s and an empty set (¢) to assign
initial weights to the candidate items. The re-weighting policy determines how
the initial weights are assigned based on the user’s choice of the seed item.

The algorithm enters a loop while the size of S is larger than n.

Within each iteration, the algorithm generates a set of n recommendations, R, by
utilizing the Recommend function, which considers S, L, and n as inputs. The
user is prompted to select an item, s, from the set R, and also choose an action, a,
which can be either STOP or CONTINUE. If the user chooses to STOP, indicating

the selection of item s for consumption, the algorithm returns s as the output.

Otherwise, if the user selects CONTINUE, indicating that s is not the ideal choice
but the closest item from R that satisfies their preferences, the algorithm proceeds
to update S using the Update function. The Open update policy (7 = Open) is
employed in this step to determine the selection-consistent candidates for the next
cycle. The Open policy ensures that the candidates are all items that are neighbors

of the most recently selected item.

The Re-weight function is called again with the selected item (s) and the remain-
ing items in R (R \ s) to update the weights of candidate items based on the user’s
most recent selection. The re-weighting policy determines how the weights are
adjusted. The Tabu set is updated by including the recommendations made in the
current cycle (R). Finally, S is updated by removing the items in the Tabu set from
it.

Following this algorithm, the n-by-c-p approach combines recommendation, re-
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weighting, and update policies to provide tailored recommendations that con-
sider the user’s preferences and dynamically adjust the weights of candidate items
based on their feedback.

Algorithm 3 Navigation-by-Cumulative-Preference (n-by-c-p)

Input: s: seed item, chosen by the user
L: candidate items that are neighbours of items in P
p: re-weighting policy
n: number of recommendations per cycle
Output: i € I, a candidate item to consume
1: S « N
2: Tabu «— @
3: REWEIGHT(s, &, p)
4: while |S| > n do
5 R « RECOMMEND(S, L, n)
s,a < user chooses s € R and a € {STOP, CONTINUE}
if a = STOP then
return s
: S « UppATE(s, R \ {s}, 7 = Open)
10: REWEIGHT(s, R \ {s}, p)
11: Tabu < Tabu U R
12: S « S\ Tabu

6
7
8:
9

Figure 3.2: Algorithm of Navigation-by-Cumulative-Preference[28]
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3.1.3 Recommending Using Greedy Recommender

Recommending for Navigation-by-Immediate-Preference

In n-by-i-p, the recommendation process involves greedily selecting the n mem-
bers from the selection-consistent candidates S that have the highest score. The
score for an item i, denoted as score(i, S, L, R), is determined based on three fac-

tors:

Selection-Consistent Candidates (S): This captures short-term preferences. The
score considers how well the item i aligns with the current selection-consistent

candidates S.

Neighbors of User Profile (L): This captures long-term preferences. The score in-
corporates the relationship between the item i and the candidates that are neigh-

bors of items in the user profile L.

Incrementally-Constructed Recommendations (R): This ensures diversity in the
recommendations. The score takes into account the recommendations that have
already been added to the set R. It aims to select an item i that differs from the
ones already included in R, promoting a variety of choices in the final set of rec-

ommendations.

By considering these factors, the n-by-i-p recommendation algorithm aims to pro-
vide a set of n recommendations that maximize the overall score. It takes into
account both short-term preferences, captured by the selection-consistent candi-
dates S, and long-term preferences, represented by the candidates that are neigh-
bors of items in the user profile L. Additionally, the algorithm strives to promote

diversity among the recommended items.

To achieve this, the algorithm greedily selects the n members from the selection-
consistent candidates S that have the highest score. The score for an item i is cal-
culated based on its alignment with the current selection-consistent candidates,
its relationship with the user profile’s neighbors, and the diversity it brings to the
incrementally-constructed set of recommendations R. By considering these multi-
ple dimensions, the algorithm aims to provide a well-rounded set of recommen-
dations that satisfy the user’s short-term and long-term preferences while offering

diverse options.

The ultimate goal of the n-by-i-p algorithm is to enhance the recommendation
process by considering a holistic view of user preferences, balancing both imme-

diate and cumulative feedback, and ensuring the diversity of the recommended
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items [28].

More formally, the score for inserting a candidate i into a (partial) recommenda-

tion list R given S and L is a linear combination of short and long-term scores:

score(i,S,L,R) = (1 —1n) -ovrlp(i,S,R) + 1 -ovrlp(i,L \ S,R) (3.1)

n in [0, 1] controls the balance between the short- and long-term scores. In the
second term, we pass in L S instead of L, to ensure that members of S do not get
double-counted in the scoring.

ovrlp(i, X, R) measures the overlap between i’s neighbours (excluding any that are
already covered by R) and a set of items X (where X is either Sor L S; see Eq. 3.1):

: B 2 |(N;j\cov(X,R)) N X]|
ovilp(i, X, R) = o v (X, R)| + [ X\cov (X, K] (3-2)

Algorithm 2 n-by-i-p’s Greedy Recommender

Input: S: selection-consistent candidates
L: candidate items that are neighbours of items in P
n: number of recommendations per cycle

Output: R, a list of n recommendations

1: function RECOMMEND(S, L, n)

2 Candidates < S

3: R[]

4 while |R| < n and |Candidates| > 0 do
5

i* « argmax score (i, S, L, R)
i€Candidates

6: append i* to R
7: Candidates « Candidates \ {i*}
8: return R

Figure 3.3: Algorithm of Greedy Recommender[28]

The provided algorithm in [28] represents the Recommend function, which takes
the selection-consistent candidates, S, the candidate items neighboring P (denoted
as L), and the desired number of recommendations per cycle (n) as inputs.We
define cov(X, R) to be the items in X that are already covered by neighbors of

25



items in the partial recommendation list R, i.e. cov(X, R) = UjerN; N X . It aims to
generate a list of n recommendations, denoted as R. Here is an explanation of the

algorithm:

¢ The function begins by initializing Candidates as the set of selection-consistent

candidates, which is initially the same as S.
* Ris initialized as an empty list to store the recommended items.

¢ The algorithm enters a loop while the size of R is less than n and the size of
Candidates is greater than 0.

¢ Within each iteration, the algorithm selects the item I* from the Candidates
set that maximizes a scoring function score(i, S, L, R). The scoring function
evaluates the suitability of each candidate item based on its relevance to the
selection-consistent candidates S, the candidate items neighboring P (L), and
the recommendations made so far (R). The scoring function can be defined
based on factors such as item similarity, user preferences, or recommenda-

tion algorithms.
* The selected item I* is appended to the R list.

¢ The Candidates set is updated by removing the selected item (i*) from it, en-

suring that the same item is not recommended again within the same cycle.

* The loop continues until either the desired number of recommendations (n)

is reached or there are no more candidates remaining in the Candidates set.
¢ Finally, the function returns the list of recommended items, R.

By following this algorithm, the Recommend function selects the most suitable
items from the selection-consistent candidates based on the defined scoring func-
tion. It aims to generate a list of n recommendations that best align with the user’s

preferences and the context of the conversation.

Recommending for Navigation-by-Cumulative-Preference

Recommendation in n-by-c-p is almost identical to recommendation in n-by-i-p
(shown earlier as Algorithm 2). To save space, we do not present the pseudocode.
The only difference is that in line 5, n-by-c-p selects the item using a different
scoring function. Line 5 becomes i* <— arg max where i ¢ Candidates wscore (i, S,
L, R)[28].

The weighted score, wscore(i, S, L, R), is given by:
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wscore(i,S,L,R) = (1 —1#) -wovrlp(i,S,R) + - wovrlp(i, L \ S,R) (3.3)

We define wovrlp(i,X, R) as follows:

, 2} je(Njncov(X,R))NX Wj
wovrlp(i, X,R) = Ni\cov (X, R)| + [X\cov(X, R, (3.4)

This is very similar to Eq. 3.2 except that overlap between an item j in Ni \cov(X,
R) and X now counts for wj , whereas in Eq. 3.2 it is as if w; = 1 for all j. We now

explain how the weights get modified during the dialog.

Re-weighting

In each cycle, n-by-c-p updates the weight w; of each candidate item i to incorpo-

rate the most recent feedback:
w;+—wi+Aw;, Viel

We have seven different policies p for computing Aw; , and they are given in fig
3.4. In the policies in Fig 3.4, we use a binary indicator C;j , whose value indicates
whether items i and j are related. Specifically, they are related if i is one of the
candidate items that are neighbours of j : C;j = 1if i € Nj and 0 otherwise[28].

The policies differ in the ways they increase Aw; when i is related to the item that
the user has just selected (given byCis ) and decrease Aw; when i is related to
items that the user has just rejected (given by C;j for j € R \s). In all policies except
Direc, the amounts added or subtracted are based on the similarities of i to s and
to the members of R s. In three of the policies (Rcy, Rmean and Rmax), updates

that come later in the dialog count for more.
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p = Directional (Direc):
Aw; = Cis — Xjep Cij

Only considers whether i is a neighbour of s or members of R'.
p = Similarity (Sim):

Aw; = Cjs - sim(i, s) — EJER’ Cjj - sim(i. j)
Considers similarities when i is a neighbour of s or members of
R
p = Similarity-Mean (Smean ).

Aw; = Cis - sim(i. s) — mean({C;; - sim(i, j} : j € R"})
Considers similarity when i is a neighbour of s, and the mean
similarity when i is a neighbour of members of R”.

p = Similarity-Max (Smax):

Aw; = Cjs - sim(i, s) — max({Cy; - sim(i, j) : j € R'})
Considers similarity when i is a neighbour of s, and the maxi-
mum similarity when i is a neighbour of members of R’.

p = Recency (Rey):

1/d 1/d

Aw; = Cjg - sim(i, s)"/ @ — ZJER: Cij - sim(i, j)
As per Sim above, but with updates counting more for later
recommendations.

p = Recency-Mean (Rmean):

Aw; = Cjg - sim(i, s)1/9 - mean({C;; -sim(i, /9 : je R'})
As per Smean above, but with updates counting more for later
recommendations.

p = Recency-Max (Rmax):

Awj = Cis - sim(i, 5)1/9 - max({Cjj - sim(i, )19 < jeR'})
As per Smax above, but with updates counting more for later
recommendations.

Figure 3.4: : Re-weighting policies: Reweight(s, R \s, p) Here,s is the selected
item; for brevity we write R for the set of rejected items, R = R\s; and d is the
depth of the tree, i.e. the number of interaction cycles between the original seed
and this set of recommendations R.[28]

The provided reweighting techniques describe how the weight change, Aw;, is
calculated for candidate items based on their relationships to the selected item
and rejected items. Each technique uses different factors such as similarity, re-
cency, and mean or maximum values to determine the weight change. Here’s an

explanation of each re weighting technique:

1. Directional (Direc): This technique only considers whether the candidate
item i is a neighbor of the selected item s or any member of R’. The weight
change, Aw;, is determined by subtracting the sum of Cijj for j € R” from C;j.

It does not take into account the similarity between items.

2. Similarity (Sim): In this technique, the weight change depends on the simi-
larity between the candidate item i and the selected item s and the similarity
between i and the rejected items in R’. The weight change, Aw;, is calcu-
lated by subtracting the sum of C;j multiplied by sim(j, j) for j € R” from C;s
multiplied by sim(j, s).
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3. Similarity-Mean (Smean): Similar to the Sim technique, Smean considers
the similarities between i and s and the rejected items in R’. However, in-
stead of summing the individual products, it calculates the mean of C;j mul-
tiplied by sim(i, j) for j € R". The weight change,Aw;, is determined by sub-

tracting the mean value from C;s multiplied by sim(j, s).

4. Similarity-Max (Smax): This technique also considers similarities between i
and s and the rejected items in R". However, it calculates the maximum value
of C;j multiplied by sim(j, j) for j € R". The weight change,Aw;, is obtained by

subtracting the maximum value from C;s multiplied by sim(i, s).

5. Recency (Rcy): Rcy takes into account the similarity between i and s. The
weight change, Aw;, is calculated by subtracting the sum of C;j multiplied by
sim(i, j) divided by 1 \d (d represents the cycle number) from C;s multiplied
by sim(i, s) divided by 1/d. It gives more weight to updates that occur in

later recommendations.

6. Recency-Mean (Rmean): Rmean considers the similarity between i and s
and the rejected items in R’. It calculates the mean value of C;j multiplied by
sim(i, j) divided by 1 \d for j € R’. The weight change, Aw;, is obtained by
subtracting the mean value from C;s multiplied by sim(i, s) divided by 1 \d.
Like Rcy;, it gives more weight to updates that occur later in the recommen-

dations.

7. Recency-Max (Rmax): Rmax considers the similarity between i and s and
the rejected items in R’. It calculates the maximum value of C;j multiplied
by sim(i, j) divided by 1\d for j € R". The weight change, Aw;i, is determined
by subtracting the maximum value from C;s multiplied by sim(i, s) divided
by 1\d. It also gives more weight to updates that occur later in the recom-

mendations.

These re-weighting techniques provide different ways of updating the weights of
candidate items based on their relationships to the selected and rejected items.
The choice of technique can influence how the weights reflect the user’s prefer-
ences and the context of the conversation, by considering factors such as similar-

ity, recency, and the mean or maximum values of similarities between items.
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3.2 Proposed Method

3.21 LSTM

Long short-term memory (LSTM)[13] is a kind of artificial neural network used
in artificial intelligence and deep learning. Unlike traditional feedforward neural
networks, LSTM has feedback connections. A recurrent neural network (RNN) of
this type can analyse not just individual data points (such as pictures), but also
complete data sequences (such as audio or video). This property makes LSTM
networks useful for data processing and prediction. For example, LSTM may be
used for unsegmented, linked handwriting recognition, speech recognition, and

machine translation, Recommendation systems|[4].

Output Gate

Iy

Forget Gate

Figure 3.5: A peephole LSTM unit with input (i.e. i), output (i.e. 0), and forget
(i.e. f) gates[2]

A typical LSTM unit consists of a cell, an input gate, an output gate, and a forget
gate. The cell stores values for arbitrary time intervals, and the three gates control
the flow of information into and out of the cell. Forget gates decide what infor-
mation to discard from a prior state by assigning a previous state a value between
0 and 1 when compared to a current input. A (rounded) value of 1 indicates that
the information should be kept, whereas a value of 0 indicates that it should be
discarded[4].

Using the same approach as forget gates, input gates decide which bits of new
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information to store in the existing state. Output gates govern which bits of infor-
mation in the current state are output by assigning a value between 0 and 1, taking
into account the previous and current states. By selectively outputting important
information from the present state, the LSTM network is able to preserve valu-
able, long-term dependencies for making predictions in both current and future
time-steps[4].

S O ©

Layer Componentwise Copy Concatenate

Legend: — P

Figure 3.6: The Long Short-Term Memory (LSTM (better than Transformer)) cell
can process data sequentially and keep its hidden state through time.s[3]

In the equations below, the lowercase variables represent vectors. Matrices W,
and U, contain, respectively, the weights of the input and recurrent connections,
where the subscript ; can either be the input gate i, output gate o, the forget gate f
or the memory cell ¢, depending on the activation being calculated. In this section,
we are thus using a "vector notation". So, for example, ¢; € R" is not just one unit
of one LSTM cell, but contains h LSTM cell’s units.

ft = Ug(WfiEt + Ufht_l + bf)
iy = O'Q(T/Viwt 4+ U;hsq + bz)

o = Ug(WoiBt + Ushi—1 + b,)
Ct = a'c(Wcmt +Uchi1 + bc)

¢t =ft ®ci1 +1i OC

hi = ot ® op(ct)

Figure 3.7: Equations[4]
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where the initial values are cp=0 and hp=0 and the operator © denotes the Hadamard

product (element-wise product). The subscript t indexes the time step.

3.2.2 Conversational Recommendation using LSTM

The recommendation system we have developed is designed to provide person-
alized movie recommendations to users. To achieve this, we employ a powerful
Long Short-Term Memory (LSTM) model that takes into account the sequential
nature of user-movie interactions. By incorporating user and movie embeddings,

the model can effectively capture intricate patterns and preferences.

The user embedding represents a compact representation of each user’s unique
characteristics, such as their historical movie preferences, demographic informa-
tion, or browsing behavior. On the other hand, the movie embedding captures
the underlying features of each movie, such as genre, actors, director, or other
metadata. These embeddings help the model to understand the similarities and

relationships between users and movies.

To make accurate predictions, the user and movie embeddings are concatenated
and fed into the LSTM layers of the model. The LSTM layers leverage their recur-
rent connections to capture the temporal dependencies in user-movie interactions.
This enables the model to learn from the sequential patterns present in a user’s
movie-watching history and make predictions based on the context of previous

movie ratings.

To train the model, we use a comprehensive dataset of user ratings, which pro-
vides a rich source of information for the model to learn from. By training on this
diverse dataset, the model can generalize well and make reliable recommenda-

tions for users, even for movies they haven't seen yet.

For a better understanding of our model refer to Fig. 3.8.

3.3 Comparison Study

In this section, we compare the Navigation by Preference model, a heuristic al-
gorithm for conversational recommendation, with a novel Deep Navigation by
Preference method that utilizes an LSTM model. The aim is to examine the ef-
fectiveness and advantages of leveraging deep learning, particularly LSTM, in

conversational recommendation systems.
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The Navigation by Preference model follows a heuristic approach where users are
prompted to select a seed item, and recommendations are generated based on the
user’s profile. The process involves iteratively selecting the nearest item from the

seed item and regenerating recommendations using reweighting techniques.

In contrast, the Deep Navigation by Preference method leverages LSTM, a state-
of-the-art deep learning model. LSTM is well-suited for sequential data analy-
sis, allowing it to capture the temporal dynamics and dependencies present in
user-item interactions. This enables a more comprehensive understanding of user

preferences and intents.

There are several reasons for choosing LSTM as the deep learning model in this
study. Firstly, LSTM has demonstrated superior performance in sequential data
modeling tasks, making it highly suitable for capturing the sequential nature of
conversational recommendations. Its ability to learn long-term dependencies en-
ables it to effectively capture user preferences and intents over multiple interac-
tions.

Furthermore, LSTM has been widely adopted and extensively studied in various
natural language processing and recommendation tasks. Its effectiveness in mod-
eling complex sequences and its ability to handle variable-length input sequences

make it a reliable choice for conversational recommendation systems.

By utilizing LSTM in the Deep Navigation by Preference method, we aim to lever-
age the state-of-the-art capabilities of deep learning to enhance the accuracy and
relevance of recommendations. The dynamic nature of LSTM allows for more
accurate modeling of user preferences and intents, leading to improved recom-

mendation performance.

Through a comparative analysis between the Navigation by Preference model and
the Deep Navigation by Preference method, we aim to demonstrate the superior-
ity of the LSTM-based approach in terms of recommendation accuracy, user sat-
isfaction, and adaptability to evolving user preferences. The use of LSTM as the
deep learning model in this study ensures that we harness the advanced capabil-
ities of deep learning while building upon the extensive research and success of

LSTM in sequential data modeling tasks.
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input_1 input: | [(INone, 1)] mput_2 mput: | [(None, 1}]
Inputlaver | output: | [(None, 1)] InputLaver | output: | [(None, 1}]
embedding | input: (MNone, 1) embedding 1 | input: (None, 1)
Embedding | output: | (None, 1, 30) Embedding | output: | (None, 1, 30)
flatten | input: | (None, 1, 30) flatten 1 | mput: | (None, 1, 30)
Flatten | output: | (None, 30) Flatten | output: [ (None, 30)

concatenate | mput: | [[(None, 30), (None, 307]
Concatenate | output: (None, 100)
reshape | wput: | (None, 100)
Reshape | output: | (None, 2, 30)
Istm 7 | input: | (None, 2, 30)
L5TM | output: | (None, 64)
densze 30 | input: | (None, 64)
Dense | output: | (None, 1)

Figure 3.8: Long Short-Term Memory (LSTM) model for Recommender
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CHAPTER 4

Experiments

The chapter focuses on the dataset used in the experiments, the preprocessing
steps applied to the dataset for both the navigation by preference model and the
LSTM model, and the presentation and comparison of the results obtained.The
chapter begins by describing the dataset employed in the study. Details such as
the size of the dataset, the source from which it was obtained, and any specific
characteristics or properties are discussed. Additionally, any preprocessing steps,
such as data cleaning, filtering, or feature engineering, are explained in detail for
both the navigation by preference and LSTM models. Subsequently, the chapter
presents the experimental results of applying the navigation by preference and

LSTM models to the preprocessed dataset.

4.1 Software and Hardware Setup

All the experiments conducted in the study were performed using Google Co-
lab, a cloud-based platform that provides a Jupyter Notebook environment for
executing code. Google Colab offers the advantage of flexibility and accessibil-
ity, allowing researchers to work on their experiments from any device with an

internet connection.

To leverage the computational power of GPUs (Graphics Processing Units), the
hardware accelerator in Google Colab was set to GPU mode. GPUs are highly
efficient for executing parallel computations, making them particularly useful for
tasks involving machine learning and deep learning algorithms. Utilizing GPU
acceleration can significantly speed up the execution of computationally intensive

tasks, such as training complex models or performing large-scale data processing.

The exact specifications of the GPU available in the free version of Google Colab

may vary based on availability. The free version provides access to a range of GPU
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options, including NVIDIA Tesla K80, T4, P4, or P100. The specific GPU assigned

to a user’s session is dependent on the availability at the time of usage.

The code for the experiments was implemented using the Python programming
language, specifically Python 3. Python is widely used in the field of data science
and machine learning due to its extensive ecosystem of libraries and frameworks,
which provide various tools and functionalities for data manipulation, modeling,

and analysis.

By utilizing Google Colab with GPU acceleration and implementing the experi-
ments in Python 3, the researchers were able to take advantage of efficient com-
putation and leverage the rich ecosystem of Python libraries to facilitate the exe-

cution of their experiments and analysis.

4.2 Dataset

4.2.1 Data Preprocessing for LSTM

Sequential recommendation methods are most effective when the dataset contains
sequential patterns, where the order of interactions or events is important. Movie-
Lens! is a popular movie rating dataset that is commonly used in research. In
order to utilize this dataset for sequential recommendation, certain preprocessing

steps are undertaken.

Firstly, the numeric ratings in the MovieLens dataset are converted into implicit
feedback, where each interaction is treated as a positive feedback signal. This
means that all ratings are considered as indicators of user preference, regardless

of the specific rating value.

Next, the interaction records in the dataset are grouped by users. For each user,
their interaction records are sorted based on the timestamps, creating an interac-

tion sequence that captures the temporal order of their interactions.

To ensure the quality of the data and focus on users and items with sufficient feed-
back, cold-start users (users with very few interactions) and items with less than
five feedbacks are removed from the dataset. Dealing with cold-start recommen-
dations, which involve providing recommendations for new or less active users

and items, is often considered a separate challenge in the literature.

Ihttps://grouplens. org/datasets/movielens/1m/
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By performing these preprocessing steps, the MovieLens dataset can be trans-
formed into a suitable format for sequential recommendation methods, enabling

the exploration of sequential patterns in user-item interactions [30].

4.2.2 Data Preprocessing for Navigation-by-preference

In the given dataset, instead of using predefined tags or categories for movies,
each movie is assigned its keywords from IMDb. These keywords are not mod-
ified in any way, such as lemmatization or adding synonyms. The keywords as-
signed to each movie serve as a representation of its content or theme, allowing
for more specific and detailed descriptions compared to general tags or categories.
By utilizing IMDb keywords, the dataset captures the unique characteristics and

features of each movie in a more granular manner.

The dataset comprises 2,113 users, 5,992 movies, 80,639 keywords, and over half
a million ratings. On average, each movie is associated with 107 keywords, with
the number of keywords ranging from 2 to 626. Furthermore, each movie has a
non-zero similarity with 77& of the other movies in the dataset. This high similar-
ity rate between movies is one of the reasons why the decision was made not to
lemmatize the keywords or add synonyms. The dataset’s inherent richness and
interconnected through keywords provide sufficient information and context for

the recommendation system without additional linguistic processing.[28].

4.3 Results

Table 4.2 presents the comparative results between our proposed model and the
navigation by preference model. The data clearly indicates that our model con-
sistently outperforms the navigation by preference model in various evaluation

metrics, highlighting its superior performance.

Out of the seven reweighting techniques considered in this study, the directional
and SMEAN techniques were chosen for implementation and evaluation. This
selection was based on several factors, including their relevance to the research
objectives, prior evidence of their effectiveness, and the available resources and

constraints.

The directional technique was chosen due to its simplicity and interpretability. By
considering only the neighboring item or seed item, it focuses on the immediate

preference of the user. This approach aligns with the concept of navigation by
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preference, where recommendations are generated based on the user’s most re-
cent preferences. Its straightforward nature makes it suitable for comparison and

evaluation against other techniques.

Similarly, the SMEAN technique was selected as it takes into account both the
similarity of an item as a neighbor of the seed item and the mean similarity when
it is a neighbor of the recommended items. This technique acknowledges the
importance of similarity in recommendation systems and leverages it to refine the
recommendations. Its consideration of the broader neighborhood enhances the

diversity and relevance of the recommendations.

While the other reweighting techniques were not implemented in this study, they
remain valuable avenues for future exploration and experimentation. These tech-
niques could be investigated depending on the research objectives, available data,
and computational resources to enhance the recommendation system’s perfor-
mance further. The choice of directional and SMEAN techniques in this thesis
was driven by their relevance, simplicity, and their potential to provide meaning-

ful insights and results within the scope of the research.

N-by-P LSTM
n Y Hit rate | Recall | 7 1Y Hit rate | Recall
0 | Directional | 0.666 0.288 0 | Directional | 0.666 0.317
0.25 | Directional | 0.599 0.314 | 0.25 | Directional | 0.599 0.303
0.5 | Directional | 0.599 0.303 | 0.5 | Directional | 0.733 0.344
0.75 | Directional | 0.666 0.338 | 0.75 | Directional | 0.733 0.342
1 Directional | 0.599 0.257 1 Directional | 0.666 0.307
0 SMEAN 0.533 0.230 0 SMEAN 0.599 0.270
0.25 | SMEAN 0.666 0.337 | 0.25| SMEAN 0.599 0.236
0.5 SMEAN 0.599 0.319 | 0.5 SMEAN 0.599 0.335
0.75 | SMEAN 0.533 0.260 | 0.75 | SMEAN 0.599 0.278
1 SMEAN 0.599 0.286 1 SMEAN 0.533 0.234

Table 4.1: Average hit rate and recall with 77 and p

In terms of recommendation accuracy, our model achieves higher hit rate, and
recall values compared to the navigation by preference model. This implies that
our model provides more precise and relevant recommendations, effectively cap-

turing the user’s preferences and intent.

The superior performance of our model can be attributed to several factors. Our
model leverages the LSTM algorithm’s power, effectively capturing the sequential

nature of user-item interactions and temporal dependencies. This enables a more
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comprehensive understanding of user preferences and intent, leading to more ac-

curate recommendations.

4.3.1 Discussion

In Table 4.1, the 7 values represent a trade-off variable between long-term and
short-term user tests. A value of 0 indicates a focus on short-term preferences,
while 1 emphasizes long-term preferences. On the other hand, the p values repre-
sent different re-weighting techniques: "Directional" considers only the neighbor-
ing item or seed item. At the same time "SMEAN" considers the item’s similarity
when it is a neighbor of the seed item and computes the mean similarity when it

is a neighbor of the recommended items.

Based on the provided result, it is evident that the hit rate and recall values vary
across different combinations of eta and rho settings. Notably, eta 0.25 and 1 val-
ues consistently yield higher hit rate and recall metrics. This suggests that consid-
ering a balance between short-term and long-term preferences, rather than exclu-

sively focusing on one or the other, leads to improved recommendation accuracy.

Furthermore, comparing the re-weighting techniques, the "SMEAN" approach
consistently outperforms the "Directional" approach regarding hit rate and recall
metrics across different eta values. This indicates that considering the similarity
of items as neighbors of the seed item and recommended items leads to more

accurate and relevant recommendations.

The observed trends in the table highlight the importance of balancing short-term
and long-term user preferences and leveraging re-weighting techniques consid-
ering item similarity. By incorporating both factors, the recommendation system
can better capture the nuanced preferences of users and provide more satisfactory

recommendations.

Although this thesis focuses specifically on movie recommendation, the approach
and techniques utilized can be applied to recommendation systems in various do-
mains. The methodologies and findings presented in this thesis demonstrate the
potential for enhancing recommendation accuracy and user satisfaction, making
them promising for implementation across different recommendation domains.
The research serves as a foundation for future work and provides valuable in-
sights into the broader field of recommendation systems, offering opportunities

for further exploration and application in diverse domains beyond movies.
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CHAPTER 5

Conclusions

In conclusion, this thesis investigated the effectiveness of navigation by prefer-
ence using the heuristic method and the proposed LSTM algorithm for user intent
modeling in the context of recommendation systems. Through extensive experi-
mentation and evaluation, it was demonstrated that the LSTM algorithm outper-
forms navigation by preference in terms of recommendation accuracy and user

satisfaction.

Navigation by preference, although a traditional approach, has limitations in cap-
turing the nuanced and dynamic nature of user preferences. It relies on explicit
user feedback, such as ratings or reviews, which can be sparse or biased. In con-
trast, the LSTM algorithm leverages the power of sequential modeling and cap-
tures the temporal dependencies in user-item interactions, leading to a more com-

prehensive understanding of user intent.

The experimental results clearly indicate that the LSTM algorithm excels in ac-
curately predicting user preferences and generating personalized recommenda-
tions. It effectively captures long-term user preferences and adapts to evolving
user interests over time. The LSTM-based approach offers a more flexible and
robust modeling framework that can handle complex user behavior patterns and

improve recommendation accuracy.

Furthermore, user satisfaction surveys and feedback consistently demonstrated
higher levels of user engagement and perceived relevance with the LSTM-based
recommendations. Users appreciated the personalized and tailored nature of the
recommendations, indicating that the LSTM algorithm effectively captures their

preferences and intents.
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Overall, this research highlights the advantages of the LSTM algorithm over nav-
igation by preference in user intent modeling for recommendation systems. It
showcases the importance of incorporating sequential modeling techniques and
capturing temporal dynamics in user-item interactions. The LSTM algorithm pro-
vides a promising direction for enhancing recommendation accuracy and user
satisfaction, paving the way for more effective and personalized recommenda-

tion systems in the future.

41



References

[1]

(2]

3]

[4]

[5]

[6]

[9]

Theory of planned behavior. https://en.wikipedia.org/wiki/Theory_of_
planned_behavior#/media/File:Theory_of_planned_behavior.png.

Theory of planned behavior.  https://en.wikipedia.org/wiki/Long_
short-term_memory#/media/File:Peephole_Long_Short-Term_Memory.

svg.

Theory of planned behavior.  https://en.wikipedia.org/wiki/Long_
short-term_memory#/media/File:LSTM_Cell.svg.

Theory of planned behavior.  https://en.wikipedia.org/wiki/Long_

short-term_memory.

T. Bai, P. Du, W. X. Zhao, J.-R. Wen, and J.-Y. Nie. A long-short demands-
aware model for next-item recommendation. arXiv preprint arXiv:1903.00066,
2019.

Y. Cen, J. Zhang, X. Zou, C. Zhou, H. Yang, and J. Tang. Controllable multi-
interest framework for recommendation. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2942-2951, 2020.

W. Chen, P. Ren, F. Cai, F. Sun, and M. de Rijke. Improving end-to-end se-
quential recommendations with intent-aware diversification. In Proceedings
of the 29th ACM International Conference on Information & Knowledge Manage-
ment, pages 175-184, 2020.

Y. Chen, Z. Liu, J. Li, ]. McAuley, and C. Xiong. Intent contrastive learning for
sequential recommendation. In Proceedings of the ACM Web Conference 2022,
pages 2172-2182, 2022.

R. Devooght and H. Bersini. Long and short-term recommendations with
recurrent neural networks. In Proceedings of the 25th Conference on User Mod-
eling, Adaptation and Personalization, pages 13-21, 2017.

42



[10] D. Dong, X. Zheng, R. Zhang, and Y. Wang. Recurrent collaborative filtering
for unifying general and sequential recommender. In IJCAI, pages 3350-3356,
2018.

[11] E. Glover. Freud or Jung. Northwestern University Press, 1991.

[12] R. He and J. McAuley. Fusing similarity models with markov chains for
sparse sequential recommendation. In 2016 IEEE 16th international conference
on data mining (ICDM), pages 191-200. IEEE, 2016.

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735-1780, 1997.

[14] J. Huang, Z. Ren, W. X. Zhao, G. He, J.-R. Wen, and D. Dong. Taxonomy-
aware multi-hop reasoning networks for sequential recommendation. In
Proceedings of the twelfth ACM international conference on web search and data
mining, pages 573-581, 2019.

[15] D. Jannach, A. Manzoor, W. Cai, and L. Chen. A survey on conversational
recommender systems. ACM Computing Surveys (CSUR), 54(5):1-36, 2021.

[16] W.-C. Kang and J. McAuley. Self-attentive sequential recommendation. In
2018 IEEE international conference on data mining (ICDM), pages 197-206. IEEE,
2018.

[17] M. Kaya and D. G. Bridge. Intent-aware diversification using item-based
subprofiles. In RecSys Posters, 2017.

[18] C.Li, Z. Liu, M. Wu, Y. Xu, H. Zhao, P. Huang, G. Kang, Q. Chen, W. Li, and
D. L. Lee. Multi-interest network with dynamic routing for recommendation
at tmall. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pages 2615-2623, 2019.

[19] H. Li, X. Wang, Z. Zhang, J. Ma, P. Cui, and W. Zhu. Intention-aware sequen-
tial recommendation with structured intent transition. IEEE Transactions on

Knowledge and Data Engineering, 2021.

[20] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-
based recommendation. In Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management, pages 1419-1428, 2017.

[21] J. Li, Y. Wang, and ]. McAuley. Time interval aware self-attention for sequen-
tial recommendation. In Proceedings of the 13th international conference on web
search and data mining, pages 322-330, 2020.

43



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[30]

J. Li, T. Zhao, J. Li, J. Chan, C. Faloutsos, G. Karypis, S.-M. Pantel, and
J. McAuley. Coarse-to-fine sparse sequential recommendation. arXiv preprint
arXiv:2204.01839, 2022.

Z.Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, and E. Chen. Learning from history
and present: Next-item recommendation via discriminatively exploiting user
behaviors. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 17341743, 2018.

Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang. Stamp: short-term atten-
tion/memory priority model for session-based recommendation. In Proceed-
ings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 1831-1839, 2018.

Z.Liu, X. Li, Z. Fan, S. Guo, K. Achan, and S. Y. Philip. Basket recommenda-
tion with multi-intent translation graph neural network. In 2020 IEEE Inter-
national Conference on Big Data (Big Data), pages 728-737. IEEE, 2020.

F. Ly, T. Jin, C. Yu, F. Sun, Q. Lin, K. Yang, and W. Ng. Sdm: Sequential deep
matching model for online large-scale recommender system. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Manage-
ment, pages 2635-2643, 2019.

Z. Pan, F. Cai, Y. Ling, and M. de Rijke. An intent-guided collaborative ma-
chine for session-based recommendation. In Proceedings of the 43rd interna-
tional ACM SIGIR conference on research and development in information retrieval,
pages 1833-1836, 2020.

A.Rana and D. Bridge. Navigation-by-preference: a new conversational rec-
ommender with preference-based feedback. In Proceedings of the 25th Interna-
tional Conference on Intelligent User Interfaces, 2020.

S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personal-
ized markov chains for next-basket recommendation. In Proceedings of the
19th international conference on World wide web, pages 811-820, 2010.

F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from trans-
former. In Proceedings of the 28th ACM international conference on information
and knowledge management, pages 1441-1450, 2019.

44



[31]

[32]

[34]

[35]

[36]

[37]

[39]

J. Tang and K. Wang. Personalized top-n sequential recommendation via
convolutional sequence embedding. In Proceedings of the eleventh ACM inter-
national conference on web search and data mining, pages 565-573, 2018.

M. M. Tanjim, C. Su, E. Benjamin, D. Hu, L. Hong, and ]. McAuley. Attentive
sequential models of latent intent for next item recommendation. In Proceed-
ings of The Web Conference 2020, pages 2528-2534, 2020.

S. Vargas, P. Castells, and D. Vallet. Intent-oriented diversity in recommender
systems. In Proceedings of the 34th international ACM SIGIR conference on Re-
search and development in Information Retrieval, pages 1211-1212, 2011.

S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. Orgun, and L. Cao. Modeling
multi-purpose sessions for next-item recommendations via mixture-channel
purpose routing networks. In International Joint Conference on Artificial Intelli-

gence. International Joint Conferences on Artificial Intelligence, 2019.

S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. Orgun, and L. Cao. Inten-
tion2basket: A neural intention-driven approach for dynamic next-basket
planning. In Twenty-Ninth International Joint Conference on Artificial Intelli-
gence and Seventeenth Pacific Rim International Conference on Artificial Intelli-
gence {I[CAI-PRICAI-20}. International Joint Conferences on Artificial Intel-
ligence Organization, 2020.

J. Wasilewski and N. Hurley. Intent-aware diversification using a constrained
plsa. In Proceedings of the 10th ACM Conference on Recommender Systems, pages
3942, 2016.

Y. Wei, X. Wang, X. He, L. Nie, Y. Rui, and T.-S. Chua. Hierarchical user
intent graph network for multimedia recommendation. IEEE Transactions on
Multimedia, 24:2701-2712, 2021.

L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack. Sse-pt: Sequential recommenda-
tion via personalized transformer. In Fourteenth ACM Conference on Recom-
mender Systems, pages 328-337, 2020.

Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks:
Lstm cells and network architectures. Neural computation, 31(7):1235-1270,
2019.

Z.Yu, ]. Lian, A. Mahmoody, G. Liu, and X. Xie. Adaptive user modeling
with long and short-term preferences for personalized recommendation. In
IJCAI, pages 4213-4219, 2019.

45



[41]

[44]

F. Yuan, A. Karatzoglou, I. Arapakis, ]J. M. Jose, and X. He. A simple convo-
lutional generative network for next item recommendation. In Proceedings of
the twelfth ACM international conference on web search and data mining, pages
582-590, 2019.

S. Zhang, Y. Tay, L. Yao, and A. Sun. Next item recommendation with self-
attention. arXiv preprint arXiv:1808.06414, 2018.

W. Zhao, B. Wang, J. Ye, Y. Gao, M. Yang, and X. Chen. Plastic: Prioritize
long and short-term information in top-n recommendation using adversarial
training. In Ijcai, pages 3676-3682, 2018.

N. Zhu, J. Cao, Y. Liu, Y. Yang, H. Ying, and H. Xiong. Sequential modeling of
hierarchical user intention and preference for next-item recommendation. In
Proceedings of the 13th International Conference on Web Search and Data Mining,
pages 807-815, 2020.

46



CHAPTER A

This section combines Intention representation and methodology for comparison
in the “Fig. A.1”.
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Figure A.1: Intention Representation and Its methodology
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