
A Static Analysis Approach for Ethereum
Smart Contracts

by

VAISHNAVI
202111051

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

June, 2023

Acknowledgments

First and foremost, I want to express my sincere gratitude to my thesis guide
Dr. Prof.JayPrakash Lalchandani, who oversaw my thesis. This study endeavor
has been greatly influenced by their continuous support, direction, and enormous
competence. They have given me so much flexibility to pursue new interests
thanks to their persistence, support, and patience.

I also want to express my appreciation to my friends and co-batchmates who sup-
ported me during this difficult journey. Their unfailing encouragement, words of
support, and readiness to assist me anytime I needed it.

I also want to thank my family for all of their help and support. Their consistent
confidence in my talents and ongoing support have been the pillars of strength
that have helped me advance, even in the most difficult situations.

ii

Contents

Abstract vi

List of Principal Symbols and Acronyms viii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Smart Contracts Security and Historical Losses. 1
1.2 Known Vulnerabilities and Tools . 3
1.3 Motivation . 4
1.4 Objective . 4
1.5 Workflow of Thesis . 5
1.6 Thesis Outline . 6
1.7 Chapter Summary . 6

2 Background 7
2.1 Vulnerability Walkthrough . 7

2.1.1 Arithmetic . 7
2.1.2 Front Running . 8
2.1.3 Reentrancy . 9
2.1.4 Time Manipulation . 11
2.1.5 Unchecked Low-Level Calls . 12

2.2 Preliminaries . 13
2.2.1 Rattle . 13
2.2.2 Satisfiability Modulo Theories (SMT Z3 Solver) 14

2.3 Static Analysis Tools . 15
2.3.1 Symbolic Execution . 16

2.4 Dynamic Analysis Tools . 19
2.5 Comparison Between Static and Dynamic Analysis 21

iii

2.6 Chapter Summary . 23

3 Literature Survey 24
3.1 Blockchain, Ethereum, and Bitcoin . 24
3.2 Application of Blockchain . 25
3.3 Detecting Vulnerability and Security Analysis of Smart Contracts . 25
3.4 The DAO Attack and Vulnerability . 26
3.5 Static Analysis Tools . 27
3.6 Dynamic Analysis Tools . 28
3.7 Modules . 29
3.8 SmartBugs . 29
3.9 Chapter Summary . 30

4 Proposed Method 31
4.1 Workflow . 31

4.1.1 Algorithm for Master File . 33
4.1.2 Algorithm for Arithmetic Vulnerability 36
4.1.3 Algorithm for Front Running(Time Order Dependency) Vul-

nerability . 40
4.1.4 Algorithm for Reentrancy Vulnerability 44
4.1.5 Algorithm for Time Manipulation Vulnerability 47
4.1.6 Algorithm for Unchecked Low Level Calls Vulnerability . . 50

4.2 Overall Complexity . 53
4.2.1 How Complexities Can be Improved Overall 54

4.3 Association of Files . 54
4.4 Dependencies . 55
4.5 Chapter Summary . 56

5 Results 57
5.1 Methodology . 57
5.2 Datasets . 58

5.2.1 SB curated Dataset Specifications 58
5.2.2 SB wild Dataset Specifications 58

5.3 Experimental Setup . 59
5.4 Experimental Results . 60

5.4.1 Effectiveness of Tools . 62
5.4.2 Performance of Tools . 65

5.5 Chapter Summary . 66

iv

6 Conclusion and Future Work 67
6.1 Conclusion . 67
6.2 Future Work . 67

References 69

v

Abstract

The Ethereum blockchain market has grown in prominence in recent years, en-
abling the daily trading of billions of dollars. Smart contracts are programs that
are written in Solidity language and are executed on the Ethereum blockchain.
However, the execution of smart contracts handling ether currencies has led to
issues and disputes since 2016. This study focuses on the vulnerabilities of smart
contracts on Ethereum. There are many tools available for detecting vulnerabil-
ities in smart contracts. However, there is still room for research in this area,
here in our study we have implemented five modules that are Arithmetic, Front-
Running, Re-entrancy, Time Manipulation, and Unchecked Low-Level Calls, that
are intended to find security flaws listed under the DASP10 framework. We are
able to examine contract behaviour and find potential security flaws by using
symbolic execution. Performance and accuracy are the two metrics taken care of
throughout the study. This study tries to improve smart contract security pro-
cedures by detecting these vulnerabilities earlier before deploying them on the
blockchain.

vi

List of Principal Symbols and Acronyms

AI Abstract Interface

AT Arithmatic

CFG Content Flow Graph

CI Code Instrumentation

CLI Command Line Interface

CS Constraint Solving

CT Code Transformation

DApp Decentralized Application

DASP Decentralized Application Security Project

ERC20 Ethereum Request for Comments 20

ET Execution Time

ETC Ethereum Classic

ETC Execution Time per Contract

ETH Ethereum

EVM Ethereum Virtual Machine

FR Front Running

FT Fuzz Testing

IR Intermediate Representation

MBT Model Based Testing

ML Machine Learning

vii

pBFT practical Byzantine Fault

PoS Proof of Stake

PoW Proof of Work

RT Reentrancy

SB Smartbugs

SE Symbolic Execution

SMT Satifiability Modulo Theories

SSA Single Static Assignment

SWC Sweatcoin

TA Taint Analysis

TM Time Manupilation

TOD Transaction Order Dependence

ULL Unchecked Low Level Checks

XML Extensible Markup Language

viii

List of Tables

2.1 Classification of Tools . 22

4.1 Comparison of Various Files . 54

5.1 Categories of Vulnerability Present in Dataset 58
5.2 Vulnerability Categorise Division with the Criteria of Time Budget 62
5.3 Vulnerability Categorise Division with the Criteria Without Time

Budget . 63
5.4 Vulnerability Categorise Division . 65
5.5 Execution Time of Each Tool for Both Datasets 66

ix

List of Figures

1.1 Real World Example Of Smart Contract Execution 2
1.2 Workflow of Thesis . 5

2.1 Example Contract for Arithmetic Vulnerability 8
2.2 Example Contract for Front Running Vulnerability 9
2.3 Example Contract for Reentrancy Vulnerability 10
2.4 Example Contract for Time Manipulation Vulnerability 11
2.5 Example Contract for Unchecked Low Level Calls Vulnerability . . 12
2.6 Register Machine Output . 13
2.7 Example Problem for Z3 Working . 14
2.8 Response of Z3 . 15
2.9 Category-wise Division of Smart Contract Analysis Tools 15

4.1 Proposed Architecture . 32
4.2 Execution of Master File . 35
4.3 Execution of Arithmetic . 39
4.4 Execution of Front Running . 42
4.5 Execution of Reentrancy . 45
4.6 Execution of Time Manipulation . 49
4.7 Execution of ULL . 52
4.8 Flow of Execution . 55

5.1 Command Line Interface for single Processing 59
5.2 Command Line Interface Batch Processing 60
5.3 Text File Output . 61
5.4 Result with the Criteria of Time Budget 63
5.5 Results with the Criteria of Execution Till Halt 64
5.6 Results with the Criteria of Execution Till Halt 65

x

CHAPTER 1

Introduction

Blockchain technology, particularly the Ethereum platform, has received a lot of
interest in recent years as a viable option for decentralized and secure transac-
tional systems [42] [43]. The notion of a distributed ledger lies at the heart of this
technology, allowing participants to keep a synchronized and immutable record
of transactions without the need for middlemen. The concept of blockchain was
first introduced in 2008 as the foundation for digital currencies such as Bitcoin
[13], Ethereum [35], and many more. These cryptocurrencies use blockchain to
deliver safe and transparent transactions without the need for middlemen such
as banks or payment processors. Blockchain provides transaction integrity, avoids
duplicate spending, and allows user to verify their authenticity. Aside from cryp-
tocurrencies, blockchain technology has multiple potential applications in health-
care [26], finance and banking [23], voting systems [14], supply chain manage-
ment [6] [15] etc.

One of the most important characteristics of blockchain is its decentralized na-
ture. In contrast to typical centralized systems in which a single entity controls
the data, blockchain functions on a distributed network of computers known as
nodes. Each node keeps a copy of the full blockchain, and any modifications to
the data must be approved by all participants. This decentralized structure has
various advantages, including better security, transparency, and efficiency.

1.1 Smart Contracts Security and Historical Losses.

Smart contracts are programs executed across a decentralized network of nodes
and written in a Turing-complete language, most often Solidity.

As shown in Fig 1.1, two users (a seller and a buyer) conduct business using an
application that includes a smart contract. The transaction is completed in five

1

Figure 1.1: Real World Example Of Smart Contract Execution

steps that are- step 1, the buyer delivers the needed number of ethers to the smart
contract’s address, with the balance held in escrow by the smart contract. In step
2, the smart contract notifies the seller by causing an event that identifies the re-
cipient of the buyer’s request. In step three, the seller checks and validates the
buyer’s request; if it is accurate and there are sufficient ethers to pay for the de-
sired item, the seller will ship the item and send a shipping message to the smart
contract. The smart contract is updated with the delivery status at step 4 of the
process. In step 5, the smart contract sends the ethers to the seller’s account.

However, due to the idiosyncrasies of the EVM [2], writing secure smart contracts
is challenging. Unfortunately, as the number of smart contracts grows, security
concerns are arising. Smart contract code security issues will almost certainly
be developed during code development. A smart contract implemented on the
public blockchain is typically exposed in an open setting, leaving it vulnerable to
hacking [39] [24]. Furthermore, because smart contracts are immutable and irre-
versible, we can only observe the cash flowing into the attacker’s package and can
be powerless to intervene.

Smart contracts are not free from vulnerabilities [25] [31] and Some of them were
previously taken advantage of, which cost them money like the DAO attack [41]
which was one of the initial attacks that happened in 2016 where the attack-
ers drained approximately one-third of the DAO’s money, which totaled more

2

than $50 million at the time. This incident caused a hard split in the Ethereum
blockchain, leading to the formation of two different cryptocurrencies, ETH and
ETC. Another famous attack took place in the same year where an anonymous
attacker exploited a weakness in the smart contract of the King of the Ether DApp
on the Ethereum network, before the vulnerability was detected and patched, the
attacker was able to modify the game’s rules and regularly claim prizes, collecting
a substantial quantity of ether. Followed there was a parity wallet freeze in 2017,
resulting in the freezing of $160 million worth of ether and these numbers are still
rising.

To summarise, smart contract security issues not only result in massive money
losses but also undermine the basic trust built on blockchain technologies. As a
result, before smart contracts can be deployed, robust security analysis and vul-
nerability detection methodologies are required in order to prevent possible vul-
nerabilities and secure users’ money and assets.

1.2 Known Vulnerabilities and Tools

In this section, we will discuss the key vulnerabilities that lead to the exploitation
of smart contracts, as discussed in section 1.1 a poorly coded smart contract can be
hacked by someone sending certain instructions. Smart contracts, while promis-
ing decentralized automation, face numerous security challenges due to various
factors [44].

Inadequate code review and the complexity of smart contracts often lead to cod-
ing errors and logical flaws. Formal verification is underutilized, leaving vulner-
abilities undetected. Dependencies on external contracts and libraries can intro-
duce weaknesses in the main contract. Insufficient testing and time constraints
further exacerbate vulnerabilities. The evolving threat landscape demands con-
tinuous updates to address emerging risks. Additionally, the immutability of
deployed contracts prevents easy post-deployment patching. Misuse of fallback
mechanisms and security oversights also contribute to smart contract vulnerabili-
ties. Mitigating these issues necessitates secure coding practices, rigorous testing,
continuous monitoring, and adoption of formal verification methods. Staying up-
dated with evolving security best practices is essential for developing resilient
and secure smart contracts. While providing a precise figure is difficult, it is com-
monly acknowledged that smart contracts can be vulnerable.

3

Choosing a static analysis tool for smart contract security is essential to detect
vulnerabilities at an early stage by analyzing the contract’s source code without
execution. This proactive approach minimizes the risk of exploitation by mali-
cious actors. By automating the analysis process, these tools improve efficiency
and reduce human errors in vulnerability detection. Moreover, they can uncover
complex vulnerabilities that may be challenging to identify through manual code
review. Comparing the effectiveness and performance of different tools helps re-
searchers and developers choose the most suitable option for robust smart con-
tract security.

Here, we are mainly focusing only on five vulnerabilities that are Reentrancy,
Arithmetic, Front Running, Time Manipulation, and Unchecked Low-Level Calls.
Further, these vulnerabilities are examined for our approach along with eight
open-source static tools which are Honeybadger, Manticore, Mythril, Osiris, Oyente,
Securify, Slither, and Smartcheck. Detailed discussion about the vulnerabilities
and tools is covered in Chapter 2.

1.3 Motivation

There has been a dramatic rise in the popularity of smart contracts. Like software
programs, smart contracts may also contain bugs that can be exploited by ma-
licious attackers for financial gains. The first smart contract assault occurred in
2016, and after that, these attacks continued. Despite many static analysis tools
present in open source, there is still room for improvement in the accuracy of
detecting vulnerabilities, also minimizing human error, discovering complex vul-
nerabilities, addressing emerging threats, etc. The motivation behind this study
is to analyze how vulnerabilities affect transactions, how can we detect them, and
how well static analysis tools work examining the contracts.

1.4 Objective

The objective of this thesis is to develop and present a static and modular analysis
approach based on symbolic execution to uncover vulnerabilities in smart con-
tracts. The proposed approach will address the limitations of existing open-source
tools by implementing five distinct modules, each designed to detect specific vul-
nerabilities commonly found in smart contracts. Additionally, the research will

4

compare the effectiveness and performance of the developed approach with other
state-of-the-art open-source tools.

1.5 Workflow of Thesis

Figure 1.2: Workflow of Thesis

5

1.6 Thesis Outline

The organization of the thesis is as follows:

• Chapter 2 discusses the background of five vulnerabilities we work on. Fur-
ther, static analysis and dynamic analysis tools are compared. Moving for-
ward, symbolic execution, tools with specific versions, followed by a brief
explanation of the vulnerabilities are discussed.

• Chapter3 represents a comprehensive review of all the articles and papers
that we referred to in our study.

• Chapter 4 discusses the proposed method where the workflow of the archi-
tecture is explained, along with that the implemented modules complexities
are discussed later in the same chapter system dependencies are also given.

• Chapter 5 gives the results, and also describes the methodology used in this
study with datasets details and experimental details.

• Chapter 6 concludes the work and presents the future scope of the thesis.

1.7 Chapter Summary

In this chapter, the rise of blockchain in different potential fields, how smart con-
tracts are changing the blockchain, and how they can be exploited are discussed.
The idea of this chapter was to introduce the known vulnerabilities and the tools
we are going to work with. Also, the motivation and objective are discussed. Fur-
ther to move ahead with the study, the background will be discussed in the next
chapter.

6

CHAPTER 2

Background

This chapter discusses about a comprehensive understanding of the vulnerabil-
ities and analysis tools that form the foundation of our research. Here we are
doing an empirical study for a detailed exploration of vulnerability walkthrough,
analysis tools, and a comparison between static and dynamic analysis techniques.
we will also delve into the concept of Rattle and SMT Z3 Solver. These tools have
proven to be invaluable in identifying and mitigating vulnerabilities in various
systems. We will discuss the features, capabilities, and methodologies employed
by these tools, showcasing their effectiveness in vulnerability detection and reso-
lution.

2.1 Vulnerability Walkthrough

As part of our current focus on enhancing smart contract security, we prioritize the
analysis of five key vulnerabilities, which fall within the DASP Top 10 category.

2.1.1 Arithmetic

The integer type in Solidity has a constrained range. During arithmetic opera-
tions, variable values may go above the upper or lower bound. The value will
warp to the other side of the bound if this happens. The actual value is the real
value less the upper bound if the real value exceeds the upper bound. Older ver-
sions of Solidity do not issue a warning for this anomaly. Attackers might manip-
ulate particular integer values to cause the smart contract to behave abnormally.
Floating points are not yet supported by Solidity. In order to represent floating
numbers in smart contracts, integer types must be used. For example, decimal
is used to express the number of digits following the decimal point in the design
of ERC20 (a token standard). Solidity’s division always rounds off to the lower
integer [40].

7

For example, if we consider the contract shown in Fig. 2.1 Users can deposit ether
into the contract, and it will be locked there for at least a week. This contract is
intended to function as a time vault. However, once deposited, the user may be
confident that their ether is locked in safely for at least a week, as this contract im-
plies. The user may choose to prolong the wait time to longer than 1 week. A con-

Figure 2.1: Example Contract for Arithmetic Vulnerability

tract like this could come in handy if a user is required to hand over their private
key to make sure their ether is unavailable for a brief period of time. However, if a
user had entered 100 ether into this contract and given the attacker their keys, the
attacker could utilize overflow to extract the ether from the user. The lockTime()
for the address for which they now possess the key is a public variable. Thus,
the attacker might find it. They could then execute the increaseLockTime() and
send the number 2256, userLockTime as input after referring to this value as user-
LockTime(). The amount would produce an overflow when added to the current
userLockTime(), setting lockTime[msg.sender] to 0. In order to get their reward,
the attacker might then only call the withdrawal method.

2.1.2 Front Running

Transaction Order Dependence (TOD) is another name for this issue, according
to article [4]. When two transactions (T1 and T2) are present and each of them
invokes the same contract, it occurs. If transaction T2 happens first and results in

8

state 1, then transaction T1 can happen in state 1 or in state 0. A miner chooses this
sequence, but malicious users can profit from it. For instance, if a user submits a
solution to a puzzle, a malevolent user may be able to view the answer and then
initiate a new transaction using the solution and pay a much higher price (also
known as gas) to perform the transaction in order to be mined first and win the
prize. Since miners choose how transactions are processed in a given order, there
is currently no known mechanism to address this kind of vulnerability.

To understand this vulnerability in detail let us consider a contract shown in Fig
2.2 here an attack on this smart contract can happen in a way where the first user
will send the hash solution to the smart contract in a transaction. This transac-
tion will reach the mempool where it will be waiting to be added to the following
block. An attacker is keeping an eye on the mempool and waiting for a transac-
tion to obtain the solution. After that, the attacker sends the smart contract with
the same value but with a greater Gas value. Hence, the attacker transaction will
be the first to be completed, making him the winner.

Figure 2.2: Example Contract for Front Running Vulnerability

2.1.3 Reentrancy

Reentrancy [7] refers to a circumstance in which contract A contacts contract B,
who may call A back and perform A’s call again. This condition is caused by
Solidity’s fallback mechanism. When calls from other contracts fail to discover a
matching function, the fallback function is called. When the caller invokes the call
function without providing a function signature, the callee’s fallback function is

9

invoked. To re-enter the caller, this function might call the caller’s function. In
rare cases, this method may induce unexpected and uncontrolled ether transfers.

Reentrancy vulnerability can be explained with an example shown in Fig 2.3, here
the smart contract InsecureEtherVault can be attacked as the reentrancy begins
in line 10 in the withdrawAll function. The amount of ethers indicated by the
balance variable would be transmitted to the user wallet or external contract as
soon as the low-level function call is carried out. The attacker can attack the con-
tract which can do the reentrancy by repeatedly invoking the withdrawAll func-
tion to drain out all Ethers locked in the InsecureEtherVault contract. Because
the call function is called prior to setting the withdrawer’s balance to 0 (userBal-
ances[msg.sender] = 0), the attack is successful in this case. As a result, the attack
contract has the ability to perform the loop calls to the withdrawAll function in
the middle of the control flow. The attack contract has the ability to steal all ethers
because the withdrawAll function would still keep track of the balance before the
modification.

Figure 2.3: Example Contract for Reentrancy Vulnerability

10

2.1.4 Time Manipulation

The contracts must have up-to-date information, which can be acquired through
a variable called a block. Simply put, the variable timestamp reads the data found
in the block where the transaction is located. However, because miners hold this
information, developers should avoid exploiting it. There are no restrictions on
this value in the Ethereum specification (yellow paper), which merely states that
it must be higher than the preceding block. Both the Parity and Geth implemen-
tations on Ethereum reject timings that are off by 15 seconds. Since the miners
control this information, there is currently no known method to mitigate this type
of vulnerability. The only solution is for developers to refrain from using blocks
with the timestamp prefix.

In Fig 2.4 the TimeManipulation contract in this example accepts two inputs, first
the amount which represents the value to be released, and second releaseTime
which specifies the timestamp at which funds may be withdrawn. A user can only
withdraw money via the withdraw function if the releaseTime is greater than or
equal to the current time. However, a spoofing attack could be used by an attacker
to provide the impression that more time has passed than it actually has. The at-
tackers can spoof the release time, adds one hour to the contract’s releaseTime,
and then prematurely withdraw the funds. An attacker who seizes control of the
blockchain node that verifies network transactions could launch this attack.

Figure 2.4: Example Contract for Time Manipulation Vulnerability

11

2.1.5 Unchecked Low-Level Calls

A contract can call another contract in Ethereum in a variety of ways using a
variety of commands, such as CALL, CALLCODE, DELEGATECALL, and STAT-
ICCALL. These directives are regarded as low-level directives. In order to call
another contract when writing a contract, the user will use higher-level methods
like send or transfer. Send() only returns false when an exception occurs and does
not propagate exceptions. The caller execution will proceed as if nothing hap-
pened if the callee execution is interrupted due to an exception and the user calls
the send function without inspecting the return value. It is advised to examine
the return value when using low-level instructions directly, the transfer function,
or other functions to help mitigate this type of vulnerability.

The example shown in Fig2.5 demonstrates the unchecked low level call, here
when a send() is used without examining the response, a problem occurs even
if ether was sent or not, payedOut() can be set to true if a winner’s transaction
fails. In this instance, the withdrawLeftOver() can be used by the general public
to withdraw the winner’s rewards.

Figure 2.5: Example Contract for Unchecked Low Level Calls Vulnerability

12

2.2 Preliminaries

Most of the smart contracts are written in Solidity. In this study, as an input, we
are taking a Solidity file or the byte code corresponding to it. Generally, Solid-
ity files have common features like contract definition, state variables, functions,
modifiers, constructors, Inheritance, and Libraries.

2.2.1 Rattle

In our research for intermediate representation(IR), we are taking support of the
Rattle tool, this will elevate the bytecode to an IR and change the instructions’
form from a stack to a register and into a single static assignment form. It will
also be built to house the CFG. Functions are recovered and split off. Additionally,
function arguments, memory locations, and storage locations are recovered. The
following instruction shown in the listing would produce an output like shown
in Fig 2.6.
python3 rattlecli.py -input inputs/kingofether/KingOfTheEtherThrone.bin O

Figure 2.6: Register Machine Output

13

2.2.2 Satisfiability Modulo Theories (SMT Z3 Solver)

The SMT Z3 solver is a powerful automated theorem prover developed by Mi-
crosoft Research. It is widely used in the field of formal verification and software
analysis to solve logical formulas involving constraints from different theories,
such as integer arithmetic, real arithmetic, arrays, and bit-vectors. Let’s proceed
with a simple example to illustrate these concepts. We can query an SMT solver
such as Z3 to determine whether the expression x + y = 5 can be satisfied. In the
context of integers, e.g. there are integer values x and y, that add up to value 5.
We will express the problem in the SMT-LIB language Fig 2.7. When we run the

Figure 2.7: Example Problem for Z3 Working

Z3 SMT solver, we obtain the response as shown in Fig 2.8. Here sat means that
the solver determined that the formula can be satisfied. It identified one solution
(model), with y = 0 and x = 5 that satisfies the problem as stated. This was the
basic understanding of how Z3 works.

14

Figure 2.8: Response of Z3

2.3 Static Analysis Tools

Static analysis is a technique in software development that allows you to evaluate
code without running it. It entails inspecting a program’s source code, bytecode,
or built binary for potential flaws like as bugs, security vulnerabilities, or coding
mistakes. Static analysis examines the code’s structure, grammar, and semantics
rather than its runtime behaviour [12]. There are broadly three categories of how
the tools are divided, as seen in Fig 2.9, static analysis tools contribute 75%. In our
study, we take into account static analysis tools only.

Figure 2.9: Category-wise Division of Smart Contract Analysis Tools [16]

15

2.3.1 Symbolic Execution

Symbolic execution is a method used in software analysis and testing to inves-
tigate a program’s various routes and behaviors. It entails running a program
using symbolic values rather than physical inputs. Symbolic execution enables
the methodical examination of multiple execution routes, finding probable pro-
gram behaviors and potential vulnerabilities by considering inputs as symbolic
variables [18].

The control flow of the program is analyzed during symbolic execution, and re-
strictions are constructed depending on the conditions and branching statements
encountered. The links between symbolic inputs and program states are repre-
sented by these limitations. The symbolic execution engine then attempts to meet
these requirements by employing constraint-solving approaches such as SMT solvers.
In this subsection, we present eight symbolic execution tools that we are working
on for comparative study:

Honeybadger [33]

Honeybadger was developed in the year 2019 by a group of researchers at the
University of Luxembourg. The authors conducted a largescale analysis of over 2
million smart contracts. They identified 690 honeypots Smart with his contracts
in circulation and his 240 victims, totaling over $90,000 in profits for the honey-
pot creator. Manual verification shows that 87% of reported contracts are actually
honeypots. There are three implications of their study First, honeypots are a real
and growing threat to the Ethereum ecosystem. Second, HoneyBadger is a valu-
able honeypot detection tool. Third, developers should be aware of the honeypot
threat and take steps to protect their contracts.
Current Version: ff30c9a
Input: Solidity file.

Manticore [21]

This tool is a contribution of TrailOfBits, it is a symbolic execution that is also used
to uncover execution pathways in EVM bytecode that lead to reentrancy vulnera-
bilities and accessible self-destruct actions. This tool combines static and dynamic
analysis. However, it can be challenging to utilize static analysis to detect defects
that are only triggered by particular inputs. Static analysis can find bugs that are
not reachable during runtime. While dynamic analysis can reveal faults that can

16

be fixed at runtime, it can also be laborious and inefficient. Static analysis is used
by Manticore to identify potential bug locations, while dynamic analysis is used to
investigate the state space surrounding those spots. Some of Manticore’s salient
characteristics are, even for users who are unfamiliar with symbolic execution,
Manticore is made to be simple to use. Manticore is adaptable and may be used
to examine many different types of software, including binaries, smart contracts,
and bytecode. Manticore is a powerful tool that has been used to identify bugs
and security flaws in a range of software.
Current Version: 0.3.7
Input: Solidity file.

Mythril [28]

Mythril open-source analytical tool was created in 2017 by ConsenSys, analyses
Ethereum blockchain-based smart contracts but also works for other blockchain
platforms. Mythril uses three approaches for analyzing smart contracts: symbolic
execution, SMT solving, and taint analysis. It can also be used in combination
with other tools. There are a number of limitations to Mythril, such as its reliance
on symbolic execution, which can be computationally expensive There are a num-
ber of limitations to Mythril, such as its reliance on symbolic execution, which can
be computationally expensive.
Current Version: 0.23.15
Input: Solidity file, byte code.

Osiris [32]

Osiris was created in 2018 and is an extension of the Oyente tool that is freely ac-
cessible and developed in Python. It comprises a mix of two techniques—symbolic
execution and taint analysis—to find mathematical weaknesses. Arithmetic, trun-
cation, and signedness issues are three forms of integer vulnerabilities that it may
identify. The tool is evaluated with 1.2 million or more smart contracts. The tool
was able to identify 42,108 contracts with integer issues, they discovered. 1,272 of
these contracts had previously disclosed known vulnerabilities. Twelve new vul-
nerabilities were also discovered by Osiris, one of which was critical and present
in a contract that was being used on the Ethereum network.

Osiris can identify a wider range of integer issues than previous techniques. Com-
pared to other instruments, Osiris has a reduced rate of false positives. Osiris can
be used to identify vulnerabilities, both known and unknown. A useful tool for

17

enhancing the security of Ethereum smart contracts is Osiris.
Current Version: d1ecc37
Input: Solidity file.

Oyente [20]

It is one of the earliest tools that analyze smart contracts using symbolic execution
and statically examines the program code route using a path.CFG constructor,
Explorer, Core analyzer, and Validator are its four key architectural components.
The Z3 bit-vector solver is used by the Explorer and Validator to delete traces that
are demonstrably impossible. This tool examines nearly 19k smart contracts out
of which it flags 8k contracts and finds 1682 are distinct and were able to collect
source code for only 175 contracts to confirm the tool’s correctness.
Current Version: 480e725
Input: Solidity file.

Securify [34]

Security analysis is done in two phases. The contractual dependency graph is
symbolically executed in the first stage, and relevant semantic data is extracted
ie Securify’s approach is based on automatic inference of semantic program facts
followed by checking of compliance and violation security patterns over these
facts. The second stage determines whether or not a property is secure by looking
for patterns of compliance and violations. Securify uses compliance and violation
patterns to guarantee that certain behaviors are safe and, respectively, unsafe. The
remaining behaviors are reported as warnings (to avoid missing errors), and more
than 18k smart contracts in the real world.
Current Version: Securify 2.0
Input: Solidity file.

Slither [10]

This study introduces Slither, a static analysis system created to offer comprehen-
sive data on Ethereum smart contracts. It operates by transforming Solidity smart
contracts into a translation format called SlithIR. SlithIR uses Static Single Assign-
ment (SSA) form and a condensed instruction set to simplify analysis implemen-
tation while retaining semantic data that would be lost if Solidity were converted
to bytecode. Dataflow and taint tracking are two frequently used program analy-
sis approaches that can be applied using Slither. Four key use cases comprise our

18

framework: (1) automated vulnerability discovery, (2) automated code optimiza-
tion opportunity discovery, (3) enhanced user knowledge of the contracts, and (4)
help with code review. This tool’s open-source version may identify around 20
issues, including Reentrancy, suicidal contracts, locked ether, and arbitrary ether
sending. The authors assessed Slither’s bug-finding abilities by contrasting its
performance on reentrancy bugs with that of other readily available cutting-edge
tools.
Current Version: v0.9.3
Input: Solidity file.

Smartcheck [30]

Lexical and syntactic analysis is the method used by SmartCheck to examine the
smart contract.ANTLR (a parser generator) and a unique Solidity grammar are
used to create an XML parse tree as an intermediate representation. For the pur-
pose of processing intermediate representation and identifying vulnerability pat-
terns, XPath queries are employed. It recognizes about 20 different sorts of vulner-
abilities, including implicit visibility level, compiler version not fixed, division by
zero, and violation of style guides. Reentrancy vulnerabilities, transaction order
dependence vulnerabilities, integer overflow vulnerabilities, and other security
flaws are all detectable by SmartCheck in Ethereum smart contracts. For identify-
ing potential security flaws in Ethereum smart contracts, SmartCheck is a helpful
tool. The creators of SmartCheck intend to continue developing the program in
the future, adding new capabilities and enhancing the tool’s precision.
Current Version: v2.0
Input: Solidity file.

2.4 Dynamic Analysis Tools

ContractFuzzer [17]

It was created in 2018 and is an open-source dynamic analysis tool that is freely
accessible. It is a tool for fuzzing Ethereum smart contracts to find security flaws.
For the purpose of creating fuzzing inputs, it employs smart contract ABI stan-
dards. To find security flaws, it categorizes test oracles. By instrumenting the
Ethereum virtual computer, the behavior of smart contracts during their runtime
is recorded. Finally, these logs are examined to identify security flaws.

19

ContractGuard [37]

It was created in 2019 and is a JavaScript-based dynamic analysis tool. It makes
use of an effective anomaly-based intrusion detection system methodology. When
it notices any unusual behaviour, it alerts the administrators and restores the
smart contract’s status to its prior secure state.

ContractLarva [22]

It was created in 2017 and is a freely accessible open-source dynamic analysis
tool written in Haskell and TeX. It operates on Solidity code and is a runtime
verification tool. This utility implements event triggering and monitoring logic
for the Ethereum smart contract. Dynamic event automata are used to specify the
attributes needed to monitor the events. Both control flow events and data flow
events are recorded by the tool.

EthBMC [45]

The dynamic analysis tool was created in 2020. This tool accepts input for EVM
byte code analysis. It is a symbolic execution-based automated vulnerability de-
tector. It investigates the potential state space that a programme can access. It
uses some constraints to encrypt the attackers’ intended outcome, and then the
SMT solver is used to resolve that constraint. When dealing with parity bug vul-
nerabilities, it is effective.

Etherolic [3]

It is a Rust-based dynamic analysis tool. The etherolic analysis approach uses con-
sole testing and dynamic taint tracking to examine the byte code of the Ethereum
virtual machine. It both locates weaknesses and produces exploits to set off un-
foreseen mistakes. It is capable of detecting short addresses, denial of service,
bad randomness, locked ether, re-entrancy, unhandled exceptions, integer over-
flow/underflow, and bad randomness.

Ethlint [1]

It was created in 2016 and is a freely accessible open-source JavaScript dynamic
analysis tool. Its previous name was Solium. It looks for style and security issues
in the Solidity code. It borrows concepts from Solidity Parser and ESLint, a static
analyzer for JavaScript code.

20

Harvey [5]

The invention of this dynamic analysis tool took place in the year 2020. Harvey is
a grey-box fuzzer for smart contracts, which is nothing more than a quick way to
create tests to find security flaws. Assertion violations, as specified in SWC 110,
and memory access errors, as described in SWC 124, are the two main sorts of
defects that Harvey mostly finds.

ModCon [19]

It was created in 2020 and is a JavaScript-based dynamic analysis tool. It is a
model-based testing framework that can be used with both permissioned and
permission-less blockchain platforms. It defines test oracles using user-defined
models. The front end of ModCon is web-based, and the back end is powered
by JavaScript. The user must provide both a test model specification and a smart
contract as inputs.

Solitor [29]

It was created in 2018 and is a dynamic analysis tool that is implemented in Java.
Solidity monitor is abbreviated as Solitor. Using annotations, the user of this tool
can define the behaviour. These annotations can be used to test whether or not
certain properties hold at runtime.

Vultron [36]

It was created in 2019 and is a freely accessible, open-source, JavaScript dynamic
analysis tool. It suggests a strategy for developing a mechanism to distinguish be-
tween irregular transactions and regular ones. This tool can enable a wide range
of downstream analysis techniques like testing, fuzzing, verification, and sym-
bolic execution. ContraMaster is one of its other names.

2.5 Comparison Between Static and Dynamic Analy-

sis

Static analysis examines the code structure without running it, allowing for early
vulnerability detection. Dynamic analysis, on the other hand, comprises running
the code and analysing its behaviour in real-world contexts. The key distinctions
between static and dynamic analysis are as follows:

21

1. Static analysis tools examine the source code or bytecode. To find any po-
tential problems, they look at the grammar, control flow, and code structure.
whereas dynamic tools focus on the actual program’s inputs, memory use,
and network communications.

2. Static analysis is often carried out during the development phase. It permits
the early detection of weaknesses and coding mistakes. runtime overhead
is incurred by dynamic analysis since it necessitates code execution. This
might not be appropriate for large-scale systems analysis or time-sensitive
applications due to its performance implications.

Some of the well know static analysis tools that we included in our study are listed
in section 2.3.1. A relative analysis of popular static and dynamic analysis tools is
shown in table 2.1 below:

Table 2.1: Classification of Tools (AI- Abstract Interpretation, CS- Constraint Solv-
ing, CT- Code Transformation, CI- Code Instrumentation, FT- Fuzz Testing, MBT-
Model-Based Testing, SE-Symbolic Execution, TA- Taint Analysis, ML-Machine
Learning.)
Tool Static Dynamic Code CLI Year Platform Approach
ContractFuzzer [17] Yes Yes Yes 2018 Go FT
ContractGuard [37] Yes Yes 2019 JavaScript ML
ContractLarva [22] Yes Yes Yes 2017 Haskell,Tex CI
EthBMC [45] Yes Yes Yes 2020 Rust SE
Etherolic [3] Yes Yes 2020 Rust FT & TA
Ethlint [1] Yes Yes 2016 JavaScript CI
Harvey [5] Yes Yes 2020 - FT
Honeybadger [33] Yes Yes Yes 2019 Python SE & CS
Manticore [21] Yes Yes Yes 2017 Python SE
ModCon [19] Yes Yes 2020 JavaScript MBT
Mythril [28] Yes Yes Yes 2017 Python SE & CS
Osiris [32] Yes Yes Yes 2018 Python SE
Oyente [20] Yes Yes Yes 2016 Python SE
Securify [34] Yes Yes Yes 2018 JAVA AI
Slither [10] Yes Yes Yes 2018 Python CT & CS
SmartCheck [30] Yes Yes Yes 2019 C++ CT
Solitor [29] Yes Yes Yes 2018 - CI
Vultron [36] Yes Yes Yes 2019 JavaScript FT

22

2.6 Chapter Summary

Summarizing this chapter, we learned about different vulnerability types consti-
tuting modules that are implemented. For this study later we also discussed static
and dynamic analysis and also why we choose static analysis. Lastly, the tools as-
sociated with the study are described.

23

CHAPTER 3

Literature Survey

This chapter provides an in-depth exploration of blockchain technology, Ethereum,
and Bitcoin. It also covers the architecture of blockchain, consensus mechanisms,
privacy challenges in Bitcoin, and techniques to enhance privacy within the Bit-
coin ecosystem. The survey also investigates the applications of blockchain tech-
nology beyond Bitcoin in various industries, examines vulnerabilities and secu-
rity analysis of smart contracts, and discusses notable attacks such as the DAO
attack. Furthermore, it presents static and dynamic analysis tools used for de-
tecting vulnerabilities in smart contracts. The survey serves as a foundation for
further research in this field.

3.1 Blockchain, Ethereum, and Bitcoin

This section talks about the architecture of blockchain and various consensus
mechanisms used in blockchain networks, and also how to examine the privacy
challenges in Bitcoin, and explores techniques to improve privacy within the Bit-
coin ecosystem. Zheng [42] [43] explains the architecture of a blockchain in detail,
what is the structure of blocks their transactions, and the decentralized network.
It also discusses different blockchain designs, such as consortium, private, and
public blockchains. Additionally, it describes PoW, PoS, and PBFT consensus al-
gorithms, highlighting their benefits, drawbacks, and security issues.

Blockchain has a very famous application which is Bitcoin, which was imple-
mented in the year 2008 by a group of unknown people. Herrera [13] introduces
Bitcoin and discusses its decentralized nature. It addresses the misconception of
total anonymity in Bitcoin and explores challenges related to privacy, including
linkability, traceability, and the lack of built-in identity It also discusses anonymity
techniques such as coinjoin, stealth addresses, and which aim to enhance privacy
within the Bitcoin ecosystem.

24

Ethereum is a decentralized blockchain with smart contract functionality. Ether is
the native cryptocurrency of the platform. Among cryptocurrencies, ether is sec-
ond only to Bitcoin in market capitalization. It is open-source software. Ethereum
was conceived in 2013 by programmer Vitalik Buterin. Vujicic [35] presents the
Ethereum platform and provides a brief comparison between Bitcoin and Ethereum.
It emphasizes that while both platforms leverage blockchain technology, Ethereum
offers a platform for DApps and smart contracts, whereas Bitcoin primarily fo-
cuses on digital money transactions.

3.2 Application of Blockchain

We explored the diverse applications of blockchain beyond Bitcoin, discussing its
implementation in various industries and sectors. Hsaed[[26], Palihapitiya[[23],
Jafar [14], Chen [6], Kakkar [15] collectively discuss the applications of blockchain
in different domains, highlighting its potential beyond Bitcoin. Each paper fo-
cuses on a specific industry or sector where blockchain technology is being uti-
lized. Hsaed [26] explores the use of blockchain in healthcare, discussing how
the industry is changing due to this technology. It addresses the challenges faced
and highlights developments in this domain. Palihapitiya [23] specifically dis-
cusses the use of blockchain in the finance and banking industry, highlighting
its potential benefits and applications in this sector. Jafar [14] explores the use
of blockchain in voting systems, discussing its potential to enhance transparency,
security, and efficiency in the voting process.

3.3 Detecting Vulnerability and Security Analysis of

Smart Contracts

There are many vulnerabilities but for this study, we only focus on five categories.
Ashizawa [2] the author describes the importance of detecting vulnerabilities in
these contracts to mitigate security risks. It discusses the challenges of accurately
identifying vulnerabilities, especially in complex smart contracts. As bugs are
found in smart contracts it is very important to ensure security for smart con-
tracts, explore different types of vulnerabilities and attacks, and discuss various

25

security analysis methods and tools. In this study, the authors have mentioned
6 security patterns which consist of Checks-Effects-Interaction, Emergency Stop
(Circuit Breaker), Speed Bump Pattern, Rate Limit Pattern, Mutex, and Balance
Limit Pattern. They emphasize the need for these security methods and their lim-
itations and their solutions.

P. Praitheeshan [24] explores techniques such as static analysis, dynamic analy-
sis, system execution, and formal verification for smart contracts. The authors
also discuss various tools and frameworks available for the security analysis of
smart contracts. The efficiency of various security analysis techniques and tools is
assessed and contrasted in this study based on their capabilities, constraints, and
the kinds of vulnerabilities they may identify. Tsankov [39] highlights the impor-
tance of securing smart contracts and preventing vulnerabilities that can lead to
attacks. similar work is covered by the authors in Qian [25], C. F Torres [31], Zhou
[44].

3.4 The DAO Attack and Vulnerability

Zhao [41] discusses the infamous DAO attack, which resulted in the theft of a
significant amount of funds. It highlights the implications of the attack and the
paradoxes it revealed in blockchain-based systems. The author emphasizes the
importance of conducting rigorous security analysis and verification in decentral-
ized systems. The paper also suggests lessons learned from the attack to enhance
the security and robustness of future decentralized systems. The vulnerability
that was associated with the Dao attack is Reentrancy. For this, an article, where
Chaturvedula [4] explores reentrancy attacks in blockchain systems, explains the
mechanism of reentrancy attacks, discusses countermeasures to prevent such at-
tacks, and presents detection techniques. The paper emphasizes the importance
of understanding and mitigating reentrancy attacks to ensure the security and in-
tegrity of blockchain systems. Yellu [40] focuses on arithmetic vulnerabilities in
blockchain systems and provides countermeasures to mitigate such vulnerabili-
ties. The author also discusses the two conditions for such vulnerabilities that is
Integer Overflow or Integer Underflow. It also addresses the specific challenges
associated with arithmetic vulnerabilities and presents techniques to enhance the
security of blockchain systems in this regard.

26

3.5 Static Analysis Tools

The primary goal of static analysis is to catch software defects early in the devel-
opment process before the code is executed or deployed. By detecting potential
issues before runtime, static analysis helps improve code quality, reliability, and
security. It can also help identify areas for code optimization and adherence to
coding standards.

Ghaleb and Pattabiraman [12] focus on static analysis tools to find bugs in smart
contracts. Authors use the bug injection technique where the bugs are injected
into smart contracts in order to measure the tool’s ability to detect the vulnerabil-
ities and also define evaluation metrics such as true positive, false positive, false
negatives, true negatives, and execution time. They conclude by emphasizing the
importance of evaluating these tools using realistic scenarios to enhance their ef-
fectiveness and reliability. There are various methods in static analysis among
which the Symbolic execution is a part. Liew [18] emphasizes symbolic execution
and how applying symbolic execution optimizes the results.

Torres [33] discusses the Honeybadger tool, which utilizes symbolic execution
to identify vulnerabilities in smart contracts. It highlights how symbolic execu-
tion can optimize the results of vulnerability detection. Mossberg [21] introduces
the Manticore framework, which enables users to perform symbolic execution on
smart contracts. It discusses the capabilities and applications of Manticore, em-
phasizing its use in analyzing smart contracts. Sharma [28] presents the Mythril
tool, which employs symbolic execution and relies on the Z3 solver. It highlights
the tool’s usage of symbolic execution techniques, discusses limitations and chal-
lenges, and demonstrates a vulnerability discovered by the tool. Torres [32] intro-
duces Osiris, a static analysis tool designed to detect potential vulnerabilities and
risks in Ethereum smart contracts. It specifically focuses on identifying integer
bugs and highlights the key contributions of the Osiris tool. Luu [20] discusses
vulnerabilities such as reentrancy, transaction order dependency, and timestamp
dependency in smart contracts. It introduces the Oyente tool, which utilizes in-
termediate representation and symbolic execution techniques to analyze smart
contracts. Tsankov [34] presents the Securify tool, which leverages static analy-
sis techniques to analyze smart contracts. It evaluates the precision, recall, and
false positive rates of the tool and provides insights into its performance. Feist
[10] introduces the Slither tool, which applies static analysis techniques to smart

27

contracts. It focuses on detecting vulnerabilities and provides an overview of the
tool’s capabilities. Tikhomirov [30] presents the SmartCheck tool, which utilizes
static analysis to analyze Ethereum smart contracts. It discusses the tool’s ap-
proach and features, emphasizing its ability to process Solidity files.

3.6 Dynamic Analysis Tools

Dynamic analysis tools are essential software security assessment techniques that
analyze program behavior by monitoring variables, function calls, and data flow
at runtime. Jiang et al. [17] offer ContractFuzzer, a tool for the dynamic analysis of
smart contracts. They emphasize the use of fuzzing techniques to find smart con-
tract vulnerabilities and talk about how well ContractFuzzer can spot potential
security risks. Azzopardi et al. [22], present Contractlarva, a dynamic monitoring
tool for smart contracts. They highlight the importance of monitoring smart con-
tracts in real-time to ensure their proper behavior and discuss the challenges and
future directions in this area.

Wang et al. [37], proposes Contractguard, a dynamic analysis tool for Ethereum
smart contracts that incorporates embedded intrusion detection capabilities. The
authors address the security challenges associated with smart contracts and in-
troduce Contractguard as a solution to detect and defend against potential intru-
sions. They discuss the architecture and functionality of Contractguard, empha-
sizing its effectiveness in enhancing the security of Ethereum smart contracts. Liu
et al. [19] the authors present Mod-Con, a model-based testing platform specifi-
cally designed for smart contracts. They discuss its capabilities and how it can be
used for effective testing and validation of smart contracts. Frank et al. [45] in-
troduce ETHBMC, a bounded model checker designed for analyzing smart con-
tracts. The authors highlight the importance of security analysis for smart con-
tracts and present ETHBMC as a tool that can detect vulnerabilities by exploring
various execution paths within a bounded context. Similarly, Ashouri [3] talks
about Etherolic, and Raghava introduces Ethlint [1] which are similar to the other
dynamic tools.

28

3.7 Modules

Williams [38] developed the Rattle tool where he explains how the tool is used
for data mining and data analysis. The tool comes with a graphical user interface
(GUI) that allows users to perform various data mining tasks, such as data pre-
processing, visualization, modeling, and evaluation. Rattle is primarily designed
to work with the R programming language, which is widely used for statistical
computing and data analysis. In our study, we are using rattle as an IR for imple-
mentation.

Moura and Bjørner [8] introduce Z3 and its key feature for solving SMT problems.
The authors also explain how Z3 is designed to be easily integrated into various
software tools and frameworks. It provides interfaces in multiple programming
languages, including C++, C, Python, and Java, enabling developers to use Z3 as
a library within their applications. This flexibility allows Z3 to be seamlessly inte-
grated into existing software pipelines and workflows. According to the authors,
Z3 can be used to perform symbolic execution, generates test cases, and be used
in formal verification to demonstrate the correctness of hardware and software
systems. Additionally, it is used in program analysis for program synthesis, pro-
gram repair, and bug identification. Z3 is used in automated planning, constraint
resolution, and reasoning problems in artificial intelligence. Z3 is an open-source
version of Solver and is freely available to use.

3.8 SmartBugs

This study works close with SmartBugs, Ferreira [11] proposes SmartBugs a frame-
work that talks about collecting smart contracts from etherscan.io which is in-
jected with annodated vulnerabilities, that dataset contained 69 contracts with
tagged vulnerabilities. This paper analyses 9 static analysis tools and determines
their true positives, true negatives, and performance of the tools. compares all the
tools on these metrics and records results.

Durieux [9] discusses collecting 47k smart contracts which are filled with 97%
vulnerabilities in it, here 9 analysis tools were taken and this dataset is run on
various tools, the results are recorded for every tool, it has come to the notice of

29

the authors that by combining all the tools together <50% vulnerabilities are de-
tected by the tool and author further conclude by saying that there is still the room
for more analytical tools.

3.9 Chapter Summary

In this chapter, we categorize the research papers into 8 categories where the first
section talks about Blockchain, Ethereum, and Bitcoin followed by different ap-
plications of blockchain other than Bitcoin. Then it also describes the detection
of vulnerabilities and security analysis of smart contracts which is followed by
another section explaining the famous DAO attack and the vulnerability associ-
ated with it. Moving further the static and dynamic analysis tools are discussed,
proceeding with the module section which describes the Rattle and Z3 solver, and
lastly talks about a framework for smart contracts which we are closely working
with.

30

CHAPTER 4

Proposed Method

In this chapter, we go over our strategy, which makes use of the modular approach
as seen in Fig 4.1. The fundamental concept is to use symbolic execution along
with it rattle [38] is used as an IR tool, the SMT Z3 solver [8] is used for program
analysis verification after which the category of vulnerability is discovered, and
finally, the line number and vulnerability types are recorded in the form of a text
file.

4.1 Workflow

The interaction with our approach can be done with a command line interface(CLI).
Researchers are experimenting with translating smart contract source code or
bytecode into an IR containing highly semantic data to analyze smart contracts.
By examining the intermediate representation of the contract as input, as well as
the contract’s related bytecode or Solidity source code, they can identify security
flaws. When source code is provided, the best compiler is used to compile it. We
are using the same concept where for the IR we are employing is the rattle mod-
ule for which only Solidity written source code is currently given. The rattle [38]
module will get the bytecode.

The bytecode will be elevated to an IR and instructions will be transformed into
Single Static Assignment(SSA) form in the Rattle module. In SSA each variable is
assigned only once, at its definition point. This property makes the control flow
and data dependencies in the program explicit. It will also be built to house the
CFG. When a variable is assigned a new value, instead of modifying the existing
variable, a new variable with a different name is created. This ensures that previ-
ous values of the variable are preserved and can be referred to in the control flow
graph.

31

Figure 4.1: Proposed Architecture

32

Moving further the CFG is traversed in the symbolic execution phase, the core
concept behind symbolic execution is to symbolize variables in the program code,
which by symbolizing program input, maintains a set of restrictions for all ex-
ecution routes. The constraint solver is used in symbolic execution to resolve
constraints and identify the input reason for execution. Last but not least, pro-
grammers can utilize the constraint solver Z3 [8] to obtain a fresh test input to
determine whether the symbol value has a possible weakness or not.

The following phases are used to categorize the symbolic execution method used
to discover smart contract vulnerabilities:
1. Define the contract variable values.
2. Specify each step of the execution program’s instructions.
3. Search all executable routes, update the execution status, and gather path re-
strictions.
Here in our approach to support symbolic execution the constraint solver used is
the SMT Z3 solver. Finally, this complete information is used to detect the vulner-
ability type and line number as an output in the form of a text file.

4.1.1 Algorithm for Master File

This algorithm performs symbolic execution and vulnerability analysis on Ethereum
virtual machine (EVM) bytecode or Solidity source code. It utilizes data structures
like dictionaries, CFG, execution traces, and custom classes to facilitate the anal-
ysis process. Here is a brief explanation of what the algorithm does and the key
data structures used.

1. Importing multiple libraries for various functions, such as argparse for CLI
parsing, logging for message logging, solcx for dealing with the Solidity
compiler, Solidity_parser for parsing Solidity source code, and other cus-
tom modules.

2. A logger class instance from the logging module that is used to record mes-
sages. An instance of argparse.ArgumentParser for parsing command-line
arguments and options.

3. The command-line arguments are defined by argparse.ArgumentParser. The
input file (EVM bytecode or Solidity source code file), verbosity level, vul-
nerability type, maximum recursion depth, and other settings are among

33

Algorithm 1 Algorithm for master file
1: Input: SolidityFile, Verbosity, VulnType, MaxDepth, FindAllVulnerabilities, Timeout

Output: Detected vulnerabilities
2: Initialize configurations and dependencies such as logging, solcx, solidity_parser.
3: Parse command-line arguments using argparse package.
4: Configure logging based on the provided verbosity level.
5: Read the input file and determine its type (Solidity file or bytecode).
6: if SolidityFile then
7: Retrieve the solc version from the Solidity file’s pragma directive.
8: Install and set the solc version.
9: Compile the Solidity file and extract the runtime bytecode with

solcx.compile_files() function.
10: else if then
11: Read the bytecode from the input file.
12: for each bytecode do
13: Perform Sym_Exec() on the bytecode to generate constructor traces.
14: Initialize the VulnerabilityFinder() module with the traces, functions, name,

source map, and FindAllVulnerabilities flag.
15: Analyze vulnerabilities using the specified vulnerability types.
16: Store the detected vulnerabilities.
17: end for
18: Output the detected vulnerabilities

the arguments. The parameter parsing and help messages are automatically
generated by the argparse package.

4. The verbosity argument that is supplied by the script determines the logging
level that will be used. Messages are logged in accordance with the log level
that has been established for the logger.

5. The script determines the Solidity version used in the file and sets it as the
active version using the solcx library if the input file is a Solidity source code
file. Then, a dictionary of compiled contracts is returned by the function
solcx.compile_files() function, which compiles the Solidity source code.

6. The script runs symbolic execution and vulnerability analysis on each com-
piled contract. The control flow graph (CFG) is recovered using the Recover
class from the rattle module, and bytecode optimization is also done. The
symbolic execution on the CFG is carried out using the SymExec class from
the sym_exec package, and execution traces are obtained. The execution
traces, contract functions and other data are instantiated with the Vulner-
abilityFinder class from the vuln_finder module. It actually conducts the
vulnerability analysis. With the given vulnerability categories to investi-
gate, the method VulnerabilityFinder.analyse_only() is invoked. The script

34

logs and outputs details about any vulnerabilities it discovers along with the
model values they are linked with.

7. The entry point for the script is defined as the main() function. It does the
vulnerability analysis, configures logging, and parses the command-line in-
puts. In the event that the script is run directly (__name__ == ’__main__’),
the main() method is invoked.

Figure 4.2: Execution of Master File

Time and Space Complexity

This parsing solc.compile_files() operation has a time complexity of O(n), where
n is the size of the Solidity file. If the input file is a Solidity file, the algorithm
proceeds to compile it. The time complexity of the compilation process depends
on the complexity of the Solidity code and the number of contracts within the file.
The compilation step typically has a complexity of O(k), where k is the number of
contracts in the file.

35

The get_constructor_traces function performs symbolic execution on the byte-
code to generate constructor traces. The time complexity of symbolic execution
depends on the complexity of the bytecode and the number of paths explored
during execution. It can vary, but it generally ranges from O(n) to O(n2

), where n
is the size of the bytecode.

The VulnerabilityFinder module analyzes the traces and performs vulnerabil-
ity analysis based on the specified vulnerability types. The time complexity of
vulnerability analysis depends on the complexity of the traces and the number
of vulnerability types being analyzed. It typically has a complexity of O(m * n),
where m is the number of traces and n is the number of vulnerability types. Total
Time Complexity is given as O(n + k + n2

+m ∗ n).

For Analyzing the space complexity of the algorithm, the parsing file depends
on the size of the Solidity file which can be given in O(n). During Solidity com-
pilation, memory usage depends on the complexity of the Solidity code and the
number of contracts being compiled. The space complexity for compilation is typ-
ically O(k), where k is the number of contracts in the Solidity file.

The space complexity of the symbolic execution SymExec class depends on the
memory required to represent the program state, constraints, and execution paths.
As symbolic execution explores different paths, it accumulates additional mem-
ory usage. The space complexity of symbolic execution is typically O(n), where n
is the size of the bytecode being executed.

The space complexity of vulnerability analysis VulnerabilityFinder.analyse_only()
is determined by the memory required to store the traces, functions, and other
data structures used during the analysis which is typically O(m), where m is the
number of traces generated during symbolic execution. Total Space Complexity
is O(n + k + n + m).

4.1.2 Algorithm for Arithmetic Vulnerability

This algorithm provides an overview of the steps involved in analyzing arithmetic
vulnerabilities. It focuses on looping over blocks and traces, classifying instruc-
tions, and checking for potential integer overflow and underflow vulnerabilities

36

in arithmetic operations such as addition, multiplication, and subtraction.

Algorithm 2 Algorithm for arithmetic file
1: Input: Trace, find_all, solcx, solidity. Output: Detected arithmetic vulnerabilities.
2: Create an empty set called all_vulns to store all the vulnerabilities found during the

analysis.
3: for program traces do
4: Skipping any that are reversed (signaling an error or improper execution).
5: end for
6: Create an empty set called analyzed_blocks to keep track of the analyzed blocks to

avoid redundancy.
7: Repeat the analysis of the blocks, ignore blocks that have previously undergone anal-

ysis.
8: Set a boolean variable was_mul_with_256 to false to track if there was a multiplication

operation with the value 256.
9: Set a boolean variable was_exp_with_256 to false to track if there was an exponentia-

tion operation with the value 256.
10: Set a boolean variable next_trace to false to indicate whether to move to the next trace

or not.
11: for each instruction do
12: For the ADD and MUL commands, determine whether there is a chance of an

integer overflow.
13: Create a vulnerability object and add it to the list of vulnerabilities if an overflow

happens.
14: For SUB instructions, make sure there isn’t a chance of an integer underflow.
15: If there is an underflow then it will be added to the _handle_sub_underflow.
16: A possible overflow is indicated by an exponent of 256 for EXP instruc-

tions, which should be checked and handled by _handle_add_overflow and _han-
dle_mul_overflow.

17: Add the current analyzed block to the analyzed_blocks set.
18: end for
19: Add the vulnerabilities to all_vulns set. =0

1. Data structures that are used are Trace Represents an execution trace in-
cluding details about the blocks, states, and constraints that were really ex-
ecuted.Vulnerability Represents a vulnerability that has been found, along
with information on its nature, the block that was analyzed, the offset of the
susceptible instruction, the model (values) of the variables at that location,
and other pertinent details. The Z3 library offers this tool, which is used
for constraint solving and model extraction.set is used to store the analyzed
blocks (analyzed_blocks) and the discovered vulnerabilities (all_vulns). For
extracting values, maintaining constraints, and handling arithmetic oper-
ations, various utility functions and data structures imported from other
modules (sym_exec.trace, sym_exec.utils, vuln_finder, z3, z3.z3util)

37

2. The find_all flag tells the arithmetic_analyse function whether to find all
vulnerabilities or to stop at the first one discovered. It accepts a list of Trace
objects.

3. To prevent repeated analysis, the function initializes a set analyzed_blocks
to keep track of the analyzed blocks and an empty set all_vulns to hold the
discovered vulnerabilities.

4. Each Trace object in the given list of traces is iterated over.

5. It moves on to the next trace if the trace is reversed.

6. It cycles over the block’s instructions for each analyzed block in the trace.

7. If the instruction is an addition or multiplication, it calls the appropriate
handler routines, _handle_add_overflow, and _handle_mul_overflow, to
check for potential integer overflow vulnerabilities. These operations take
the instruction’s parameters and extract them, calculate the operation’s re-
sult, determine whether an overflow occurred, and retrieve the instruction’s
parameters.

8. If an overflow is found, a Vulnerability object is created and added to the
all_vulns set.

9. If the find_all flag is not set, the function returns the set of vulnerabilities
immediately.

10. The _handle_sub_underflow function is called if the instruction is a sub-
traction, which checks for potential integer underflow issues.

11. A Vulnerability object is constructed and added to the all_vulns set if, an
underflow is discovered.

12. The function immediately returns the list of vulnerabilities, if the find_all
flag is not set.

13. The flag was_exp_with_256 is set if the instruction is exponentiation and the
base (a) is 256 to signal that subsequent subtractions may be connected to a
prior multiplication by 256.

14. The currently analyzed block is added to the set of analyzed_blocks after
the instructions in it have been examined.

38

15. The next trace should be processed without looking at the remaining in-
structions in the current trace if the flag next_trace is set, indicating that the
current trace has a specific pattern relating to multiplication or exponentia-
tion with 256. After handling the following trace, the flag is reset.

16. Finally, the function returns the set of all vulnerabilities (all_vulns).

Figure 4.3: Execution of Arithmetic

39

Time and Space Complexity

Time complexity depends on the size of the input traces and the number of in-
structions from each analyzed block. if we consider n number of traces and m
number of instructions in total. The time complexity of parsing and initializ-
ing necessary data structures((sym_exec.trace, sym_exec.utils, vuln_finder, z3,
z3.z3util)) is considered to be O(1).

The outer loop iterates through the traces, and the nested loop iterates through
the analyzed blocks within each trace with the function Trace. These results are
stored in (all_vulns) set in a total of O(n * m) iterations. Depending on the type
of instruction, specific operations are carried out within each analyzed block. Al-
though the complexity of examining each instruction can differ, it typically entails
straightforward arithmetic calculations and constraint solving with the Z3 solver
library invoked by arithmetic_analyse function. The complexity of individual
instruction analysis can be considered constant or logarithmic. Total time com-
plexity is O(n * m).

The space required to store traces and instructions for analyzed blocks is ana-
lyzed by the function arithmetic_analyse takes a constant amount of time and is
calculated as O(n + m). The space complexity of constraints can vary based on
the complexity of the analyzed code and the number of instructions. In the worst
case, if all instructions generate new constraints, the space complexity can be con-
sidered as O(m). Assuming each vulnerability object occupies a constant amount
of space, then the space complexity is typically considered to be O(k), where k is
the number of vulnerabilities found. Total space complexity is given as O(n + m
+ k).

4.1.3 Algorithm for Front Running(Time Order Dependency) Vul-

nerability

In order to locate CALL instructions with symbolic storage values, it iteratively
searches through traces and analyzed blocks. It defines a constant string TRANS-
ACTION_ORDERING_DEPENDENCE_TYPE to represent this vulnerability type.
The algorithm includes a function to extract symbolic storage values from CALL
instructions and another function called tod_analyse to analyze traces and detect
vulnerabilities. It keeps track of processed blocks, and interesting storage values,
and stores the found vulnerabilities in sets and lists for further analysis. The al-

40

gorithm evaluates each saved symbolic storage value against storage states from
different traces to identify potential vulnerabilities.

Algorithm 3 Algorithm for time Order Dependence File
1: Input: Trace, find_all, solcx, solidity.
2: Output: Detected timeorder dependence vulnerabilities.
3: Import the necessary functions and classes.
4: Define constant tuple CALL_WITH_VALUES that involves values for the CALL in-

structions.
5: Define a constant string TRANSACTION_ORDERING_DEPENDENCE_TYPE to rep-

resent the type of vulnerability as "Transaction Ordering Dependence".
6: Define a function _get_symbolic_storage_value_of_call to take a CALL instruction

and retrieve the symbolic storage value from it.
7: Define the function tod_analyse that takes a list of traces and a flag to determine if all

vulnerabilities should be found or only the first one.
8: Create an empty set called all_vulns to store all the vulnerabilities found during the

analysis.
9: Create an empty set called analyzed_blocks to keep track of the analyzed blocks to

avoid redundancy.
10: Create an empty list called interesting_values_in_call to store the interesting stor-

age values encountered during call instructions. Create an empty list called inter-
esting_storages to store the storage values encountered during the analysis.

11: for each trace do
12: Skip traces with a reversed label.
13: Iterate over each block in the trace that has been analyzed.
14: Ignore blocks that have previously been handled.
15: Repeat the block’s instructions one after another.
16: Verify if the command is a CALL instruction with values are stored in interest-

ing_values_in_call().
17: If so, obtain and extract the symbolic storage value.
18: Include the examined block among the processed blocks.
19: Save the trace’s storage state in interesting_storages().
20: for each symbolic storage value that has been saved do
21: Evaluate each value against the storage states gleaned from various traces.
22: Return the list of vulnerabilities to all_vulns set.

1. Trace represents an execution trace including details about the blocks, states,
and constraints that were really executed. Vulnerability represents a vul-
nerability that has been discovered, together with information on its nature,
the analyzed block, the offset of the vulnerable instruction, and other per-
tinent details. The names of the instructions that use calls with values are
listed in the tuple CALL_WITH_VALUES. The vulnerability type, "Trans-
action Ordering Dependence", is represented by the variable TRANSAC-
TION_ORDERING_DEPENDENCE_TYPE. set is used to store the ana-
lyzed blocks (analyzed_blocks) and the discovered vulnerabilities (all_vulns).

41

The list is used to keep track of the interesting storage values accessible dur-
ing calls and the interesting storage values from various traces. The data
structure dict is used to hold interesting_values_in_call’s storage value to-
gether with the block and instruction information that goes with it. Various
utility functions and data structures (such as vuln_finder.vulnerability and
sym_exec.utils) imported from other modules are used.

Figure 4.4: Execution of Front Running

2. The flag find_all tells the tod_analyse function whether to find all vulnera-
bilities or to stop at the first one discovered. It accepts a list of Trace objects.

42

3. The function initializes an empty list interesting_values_in_call to store the
interesting storage values accessed in calls, an empty list interesting_storages
to store the interesting storage values from various traces, an empty list in-
teresting_values_in_call to track the interesting storage values analyzed in
calls, and an empty set all_vulns to store the found vulnerabilities.

4. Each Trace object in the given list of traces is iterated over.

5. It moves on to the next trace if the trace is reversed.

6. It cycles over the block’s instructions for each analyzed block in the trace.

7. The _get_symbolic_storage_value_of_call function is called if the instruction
is a call (CALL or CALLCODE) to retrieve the symbolic storage value re-
trieved during the call. If a storage value is discovered, it and the accom-
panying block and instruction are added to the interesting_values_in_call
list.

8. The analyzed_blocks set receives the newly added analyzed block.

9. The interesting_storages list is expanded to include the storage values from
the current trace.

10. The function then checks for vulnerabilities related to transaction ordering
dependencies after examining all traces.

11. It contrasts the value with the matching storage values from various traces
(interesting_storages) for each storage value received from a call (interest-
ing_values_in_call).

12. If a different storage value is found for the same storage position, indicating
a potential transaction ordering dependence vulnerability, a vulnerability
object is created and added to the all_vulns set.

13. The function immediately returns the list of vulnerabilities if the find_all
flag is not set.

14. Finally, the function returns the set of all vulnerabilities (all_vulns).

Time and Space Complexity

The time complexity of initializing the data structures takes a constant amount
of time. The outer loop iterates over the traces with the function Trace, which

43

has a time complexity of O(n), where n is the number of traces. Cycling over
the block’s instructions in this step, let’s assume there are m instructions in each
block. The time complexity of this step is O(m). Checking vulnerabilities and
comparing storage values depends on the size of the interesting_values_in_call
list and the interesting_storages list. Here let us assume that there are k values in
interesting_values_in_call and l values in interesting_storages. The worst-case
time complexity of this step is O(k * l). The overall time complexity can be given
as O(n * m * k*l).

The space complexity of this algorithm is O(n) uses sets and lists to store analyzed
blocks, interesting values in the call, interesting storages, and vulnerabilities. The
total space complexity is computed to O(n)

4.1.4 Algorithm for Reentrancy Vulnerability

Algorithm 4 Algorithm for Reentrancy File
1: Input: Trace, find_all, solcx, solidity.
2: Output: Detected reentrancy vulnerabilities
3: Define a constant string REENTRANCY_TYPE to represent the type of vulnerability

as "Reentrancy".
4: Define constant strings CALL_INSTRUCTION and SSTORE_INSTRUCTION to rep-

resent the instructions’ names "CALL" and "SSTORE".
5: Define a helper function _find_instruction, _get_storage_position, _get_storage_var,

_get_storage_position,
6: Create an empty set called "all_vulns" to hold the discovered flaws.
7: for each trace do
8: Skip trace states that have been reversed.
9: Go through each trace’s analyzed blocks one more time.

10: Repeat the block’s directives iteratively.
11: Move on to the following instruction if the current instruction is not CALL.
12: Analyse Constraints after the CALL command.
13: If vulnerabilities are present, use a _get_solver function to look for vulnerabilities.
14: Add any discovered vulnerabilities to the "all_vulns" list.
15: Track down SSTORE instructions that follow the CALL command.
16: Analyse Constraints prior to the CALL command.
17: If vulnerabilities are present, use a _get_solver to look for vulnerabilities.
18: Add any discovered vulnerabilities to the "all_vulns" list.
19: Add the current analyzed block to the analyzed_blocks set.
20: end for
21: Return the list of vulnerabilities. =0

This algorithm checks for CALL instructions and analyzes constraints before
and after the CALL as you iteratively go through traces and analyzed blocks. On

44

the basis of the identified constraints, use a solver to look for vulnerabilities and
send back a list of discovered vulnerabilities.

Figure 4.5: Execution of Reentrancy

1. Trace represents an execution trace including details about the blocks, states,
and constraints that were really executed. Vulnerability Represents a vul-
nerability that has been discovered, together with information on its nature,
the analyzed block, the offset of the vulnerable instruction, and other perti-
nent details.
A basic block in the control flow graph is represented by the SSABasicBlock
class, together with any associated instructions and constraints. Check the
satisfiability of constraints using a Z3 solver. set is used to store the analyzed

45

blocks (analyzed_blocks) and the discovered vulnerabilities (all_vulns). the
list is used to keep track of the interesting storage values accessible during
calls and the interesting storage values from various traces. dict is used to
hold interesting_values_in_call’s storage value together with the block and
instruction information that goes with it. Various utility functions and data
structures (such as vuln_finder.vulnerability and sym_exec.utils) imported
from other modules are used.

2. The flag find_all tells the reentrancy_analyse function whether to find all
vulnerabilities or to stop at the first one discovered and accepts a list of Trace
objects.

3. The function initializes an empty set all_vulns to store the discovered vul-
nerabilities, a boolean variable block_analyzed to store the most recent an-
alyzed block, a boolean variable exist_constraints to track the existence of
constraints, a boolean variable offset to track the offset of the vulnerable in-
struction, and a boolean variable instruction_offset to track its offset.

4. The function iterates over each Trace object in the provided list of traces.

5. It moves on to the next trace if the trace is reversed.

6. It determines if a block has already been analyzed for each one that is present
in the trace of analysis. If so, it moves on to the following block being exam-
ined.

7. It determines whether each instruction in the block being analyzed is a CALL
instruction. If not, it moves to the next instruction.

8. To check for potential flaws associated with reentrant calls made before the
weak CALL instruction, the _reentrancy_pos_call function is called.

9. The _has_vulnerability function is used to determine whether restrictions
result in a vulnerability if constraints are discovered. A vulnerability object
is produced and added to the all_vulns set if a vulnerability is discovered.
The function immediately returns the list of vulnerabilities if the find_all
flag is not set.

10. The analyzed block is added to the analyzed_blocks set.

11. If constraints were analyzed but no vulnerabilities were found, a vulnera-
bility is assumed to exist, and a vulnerability object is created based on the

46

last analyzed block, offset, and instruction offset. The object is added to the
all_vulns set. If the find_all flag is not set, the function returns the set of
vulnerabilities immediately.

12. Repeat steps 4 to 11.

13. Finally, the function returns the set of all vulnerabilities (all_vulns).

Time and Space Complexity

The first step for initializing the data structure takes O(1). The function Trace
function iterates over the given traces list, which contains n elements computes to
a complexity of O(n). For each block for reentrancy vulnerability The time com-
plexity of this step depends on the number of analyzed blocks (analyzed_blocks)
it iterates over the analyzed blocks set, which contains at most m elements (where
m is the number of unique analyzed blocks across all traces). The worst time com-
plexity is given as O(m).
Now for each CALL instruction extract values from instructions, create constraints,
solve the constraints using a solver, etc. The time complexity of this step is O(k)
assuming there are k instructions in each block. Adding the analyzed block to
the analyzed_blocks set will take a time complexity of this step depending on
the implementation of the set data structure. Assuming an average constant time
complexity, it can be considered as O(1) Total time complexity is O(n * m * k).

The space complexity depends on the number of unique analyzed blocks (m),
the number of vulnerabilities found (v), and the maximum size of the constraints
and other data structures.
Total space complexity is O(m + v + k).

4.1.5 Algorithm for Time Manipulation Vulnerability

To briefly describe the algorithm it repeats the analysis of the blocks and traces.
Examine the analyzed block to see if any restrictions or return values are based on
the timestamp variable. Create a Vulnerability object and include it in the list of
vulnerabilities discovered if a time manipulation vulnerability is discovered and
gives the detected vulnerabilities. It defines constants like "TIME_MANIPULATION_VAR"
(e.g., "timestamp") and "TIME_MANIPULATION_TYPE" (e.g., "TIME MANIPU-
LATION"). The algorithm iterates over each block and trace, examining if any
restrictions or return data depend on the "TIME_MANIPULATION_VAR." If a

47

Algorithm 5 Algorithm for Time Manipulation File
1: Input: Traces, find_all, solidity, solcx.
2: Output: Detected time manipulation vulnerabilities.
3: Define constants like "TIME_MANIPULATION_VAR"(eg."timestamp") and

"TIME_MANIPULATION_TYPE"(eg. TIME MANIPULATION)
4: for each block and trace do
5: Examine each trace to see whether any restrictions or return data are de-

pending on the variable "TIME_MANIPULATION_VAR." If a vulnerability of type
’TIME_MANIPULATION_TYPE’ is discovered, it should be included along with the
related object of type ’Analyzed Block’ and instruction offset.

6: Iterate over the instructions for each analyzed block and look for special instruc-
tions that deal with time manipulation (such as SHA3, SSTORE, etc.). Add a vulner-
ability of type ’TIME_MANIPULATION_TYPE’ associated with the analyzed block
and instruction offset if any of these instructions use arguments depending on the
variable ’TIME_MANIPULATION_VAR’.

7: end for
8: Return the list of vulnerabilities.

"Time Manipulation" vulnerability is detected, it includes the related object, the
analyzed block, and the instruction offset. The method analyses SHA3 and SSTORE
operation limitations, return values, and instructions to find temporal manipula-
tion flaws.

1. These data structures are used in this algorithm, Trace represents an exe-
cution trace including details about the blocks, states, and constraints that
were really executed. Vulnerability gives a vulnerability that has been dis-
covered, together with information on its nature, the analyzed block, the
offset of the vulnerable instruction, and other pertinent details. set is used
to store the analyzed blocks (analyzed_blocks) and the discovered vulner-
abilities (all_vulns). Various utility functions and data structures for vul-
nerability finding (vuln_finder.vulnerability and sym_exec.utils) imported
from other modules are used.

2. The flag find_all tells the time_manipulation_analyse function whether to
find all vulnerabilities or to stop at the first one discovered and accepts a list
of Trace objects.

3. The function initializes an empty set all_vulns to store the discovered vul-
nerabilities, a boolean variable block_analyzed to store the most recent ana-
lyzed block.

4. The function iterates over each Trace object in the provided list of traces.

5. It moves on to the next trace if the trace is reversed.

48

6. To determine whether any restrictions in the trace or the return data are
based on the timestamp variable, _analyse_return_value_and_constraints
function is used.

7. If vulnerabilities are found, they are added to the all_vulns set. If the find_all
flag is not set, the function returns the set of vulnerabilities immediately.

8. For each analyzed block in the trace, it checks if the block has already been
analyzed. If so, it continues to the next analyzed block.

Figure 4.6: Execution of Time Manipulation

9. For each instruction in the analyzed block, it checks the instruction name.

49

10. If the instruction is a SHA3 instruction, then the analyze_sha3 function is
invoked to check for any potential time manipulation issues. A vulnerability
is added to the all_vulns set if it is discovered. The function immediately
returns the list of vulnerabilities if the find_all flag is not set.

11. The analyze_sstore function is called to examine the instruction for potential
time-related vulnerabilities if it is an SSTORE instruction. A vulnerability
is added to the all_vulns set if it is discovered. The function immediately
returns the list of vulnerabilities if the find_all flag is not set.

12. The analyzed block is added to the analyzed_blocks set.

13. Repeat steps 8 to 12.

14. Finally, the function returns the set of all vulnerabilities (all_vulns).

Time and Space Complexity

Initializing the data structure will take a constant amount of time. The function
iterates over the given traces list, which contains n elements. For each trace, it
performs the following operations, Calls the analyze return value and constraints
function, which checks constraints and return values for time manipulation vul-
nerabilities. Iterates over the analyzed blocks set, which contains at most m ele-
ments (where m is the number of unique analyzed blocks across all traces) and
finally stores the discovered vulnerabilities to all_vulns set which is given by the
time complexity of O(m) For each analyzed block, iterates over the block’s instruc-
tions and calls either the analyze_sha3 or analyze_sstore function, depending on
the instruction for k vulnerabilities the time complexity is given as O(k).
Total time complexity is O(n * (m + k)).
The function maintains several data structures, including sets (analyzed blocks,
all vulns), lists (vulns), and individual variables (offset, length, etc.). The space
complexity depends on the number of unique analyzed blocks (m), the number of
vulnerabilities found (v), and the maximum size of the constraints and other data
structures.
Total space complexity is O(m + v + k).

4.1.6 Algorithm for Unchecked Low Level Calls Vulnerability

It starts by iterating over the traces, then checks the conditions for each trace to
proceed with the analysis. Within each trace, it iterates over the analyzed blocks

50

and instructions, checks the instruction type, handles the low-level call, checks the
remaining constraints, and determines if a vulnerability exists. If a vulnerability

Algorithm 6 Algorithm for Unchecked Low Level Calls File
1: Input: Traces, find_all, solidity, solcx.
2: Output: Detected unchecked low level calls vulnerabilities.
3: Define constants such as ‘UNCHECKED_LL_CALL_TYPE‘ (e.g., "Unchecked Low

Level Call") and ‘instructions_to_check‘ (e.g., (’CALL’, ’CALLCODE’, ’DELEGATE-
CALL’, ’STATICCALL’)).

4: Go through the traces and analyzed blocks.
5: If the state is reversed or the depth exceeds the maximum permitted depth, skip that

trace.
6: for every analyzed block. do
7: Verify whether there are any leftover restrictions that were not examined in

the block if the instruction is one of the instructions to check (based on "instruc-
tions_to_check").

8: Add a vulnerability of type ’UNCHECKED_LL_CALL_TYPE’ linked to the ana-
lyzed block and instruction offset if there are no more restrictions.

9: If there are still limitations, handle the low-level call by determining if any of them
pertain to the call’s return value. Add a vulnerability of type associated with the
analyzed block ’UNCHECKED_LL_CALL_TYPE’ and instruction offset if there are
no restrictions on the return value.

10: Add the analyzed block to the set of analyzed blocks.
11: end for
12: Return the set of detected vulnerabilities.

is found, it is added to the set of vulnerabilities. The algorithm repeats these
steps until all traces and blocks have been analyzed. Finally, it returns the set of
vulnerabilities.

1. The data structures associated with the algorithm are Trace Represents an
execution trace including details about the blocks, states, and constraints
that were really executed. Vulnerability Represents a vulnerability that
has been discovered, together with information on its nature, the analyzed
block, the offset of the vulnerable instruction, and other pertinent details. set
is used to store the analyzed blocks (analyzed_blocks) and the discovered
vulnerabilities (all_vulns). Various utility functions and data structures for
vulnerability finding (such as vuln_finder.vulnerability and sym_exec.utils)
imported from other modules are used.

2. The flag find_all tells the unchecked_low_level_calls_analyse function whether
to find all vulnerabilities or to stop at the first one discovered and accepts a
list of Trace objects.

3. The function initializes an empty set all_vulns to store the discovered vul-

51

nerabilities, a boolean variable block_analyzed to store the most recent ana-
lyzed block.

4. The function iterates over each Trace object in the provided list of traces.

Figure 4.7: Execution of ULL

5. It moves on to the next trace if the trace is reversed.

6. It determines if the name of each instruction in the analysed block is one of
the low-level calls that needs to be examined.

52

7. If the instruction matches one of the low-level calls, the remaining con-
straints in the trace that have not yet been analysed are found by extracting
the analysed constraints from the analysed block.

8. A vulnerability object is created and added to the all_vulns set if there are no
more constraints, which denotes an unchecked lowlevel call vulnerability.
The function immediately returns the list of vulnerabilities if the find_all
flag is not set.

9. The _handle_low_level_call function is called to examine whether the re-
turn value of the low-level call was appropriately checked if there are any
remaining limitations. The function immediately returns the list of vulnera-
bilities if the find_all flag is not set.

10. The analyzed block is added to the analyzed_blocks set.

11. Repeat steps 6-10.

12. Finally, the function returns the set of all vulnerabilities (all_vulns).

Time and Space Complexity

The function iterates over the given traces list, which has a size of n. This loop has
a linear time complexity of O(n). Within each trace, the function iterates over the
analyzed blocks of the trace, which has a size of m (the number of analyzed blocks
in the trace). This loop also has a linear time complexity of O(m). For each ana-
lyzed block, the function iterates over the instructions of the block. The number of
instructions per block is typically small and can be considered constant, denoted
as k. Inside the instruction loop, there is a check to determine if the instruction
name is in the instructions to check, which has a constant lookup time.
Total Time Complexity is given as O(n * m * k).
The function uses several data structures to store information, including sets to
store vulnerabilities (all vulns), analyzed blocks (analyzed blocks), and remaining
constraints. The space complexity of these data structures depends on the num-
ber of vulnerabilities found and the size of the analyzed blocks and constraints.
Total Space Complexity is O(v).

4.2 Overall Complexity

The complexities of five modules along with a master file can be seen in table 4.1,
here the argument sizes, input file size, data structures, and other parameters are

53

independent of particular files.

Table 4.1: Comparison of Various Files

Name of File Total Time Complexity Total Space Complexity
Master File O(n + k + n2

+m ∗ n) O(n + k + n + m)
Arithmetic File O(n * m) O(n+m+k)

Front Running File O(n * m * k*l) O(n)
Reentrancy File O(n * m * k) (m + v + k)

Time Manipulation File O(n * (m + k)) O(m + v + k)
ULL File O(n * m * k) O(v)

4.2.1 How Complexities Can be Improved Overall

• If the goal is to find a single vulnerability, terminating the analysis and re-
turn it as soon as a vulnerability is found. This can save unnecessary itera-
tions and improve the overall time complexity.

• By set a maximum depth for the symbolic execution analysis to prevent ana-
lyzing traces that exceed a certain depth. This can help control the time and
space complexity by avoiding excessively deep traces.

• Parallelizing the analysis of multiple traces or analyzed blocks. This can
leverage multi-core systems and potentially reduce the overall execution
time.

• Reviewing the data structures used in the function and ensuring that only
the essential information to store for analysis. By avoiding redundant or
excessive storage of intermediate results, and release any resources or data
structures that are no longer required in this way space complexity can be
reduced.

4.3 Association of Files

As shown in Fig 4.8 we run a Solidity file on the master file which invokes the
vul_finder script which has five Python scripts associated with it, those five after
processing the output will be displayed to the Command line interface.

For example, let us take the reentrancy vulnerability, first of all, the command
$ python3 master.py -vt reentrancy -s example2.sol, this command executes the

54

Python script file of master.py with vulnerability reentrancy and the file name
here is example2.sol, the master.py is a master file that calls vulnerability finder
file, where different Python scripts are written for different vulnerabilities. From
this reentrancy.py is invoked and this script gives the name of the vulnerability,
its location and finally, it gives the time taken to run a .sol file. In the same way,
other modules are also run. For finding and vulnerability we must need a master
file. whereas the vulnerability scripts are independent of each other.

Figure 4.8: Flow of Execution

4.4 Dependencies

Python3 is used to implement the five modules in our study, as well as the Python
libraries and packages indicated below:

• pyevmasm is a Python package that provides a set of tools for working with
the EVM. It allows you to disassemble, assemble, and analyze EVM byte-
code.

• py-solc-x is a Python package that provides an interface to the Solidity com-
piler. It allows you to compile Solidity source code to EVM bytecode.

55

• Z3 solver is a Python package that provides an interface to the Z3 theorem
prover. Z3 is an open-source theorem prover that is designed for automated
reasoning about software and hardware systems.

• Solidity parser is a Python package that provides a parser for Solidity source
code. It allows you to generate an Abstract Syntax Tree (AST) of a Solidity
program, which can be used for further analysis and transformation.

4.5 Chapter Summary

In this chapter, we discussed the system architecture, the master file along with
the five modules that we implemented. Here we even emphasize the time and
space Complexity of all the Algorithms and how they can be improved, also gives
the association and close working of all the modules together.

56

CHAPTER 5

Results

In this chapter, we compare our method and other static tools, for analysis of tools
we have a few choices, the conventional approach, where each tool produces its
own dataset by downloading contracts from [27] between specified dates, runs
all tools on it, and then presents the results. Another way could be getting in
touch with the authors and asking for the datasets. However, we believe that this
is not the best course of action, thus we use a publicly accessible framework to
make sure that the dataset is comparable across all tools. We swiftly adapted our
strategy where we decided to use the available Smartbugs dataset [11] and started
conducting analysis using 9 different tools. The SB curated [11] and SB wild [9]
databases are both part of SmartBugs. Since the vulnerabilities were manually
annotated. Firstly we analyzed all the tools on the smaller dataset and then on the
larger one.

5.1 Methodology

The selection of all the tools was based on the following factors:
1. Open source availability of the tools.
2. Python environment is used in all the tools.
3. The input format of the tools is either the Solidity file or Byte code.
4. All the tools were either using system execution or IR techniques.

The methodology that is followed:
1. Configure the tools with the necessary environment and parameters, and exe-
cute the tools on the dataset to perform vulnerability analysis.
2. Extraction of vulnerabilities to Text files or JSON files as compatible with dif-
ferent tools.
3. Review each detected vulnerability and determine its appropriate category
based on its characteristics and impact.

57

4. Determine the coverage and effectiveness of the tools by examining which vul-
nerability category is detected and to what extent.

5.2 Datasets

5.2.1 SB curated Dataset Specifications

According to Smartbugs [11] this dataset contained 69 smart contracts out of
which 115 labeled vulnerabilities were present the main motive to use this dataset
was the contracts here were real contracts or vulnerable annodated contracts and
the vulnerabilities were labeled with the line numbers and categories.

The objective of this dataset is to have a collection of contracts that are known
to be vulnerable, each annotated with the location and type of vulnerability. This
dataset can be used to assess how well smart contract analysis tools are at spot-
ting weaknesses. However, after reviewing the SmartBugs dataset, we came to the
conclusion that there are certain vulnerabilities that exist but are not documented.
We carefully reviewed the contracts and discovered that, to our knowledge, there
are a total of 124 vulnerabilities. Although this number may rise, we took into
account 124 vulnerabilities when estimating the tools.

Table 5.1: Categories of Vulnerability Present in Dataset

Vulnerability Type No. of Contracts No. of Vulnerabilities
Access Control 17 24

Arithmetic 14 23
Denial of service 8 14

Front running 4 7
Reentrancy 7 34

Time manipulation 5 7
Unchecked low levels 11 10

others 3 5
Total 69 124

5.2.2 SB wild Dataset Specifications

This dataset from SmartBugs [9] was a big dataset with nearly 47k smart contracts
fetched from Ethereum blockchain using Etherscan, for this dataset the set of vul-

58

nerabilities were unknown unlike the SB curated dataset(refer section5.2.1) How-
ever, this information may be used to find actual contracts that contain vulnerabil-
ities and have an indicator of how frequently a certain issue occurs. Additionally,
it may be used to compare analytic tools using measures like performance, true
positive, false positive, true negative, false negative, accuracy, etc.

5.3 Experimental Setup

For this experiment we followed two approaches on the smaller dataset SB cu-
rated where the first observation was made in a manner where we set a time
budget of 30 minutes for each tool, if the allotted time has passed, we halt the
execution and gather the execution’s partial results. The second way was running
the tools to their complete execution time and the results were recorded. multi-
ple files were run parallelly to gather the results for different vulnerabilities and
batch processing was also done, but as this data set was small so we didn’t take
that into account. An example of single processing where the time for running
the contract, line number, and type of vulnerability can be examined as seen in
Fig 5.1.

Figure 5.1: Command Line Interface for Single Processing

From the bigger dataset of 47k contracts we randomly chose around 3k smart
contracts to be precise 3031 smart contracts are audited on different tools, for our
approach we divided these 3k contracts into 10 files of different sizes which con-

59

tained variable numbers of smart contracts as we were limited with the system.
For running these smart contracts on different tools we used to run a particular
file of size, suppose a file which contains 400 smart contracts which will be run on
all the five types of vulnerability with a simple loop command which can be seen
in Fig 5.2.

Here the command is a loop where every .sol file in the directory is iterated over a
loop. It keeps track of the start time for every file before running the main script.
The current file is used as input and the master script is executed with the settings
supplied ("-vt reentrancy -s"). The end time is recorded following the script exe-
cution. By deducting the start time from the finish time, it determines the length
of the script execution. The script output and the execution time are collected in
the text file and can be seen in Fig 5.3.

Figure 5.2: Command Line Interface for Batch Processing

5.4 Experimental Results

The results of our study focus on the true positive rate and performance of all the
tools, we adopted the approach of the paper Smartbugs [11]. Here the authors
are considering the 9 best tools that were run on a dataset containing 69 smart
contracts with 115 tagged vulnerabilities(SB curated), they also mentioned that
the vulnerability count can be varied as they may not be able to detect. Whereas
in our study we considered 8 tools along with our approach where we ran all the
tools on the same dataset but while running the tools we found out that few of the
tools were able to detect a few vulnerabilities at the same location which we took
into account for evaluating tools also for those vulnerabilities, so after sufficient

60

Figure 5.3: Text File Output

attempts we came to this numbers that this dataset contained 69 smart contracts
and 124 vulnerabilities and the number may rise. In this particular study, we are
only focusing on five types of vulnerabilities as of now, whereas in the paper [11]
nine types of vulnerabilities are considered.

About the larger dataset as mentioned in the paper [9] the authors analyzed 47,518
contracts that took them approximately 564 days and 3 hours to run in total with
all the 9 tools they considered.

Here, we randomly chose 3031 smart contracts from these 47k smart contracts.
In our study we were not focusing on the quantity but quality as we wanted to
examine how our approach is performing with respect to other tools so after con-
sidering this set of smart contracts we run them on all 8 tools along with our
approach which took us roughly 25 to 26 days considering tool setup time also as
we were limited to only a single machine.

61

5.4.1 Effectiveness of Tools

Results of SB curated Dataset

A true positive identifies the appropriate vulnerability category and the line num-
ber in the source code where the vulnerability exists. Here we proceeded with the
steps taken in paper [11] the tools are run with two criteria. For SB curated dataset
as mentioned in section5.2.1 the time budget of 30 minutes and execution till halt
is measured differently as seen in Fig 5.4 and Fig 5.5. Though the dataset has ac-
cess control, denial of service, and other types of vulnerabilities present for our
study, we are only focusing on five vulnerabilities that were discussed in section
2.1.

From Fig 5.4 it is clearly seen that Our approach is able to detect 59 vulnerabil-
ities in total. Tools such as Slither and Smartcheck were able to detect 39 and
38 vulnerabilities in total, whereas the tool Oyente was able to detect 34. Osiris
performed in fifth position with 25 vulnerabilities, and Mythril and Securify were
able to detect 20 vulnerabilities. Honeybadger is not able to detect any vulnerabil-
ity because of the time constraint of half an hour. If we talk about the individual
vulnerability category as seen in table 5.2, Slither is performing best in all the
categories, whereas Smartcheck is performing well in unchecked low-level calls
(ULL). To conclude from our analysis our approach is able to detect a maximum
of vulnerabilities overall in this criteria.

Table 5.2: Vulnerability Categorise Division with the Criteria of Time Budget(AT-
Arithmetic, FR- Front Running, RT- Reentrancy, TM- Time Manipulation, ULL-
Unchecked Low Level Calls)

Tools AT FR RT TM ULL Total
OurApproach 19 2 30 5 4 59

Honeybadger [33] 0 0 0 0 0 0
Manticore [21] 1 0 2 2 0 5

Mythril [28] 7 1 15 0 2 20
Osiris [32] 13 0 21 1 0 25

Oyente [20] 16 2 28 0 0 34
Securify [34] 0 2 14 0 4 20
Slither [10] 0 0 33 2 4 39

Smartcheck [30] 1 0 30 1 6 38

The results shown above could be better as some of the tools could still perform
better so in order to have a fair comparison we modified the criteria. Fig 5.5 shows

62

Figure 5.4: Result with the Criteria of Time Budget

the results with the criteria where no limit on time is kept ie execution of tools are
done till they halt, here the performance of the tool honey badger is increased and
is able to detect a total of 19 vulnerabilities, also the performance of tools such as
Mythril, Oyente, and Slither is increased to 51, 48, and 42. As we can see in the
detailed category vulnerability detection in table5.3 we still find that our tool is
able to detect the maximum vulnerabilities with a number of 61 vulnerabilities in
total.

Table 5.3: Vulnerability Categorise Division with the Criteria Without Time
Budget(AT- Arithmetic, FR- Front Running, RT- Reentrancy, TM- Time Manip-
ulation, ULL- Unchecked Low Level Calls)

Tools AT FR RT TM ULL Total
OurApproach 19 2 30 7 4 61

Honeybadger [33] 0 0 19 0 0 19
Manticore [21] 13 0 15 4 2 34

Mythril [28] 16 2 25 0 8 51
Osiris [32] 13 0 21 2 0 36

Oyente [20] 18 2 28 0 0 48
Securify [34] 0 2 14 0 6 22
Slither [10] 0 0 33 3 6 42

Smartcheck [30] 1 0 30 2 8 38

After analyzing both scenarios we came to the conclusion that our tool is able
to detect the maximum vulnerabilities with an average of 48 % which is 7% more

63

Figure 5.5: Results with the Criteria of Execution Till Halt

than all the tools, Mythril is able to detect 41%, Oyente at 39%, with 36% Smartcheck,
and Slither are the tools that are closest. Smartcheck is a tool that finds more cate-
gories than any other that have an advantage over others.
These results are only limited to these five categories mentioned, we can’t promise
the performance of our tools will remain the same for other categories of vulner-
abilities or not. The other tools might work exceptionally well for other vulner-
ability types, but for this study we are only examining these five categories of
vulnerability.

Results of SB wild Dataset

As discussed in section 5.2.2 only 3 thousand smart contracts are examined out of
47 thousand, here no criteria of time budget were kept. Fig 5.6 shows the results
of each tool, where our tool is able to detect 2311 vulnerabilities. Whereas the
tool Oyente is able to detect 2195 vulnerable contracts. From the results, we can
clearly state that our approach is able to detect 2% more vulnerability than the
tool Oyente, which is also performing equally well. In particular vulnerability
category Slither is still performing well in the Reentrancy category and is able to
detect 998 vulnerable contracts. The more detailed category-wise division is seen
in table 5.4, to summarize we can say that for this five-category even on the big

64

dataset of 3031 smart contracts where the vulnerabilities are not known still our
approach is performing better than the other tools by 2%.

Table 5.4: Vulnerability Categorise Division (AT- Arithmetic, FR- Front Running,
RT- Reentrancy, TM- Time Manipulation, ULL- Unchecked Low Level Calls)

Tools AT FR RT TM ULL Total
OurApproach 1015 32 849 401 14 2311

Honeybadger [33] 151 9 673 30 5 868
Manticore [21] 874 16 589 275 8 1762

Mythril [28] 998 29 732 62 13 1834
Osiris [32] 824 19 716 240 9 1808

Oyente [20] 947 34 813 389 12 2195
Securify [34] 178 27 174 59 18 456
Slither [10] 253 11 998 358 18 1638

Smartcheck [30] 367 25 813 114 20 1339

Figure 5.6: Results with the Criteria of Execution Till Halt

5.4.2 Performance of Tools

The performance of the tools is an important consideration since if a tool takes
a long time to analyze a contract, the user will not be happy. The average and
overall times spent using each tool are shown in table 5.5.

65

Table 5.5: Execution Time of Each Tool for Both Datasets

No. Tool Avg ETC ET(SB curated) ET(SB wild)
1 Our Approach 00:00:32 1:14:37 1day, 13:18:30
2 Honeybadger [33] 00:01:12 02:49:03 3 days, 20:13:46
3 Manticore [21] 00:12:53 1day, 06:15:28 10 days,06:16:08
4 Mythril [28] 00:00:58 02:16:21 2 days, 20:10:30
5 Osiris [32] 00:00:21 00:50:25 1 day, 01:12:30
6 Oyente [20] 00:00:05 00:12:35 0 days, 07:20:20
7 Securify [34] 00:02:06 04:56:13 6 days 04:06:30
8 Slither [10] 00:00:04 00:09:56 0 days 05:47:40
9 Smartcheck [30] 00:00:15 00:35:23 0 days 17:41:30

It takes into account the tools contract-based execution, including result compila-
tion, analysis, and average parsing. For both the dataset the time of execution of
total smart contracts and the average execution time for a contract is taken into ac-
count. In table 5.5 the average execution time does not reflect the complete picture
of the performance of a tool. When running many tools at once, Honeybadger and
Manticore presented challenges because they are difficult to parallelize and could
only support four and ten parallel executions, respectively. Manticore is also by
far the slower tool. Slither performs best, just taking 4 seconds on average per
contract. Our approach is in front of Mythril but behind Oyente.

5.5 Chapter Summary

This chapter gives the results based on two datasets over two metrics which are
the effectiveness and performance of tools. Further, the single and batch process-
ing is also discussed in the experimental setup section.

66

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

Our study offers a static analysis method that makes use of the Rattle module,
the acclaimed SMT Z3 solver, and symbolic execution to maximize performance.
We used two different datasets for assessment as we set out to compare our tech-
nique to eight popular tools. The first collection included 69 contracts that had
been labeled with 124 vulnerabilities. A remarkable 3031 contracts were included
in the second collection, which also had vulnerabilities that were regrettably un-
tagged. We implemented five modules designed to identify different types of
vulnerabilities. True positives (the quantity of accurately identified vulnerabili-
ties) and overall performance were the two key parameters we used to evaluate
the tools’ performance. The outcomes we got are impressive and encouraging.
Our technique performed exceptionally well in terms of True Positives. Notably,
our method was able to find almost 9% more flaws than any other tool in the
comparison on the smaller dataset. Our method nevertheless worked well even
on the bigger dataset, where the sheer number of contracts offered a tougher dif-
ficulty. From the estimation, we observed that our approach performed almost
equivalent to the tool oyente but was still able to detect 2% more vulnerabilities.
In terms of tool performance, our strategy placed fourth in this category, but tools
like Slither and Oyente are quite quick. Therefore with these results, our research
indicates that combining our strategy with the Oyente tool may produce even
more impressive outcomes.

6.2 Future Work

This study sets the groundwork for future improvements in smart contract se-
curity analysis. Currently, our approach is only able to detect five types of vul-
nerabilities, we can add modules to detect more vulnerability categories also the

67

module for unchecked low-level calls vulnerability is presently not functioning
efficiently, but this may be addressed in future work. For future work improving
the symbolic engine can be done and different path exploration strategies can be
adapted for better results.

68

References

[1] Ethlint, dec. 2021, [online] available:https://github.com/duaragha.

[2] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura. Eth2vec: Learning
contract-wide code representations for vulnerability detection on ethereum
smart contracts. Proceedings of the 3rd ACM International Symposium on
Blockchain and Secure Critical Infrastructure, 2021.

[3] M. Ashouri. Etherolic: A practical security analyzer for smart contracts. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC
’20, page 353–356, New York, NY, USA, 2020. Association for Computing
Machinery.

[4] C. Chaturvedula, N. Bang, N. Rastogi, and S. Kumar. Price manipulation,
front running and bulk trades: Evidence from india. Emerging Markets Re-
view, 23, 06 2015.

[5] H. Chen, G. Whitters, M. J. Amiri, Y. Wang, and B. Loo. Declarative smart
contracts, 07 2022.

[6] W. Chen, Z. Xu, S. Shi, Y. Zhao, and J. Zhao. A survey of blockchain applica-
tions in different domains. pages 17–21, 12 2018.

[7] Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura. Ra: A static analysis tool
for analyzing re-entrancy attacks in ethereum smart contracts. J. Inf. Process.,
29:537–547, 2021.

[8] L. de Moura and N. Bjørner. Z3: an efficient smt solver. volume 4963, pages
337–340, 04 2008.

[9] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz. Empirical review of auto-
mated analysis tools on 47,587 ethereum smart contracts. 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pages 530–541,
2019.

69

[10] J. Feist, G. Grieco, and A. Groce. Slither: A static analysis framework for
smart contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), pages 8–15, 2019.

[11] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu. Smartbugs: A framework to
analyze solidity smart contracts. 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1349–1352, 2020.

[12] A. Ghaleb and K. Pattabiraman. How effective are smart contract analy-
sis tools? evaluating smart contract static analysis tools using bug injection.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2020, page 415–427, New York, NY, USA, 2020.
Association for Computing Machinery.

[13] J. Herrera-Joancomartí. Research and challenges on bitcoin anonymity. vol-
ume 8872, 09 2014.

[14] U. Jafar, M. J. A. Aziz, and Z. Shukur. Blockchain for electronic voting sys-
tem—review and open research challenges. Sensors, 21(17), 2021.

[15] B. Kakkar, P. Johri, and A. Kumar. Blockchain applications in various sectors
beyond:bitcoin. In 2021 International Conference on Advance Computing and
Innovative Technologies in Engineering (ICACITE), pages 469–473, 2021.

[16] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee. Ethereum smart
contract analysis tools: A systematic review. IEEE Access, 10:57037–57062,
2022.

[17] A. Li, J. A. Choi, and F. Long. Securing smart contract with runtime vali-
dation. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page 438–453, New York, NY,
USA, 2020. Association for Computing Machinery.

[18] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zahl, and K. Wehrle.
Floating-point symbolic execution: A case study in n-version programming.
In 2017 32nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 601–612, 2017.

[19] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan. Modcon: a model-based testing platform
for smart contracts. Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020.

70

[20] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart con-
tracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 254–269, New York, NY, USA,
2016. Association for Computing Machinery.

[21] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg. Manticore: A user-friendly symbolic execu-
tion framework for binaries and smart contracts, 07 2019.

[22] G. Pace, J. Ellul, and S. Azzopardi. Monitoring smart contracts: Contractlarva
and open challenges beyond. 11 2018.

[23] T. Palihapitiya. Blockchain in banking industry. 10 2020.

[24] P. Praitheeshan, L. Pan, J. Yu, J. K. Liu, and R. R. M. Doss. Security anal-
ysis methods on ethereum smart contract vulnerabilities: A survey. ArXiv,
abs/1908.08605, 2019.

[25] P. Qian, Z. Liu, Q. He, B. Huang, D. Tian, and X. Wang. Smart contract
vulnerability detection technique: A survey. ArXiv, abs/2209.05872, 2022.

[26] H. Saeed, H. Malik, U. Bashir, A. Ahmad, S. Riaz, M. Ilyas, W. Bukhari, and
M. Khan. Blockchain technology in healthcare: A systematic review. PLOS
ONE, 17:e0266462, 04 2022.

[27] A. W. services website. https://etherscan.io/= "".

[28] N. Sharma and S. Sharma. A survey of mythril, a smart contract security
analysis tool for evm bytecode. 13:51003–51010, 12 2022.

[29] L. Stegeman. Solitor : runtime verification of smart contracts on the ethereum
network. 2018.

[30] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
and Y. Alexandrov. Smartcheck: Static analysis of ethereum smart contracts.
In Proceedings of the 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain, WETSEB ’18, page 9–16, New York, NY, USA, 2018.
Association for Computing Machinery.

[31] C. F. Torres, M. Baden, R. Norvill, B. B. F. Pontiveros, H. L. Jonker, and
S. Mauw. gis: Shielding vulnerable smart contracts against attacks. Proceed-
ings of the 15th ACM Asia Conference on Computer and Communications Security,
2020.

71

[32] C. F. Torres, J. Schütte, and R. State. Osiris: Hunting for integer bugs in
ethereum smart contracts. Proceedings of the 34th Annual Computer Security
Applications Conference, 2018.

[33] C. F. Torres and M. Steichen. The art of the scam: Demystifying honeypots in
ethereum smart contracts. In USENIX Security Symposium, 2019.

[34] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M. T.
Vechev. Securify: Practical security analysis of smart contracts. Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
2018.

[35] D. Vujičić, D. Jagodic, and S. Rand̄ić. Blockchain technology, bitcoin, and
ethereum: A brief overview. pages 1–6, 03 2018.

[36] H. Wang, Y. Li, S. Lin, L. Ma, and Y. Liu. Vultron: Catching vulnerable smart
contracts once and for all. In Proceedings - 2019 IEEE/ACM 41st International
Conference on Software Engineering, Proceedings - 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: New Ideas and Emerging
Results, ICSE-NIER 2019, pages 1–4, United States, May 2019. Institute of
Electrical and Electronics Engineers Inc. 41st IEEE/ACM International Con-
ference on Software Engineering: New Ideas and Emerging Results, ICSE-
NIER 2019 ; Conference date: 25-05-2019 Through 31-05-2019.

[37] X. Wang, J. He, Z. Xie, G. Zhao, and S.-C. Cheung. Contractguard: Defend
ethereum smart contracts with embedded intrusion detection, 11 2019.

[38] G. Williams. Rattle: a data mining gui for r. The R Journal, 1:45–55, 12 2009.

[39] M. Wöhrer and U. Zdun. Smart contracts: security patterns in the ethereum
ecosystem and solidity. 2018 International Workshop on Blockchain Oriented
Software Engineering (IWBOSE), pages 2–8, 2018.

[40] P. Yellu, M. R. Monjur, T. Kammerer, D. Xu, and Q. Yu. Security threats
and countermeasures for approximate arithmetic computing. In 2020 25th
Asia and South Pacific Design Automation Conference (ASP-DAC), pages 259–
264, 2020.

[41] X. Zhao, Z. Chen, X. Chen, Y. Wang, and C. Tang. The dao attack paradoxes
in propositional logic. pages 1743–1746, 11 2017.

72

[42] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang. An overview of blockchain
technology: Architecture, consensus, and future trends. 2017 IEEE Interna-
tional Congress on Big Data (BigData Congress), pages 557–564, 2017.

[43] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang. Blockchain challenges and
opportunities: a survey. Int. J. Web Grid Serv., 14:352–375, 2018.

[44] H. Zhou, A. M. Fard, and A. Makanju. The state of ethereum smart con-
tracts security: Vulnerabilities, countermeasures, and tool support. Journal of
Cybersecurity and Privacy, 2022.

[45] T. Zhou, K. Liu, L. Li, Z. Liu, J. Klein, and T. Bissyandé. Smartgift: Learning
to generate practical inputs for testing smart contracts. pages 23–34, 09 2021.

73

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Smart Contracts Security and Historical Losses.
	Known Vulnerabilities and Tools
	Motivation
	Objective
	Workflow of Thesis
	Thesis Outline
	Chapter Summary

	Background
	Vulnerability Walkthrough
	Arithmetic
	Front Running
	Reentrancy
	Time Manipulation
	Unchecked Low-Level Calls

	Preliminaries
	Rattle
	 Satisfiability Modulo Theories (SMT Z3 Solver)

	Static Analysis Tools
	Symbolic Execution

	Dynamic Analysis Tools
	Comparison Between Static and Dynamic Analysis
	Chapter Summary

	Literature Survey
	Blockchain, Ethereum, and Bitcoin
	Application of Blockchain
	Detecting Vulnerability and Security Analysis of Smart Contracts
	The DAO Attack and Vulnerability
	Static Analysis Tools
	Dynamic Analysis Tools
	Modules
	SmartBugs
	Chapter Summary

	Proposed Method
	Workflow
	Algorithm for Master File
	Algorithm for Arithmetic Vulnerability
	Algorithm for Front Running(Time Order Dependency) Vulnerability
	Algorithm for Reentrancy Vulnerability
	Algorithm for Time Manipulation Vulnerability
	Algorithm for Unchecked Low Level Calls Vulnerability

	Overall Complexity
	How Complexities Can be Improved Overall

	Association of Files
	Dependencies
	Chapter Summary

	Results
	Methodology
	Datasets
	SB curated Dataset Specifications
	SB wild Dataset Specifications

	Experimental Setup
	Experimental Results
	Effectiveness of Tools
	Performance of Tools

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References

