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Abstract

Human Activity Recognition (HAR) is a challenging task that aims to identify the
actions of humans from various data sources. Recently, deep learning methods
have been applied to HAR using RGB (Red, Green and Blue) videos, which cap-
ture the spatial and temporal information of human actions. However, most of
these methods rely on hand-crafted features or pre-trained models that may not
be optimal for HAR. In this Thesis, we propose a novel method for HAR using
Two-stream Attention Based Bi-LSTM Networks (TAB-BiLSTM) in RGB videos.
Our method consists of two components: a spatial stream and a temporal stream.
The spatial stream uses a convolutional neural network (CNN) to extract features
from RGB frames, while the temporal stream uses an optical flow network to cap-
ture the motion information. Both streams are fed into an attention-based bidirec-
tional long short-term memory (Bi-LSTM) network, which learns the long-term
dependencies and focuses on the most relevant features for HAR. The attention
mechanism is implemented by multiplying the outputs of the spatial and tempo-
ral streams, applying a softmax activation, and then multiplying the result with
the temporal stream output again. This way, the attention mechanism can weigh
the importance of each feature based on both streams. We evaluate our method on
four benchmark datasets: UCF11, UCF50, UCF101, and NTU RGB. This method
achieves state-of-the-art results on all datasets, with accuracies of 98.3%, 97.1%,
92.1%, and 89.5%, respectively, demonstrating its effectiveness and robustness for
HAR in RGB videos.
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CHAPTER 1

Introduction

Human activity recognition (HAR) is the task of identifying and classifying hu-
man actions in video data. It is an active area of Research in the field of Computer
Vision for various contexts like security surveillance, human-computer interac-
tion, etc. The goal of HAR is to automatically detect and analyze human activities
from the nature of action from unknown video sequences.

HAR from videos is a rapidly evolving field of research that aims to develop
intelligent systems capable of automatically analyzing and understanding hu-
man actions in video data. With the proliferation of video data from various
sources such as surveillance cameras, smartphones, and social media platforms,
the need for automated methods to recognize and interpret human activities has
become increasingly important. HAR has numerous practical applications, in-
cluding video surveillance, human-computer interaction, healthcare monitoring,
and sports analysis, to name a few.

The primary objective of HAR is to enable machines to comprehend and inter-
pret human behaviour in videos, similar to how humans effortlessly perceive and
comprehend actions. This task involves not only detecting and recognizing the
actions performed by individuals but also understanding the context, temporal
dynamics, and spatial relationships within the video frames. Achieving accurate
and reliable HAR is challenging due to the inherent complexity of human activi-
ties, variations in appearance, viewpoint, lighting conditions, occlusions, and the
vast diversity of actions.

Over the years, significant advancements in computer vision, machine learning,
and deep learning have revolutionized the field of HAR. These advancements
have led to the development of sophisticated algorithms and techniques that can
automatically extract discriminative features, model temporal dependencies, and
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leverage large-scale annotated datasets for training robust activity recognition
models. Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and their variants have demonstrated remarkable success in capturing
spatial and temporal features from video data, enabling accurate recognition of
human activities.

By exploring the advancements, challenges, and potential solutions in HAR, this
thesis aims to contribute to the development of an intelligent system capable of
accurately recognizing and understanding human activities from video data. The
findings and insights presented in this work can have significant implications in
various domains, including surveillance, healthcare, robotics, and human-computer
interaction, ultimately leading to advancements in human-centric technologies.

1.1 Motivation

Human Activity Recognition is a challenging task that aims to identify the actions
of humans from various data sources. It includes analyzing and understanding a
person’s behaviour and is fundamentally required for various applications such
as video indexing, bio-metrics, surveillance and security. Due to this, video activ-
ity recognition has received great attention in the computer vision community. It
aims at automatically recognizing human activity from video sequences. In HAR,
various activities like walking, running, sitting, sleeping, standing, driving, open-
ing the door, abnormal activities, etc., can be recognized.

Because of its use in a number of applications, such as healthcare, HCI, security,
and surveillance, HAR has become a demanding topic in computer vision. The
type of data produced by different sources, such as videos, photos, or signals, has
a direct impact on HAR approaches. Video is used in HAR for security, moni-
toring, and recognising human actions and behaviours. Vision-based HAR has
detected or predicted actions from video streams using a range of video sources,
including CCTV, smartphone cameras, Kinect devices, and social media sites such
as YouTube [3].

The percentage of each data source is depicted in Figure 1.1. CCTV cameras (52%)
and cell phone sensors (26%) are the most popular data sources. Other data
sources utilised less frequently include Kinect (1%), smartphone cameras (1%),
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camera photos (4%), social media images (3%), wearable body sensors (8%), and
YouTube videos (5%).

Figure 1.1: Data Sources for HAR [3]

Human Action Recognition (HAR) aims to automatically examine and recognize
the nature of action from unknown video sequences. The motions of various hu-
man body components are frequently part of functional movements that do not
reveal intents or thoughts. Human activities are classified into four categories
based on the body parts involved and the intricacy of the action: Actions, ges-
tures, interactions, and group activities [8].

• Gesture: It is a visible body activity that conveys a message. It is a movement
made with the hands, faces, or other body parts, such as Okay gestures and
thumbs up, rather than verbal or vocal communication.

• Action: It is a series of physical actions performed by a single person, such
as walking and running.

• Interactions: It is a series of actions performed by no more than two actors.
At least one subject is a person, and the other can be an individual or an item
(handshakes, conversing, etc.).
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• Group activities: It consists of a variety of motions, acts, or interactions. At
least two performers are present, in addition to one or more interactive ac-
tivities (such as volleyball, obstacle courses, etc.).

HAR is a rapidly growing field with the potential to revolutionize many different
applications. Some of them are as follows :

• Human-computer interaction: HAR can be used to control devices by ges-
tures or body movements.

• Video surveillance: HAR can be used to identify people and their activities
in surveillance footage.

• Healthcare: HAR can be used to monitor the activities of elderly people or
people with disabilities.

• Sports analytics: HAR can be used to analyze the performance of athletes.

1.2 Challenges

Recognizing human activity is challenging because it depends on the distance be-
tween the camera and the object and recognizing, with precision, the different
types of activity performed. Activity Recognition using video data is challeng-
ing due to problems such as background clutter, partial occlusion, and changes
in scale, viewpoint, lighting, and appearance. Moreover, most of the existing
methods for HAR using video data rely on hand-crafted features or pre-trained
models that may not be optimal for HAR. Therefore, there is a need to develop
novel methods that can automatically learn features from video data and effec-
tively model human activities from spatial and temporal dependencies.

Human activity recognition from videos is a challenging task that involves au-
tomatically identifying and categorizing human activities based on visual infor-
mation captured in video sequences. This area of research finds applications in
various domains, including surveillance, video analysis, healthcare, sports, and
human-computer interaction. However, several inherent challenges need to be
addressed for accurate and robust human activity recognition [17].

• Variability in Human Actions: Human actions exhibit significant variabil-
ity due to variations in appearance, motion, viewpoint, scale, and occlusion.
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Different individuals may perform the same action differently, and even a
single individual may perform an action in various ways. This variability
makes it difficult to design a single model that can effectively recognize all
possible activity variations.

• Temporal Dynamics: Recognizing human activities from videos requires
capturing the temporal dynamics of actions over time. Actions can have
varying durations, and the speed at which they are performed may differ.
Moreover, activities may consist of complex sequences of sub-actions, mak-
ing it challenging to model and capture the temporal dependencies accu-
rately.

• Occlusions and Clutter: Videos often suffer from occlusions, where parts
of the human body or the entire person may be partially or completely hid-
den from view. Occlusions can occur due to objects, other people, or self-
occlusions caused by body parts obstructing each other. Similarly, the pres-
ence of clutter in the background or foreground can further complicate the
recognition task by introducing distractions and ambiguities.

• Scale and Viewpoint Variations: Recognizing human activities across dif-
ferent scales and viewpoints is a challenging problem. The appearance of
actions can vary significantly when observed from different distances or an-
gles. Recognizing actions at different scales and viewpoints requires the
models to be invariant to these variations while still capturing the discrimi-
native information.

• Contextual Understanding: Human activity recognition often relies on con-
textual cues to distinguish between similar actions or to understand the in-
tentions behind an activity. Contextual information, such as the scene, ob-
jects present, or the overall context of the video, can play a crucial role in
accurately recognizing activities. However, effectively incorporating such
contextual understanding into the recognition models is a non-trivial task.

• Data Acquisition and Annotation: Building accurate activity recognition
models requires large-scale annotated datasets. Collecting and annotating
such datasets is a labour-intensive and time-consuming process. Annotating
activities in videos often requires manual labelling by human annotators,
which can be subjective and prone to errors. Additionally, there is a need
for diverse datasets that cover a wide range of activities and environmental
conditions to ensure the generalizability of the models.
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• Computational Complexity: Recognizing activities from videos involves
analyzing and processing a large amount of visual data. This requires com-
putationally expensive operations, such as feature extraction, motion esti-
mation, and modelling temporal dependencies. Real-time or near real-time
recognition in resource-constrained settings, such as embedded systems or
mobile devices, poses additional challenges due to limited processing power
and memory constraints.

• Domain Adaptation and Generalization: Activity recognition models trained
on one dataset or in one environment may not generalize well to other datasets
or real-world scenarios. Variations in camera setups, lighting conditions,
background clutter, and human appearance can significantly impact the per-
formance of recognition models. Domain adaptation techniques are required
to ensure the models can generalize to unseen data and perform reliably in
different environments.

Addressing these challenges requires interdisciplinary research involving com-
puter vision, machine learning, and data annotation expertise. It involves devel-
oping robust algorithms to handle action variations, capture temporal dynamics,
handle occlusions, incorporate contextual understanding, and efficiently process
video data. Additionally, the availability of large-scale annotated datasets and the
development of evaluation metrics are crucial to driving advancements in human
activity recognition from videos.

Despite these challenges, there has been significant progress in HAR from videos
in recent years. This is due to the development of new machine-learning tech-
niques that can learn from large datasets of videos. As these techniques continue
to improve, HAR from videos will likely become more accurate and reliable [16].
Here are some additional challenges that can be encountered in human activity
recognition from videos:

• Multi-person activity recognition: In some cases, it may be necessary to recog-
nize the activities of multiple people in a single video. This can be a chal-
lenging task, as the activities of different people can often overlap.

• Unconstrained activities: In many cases, people perform activities in uncon-
strained environments, where they may be moving around freely. This can
make it difficult to track their movements and identify the activities they are
performing.
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• Out-of-distribution activities: When training a model for HAR, it is important
to use a dataset that covers a wide range of activities. However, it is possible
that the model will encounter activities that are not present in the training
dataset. This is known as an out-of-distribution activity. When this happens,
the model may not be able to recognize the activity accurately.

1.3 Contribution

The temporal motions, which are crucial for video-based human action recog-
nition, are ignored by CNN deep models, which only learn the spatial feature.
Two-stream convolutional networks are crucial for recognising human activity in
videos as a potent feature extractor. Recent research has demonstrated the signif-
icance of two-stream feature extraction for the detection of human activity. This
type of two-stream deep learning architecture has been demonstrated to be effi-
cient for short-term temporal cubes capture in various sequence challenges and
establishing the structural basis for the subsequently developed video-based hu-
man activity recognition.

In the thesis, we propose a novel method for HAR using Two-stream Attention
Based Bi-LSTM Networks (TAB-BiLSTM) in RGB videos. This method is evalu-
ated on four benchmark datasets: UCF11, UCF50, UCF101, and NTU RGB. Also,
it achieves state-of-the-art results on all datasets, with accuracies of 98.3%, 97.1%,
92.1%, and 89.5%, respectively, demonstrating its effectiveness and robustness for
HAR in RGB video.

1.4 Outline of the Thesis

The organization of the thesis is as follows:

• Chapter 1 introduces the problem of Human Activity Recognition, the Mo-
tivation behind the research, challenges faced for HAR, its importance and
the thesis’s contribution.

• Chapter 2 presents the General process for Human Activity Recognition and
the detailed Literature Review of different types of Har by using Deep Learn-
ing methods and previous methods proposed for HAR.
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• Chapter 3 discusses the model architecture of the proposed methodology for
Human Activity Recognition.

• Chapter 4 discusses the state-of-the-art datasets on which the experiments
are performed, experiments performed, the results and the comparison of
results with previously proposed methods.

• Chapter 5 gives the Conclusion and Future Scope of the Thesis.

8



CHAPTER 2

Literature Review

Human Activity Recognition is a field within computer vision that has gained
significant attention due to its applications in diverse domains, including security
surveillance, human-computer interaction, healthcare monitoring, sports analy-
sis, and more. The primary objective of HAR is to develop algorithms and models
that can detect and analyze human activities without human intervention. The
goal is to extract meaningful information from video sequences, such as body
movements, interactions, and gestures, and infer the corresponding actions being
performed by individuals.

This literature review aims to provide a comprehensive understanding of hu-
man activity recognition from videos. The general process for activity recognition
outlines the key steps involved, while the exploration of deep learning methods
sheds light on the advancements and state-of-the-art approaches in the field.

2.1 General Process of Human Activity Recognition

Based on the type of data being processed, HAR can be separated into two main
approaches: vision-based HAR and sensor-based HAR [1, 6], as shown in Fig-
ure 2.1. The former focuses on investigating raw data derived from wearable
sensors and environmental sensors, while the latter focuses on analysing images
or movies obtained from optical sensors. Based on the sort of data they collect,
optical sensors can be distinguished from other types of sensors. Wearable sen-
sors produce one-dimensional signal data, whereas optical sensors produce two-
dimensional, three-dimensional, or video images [7].

Because wearables are worn by users to automatically identify and track a variety
of activities, including sitting, jogging, running, and sleeping, they serve as repre-
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Figure 2.1: General Procedure for HAR [5]

sentative instances of sensor-based HAR. A sensor, however, is ineffective when a
subject is either beyond of its detection range or engages in unknown behaviours.

CCTV systems, on the other hand, have long been used in vision-based HAR sys-
tems. Gesture and activity recognition systems based on video analysis have been
thoroughly researched. Furthermore, this issue is particularly advantageous to se-
curity, surveillance, and interactive applications. In recent years, the vast majority
of research has concentrated on vision-based HAR since vision-based data is less
expensive and easier to obtain than sensor-based data. [5].

There are two main approaches to vision-based HAR:

• Feature-based methods extract features from the video, such as the position
and velocity of body parts, and then use machine learning algorithms to
classify the activities.

• Deep learning methods directly learn to classify activities from the video
data without extracting features manually.

Deep learning has captured the computer vision community’s interest in recent
years owing to the excellent performance of deep learning-based research in a
variety of study fields, including object detection and recognition, image classi-
fication, and natural language processing (NLP). While comparing with the tra-
ditional ML algorithm, Deep Learning methods significantly reduce the effort of
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selecting the right features by automatically extracting abstract features via sev-
eral hidden layers. The deep learning structure has been demonstrated to work
well with unsupervised learning, and reinforcement learning [15].

Deep learning methods have recently become the dominant approach for HAR
due to their ability to learn complex patterns from large amounts of data. How-
ever, they require a large amount of training data, which can be expensive to
collect. Deep Learning methods for human activity recognition can be briefly
divided into three parts, i.e., HAR from 3D Skeleton data [12, 13, 28], spatio-
temporal methods [9, 19, 24, 26, 27] and motion recognition [2, 14, 25, 26] which
can be seen in Figure 2.2.

Figure 2.2: Human Activity Recognition: Deep Learning Methods

2.2 Human Activity Recognition from 3D Skeleton Data

Skeleton-based Action Recognition is a computer vision task that involves recog-
nizing human actions from a sequence of 3D skeletal joint data. In recent years,
skeleton-based action recognition has been attracting interest in the field of Com-
puter Vision. Each joint of the human body is identifiable by a joint type, a frame
index, and a 3D position in the skeleton, a type of well-structured data [28].

There are several advantages of using the skeleton for action recognition:

• First, the skeleton is a high-level depiction of the human body that abstracts
human position and mobility. Biologically, humans can recognise the action
category by witnessing simply joint motion, even in the absence of appear-
ance information.
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• Second, the advancement of low-cost depth cameras and posture estimation
technology makes skeleton access considerably easier.

• Third, when compared to RGB video, the skeletal representation is more
resistant to changes in viewpoint and appearance.

• Fourth, due to its low dimensional representation, it is also computationally
efficient [28].

Skeleton-based activity recognition complements RGB-based activity recognition
in several ways: Pose Information, Viewpoint and Occlusion Independence, Data
Efficiency, etc. Figure 2.3 depicts three ways for skeleton-based human activity
recognition using deep learning.

Figure 2.3: Skeleton-based human activity recognition using deep learning meth-
ods

• Recurrent neural networks (RNN), such as LSTM and GRU are frequently used
to describe the temporal dynamics of skeletal sequences. The input vector
of a time slot is created by concatenating the 3D coordinates of all the joints
in a frame in some order.

• A well-known network, such as ResNet, is used in the The Convolutional
Neural Network (CNN)-based research to examine the spatial and temporal
dynamics after transforming the skeleton sequence into a skeleton map of
target size.

• Each joint is treated as a node in a graph by the Graph Convolutional Network
(GCN). Humans predefine the presence of the edge signifying the joint rela-
tionship based on prior knowledge. The edges for both physically separated
and connected joint pairs were added to the predefined graph to improve its
construction.
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Figure 2.4 describes the general architecture for HAR from Skeleton data using
CNN. As seen in figure 2.4, a fully convolutional neural network extracts feature
from input poses and produce action heat maps. Human pose estimation forms
the basis for human activity recognition from skeleton data.

A pooling operation on the action maps is carried out in order to generate the out-
put probability of each activity for a video clip. The max + min pooling followed
by a Softmax activation is employed in order to be more responsive to the strongest
reactions for each action. Additionally, employing a stacked architecture with in-
termediate supervision in K prediction blocks, the predictions from the human
pose regression approach are improved. Further, the action/activity recognition
block is then injected with the action heat maps from each prediction block [12].

Figure 2.4: General Architecture for HAR from Skeleton Data [11]

There are mainly two kinds of datasets for human activity recognition. Some are
commonly used to evaluate video-based activity recognition algorithms, while
others are commonly used to evaluate skeleton-based activity recognition algo-
rithms. UCF101 and Kinetics, for example, are datasets used to evaluate video-
based activity identification systems. Because no skeleton is provided in these
datasets, the datasets can be more diverse because only RGB is required [22].

Due to the limitations of recording technology, datasets, including skeleton in-
formation, are often small-scale or in a controlled environment. Another signif-
icant distinction is that with RGB activity recognition datasets, the camera often
does not record the entire body of a person, but skeleton-based datasets require
full body capture for activity recognition. However, in the NTU RGB dataset, a
popular skeleton-based action dataset, the whole body of the people is generally

13



caught in the movies. PoseC3D dataset, NTU60-X dataset, NTU RGB 120 dataset,
UWA3D dataset, N-UCLA dataset, and others are also available.

2.3 Spatio-Temporal Methods for Human Activity Recog-

nition

Spatio-Temporal means relating to both space and time. Understanding the spa-
tial and temporal interaction between video frames is at the heart of human ac-
tivity recognition. When it comes to ensuring the security and safety of resi-
dents, activity recognition faces many challenges, including industrial monitor-
ing, violence detection, person identification, virtual reality, and cloudy environ-
ments due to significant improvements in camera movements, occlusions, com-
plex backgrounds, and variations in illumination. The spatial and temporal infor-
mation is critical in recognising various human actions in videos.

The spatio-temporal characteristic has long been used to describe action recogni-
tion from intensity video. The video is viewed as a 3D volume with space x-, y-,
and temporal t-axes. Two-stream convolutional networks play an essential role
as a powerful feature extractor in human activity recognition in videos. Recent
studies have shown the importance of two-stream feature extraction for human
activity recognition. The spatial stream processing of RGB images and the tem-
poral stream processing of successive optical flow fields make up the two com-
ponents of the dual-stream network. The dual-stream network’s primary goal is
to separately simulate the mobility stream using optic flow and the appearance
stream using RGB data.

Figure 2.5 shows the Spatio-temporal pyramid network, one of the efficient ways
for HAR from Spatio-Temporal data [25]. Each block of spatio-temporal convolu-
tion (STC) consists of two 2D convolutions that follow each other, then a pseudo-
1D convolution. The temporal dimension is subjected to the temporal pooling,
which shortens it to length 1.

Widely used spatio-temporal datasets for human activity recognition in videos are
NTU RGB, UCF11, UCF50, MSR Daily Activity3D, Florence 3D action, UCF101,
Kinetics400, kinetics700, HMDB51, etc.
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Figure 2.5: Architecture for HAR from Spatio-Temporal data [21]

2.4 Human Activity Recognition from Motion

The technique for getting 3D information on humans directly uses a Motion Cap-
ture system (Mocap) [2]. It is a crucial method for recording and studying human
articulations. Mocap has been extensively utilised to animate computer-generated
characters in films and video games. Additionally, it is utilised to examine and im-
prove the sequencing mechanics of top athletes and track the success of physical
therapy in helping patients recover. Only the 3D locations of the chosen points
are recorded in a motion capture system; therefore, action recognition algorithms
using this type of data frequently construct features based on joint positions or
joint angles.

As seen in Figure 2.6, in human movement sciences, a motion capture system
must be sufficiently accurate to evaluate human activities. To test the accuracy
of OpenPose, numerous synchronised video cameras are used. To reliably recog-
nise human activity, participants conducted three motor tasks (walking, counter-
movement jumping, and ball throwing), and these movements were captured us-
ing both marker-based optical motion capture and OpenPose-based markerless
motion capture.

Examples of motion capture datasets with sizable collections of activities include
the CMU Motion Capture Database, the MPI HDM05 Motion Capture Database,
the CMU Kitchen Dataset, the LACE Indoor Activity Benchmark Data Set, the
TUM Kitchen dataset, etc.
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Figure 2.6: Human Activity Recognition from Motion [2]

Skeleton-based methods rely on extracting and analyzing human joint positions
or poses obtained from depth sensors or pose estimation algorithms. While skeleton-
based methods offer advantages such as viewpoint invariance and reduced sensi-
tivity to appearance variations, they suffer from several limitations. Firstly, accu-
rately estimating human poses from video data can be challenging, particularly
in complex scenes or when dealing with occlusions. Errors in pose estimation can
adversely affect the performance of skeleton-based methods, leading to decreased
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accuracy. Secondly, the representation of human actions solely based on joint po-
sitions may not capture the full spatial and temporal dynamics of the activity, as
it neglects other important cues such as appearance and motion information.

Motion-based methods, on the other hand, leverage motion information extracted
from video sequences to recognize human activities. These methods often use op-
tical flow or other motion descriptors to capture temporal dynamics and move-
ment patterns. While motion-based methods are effective in certain scenarios and
can capture dynamic aspects of actions, they have their limitations as well. One
limitation is their vulnerability to camera motion or background clutter, which
can introduce noise in the motion cues and degrade the recognition accuracy. Ad-
ditionally, purely motion-based methods may struggle with activities that do not
exhibit significant motion or rely heavily on subtle spatial cues.

In contrast to skeleton-based and motion-based methods, the spatio-temporal meth-
ods combine both spatial and temporal information to achieve superior human
activity recognition performance. By considering both the appearance and mo-
tion cues in a unified framework, the spatio-temporal method can capture the
complete dynamics of actions, leading to enhanced discriminative power and ro-
bustness.

The proposed method exploits the spatial stream, which processes the video frames
to extract spatial features using convolutional layers. This stream captures fine-
grained appearance information and spatial relationships among different body
parts, enabling the recognition of activities based on visual cues. Simultaneously,
the temporal stream processes the same video frames but with permuted chan-
nels, emphasizing the temporal relationships and capturing motion dynamics.
This approach allows the model to effectively encode both spatial and temporal
features, providing a more comprehensive representation of human activities.

The fusion of spatial and temporal streams in the proposed method facilitates the
extraction of discriminative features that capture both appearance and motion
cues. By integrating the strengths of both skeleton-based and motion-based ap-
proaches, the spatio-temporal method overcomes the limitations of relying solely
on joint positions or motion cues. It achieves improved accuracy in recognizing
human activities, even in challenging scenarios involving occlusions, background
clutter, or subtle spatial cues.
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The proposed spatio-temporal method for human activity recognition offers sig-
nificant advantages over skeleton-based and motion-based methods. By effec-
tively combining spatial and temporal cues, it captures the complete dynamics of
actions, resulting in improved accuracy and robustness.
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CHAPTER 3

Proposed Methodology

This Chapter describes the proposed method for Human Activity Recognition
using Two-stream Attention Based Bi-LSTM Networks (TAB-BiLSTM) in RGB
videos. The overall architecture of our method is shown in Figure 3.1. It consists
of two major components: a spatial stream known as Spatial Feature Extraction
Block and a temporal stream known as Temporal Feature Extraction Block.

The spatial stream takes in the twenty frames of the video and processes them se-
quentially. Each frame has a resolution of 64x64 pixels in RGB format. To extract
relevant spatial features, the spatial stream consists of three convolutional layers,
each with 64 filters. Convolutional layers are commonly used in deep learning
models to extract visual features by applying a set of filters to the input data. By
utilizing multiple convolutional layers, the model can capture increasingly com-
plex spatial patterns.

After the convolutional layers, max-pooling layers are applied with a pool size of
(2, 2) and a stride of (2, 2). Max-pooling reduces the spatial dimension of the data
while retaining the most important information. It achieves this by dividing the
input into non-overlapping regions and only keeping the maximum value within
each region. This pooling operation helps to down-sample the data and focus on
the most salient features.

The output of the pooling layer is then flattened, converting the multi-dimensional
tensor into a vector and passed through two fully connected layers. The first fully
connected layer has 512 units, and the second has 256 units. Fully connected
layers, also known as dense layers, connect each neuron to every neuron in the
previous and subsequent layers, allowing for complex relationships to be learned.

To prevent overfitting and improve generalization, dropout layers with a dropout
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Figure 3.1: Proposed Architecture for Human Activity Recognition
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rate of 0.5 are applied after the fully connected layers. Dropout randomly deacti-
vates a fraction of the neurons during training, forcing the network to learn more
robust and generalized representations.

The temporal stream processes the same twenty frames as the spatial stream but
with their channels permuted. By permuting the channels, the temporal rela-
tionships between consecutive frames are emphasized, allowing the model to
capture motion and temporal dynamics. The permuted frames go through the
same three convolutional layers, max-pooling layers, flattening operation, and
fully connected layers as the spatial stream.

After passing through both streams, the output of the final fully connected layer
from each stream is multiplied element-wise. This multiplication operation com-
bines the information from both streams and creates an attention map. The atten-
tion map highlights the most relevant features that were captured by the spatial
and temporal streams, emphasizing the regions and moments in the video that
contribute the most to the overall understanding and analysis. This can be better
understood from Figure 3.2.

The model uses two streams, spatial and temporal, to process video data. Each
stream consists of three convolutional layers, max-pooling layers, fully connected
layers, and dropout layers. By combining the outputs of the final fully connected
layers from both streams, an attention map is generated, which focuses on the
most important features from both the spatial and temporal aspects of the video.

3.1 Conv Block

The Conv (Convolution) Block layers are applied to both Spatial and Temporal
streams before flattening. It applies a convolutional and a pooling layer to re-
duce the spatial and increase the receptive field of the features. The output of the
pooling layer is assigned to the spatial and temporal stream variables for the next
iteration. The loop output is a sequence of feature maps, one for each RGB frame
and optical flow image for spatial and temporal streams, respectively. It can be
seen in Figure 3.3.

21



Figure 3.2: Dimension at each Layer of the Proposed Architecture
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Figure 3.3: Conv and Dense Blocks of the Proposed Architecture

3.2 Dense Block

The Dense Block layers are applied to both Spatial and Temporal streams before
flattening. The first fully connected layer uses 512 units and a ReLU activation
function to transform the feature maps into feature vectors. The second layer is
a dropout layer that uses a rate of 0.5 to drop out some of the units to prevent
overfitting randomly. The third layer is another fully connected layer that uses
256 units and a ReLU activation function to reduce the feature vectors’ dimen-
sions further. The code output is a sequence of 256-dimensional feature vectors,
one for each RGB frame and optical flow image for spatial and temporal streams,
respectively. It can be seen in Figure 3.3.

Table 3.1: List of formulae for Operations in Conv and Dense Blocks

Operation Formula

Conv2D zl = h(l−1) · W l

Max Pooling 2D hl
xy = maxi=0.5,j=0.5h(l−1)(x + i)(y + j)

Fully Connected Layer zl = Wl · h(l−1)

ReLU ReLU(zi) = max(0, zi)

Softmax softmax(zi) =
ezi

∑j ezj
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The attention mechanism applies a softmax function to the attention map over
the temporal dimension, resulting in a set of weights that emphasise each feature’s
importance in the temporal stream. The resulting features are multiplied element-
wise with the attention weights and passed through a Bidirectional LSTM layer
with 256 units. Finally, the output of the LSTM layer is passed through a fully con-
nected layer with the number of units equal to the number of classes, followed by
a softmax activation function to produce the final classification.

A predetermined number of feature maps are generated during the convolution
process and passed into the max pooling layer, which generates pooled feature
maps using the feature maps acquired from the convolution layer preceding it.
This process continues until we reach the third max pooling layer before the
pooled feature map is transferred into the following convolution layer. The last
max pooling layer’s pooled feature map is flattened and put into the fully con-
nected layers. Once the model has been trained through numerous iterations of
forward and backward propagation, a prediction can be produced. The formulae
for all the steps are mentioned in Table 3.1.

The proposed model is evaluated on standard benchmark datasets for action recog-
nition, like UCF11, UCF50, UCF101 and NTU RGB, and compared its performance
with state-of-the-art methods. The attention-based model proposed for action
recognition exhibits promising outcomes, suggesting its potential to enhance the
accuracy and efficiency of existing methods.
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CHAPTER 4

Experiments & Results

This chapter presents the details of our experiments to validate the proposed
frameworks. UCF11 [10], UCF50 [18], UCF101 [23], and NTU RGB [20] are four
different widely used datasets on which the architecture is trained and tested to
determine the efficiency of the suggested approach. The experimental findings
demonstrated that our approach could surpass the majority of earlier techniques
regarding recognition rate.

4.1 Datasets

The experiments are performed on widely used video action datasets: UCF11,
UCF50, UCF-101, and NTU RGB.

• UCF11 [10] is a difficult dataset for recognising actions in videos because of
changes in lighting, a crowded background, and camera movements. The
1600 movies in the UCF11 dataset are divided into eleven action categories,
including shooting, leaping, riding, swimming, etc. All of the videos were
shot at 30 frames per second (fps) rates.

• UCF50 [18] is an action recognition data set with 50 action categories com-
prising 6676 real videos. It consists of 199 average number of frames per
Video.

• UCF101 [23] is an action recognition data set of realistic action videos col-
lected from YouTube, having 101 action categories and a total of 13,320 videos.

• NTU RGB [20] contains 60 action classes and 56,880 video samples. As this
is a large dataset of 136 GB, we refined it to 60 action classes and a total of
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12,240 videos. The resolutions of RGB videos are 1920x1080. The dataset is
captured by three Kinect V2 cameras concurrently.

The visual representation of sample actions from all datasets is given in Figure
4.1.

Figure 4.1: Sample Action Videos from different Datasets: (a) UCF11. (b) UCF50.
(c) NTU RGB. (d) UCF101.

4.2 Efficiency and Accuracy

To validate the effectiveness of the proposed method, a series of extensive exper-
iments are conducted. These experiments aimed to assess the performance of the
method in recognizing and classifying activities in videos. The results of these
experiments are presented in the form of accuracy measurements.

In Figure 4.2, the accuracy of individual activities from the UCF11 dataset is de-
picted. The UCF11 dataset is a widely used benchmark dataset for action recogni-
tion, containing videos of eleven different human actions. The figure showcases
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the accuracy achieved by the proposed method for each specific activity in the
dataset.

Similarly, Figure 4.3 showcases the accuracy results for the UCF50 dataset. The
UCF50 dataset is a more extensive dataset consisting of fifty different action cat-
egories. The figure illustrates the accuracy attained by the proposed method for
each activity in this dataset.

Additionally, Figure 4.4 presents the accuracy outcomes for the NTU RGB dataset.
The NTU RGB dataset is a dataset specifically designed for human action recog-
nition, containing videos captured by multiple RGB cameras. The figure demon-
strates the accuracy achieved by the proposed method for individual activities
within this dataset.

To further evaluate the performance of the proposed method, Table 4.1 provides a
comparison of the accuracy results with other state-of-the-art methods. The table
highlights the accuracy achieved by the proposed method alongside the accuracy
achieved by different existing methods that are considered the current state-of-
the-art. This comparison allows researchers and practitioners to assess the effec-
tiveness of the proposed method in relation to other leading approaches in the
field.

By conducting these experiments and presenting the results in figures and tables,
the aim is to demonstrate the effectiveness and competitive performance of the
proposed method in action recognition. These results provide evidence of the
method’s capability to accurately classify activities in videos, as well as its poten-
tial to outperform or be on par with other state-of-the-art methods in the field.

Table 4.1: Accuracy Comparison with different state-of-the-art methods

Model UCF11 UCF50 UCF101 NTU RGB

Xu et al.[27] 91.5% 94.6% 91.5% 83.8%

Muhammad et al.[14] 94.6% 96.5% 86.6% 80.2%

Dai et al.[4] 96.9% 92.1% 77.9% 87.7%

Proposed Method 98.3% 97.1% 92.1% 89.5%
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Figure 4.2: Accuracy for Individual Activities for UCF11
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Figure 4.5 shows the graphical representation of the accuracy comparison of the
proposed methodology with different state-of-art existing approaches [27, 14, 4]
for Human activity recognition from videos.

As it can be clearly observed from Figure 4.5, our method outperforms the ex-
isting methods on four benchmark datasets: UCF11, UCF50, UCF101, and NTU
RGB, achieving state-of-the-art accuracies of 98.3%, 97.1%, 92.1%, and 89.5%, re-
spectively.

Figure 4.5: Accuracy Comparison with different state-of-the-art methods

4.3 Confusion Matrix

The confusion matrix is created to facilitate comparisons between distinct classes
in different datasets. The confusion matrix for the UCF11 dataset is shown in
Figure 4.6, and it can be seen that the accuracy distribution of our proposal is rea-
sonably uniform, and the recognition accuracy rates of all classes are greater.

Figure 4.7 demonstrates the confusion matrix for the UCF50 dataset, which pro-
vides a clear understanding of the proposal’s capacity to discriminate between
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various action classes. The figure shows that movements like pushups, golf swings,
trampoline jumps, and punches have higher accuracy values, while others like
soccer juggling, playing the violin, and pommel horse have lower accuracy val-
ues. Comparatively, our idea can improve the ability to distinguish between sev-
eral related motions.

Figure 4.6: Confusion Matrix of UCF11 dataset
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CHAPTER 5

Conclusion & Future Scope

We have presented a novel method for Human Activity Recognition using Two-
stream Attention Based Bi-LSTM Networks (TAB-BiLSTM) in RGB videos. Our
method leverages both the spatial and temporal information of human actions
by using a CNN and an optical flow network as feature extractors for the spa-
tial and temporal streams, respectively. Our method also employs an attention
mechanism that can dynamically adjust the weights of the features based on both
streams, enhancing the performance of the Bi-LSTM network. Our method out-
performs well as compared to the existing state-of-the-art methods on four bench-
mark datasets: UCF11, UCF50, UCF101, and NTU RGB, achieving state-of-the-art
accuracies of 98.3%, 97.1%, 92.1%, and 89.5%, respectively. Our method can be ap-
plied to applications requiring human action recognition, such as video surveil-
lance, human-computer interaction, sports analysis, and health care.

In the future, the work can be extended so that multiple different activities in a
single frame can be detected (recognized). Also, this work can be extended and
used for Anomaly Detection in Video Surveillance.
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