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Abstract

The easiest and most effective or natural way of communication is through speech;
the emotional aspect of speech leads to effective interpersonal communication.
As technological advancements continue to proliferate, the dependence of hu-
mans on machines is also increasing, thereby making it imperative to establish ef-
ficient methods for Speech Emotion Recognition (SER) to ensure effective human-
machine interaction. This thesis focuses on understanding acoustic character-
istics of various emotions and their dependence on the culture and language
used. It then proposes a new feature set, namely, Constant Q Pitch Coefficients
(CQPC) and Constant Q Harmonic Coefficients (CQHC) from Constant Q Trans-
form, which captures high resolution pitch and harmonic information, respec-
tively. Further, this thesis focuses on less explored excitation source-based fea-
tures and proposes a novel Linear Frequency Residual Cepstral Coefficients (LFRCC)
feature set for the same. Phase-based features, namely Modified Group Delay
Cepstral Coefficients (MGDCC), is proposed to capture vocal tract and vocal fold
information well for emotion classification. The recently developed Automatic
Speech Recognition (ASR) model, Whisper, is used to analyze cross-database SER.
This thesis extends the LFRCC idea on the infant cry classification problem. Lastly,
a local API is developed for SER.

Keywords: Speech Emotion Recognition, Constant Q Pitch Coefficients, Constant Q
Harmonic Coefficients, Linear Frequency Residual Cepstral Coefficients, Modified Group
Delay Cepstral Coefficients, Whisper, GMM, CNN, ResNet, TDNN.
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CHAPTER 1

Introduction

Emotion, a term commonly used in everyday life, still lacks a universally accepted
scientific definition. Emotion is described as a powerful sensation encompass-
ing feelings such as love or anger or simply referring to feelings in general. It
is a mental state triggered by neurophysiological changes that can be linked to
thoughts, feelings, behavioral responses, and varying degrees of pleasure or dis-
pleasure. Moreover, it represents a complex experience involving consciousness,
bodily sensations, and behaviors that reflect the personal significance of some-
thing, an event, or a particular situation. Emotion serves as the primary character-
istic that distinguishes humans from robots. In the current era of advancing tech-
nologies like Artificial Intelligence (AI), our increasing dependence on machines
necessitates their meaningful understanding of human emotion. Thus, recogniz-
ing emotions is crucial in this regard. Researchers have classified emotion in a
4-D model, where each dimension—duration, quality, intensity, and pleasure—is
independent of the others [22].

The concept of emotion recognition entails the identification of emotions. It
is known that speech production is not solely reliant on the vocal tract system,
larynx, and lungs. Rather, it involves cognitive processes that transform non-
linguistic concepts with communicative intent into linguistically well-formed ut-
terances. This process encompasses linguistic and physiological aspects of speech
communication between speakers and listeners [64], [76]. Specifically, it involves
the transmission of electrical signals from the brain via motor nerves to activate
the larynx and vocal tract system muscles. Consequently, if speech, which con-
veys emotions, possesses cognitive characteristics, emotion recognition refers to
identifying the attributes of emotional states through the observation of visual
and auditory non-verbal cues. Although emotion can be recognized through
speech and facial expressions, this thesis focuses exclusively on analyzing emo-
tions through speech.

As previously mentioned, a substantial gap exists between human and machine-
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based processing of audio and visual stimuli, preventing machines from accu-
rately identifying a speaker’s emotional state. This challenge has led to a new
research field called Speech Emotion Recognition (SER) [80]. However, devel-
oping an effective emotion recognition model heavily relies on a comprehensive
understanding of the acoustics associated with various emotions.

1.1 Problem Statement

This thesis focuses on feature extraction methods for SER. In general, the features
for emotion recognition are divided into 4 categories, namely prosodic, excita-
tion source, vocal tract system-related features, and a combination of these [42].
This thesis presents a novel feature extraction method (CQPC and CQHC) that
is hypothesized to capture prosodic features. It also touches upon the cultural
and linguistic effects on emotions. The thesis also proposes a new feature for the
less used excitation source method: LFRCC. The effect of phase-based features on
emotions was also studied. Cross-database analysis for emotions was also tested
using whisper features.

1.2 Motivation

SER has emerged as a fascinating and relevant area of research in recent years,
capturing the attention of researchers, industry professionals, and academia alike.
The motivation behind exploring SER for this thesis stems from its profound im-
pact on various applications, such as human-computer interaction, affective com-
puting, and mental health support systems.

Understanding and recognizing human emotions from speech can revolution-
ize our interactions with technology. Imagine a world where computers can per-
ceive our emotions, adapt their responses accordingly, and provide empathetic
support. This would enable more natural and engaging human-computer inter-
actions, enhancing user experiences and opening new avenues for personalized
and context-aware technologies.

Furthermore, in affective computing, SER is crucial in building intelligent sys-
tems that interpret and respond to human emotions. From virtual assistants and
chatbots to automated customer service agents, incorporating SER can enable
these systems to detect user emotions and provide appropriate responses. This
can enhance customer satisfaction, improve user engagement, and create more
meaningful human-like interactions.
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Another significant aspect of SER is its application in mental health support
systems. Emotions expressed through speech can serve as valuable indicators of
an individual’s mental well-being. Developing accurate SER models can help in
the early detection of mental health conditions, such as depression, anxiety, and
stress. By analyzing speech patterns, tone, and prosody, these models can assist
mental health professionals in identifying individuals at risk, providing timely
interventions, and offering personalized treatment plans.

By conducting research in the field of SER, this thesis aims to contribute to de-
veloping robust and accurate emotion recognition systems. Through this research,
I hope to pave the way for a future where technology can better understand and
respond to our emotions, leading to more empathetic and supportive interactions
in various domains.

1.3 Applications and Challenges

SER is a field of study that focuses on the development of algorithms and tech-
niques to automatically detect and analyze emotions from speech signals. SER
has numerous applications across various domains and industries. In the field of
human-computer interaction, SER can enhance the interaction between humans
and machines by enabling devices to understand and respond appropriately to
the emotional state of the user. This can lead to the development of more intuitive
and empathetic voice assistants, virtual agents, and customer service systems.

In the field of psychology and psychiatry, SER can assist in the diagnosis and
treatment of emotional disorders by providing objective measures of emotional
states. It can help identify patterns and indicators of different emotions, enabling
therapists and researchers to gain insights into patients’ emotional well-being and
track the effectiveness of therapeutic interventions.

Moreover, SER finds applications in the entertainment industry, particularly
in areas such as gaming and virtual reality. By recognizing and adapting to the
user’s emotional state, game developers can create more immersive and engaging
experiences. Additionally, in market research and advertising, SER can be used
to evaluate consumer reactions to products, commercials, or brand messaging,
providing valuable insights for marketers and advertisers. Some applications of
SER are shown in Figure 1.1.

Despite the promising applications, there are several challenges associated
with SER. One significant challenge is the subjectivity and variability of emo-
tional expression. Emotions can be influenced by cultural factors, individual dif-
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Figure 1.1: Diagram demonstrating significance of emotion recognition.

ferences, and context, making it difficult to develop universal models for emotion
recognition. Additionally, the presence of noise, varying speaking styles, and lan-
guage barriers pose further challenges in accurately detecting and interpreting
emotional cues from speech signals.

Another challenge lies in the availability of labeled data for training and eval-
uating SER models. Collecting large and diverse datasets that encompass a wide
range of emotional states can be time-consuming and resource-intensive. More-
over, ensuring the quality and reliability of the labeled data can be challenging, as
emotions are subjective and can be interpreted differently by different annotators.

Furthermore, the real-time and online deployment of SER systems introduces
additional challenges. Real-time processing requires efficient algorithms and low-
latency solutions to provide timely feedback. Handling large volumes of stream-
ing data and ensuring the privacy and security of users’ personal information are
also important considerations.

1.4 Contributions from this Thesis

• This thesis made an attempt to propose a new prosodic feature set, namely
Constant Q Harmonic Coefficients (CQHC) and Constant Q Pitch Coeffi-
cients (CQPC) for SER.
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• A new feature set, namely Linear Frequency Residual Cepstral Coefficients
(LFRCC) was introduced based on less explored excitation source-based fea-
tures for SER.

• Phase-based Modified Group Delay Cepstral Coefficients (MGDCC) was in-
troduced for SER and its noise robustness qualities were also investigated.

• Recently developed (September 2022) novel ASR model, the whisper is stud-
ied. Its features are taken to analyze cross-database performance for SER.

• LFRCC feature set was used for infant cry classification and its performance
on the mismatched dataset was the best.

• Local API was built for Assistive Speech Technology, in which the emotion
classification model based on CQPC is discussed in detail.

1.5 Organization of the Thesis

• Chapter 2 presents a detailed study of the previous investigations on SER,
databases for emotions, and classifiers used for emotion recognition.

• Chapter 3 illustrates the speech processing methodologies. Further, this
chapter presents the features, classifiers, and performance measures used
to evaluate the systems.

• Chapter 4 kickstarts the work by analyzing emotions and their behavior due
to cultural and linguistic differences.

• Chapter 5 presents the use of timbre-based features (CQHC and CQPC) on
SER.

• Chapter 6 presents the novel LFRCC feature set, based on excitation source
information for SER.

• Chapter 7 presents the novel phase-based MGDCC feature which captures
vocal fold and vocal state information for SER. The noise robustness ability
of MGDCC is also studied.

• Chapter 8 proposes a recently developed ASR model, namely, whisper for
cross-database analysis in SER.

• Chapter 9 presents an exploratory work on Infant Cry Analysis using LFRCC.
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• Chapter 10 discusses the details of building a local API for Assistive Speech
Technology.

• Chapter 11 gives the summary, conclusion, limitations, and future research
direction on SER.

1.6 Chapter Summary

This chapter gives a brief introduction on emotions and emotion recognition fol-
lowed by a description of the problem statement. Later in the chapter motivation
of this thesis, the application and challenges of the SER are discussed. This chap-
ter is concluded by discussing the contributions and organization of the thesis. In
the next chapter, we present the overview of literature search w.r.t. SER.
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CHAPTER 2

Literature Survey

2.1 Introduction

The earliest cited work on emotion dates back to 1872, when Darwin in his work
"The Expression of the Emotions in Man and Animals" argued that all humans and
other animals show emotions through remarkably similar behavior [7]. Further-
more, it was also stated that emotions have an evolutionary history that could
be traced across cultures and species. Following that multiple researchers have
worked in this field, some of which include - work by S. Schachter and Singer J
in 1962, where they state that the emotional states are a function of physiological
arousal and of cognition appropriate to this state [73]. Emotion is studied both by
neurobiologists and by emotion theorists; it is important to link psychology and
neuroscience to understand emotions better [46]. Culture and society also affect
the way people feel and express emotions [72]. All these findings proved why
emotion is so complex and so difficult to understand to this date.

2.2 Speech Emotion Recognition (SER)

Initial work on emotion recognition was carried out in late 1999, where Nakatsu
R, Tosa N proposed an algorithm for emotion recognition using neural networks.
The accuracy obtained was about 50 % [56]. This was then extended by other
researchers and now we have multiple emotion recognition features, algorithms,
and also datasets are available in various languages [82]. Powerful neural net-
work algorithms are being used to test emotion recognition and accuracy rates
have increased ever since [80]. Cognitive features in emotion recognition was
also analyzed side-by-side by researchers as their correlation with emotions was
found long back [77], [89]. Figure 2.1 shows the detailed structure for SER.

For emotion recognition, the first step needed is to understand its database.
There are three types of emotion databases, namely acted, elicited, and simulated
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Figure 2.1: Speech Emotion Recognition.

emotions [42], [15]. Acted emotions refer to emotions that are deliberately por-
trayed or acted out by individuals, Elicited emotions are emotions that are inten-
tionally triggered or evoked in individuals through various means. This can be
done through external stimuli, such as emotional pictures, videos, or stories, or
through interpersonal interactions or specific situations designed to elicit certain
emotional responses and Natural emotions refer to genuine, spontaneous emo-
tional experiences that occur in everyday life situations without any deliberate
manipulation or elicitation [80]. The database used in this thesis is of acted emo-
tions.

After the database, it is important to understand the features used for SER.
Various features are employed for this purpose [26], but the major four categories
are developed, namely, prosodic, excitation source-based, vocal tract-based, and a
combination of the aforementioned features. Prosodic features refer to the supraseg-
mental aspects of speech that go beyond individual phonemes or words. They in-
volve the rhythm, stress, intonation, and pitch patterns used in spoken language.
Prosody plays a crucial role in conveying meaning, emphasis, and emotional ex-
pression in communication. Excitation source features (like LP residual) refer to
acoustic properties that capture characteristics of the vocal source or laryngeal ac-
tivity during speech production. These features can provide valuable information
for SER; It quantifies the presence or absence of voicing in speech. Emotions may
be associated with variations in voicing strength due to differences in vocal fold
behavior, these are points in the speech signal that mark the instant of glottal clo-
sure during each vocal fold cycle. The analysis of Glottal Closure Instants (GCIs)
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can reveal timing characteristics related to emotions, etc. Vocal tract features (like
MFCC, GFCC) capture the acoustic properties related to the resonant characteris-
tics of the vocal tract during speech production. These features provide valuable
insights into the articulatory aspects of emotions expressed through speech. One
crucial vocal tract feature used in SER is Formants. Formants represent the reso-
nant frequencies of the vocal tract during speech. They are closely associated with
vowel sounds and can provide information about the shape and size of the vocal
tract. Emotional states may be reflected in formant patterns, such as variations in
their frequency and bandwidth, which can be indicative of different articulatory
configurations and emotional expressions.

After extracting emotion features, it is sent to classifiers for testing [40]. Tra-
ditional machine learning models, such as Gaussian Mixture Model (GMM), Hid-
den Markov Model (HMM), K Nearest Neighbour (KNN), Bayes classifier, Sup-
port Vector Machine (SVM), random forest, etc were used initially. With the devel-
opment of Artificial Intelligence (AI) and the emergence of Deep Learning (DL),
SER classifications were also shifted to deep learning models. Their ability to
automatically learn complex features, handle large amounts of data, model non-
linear relationships, and adapt to diverse tasks and domains make deep learn-
ing an increasingly popular and powerful approach in the field of SER. The most
commonly used DL models are, Convolutional Neural network (CNN), Recurrent
Neural network (RNN), Time Delay Neural Network (TDNN), Long Short Term
Memory (LSTM), Residual Neural Network (ResNet), etc.

The previous research primarily concentrated on the lower frequency seg-
ments of the speech signal in the context of SER [78]. This served as a driving
force behind the creation of CQPC, derived from CQT, as a technique for SER.
Furthermore, the limited utilization of the excitation source and phase-based char-
acteristics inspired the adoption of LFRCC and MGDCC, respectively, for SER.

2.3 Chapter Summary

In this chapter, we discussed the attempts made for understanding emotions and
the development of SER. The database, features, and classifiers used for SER are
studied in detail. In the next chapter, we discuss the experimental setup used for
this thesis.
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CHAPTER 3

Experimental Setup

Once the problem statement is comprehended, conducting experiments becomes
imperative in order to test the formulated hypothesis and address the issue at
hand.

3.1 Introduction

This chapter provides a comprehensive overview of the experimental setup em-
ployed for SER. It encompasses the description of fundamental speech processing
methodologies, such as pre-processing, feature extraction, and post-processing.
Additionally, it outlines various datasets and classifiers utilized for SER task. The
state-of-the-art features used for performance comparison with the proposed fea-
tures are also presented. Finally, the chapter discusses the various performance
evaluation measures employed to assess the effectiveness of the model.

3.2 Basic Speech Processing Methodologies

3.2.1 Pre-Processing

The primary stage of speech signal processing is pre-processing, which serves
to transform the raw input speech into a format that is better suited for extract-
ing features. This involves distinguishing between voiced and unvoiced regions,
eliminating background noise, etc. by employing various techniques such as pre-
emphasis, framing, windowing, normalization, noise reduction, and silence re-
moval [57]. In this study, framing, windowing, and normalization functions were
utilized to prepare the raw input for effective feature extraction.
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Framing

Speech framing, also referred to as speech segmentation, is a crucial process in
overcoming several challenges related to SER. During natural speech production,
emotions tend to fluctuate due to the non-stationary nature of the speech signals.
However, the speech itself remains consistent, even within very short duration,
typically ranging from 20 to 30 milliseconds. By dividing the speech signal into
fixed-length segments, known as speech frames, it becomes possible to estimate
semi-fixed and local features. To maintain the connection and information be-
tween these frames, intentionally overlapping them by 30% to 40% is beneficial.
Consequently, utilizing fixed-size frames becomes suitable for classifiers such as
Artificial Neural Networks (ANNs), while retaining the emotional information
contained within the speech [91].

Windowing

After the speech signal is blocked into frames, the next step involves applying a
window function to each frame. When performing Fast Fourier Transform (FFT)
on the signal, discontinuities at the edges can cause spectral leakage, which can
be mitigated by employing a windowing function [16]. One commonly used type
of windowing function is the Hamming window, defined below -

w(n) = 0.54 − 0.46 cos (2πn/M − 1), (3.1)

where w(n) is the window function to extract speech frame, and window size is
M, where 0 ≤ n ≤ M - 1 [91].

Normalization

Normalization is a technique employed to adjust the sound volume to a standard-
ized level. In this process, the signal sequence is divided by the highest value of
the signal, ensuring that each sentence maintains a comparable volume level [57].
It is calculated using the formula given-

z = (x − µ/σ), (3.2)

where µ is the mean, and σ is the standard diviation of speech signal [91].
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3.2.2 Feature Extraction

It plays a crucial role in speech signal processing as it helps capture relevant in-
formation from speech signal for further analysis and classification. As discussed
in Chapter 2, various features, such as prosodic, vocal tract, and excitation source-
based features, are utilized for SER to effectively capture emotion-specific infor-
mation. Additionally, depending on the requirements, local and/or global fea-
tures can be extracted. The resulting numerical values from the feature extraction
process are organized into a vector known as the feature vector in the pattern recog-
nition and machine learning field. This vectorization aids in reducing the overall
signal size, allowing for a more focused and efficient implementation by prioritiz-
ing the relevant portions of the signal.

3.2.3 Post-Processing

Post-processing operations play a vital role in enhancing classifier efficiency by
mapping the feature space to another space. These operations encompass tasks
such as normalization, reducing dimensions of feature vector, incorporating ve-
locity and acceleration coefficients, among others. By carrying out these opera-
tions, distortions in the processed input speech are eliminated, ensuring that the
resulting data is suitable for further classification by the classifier.

3.3 Details of Dataset Used for SER

In this thesis five emotional speech corpora are utilized for testing the proposed
features for SER task.

3.3.1 Acted Emotional Speech Dynamic Database (AESDD)

The aforementioned corpus, which was created in 2018, is a freely accessible greek
dataset designed for SER [58]. It encompasses 500 instances of acted emotional
speech, featuring five distinct emotions: anger, happiness, disgust, fear, and sad-
ness. The dataset consists of recordings from five actors, including three females
and two males, with each actor providing 20 utterances per emotion [5]. This
corpus was used to analyse emotions using spectrograms, energy and with TEO
profile of speech signal.
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3.3.2 Emotional Speech Database (ESD)

The recently developed ESD corpus [94], established in 2021, comprises 350 paral-
lel utterances delivered by 10 native English speakers (5 males and 5 females) and
10 native Mandarin speakers (5 males and 5 females). This corpus encompasses
emotions, such as anger, happiness, neutrality, sadness, and surprise, with audio
samples recorded at a sampling rate of 16 kHz. The selection of this dataset was
motivated by its relatively large-scale size, featuring multiple speakers, and its
availability to the public, coupled with favorable recording conditions [95]. This
dataset was used to examine the influence of cultural and linguistic disparities be-
tween English and Mandarin language on emotions and to test the effectiveness
of proposed CQHC, CQPC, and whisper features for SER.

3.3.3 Toronto Emotion Speech Set (TESS)

In this dataset [63], a a collection of 200 specific words that were uttered within the
introductory phrase "Say the word–". Two actresses, aged 26 and 64 respectively,
were involved in the recordings, which captured each word being expressed with
seven different emotions: anger, disgust, fear, happiness, pleasant surprise, sad-
ness, and a neutral tone. There are 400 .wav files for each emotion, so in total,
2800 files out of which this work used five emotions, namely, anger, happiness,
sadness, surprise, and neutral (i.e., 2000 files) for 5 emotions. This dataset was
used to analyse the performance of CQHC, CQPC, and whisper features for SER.

3.3.4 German Emotional Database (EmoDB)

The EmoDB dataset is a collection of German speech samples uttered by ten ac-
tors, consisting of five male and five female actors. Under favorable recording
conditions, the actors recorded ten German phrases expressing seven emotions:
anger, joy, neutral, sadness, disgust, boredom, and fear [21]. This work used four
emotions, namely, anger, joy, neutral, and sadness (339 .wav files) for performance
analysis of LFRCC and MGDCC on emotions.

3.3.5 Crowd Sourced Emotional Multimodal Actors Dataset (CREMA-

D)

The CREMA-D dataset [23], contains 7442 acted utterances from 91 actors. The
dataset encompasses six emotions, with the intensity of emotion specified as high,
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medium, low, or unspecified, featuring 48 male and 43 female actors. This work
used 896 utterances per emotion (767 for neutral) for training, while 124 utter-
ances per emotion were used for testing (105 for neutral), and 251 utterances per
emotion were used for validation (215 for neutral) for whisper feature analysis.
However, it should be noted that the neutral emotion category contains fewer
utterances than the other emotions in the dataset.

3.4 State-of-the-art Features for SER task

Some of the widely used features for SER are explained below. These features
were used as the baseline to analyse the performance of proposed features.

3.4.1 Mel Frequency Cepstral Coefficients (MFCC)

Mel Frequency Cepstral Coefficients (MFCCs) are widely used to extract essen-
tial features in speech and audio signal processing. These coefficients are derived
from the Mel-scale, a perceptual pitch scale closely resembling the human audi-
tory system’s frequency response [79]. If the input frequency in Hertz is consid-
ered as f, then the corresponding frequency (m) in Mel scale is given by [35]:

m = 2595 ∗ log(1 + f /700) (3.3)

The process of extracting MFCCs involves several key steps (Figure 3.1):

• Pre-emphasis: The input speech signal is typically pre-emphasized to am-
plify higher frequencies and compensate for spectral density roll-off using a
high pass filter.

• Framing: The pre-emphasized speech signal is divided into short overlap-
ping frames, usually ranging from 20 to 40 ms. Overlapping frames ensure
information continuity between adjacent frames and thus, avoids the abrupt
chopping of speech information.

• Windowing: Each frame of the speech signal is multiplied by a window
function, often a Hamming window, to alleviate spectral leakage caused by
abrupt frame blocking.

• Fast Fourier Transform (FFT): The windowed frames undergo Fourier trans-
form operation to obtain the frequency spectrum. The power spectrum is
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Figure 3.1: MFCC Extraction.

Figure 3.2: LFCC Extraction.

computed by squaring the magnitude of the complex Fourier transform co-
efficients.

• Logarithm: The logarithm of the filterbank energies is taken to transform
the linear-scale magnitudes into a logarithmic scale. This transformation
imitates the non-linear loudness perception of the human ear.

• Discrete Cosine Transform (DCT): Finally, a discrete cosine transform is ap-
plied to the logarithmic filterbank energies. The resulting coefficients, MFCCs,
effectively capture the speech signal’s spectral characteristics. Further DCT
is applied for feature vector dimentionality reduction, feature vector decor-
relation, and energy compaction.

3.4.2 Gammatone Frequency Cepstral Coefficients (GFCC)

Gammatone Frequency Cepstral Coefficients (GFCCs) are a modified version of
the well-known MFCC feature extraction. While MFCC employ Mel subband fil-
ters for feature extraction in speech and audio signal processing, GFCC utilize
gammatone filters as an alternative. They show robustness against noise and
acoustic change [49] thereby, making it better than MFCC, thus used for com-
parison with proposed features.

3.4.3 Linear Frequency Cepstral Coefficients (LFCC)

LFCC captures the spectral characteristics of the speech signal, similar to MFCC,
however use linearly-spaced subband filters instead of the Mel filters. Steps to
extract LFCC is shown in Figure 3.2.
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3.5 Details of Classifier Used

Multiple classifiers were employed to assess the impacts of the proposed features,
and their specifics are provided in the following Sub-sections.

3.5.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) [9] are deep learning models that lever-
age the convolution operation to process data within their architecture. This con-
volution occurs between multidimensional input data and multidimensional fil-
ter weights, referred to as kernels. Following the convolutional operation, there are
subsequent pooling layers and non-linear activation operations. Together, these
three operations form a convolutional layer, responsible for extracting features
from the input data. CNN models also incorporate fully-connected layers of per-
ceptrons for classification purposes.

Convolution Operation

Within the framework of CNN, the convolution operations involve sliding the
kernel across the input matrix and processing the data accordingly. It is worth
noting that the kernel size is typically smaller than the input matrix. The convo-
lution operator is mathematically represented as:

Output[i, j] =
kernel_height−1

∑
m=0

kernel_width−1

∑
n=0

Input[i + m, j + n] · Kernel[m, n] + Bias,

(3.4)
where "Output" represents the output feature map, "Input" denotes the input fea-
ture map, "Kernel" refers to the kernel weights, and "Bias" represents the bias term.
The summations iterate over the height and width of the kernel, and the resulting
sum is computed at each spatial location (i,j) in the output feature map.

This operation has a profound impact on the network’s ability to extract and
learn meaningful features from input data. By convolving filters (kernels) across
the input, CNNs are able to detect various patterns, edges, and textures at differ-
ent spatial scales. This enables the network to build a hierarchical representation
of features, with lower layers capturing simple features and higher layers captur-
ing more complex ones. The parameter sharing mechanism in convolutional lay-
ers reduces the number of learnable parameters, promoting efficient learning and
better generalization. Additionally, the translation invariance property of convo-
lutions allows CNNs to recognize features regardless of their exact location in the
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input, contributing to robustness in tasks such as object recognition.

Padding Operation

Padding plays a critical role in CNN by adding extra rows and columns of ze-
ros to input feature maps. This operation serves multiple purposes. Firstly, it
maintains the spatial dimensions of feature maps throughout the convolutional
layers, preserving vital spatial information, especially in deeper layers. Secondly,
it enables better control over the output size after convolution, ensuring compat-
ibility with subsequent layers and facilitating architectural alignment. Moreover,
padding ensures comprehensive coverage of the feature map borders during con-
volution, facilitating the capture of significant edge and boundary details. Lastly,
it mitigates the border effect by preventing a decrease in spatial resolution near
the feature map edges, leading to more accurate representations. It is calculated
using the formula given below.

Padding Size =

⌈
(Output Size − 1)× Stride − Input Size + Kernel Size

2

⌉
(3.5)

Stride Convolution

Stride convolution in CNN involves moving the convolutional kernel across the
input feature map with a specified step size, known as the stride. By adjusting
the stride value, CNN can control the downsampling of the spatial dimensions
of the feature map. A larger stride reduces the spatial resolution, allowing for
faster processing and decreased computational complexity. However, it may lead
to information loss and less precise feature localization. On the other hand, a
smaller stride preserves spatial detail but increases computational requirements.
Stride convolution is often used in conjunction with padding to control the output
size and maintain compatibility with subsequent layers. It enables CNN to strike a
balance between computational efficiency and feature representation, depending
on the specific needs of the task. It is calculated using:

Stride =
Input Size − Kernel Size

Output Size − 1
. (3.6)

It is important to note that the stride should be a positive integer greater than or
equal to 1. If the calculated stride is a non-integer value, it is often rounded up to
the nearest whole number to ensure a valid stride.
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Activation Layers

The activation function is a vital component that introduces non-linearity to the
network. It applies a non-linear transformation element-wise to the output of
the convolutional layer or other preceding layers. The activation function plays a
crucial role in allowing the network to learn complex patterns and make more ex-
pressive predictions. Popular activation functions include ReLU, which sets neg-
ative values to zero and keeps positive values unchanged, and sigmoid, which
squashes the output between 0 and 1. Other functions such as tanh, leaky ReLU,
and maxout provide different characteristics and flexibility in capturing non-linear
relationships. The activation function enables CNN to model complex features
and make accurate classifications, contributing to their effectiveness in computer
vision tasks and deep learning applications.

Pooling Layers

Pooling layers are an essential part of CNN that aid in reducing the spatial di-
mensions of feature maps while preserving important information. These layers
divide the feature maps into non-overlapping regions and apply operations like
max pooling or average pooling to extract the most significant values within each
region. The main purposes of pooling layers are to decrease computational com-
plexity, create translation invariance, and extract salient features. By reducing the
dimensions, pooling layers make the network more efficient and capable of cap-
turing important patterns while discarding redundant details.

Architecture Details

• LFRCC on infant cry analysis: CNN was trained using the sigmoid acti-
vation function. It employes 5 convolutional layers, each with output 16,
64, 64, 16, and 16, respectively, with kernel size of 3 × 3. Each convolu-
tional layer was followed by max-pooling of 2 and ReLU function. 2 fully-
connected layers were employed with a dropout of 0.25.

• CQPC and CQHC on SER: The model is trained using stratified 10-folds
cross-validation strategy with train and validation split of 80 % and 20 %
using adam optimizer, categorical cross-entropy as a loss function, accuracy as
the evaluation metric, and (5x5) as the kernel size. The learning rate used is
0.001 and batch size is taken as 32.
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3.5.2 Residual Neural Network (ResNet)

ResNet, also known as Residual Network, is a deep convolutional neural net-
work architecture proposed by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun in 2016 [32]. Its primary objective is to overcome the vanishing gradient
problem when training deep neural networks.

The fundamental concept behind ResNet is the utilization of residual connec-
tions, also called skip connections or shortcut connections. These connections en-
able the network to bypass specific layers and directly transmit information from
one layer to another. This technique effectively mitigates the vanishing gradient
problem and facilitates the training of significantly deeper networks.

In a conventional neural network, each layer learns to map its input to its
output. However, in a ResNet, each layer learns a residual mapping, which repre-
sents the difference between its input and output. The layer’s output is obtained
by adding the residual mapping to the input, as illustrated by the equation:

y = F(x) + x. (3.7)

Here, y represents the layer’s output, F(x) represents the learned residual map-
ping, and x represents the layer’s input. By explicitly learning the residuals,
ResNet enables the network to focus on learning residual functions rather than
attempting to learn the entire mapping from scratch. This characteristic signifi-
cantly simplifies the training of deep networks.

The ResNet architecture is composed of multiple residual blocks that are stacked
sequentially. Each residual block typically incorporates two or three convolu-
tional layers, accompanied by batch normalization and activation functions such
as ReLU. The skip connections in ResNet can be implemented as identity map-
pings, directly passing the input to the output, or using 1x1 convolutional layers
to adjust the dimensions between input and output.

ResNet has proven to be a highly effective architecture in various computer
vision tasks, such as image classification, object detection, semantic segmentation,
and image captioning. Its utilization of residual connections has revolutionized
deep network training by facilitating gradient flow and enabling the successful
training of deep neural networks with superior performance.

Architecture Details

• LFRCC in SER: The ResNet model used for this work comprises of 3 resid-
ual blocks of size (64,32,2), (32,16,2), and (16,16,2) with a kernel size of 3,
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strides of 2, average pooling, loss function as categorical cross-entropy, learn-
ing rate of 0.001, and Stochastic Gradient Descent as optimiser and is imple-
mented in pytorch.

3.5.3 Time Delay Neural Network (TDNN)

The Time Delay Neural Network (TDNN) is an architecture specifically designed
for processing sequential data, such as speech and audio signals, time series data,
and temporal patterns. It was originally proposed by Alex Waibel and colleagues
in 1989 [45].

The key feature of the TDNN architecture is its capability to capture temporal
dependencies by incorporating time delays within the network structure. Unlike
conventional feedforward neural networks that only consider the current input,
TDNN takes into account information from multiple time steps.

In a TDNN, each neuron in a layer is connected to neurons in the previous
layer at different time delays. These time delays enable the network to incorpo-
rate a window of past information in addition to the current input. By considering
the temporal context, TDNN can effectively capture evolving patterns and rela-
tionships over time.

Typically, TDNN consists of multiple layers with shared weights across dif-
ferent time delays. This weight sharing allows the network to generalize across
various time steps and extract meaningful features from the input sequence. The
output of each layer is computed by convolving the inputs with the correspond-
ing weights, applying a non-linear activation function, and combining the results.

A popular variant of TDNN is the Time-Delay Neural Network for Speech
Recognition (TDNN-F), which has gained significant usage in speech recognition
systems. TDNN-F extends the basic TDNN by incorporating additional layers,
such as fully connected layers and softmax layers, to enable classification tasks on
sequential data.

TDNN has demonstrated effectiveness in diverse applications involving se-
quential data, including speech and speaker recognition, natural language pro-
cessing, and music analysis. Its ability to model temporal dependencies and cap-
ture long-range patterns makes it particularly suitable for tasks, where the order-
ing of inputs is critical.
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Architecture Details

• LFRCC in SER: In TDNN [62], the layer-wise input and output dimensions
for each layer of the TDNN were (39, 64), (64, 128), (128, 128), (128, 64),
and (64, 64). Dropout at 0.2, attention pooling, loss function as categorical
cross-entropy, a learning rate of 0.001, and Adam optimizer are used for clas-
sification.

3.5.4 Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) is a statistical framework employed to rep-
resent the probability distribution of a dataset [70]. It assumes that the dataset
originates from a combination of multiple Gaussian distributions, referred to as
components. The GMM aims to approximate the underlying data distribution by
learning the parameters associated with these components.

The GMM represents the data as a weighted sum of Gaussian distributions.
Each Gaussian distribution represents a distinct cluster within the data, and the
model assigns weights to these components to indicate their respective contri-
butions to the overall distribution. The parameters of the GMM encompass the
means and variances of the Gaussian components and the weights assigned to
each component.

These parameters are estimated using the Expectation Maximization (EM) al-
gorithm, which iteratively maximizes the likelihood of the data given the current
parameter estimates. Once the model is trained, it becomes capable of generating
new data points by sampling from the learned distribution.

Architecture Details

512 number of Gaussian mixtures were used for training the Baby Chilanto dataset.
However, a 128 number of Gaussian mixtures were used to train the in-house (i.e.,
DA–IICT) dataset as there are less number of data samples. The scores were com-
puted using the log-likelihood function.

3.6 Performance Evaluation Measures

The performance of classifer models and feature sets were computed using multi-
ple performance measures. The details of the same are mentioned in the following
sub-Sections.
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3.6.1 k-Fold Cross Validation

k-fold cross-validation is a widely used technique in machine learning and statis-
tics to evaluate how well a model performs and generalizes. It is especially bene-
ficial when data is limited and allows us to estimate the model’s performance on
unseen data.

k-fold cross-validation operation:

• The original dataset is divided into k subsets, each having roughly the same
amount of data. These subsets, known as "folds," are created.

• The model is trained and assessed k times, each iteration using a different
fold as the validation set while utilizing the remaining k-1 folds as the train-
ing set.

• In each iteration, the model is trained on the training set and then evaluated
on the validation set using a selected evaluation metric, such as accuracy or
mean squared error.

• The performance scores obtained from each iteration are averaged together,
resulting in a single performance metric representing the model’s overall
performance.

One of the key advantages of k-fold cross-validation is its ability to provide a
more dependable estimate of the model’s performance when compared to a single
train-test split. Repeating the process k times and averaging the results reduces
the influence of a specific train-test split on the performance evaluation, resulting
in a more robust assessment of the model’s capabilities.

3.6.2 Confusion Matrix

A confusion matrix is a commonly employed tabular tool for assessing the effec-
tiveness of a classification model. It presents a concise overview of the model’s
predictions on a specific test dataset, allowing for a comparison against the true
labels of the data. The matrix comprises four essential elements:

• True Positive (TP): The number of samples that were correctly predicted as
positive.

• True Negative (TN): The number of samples that were correctly predicted
as negative.
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• False Positive (FP): The number of samples that were incorrectly predicted
as positive.

• False Negative (FN): The number of samples that were incorrectly predicted
as negative.

These metrics aid in evaluating the model’s ability to correctly identify posi-
tive and negative instances, providing valuable insights into areas that could be
enhanced.

3.6.3 % Classification Accuracy

Accuracy is the most simplified and powerful performance metric employed to
evaluate the effectiveness of traditional machine learning and deep learning mod-
els. The accuracy (in %) is defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100%. (3.8)

Classification accuracy is frequently employed as an evaluation metric, particu-
larly in datasets with balanced classes, where the number of instances in each
class is similar. However, in the case of imbalanced datasets, where one class pre-
vails, accuracy may not be the most suitable metric. In such scenarios, alternative
metrics, such as precision, recall, and F1-score can offer a more comprehensive
evaluation of the model’s performance.

3.6.4 F1-Score

The F1-score [30] is a widely utilized metric in classification tasks for evaluating
the performance of a model. By combining precision and recall, it offers a well-
rounded measure of the model’s accuracy.

F1-score =
2 × precision × recall

precision + recall
, (3.9)

where precision captures the ratio of accurately predicted positive instances
among all instances predicted as positive. On the other hand, recall measures
the proportion of correctly predicted positive instances out of all actual positive
instances.

The F1-score, ranging from 0 to 1, serves as an indicator of performance. A
score of 1 denotes ideal precision and recall, while a score of 0 signifies the poorest
performance.
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In scenarios involving imbalanced datasets or when both precision and recall
hold equal importance, the F1-score proves invaluable.

3.6.5 Jaccard Index

The Jaccard Index, which is alternatively referred to as the Jaccard similarity co-
efficient or Jaccard coefficient, serves as a metric for quantifying the similarity
between two sets [17]. It provides a measure of how much the sets overlap or
share common elements.

3.6.6 Mathews’ Correlation Coefficient (MCC)

It shows the degree of association between the expected and actual class [52].

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (3.10)

The range of Matthews’ Correlation Coefficient (MCC) extends from -1 to +1,
with a score of +1 denoting a flawless prediction, 0 representing a random predic-
tion, and -1 indicating a completely contradictory prediction.

MCC proves particularly valuable when handling imbalanced datasets or situ-
ations where the classes possess varying sizes. It takes into account both true and
false positives as well as true and false negatives, offering a balanced evaluation
of the classifier’s performance that remains unaffected by class imbalance.

3.6.7 Hamming Loss

Hamming Loss serves as a metric to evaluate the accuracy of multi-label classifica-
tion models. It quantifies the proportion of incorrectly predicted labels in relation
to the total number of labels across all instances [25].

HammingLoss =
1

N · L

N

∑
i=1

L

∑
j=1

(yij ⊕ ŷij), (3.11)

where, N corresponds to the total number of instances. L represents the total
number of labels, yi j signifies the ground truth label for instance i and label j,
where it is assigned a value of 1 if the label is present, and 0 otherwise. The
symbol ŷi j denotes the predicted label for instance i and label j, with a value of 1 if
the label is predicted, and 0 otherwise. The operator ⊕ denotes the XOR (exclusive
OR) operation.
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3.7 Chapter Summary

This chapter discusses the experimental setup needed for SER. The necessary
steps involved in the detection i.e., the speech processing methods were briefly
explained. Furthermore, the chapter delves into a comprehensive description of
the datasets employed in the thesis experiments. It proceeds by elucidating the
cutting-edge features utilized for SER in this study, and subsequently presents a
thorough account of the classifiers employed along with their corresponding per-
formance evaluation metrics.
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CHAPTER 4

Analysis of Emotions

4.1 Introduction

To develop an efficient SER, it is essential to understand the acoustics of vari-
ous emotions in speech signal. In particular, humans can remarkably convey and
perceive emotions in speech using various prosodic cues, such as loudness (am-
plitude), pitch, duration of speech sound units, intonation (i.e., derivative of pitch
contour), and energy of speech wave. In this chapter, we analyze five emotions
from the dataset, namely, anger, fear, disgust, happiness, and sadness. We use nar-
rowband spectrograms, their energies, and their Teager Energy Operator (TEO)
profile to differentiate these emotions. Then we study the impact of culture and
language on emotions.

4.2 Narrowband Spectrograms

Spectrogram is a visual representation of spectral enenrgy density (z-axis) for an
acoustic signal, which is a function of time (X- axis), and frequency (Y-axis). En-
ergy distribution and pauses are also measured from this plot depending on the
size of analysis window (a function used for Fourier-based spectral analysis), dif-
ferent levels of frequency/time resolution is achieved, i.e., a long window (atleast
2 pitch periods) gives good frequency resolution as harmonic lines (seen as hori-
zontal striations in the time-frequency domain) are resolved, this is also known as
narrowband spectrogram. Similarly, a short window (duration less than a single
pitch period) shows the formants of the vocal tract with individual pitch peri-
ods appearing as vertical lines (striations), called wideband spectrogram. In this
work, we obtained the narrowband spectrograms for male and female speakers
for 5 emotions using the wavesurfer tool. Figure 4.1 and Figure 4.2 depicts the
spectrograms obtained for a sentence uttered by a male and a female speaker, re-
spectively. Narrowband spectrograms are employed rather than their wideband
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Figure 4.1: Narrowband spectrograms of 5 emotions of a male speaker: (a) dis-
gust, (b) anger, (c) fear, (d) happiness, and (e) sadness.

counterparts as they represent pitch source harmonics clearly in the form of hor-
izontal striations. Moreover, as discussed in sub-Section 4.1, the pitch and its
harmonics (along with its dynamic implementation) are important correlates of
speech prosody to convey a particular emotion in speech signal. Pauses or silences
between the words, energy content, and gaps between the horizontal striations
are studied to identify the difference between each emotion. Another observation
from Figure 4.1 and Figure 4.2 is that the gap between pitch source harmonics is
higher in Figure 4.2 than in Figure 4.1 as females have higher F0 (fundamental
frequency) than males.

4.3 Energy of Emotions

The energy measurements are obtained using the standard discrete-time energy
formula. In particular, for a discrete-time signal x(n), energy is computed as E=
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Figure 4.2: Narrowband spectrogram of 5 emotions of a female speaker: (a) anger,
(b) disgust, (c) fear, (d) happiness, and (e) sadness.
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Figure 4.3: l2 Energy of anger by 5 speakers uttering the same sentence ((a) fe-
male1, (b) female2, (c) male1, (d) male2, and (e) female3).

∑∞
n=−∞ |x(n)|2. It should be noted that this energy, E is conserved in frequency

domain (i.e., Parseval’s energy equivalence) and also in the Short Time Fourier
Transform (STFT) framework, for the continuous-time version of STFT). The sam-
pling rate of the audio files is 44.1 kHz. The audio sample is then frame-blocked
and windowed (Hann window), so the acoustic events in the speech sample can
be represented as a compact set of speech parameters. Hop size is taken to be 10
ms, and Fast Fourier Transform (FFT) size is 2048 samples. Observations on how
energy changes for different emotions and between gender is analyzed. Figure
4.3-4.7 shows the plots of 5 speakers (three females and two males) uttering the
same sentence in 5 emotions, namely, anger, disgust, happiness, fear, and sadness.
Energy is then represented in the form of a boxplot. Figure 4.8[a] describes how
a male speaker (1 male speaker chosen of 2 male speakers) utters a sentence in 5
emotions (disgust, anger, fear, happiness, and sadness, respectively). Figure 4.8[b]
provides the same information for a female speaker (plot of 1 female speaker cho-
sen from 3 female speakers). Boxplot provides a visual data summary, enabling
us to identify the dataset’s average score, skewness, dispersion, and outliers. His-
togram is plotted for a male and female speaker (Figure 4.9[a] and Figure 4.9[b],
respectively) to find the quantitative distribution of signal’s energy.

4.4 Teager Energy Operator (TEO)

This non-linear feature or operator was introduced in 1990s by Teager and Kaiser
[38]. Speech is produced by non-linear, vortex-airflow interaction in the vocal tract
system. Stressful situation affects the muscle tension of the speaker that results in
an alteration of the glottal airflow during the production of the sound [10]. This
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Figure 4.4: l2 energy of disgust by 5 speakers uttering the same sentence ((a) fe-
male1, (b) female2, (c) male1, (d) male2, and (e) female3).

Figure 4.5: l2 energy of happines by 5 speakers uttering the same sentence ((a)
female1, (b) female2, (c) female3, (d) male1, (e) male2).
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Figure 4.6: l2 energy of fear by 5 speakers uttering the same sentence ((a) male1,
(b) female2, (c) female3, (d) male2, and (e) female1).

Figure 4.7: l2 energy of sadness by 5 speakers uttering the same sentence ((a)
female1, (b) female2, (c) female3, (d) male2, and (e) male1).
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Figure 4.8: l2 energy boxplot of [a] showing male-1 speaker, and [b] showing
female-1 speaking the same sentence in 5 emotions- (1) disgust, (2) anger, (3) fear,
(4) happy, and (5) sadness.

is captured via TEO, in particular,

Ψ{x(n)} = x2(n)− x(n + 1)x(n − 1), (4.1)

where Ψ{} is the Teager Energy Operator and x(n) is the discrete time signal.
In Figure 4.10 and Figure 4.11, the x-axis represents the frames, and the y-

axis amplitude is the TEO plots obtained for a male speaker speaking a sentence
in 5 emotions and a female speaker uttering the same sentence (as a male) in 5
emotions, respectively. The energy distribution, silence, or pauses were observed
to distinguish between the emotions.

4.5 Inferences

The results analyzed here take at least five sentences of each emotion; only some
are plotted in this thesis. Figure 4.12 shows that the highest energy content is
available in anger and the least in sadness. It is also noted that short pauses
are highest in anger. This result is linked to the fact that when one gets angry,
breathing is released in shorter and quicker puffs, and the force with which air is
released from the lungs to the vocal tract system is also high, thus, showing these
characteristics.

The amplitude of energy plots are shown in Table 1. It is found that females
have higher amplitude peaks apart from the disgust emotion. This states that
in females, loudness is seen more than in males while expressing emotions. We
also see that fear and disgust have the highest amplitude in females and males,
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Figure 4.9: l2 energy histogram of [a] showing male-1 speaker, and [b] showing
female-1 speaking the same sentence in 5 emotions- (a) disgust, (b) anger, (c) fear,
(d) happy, and (e) sadness.

respectively. Surprisingly, we observed that anger has the least amplitude of all.

Table 4.1: Highest amplitudes reached for each emotion by male and female
speakers

Amplitude Anger Disgust Fear Happy Sad
Females 60 dB 75 dB 80 dB 70 dB 65 dB
Males 55 dB 80 dB 60 dB 60 dB 60 dB

Boxplots of energy is shown in Figure 4.8(a) and Figure 4.8(b) for male and
female, respectively. It is observed that the median is lowest for disgust and high-
est for sadness in males, whereas, in females, fear has the lowest median, with
the other emotions having similar median values. All the emotions are positively
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Figure 4.10: TEO profile of male 1 uttering same sentence in 5 emotions- (a) dis-
gust, (b) anger, (c) fear, (d) happy, and (e) sad.

Figure 4.11: TEO profile of female 1 uttering same sentence in 5 emotions- (a)
disgust, (b) anger, (c) fear, (d) happy, and (e) sad.
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Figure 4.12: Observations from Narrowband spectrograms of emotions using
AESDD.
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skewed, implying most values are towards the lower bound. Sadness emotion
has the most even spread among all the emotions and thus, has the least out-
liers. Spread/ dispersion is least in fear for females and anger for males. These
findings of ours are in agreement with the original study reported in [93]. This
implies sadness and happiness have greater variability in speaking than the other
emotions.

The histogram in Figure 4.9 is a right-skewed distribution, i.e., data values fall
at the lower range (as seen in the boxplots). Most of the values occur within the
interval of 0-10 dB for all the emotions, and fear has the least range of 0-20 dB,
within which almost all its values are covered, proving why fear has the least
median in females.

TEO plots in (Figure 4.10 and Figure 4.11) show that for male speaker 1, hap-
piness followed by anger has the greatest energy profiles, and sadness has the
lowest. However, for female speaker 1, the results obtained were surprisingly
different from the other analysis, as sadness and anger have the greatest energy
profiles, and fear has the lowest energy profile. This result may be because of cog-
nitive psychology [31]. Studies prove that emotions are not always instantaneous
rather, it is a build-up of feelings that are acquired over some time [31], [50]. This
makes sense, as sometimes, a small trigger is enough to make a person very emo-
tional, leading to extreme reactions.

4.6 Cultural and Linguistic Effects on Emotions: En-

glish vs. Mandarin

In this era, where the population and technology are increasing rapidly, commu-
nication among and between them is essential. Language plays its role well in
human interaction as well as in human-machine interaction. Emotional Voice
Conversion (EVC) is a technique to convert the emotional state of an utterance
to another without changing the linguistic information and speaker’s identity. Its
applications are enormous in human-machine interaction, developing emotional
Text-To-Speech (TTS), etc. Several languages in South-East Asia and Africa are
tonal, where pitch or F0 differences are used to differentiate meanings of words or
to convey grammatical distinctions. In contrast, English is a stress language, i.e.,
in this language, the tone is used to convey an attitude or change a statement to
a question; however, it does not affect the meaning of individual words [1]. The
analysis presented in this Section is useful for conversion between languages and
between emotions. Here, we analyze the loudness parameter using RMSE, voiced
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and unvoiced components using ZCR, and F0 and its harmonics using narrow-
band spectrograms for ESD corpus.

4.6.1 Spectrographic Analysis

In this work, we study the narrowband spectrograms (as it gives good frequency
resolution, i.e., shows pitch source harmonics as horizontal striations, useful for
tonal language analysis), and F0 of English and Mandarin sentences spoken in 5
emotions, namely, anger, happy, neutral, sad, and surprise. The energy distribu-
tion, pitch source harmonics, and silences are compared. Figure 4.13 and Figure
4.14 show the F0 changes, plot, and spectrograms of female speakers uttering the
same sentence in English and Mandarin, respectively. The detailed analysis of
spectrograms is presented in Figure 4.15. We infer that high energy contents are
seen in all five emotions of Mandarin speech and thus, indicating that Mandarin
is usually louder than English. A significant difference in spectrograms is that all
English sentences with five emotions had energy components present only at the
higher frequency at the end of a sentence, which wasn’t seen in any spectrograms
for Mandarin. The width between the horizontal striations gives pitch (the way
the auditory system perceives frequency) information, which is higher in Man-
darin than in English. The silences were seen more in Mandarin than in English.

The study of F0 contour is represented in the form of a boxplot (which gives
the spread or variance of F0) in Figure 4.16. It is noted that neutral emotion has
the least spread in both languages, and the highest spread is seen in emotions
of surprise and anger in English and Mandarin speech, respectively. Almost no
outliers are seen for Mandarin speech, i.e., there is not much difference between
the F0 values as compared to the English. Another distinction seen is that the
median values for all emotions in Mandarin are higher than that in English. These
conclude that the F0 contours are at higher frequencies and with wide fluctuations
for Mandarin speech.

4.6.2 Root Mean Square Energy (RMSE)

RMSE for speech signal is a crucial acoustic cue for target speech perception be-
cause hearing is the process of detecting energy [90]. It is the squared signal value
(amplitude), averaged over time, and its square root is calculated, as represented-

RMSt =

√√√√1/K
(t+1)(K−1)

∑
k=t.K

|s(k)2|, (4.2)
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Figure 4.13: Time-domain signal, narrowband spectrograms, F0 contour of En-
glish sentences by female speakers from ESD corpus for five emotions: (a) anger,
(b) happy, (c) neutral, (d) sad, and (e) surprise.

38



[a]

[b]

[c]

[d]

[e]

Figure 4.14: Time-domain signal, narrowband spectrograms, F0 contour of Man-
darin sentences by female speakers from ESD corpus for five emotions: (a) anger,
(b) happy, (c) neutral, (d) sad, and (e) surprise.
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Figure 4.15: Analysis of narrowband spectrograms for English vs. Mandarin emo-
tions taken from ESD corpus.

where s(k)2 is the energy of kth sample, then we sum the energies of all the sam-
ples at time t. To get the mean, it is then divided by frame size, K.
This feature has significant applications in audio segmentation and music genre
classification. In this work, we plot the RMSE values of audio to find the loudness
measure. Amplitude Envelope (AE) can also measure loudness; however, RMS
is preferred as it is less sensitive to outliers than AE. In addition, it gives us per-
ceived loudness, i.e., how our ear perceives loudness. In Figure 4.17, each plot de-
picts the RMSE values of the same sentences spoken in English (yellow colored)
and Mandarin (Red colored) by two female (1 for English and 1 for Mandarin)
speakers. From this, we observe that all the emotional sentences spoken in Man-
darin have significant fluctuations in peaks compared to the English statements.
Anger and surprise emotions have similar peaks in both the languages. Neu-
tral and sad sentences in English have almost no variations in peaks. Happy in
Mandarin has broader peaks. These results state that Mandarin sentences are per-
ceived as louder (as they have more energy content, as seen from spectrograms)
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Figure 4.16: Boxplot of F0 contour of female speaker uttering an [a] English and
[b] Mandarin sentence taken from ESD corpus for [1] anger, [2] happy, [3] neutral,
[4] sad, and [5] surprise.

than the corresponding English sentences.

4.6.3 Zero-Crossing Rate

ZCR is "the rate at which a signal changes from positive-to-zero-to-negative or
from negative to zero to positive." Historically, it is known to correlate with for-
mants and thus, helpful for speech perception [48]. It is expressed as-

ZCRt = (1/2)
(t+1)(K−1)

∑
k=t.K

|sgn(s(k))− sgn(s(k + 1)), (4.3)

where s(k) and s(k+1) represent the amplitude at sample k and its consecutive
amplitude sample, respectively. It is an useful measure to recognize percussive
(random ZCR) vs. pitched sounds (stable ZCR) [18]. For this work, we use ZCR
for monotonic pitch estimation and for analysing the voiced and unvoiced seg-
ments of an audio signal [14]. Figure 4.18 shows the ZCR plot for two females
(1 for English and 1 for Mandarin) speaking the same sentence in both languages
with five emotions: anger, happy, neutral, sad, and surprise, respectively. We can
consider two extreme cases of spectral energy density, i.e., the low frequency and
high frequency regions. It is observed that ZCR peaks are less in lower and high
in higher frequency regions of spectrograms. ZCR peaks of Mandarin are less
than that of English as tonal sounds are pitch-dependent and have voiced speech
as compared to English, which has unvoiced and whisper elements (at the begin-
ning of the sentence, as shown in Figure 4.18 for the sentence analyzed, and thus,
proving that ZCR peaks are high for unvoiced sounds in comparison to voiced
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Figure 4.17: RMS for Mandarin vs. English for a sentence in [a] anger, [b] happy,
[c] neutral, [d] sad, and [e] surprise by female speakers of ESD corpus.
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sounds).

4.6.4 TEO Profile

Figure 4.19 and Figure 4.20 have the TEO profile of a female speaker uttering the
same sentence with five emotions in English and Mandarin, respectively, with
the X-axis representing frames and the Y-axis amplitude. These plots show that
Mandarin sentences have higher energy profiles (peaks reach higher amplitudes)
than English sentences. This is because a higher pitch leads to higher loudness
and, thus, higher amplitude.

4.7 Chapter Summary

This study investigated five emotions: anger, fear, disgust, happiness, and sad-
ness. This is carried out by using prosodic features of speech, in particular, loud-
ness (amplitude measure), energy and pauses or silences, and narrowband spec-
trograms. We also use the novel TEO on AESDD dataset to get energy profiles.
It is found that anger and happiness show similar spectrographic characteristics,
however, it can be distinguished by plotting their energy spectrum. Sadness has
the most spread and balanced data values among the other emotions. Character-
istics of disgust seemed very similar to anger. Distinct differences between male
and female emotions can also be seen (boxplot- Fig.8) by acquiring their energy
values. Along with speech features, cognition’s impact is equally important for
recognizing a particular emotion. We then analyzed a tonal language (Mandarin)
and a stress language (English) using prosodic features, such as energy, F0, loud-
ness, and TEO-based features. Our analysis indicates the Mandarin language has
higher F0 fluctuations due to variations in pitch, is louder, and has higher energy
profiles than English. Therefore, for EVC, RMS and ZCR features can be used to
maintain the speaker’s identity. Analyzing how RMS and ZCR features would
work if replaced with F0 in the baseline paper [94] for EVC would be interesting.
In the next chapter, we propose a new feature based on prosodic features for SER.

43



Figure 4.18: ZCR for Mandarin vs. English for a sentence from ESD corpus in [a]
anger, [b] happy, [c] neutral, [d] sad, and [e] surprise by female speakers. The box
at the beginning of the plot indicates the whisper sound |h| in "he" uttered.
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Figure 4.19: TEO profile of a female speaker uttering an English sentence from
ESD corpus in [a] anger, [b] happy, [c] neutral, [d] sad, and [e] surprise.

Figure 4.20: TEO profile of a female speaker uttering a Mandarin sentence from
ESD corpus in [a] anger, [b] happy, [c] neutral, [d] sad, and [e] surprise.
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CHAPTER 5

Music Motivated Features for SER

Prosodic features are the most commonly used feature for SER task. This chapter
proposes prosodic features (high resolution pitch information and high-resolution
harmonic information) motivated from music research for SER.

5.1 Introduction

Speech is the most natural and powerful form of communication. As emotions
play a significant role in communication, detecting and analyzing the same is vi-
tal. However, to develop an efficient SER, it is very essential to understand the
acoustics of various emotions. In particular, humans have a remarkable ability
to convey and perceive emotions in speech using various prosodic cues, such
as loudness (amplitude), pitch, duration of speech sound units, intonation (i.e.,
derivative of pitch contour), and energy of speech wave. The existing SER litera-
ture focuses on lower frequencies of speech signals for emotion recognition [78],
which is why a non-linear time-frequency representation is needed. The Constant
Q Transform (CQT) offers higher frequency resolution in low-frequency regions
and higher time resolution in high frequency regions. It has been found that music
arouses emotion [71]. The timbral textures, rhythmic contents, melody, and pitch
components are parameters for detecting emotions in music [47]. Music emo-
tion recognition is the process of identifying the emotions evoked by lyrics and
melodies in music [41]. These original findings motivated us to exploit music-
based features for SER.

In particular, we propose the use of CQT-based features, namely, Constant Q
Harmonic Coefficients (CQHC), Constant Q Pitch Coefficients (CQPC), and com-
bined features (CQHC + CQPC), which are shown to be efficient timbre-based
features [66], in emotion recognition using CNN classifier with 10-fold cross-
validation for the classification of 5 emotions, namely, anger, neutrality, happi-
ness, sadness, and surprise. Commonly used MFCC and GFCC features along
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with already explored CQT and Constant Q Cepstral Coefficients (CQCC) are
used for performance comparison with proposed features. The ESD and TESS
datasets are used for this work. The octave resolution used for CQT-based fea-
tures is 14, the number of coefficients is 20, and the minimum frequency is 30
Hz.

5.2 Constant Q Transform (CQT)

Due to CQT’s capacity to simulate an equal-tempered frequency scale, it was ini-
tially used in western music for music analysis [19]. Discrete Fourier Transform
(DFT) uses the same window length for every frequency bin and thus, giving lin-
ear frequency resolution. CQT modifies the Short-Time Fourier Transform (STFT)
such that frequencies are logarithmically spaced. Its window length decreases
with increasing frequency. The ratio of the center frequency to bandwidth is qual-
ity factor (Q), which is kept constant and thus, the name " Constant Q". This gives
log frequency resolution, where frequency bins correspond to tones. Let x(n) be
the discrete-time speech signal obtained with a sampling frequency of Fs. The
STFT of x(n) is given by [19]:

X(ω, τ) =
∞

∑
n=−∞

x(n)h(n, τ)e−jωn, (5.1)

where h(n, τ) represents the analysis window, centered at time τ. The window
is a function of time parameter τ alone. Now, let z(n) represent a frame of the
speech signal, then the DFT, Z(k), of the z(n) can be represented as:

Z(k) =
N−1

∑
n=0

z(n)e−j( 2π
N )kn, (5.2)

where k is the frequency bin index, and ωDFT = (2πk)/N. The CQT of a signal
z(n) is given by [19]:

ZCQT(k) =
1

N(k)

N(k)−1

∑
k=0

z(n)h(n, k)e
−j
(

2π
N(k) Qn

)
, (5.3)

where ωCQT = (2πQn)/N(k), and h(n, k) is analysis window, which remains
constant for each frequency bins fk, however, its length is determined by N(k) and
thus, it is a function of both n (time) and k (frequency), where N(k) = Q(Fs/ fk).
The quality factor (Q) is a ratio of the center frequency to bandwidth, and it is given
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by [19]:

∵ Q =
fk

∆ fk
=

fk
fk+1 − fk

=
1

21/B − 1
, (5.4)

where B represents the number of bins per octave, and fk shows the frequency of
kth spectral component, which is given as:

fk = (2(k−1)/B) fmin, (5.5)

where fmin is the minimum frequency of the signal. CQT can be decomposed
into energy-normalized pitch components (CQPC), and pitch-normalized spectral
components (CQHC).

5.3 Proposed Work

5.3.1 Constant Q Harmonic Coefficients (CQHC)

The CQT’s logarithmic resolution enables the harmonics to form a stable pat-
tern in the frequency-domain while maintaining their relative position w.r.t. F0

[66],[19]. Constant Q Harmonic Coefficients (CQHC) is associated with timbre
(quality of sound produced by voice or instrument) as harmonics carry spec-
tral information of speech signal. As timbre is ideally independent of pitch and
thus, normalizing pitch gives efficient timbre feature set. Pitch normalization is
achieved by assuming that the CQT spectrum can be represented as a convolution
between a pitch-normalized spectral component, and energy-normalized pitch
component [66]. In particular,

X = S ∗ P, (5.6)

where X represents the CQT spectrum, S represents the pitch-normalized spectral
component, and P represents the energy-normalized pitch component. From the
property that the magnitude of the Fourier transform is shift-invariant, the spec-
tral component can be approximated by the magnitude Fourier transform of the
CQT spectrum. The IFFT of this approximation gives the estimate of the spectral
component as stated in eq. (5.7) [66]:

S = F−1(|F (X)|), (5.7)

where F−1(·) represents the inverse Fourier transform. Given the octave resolu-
tion considered for the computation of CQT, we can obtain the locations of har-
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monics in the spectral component, and then extract the harmonic coefficients. The
coefficients from the spectral component are obtained by [66]:

i = round(Orlog2(k)), (5.8)

CQHCk = S(i), (5.9)

where k takes the value between 1 and Nc, Or is the octave resolution, and Nc is the
number of desired coefficients. The CQHC captures the harmonics information of
the speech signal embedded in the CQT spectrum.

5.3.2 Constant Q Pitch Coefficients (CQPC)

The decomposition of the CQT spectrum also results in an energy-normalized
pitch component. This means that the information embedded in the fundamental
frequency (F0), and first few formants is stored through the pitch component. The
pitch component is calculated as [67] :

C = F−1(ejArg(F (A)). (5.10)

Constant Q Pitch Coefficients (CQPC) features are stripped down version of its
energy components, leaving only the fundamental frequency of notes. The FT
of pitch component (P), i.e., F{P} is the phase component of CQT spectrum, and
IFT of which will give the desired pitch component. Taking the binary log and
rounding the value (eq. (5.8) and (5.9)) gives the CQPC. The algorithm for CQT-
based features is shown in Algorithm1.

5.3.3 Feature-Level Fusion of CQHC and CQPC

This feature set is formed by combining CQHC and CQPC. The goal is to improve
emotion classification by combining high resolution timbral information (from
CQHC) with pitch information (from CQPC). Both their matrices are concatenated
to make a 3-dimensional matrix, or a 2D image with two channels, and sent as an
input to the CNN classifier. Since both features (i.e., CQPC and CQHC) are a
part of CQT, they are of the same size and hence, no padding or truncation of
data is required, making the feature easier to fit in the model. This repository, [4],
contains all the codes needed to extract the aforementioned features from audio.
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5.4 Experimental Details

ESD and TESS dataset were used for analysis from which we used five emo-
tions, namely, anger, happiness, neutral, sadness, and surprise (common between
datasets). The analysis is limited to English as cultural and linguistic differences
impact emotions [27]. Two types of comparison among audio data are performed.
One includes the parallel comparison, where both datasets are individually split
in 80-20 ratio for training and testing, respectively, and a non-parallel compari-
son using ESD is made where Leave One Speaker Out (LOSO) method is used to
remove one speaker out for testing and keeping others for training to get speaker-
independent results. For non-parallel comparison, one male speaker was left out
for test and others were given for training. Classifier details are given in Chap-
ter 3. In this work, the performance of proposed feature sets is compared with
two state-of-the-art features, namely, MFCC and GFCC. 13-D coefficients were
extracted keeping window length and hop length to the default parameter setting
in Keras. CQCC, derived from taking log and DCT of CQT is used to compare
the performance of proposed features on speaker-independent data as CQCC is
proven to work well in anti-spoofing literature for the same [83]. The octave reso-
lution is taken at 14, the number of coefficients is 20, and the minimum frequency
considered is 30 Hz.
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5.5 Experimental Results

5.5.1 Results Obtained from Baseline Features

Table 5.1 reports the test accuracy obtained using different features. For parallel
data analysis, GFCC outperforms other baseline features, i.e., MFCC, CQCC, and
CQT by 2.11 %, 2.91 %, and 2.4 %, respectively, in ESD dataset. The high per-
formance can be expected because they are better aligned to capture the motion
of basilar membrane in cochlea during hearing process and thus, they can better
model the physical changes within the ear during hearing [39], [49]. It is observed
that they outperform the proposed features on TESS dataset, but the proposed fea-
tures (CQPC and CQHC+CQPC) give consistently high accuracy across datasets
(refer Table 5.1). For non-parallel data, CQCC is the best performing baseline fea-
tures as expected [83].

5.5.2 Performance on Parallel Dataset

The proposed CQPC gives the highest accuracy for ESD dataset (99.51%) and
comparable accuracy in TESS (99.60%). The pitch component obtained from CQT
gives energy-normalized pitch (resolved F0), melody, and rhythm information,
each being an implicit function of prosody (the most used features for SER). The
pitch harmonics and lower formants residing in lower regions of the speech spec-
trum are well captured by CQPC compared to the baseline. English being a stress-
timed language is dependent on rhythm [12], making the proposed features ( i.e.,
CQPC and CQPC+CQHC) work better.

The proposed CQHC feature gives the least accuracy for ESD corpora (refer
to Table 5.1). CQHC captures timbre information, which is independent of pitch
and loudness (characteristics important for emotion recognition). Unlike musical
instruments, the human voice is not a pure tone, but a mixture of fundamental and
higher frequencies (upper harmonics), and getting resolved harmonic coefficients
make CQHC give good comparable results, but since the pitch is normalized,
i.e., fundamental frequency (F0) is brought to lowest frequency bin, it gives the
least accuracy as all other features capture pitch information to some extent and
thus, showing the importance of pitch in emotion recognition. However, it gives
very good results in TESS dataset. Timbre is the feature of musical instrument,
similarly, timbre in humans is a feature dependent on vocal cord and vocal tract.
The length of vocal tract system in females is smaller and vocal folds are thinner
(i.e., less mass) than males. TESS containing only female speakers and thus, affect
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the accuracy.
The combined feature with CQHC and CQPC contains both the pitch and the

spectral components, i.e., comprises information regarding the harmonics, Fun-
damental frequency, and melody (which incorporates rhythm), giving very high
accuracy in TESS and ESD parallel (Table 5.1).

Table 5.1: Classification Accuracy Results. After [87].

Features ESD
Parallel

ESD
Non-Parallel TESS

MFCC 96.63 36.05 81.34
GFCC 98.74 41.77 99.87
CQCC 95.83 61.08 79.31
CQT 96.34 57.82 82.74

CQHC 87.00 50.11 95.33
CQPC 99.51 50.51 99.60

CQHC +
CQPC 98.94 61.77 99.56

5.5.3 Performance on Non-Parallel Dataset

Extending the analysis to non-parallel dataset, the major difference seen is the
drastic decrease in the test accuracy across all features (Table 5.1), thus restablish-
ing the model’s dependence on speaker dependent information for classification.

The significant difference between Mel scale and CQT is that Mel scale fol-
lows a decadic logarithmic scale [78]. However, CQT follows a binary logarith-
mic scale, offering higher low-frequency resolution and better results (see Table
5.1). Eventhough, MFCC is time-invariant and is less susceptible to frequency
shifts and more stable to time-warps, it is only upto a specific frame duration (20
ms), which is lesser than desired speech segments with lengths more than 250 ms
needed to capture emotions better [78], thereby giving 36.05 % accuracy.

The difference with time-invariance in CQT is that the time window is not
fixed. This property also helps it to capture emotion-relevant information (pitch
frequency) better. With higher invariance, irrelevant information like speaking
style, speaker, etc. can be reduced, thus aiding in better classification. This prop-
erty is extremely useful for emotions such as, anger and happiness (both carry
higher energy content at higher frequencies) (Table 5.4). This difference is clearly
seen in Table 5.1 as all CQT and CQT-based features perform better than baseline
features MFCC and GFCC. The fusion feature CQHC+CQPC beats the baseline
CQCC for speaker-independent emotion recognition by 0.69 %. The vocal tract

52



and vocal fold physiology and high resolution pitch information aid in this per-
formance.

5.6 Statistical Measures

Experiments were performed to understand the test accuracy results. Statistical
metrices, such as F1-score, MCC, Jaccard index and Hamming loss were per-
formed for all the cepstral features obtained from ESD parallel and non-parallel
data (Table 5.2 and 5.3). The values are rounded off at 0.2 decimal place. The
quick variations in higher frequencies can be captured in CQT-based features due
to better time resolution (for emotions, such as anger, and happiness). Table 5.4
gives the confusion matrix establishing the same.

Table 5.2: Performance Evaluation for Various Feature Sets on CNN Classifier on
Parallel ESD. After [87].

Feature Set F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 0.97 0.96 0.93 0.03
GFCC 0.99 0.98 0.98 0.01
CQCC 0.96 0.95 0.92 0.04
CQT 0.96 0.95 0.93 0.04

CQHC 0.87 0.84 0.77 0.13
CQPC 0.99 0.99 0.98 0.01

CQHC +
CQPC 0.98 0.98 0.97 0.01

Table 5.3: Performance Evaluation for Various Feature Sets on CNN Classifier on
Non-Parallel ESD. After [87].

Feature Set F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 0.32 0.22 0.20 0.64
GFCC 0.37 0.30 0.24 0.58
CQCC 0.58 0.53 0.44 0.38
CQT 0.56 0.48 0.41 0.42

CQHC 0.47 0.38 0.34 0.50
CQPC 0.49 0.39 0.35 0.49

CQHC +
CQPC 0.59 0.54 0.44 0.38
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Table 5.4: Confusion Matrix Obtained for MFCC and CQHC+CQPC using CNN
for Parallel ESD. After [87].

Feature Emotions Anger Happy Neutral Sad Surprise
Anger 683 1 0 4 12
Happy 13 644 9 3 31
Neutral 3 1 688 7 1MFCC

Sad 4 5 12 679 0
Surprise 8 3 1 0 688

Anger 692 3 3 0 2
Happy 6 684 5 0 5
Neutral 0 1 698 1 0CQHC+CQPC

Sad 1 1 2 696 0
Surprise 4 3 0 0 693

5.7 Chapter Summary

This study presented features motivated from the music literature for the chal-
lenging task of SER. Prosody in itself is an ever-developing concept, which is the
key acoustic cue for emotion parameters. We captured three prosodic features,
i.e., resolved pitch extraction (with CQPC), harmonic coefficients (with CQHC)
which gives us fundamental tone and higher frequencies or upper harmonics and
rhythm. The results illustrate that musical features work well for emotion recogni-
tion, as music stimulates emotion. With the results obtained, we find that acoustic
patterns in frequency, energy, and spectral for the expression of different emotions
are similar in speech and music, as mentioned in [74]. Proposed methodology
(CQPC and CQHC+ CQPC) outperformed all baseline features expect GFCC for
TESS dataset. The results prove that the proposed methods are extremely efficient
for non-parallel (speaker-independent) classification. The next chapter proposes
a new feature (LFRCC) for SER.
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CHAPTER 6

Excitation Source-Based Features for SER

From the literature survey, it was observed that excitation source-based features
also help in SER, but this field has yet to be explored. This chapter introduces a
new feature for SER based on excitation source information of speech samples.

6.1 Introduction

Speech signals consist of both source (excitation source) and system (vocal tract)
information. In the domain of Speech Emotion Recognition (SER), various fea-
tures, including prosodic, source, and system-based features, have been explored.
However, the exploration of excitation source information for SER is relatively
limited [43]. To address this gap, the use of Linear Frequency Residual Cepstral
Coefficients (LFRCC) is proposed in this study.

The effectiveness of LFRCC features has been demonstrated in the field of anti-
spoofing [81]. To evaluate their performance in SER, a comparison is conducted
against state-of-the-art features, namely MFCC and LFCC, using deep learning
models such as ResNet and Time Delay Neural Network (TDNN) with Atten-
tion Statistics Pooling. The results indicate that the proposed LFRCC features
outperform MFCC and LFCC by 25.64 % and 10.25 %, respectively, when uti-
lizing the ResNet classifier. Similarly, when employing the TDNN classifier, the
proposed features achieve a performance improvement of 12.82 % and 5.31 %
over MFCC and LFCC, respectively. These findings highlight the efficacy of the
proposed LFRCC features for SER compared to the commonly used MFCC and
LFCC features. Further, classifier-level and score-level fusion were performed,
and MFCC+LFRCC gave the highest accuracy of 92.31 %. The importance of con-
text and the relevance of respiration patterns in SER is studied.
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6.2 Linear Prediction (LP) Residual

The LP method has a historical foundation in speech coding applications derived
from the literature on system identification and control [51]. In LP analysis, each
speech sample is expressed as a linear weighted combination of preceding ’p’
speech samples, with ’p’ denoting the order of the linear predictors. The coeffi-
cients assigned to these weights are referred to as Linear Prediction Coefficients
(LPCs) [51]. Specifically, if s(n) represents the current speech sample, the pre-
dicted sample can be expressed as follows:

ŝ(n) = −
p

∑
k=1

aks(n − k), (6.1)

where ak are LPCs. The difference between the actual speech sample s(n) and the
predicted samples ŝ(n) is known as LP residual i.e., r(n) and is given by:

r(n) = s(n)− ŝ(n) = s(n) +
p

∑
k=1

aks(n − k). (6.2)

In particular, if we take the all-pole inverse filtering of the speech signal using
the above LP analysis, we have

A(z) = 1 +
p

∑
k=1

akz−k (6.3)

H(z) =
G

1 + ∑
p
k=1 akz−k

. (6.4)

The equation provided represents the predicted sample in terms of the inverse
filter A(z), which corresponds to the all-pole LP filter H(z) capturing the char-
acteristics of the vocal tract-based system. Additionally, the term G refers to the
gain in the LP model. To enhance the system information with excitation source
information, the LP residual is utilized. The LP residual captures the characteris-
tics of the excitation source signal. To extract and represent this information, the
LP residual is processed in the cepstral domain, allowing for the representation of
the spectral envelope of the excitation source signal.

6.3 Linear Frequency Residual Cepstral Coefficients

(LFRCC)

Figure 6.1 illustrates the functional block diagram of the proposed feature set. The
input speech signal undergoes pre-emphasis filtering to balance the lower and
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higher frequency components [81]. Subsequently, the signal is processed by the
LP block, resulting in the LP residual waveform, denoted as r(n). The LP residual
waveform is then divided into frames and subjected to windowing with a dura-
tion of 25 ms and a frame shift of 15 ms. In the next step, the power spectrum
is estimated for each frame of the LP residual and passed through a filterbank
consisting of 40 linearly-spaced triangular subband filters. To obtain the desired
LFRCC features with minimal distortion, the Discrete Cosine Transform (DCT)
and Cepstral Mean Normalization (CMN) techniques are applied to the power
spectrum. This sequence of operations yields the final LFRCC features that cap-
ture relevant characteristics of the speech signal.

Figure 6.1: Schematic block diagram of LFRCC feature extraction. After [81].

6.4 Experimental Details

The state-of-the-art MFCC and LFCC features are used for comparing the pro-
posed features. 39-D coefficients were taken containing static, delta, and double-
delta parameters. The window length taken is 25 ms, the number of subband
filters used is 40, and the number of points used in the Fast Fourier Transform
(NFFT) is 512. EmoDB dataset is used for experimentation. The current investi-
gation focuses on four emotions, anger, happiness, neutrality, and sadness, with
one male speaker reserved for the test. Classifier details are given in Chapter 3.

6.5 Spectrographic Analysis

Figure 6.2 and Figure 6.3 present the spectrograms of the original signal and the
LP residual signal for both a female and a male speaker uttering the same sen-
tence. In comparison to the spectrogram of the original signal, the LP residual
spectrogram exhibits distinct characteristics such as the clear representation of
formants, harmonics (horizontal pitch striations), and energy distribution. A no-
table observation shared across all emotions is the prominent energy presence at
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higher frequencies in the LP residual spectrograms, as highlighted by the black
box in Figure 6.2 and Figure 6.3. Moreover, the width between the horizontal
striations is found to be greater for females due to their higher fundamental fre-
quency (F0) compared to males. Notably, anger exhibits short pauses caused by
irregular breathing (puffs) in contrast to neutral and sad emotions, which feature
longer pauses and low formant fluctuation due to deeper breathing. A significant
distinction between happy and anger emotions lies in the distribution of high en-
ergy content. In the case of happy emotions, the high energy density is evenly
spread throughout the utterance, gradually diminishing towards the end. Con-
versely, anger emotions concentrate the high energy density at higher frequencies,
maintaining it consistently throughout the utterance, as clearly depicted in the LP
residual spectrogram. These observations were made by analyzing multiple sen-
tences, one of which is represented in Figure 6.2 and Figure 6.3.

Figure 6.2: Spectrographic analysis for (a) original speech signal and (b) corre-
sponding LP residual. Panel I(a), Panel II(a), Panel III(a), and Panel IV(a) repre-
sent the spectrograms of a female speaker for the emotions anger, happy, sad, and
neutral, respectively, for the sentence "Das will sie am Mittwoch abgeben (She will
hand it in on Wednesday)".

Figure 6.3: Spectrographic analysis for (a) original speech signal and (b )corre-
sponding LP residual. Panel I(a), Panel II(a), Panel III(a), and Panel IV(a) repre-
sent the spectrograms of a male speaker for the emotions anger, happy, sad, and
neutral, respectively, for the sentence "Das will sie am Mittwoch abgeben (She will
hand it in on Wednesday)".

6.6 Effect of LP Order

In the proposed method, the LFRCC feature set is obtained by varying the pre-
diction order (p) from 4 to 25 for a sampling frequency of 16KHz, as depicted in
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Figure 6.4. The results indicate that the highest classification accuracy is achieved
when using an LP order of 20. Remarkably, this optimal order remains consistent
regardless of the classifier employed. For both TDNN and ResNet, an LP order of
20 yields the highest accuracy rates of 89.74 % and 87.17 %, respectively (as illus-
trated in Figure 6.4). Additionally, it is worth noting that the accuracy of emotion
classification tends to be higher for higher LP orders (16-25) compared to lower LP
orders (4-15). This observation can be attributed to the fact that higher LP orders
allow for better capture of contextual information of emotional aspects, especially
concerning speech prosody, which is predominantly suprasegmental in nature and
thus, requires a longer duration of speech signal.

Figure 6.4: Effect of LP orders for LFRCC using TDNN and ResNet Classifiers.
After [86].

6.7 Results with Score-Level Fusion

To understand the complementary information captured by different features,
score-level fusion is performed using the following data fusion strategy.

L f used = αL f eature1 + (1 − α)L f eature2, (6.5)

where L f eature1 is a raw score of either MFCC or LFCC, whereas L f eature2 rep-
resents the raw score of LFRCC. Figure 6.5 and Figure 6.6 depicts the score-level
fusion on TDNN and ResNet, respectively. It is observed that MFCC+LFRCC
gives the best classification accuracy of 92.31 % and 84.62 % in TDNN and ResNet
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classifier, respectively. LFCC+LFRCC performs better with ResNet than MFCC
+LFRCC by 2.56 %, whereas with TDNN, it gives 89.74%. MFCC+LFCC does not
show any significant improvement. Based on the obtained results, it can be con-
cluded that score-level fusion with TDNN outperforms ResNet. This difference
in performance can be attributed to the temporal dependency modeling capabil-
ity of TDNN, which allows it to capture local patterns in the data. In contrast,
ResNets are more suitable for capturing global patterns in images, such as spa-
tial relationships between objects. When considering the combination of features,
MFCC+LFRCC achieves the highest classification results. This is because MFCC
effectively captures spectral information in the lower frequency regions of speech,
while LFRCC captures excitation information in the higher frequency regions. By
combining these two feature sets, the major emotional context in speech signals
can be captured comprehensively.

Figure 6.5: Score-level fusion of features using TDNN classifier. After [86].

6.8 Results with Classifier-Level Fusion

Figure 6.7 depicts the classifier-level fusion, i.e., the output of each classifier (TDNN
and ResNet) is multiplied by a weight. Then all the weighted outputs are added
together to obtain the final output. It is observed that the highest classification
accuracy obtained for MFCC is 76.92 %, LFCC is 84.62 %, and LFRCC is 89.74 %,
which are the results for α= 1, which implies results from TDNN classifier alone.
This indicates that the classifiers’ characteristics together could not add enough
weight to the accuracy, which we are getting from features (MFCC+LFRCC). This
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Figure 6.6: Score-level fusion of features using ResNet classifier. After [86].

proves that the results obtained are not significantly dependent on the classifier,
thereby proving that the proposed LFRCC feature set captures emotion informa-
tion well.

Figure 6.7: Classifier-level fusion for single feature sets using TDNN and ResNet
classifiers. After [86].

6.9 Performance of LFRCC on SER

From Table 6.1, it is observed that the cepstral coefficients with linear filterbanks
(i.e., LFCC) results in better classification than the Mel filterbanks (i.e., MFCC) ir-
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respective of the classifiers used for SER. This is because, LFCC captures emotion
information well in higher frequency regions as compared to the MFCC as the
width of the triangular filters in MFCC increases with frequency and thus, ignor-
ing fine spectrl details. The emotions, in particular, anger and happy operate in
higher frequency regions (Section 6.5), which is captured better by LFCC due to
constant difference between the width of subband filters in filterbank throughout.

The LFRCC feature set demonstrates superior performance compared to the
baseline MFCC and LFCC features, achieving a 25.64 % and 10.25 % improve-
ment, respectively, in ResNet, and a 12.82 % and 5.31 % improvement, respec-
tively, in TDNN (as shown in Table 6.1). It is widely acknowledged that the lungs
play a crucial role in providing the necessary airflow, which acts as a power sup-
ply for speech production. Consequently, changes in respiratory patterns directly
impact the timing, duration, and overall rhythm of speech. As a result, respira-
tory patterns can influence the emotional expression in speech signals[37], [34].
The LFRCC feature set effectively captures this excitation source information (as
discussed in Section 6.5). Specifically, the section around the Glottal Closure In-
stants (GCI) in the LP Residual signal exhibits a high signal-to-noise ratio (SNR)
due to the impulse-like excitation, and during the Glottal Closure (GC) phase,
the excitation source is completely isolated from the vocal tract [44]. This region
contains valuable information that cannot be adequately captured by MFCC and
LFCC, making LFRCC an effective choice for representing these features. Though
in isolation, the Mean Square Error (MSE) is not zero, but a very low value and
this value helps capture the formant information from LFRCC. It is also observed
that the pitch information from LP residual audio was void of any experimental
noise (such as that of mic, etc) and thus, gave pure speech, indicating its noise
robustness attribute and high classification accuracy.

Table 6.1: Classification Accuracy (in %). After [86].
Classifier MFCC LFCC LFRCC
ResNet 61.53 76.92 87.17
TDNN 76.92 84.61 89.74

6.10 Chapter Summary

In this study, a novel feature set for emotion recognition, called excitation source-
based LFRCC, was introduced. To assess its performance, traditional vocal tract
system features such as MFCC and LFCC were also used for comparison. The
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aim was to leverage the additional information provided by the LP residual-based
feature, which demonstrated superior performance compared to existing spectral
features. This finding suggests that the proposed features possess discriminative
power for classifying emotions. Additionally, the study observed the significance
of linear filterbank in contrast to the Mel filterbank. Furthermore, the results ob-
tained from classifier-level fusion highlighted the effectiveness of the proposed
feature set, irrespective of the specific classifier employed. In the subsequent
chapter, the research delves into the exploration of phase-based features to extract
vocal fold and vocal state information for the task of SER .
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CHAPTER 7

Vocal Tract-Based Features for SER

After analyzing prosodic and excitation source features, this chapter proposes a
new phase-based feature that captures vocal tract system information for SER.

7.1 Introduction

Prosodic features, such as pitch, fundamental or pitch frequency (F0), duration,
energy, and others, are widely employed for SER in the literature [80]. Nonethe-
less, these features are limited to characterizing only the vocal folds state. There-
fore, incorporating a feature that characterizes both the vocal tract and vocal fold
state would enhance the emotion classification performance.

This study investigates the utility of phase spectrum on SER as it performs well
in speech recognition [75] and in the extraction of source and system information
[54]. To extract fine structures from the spectral envelope, we employ group delay
and modified group delay functions, as they are found to capture system informa-
tion more effectively than the magnitude or Linear Prediction (LP) spectrum. The
robustness of these proposed features is also tested with state-of-the-art features
used for SER. To our knowledge, this work is the first attempt to use the MGDCC
feature on emotions. Experiments were performed using the EmoDB database
on emotions, anger, happy, neutral, and sad. The proposed feature outperformed
the baseline Mel Frequency Cepstral Coefficients (MFCC) and Linear Frequency
Cepstral Coefficients (LFCC) by 7.7 % and 5.14 %, respectively. The noise ro-
bustness characteristics of MGDCC were tested for stationary and non-stationary
noise, and the results were promising. The latency period was also analyzed and
MGDCC proved to be the most practically suitable feature.

64



7.2 Phase-Based Features

Extracting phase-based features is challenging since the frequency domain’s phase
spectrum is discontinuous. For the phase to be used, it has to be unwrapped
to make it a continuous function. However, the phase unwrapping technique
is computationally complex due to its non-uniqueness. On the other hand, the
group delay and modified group delay techniques have similar properties to the
unwrapped phase and are known to be extracted directly from the signal [55].

7.2.1 Importance of Phase Information in Emotions

The phase information in speech pertains to the speech signal’s temporal prop-
erties, encompassing the waveform’s alterations as time progresses. Within SER,
the phase information assumes a prominent position and offers invaluable per-
spectives into the emotional essence conveyed by speech. Presented below are
several justifications elucidating the importance of phase information in speech
emotion recognition:

• Prosodic Features: Emotional expressions in speech encompass the spectral
aspects and prosodic features like pitch, intonation, and rhythm. The phase
information is closely linked to these prosodic characteristics, and its uti-
lization can significantly contribute to the precise detection and analysis of
emotional cues. By examining variations in the phase, researchers can cap-
ture changes in pitch contours, temporal dynamics, and expressive patterns
that convey specific emotions.

• Speech Dynamics: Emotional speech often exhibits discernible temporal
variations and dynamic patterns. The phase information can furnish ad-
ditional insights into speech’s temporal structure and rhythmic properties,
enabling the recognition of emotions characterized by distinct speech dy-
namics. By incorporating the phase information, models for SER can effec-
tively capture the subtle fluctuations in speech dynamics associated with
different emotional states.

• Emotion-specific Articulation: Certain emotions are known to impact speech
articulation and the configuration of the vocal tract. The phase information
carries crucial details about the alignment and synchronization of various
speech components, such as glottal excitation and vocal tract resonances.
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Analyzing phase cues can facilitate identifying emotion-related changes in
articulatory patterns that cannot be solely captured by spectral information.

• Perception of Emotional Cues: Human listeners rely on spectral and tem-
poral acoustic cues to perceive and interpret emotions in speech. The phase
information contributes to the perceptual experience of speech and can in-
fluence the processing and comprehension of emotional cues. By incorpo-
rating phase information, SER models can align with the human perception
of emotional speech, enhancing their ability to recognize and interpret emo-
tions accurately.

• Robustness to Noise and Degraded Speech: Using phase information can
enhance the robustness of SER models in adverse acoustic conditions, in-
cluding background noise or degraded speech signals. While spectral infor-
mation is susceptible to degradation, phase information can provide valu-
able cues for emotion recognition even when the spectral content is com-
promised. Considering both spectral and phase features can improve the
reliability and generalizability of SER systems, particularly in challenging
and real-world scenarios.

7.2.2 Group Delay and Modified Group Delay Function

The group delay function can be obtained by taking the negative derivative of
the phase of the unwrapped Fourier transform. Additionally, the group delay of
the signal p(n) can be calculated using the following method based on the signal
itself:

Tm(ω) = −Im
d(P(ω))

dω
, (7.1)

upon solving the Eq (7.1) as stated in [55], we arrive at:

Tm(ω) =
PR(ω)QR(ω) + PI(ω)QI(ω)

|P(ω)|2 . (7.2)

where P(ω) and Q(ω) are Fourier transforms of p(n) and np(n), respectively.
The PR(ω) and PI(ω) indicates the real and imaginary parts of p(ω), respectively.
The group delay function in terms of cepstral coefficients can be expressed as [33]:

Tm(ω) =
+∞

∑
n=1

nc(n)cos(nω), (7.3)
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where c(n) indicates the n-dimensional cepstral coefficients. This operation is
replicated by applying Discrete Cosine Transform (DCT). The two most important
properties of group delay feature that gives them an edge compared to magnitude-
based features are additivity and high resolution. Nevertheless, despite the ad-
vantages mentioned, the effective utilization of the group delay function in speech
processing tasks relies on the signal being a minimum phase. In the case of a non-
minimum phase signal, the presence of roots of the Z-transformed signal outside
or near the unit circle leads to spikes in the group delay spectrum. These spikes
cause distortions in the fine structure of the vocal tract system’s envelope and
mask the location of formants [33]. The occurrence of these spikes is a result of a
smaller denominator term in Eq (7.2), indicating a smaller distance between the
corresponding zero location and the frequency bin on the unit circle.

Any meaningful use of the phase-based features comes with the reduction of
inadvertent spikes due to the smaller denominator value in Eq (7.2). One such
representation is the modified group delay function (MODGF) introduced to
maintain the dynamic range of the group delay spectrum. The MODGF is given
by [33]:

Tm(ω) =
T(ω)

|T(ω)| |T(ω)|α, (7.4)

where
T(ω) =

PR(ω)QR(ω) + PI(ω)QI(ω)

|S(ω)|2γ , (7.5)

where S(ω) represents the cepstrally-smoothed version of |P(ω)|. It was seen that
introducing |S(ω)|, very low values can be avoided. The parameters α and γ are
introduced to reduce the spikes and restore the dynamic of the speech spectrum,
respectively. Both parameters α and γ vary from 0 to 1. DCT is applied to con-
vert the spectrum to cepstral features to obtain the cepstral coefficients. The first
coefficient of the cepstral coefficients is ignored as this value corresponds to the
average value in the GDF.

7.2.3 Robustness of Modified Group Delay Function

In this section, we analytically show the robustness of the group delay function
to additive noise, which also applies to the modified group delay function [61].
Let u(n) denote a clean speech signal, degraded by adding uncorrelated, addi-
tive noise v(n) with 0 mean and σ2 variance. Then, the noisy speech z(n) can be
expressed as,

z(n) = u(n) + v(n). (7.6)
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Taking the Fourier transform and obtaining the power spectrum we have,

Pz(ω) = Pu(ω) + Pv(ω). (7.7)

From eq (7.7), there can be two mutually exclusive frequency regions, namely, high
SNR and low SNR.

Low SNR

Considering a low SNR situation, i.e., Pu(ω) << σ2(ω) (where noise power is
σ2(ω) due to the assumption that noise is having 0 mean), we have:

Pz(ω) = σ2(ω)(1 +
Pu(ω)

σ2(ω)
). (7.8)

Taking the logarithm on both sides and using the Taylor series expansion and
ignoring the higher order terms results in:

ln(Pz(ω)) ≈ ln(σ2(ω)) +
Pu(ω)

σ2(ω)
. (7.9)

Since Pu(ω) is a continuous and periodic function of ω, it can be expanded using
the Fourier series. In particular,

ln(Pz(ω)) ≈ ln(σ2(ω)) +
1

σ2(ω)

[
d0

2
+

+∞

∑
k=1

dkcos(
2π

ω0
ωk)

]
, (7.10)

where dk’s are the Fourier series coefficients. Since Pu(w) is a power spectrum,
it is an even function, and the coefficients of sine terms are zeros. To relate the
spectral phase and magnitude with the cepstral coefficients, let us consider the
Fourier transform representation of a sequence b(n):

B(ejω) = |B(ejω)|ejθ(ejω). (7.11)

Since the log-magnitude component is an even function, the resulting Fourier se-
ries expansion can be given by:

ln(|B(ejω)|) = c[0]
2

+
+∞

∑
n=1

c[n]cos(ωn). (7.12)
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From the properties of the Fourier phase spectrum, the phase spectrum is an odd
function. Hence the resulting Fourier series expansion is given by:

θ(ejω) = −
+∞

∑
n=1

c[n]sin(ωn), (7.13)

where c[n] are the cepstral coefficients. Group delay coefficients are obtained by
considering the negative logarithm of the unwrapped phase obtained in eq (7.13):

T(ejw) = −
+∞

∑
n=1

nc[n]cos(ωn). (7.14)

From eq’s (7.12) and (7.13), it can be observed that the phase and log magnitude
spectra of a signal are related through the cepstral coefficients. Assuming the
additive noise as a minimum phase signal [33]. From eq’s (7.12), (7.13), and (7.14),
it can be observed that the group delay function can be extracted from the log
magnitude response by ignoring the DC term and multiplying each coefficient by
k. Applying this observation to eq (7.10) we can obtain the group delay function
as [61]:

Tz(ω) ≈ 1
σ2(ω)

+∞

∑
k=1

kdkcos(ωk). (7.15)

Eq (7.15) indicates that the group delay function is inversely proportional to the
noise power in the regions with low SNR. This indicates that the group delay
function preserves peaks and valleys well in the presence of additive noise.

High SNR

Now consider frequencies such that Pu(ω) >> σ2(ω) , we have:

Pz(ω) = Pu(ω)(1 +
σ2(ω)

Pu(ω)
). (7.16)

Taking the logarithm on both the sides and using the Taylor series expansion re-
sults in:

ln(Pz(ω)) ≈ ln(Pu(ω)) +
σ2(ω)

Pu(ω)
. (7.17)

Since Pu(w) is a non-zero, continuous, periodic function of ω, the same can be
said about 1

Pu(ω)
. Hence both ln(.) and (1

. ) of eq (7.17) can be expanded using the

69



Fourier series, resulting in:

ln(Pz(ω)) ≈ d0

2
+

σ2(ω)e0

2
+

+∞

∑
k=1

(dk + σ2(ω)ek)cos(ωk), (7.18)

where dk’s and ek are the Fourier series coefficients of ln(Pu(ω) and 1
Pu(ω)

respec-
tively.

Using eq’s (7.12) and (7.13), we obtain the group delay function as:

Tz(ω) ≈
+∞

∑
k=1

k(dk + σ2(ω)ek)cos(ωk). (7.19)

Eq (7.19) indicates that the noise power (σ2(ω)) is negligible when the signal
power is higher than the noise power, and the group delay function can be ex-
pressed only using the log-magnitude spectrum. This conveys that the group de-
lay spectrum follows the signal’s envelope rather than noise. Hence, it preserves
the formant peaks well in the presence of additive noise [61].

7.3 Experimental Details

The state-of-the-art features, MFCC and LFCC, are used for comparison. To main-
tain uniformity among features, 20-D feature vectors with a window length of
25ms and a hop length of 10ms are used for all. The details of the classifier is
discussed in Chapter 3. To restore the dynamic range of phase-based features,
MGDCC has two additional constraint parameters, alpha (α) and gamma (γ). The
CNN classifier is used to fine-tune these parameters by varying them from 0 to 1
with a step size of 0.1. The optimal parameters thus found by classification accu-
racy is α=0.1, γ=0.1 (Refer Figure 7.1).

7.4 Experimental Results

7.4.1 Spectrographic Analysis

Panel-A, Panel-B, and Panel-C of Figure 7.2 represent the Spectrogram, Mel Spec-
trogram, and MGDCC-gram analysis of various emotions, respectively. Figure
7.2(a), Figure 7.2(b), Figure 7.2(c), and Figure 7.2(d) show the analysis for anger,
happy, sad, and neutral, respectively. Mel spectrograms give a broad and dull rep-
resentation of utterance and thus have obstructed the ability to identify the fine
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Figure 7.1: Tuning Parameters α and γ using Greedy Search Technique for Emo-
tion Recognition. After [85].

formant structures and energy distribution. It can be observed from the plots that
the fine structure of the formants that can be observed in the magnitude spectrum
(Panel-A) can also be seen in the spectrogram obtained by the modified group
delay spectrum. Hence, there is no information loss while using phase-based cep-
stral coefficients. Additionally, the resolution between the formants is high in the
phase-based, i.e., modified group delay spectrum resulting in a better distinction
among the formants. This is due to the fact that the denominator term at the for-
mant frequencies becomes 0 (as the pole radius approaches to unit circle) resulting
in peaks that give a higher resolution formants. Additionally, phase features are
able to capture irregularities in the speech signal. The presence of turbulence in
a speech signal changes with emotion and these irregularities are captured better
through phase signal rather than the magnitude spectrum.

7.4.2 Comparison with Baseline Features

From Table 7.1, it can be observed that LFCC is the best-performing baseline fea-
ture. The MGDCC feature outperforms the magnitude-based features i.e., MFCC
and LFCC by a margin of 7.7% and 5.14 %, respectively. This might be because
of the high-resolution property of the modified group delay function which can
be noticed in Figure 7.2. They capture the fine structures of spectral envelope and
thus formant structures are emphasized well. However, GDCC fails to achieve
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Figure 7.2: Panel-A, Panel-B, and Panel-C represent the Spectrograms vs. Mel
Spectrograms vs. MGD spectrogram of a male speaker uttering the same sentence
in emotions- (a) anger, (b) happy, (c) sad, and (d) neutral, respectively. After [85].

similar performance. This is because of the noisy structure resulting from the
GDCC occurring from the presence of zeros close to or outside the unit circle.
These spikes cause formant masking, making it difficult to obtain valuable fea-
tures for the classification task. It is also observed LFCC captures emotional in-
formation well in higher frequency regions compared to MFCCs as in MFCC, the
width of the triangular filters increases with frequency and thus, ignoring fine
details (Section 7.4.1). The emotions, in particular, anger and happy operate in
higher frequency regions, which is captured better by LFCC due to the constant
difference between the width of filterbanks throughout.

Table 7.1: Classification Accuracy on CNN. After [85].
Feature Set MFCC LFCC GDCC MGDCC

Test Acccuracy 71.79 74.35 56.41 79.49
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Figure 7.3: Panel-A, Panel-B, and Panel-C represent the Spectrograms vs. Mel
Spectrograms vs. MGD spectrogram of white noise added speech of a male
speaker uttering the same sentence in emotions- (a) anger, (b) happy, (c) sad, and
(d) neutal, respectively. After [85].

7.4.3 Performance of Proposed Feature under Signal Degrada-

tion

The robustness of the proposed features is tested using various noise types, such
as white, pink, babble, and street noise with SNR levels of -10 dB, -5 dB, 0 dB,
5 dB, 10 dB, and 15 dB. When we consider additive white noise for evaluation,
due to the nature of AWGN, the noise is distributed across all the bands of fre-
quency. From Table 2, at the low SNR values, MGDCC clearly outperforms both
magnitude-based features, MFCC and LFCC by a significant margin of 3.41 %,
10.25 %, respectively. Similarly, at higher SNR values, MGDCC outperforms
baseline features MFCC and LFCC by 17.95 %, 7.79 %, respectively. Consider-
ing that the signal is degraded by the pink noise, which has higher noise power
in lower frequencies rather than the higher frequencies, the MGDCC feature set
outperforms both MFCC and LFCC features. Additionally, when considered non-
stationary noises (noises which vary w.r.t time) such as street noise or traffic noise
and babble noise are considered. The MGDCC noise robustness is evident in any
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Table 7.2: Classification Accuracy on CNN with different noise types on EmoDB.
After [85].

NOISE FEATURE -10dB -5dB 0dB 5dB 10dB 15dB
MGDCC 79.48 81.29 82.05 81.66 81.66 82.66
MFCC 74.35 76 79.48 79.48 79.48 79.48Babble
LFCC 61.53 66.66 79.48 76.92 79.48 79.48

MGDCC 75.35 80 81.66 81.66 71.79 86.66Street MFCC 74.35 76 76.92 79.48 88.48 82.05
LFCC 74.35 70.23 79.48 71.79 76.92 79.48

MGDCC 76.92 79.48 74.35 71.79 76.92 74.35White MFCC 69.23 76.92 74.35 43.58 82.05 43.58
LFCC 71.79 64.10 64.10 58.97 71.79 69.23

MGDCC 74.35 69.23 71.79 71.79 71.79 74.35Pink MFCC 41.79 38.46 41.02 43.58 70.35 71.79
LFCC 71.79 66.66 66.66 61.53 71.79 71.79

kind of noise. These results indicate that the performance of the baseline features
is degraded in the presence of stationary and non-stationary noise, whereas the
performance of MGDCC remains intact across various noise types. These results
prove the additive noise robustness property, and also that the group delay spec-
trum is known to emphasize the signal spectrum rather than the noise spectrum.
It can also be explained by the fact that the MGDCC feature set pushes the zeros
into the unit circle in an attempt of making the signal a minimum phase, which
may also help in the suppression of noise. Additionally, it can be noted that LFCC
and MFCC are not equally robust in white noise as the energy in higher frequency
speech regions is weak making it more susceptible to noise corruption. The LFCC
contains more subband filters at higher frequencies than MFCC, making it less
robust to white noise. As the noise power decreases, the LFCC feature set still
outperforms MFCC due to its linearly-spaced subband filters instead of the Mel
filterbank. This reasoning also explains the comparable performance of MFCC to
LFCC, when the signal is corrupted with pink noise.

7.4.4 Analysis of Latency Period

In this study, we investigated the latency period of the MGDCC feature set in
comparison to the baseline features, i.e., MFCC and LFCC. To evaluate the per-
formance of CNN based on different feature sets, we measured the accuracy %
with respect to the latency period, as depicted in Figure 7.4. The latency period
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denotes the time elapsed between the utterance of speech and the system’s re-
sponse, expressed as a percentage fold accuracy that represents the number of
frames utilized for utterance classification. Therefore, if the system demonstrates
superior performance at lower latency periods, it implies that it can classify the
speech utterance effectively without requiring a prolonged duration of speech.
The duration of utterance is upto 3 sec and is plotted at an interval of 0.5 sec.
It is observed that MGDCC features give significant classification performance
throughout, the highest accuracy being 79.48 % at 1.5 sec (Figure 7.4). On the con-
trary, the baseline features constantly down-perform and take a longer duration
to achieve comparable performance. This encourages the practical suitability of
the proposed MGDCC feature set.

Figure 7.4: Latency Period of MFCC, LFCC, and MGDCC. After [85].

7.5 Chapter Summary

In this study, phase-based vocal tract features were proposed for emotion recogni-
tion. Other state-of-the-art spectral features MFCC and LFCC were used for com-
parison. The objective was to capture the irregularities in speech signal and the
formant structure better for efficient SER. MGDCC also proved to perform well
for stationary and non-stationary noise added dataset due to its additive noise ro-
bustness property. The significance of linear filterbanks over Mel filterbanks were
observed for emotion classification. The practical suitability of MGDCC was also
calculated and promising results were seen.
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CHAPTER 8

Whisper Features for SER

8.1 Introduction

In human communication, speech is the most natural mode of expression and is
inherently infused with emotions. Speech allows for greater emotional expression
and understanding than the other modes, such as text messages or emails. Rec-
ognizing emotions in speech is crucial for improving the intractability between
humans and machines. To develop an effective system for SER, a comprehensive
understanding of the acoustics associated with different emotions is crucial.

In academic research, a neural network dubbed Whisper (Web-scale Super-
vised Pretraining for Speech Recognition) has been developed and released by
Open AI [6]. This open source Automatic Speech Recognition (ASR) system is
founded upon an expansive dataset comprising 680,000 hours of English-language
audio data labeled via web collection, 117,000 hours of data for 96 other lan-
guages, and 125,000 hours of translational data. The usage of such a voluminous
dataset has enabled Whisper to attain remarkable levels of precision, approxi-
mating human accuracy for speech recognition in English. The model’s creators
postulate that it can capture all crucial information from the speech signal and
map it to a fixed-size vector upon the conclusion of its first layer, which can be
utilized to execute SER task. The researchers contend that the effectiveness of
these features is primarily attributed to the vast amount of data utilized to train
the Whisper model, which enabled it to capture not just linguistic information but
also acoustic and other pertinent details.

In this study, the performance of different feature extraction techniques (MFCC,
GFCC, and Whisper) on three different databases, namely, ESD, CREMA, and
EmoDB is done and it is found that Whisper features outperforms other feature
extraction techniques (by 2-30 %) in all scenarios. The study also demonstrates
the feasibility of using Whisper features in cross-database scenarios, which has
important implications for real-world applications. Overall, the results of this
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study suggest that Whisper features are a robust and effective approach to SER
task.

To the best of our knowledge, this study is the first of its kind to compre-
hensively apply the Whisper model to emotion classification in cross-database
scenarios.

8.2 Proposed Work

8.2.1 Web-scale Supervised Pertraining for Speech Recognition

(WSPSR)

Whisper is a novel ASR model which was introduced recently in September 2022.
Its name, WSPSR, stands for "Web-scale Supervised Pretraining for Speech Recog-
nition," a multitask and multilingual model. Unlike previous models, such as
Wav2Vec that rely on pre-training on unlabelled audio data [36], Whisper has been
trained on a massive dataset of labeled audio data collected from the Web. The
architecture of Whisper emphasizes the significance of using a diverse and exten-
sive supervised dataset for training, which can significantly improve the system’s
performance and adaptability to new data. The architecture design of Whisper is
illustrated in Figure 8.2 as described in [60].

Table 8.1: Details of Different Whisper Models. After [65].

Model Layers Dimension of
Output Vector Parameters

Tiny 4 1 × 1500 × 384 39 M
Base 6 1 × 1500 × 512 74 M
Small 12 1 × 1500 × 768 244 M

Medium 24 1 × 1500 × 1024 769 M
Large 32 1 × 1500 × 1284 1550 M

As shown in Figure 8.3, the current study suggests a transfer learning-based
strategy for emotion categorization using deep neural network (DNN) classifiers,
such as CNN and ResNet. Depending on the Whisper model used, the Whisper
Encoder Module requires a Mel spectrogram of the audio signal, which is padded
to 30 seconds. It then produces a fixed-dimensional vector. Instead of sending this
fixed-dimensional vector to the Whisper Decoder Module, different DNNs use it
as a feature for classification. Figure 8.1 shows the log-Mel-Spectrogram utilized
in this study to represent various emotions.

77



Figure 8.1: Log Mel-Spectrogram of the same sentence in different emotions after
padded by Whisper model (to make all utterances of 30 seconds length).

The technical details of numerous Whisper Model variations, each with a dif-
ferent number of trainable parameters [65], are listed in Table 1. However, the
experiments in this paper were limited to the base model because of resource lim-
itations.

8.3 Experimental Details

As mentioned in Chapter 3, three datasets, namely, EmoDB, ESD, and CREMA-D
are used in this study. To ensure reliable results, this study used different sets of
speakers for training, validation, and testing in both the datasets. We also main-
tained a similar ratio of train-test-validation, close to 70 %-10 %-20 % for both ESD
and CREMA-D (70-10-20 in ESD and 70.51-9.73-19.75 in CREMA-D). In addition,
the EmoDB dataset was exclusively utilized for testing purposes in this study, as it
contains a smaller number of files (339 files for four emotions). For this work, we
have used 13-D static features for both MFCC and GFCC with 16 kHz sampling
rate, and a window length of 25 ms. The classifier details are already mentioned
in Chapter 3.

8.4 Experimental Results

The main aim of the preliminary experiments was to determine a neural net-
work architecture that could effectively classify the extracted features into dif-
ferent emotions with high accuracy. Upon obtaining promising results on the
ESD dataset, the same architecture, as depicted in Figure 8.3, was utilized for the
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Figure 8.2: Complete Whisper Model. After [60].

Figure 8.3: Pipeline of architecture used for SER task.

CREMA dataset. The findings revealed that the identical architecture worked ef-
fectively with Whisper features on both the datasets. The outcomes, comprising
accuracy and other statistical metrics, are presented in Table 8.2 and Table 8.3. It
is noted that whisper features outperform baseline features MFCC and GFCC by
20 % on CNN and 8-30 % using ResNet. As seen in the literature, prosodic fea-
tures extensively effective for emotion classification are generally suprasegmental
in nature, and the baseline features capture segmental information. Since whis-
per features capture around 30 s of utterance, and hence, it is able to capture the
prosodic elements much better than state-of-the-art MFCC and GFCC features.
Emotion is not dependent on a single speech segment, however, it is understood
by the entire utterance; using long-term features helps capture better. Also, due to
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Table 8.2: Results for different features using CNN classifier for matched and mis-
matched conditions. After [88].

Train
Dataset

Test
Dataset Feature Set Accuracy (in %) F1 Score MCC Jaccard

Index
Hamming

Loss
MFCC 49.21 0.4701 0.3417 0.3166 0.5079
GFCC 50.86 0.4630 0.3698 0.3254 0.4914ESD

Whisper 86.86 0.8595 0.8333 0.7630 0.1314
MFCC 30.4 0.2051 0.0958 0.1295 0.696
GFCC 45.91 0.4374 0.3218 0.2967 0.5409Crema

Whisper 56.18 0.4945 0.4493 0.3524 0.4382
MFCC 62.83 0.6221 0.4979 0.4676 0.3709
GFCC 37.46 0.2046 0.0086 0.1408 0.6254

ESD

EmoDB
Whisper 56.93 0.5003 0.4606 0.3697 0.4307
MFCC 24.86 0.1417 -0.0027 0.0867 0.7514
GFCC 31.71 0.2681 0.0990 0.1696 0.6829ESD

Whisper 51.78 0.4482 0.3917 0.3103 0.4821
MFCC 51.36 0.5118 0.3562 0.3497 0.4864
GFCC 55.97 0.5468 0.4457 0.3850 0.4403Crema

Whisper 72.53 0.7243 0.6477 0.5680 0.2746
MFCC 51.33 0.4611 0.3218 0.3263 0.4867
GFCC 40.71 0.2665 0.1348 0.1815 0.5929

Crema

EmoDB
Whisper 60.18 0.5987 0.4521 0.4400 0.3982

huge multi-lingual training data, whisper features effectively capture emotional
context without the hindrance of cultural and linguistic barriers.

8.5 Chapter Summary

This study investigated features obtained from the Whisper Encoder for SER task.
This model has demonstrated accuracy on par with that of humans in ASR and
is trained on a large amount of audio data. We propose that the superior per-
formance of the Whisper features is due to their ability to capture both acoustic
and linguistic information, encompassing all relevant emotional aspects of the au-
dio speech signal. Results from experiments conducted showed that the Whisper
model performed exceptionally well in both classifiers and achieved significantly
higher accuracy than traditional feature sets on both datasets. We further val-
idated their results by employing additional statistical parameters and analyz-
ing the confusion matrix. All experimental conditions consistently showed that
the proposed Whisper Encoder-based feature set outperformed other feature sets
in all metrics evaluated, providing strong evidence supporting the proposed ap-
proach. In the next chapter, we discuss an exploratory work where the LFRCC
feature on infant cry classification is studied.
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Table 8.3: Results for different features using ResNet classifier for matched and
mismatched conditions. After [88].

Train
Dataset

Test
Dataset Feature Set Accuracy (in %) F1 Score MCC Jaccard

Index
Hamming

Loss
MFCC 45.07 0.3767 0.2924 0.2584 0.5493
GFCC 49.14 0.4596 0.3399 0.3111 0.5086ESD

Whisper 79.85 0.7863 0.7464 0.6589 0.2014
MFCC 33.12 0.2633 0.1374 0.1647 0.6688
GFCC 45.70 0.4383 0.3041 0.2975 0.5430Crema

Whisper 46.54 0.4039 0.3178 0.2668 0.5346
MFCC 51.62 0.2198 0.0391 0.1481 0.6224
GFCC 37.76 0.3800 0.3611 0.2811 0.4838

ESD

EmoDB
Whisper 55.75 0.4894 0.4281 0.3520 0.4424
MFCC 23.43 0.2037 -0.0227 0.1191 0.7657
GFCC 41.57 0.4007 0.2250 0.2756 0.5843ESD

Whisper 49.14 0.3675 0.3861 0.2639 0.5086
MFCC 50.10 0.4389 0.3632 0.3066 0.4989
GFCC 55.97 0.5431 0.4197 0.3862 0.4403Crema

Whisper 70.65 0.7243 0.6477 0.568 0.2746
MFCC 40.12 0.2886 0.1214 0.1800 0.5988
GFCC 37.46 0.2097 0.0136 0.1430 0.6254

Crema

EmoDB
Whisper 48.90 0.3776 0.2468 0.2568 0.5309
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CHAPTER 9

Exploratory Work: LFRCC for Infant Cry Clas-
sification

9.1 Introduction

Infant cry research is interdisciplinary in nature involving paediatrics, cognition,
psychology, engineering, language acquisition, robotics, prosody, and autism spec-
trum disorders (ASD) [29]. For example, language acquisition research has shown
that infants have remarkable ability to distinguish two different languages (in-
cluding native vs. non-native) within just four days of birth and thus, deeper re-
search in language acquisition may help for developing better speech recognition
and speech understanding systems, such as in robotics. In addition, cry units of
infants who later diagnosed with ASD are also found to have higher fundamental
frequency (F0) than controls similar to pathological infant cry, thereby making it
challenging to identify acoustic cues of normal, ASD, and pathological cry sam-
ples.

Around 3 million infants die within first four months of birth due to various
reasons, such as pathology, malnutrition, vaccine preventable disease, abnormal-
ities in the brain stem controlling breathing function, etc. In this context, infant
biometrics using fingerprint and cry signal are developed [29]. In the context of
pathologies, birth asphyxia and related abnormalities, in particular, sudden infant
death syndrome (SIDS) are leading cause of death for infants [53]. Landmark in-
vestigations sponsored by the National Institute of Health (NIH), USA, reported
evidences of abnormalities in brainstem (in particular, medulla oblongata) that
is known to control breathing functions, for the infants who died of SIDS [11].
Further, clinical diagnosis of asphyxia is logistics heavy and costly and thus, it is
mostly diagnosed late, however, by then, severe neurological damage would have
already occurred to the infants [28]. Further, acoustic cues of the deaf infant cry
are depends upon hearing loss, type and duration of rehabilitation, and the age of
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pathology detection [59]. Moreover, not every infant has a luxury of being taken
care by a Neonatal Intensive Care Unit (NICU) and a team of paediatricians, more
so, in the Indian context. To that effect, several attempts to develop assistive tech-
nologies, such as baby cry analyzer [2], baby pod [3], and Ubenwa mobile app
indicates a genuine need to develop a cost-effective and non-invasive cry diag-
nosis tool as a supplement to well known Apgar count (that is a function of baby
weight, preterm vs. fullterm, cry being vigorous vs. shill, etc.). In this context, this
work investigates signal processing-based approach for infant cry classification,
where asphyxia and deaf are considered as pathological cry signals.

Even though research on infant cry analysis started as early as 1960’s and that
this problem is socially relevant, the progress in this field is slower primarily due
to several challenges. In particular, ethical issues associated with data collection,
higher fundamental or pitch frequency (F0) and hence, infant cry signal suffers
from poor spectral resolution. Original investigations in [92] identified ten dis-
tinct cry modes to indicate differences in the manner of modes of vibrations as-
sociated with the vocal folds voicing, i.e., F0 and its harmonics (kF0, k ∈ Z) via
narrowband spectrogram (having window duration less than a pitch period, i.e.,
∼ 1-2 ms [64]). However, these investigations were limited to only normal infant
cries and later extended to analysis of asthma, Hypoxic Ischemic Encephalopa-
thy (HIE), and larynx abnormalities . These studies exploited narrowband spec-
trogram due to their capability of reflecting manner of variations in F0 and kF0,
where formant structures are difficult to observe due to quasi-periodic sampling
of vocal tract spectrum by high pitch-source harmonics (under the assumption of
linear time-invariant cry production model). Recently, MFCC features modeled
using statistical classifier, namely, GMM are used for this task [8]. However, this
work investigates the excitation source-based features based on the classic Linear
Prediction (LP) concept for infant cry analysis. Since cries are very difficult to dis-
tinguish for the human ear, excitation source-based features, which capture the
characteristics of glottal airflow needed for sound (cry) production, proved effec-
tive. This study also investigated the effect of LFRCC on cross-database (i.e., mis-
matched conditions) and combined database evaluation scenarios. It was observed
that LFRCC outperformed MFCC and LFCC by 24.9% and 17.43%, respectively,
for mismatched conditions and by 0.27%− 1.11% for the combined database. The
block diagram of the proposed feature is given in Figure 9.1.
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Figure 9.1: Schematic block diagram of LFRCC feature extraction. After [81].

9.2 Database Details

Baby Chillanto database used for this work was originally developed by the record-
ings conducted by medical doctors, which is a property of NIAOE-CONACYT,
Mexico [68], [69]. Table 9.1 shows the statistics of the Baby Chilanto database
with a total of 1049 healthy cries and 1219 pathological cries. Another database
used was the In-house database. It was collected by [20],[24]. Table 9.1 shows the
statistics of the In-house database with a total of 793 healthy cries and 416 patho-
logical cries. For a fair comparison, each cry segment was resampled at a uniform
sampling frequency of 16 kHz.

Table 9.1: Number of Cry Recordings in Baby Chilanto and In-house Corpora.
After [20], [24], [68], and [69].

Class Category Baby Chilanto In-House

Healthy
Normal 507 793
Hunger 350 -

Pain 192 -

Pathology
Asphyxia 340 215

Deaf 879 -
Asthma - 182

9.3 Baseline Used

The performance of the proposed LFRCC feature set was compared with state-
of-the-art feature sets, namely, MFCC and LFCC. 39-D MFCC and 39-D LFCC
features were extracted using a window length of 30 ms and window overlap of
15 ms. Each containing 13-D static + 13-∆ + 13-∆∆ features. The GMM and CNN
classifiers’ architecture details are discussed in Chapter 3.
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9.4 Experimental Results

9.4.1 Effect of LP Order

In this sub-Section, the results obtained by varying LP order is analyzed. Fig-
ure.9.2 shows the effect of LP order on both datasets. It can be observed from
Figure.9.2 that % classification accuracy decreases as we increase the LP order.
The optimal results are obtained keeping LP order 4, where we get 99.03% and
91.50 % accuracy on Baby Chilanto and In-House datasets, respectively. Source
modelling is not working for higher LP orders as the vocal tract of babies is very
small as compared to adults and has less mass of the vocal folds. For infants,
the glottal cycle (i.e., closed phase, open phase, and return phase) is of relatively
lesser duration (∼ 1-2 ms) as compared to adults and the contextual information is
not needed for infant cry analysis and the higher order predictor memory might
confuse the model. Further, due to the much lesser length of the vocal tract (<
5cm), lesser predictor memory is required to model it [13].

Figure 9.2: Effect of LP order for LFRCC using GMM classifier. After [84].

9.4.2 Results for Matched Conditions

Table 9.2 and Table 9.3 shows the classification accuracy of proposed LFRCC fea-
tures on GMM and CNN classifiers, respectively. From Table 9.2, it can be inferred
that LFRCC gives comparable results with baseline MFCC and LFCC (99.21 %
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Table 9.2: Classification Accuracy (%) of MFCC, LFCC, and LFRCC using GMM
Classifier. After [84].

Database MFCC LFCC LFRCC
Baby Chillanto 99.47 99.25 99.21

In-house Corpus 95.75 94.75 91.83
Combined 96.43 96.96 97.23

Table 9.3: Classification Accuracy (%) of MFCC, LFCC, and LFRCC using CNN
Classifier. After [84].

Database MFCC LFCC LFRCC
Baby Chilanto 98.59 97.88 97.02
In-house Corpus 87.91 84.56 88.68
Combined 97.12 97.56 98.23

and 91.83 % for Baby Chilato and In-House corpus, respectively). LFRCC outper-
forms MFCC and LFCC by 0.78% and 0.27%, respectively. This is because LFRCC,
being excitation source-based features, it is able to identify the difference in char-
acteristics of glottal airflow used for cry production for different pathologies. The
increase in number of training and testing samples also help in classifying cries
better.

Table 9.3 shows the results from deep neural network-based CNN classifier,
where the proposed feature outperforms MFCC and LFCC by 0.77% and 4.12% for
in-house corpus. Infant cries have high-pitched cries, which results in a greater
role of factor [64]. This results in rich discriminative acoustic cues in the lower
frequency regions. MFCC has a better resolution in lower-frequency regions than
LFCC. This results in better performance of MFCC than LFCC. These results in-
dicate that the excitation source-based features help in the binary classification of
infant cry because the glottal airflow needed for different cry categories is differ-
ent, thus, indicating its potential for this study.

9.4.3 Results for Mismatched Conditions

Table 9.4 highlights the classification accuracy for cross-database (CD) or mis-
matched conditions. Here, CD1 implies training with Baby Chilanto database
and testing on In-House corpus. In CD2, training is done on In-House corpus
and testing on Baby Chilanto database. It is observed that the proposed LFRCC
features work well for cross-database classification. For CD1, LFRCC gave the
best performance as all the categories of cries on testing were present in training
(normal, asphyxia, and asthma), which helps in classification as the proposed fea-
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tures captured the breathing and in turn, the sound production (cry) better for all
the classes. The classification accuracy drops to 56.34 % in LFRCC because, the
proposed feature is capable of extracting the source-based information and the
categories of cries used in testing (hunger, pain, deaf) are different than that in
training. MFCC does not perform well as it is based on human sound percep-
tion and the cries used have minimal difference when heard and thus, making it
difficult to differentiate.

Table 9.4: Classification Accuracy (%) of MFCC, LFCC, and LFRCC using GMM
Classifier. After [84].

Database MFCC LFCC LFRCC
CD1 31.08 39.67 60.50
CD2 35.95 59.74 56.34

9.5 Chapter Summary

In this study, an excitation source-based feature, namely, LFRCC was used for
infant cry classification. Vocal tract-based cepstral features MFCC and LFCC
were used for performance comparison. The objective was to use the comple-
mentary information from source-based features for infant cry classification. The
results showed comparable performance with traditional state-of-the-art (MFCC
and LFCC) features. Though, it was found that LFRCC is useful for cross-database
classification due to its focus on the source (glottal airflow) needed for sound (cry)
production. Its ability to classify cries that are, in general, very hard to distinguish
for humans and auditory-based spectral features is the motivation for this study.
In the next chapter, we focus on developing a local API for SER task.
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CHAPTER 10

Local API for SER

10.1 Introduction

The motive of this thesis is to aid in SER problem. To understand the efficiency of
proposed CQPC feature, an Application Programming Interface (API) was devel-
oped. An API for SER promotes collaboration and innovation in the field. By
making the technology easily accessible to a wider community of developers,
it encourages the exchange of ideas, the development of new applications, and
the advancement of SER techniques. This collective effort can lead to significant
improvements in speech emotion analysis, benefiting various industries, such as
healthcare, customer service, and entertainment.

Furthermore, an API for SER facilitates the creation of personalized user expe-
riences. Applications can leverage the emotional insights extracted from speech
to adapt their responses or tailor their content accordingly. For instance, a vir-
tual assistant can adjust its tone or provide empathetic responses based on the
detected emotions, resulting in a more engaging and human-like interaction.

Moreover, building an API allows for scalability and extensibility. As SER
technology evolves, developers can easily update their applications by integrating
newer versions of the API, ensuring access to the latest advancements in emotion
recognition. This flexibility enables developers to stay at the forefront of SER
research and deliver enhanced user experiences to their customers.

Under the NLTM: BHASHINI project for Assistive Speech Technologies (AST),
we built as API for Emotion Classification, Infant Cry Classification, and Dysarthric
Speech Classification. The details of the same are discussed below.

10.2 Model for SER

To develop an API, it is important to understand the front end and back end func-
tionality. The front end of an API refers to the part that users interact with directly.
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It involves the user interface components, such as forms, buttons, and visual ele-
ments, which enable users to send requests to the API. This can be implemented
in various software, including web pages and mobile applications, that utilize the
API for requesting and receiving data.

In contrast, the back end of an API handles the server-side processing and
logic. It receives incoming requests from the front end, processes them, and gener-
ates appropriate responses. The back end performs operations like data retrieval,
manipulation, validation, and additional business logic required to fulfill the re-
quested actions. It also deals with tasks, such as connecting to databases, per-
forming calculations, and ensuring authentication and security measures.

The front end and back end working of our API is explained below.

10.2.1 Front end

CSS, JavaScript, and HTML are fundamental tools used in front-end development
to create captivating and interactive user interfaces. They were used to develop
the model shown below. HTML, short for HyperText Markup Language, serves as
the structural backbone of a web page. It defines the various elements and content
present on the page, including headings, paragraphs, images, and links. By uti-
lizing HTML tags, developers establish the hierarchical structure of the content,
allowing web browsers to render it correctly. HTML provides the foundation and
framework upon which CSS and JavaScript can operate by defining the layout
and fundamental structure of a web page.

CSS, or Cascading Style Sheets, complements HTML by managing the presen-
tation and styling of the elements defined in the HTML markup. Through CSS,
developers have the ability to specify the visual appearance, layout, and visual
effects of these elements. It empowers developers to define properties such as
colors, fonts, sizes, margins, and positioning, enabling precise control over the
overall look and feel of the user interface. CSS ensures consistency, responsive-
ness, and customization, facilitating the creation of visually appealing and user-
friendly designs.

JavaScript, a versatile programming language, brings interactivity and dy-
namic functionality to the front end of a website or application. With JavaScript,
developers can incorporate interactive behaviors, animations, and real-time up-
dates into the user interface. It allows for the handling of user interactions, val-
idation of input, manipulation of the Document Object Model (DOM), retrieval
of data through AJAX requests, and the creation of intricate interactive features.
JavaScript plays a vital role in enhancing user experiences and extends the ca-
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pabilities of HTML and CSS by providing advanced functionality beyond their
individual scope.

• STEP I: The website for Assistive Speech Technologies is shown below. The
motivation and need for this API are briefed on this page, along with the
host organization (DA-IICT) and funding body, Ministry of Electronics and
Information Technology (Meity) that sponsored this consortium project (Fig-
ure 10.1).

Figure 10.1: Assistive Speech technology website.

• STEP II: Scrolling the page gives three icons, namely: Emotion Classification,
Infant Cry Classification, and Dysarthric Speech Classification. Press the
button “CLICK HERE” to view the desired page (see Figure 10.2).

• STEP III: The motivation for developing Emotion Classification is described
on this page. The CNN model is employed to classify five emotions, namely,
anger, happiness, neutral, sadness, and surprise. This model is trained by
extracting Constant Q Pitch Coefficients (CQPC) features from the audio file
(refer Figure 10.3).

• STEP IV: Scrolling the page, the icon “Choose File” is seen. Press this to
upload the desired audio file to test/classify. After choosing the desired file,
click “Classify” to get the emotion in the chosen audio. The emotion along
with its emoji is displayed (see Figure 10.4).
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Figure 10.2: API front end for Assitive Speech Technology.

Figure 10.3: Emotion Classification Page.

10.2.2 Back end

Flask, a widely-used back end framework in web development that works seam-
lessly with front-end technologies, such as HTML, CSS, and JavaScript is used
for this work. This lightweight and adaptable framework, written in Python, is
specifically designed to facilitate the rapid and efficient construction of web ap-

91



Figure 10.4: Output image.

plications.
We call the models by clicking on the submit button after entering the .wav

files for each speech assistive technology and then return the result we obtain and
output it on the front end (screen).

Calling the model function and linking the corresponding images:

In the initial step, the characteristics and compatibility of given .wav files will
be examined. If the necessary requirements are met, a model function will be
invoked with the user-provided input. This function will load the model from the
same folder/directory as the main.py file (ensure both the files are kept together
i.e., having the same path or directory). The function will generate a numerical
output, where each number corresponds to a specific image or GIF. Subsequently,
the output will be displayed on the screen.

• Step I: We have established two folders (static and templates) alongside a
main.py file that encompasses the back end code. The Static folder houses
essential components, such as CSS and JavaScript scripts, as well as the nec-
essary assets including images or logos that are utilized in the project. The
templates folder contains HTML files for each page.

• Step II: To begin, we will initiate the process by locating the path to the assets
folder, where the desired final images are stored.
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Figure 10.5: Code to access folders.

In Figure A.5 FILE_TYPES contains the valid input types’ names, "os.path.join"
is used to set the path to assets folder. The address is then passed and saved
to application configuration folder (’UPLOAD FOLDER’).

• Step III: Following that, proceed to define the AST function specific to this
context, which is referred to as "emotion_func." Within this function, the
input file obtained from the front end, identified as ".wav file" in our case, is
passed as the input parameter (refer Figure 10.6).

Figure 10.6: Emotion function.

• Step IV: Afterward, there is an association between emotions and numeri-
cal values, requiring us to retrieve corresponding images. These images are
stored in the "static/assets/<image name>" directory. To access them, we
have already stored the path up to the assets folder in the app.config ("UP-
LOAD_FOLDER"). By appending the file name to this path, we can access
the specific file associated with the corresponding emotion. Utilizing the
os.path.join method, we combine and create a unified path, storing them in
the "labels" variable. Finally, we return the labels containing the paths to the
respective images (Figure 10.7).
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Figure 10.7: Code for Step IV.

• Step V: To facilitate navigation or create new pages, we utilize the "@app.route
(the name of the desired page)" decorator. If there is a need to handle user in-
put and provide output or store the input, we specify the methods=["GET",
"POST"]. When a submit button is clicked, it triggers a POST request. Lever-
aging this information, we have developed the "emotion" function. Within
this function, we check if a POST request has been made, indicating that a
submit button was clicked. In this case, we verify whether any files were
uploaded by the user. If no files were uploaded, we return a blank.jpg or
R.gif image.

Figure 10.8: Code for Step V.
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Adding/Deleting/Changing pages:

• Step 1: First define a route of your page.

• Step 2: Then write any function you want to show in the front end or return
the page using the render template module.

• Step 3: As done above, we need to mention the routes as “/emotion” or
“/about” in the front end.

Figure 10.9: Code for Step 3.

10.3 Chapter Summary

This chapter describes the details of building a local API for Assitive Speech Tech-
nology. The details of its building, coding, and output are shown in this chapter.
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CHAPTER 11

Summary and Conclusions

11.1 Summary of the work

The objective of this thesis is to contribute to the improvement of efficient SER.
Firstly, an in-depth analysis of emotions was conducted to gain insights into their
characteristics. Cultural and linguistic effects on emotions were also touched
upon. The literature review revealed three primary techniques for extracting fea-
tures in SER: prosodic features, excitation source features, and vocal tract fea-
tures. This thesis presents novel CQPC and CQHC features derived from CQT
for SER as it captures the music and prosodic information well. Further, a novel
LFRCC feature was introduced for capturing excitation source-based informa-
tion. Phase-based features, namely MGDCC, were introduced to capture vocal
tract and vocal fold state, which aided SER. Whisper features were also tested in
matched and mismatched conditions for SER. Additionally, the proposed LFRCC
was also tested on infant cry analysis, as both emotion and infant cry classifica-
tion are highly dependent on pitch information, thus motivating to test the fea-
ture in a new problem statement. Several machine learning and deep learning
models, such as GMM, CNN, ResNet, and TDNN, are employed to assess the
proposed features’ performance. Various evaluation metrics, including F1-score,
MCC, Hamming Loss, Jaccard Index, accuracy, and confusion matrix, are used to
measure the performance of these classification models. To ensure reliable and
unbiased results, 5-fold cross-validation is applied, providing a robust evaluation
process. These metrics serve as indicators of the accuracy and effectiveness of the
models, facilitating the assessment of their suitability for real-world applications.

11.2 Conclusions

The following conclusions can be drawn from this thesis:
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• Mandarin being a tonal language has higher F0 fluctuations due to pitch
variations, is louder, and has a higher energy profile than the stress-timed
language English.

• Music stimulates emotions, and thus music-based features, CQPC and CQHC
perform better in SER than traditional features such as MFCC and GFCC.

• Respiratory patterns’ influence on emotions was studied with the help of
LFRCC.

• MGDCC’S ability to capture the fine structures of spectral envelope aid in
efficient SER.

• Supra-segmental information and huge multi-lingual training data aids whis-
per to perform well in SER.

• LFRCC’s ability to focus on glottal airflow aids in cross-database infant cry
classification.

11.3 Limitations of the Current Work

Some limitations of the proposed work are as follows:

• MGDCC and LFRCC features have to be tested on multiple databases to
establish their performance in SER.

• Whisper experiments were limited to base models due to resource limita-
tions.

• Cross-database evaluation of LFRCC on infant cry has to be tried on deep
learning models.

11.4 Future Research Directions

This thesis made a humble attempt at aiding methods for better SER. Some future
research directions for this problem statement are:

• Exploring techniques for generating synthetic emotional speech data to al-
leviate the scarcity of labeled data. Investigating data augmentation ap-
proaches such as speech style transfer, voice conversion, and emotion trans-
fer to enhance the diversity and quality of training data.
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• Considering the influence of contextual information (e.g., dialogue history,
speaker characteristics, cultural background) on emotion recognition from
speech. Investigating how to incorporate context into models to improve
the accuracy and adaptability of SER systems.

• Investigating noise robustness qualities and latency period of LFRCC for
SER.

• Using these proposed features on mentally challenged people and people
suffering from Cerebral Palsy and Parkinson’s disease.

• Developing novel deep learning models specifically designed for SER, con-
sidering the temporal dynamics and long-term dependencies in speech sig-
nals. Exploring advanced architectures such as RNNs, CNNs, and transformer-
based models and adapting them to capture emotional cues better.

• Exploring Federated Learning for SER to maintain the privacy of people and
develop a huge database for efficient SER.
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