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Abstract

Image processing is a way to transform an image into digital form and after that
perform some operations on it that helps to improve images for human interpre-
tation and extract useful information from it. It is essential for a wide range of
applications. It allows for enhancing and restoring images, extracting features
for object recognition, compressing images for efficient storage and transmission,
analyzing images for computer vision tasks, enabling medical diagnostics and
treatment, and interpreting data from remote sensing.

Field Programmable Gate Array (FPGA) is preferred for image processing due
to their parallel processing capabilities, reconfigurability, low latency, energy ef-
ficiency, pipelining support, customization options, real-time processing capabil-
ities, and ease of integration. These advantages make FPGAs a powerful tool for
implementing high-performance and efficient image processing solutions across
various applications.

To implement various filters in Image processing, we have developed a method
that performs various edge detection techniques using FPGAs and displaying the
image on the monitor through Video Graphics Array (VGA)Controller. Edge de-
tection filters and blurring filters are an indispensable part of Image processing in
various fields due to their ability to extract information, enhance visual quality,
and enable decision-making based on visual data .
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CHAPTER 1

Introduction

1.1 Motivation

Image processing is a captivating field that revolves around manipulating data
that inherently exists in a two-dimensional form. It covers a wide range of tech-
niques that are utilized in various domains. One prominent application of image
processing is image enhancement [1] [2].

Image enhancement is a transformative procedure that aims to enhance an im-
age’s visual quality and clarity of image, enabling a better perception and under-
standing of the essential features. By adjusting various parameters and applying
specialized techniques, image enhancement improves visibility, enabling easier
identification and analysis of specific elements within the image. This enhanced
visual representation not only aids in highlighting relevant details but also facil-
itates subsequent image-based investigations, such as accurate measurements or
precise object classification. Overall, image enhancement is crucial in refining and
optimizing images to extract valuable information and facilitate more effective
image-based tasks [3].

One of the major steps in image enhancement is the filtering of images. Image
filters are essential tools used in various ways to analyze and manipulate images.
The fundamental and elementary applications of filters are edge detection and
smoothing of images. Edge detection plays a crucial role in image segmentation
and feature extraction. By applying edge detection techniques, it becomes possi-
ble to identify and highlight the boundaries or edges of objects within an image.
Image smoothing, also known as image blurring, is a technique that reduces noise
and removes fine details from an image, resulting in a smoother and more visu-
ally appealing appearance. This information can then be used to separate differ-
ent regions of the image, extract important features, or enhance the overall visual
quality [4].
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1.2 Why FPGA?

FPGAs are becoming more prevalent in image processing applications, particu-
larly in real-time embedded scenarios where low latency and power efficiency
are crucial factors. Image processing using FPGAs offers several advantages over
other computing platforms. Here are some reasons why FPGA-based image pro-
cessing is beneficial [5] [6]:

• Parallel Processing: FPGAs excel at parallel processing, allowing them to
perform multiple computations simultaneously. This is particularly advan-
tageous for image processing, as images consist of a large number of pixels
that can be processed independently. FPGAs can process multiple pixels in
parallel, leading to significant speed improvements compared to sequential
processing on CPUs or GPUs.

• Customizability: FPGAs are highly customizable hardware devices. They
can be programmed and reconfigured to implement specific image process-
ing algorithms or even entire image processing pipelines. This flexibility
allows developers to optimize their algorithms for specific applications and
achieve higher performance compared to general-purpose processors.

• Low Latency: FPGA-based image processing can achieve lower latency be-
cause FPGAs offer direct access to hardware resources without the need for
intermediate layers or complex memory hierarchies. This makes them suit-
able for real-time applications, such as video processing, where low latency
is crucial.

• Energy Efficiency: FPGAs are known for their energy efficiency. By im-
plementing image processing algorithms directly in hardware, FPGAs can
achieve high computational throughput while consuming lesser power com-
pared to traditional CPUs or GPUs. This is particularly important in applica-
tions where power consumption is a limiting factor, such as portable devices
or embedded systems.

• Hardware Acceleration: FPGAs can be used as hardware accelerators along-
side CPUs or GPUs. They can offload computationally intensive tasks in
image processing algorithms, allowing the CPU or GPU to focus on other
tasks. This combination of hardware acceleration can significantly speed up
image processing tasks and improve overall system performance.
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• Real-Time Adaptability: FPGAs offer the ability to reconfigure their hard-
ware on the fly. This feature allows real-time adaptation to changing image
processing requirements or dynamic environments. It can be particularly
useful in applications where algorithms need to be adjusted or updated
based on real-time feedback. Overall, FPGA-based image processing pro-
vides high performance, low latency, energy efficiency, and customization
capabilities, making them an attractive choice for various applications rang-
ing from computer vision and surveillance to medical imaging and indus-
trial automation.

1.2.1 GPU vs CPU vs FPGA: A Comparative Overview

A CPU is a versatile processor that executes instructions and performs calcula-
tions for various tasks in a computer system where as a GPU is a specialized
processor primarily designed for handling and accelerating graphical computa-
tions. Initially developed for rendering graphics in video games, modern GPUs
have evolved to become highly parallel processors capable of performing com-
plex mathematical calculations. On the other hand, FPGA is a programmable in-
tegrated circuit that can be configured to perform specific functions. Unlike CPUs
and GPUs, which are fixed-function processors, FPGAs can be reprogrammed to
implement custom digital logic circuits and algorithms. This flexibility makes FP-
GAs suitable for a wide range of applications, including digital signal processing,
real-time data processing, cryptography, and hardware acceleration for specific
tasks [7] [8].

In certain applications, such as time-sensitive analysis, fast processing is cru-
cial, and regular CPUs are not capable of performing calculations quickly enough
to meet the requirements.When it comes to training small neural networks with a
limited dataset, CPUs can provide certain cost advantages initially. Nonetheless,
there is a benefit to using CPU-based applications in terms of power consump-
tion. When compared to GPU configurations, CPUs tend to offer better energy
efficiency. So, while CPUs may be slower in training neural networks, they can be
a more power-efficient choice in certain scenarios. [9].

Hardware accelerators like DSPs, FPGAs, and GPUs are used to speed up com-
putation time for algorithms [9]. FPGAs possess the remarkable capability to con-
currently host multiple functions, allowing for dedicated portions of the chip to be
assigned to specific tasks. This distinctive architecture greatly enhances both oper-
ational efficiency and energy consumption. By incorporating distributed memory
directly into the fabric, FPGAs bring the memory closer to the processing com-
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ponents, resulting in reduced latency. Notably, this arrangement can significantly
decrease power usage compared to traditional GPU designs. In summary, FP-
GAs stand out for their ability to optimize performance and energy efficiency by
seamlessly integrating memory and processing elements. [10]. The limited size of
local memory in GPU groups restricts their ability to execute certain algorithms,
making them lesser suitable than FPGAs for some applications. To achieve high
performance on GPUs, careful algorithm design is necessary to overcome these
limitations. Although programming tools for GPUs have been developed, achiev-
ing optimal performance on GPUs, CPUs, and FPGAs remains challenging [10].

Figure 1.1: CPU vs GPU vs FPGA:A Comparative Overview

Various hardware accelerators are considered and discussed in the below dis-
cussed papers for their suitability. Several examples include the utilization of
multicore CPUs, FPGAs, and GPUs in the field of experimental mechanics [11]
. Furthermore, GPUs are commonly employed for image processing [12] [13],
and for image registration, GPUs [14] as well as multicore CPUs and GPUs [15]
are often employed. While these papers offer valuable insights, it is important
to note that some of them solely focus on GPUs, neglecting the discussion of FP-
GAs or DSPs. Moreover, the technical details in these papers tend to be specific to
particular hardware architectures, limiting their usefulness in directly comparing
different hardware accelerators.

In conclusion, CPUs, GPUs, and FPGAs are hardware accelerators with dis-
tinct characteristics and advantages. CPUs are versatile processors suitable for a
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wide range of tasks, but these may not meet the fast processing requirements of
certain applications. GPUs excel at graphical computations and have evolved into
highly parallel processors capable of complex mathematical calculations, mak-
ing them well-suited for training neural networks. However, they can consume
more power compared to CPUs. FPGAs, on the other hand, offer the unique ad-
vantage of reprogrammability, allowing for the implementation of custom digital
logic circuits and algorithms. These excel in optimizing performance and energy
efficiency by integrating memory and processing elements, also they are good
in decreasing power consumption as compare to GPUs. FPGAs are particularly
beneficial for applications that require concurrent execution of multiple functions
and where GPU limitations hinder algorithm execution. While GPUs have been
extensively studied and employed in various fields, including image processing,
some papers tend to overlook the discussion of FPGAs and DSPs. A similar trade-
off between all the hardware accelerators can be seen in figure 1.1. Overall, the
choice between CPU, GPU, and FPGA depends on the specific requirements and
constraints of the application at hand.

1.3 Organization of thesis

The thesis organization is as follows:

The present Chapter 1 gives the introduction on FPGA, its necessity and orga-
nization of the thesis.

Chapter 2 focuses on the fundamentals of image processing, which includes a
detailed understanding of image processing, types of image processing, filtering
process of images and different types of filters.

Chapter 3 delves into the Verilog HDL implementation of Image Processing
filters such as Blur filter and Sobel Edge filter.

Chapter 4 introduces the proposed method for filtering of images using FPGA
and VGA along with a block diagram and complete architeture of proposed method.

Chapter 5 delves into the implementation part which is done using verilog
HDL language and FPGA board as hardware.

5



Chapter 6 discusses the simulation results as well as the hardware results ob-
tained by implementing the proposed method.

Chapter 7 concludes all the work implemented, its application and future ex-
plorations.

6



CHAPTER 2

Image Processing

2.1 What is a digital image?

Image processing refers to processing of digital images. A digital image is a rep-
resentation of an image, denoted as f(x, y), that has been discretized both in co-
ordinates and brightness. It is typically expressed as a 2D integer array or a set
of 2D arrays, where each array corresponds to a color band. The discrete values
assigned to represent brightness are referred to as gray levels. [16] In this context,
each element of the array is referred to as a pixel. The typical size of such an ar-
ray ranges from a few hundred pixels by a few hundred pixels, and the number of
available gray levels generally amounts to several dozens. Consequently, a digital
image can be visualized as shown in the equation 2.1 [16]:

f (x, y) =



f (1, 1) f (1, 2) f (1, 3) ... f (1, N)

f (2, 1) f (2, 2) f (2, 3) ... f (2, N)

. . . ... .

. . . ... .

. . . ... .
f (N, 1) f (N, 2) f (N, 3) ... f (N, N)


(2.1)

2.2 Color Models and Color Spaces

The human eye perceives color as light within a relatively limited range of the
electromagnetic spectrum. Due to the biology of the eye, it is especially sensitive
to red, blue, and green light. By combining these three primary colors in varying
proportions, humans are capable of perceiving a wide array of colors.

A color model serves as a geometric or mathematical framework designed to
capture and explain the colors perceived by humans. It employs numerical values
assigned to specific dimensions within the model to represent the full range of
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colors visible to the human eye. By utilizing these numerical values, a color model
provides us with a systematic approach for describing, categorizing, comparing,
and arranging colors in a meaningful way.

In the context of color representation, a color space serves as a practical im-
plementation of a color model. It defines a specific range of colors that can be
achieved using that particular color model. While the color model establishes the
relationship between values, the color space assigns a definitive interpretation to
those values as actual colors. By combining the principles of the color model and
the specifications of the color space, we can accurately represent and reproduce a
wide array of colors within a given system or application.

An image consists of one or more color channels determining the intensity or
color at a specific pixel location. In its simplest form, each pixel location contains
a single numerical value representing the signal strength at that particular point
in the image. To convert these numerical values into a visual image, a color map
is used. A color map assigns a specific shade of color to each numerical level in
the image, creating a visual representation of the data. Following are the color
spaces that are widely used:

• Gray Color space: In digital photography, computer-generated imagery,
and colourimetry, a grayscale image refers to an image where each pixel
holds a single sample representing the amount of light present, conveying
solely the intensity information. This range is often scaled to 0-255 in the
representation of an 8-bit image. These grayscale images, also known as
black-and-white or gray monochrome images, consist entirely of various
shades of gray. The contrast within these images spans from black, repre-
senting the lowest intensity, to white, indicating the highest intensity [17].
Example of a gray scale image is shown in figure 2.1.

Figure 2.1: Gray Scale Image
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• RGB color space:

The RGB color space can be seen as a three-dimensional R, G, and B, as de-
picted in Figure 2.2. Each axis has a range from 0 to 1, although for practical
purposes, this range is often scaled to 0-255 in the representation of a 24-bit
image, with one byte that is equal to 8 bits per color channel [17] [18].

Figure 2.2: RGB image layers

• HSV color space:

The HSV color model is a method used to define colors based on three fun-
damental characteristics: hue, saturation, and Value (luminance or Inten-
sity). The Color space of hsv model is shown in the figure 2.3. This image is
generated from Matlab for understanding purpose [19].

• Hue:
It represents the color itself and corresponds to color names like red or
yellow. It is measured on a scale from 0 to 360, indicating its position
on the standard color wheel [19].

Saturation:
It refers to the purity or intensity of a color. A higher saturation value
indicates a more vibrant and vivid color, while lower values result in
more muted shades. Saturation is typically expressed as a percentage
ranging from 0% to 100% [19].

Value:
It also known as brightness, represents the overall lightness or dark-
ness of a color. It is measured on a scale from 0% to 100%, where 0%
represents absolute black and 100% represents pure white [19].

9



Figure 2.3: HSV color space

By combining these three components, the HSV color model provides a com-
prehensive way to describe and specify colors.

• CYMK color space:

Color spaces that are based on the CYM (cyan, yellow, magenta) color model
are classified as subtractive. In this model, cyan, yellow, and magenta rep-
resent the primary components. The prominent color space derived from
the CYM model is CYMK, where the "K" signifies the key color, which is
black [20] [21]. The subtractive color theory, which forms the basis of CYM,
states that different levels of cyan, magenta, and yellow absorb or subtract a
portion of the spectrum from the white light that illuminates an object. The
color of any random object is determined by the lights that are not absorbed.
In the CYMK color space, black is introduced to compensate for the interac-
tion of the three primary colors on white paper. CYMK is predominantly
used in color printers and similar output devices [21].

The most commonly used color map is grayscale, where different shades of
gray, ranging from black (representing zero) to white (representing the maximum
value), are assigned according to the signal strength. Grayscale is especially suit-
able for intensity images, which convey only the intensity of the signal as a single
value at each point in the image [17].
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Despite the prevalence of color images in our daily lives. This preference for
grayscale is rooted in several reasons. Firstly, many image processing operations
can be easily extended to color images by applying them independently to each
color channel. This approach allows for efficient processing and manipulation of
color information. Secondly, a significant amount of visual information can be ef-
fectively conveyed through grayscale representations, making color unnecessary
for certain analysis and extraction tasks [16].

This can be observed in the historical acceptance of black and white television
and the enduring popularity of black and white photography. Lastly, the devel-
opment of image processing techniques primarily occurred during a time when
color digital cameras were costly and not as widely accessible. As a result, al-
gorithms were established and optimized based on the available grayscale image
data. Consequently, these techniques have become well-established in the field of
image processing [16].

2.3 Types of Image Processing

2.3.1 Point processing

To illustrate this, let’s consider the scenario of adjusting the brightness in a movie.
The input image would be the actual movie stored on the DVD, while the output
image would be the visual representation displayed on the TV screen. If we have
an input image denoted as f(x, y) and we aim to obtain a modified version known
as the output image that will be denoted by g(x, y).

Now, point processing comes into play. It is a specific type of operation per-
formed on each pixel of the image independently, without taking into account the
values of its neighboring pixels. This means that when calculating the new value
of a pixel in the output image g(x, y), only the corresponding pixel in the input
image f(x, y) is considered. The values of nearby pixels do not influence the com-
putation. As a result, this operation is named point processing because it focuses
solely on individual pixels as isolated points which can be seen in figure 2.4 [22].

Point processing operations can vary depending on the desired manipulation
of the image. Common examples include adjusting brightness, contrast, or ap-
plying color transformations. For instance, to change the brightness of an image,
each pixel’s intensity value in the output image is determined based solely on the
intensity value of the corresponding pixel in the input image [17] [22].

The benefit of point processing lies in its simplicity and efficiency. Since it
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Figure 2.4: Point Processing Of Image

considers each pixel independently, it allows for straightforward calculations and
enables real-time processing of images and videos. However, it’s important to
note that point processing may not be appropriate for tasks that demand consider-
ing the relationships and interactions between neighbouring pixels, such as edge
detection or noise reduction, which typically involve more complex processing
techniques. Overall, point processing provides a fundamental approach to ma-
nipulating images by performing operations on individual pixels independently,
disregarding the influence of neighbouring pixels [22].

When using your remote to adjust the brightness, you are effectively altering
the value of ’b’ in the given equation 2.2 [22].

g(x, y) = f (x, y) + b (2.2)

If ’b’ is greater than zero, the image becomes brighter, while if ’b’ is lesser than
zero, the image becomes darker. In other words, by modifying the ’b’ value, you
can control the brightness level of the image displayed on your screen.

2.3.2 Neighbourhood Processing

In image processing, the transformation of an input image into an output image
often involves considering the surrounding pixels of each pixel of input image
in order to determine its value in the resulting image. This concept is known as
neighborhood processing [17] [23].
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When performing neighborhood processing, we examine the pixel at a specific
position in the input image, denoted as f(x, y), and also take into account the
values of its neighboring pixels. The neighborhood typically consists of a defined
number of adjacent pixels, such as the immediate neighboring pixels in a square
or circular region around the central pixel as shown in figure 2.5 [23].

Figure 2.5: Neighbourhood Processing Of Image

The way in which the neighboring pixel values are combined with the central
pixel’s value to determine the output pixel’s value depends on the specific neigh-
borhood processing operation being applied. There are various techniques avail-
able, such as averaging the pixel values, applying mathematical filters or kernels,
or using complex algorithms to enhance or manipulate the image [23].

By incorporating information from the surrounding pixels, neighborhood pro-
cessing operations can capture local patterns, gradients, or structures in the im-
age. This allows for various image enhancement, noise reduction, edge detection,
or other image manipulation tasks.

Overall, the process of neighborhood processing enables us to transform the
input image by considering not only the individual pixel values but also the rela-
tionships and context between neighboring pixels. This helps to achieve desired
visual effects or extract meaningful information from the image.
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2.4 Kernel

A kernel refers to a small matrix or filter used for various operations, such as fil-
tering, convolution, or morphological operations. The kernel is typically a square
matrix, but it can also be rectangular or have other shapes. Each element of
the kernel contains a numerical weight or value that determines its effect on the
neighbouring pixels during the image processing operation. Kernel mostly used
are of 3x3 matrix or 5x5 matrix as shown in the figure 2.6 [23].

Figure 2.6: Kernel (a) 3x3x Kernel (b) 5x5 Kernel

2.5 Filtering

The combination of Kernel and Function is called filter and the process is called
filtering. Filtering is a powerful technique utilized in image processing to bring
about modifications or enhancements in an image. This process involves apply-
ing various filters to an image, highlighting specific features while eliminating
unwanted elements. Filtering operations encompass a range of effects, such as
smoothing to reduce noise, sharpening to enhance details, and edge enhance-
ment to make edges more prominent. By employing these filtering techniques,
images can be transformed to emphasize desired characteristics or remove dis-
tractions, resulting in visually appealing and more informative visual represen-
tations. There are two types of filtering: Linear filtering and Non-linear filter-
ing [23].

Linear Filtering:
Linear filtering is a method of image processing where value of each out-
put pixel’s value is determined by combining the values of the surrounding
pixels in the input image. This combination is achieved through a linear
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equation, which assigns weights to each input pixel’s value. The output
pixel’s value is calculated by taking the sum of these weighted values. This
type of filtering allows for the modification and enhancement of images by
applying various transformations based on the values and relationships of
neighbouring pixels. The linear nature of the filtering process enables a wide
range of operations, such as blurring, sharpening, and edge detection, to be
performed on digital images [23].

Non-linear Filtering:
Non-linear filtering refers to a method of image processing where the value
of an output pixel is determined through a non-linear combination of the
values of the pixels in the input pixel’s neighbourhood. Unlike linear fil-
tering, which uses a linear equation with fixed weights, non-linear filtering
involves applying non-linear operations to the pixel values [23] [24].

In non-linear filtering, the value of output pixel’s value is not simply a
weighted sum of the input pixel values. Instead, it is computed using more
complex functions that can account for various factors such as pixel inten-
sity, local contrast, or statistical properties of the neighbouring pixels. These
non-linear operations can introduce non-linear relationships and transfor-
mations in the resulting image, allowing for different effects and enhance-
ments [23].

In this work, Linear Filtering is used. And filtering involves several steps to
process an image [24]:

1) A Kernel or filter is positioned over each pixel in the image matrix.

2) The filter elements are multiplied by the corresponding elements in the neigh-
bourhood of the pixel. This multiplication is carried out for each element of
the filter.

3) The products obtained from the multiplication are added together and one
output pixel is obtained.

These steps are repeated for every pixel in the image matrix, ensuring the filtering
process is applied uniformly across the entire image. The diagram in figure 2.7
shows Linear filtering [23].
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Figure 2.7: Filtering Operation of an image

2.6 Filters

Some very used filters are edge detection filters and smoothening filters. Edge
detection is a fundamental operation in image processing that plays a crucial role
in various applications. It involves identifying and highlighting the boundaries
or edges between different objects or regions within an image. Here are some
reasons why edge detection is important:

1) Object recognition and segmentation

2) Feature extraction

3) Image enhancement

4) Compression and data reduction

5) Object tracking and motion detection

6) Edge-based image analysis

7) Image understanding and computer vision
A smoothening filter is a digital signal processing technique used to reduce

the sharp or abrupt changes in a signal. It is commonly used to remove noise or
unwanted variations in data, resulting in a smoother signal representation.
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2.6.1 Gray Scale Image

For filtering, conversion from RGB space to grayscale is needed. There are many
methods to convert a RGB image into gray scale but the most preferred one is the
luminosity method. Researchers have conducted experiments and extensive anal-
ysis, leading them to determine the following equation 2.3 to calculate grayscale
values:

Grayscale = 0.3 ∗ Red + 0.59 ∗ Green + 0.11 ∗ Blue (2.3)

According to the findings, the contribution of the blue color channel should be
reduced, while the contribution of the green color channel should be increased in
order to obtain the desired grayscale output.

2.6.2 Sobel filter

The Sobel filter, also known as the Sobel operator or edge detection filter, is a com-
monly used image processing technique to detect edges in an image. It is named
after its inventor, Irwin Sobel. The filter works by convolving a small kernel or
mask with the input image. The kernel consists of two separate 3x3 matrices,
one for detecting horizontal changes (Sobel X) and the other for detecting verti-
cal changes (Sobel Y). The Sobel X matrix emphasizes changes in pixel intensity
along the horizontal axis, while the Sobel Y matrix emphasizes changes along the
vertical axis. To obtain the final Sobel Filter, the magnitude of the gradients can
be computed using the equation 2.4:

Sobel =
√
(SobelX)2 + (SobelY)2 (2.4)

2.6.3 Sobel X filter

The horizontal Sobel filter is a 3x3 matrix used to detect changes in intensity be-
tween adjacent pixels in the same row. The horizontal Sobel filter has values that
are positive on the right side of the matrix and negative on the left side of the
matrix, which makes it sensitive to edges that transition from dark to light on
the right side and from light to dark on the left side. The filter for Sobel X edge
detection in equation 2.5.

Sobel x filter =

−1 0 1
−2 0 2
−1 0 1

 (2.5)
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2.6.4 Sobel Y filter

The vertical Sobel filter is a 3x3 matrix used to detect changes in intensity between
adjacent pixels in the same column. The vertical Sobel filter has values that are
positive at the bottom and negative at the top, which makes it sensitive to edges
that transition from dark to light at the bottom and from light to dark at the top.
The filter for Sobel Y edge detection in equation 2.6.

Sobel Y filter =

−1 −2 −1
0 0 0
1 2 1

 (2.6)

2.6.5 Gaussian filter

A Gaussian filter is a mathematical algorithm used in image processing to smooth
and blur images. The Gaussian filter is commonly used in image processing ap-
plications such as noise reduction, edge detection, and feature extraction. It is
preferred over other types of filters because it provides a smooth output image
that preserves edges and important features while reducing noise. The filter for
Gaussian Blur in equation 2.7.

Gaussian filter =
[

1
16

]
·

1 2 1
2 4 2
1 2 1

 (2.7)

2.6.6 Prewitt X filter

The horizontal Prewitt filter is a 3x3 kernel that is designed to detect edges that
run horizontally across an image. The central column of zeros in the kernel en-
sures that it is only sensitive to changes in pixel intensity along the horizontal
direction. The filter output will be large where there is a strong horizontal edge in
the image. The filter for Prewitt X edge detection in equation 2.8.

Prewitt X filter =

−1 0 1
−1 0 1
−1 0 1

 (2.8)
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2.6.7 Prewitt Y filter

The vertical Prewitt filter is also a 3x3 kernel that is designed to detect edges that
run vertically in an image. The central row of zeros in the kernel ensures that it is
only sensitive to changes in pixel intensity along the vertical direction. The filter
output will be large where there is a strong vertical edge in the image. The filter
Prewitt Y edge detection in equation 2.9.

Prewitt Y filter =

−1 −1 −1
0 0 0
1 1 1

 (2.9)

2.6.8 Laplacian filter

A 2-D isotropic measure of an image’s second derivative is called the Laplacian.
Edge detection frequently uses the Laplacian of an image because it shows areas
where there are fast changes in intensity. The two variations will be discussed
together since the Laplacian is frequently used to minimise noise sensitivity after
an image has been first smoothed utilising a method that is similar to a Gaussian
smoothing filter.

• Laplacian 4 Filter:
The Laplacian 4 filter, also known as the 4-neighbour Laplacian, considers
only a pixel’s immediate four neighbours (horizontal and vertical directions)
in the image. This filter emphasizes changes in intensity along the vertical
and horizontal directions, but it does not take into account diagonal edges.
The filter for Laplacian edge detection in equation 2.10.

Laplacian 4 filter =

 0 −1 0
−1 4 −1
0 −1 0

 (2.10)

• Laplacian 8 Filter:
The Laplacian 8 filter, also known as the 8-neighbour Laplacian, considers
all eight neighbouring pixels (horizontal, vertical, and diagonal directions)
of a pixel in the image. The Laplacian 8 filter considers a wider range of
directions, including diagonal edges. This makes it more sensitive to edges
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in all directions. The filter for Laplacian edge detection in equation 2.11.

Laplacian 8 filter =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (2.11)

Therefore, the Laplacian 4 filter is a simpler version that emphasizes vertical and
horizontal edges, while the Laplacian 8 filter considers additional diagonal edges.
The choice between these filters depends on the specific application and the de-
sired edge detection characteristics.
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CHAPTER 3

Verilog HDL Implementation of Image Pro-
cessing Algorithms

3.1 Design Challenges

FPGAs have lesser memory compared to the memory required by the images for
image processing, so there is an issue of memory and to solve that:

• Pure streaming architecture for neighbourhood operations cannot be done
since pixels for processing are not consecutive; as studied earlier, it takes its
neighbourhood pixels also. So we need to buffer pixels inside the IP before
processing it. Buffers are these small memories used for storing one line of
the image.

• It is not practical to buffer the entire image simultaneously because, for ex-
ample, A 512x512 image requires 262144 bytes. A memory inside FPGA can
be built using Block RAM or LUTs and flip-flops, but the number of flipflops
is quite limited and if CLBs (Configurable Logic Block) are used, then there
won’t be enough CLBs remaining to implement the remaining logic.

• So, just enough pixels are buffered first. For example, for a 3x3 kernel, three
Row buffers are needed to start the image processing.

3.2 Design Flow

The design flow of this method is seen in Figure 3.1. The input image is converted
to a digital form of an image in the form of pixels. After that, the pixels are filled
in different Row buffers.
Using Multiply and Accumulate, the filtering process is conducted, and we get
one output pixel. A similar process is repeated until the whole process is com-
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pleted, and we get our final output image. Figure 3.1 show the filtering of one
pixel using eight neighbourhood pixels.

Figure 3.1: Design Flow 1

Figure 3.2 show the filtering of the next pixel after we get our first pixel.

Figure 3.2: Design Flow 2

3.3 Software Specifications

Xilinx Vivado 2020.2 software is used for implementation in Verilog HDL (Hard-
ware Description language).

The image input file is given directly in the software, and the output file is ob-
tained after performing filtering operation in on the input image in .bmp (Bitmap
Image file) format.

BMP files are advantageous for storing and showcasing high-resolution digital
images since they contain uncompressed data.
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Results are obtained for blurring operation and edge detection using a sobel
filter on an image of size 512x512. For that, a 3x3 kernel is used.

3.4 Complete Architecture

Figure 3.3 shows the complete architecture of the design, which consists of a Con-
trol block that controls the flow of row buffer filled, a MAC unit and a FIFO.

Input to Architecture is s_data which is of 8 bit data that is 1 pixel.Control
block’s output will have 72 bits data as an input to MAC block. That means 9 pix-
els as an input to MAC unit will give 1 pixel as an output at a time after filtering.

Row_req_intr input is there to know when the next row of the image is needed
in order to fill the row buffers. A detailed explanation is discussed in this section.

Figure 3.3: Complete Architecture of the Design

3.4.1 Row Buffer

The image used for implementation is 512x512 in size. So for a 512x512 image, one
Row buffer will be 512 bytes in size, and three Row buffers will require 512*3=1563
bytes.

The size of the row buffer depends only on the width of the image. Our image
is 512x512, so the one-row buffer will be of size 512 bytes, or we can say 512 pixels
where each pixel is 8-bit(1 byte = 8 bit).

Basically, IP will wait for three rows of images to produce an output corre-
sponding to one row of the output image and after that, one row of image is
needed for every row of the output image.
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The same Row buffer can be used multiple times so that row buffers can be
reused by overwriting and a multiplexer can be used for processing the data. Af-
ter the first row is done with the operation, the fourth line buffer will be used.
And for that, one extra Row buffer is good to improve the performance else we
have to wait till all the row buffers are done. From figure 3.4, we can see that
B1, B2, B3 and B4 are the four buffers. While the system is processing three row
buffers, data can be sent to fourth buffer so that data transfers happen in parallel
to data processing, as shown in figure 3.4.

Figure 3.4: Filling of Row buffers

The row buffer IP will take nine input pixels, one pixel at a time, each pixel
is of eight bits so the output pixel size of first-row buffer will be twenty-four bits
(considering neighbourhood pixels). Similarly, row buffer two and row buffer
three will also have 24 bit output respectively. Input and output bits can be shown
in figure 3.5.

Figure 3.5: Row buffer IP
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3.4.2 Control Block

The control block consists of two logics: the write logic and the read logic. The
purpose of the write logic is to store data in row buffers, which are instantiated
memory units. The write logic block depicted in the figure 3.6 is responsible for
generating a valid signal to indicate the appropriate row buffer where the data
should be written. It also determines the optimal point to commence writing the
data, enabling subsequent filtering operations.

Figure 3.6: Control Block

There are two main tasks associated with the write logic block. Firstly, it needs
to determine the specific row buffer where the incoming data should be stored.
Secondly, it needs to identify when to initiate the data writing process, allowing
for subsequent filtering operations to be performed efficiently.

To perform these tasks, the counter block keeps track of the number of row
buffers currently being written. The Finite State Machine (FSM) continuously re-
quests new rows until all the available buffers are filled. Once all the buffers have
been utilized, a signal is sent to the FSM, indicating that it should stop requesting
new rows.

3.4.3 Multiply and Accumulate (MAC)

Multiply and Accumulate (MAC) operation is as the name suggests will multiply
the input image pixels and required kernel to get the multiplied matrix and ad-
dition of all the elements of the matrix will give us the output pixel as discussed
earlier in chapter 2. For MAC operation,after all the three row buffers are filled,

25



the size of them will be 3x3 and the size of the kernel used is also 3x3. So MAC
block will take 72-bit data as an input and will give 8-bit data as an output that is
one pixel, as shown in figure 3.7.

Figure 3.7: Multiply and Accumulate IP

3.4.4 FIFO

A FIFO (First-In, First-Out) block is essential in situations where data is being
sent from a source to a destination, but there may be a delay or discrepancy in the
reception process. It often takes time for the source to realize that the destination
is not receiving the data, and by the time this is identified, there may already be
an ongoing process or intellectual property (IP) involved. In order to address this,
a FIFO acts as an additional buffer to temporarily store the data until it can be
successfully transmitted to the destination.

3.5 Simulation Results

Various simulation results are obtained after implementing the previously ex-
plained design. Results include RTL schematic of the design, Output Waveform,
Output Images and Resource Utilization.

3.5.1 RTL Schematic

RTL schematic of the design is shown in the figure 3.8. It can be seen that there are
three blocks that we discussed: c1(control block), m1(Multiply and Accumulate,
and f1(FIFO).
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Figure 3.8: RTL Schematic of the design
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3.5.2 Output Images

Time taken to process the image was 2.6 ms. Figure 3.9 and 3.10 shows the output
images for the implemented design. Two operations were performed: Blurring
of an image and Sobel edge detection of an image. An image was first converted
to gray scale image and then both the filtering operation were carried out. So in
figures 3.9 and 3.10, First Image is the gray scale image, the second image is the
blurred image obtained from the first image and the third image in the horizontal
sequence is the sobel edge detection of an image as sobel edge detection technique
that plays a crucial role in various image processing and computer vision appli-
cations, including object recognition, segmentation, tracking, and enhancement.

Figure 3.9: (1) Gray Image (2) Blur filtering (3) Sobel Edge detection
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Figure 3.10: (1) Gray Image (2) Blur filtering (3) Sobel edge detection
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3.5.3 Output Waveform

The output waveform of the implemented design is shown in Figure 3.11. Wave-
form consists of the image pixels both input and output as mentioned in figure
3.11. Each new pixel is fetched at the positive edge of the clock and also the ad-
dress is incremented at the positive edge of the clock. Pixels sent and received
information can also be seen.

Figure 3.11: Output Waveform

3.5.4 Utilized Resources

From the complete Architecture, we saw there were three blocks: Control block,
MAC unit and FIFO, Figure 3.12 shows the devices used for the whole design
and individually by each block. Figure 3.13, Utilization of resources based on the
available resources are shown.

Figure 3.12: Hierarchy of the design

Figure 3.14 shows the power consumption. 96% dynamic power is consumed
out of which 48% is consumed by the signals, 46% is consumed by the logic and
the remaining is consumed by the BRAM. While 4% static power is consumed.
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Figure 3.13: Resource Utilization

Figure 3.14: Power consumption

3.6 Conclusions

In this Chapter, Sobel edge detection and blurring filter were applied to images
with a size of 512x512 pixels. However, the approach discussed can be adapted
to work with images of any size as long as the FPGA (Field-Programmable Gate
Array) has enough memory to hold the image.

The statement mentions the use of four-row buffers during image processing.
These row buffers are temporary storage areas that hold a portion of the image
data. By using four-row buffers, the processing time was reduced compared to
using only three-row buffers. This is because having an extra buffer allows for a
continuous flow of data, and the processing can continue without waiting for the
fourth buffer to be filled.

Time taken to process the image using all four buffers was 2.6 milliseconds.
Now, if five buffers were used instead of four, the time taken to process the image
would be even lesser. The exact reduction in processing time cannot be deter-
mined without additional information or performance measurements. However,
the addition of an extra buffer provides more flexibility in data transfer and pro-
cessing, which generally results in improved efficiency and reduced processing
time.
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CHAPTER 4

Proposed Method

A method is proposed in this thesis that takes the input image and performs
linear filtering on that image and gives us the final output image which is dis-
played through VGA on the monitor. The block diagram of the proposed method
is shown in figure 4.1.

Figure 4.1: The Block diagram of proposed method

4.1 COE file

A COE file is a text file consisting of a radix header and multiple vectors, where
each vector ends with a semicolon. The radix in the header can have a value of
2, 10, or 16. A COE file is then translated into an ASCII text file called Memory
Initialization File (.mif file). This COE file is generally used for Block memories.
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A COE file for an image is a plain text file that contains the pixel values in a
specific order, often in binary format. Information like the number of rows and
columns in the image and the number of bits used to represent each pixel are
included in the form of a COE file for an image.

COE files for images are often used in hardware implementations of image
processing algorithms. By storing the image data in a COE file, the image can be
loaded directly into the hardware without requiring an external memory inter-
face. This can be particularly useful in applications where real-time image pro-
cessing is required, such as in video processing, image processing, and machine
vision applications.

4.2 Block RAM Generator

The Xilinx IP Block Memory Generator (BMG) is a tool for constructing memories
that takes advantage of the embedded block RAM resources available in Xilinx
FPGAs. This tool generates memories that are optimized for both area and per-
formance, allowing users to easily create customized memories that fully utilize
the capabilities of Xilinx FPGAs.

Figure 4.2: Block RAM

The IP Block Memory Generator simplifies the process of creating memory
structures within an FPGA design. It allows designers to generate memory cores
with various configurations, such as size, data width, and type of memory (RAM,
ROM, FIFO, etc.). The generated IP cores can be integrated into the overall FPGA
design to implement on-chip memory requirements.

COE file is given in the IP Block RAM Generator where image width and depth
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has to mentioned for the process. Single port RAM is selected in this method
which can be seem in figure 4.2.

4.3 Multiply and Acummulate

This is the part where filtering of the input image is performed as per the steps
mentioned in previous chapter under filtering section. For example let us consider
an input image A in equation 4.1 and filter B in equation 4.2.

Image A =


44 34 07 23
80 88 1 65

134 12 66 111
13 125 145 11

 (4.1)

Kernel B =

−1 0 −1
0 4 0
−1 0 −1

 (4.2)

Now, If we want to work on pixel 88 in image A then we will position a Kernel
or filter over each pixel in the image matrix and multiply. This multiplication is
carried out for each element of the filter as seen in the equation 4.3.

multiply =

 44 34 07
80 88 1

134 12 66

 ∗

−1 0 −1
0 4 0
−1 0 −1

 =

 −44 0 −07
0 325 0

−134 0 −66

 (4.3)

The products obtained from the multiplication are added together and one output
pixel is obtained as seen in equation 4.4

Output pixel = − 44 + 0 − 07 + 0 + 352 + 0 − 134 + 0 − 66 = 101 (4.4)

So, the final pixel we get is 101. The same procedure is repeated for all the image
pixels and after processing every pixel we will get the final filtered output image.
When processing grayscale images, a common issue arises where the output of
the layers becomes smaller compared to the input. This occurs because the output
size is determined by the input size and the filter/kernel used. Specifically, for an
input image of size (n x n) and a filter/kernel of size (k x k), the output size is (n
- k + 1) x (n - k + 1). This reduction in output size can lead to the loss of valuable
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information, particularly at the corners of the image. Since the filters move across
the pixels, they may not fully focus on the corners during this process. As a result,
the reduced information in the corners can cause confusion for subsequent layers
in the network.

4.3.1 Padding

To solve the problem discussed earlier, padding layers can be employed. Padding
involves adding additional pixels around the borders of the input image before
applying the filters. This allows the filters to cover the corner pixels and reduces
the loss of information. By padding the input image, the output size of the layers
can be preserved or adjusted to match the input size, mitigating the information
loss and confusion in subsequent layers. Let us understand using the above ex-
ample. Padding zeros in image A as seen in equation 4.5 and using filter B in
equation 4.6.

Image A =



0 0 0 0 0 0
0 44 34 07 23 0
0 80 88 1 65 0
0 134 12 66 111 0
0 13 125 145 11 0
0 0 0 0 0 0


(4.5)

Kernel B =

−1 0 −1
0 4 0
−1 0 −1

 (4.6)

Now, If we want to work on pixel 44 in image A, we will position a Kernel or filter
over each pixel in the image matrix and multiply. This multiplication is carried
out for each element of the filter as seen in the equation 4.7.

multiply =

0 0 0
0 44 34
0 80 88

 ∗

−1 0 −1
0 4 0
−1 0 −1

 =

0 0 0
0 176 0
0 0 −88

 (4.7)

The products obtained from the multiplication are added together and one output
pixel is obtained as seen in equation 4.8

Output pixel =0 + 0 + 0 + 0 + 0 + 176 + 0 + 0 + 0 − 88 = 88 (4.8)
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So, the final pixel we get is 88. Thus, the problem of output size reduction and loss
of information in the corners of grayscale images can be alleviated by incorporat-
ing padding layers. Padding helps maintain the size of the output and ensures
that important information from all parts of the image is considered during the
filtering process.

4.4 VGA Controller

After getting our filtered output image we have to display it on monitor to visual-
ize the output image. VGA controller is used to display the image on the monitor.

Video Graphics Array is a type of display technology that was introduced in
the late 1980s. It is a type of analog video standard that is widely used in personal
computers and laptops. A VGA display has a resolution of 640x480 pixels as
shown in Figure 4.3, it can be seen that active part is of size 640x480 and rest of
the pixels are used for synchronization to display the image and uses a 15-pin
connector to connect the computer to the display. It can display up to 16 colours
at once or up to 256 colours in a lower-resolution mode [25].The front porch is
a blanking interval that occurs before the horizontal sync pulse. It is a period
during which the electron beam in a CRT monitor is turned off and allowed to
move back to the left side of the screen to start drawing the next line.

Figure 4.3: VGA Display
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The front porch is used to ensure that the electron beam has enough time to
move back to the left side of the screen before the start of the next line.

The back porch is a blanking interval that occurs after the horizontal sync
pulse. It is a period during which the electron beam is turned off again and al-
lowed to move to the right side of the screen to start drawing the next line. The
back porch is used to ensure that the electron beam has enough time to move to
the right side of the screen before the start of the next line.

The horizontal sync pulse is a short pulse that occurs during the horizontal
blanking interval. It is used to synchronize the display with the incoming video
signal. The horizontal sync pulse tells the display when to start drawing the next
line.

The vertical sync pulse is a short pulse that occurs during the vertical blanking
interval. It is used to synchronize the display with the incoming video signal. The
vertical sync pulse tells the display when to start drawing the next frame.

Thus, horizontal sync and vertical sync timing signals are produced by a VGA
controller circuit, which is also in charge of synchronising the supply of visual
data with the pixel clock.

The pixel clock specifies the duration for showing a single data pixel. The VS
signal sets the display’s refresh frequency or the rate at which all of the data on
the screen is regenerated. Based on observations, the timings for the sync pulse
width and the front and rear porch intervals (the moments before and after the
sync pulse when no information may be displayed) were determined [25].

The signal timings for a 640x480 monitor with a refresh rate of 60 +/-1Hz and
a 25 MHz pixel clock can be derived according to the standard timings [25].
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CHAPTER 5

Implementation of the Proposed method

Implementation of the proposed method is needed to validate and verify its effec-
tiveness in the hardware environment. All the filtering operations are carried out
on an image size of 200x200 pixels.

5.1 Hardware and Software Used

5.1.1 Hardware Required

Nexyx 4 DDR Artix-7 FPGA board is used. The Nexys 4 DDR board is a fully-
equipped development platform for digital circuit design. It features the latest
Artix-7 Field Programmable Gate Array (FPGA) from Xilinx, offering a large and
high-capacity FPGA (Xilinx part number XC7A100T-1CSG324C). The board in-
cludes ample external memory and various ports such as USB, Ethernet, and
more, making it suitable for a very wide range of projects from basic combina-
tional circuits to advanced embedded processors. With built-in peripherals like
an accelerometer, temperature sensor, MEMs digital microphone, speaker ampli-
fier, and multiple I/O devices, the Nexys4 DDR can be used for diverse designs
without requiring additional components. VGA Male to Female Connector cable
and a monitor to display the image is also required.

5.1.2 Software Required

Xilinx Vivado 2020.2 Software, Vivado provides a comprehensive set of tools
and features for FPGA and SoC development, including Register Transfer Level
(RTL) synthesis, high-level synthesis (HLS), Intellectual Property (IP) integration,
system-level integration, and debugging capabilities. It also supports various de-
sign entry methods like VHDL, Verilog, and SystemVerilog.
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Google Colab is a cloud-based platform provided by Google that allows users
to run Python code in a Jupyter Notebook environment. It was used to generate
COE file.
Language: Verilog HDL (Hardware description Language) and Python

5.2 Complete Architecture of Proposed Method

Complete architecture of the proposed method is shown in the figure 5.1. It con-
sists of various blocks such as:
VGA controller which will synchronize the horizontal sync pulse and vertical sync
pulse so that the image is displayed perfectly on the monitor screen via VGA ca-
ble without any difficulties.
Block RAM IP is used to take input images in the form of binary pixels from
the text COE file, which contains details of the width and depth of the image.
The COE file needs to be uploaded during the generation of the IP. Block RAM
also has an address counter that keeps the count of addresses at which our pixel
processing is being carried out. It will continue to check whether all the pixels
are processed or not, if not then it will increment the counter else it will end the
counter. Here image size is 200x200 so we have in total 400,000 pixels therefore
address counter will count to 39,999 and we will get the filtered output image.

Figure 5.1: Complete Architecture

Multiplexer is used here to select the filter that needs to be implemented. A
total of ten images can be displayed based on the selection line of the multiplexer.
We have used a 16x1 multiplexer with 16 selection lines and that has been later
customized with our requirements and the number of filters.
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After we get our input image pixels through COE file and filter that need to be im-
plemented as the output of the multiplexer, Multiply and accumulate procedure
starts as discussed in chapter 3.
Once the Multiply and Accumulate step is done, the output is displayed directly
on the monitor via VGA cable.

5.3 COE file generation

Using Python language and Google Colab software COE file is generated, it con-
sists of vectors of image pixels in binary format. The input image is RGB image

Figure 5.2: COE file Generation

and it can be in any format such as .jpg,.png,.bmp, etc. So, first, the image is con-
verted into gray scale image because for filtering operations, images need to be
converted into gray scale which was studied earlier in Chapter 2. Eight new im-
ages are generated which are shifted versions of the gray scale image such as left
shifted, right shifted, shifted upwards, shifted downwards,left-up shifted, left-
down shifted, right-up shifted and right-down shifted because we need to mul-
tiply this with the filter to get the output pixels. Now, this is then converted to
binary form and is concatenated in a COE file with Width for one vector being 72-
bit. After that to display the original image we also need the RGB pixel values and

40



which are of 24-bit, which is concatenated with the rest 72-bit pixels making the
COE file width of 96 bits. The depth of the COE file is 200x200 which is 400,000.

Figure 5.3: COE file

The example of COE file can be seen in figure 5.3. At first, memory is initialized
with the radix-2 because the binary format is being used and secondly, all the
vectors are initialized. Each pixel is of 8-bit as gray scale are from 0-255 pixel
values.

5.4 Filters Implementation

16x1 Mux is used so there will be 4 selection lines, so the following table 5.1 shows
the filter operation that will be performed based on the selection line. Nexys 4
DDR has 16 switches in total. Here 4 switches are interfaced with 4 selection lines
to get the different filtering output images.

Table 5.1: Filter Selection
Sr. No. Selection Fiters

1 0000 Original
2 0001 Gray
3 0010 Sobel
4 0011 Sobel x
5 0100 Sobel y
6 0101 Gaussian
7 0110 Prewitt x
8 0111 Prewitt y
9 1000 Laplacian 8

10 1001 Laplacian 4
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5.5 Block RAM Specifications

The size of block RAM for Nexys 4 DDR is 4,860 Kb. Block Memory Generator
can generate memory structures from 1 to 4096 bits wide and from 2 to 1048576
locations deep based on the size of BRAM. So width x depth needs to be such that
the size should not exceed the actual size of BRAM.

5.6 VGA Specifications

The Nexys 4 DDR board has 14 FPGA signals to create a VGA port with 4 bits-
per-color Red, Green and Blue. It has two pins for standard sync signals (HS –
Horizontal Sync, and VS – Vertical Sync). 4096 different colors can be displayed,
one for each unique 12-bit pattern. 12 bits are interfaced with the 12ins of VGA
cable. Figure 5.4 shows the VGA connector and FPGA interfacing pins [25].

Figure 5.4: VGA interfacing with FPGA

5.7 Flow of Proposed Method

The following Figures 5.5, 5.6 and 5.7 show the flow of filtering and displaying
the image on the monitor.
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Figure 5.5: Flow of Proposed Method (1): Filtering on 1st pixel

Figure 5.6: Flow of Proposed Method (2): Filtering on 2nd pixel

Figure 5.7: Flow of Proposed Method (3): Output Image displayed on monitor
after filtering process was completed
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5.8 Hardware Setup

Figure 5.8 shows the hardware setup of the proposed method. The FPGA board is
connected to Laptop through USB cable through which code is dumped on FPGA
and another connection throuh FPGA is to VGA port as seen in Figures 5.8 and
5.9.

Figure 5.8: Hardware Setup

Figure 5.9: FPGA board
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CHAPTER 6

Simulation and Hardware Results

Simulation and Hardware results are obtained for the proposed method. Simu-
lation results contain the output waveform generated by the final output image,
resources used and power consumption. Hardware results are the output image
in a visual form which is observed on the monitor.

6.1 Output Waveform of the Proposed Method

The waveform is the digital data of the output image. As studied earlier, digital
image is an image which contains pixel values. It can be seen from the output
waveform 6.1 that pixels are changing as per the clock and operations are being
performed based on the filter selected.
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Figure 6.1: Output Waveform
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6.2 FPGA Implementation Results

Results obtained from FPGA implementation and output images were observed
on a monitor with resolution of 640x480. From figure 6.2, it can be seen that nine
filters are used on ten different images to see the results. In figure 6.2, the first
image (1) is the original RGB image displayed on the monitor, image (2) is the
grey image converted from the original RGB image, image (3) is the sobel filter
applied on the gray image (2) we can see that it performs edge detection of the
gray image.

Figure 6.2: (1) Original (2)Gray (3)sobel (4)SobelX (5)SobelY (6)Gaussian blur
(7)Prewitt X (8)Prewitt Y (9)Laplacian 8 (10)Laplacian 4

Image (4) is sobel X filter, and it can be seen that the edges that are detected
are parallel to the y-axis because this filter is such that it transitions from dark to
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light on the right side and from light to dark on the left side.
Image (5) is sobel Y filter, and it can be seen that the edges that are detected

are parallel to the x-axis because this filter is such that it transitions from dark to
light at the bottom and from light to dark at the top.

Image (6) is the Gaussian blur filter which blurs the filter and helps to remove
the noise in image enhancement process.

Image (7) and image (8) are Prewitt edge detection filter, and it works almost
similar to the sobel X and sobel Y edge detection filters respectively. But the differ-
ence is that the sobel filter emphasizes more on the nearby neighbourhood pixels
by increasing the weight of absolute nearby pixels. In contrast, in Prewitt filter
emphasizes each neighbourhood pixels equally.

Image (9) and image (10) are laplacian edge detection filters that are symmet-
rical from all sides.

6.3 Utilized FPGA Hardware Resources

Below shown reports are the combined Utilization report of the method. As seen
in Figure 6.3. The Block RAM tile available is 135, and 106.5 is used out of that,
which is the maximum out of all the resources. Power consumption was maxi-
mum due to BRAM as shown in Figure 6.4.

Figure 6.3: Resource Utilization

Figure 6.4: Power Consumption
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Total dynamic power is 0.105, and static power is 0.102.All the resurces that
were utilized during this implementation is shown figure 6.5.

Figure 6.5: Utilization summary
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CHAPTER 7

Conclusions

Digital programming techniques were utilized to apply different filters in image
processing algorithms, which were then displayed on a monitor through VGA in-
terfacing. The experiments were conducted using the Nexys 4 DDR Artix-7 FPGA
board with an image size of 200x200.

In conclusion, this research demonstrates the potential of digital programming
and FPGA technology in implementing image processing algorithms. The results
suggest that it is possible to achieve effective image filtering and display outputs
through VGA interfacing.

These findings may have significant implications for the development of real-
time image processing applications in various fields such as medicine, security,
and robotics. Further research could explore the feasibility of scaling up the im-
age size and complexity to achieve even more advanced image processing capa-
bilities.
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