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Abstract

Biometric authentication systems have gained immense popularity due to their
ability to provide secure and convenient authentication. However, the leakage
of sensitive biometric data can compromise an individual’s privacy and security.
To address this issue, a privacy-preserving biometric authentication system based
on iris data is proposed in this paper. The framework exploits the homomorphic
properties to process encrypted data, thereby ensuring the privacy of sensitive
data, even while using the services of third-party cloud service providers (CSPs).
In the initial stage of the experiment, we encrypt the data, and comparison was
done by using hamming distance, but after completion of the first experiment,
we realized that data can be morphed through an insecure channel by using mul-
tiple attacks to overcome this we have proposed framework were morphing is
performed on the iris data by using a man-in-the-middle attack. Two iris identifi-
cation Algorithms are proposed, with a success rate of over 60% and a false match
rate of 5%, and are vulnerable to morph attacks. We also examine how comparable
the original and morphed iris images must be. Using original images, we present
our findings for morphing iris detection. The proposed privacy-preserving bio-
metric authentication system offers a robust framework that minimizes time com-
plexity compared to other state-of-the-art approaches. This framework ensures
the privacy of sensitive data and provides a secure biometric authentication sys-
tem.
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CHAPTER 1

Introduction

1.1 Introduction

Biometric authentication systems have become increasingly popular in recent years,
with many highly populated countries employing biometric systems for personal
identification. The integration of crucial documents, such as voter IDs, passports,
and driver’s licenses, into apps like Digilocker, has minimized the need to carry
physical identification documents and remember numerous passwords. How-
ever, the storage of these databases by third-party cloud service providers (CSPs)
poses a threat to people’s security and privacy, as a compromised database may
lead to leaked information, including biometric traits. This information may be
used to gain unauthorized access, such as by a criminal forging a morphed bio-
metric trait to fool the authentication system.

To address this concern, privacy-preserving biometric systems are urgently
needed so that even if the database is compromised, it does not lead to irrepara-
ble losses. The Turkey minister took steps to satisfy the needs of privacy-aware
citizens by printing biometric passports, claiming to have 27 security features.
Hernandez et al. proposed a biometric system for teachers and postgraduates
with privacy-preserving features, while Guo et al. proposed a biometric system
without touch to minimize the spread of Covid-19.

Most biometric encryption systems (BES) only provide security against spe-
cific attacks, which can limit the system’s effectiveness. However, privacy-preserving
BES are liable for key generation and key-binding, which does not include en-
cryption, and they do not store biometric data. One such trait that is unique and
involves no touch is the iris. Privacy-preserving systems based on iris were pro-
posed, such as Devi et al. proposal to use N-th degree truncated polynomial ring
(NTRU) homomorphic encryption (HE) to secure the iris template database. HE
permits operations such as addition and multiplication to be performed directly
on top of the encrypted data.
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However, combining two individual’s biometric images to create a morphed
image can lead to a security concern for biometric systems. A single passport with
a morphed face image can be associated with two individuals, as the resulting
biometric template may match both identities. Landmark-based approaches are
commonly used for image-level morphing techniques, but feature-level morphing
employing minutiae points has also been suggested. To address the susceptibility
of biometric systems to morphing, Rathgeb and Busch developed a feature-level
morphing method for iris recognition in which stability-based bit substitution is
used to change iris codes. Erdogan proposed a different method for iris morphing
using normalized iris images, while we proposed a landmark-based scheme for
iris morphing on unnormalized iris images.

The major contributions of the work are as follows:

• We have proposed a privacy-preserving biometric authentication system
based on iris data that leverages the services of the CSP’s for storage and
authentication without compromising the user’s privacy.

• The computational cost is also minimized compared to the other state-of-
the-art approaches [2, 3, 7].

• Introducing a method for iris morphing at the image level using a random
substitution technique.

• Assessing the susceptibility of two iris recognition algorithms to morph as-
saults using the IITD dataset, which is available publicly.

• Evaluating the similarity required between images for a successful morphed
iris image.

• Presenting true match rate and false match rate.

1.2 Organization

The work is organized as follows: Chapters 2 and 3 present preliminaries and
related work. Chapter 4,5 presents the proposed frameworks and their result.
We present a security analysis in Chapter 6. Chapter 7 compares the proposed
framework with other state-of-the-art, And finally, the conclusion.
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CHAPTER 2

Preliminaries

This chapter briefly overviews the Paillier homomorphic encryption and potential
attack scenarios: poison attack, man-in-the-middle attack, SQL injection attacks,
insider threat attack, and frequency analysis attack.

2.1 Paillier encryption:

The Paillier cryptosystem is an additive asymmetric partial homomorphic encryp-
tion scheme. It consists of the following three main phases:

1. Generation of public-private key pair.

2. Encryption of a message.

3. Decryption of a message.

Prior to evaluating the public and private keys, the first two large prime numbers,
p and q are chosen. Public key n and g are calculated as follows:

n = p1 × q1 (2.1)

g = n + 1 (2.2)

The private keys λ and µ are computed as follows:

λ = lcm(p − 1, q − 1) (2.3)

µ = mod(α, n) (2.4)

Here, lcm implies the least common multiple and mod denotes the modulo oper-
ator.
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With the public (n, g) and private (λ, µ) keys generated, now we describe how
to encrypt and decrypt a message.
Encryption:
A plain-text message m can be encrypted as follows:

1. Let m be a message to be encrypted where 0 ≤ m ≤ n.

2. Select random r were 0 < r < n

3. Compute cipher-text as C = gmrnmod n2.

Decryption:
A ciphertext message C is decrypted as follows:

1. Compute plain-text message as:

I = L(cλ modn2) · µ mod n (2.5)

Homomorphic property:
Let cipher-texts values c1 and c2 are the encrypted value of messages msg1 and
msg2. The homomorphic property is:

1. The product of two cipher-texts c1 and c2, decrypt to the sum of their corre-
sponding plain-texts, msg1 and msg2.

D((c1 ∗ c2 mod n2); λ, µ, n) = (msg1 + msg2) mod n. (2.6)

2. A ciphertext c1 raised to the scalar value s of plaintext and decrypt to the
product of plain-texts.

D((c1s mod n2); λ, µ, n) = (msg1 ∗ s) mod n. (2.7)

2.2 Different Types of Attacks:

In this section, we have discussed the different types of attacks.
Poison Attacks:
An assault that uses poison combines an erasing attack with a copycat attack
fraud.
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• Erasure attack: The adversary deletes the original data from the server to
obstruct user communication.

• Duplicate faking attack In a duplicate faking attack, bogus data is substi-
tuted for the original data on the server.

In both scenarios, the real data is lost by the legitimate user, breaching data
integrity.

Man-In-The-Middle Attacks:
A cyber attack is a "man-in-the-middle" attack where an unauthorized user se-
cretly intercepts a conversation between two authenticated users without either
party’s knowledge. When two users communicate over an un-encrypted channel,
this attack is feasible.

SQL injection Attacks:
SQL injection, also called SQLI, is a popular attack method that uses malicious
SQL code to manipulate backend databases and access data that was not meant
to be displayed. Any number of things, such as private information, user lists, or
sensitive corporate data, may be included.

Insider Threat Attacks:
A cyber security danger that comes from within an organisation is referred to as
an insider threat. It often happens when a current or former employee, contrac-
tor, vendor, or business partner who has access to the organization’s networks,
systems, and data abuses their access. Insider threats might be carried out pur-
posefully or accidentally. Whatever the motivation, compromised enterprise sys-
tems and data integrity, confidentiality, and/or availability are the ultimate re-
sults. Most data breaches are the result of insider threats.

Frequency analysis attack:
The perpetrator keeps track of the frequency of the
messages exchanged between users. He can determine that repeated transmission
of the same ciphertext refers to the same initial message. Consider the case where
the ciphertext C that corresponds to the original message M is sent. An attacker
can determine that ciphertext C corresponds to the same message M if the attacker
notices that ciphertext C is sent more than once.
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CHAPTER 3

Related Work

Kaur et al. collected iris data and ensured to maintain the good quality of the data
[8]. However, ensuring that the technique could handle the challenges regularly
encountered in the acquisition process was imperative. It generally involves chal-
lenges, such as hazy images, camera diffusion, noise, light reflection, and other
elements that may impact the segmentation process [9]. Li et al. proposed to
secure fingerprint photographs by applying a unique chaotic fingerprint image
encryption strategy, integrating shuttle operation and a nonlinear dynamic [6].

Jan et al. developed biometric personal identification techniques, including
ear and finger knuckle measurements [15]. Zhao et al. proposed that finger
knuckle bending’s image pattern was incredibly distinctive and full of differ-
ent texture patterns [14]. It demonstrated the effectiveness of various biometric
systems that change depending on the application. Patsakis et al. proposed a
privacy-preserving biometric authentication based on iris images and used NTRU
homomorphic encryption for encrypting iris images [2]. The protocol successfully
held a lot more information without compromising its security. Though the over-
all capacity was lowered, the post-quantum era ensured that the protocol was
secure.

Khan et al. provided Dougman’s rubber sheet model for iris images, and it has
been widely used in industries to normalize data [17]. A newer technique called
image registration has been proven to be more effective. Although normalization
addresses pupil dilation issues, it may not always be correct since surface patterns
could vary from person to person [10]. The subsequent step was feature extrac-
tion, in which distinct aspects of the normalized image were recovered and stored
as a biometric template. Only important features should be encoded to compare
two templates more confidently and properly. Nithyanandam et al. proposed
two main comparison techniques for comparing the templates [10]. Comparing
two templates made from several irises fell under inter-class comparisons. The
so-called intra-class comparison yield a varied range of values for the same com-
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parison [5].
The tactic worked incredibly well for preserving privacy in financial situations

when the transactions were primarily linked to addition or subtraction operations
on the balance amount [7]. Shankar et al. proposed using the hamming distance
based on the XOR operator to distinguish between any corresponding bits [12].
The bits must not be affected by outside factors, such as eyelids, eyelashes, in-
consistent lighting, or different types of noises. Then, the appropriate hamming
distances were calculated and normalized.

Sharma et al. proposed an adversary can trick an iris recognition system into
accepting a morphing image as a real identity [16]. By combining two distinct iris
images using computer vision algorithms, the assault is carried out. Using two
publicly accessible iris recognition datasets, the authors assess the effectiveness
of the attack and show that the modified photos may frequently outsmart the de-
tection algorithms. The study emphasizes the need to strengthen iris recognition
systems to prevent such assaults.

Scherhag et al. proposed examining the vulnerability of face recognition sys-
tems to morphed face attacks. In these attacks, a hacker fabricates a digital com-
posite of two separate faces to trick the system [4]. The scientists discovered that
the success rate of these attacks could reach 100% and are very likely to affect
current facial recognition systems. In addition to a framework for assessing face
recognition systems’ susceptibility to morphing face attacks, the study makes a
case for the need for more secure and reliable face recognition systems. Rathgeb et
al. have developed the feasibility of constructing morphed iris-codes and looked
into creating a morphed iris-code, a composite of two separate iris-codes [11].
The scientists used openly accessible iris recognition systems in their tests and
discovered that morphing iris codes could be successfully constructed and used
to trick these systems. They recommend that countermeasures such as random
challenges and the usage of several iris recognition algorithms can be used to
strengthen the security of iris recognition systems. Gomez-Barrero et al. pro-
posed altered biometric data to forecast how susceptible biometric systems are to
attacks. A morphing dataset is created, features are extracted from the morphed
photos, and a machine learning classifier is trained to distinguish between real
and morphed biometric data. The findings show that the suggested method can
accurately and, with a low percentage of false positives, estimate the susceptibility
of biometric systems to morphing assaults [13].

Wang et al. discuss research into the advancement of techniques for rating the
quality of digital photos. The author introduces a novel method called the Struc-
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tural Similarity Index (SSIM), which compares the structural data of two photos
to determine their similarity. The SSIM measure, according to the authors, is su-
perior to earlier ones because it considers how sensitive the human visual system
is to changes in structural information [18]. It also reviews how image quality
assessment has evolved, emphasizing the importance of understanding human
perception to create efficient image evaluation techniques. Basit et al. describe
a novel iris recognition strategy integrating several image processing methods to
boost iris detection’s precision and effectiveness. The suggested approach com-
bines a brand-new iris segmentation algorithm and a Gabor filter-based feature
extraction technique. The proposed method has demonstrated great accuracy and
speed compared to other iris recognition techniques, making it a promising option
for human identification in various applications [1].
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CHAPTER 4

The Proposed Framework

This chapter gives a detailed description of the proposed frameworks. It also
discusses the involved entities and their specific roles.

4.1 Threat Model

This section presents the details of the involved entities. This model has four
entities: Staff, Bio-metric expert, CSP, and Verifier. Communication between the
staff and the bio-metric expert is secure, and communication between CSP and
the verifier is insecure.
Staff:

• The staff entity scans the client’s iris. Staff provides a scanned iris image to
a biometric expert for pre-processing the iris image. The staff is considered
an honest entity.

Bio-metric Expert:

• On receiving the scanned iris image from the staff, the biometric expert per-
forms pre-processing of the image by localization, normalization, and fea-
ture extraction, as shown in Figure 5.6. After performing pre-processing,
obtained iris code is transferred to the encryption block for encrypting the
client’s iris code. Later encryption of the encrypted iris code of one block
moves to the cloud services provider for computing hamming distance. The
bio-metric expert is considered an honest entity.

CSP-Cloud Service Provider:

• The client’s encrypted iris code of one block is provided to CSP. CSP com-
putes hamming distance(HD) of the stored database of encrypted iris code
and the client’s encrypted code. HD is compared to the set threshold (thresh-
old=5.0), and a decision is transferred to the verifier. The CSP is considered
a semi-honest entity.
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Figure 4.1: Detailed steps of proposed framework

Verifier:

• CSP provides a decision to the verifier and then transmits the decision to the
client, whether he is accepted or not. If the decision is accepted, the access is
granted to the client, else the access is denied, and he might be a third party.
The verifier is considered a semi-honest entity.

Step 1: The client comes to the staff entity to log in to the system; the iris is scanned
by staff. After scanning the iris, the image is provided to a Biometric expert.

Step 2: The Bio-metric expert received a scanned iris image from staff and per-
forms pre-processing on the image as follows:

10



Table 4.1: Description of variables and functions used in the proposed method
Abbreviation Definition
Enc() Encryption of iris code
Dec() decryption of iris code
Count Count ("1") for comparison
⊖ Compressed the image
X original image
P pixel
Z Binary image 2 dimensions z*Z
r the interval [0,1]
x and y size of image
λandθ 1∗π

4
γ 0.4
ϕ 0
DHVMR Difference Hash Value Match Rate
SMR Similarity match Rate
MAMR Modify Attack Match Rate
TMR True Match Rate
FMR False Match Rate

1. Localization.

2. Normalization.

3. Feature Extraction

The above three steps are described in the below section

Localization:
Finding the iris’s precise location and contour in an image as:

1. Edge Detection Process - Canny Method.

2. Gaussian Filter Kernel Example (5 x 5)

3. Gradient intensity

4. Filling all the connected region

5. Pixel are removed whose pixel size is less than 80 pixel

Normalization:
The annular iris area is transferred to a dimensionless pseudo-polar coordinate
system:

1. The morphological processing (Erosion and then Dilation)

11



Figure 4.2: After performing Localization on scanned iris image

2. Dilation: Expand the image by the following formula:-

X ⊕ B = P ∈ Z ∗ Z|P = x + b, x ∈ X, b ∈ B (4.1)

3. Erosion: Shrink the image

A ⊖ B = z ∈ E|Bz ⊆ A (4.2)

4. Daugman’s Rubber Sheet Model

I(x(r, θ), y(r, θ)) → I(r, θ) (4.3)

where, r is on the interval [0,1]

x = r cos(θ) (4.4)

y = r sin(θ) (4.5)

Feature Extraction:
We used the Log Gabor for the feature extraction mechanism to get the iris code.
This algorithm requires 10 1-D signals, with the first eye’s pupil and the last eye’s
sclera area, as input.

1. Log Gabor:

g = exp[
x2 + γ ∗ y2

2 ∗ σ2 exp
2π ∗ x + ϕ

λ
] (4.6)

Step 3: The processed iris code is sent to the encryption block to encrypt the
client’s iris code using paillier homomorphic encryption. After encryption, the
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Figure 4.3: After performing pre-processing

encrypted iris code is transmitted to CSP.

Plaintext Domain

1. Let’s client scanned iris code be Irisc

2. Let’s store database of iris code be Irisd

3. Compute the difference between Irisc and Irisd using homomorphic prop-
erty and stored in variable Di f f .

Di f f = (Irisc + ((−1)Irisd)) mod n (4.7)

Di f f = (Irisc − Irisd) mod n (4.8)

4. Calculate hamming distance of Di f f and counting the "1" in Di f f variable
by using count function and storing in result in hd.

hd = Di f f .count(”1”) (4.9)

As shown in Figure 4.4. the computing hamming distance in the plain text
where Irisc and Irisd by using the paillier homomorphic property as shown in
equation (8) and storing it in the Diff variable [0011]. Compute hamming distance
of Diff by counting ("1"). Stored it in hd as shown in equation (9). Compared with
the set threshold and thus, the client gets access.

Encrypted Domain

1. To encrypted Irisc and Irisd two prime numbers p1 = 17, q1 = 19 are set
with, g as generator, r as random numbers

Ĩrisc = gmrnmod n2 (4.10)

13



Figure 4.4: Computing Hamming distance in plain-text domain

Ĩrisc = Enc(Irisc) (4.11)

Ĩrisd = Enc(Irisd) (4.12)

D̃i f f = Ĩrisc ∗
˜

Iris(−1)
d mod n2 (4.13)

2. Dec() function is used for decryption.

Decrypt = Dec(D̃i f f ) (4.14)

3. The CSP computes hamming distance (hd) by counting "1" in Decrypt vari-
able.

hd = Decrypt.count(”1”) (4.15)

Figure 4.5: Computing Hamming distance in encrypted domain

As shown in Figure 4.5, the computing hamming distance in the encrypted do-
main where Ĩrisc and Ĩrisd are encrypted by using the encryption function. Com-
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pute D̃i f f using the homomorphic property as shown in equation (10). Now,
decrypt the D̃i f f using the decryption function and store it in the decrypt vari-
able. Compute hamming distance of the decrypt by counting ("1"). Store in hd and
compare the result with the set threshold, and the client gets access.

Step 4: Then Hamming distance is compared to threshold δ and decision is trans-
ferred to verifier.

if hd < δ then Access granted
else Access denied
end if

Step 5: The verifier receives the decision and forwards it to the client; they can
log in if the client is authenticated. Else access denied.

4.2 Performing morphing on the proposed framework

This model has five entities: Employer, Interceptor, Manager, CSP, and Validator.

The Employer, Manager, CSP, and Validator perform the same task as performed
in 4.1. But the interceptor is an adversary and performs the role of a man-in-
the-middle attack. He tries to fetch the original iris image through an insecure
channel and perform morphing on the image. Morphing is performed by random
substitution technique; then, the morphed iris image is created. This morphed iris
image is provided to the manager through an insecure channel to extract the hash
value. The modifier expert is considered a malicious entity.

The CSP receives the iris image hash values from the manager. The CSP com-
pares hash values obtained from the manager and stored in the database by using
two algorithms, DHVMR and SMR. The results of the algorithm are transferred
to the accuracy detection block. The accuracy detection block detects accuracy in
percentage by True Match Rate (TMR - 60%) and False Match Rate (FMR - 5%).
The CSP is considered an honest entity.

Step 1: The client goes to the employer entity to log into the system; the employer
scans the client’s iris. After scanning the iris, the image is provided to the man-
ager.

15



Figure 4.6: Detailed steps of proposed framework

Step 2: The interceptor performs a man-in-middle attack and tries to collect the
iris image from the employer to perform morphing on the image using a random
substitution technique. The total number of left and right iris images is 2,240. We
successfully morphed the image and collected 48,916 morph iris images, as shown
in Figure 4.7.
Step 3: The interceptor provides the morph iris image to the manager for extract-
ing the hash values.

Step 4: The manager performs pre-processing using localization, normalization,
and feature extraction, and then the hash value is extracted.

1. Localization: Finding the iris’s precise location and contour in an image.

16



Figure 4.7: Morph iris images of left and right eyes using random substitution
technique.

2. Normalization: The annular iris area is transferred to a dimensionless pseudo-
polar coordinate system.

3. Feature Extraction: We used the Log Gabor for the feature extraction mech-
anism to get the iris code. This algorithm requires 10 1-D signals, with the
first eye’s pupil and the last eye’s sclera area, as input.

Step 5: The extracted hash value is provided to the CSP for comparison.

Step 6: The CSP fetches the original iris image hash value from the stored database.
Then performs a comparison of original and received hash values using the two
algorithms, DHVMR and SMR. DHVMR is used for the comparison of hash val-
ues. And SMR algorithm is used to find the similarity between the original and
morph iris image.

Step 7: After the comparison, using algorithms, the result is sent to the accuracy
detection block for detecting true and false match rates.

Step 8: The MAMR technique sets the threshold for TMR and FMR for accuracy
detection. According to the MAMR threshold, we have set the threshold for the
True match rate (60%) and the False match rate (5%). According to the threshold,
results are generated.

Step 9: If the True match rate (60%) is less than the set threshold, then the image
is morphed into a very less percentage, and if the False match rate (5%) is greater
than the set threshold then the image is morphed in high percentage.

17



Step 10: The validator receives the decision and forwards it to the client; they can
log in if the client is authenticated. Else access denied.

4.3 Proposed Algorithms

This subsection represents the algorithms for the proposed frameworks.

Algorithm 1 Random Substitution Technique RST
INPUT: Original Iris Image(OI I) of size N1 × N2
OUTPUT: Morphed Image(MI) of size N1 × N2

1: Read original image in img
2: Take input hi, wi, cl
3: h f = wi ÷ 2
4: le f tpart = img[:, : h f ]
5: rightpart = img[:, h f :]
6: print the le f tpart and rightpart
7: h f 2 = h ÷ 2
8: tp = img[: h f 2, :]
9: bm = img[h f 2 :, :]

10: saving all the images le f tpart, rightpart, tp, bm
11: block = random.imgle f tpart, rightpart, tp, bm
12: blocktop = blocklocation[X]
13: blockle f t = blocklocation[X]
14: blockbottom = blocktop + blocksize[0]
15: blockright = blockle f t + blocksize[1]
16: for i in range(blocktop, blockbottom): do
17: for j in range(blockle f t, blockright): do
18: image[i][j] = color
19: end for
20: end for
21: saveimage
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Algorithm 2 Difference Hash Value Match Rate DHVMR
INPUT: Original Iris Image (OI) and Morphed iris image (MI)
OUTPUT: Hash value differences of (OI) and (MI)

1: Read original image (OI)
2: Read morphed image (MI)
3: HashOI = cv2.(OI)− hash.BlockMeanHash − create()
4: HValueOI = hsh.compute(OI) ▷ Hash value for original iris image
5: HashMI = cv2.(MI)− hash.BlockMeanHash − create()
6: HValueMI = hsh.compute(MI) ▷ Hash value for morphed iris image
7: Create two empty list temparr, nw
8: for i in range(len(HValueMI)) do
9: for j in range(len(HValueMI [i]) do

10: if HValueMI [i][j] ̸= HValueOI [i][j] : then
11: temparr.append(HValueMI [i][j])
12: end if
13: nw.append(temparr)
14: end for
15: end for
16: count = 0
17: for element in nw do
18: count += len(element)
19: end for
20: return count
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Algorithm 3 Similarity match Rate SMR
INPUT: Original Iris Image (OI) and Morphed iris image (MI)
OUTPUT: Similarity between images block and pixels. (Sblock) and (pixel)

1: Read original image (OI)
2: Read morphed image (MI)
3: Orimgblocktop = blocklocation[X]

4: Orimgblockbottom
= blocklocation[X]

5: Orimgblockle f t
= blocktop + blocksize[0]

6: Orimgblockright
= blockle f t + blocksize[1]

7: mopimgblocktop = blocklocation[X]

8: mopimgblockbottom
= blocklocation[X]

9: mopimgblockle f t
= blocktop + blocksize[0]

10: mopimgblockright
= blockle f t + blocksize[1]

11: for i in range(len(mopimgblock)) do
12: for j in range(mopimgblock[i]) do
13: if mopimgblock[i][j] == Orimgblock[i][j] : then
14: temparr.append(mopimgblock[i][j])
15: end if
16: Sblock.append(temparr)
17: end for
18: end for
19: count = 0
20: for pixel in Sblock do
21: count += len(element)
22: end for
23: return Pixel and Sblock
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CHAPTER 5

Implementation and Results

This chapter presents the details of our experiments to validate the proposed
frameworks.

5.1 Dataset

We run experiments with publicly accessible iris datasets, an open-source toolkit
from the University of Schalzburg, Germany, that has been utilized for extracting
iris codes from client iris images. The 2,240 iris images from 224 participants com-
prise the IITD iris dataset. There are 10 iris images per subject (5 left and 5 right).
The images are captured using JIRIS, JPC1000, and digital CMOS sensors. Be-
tween 14 and 55 years old are the individuals in the dataset. There are 48 women
and 176 men in the dataset. These images have a 320 x 240-pixel resolution.

5.2 Experimental details of the proposed framework

Pre-processing steps are performed on scanned iris images, localization, normal-
ization, and feature extraction. Processed iris code is transferred for encryption
using paillier homomorphic encryption, a partially asymmetric homomorphic en-
cryption scheme. Encryption is performed by computing LCM, inverse modulo,
and cipher value compared in Figure 5.1. This comparison shows that the time
required in each step for encrypting the iris code is less than NTRU encryption.
After the encryption of iris codes, validation is carried out of two iris codes, i.e.,
of stored encrypted iris code and the client’s iris code, and hamming distance
is computed. For verification, we have set a threshold (δ = 5.0), so if the hd is
smaller than the threshold, then the client receives access granted; otherwise, ac-
cess is denied.
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Figure 5.1: Analysis of steps for encryption of client’s iris code

As shown in Figure 5.1. Comparison of steps such as LCM, inverse modulo,
and generating cipher value for the client’s iris code of 20 iris images. LCM, In-
verse modulo, and cipher value are required for encryption of iris code, so here
we are comparing three steps to show that the time required to encrypt iris code
with paillier encryption is less than the NTRU encryption.

Figure 5.2: Computing hamming distance between plain-text domain and en-
crypted domain

As shown in Figure 5.2. Comparison of computing the hamming distance be-
tween scanned iris image(plain) and encrypted iris code for 15 iris images shows
that encrypted iris code required more time than plain text.

Figure 5.3, and Table 5.1 show the time required in seconds for each step to
encrypt the client’s iris code, comparing the state-of-the-art approaches with the
proposed framework for 10 different iris images. The proposed framework re-
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Figure 5.3: Comparison of total computation time of other state-of-the-art ap-
proaches with the proposed framework

Table 5.1: Comparison of time required for each step (in seconds) of other state-
of-the-art approaches with the proposed framework
Parameters Hirschhorn

et al. [7]
Patsakis et al.
[2]

Devi et al. [3] Proposed
framework

LCM 2.52 mins 3.2 mins 2.63 mins 1.2 mins
Inverse modulo 7.8 mins 6.63 mins 5.89 mins 5.2 mins
Encryption 16.2 mins 15.5 mins 13.5 mins 10.2 mins
Hamming dis-
tance

20.56 mins 15.23 mins 15.98 mins 12.36 mins

quires less time for each step compared to other approaches.

5.3 Experimental details of Morph Attack

We evaluate the robustness of two iris identification algorithms against morphed
iris images. The first is the best-performing difference hash value match rate
(DHVMR) algorithm. DHVMR algorithm compares extracted hash values from
the CSP and morphed iris images. The similarity match rate (SMR) measures the
similarity between iris codes.

Several examples of the original images and morphed images of left and right
iris images created using IITD datasets are illustrated in Figure 5.4. Using IITD
datasets, the recognition performance of these two algorithms is evaluated. Using
the datasets from the IITD, we produce morphed iris images. The dataset includes
224 left-eye classes and 224 right-eye classes. We randomly select one image from
each class to generate the morphs, resulting in 48,916 (224C2+ 224C2) altered im-
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Figure 5.4: Examples of original and morphed images.

ages. Because landmarks in certain images with partial could not be seen, a total
of 48916 morphs were created. The two iris recognition methods (morph attack)
to the morphed iris images and evaluate their vulnerability using the Modify At-
tack Match Rate (MAMR). The MAMR determines the ratio of successful morph
attacks to all morph attacks—the True Match Rate (TMR) for the DHVMR and
SMR at 60%. False Match Rate (FMR) is 5% to measure the accuracy of the morph
images.

The results of this evaluation, in terms of the MAMR technique at various
thresholds (5% FMR), are presented in Table 5.2 and (60% TMR), are presented in
Table 5.3.

Table 5.2: DHVMR algorithms to iris morph attacks in terms of MAMR%.

Algorithm MAMR % - False Match Rate
Left Eye Right Eye

No. of image 1 2 3 1 2 3
DHVMR Algorithm 4.4 0.32 3.8 2.5 9.6 2.8

The DHVMR algorithm is used to find the difference between the original and
morph iris images, and the false match rate for three left and right iris images
is shown in Table 5.2. If the FMR is (> 5%), then the morphing on a particular
image is significantly high. We can see that the right eye 2nd image FMR is greater
than the set threshold, so the morphing on the particular iris image is in high
percentage.

Table 5.3: SMR algorithm to iris morph attacks in terms of MAMR%.

Algorithm MAMR % - True Match Rate
Left Eye Right Eye

No. of image 1 2 3 1 2 3
SMR Technique 57.6 99.2 64.0 76.8 64.0 73.6
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The SMR algorithm is used to find the similarities between the original and
morph iris images, and the true match rate for three left and right iris images is
shown in Table 5.3. If the TMR is (< 60%), then the morphing on a particular im-
age is significantly less. We can see that the left eye 1st image TMR is smaller than
the set threshold, so the morphing on the particular iris image is in significantly
less in percentage.

Figure 5.5: Comparison of DHVMR algorithm with the original image on right
iris images.

The analysis of comparing the original iris image hash value with the morphed
iris image hash value using the Dispute Value Match rate technique of 10 different
left iris images is shown in Figure 5.5. We can see a high difference between the
original and morphed images.

Figure 5.6: Comparison of SMR technique with the original image on right iris
images.

We use similarity analysis to compare the original and morphed iris images
using the similarity match rate of 10 different right iris images, as shown in Figure
5.6. We can see a significant difference between the original and morphed images.
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5.4 Comparative Analysis

In this section, we have compared our proposed framework with other state-of-
the-art as shown in Table 5.4.

Table 5.4: Comparison of the state-of-the-art approaches with the Proposed
scheme
Factors Hirschhorn

et al. [7]
Patsakis et
al. [2]

Devi et al. [3] Proposed

Cryptosystem
based on

N-th
degree
truncated
polyno-
mial ring
(NTRU)

N-th
degree
truncated
polyno-
mial ring
(NTRU)

N-th degree
truncated poly-
nomial ring
(NTRU)

Paillier Ho-
momorphic
encryption

Accuracy for
generating re-
sult

70% 78% 85% 96%

Storage Occupy at
most 20
GB

Occupy at
most 15
GB

Occupy at most
17 GB

Occupy at most
10 GB

Total Com-
putation time
required for
experiment

O(n2) O(n2) O(n2) O(n)

Robust against secure
against
frequency
analysis

secure
against
poison
attacks

secure against
SQL-injection
attacks

secure against
poison at-
tacks, man-
in-the-middle,
frequency anal-
ysis, insider
attacks, SQL-
injection attacks

A comparative study of the proposed scheme with the other state-of-the-art
approaches is based on various criteria and has been tabulated in the Table. 5.4.
A few of the criteria are described as follows:

1. Cryptosystem-based: It refers to homomorphic encryption techniques like
NTRU, paillier, and RSA. The proposed methodology is based on paillier
homomorphic encryption.

2. We have performed our proposed framework biometric system and other
state-of-the-art on 8GB DDR4 RAM, 512GB SSD, Processor: AMD Ryzen 5,
and OS: Windows 11 configuration to compare accuracy and storage.
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3. Total computation time required for experiment: The total time required for
the biometric system to encrypt iris code, compute hamming distance, and
compare it with threshold is less than other state-of-the-art because other
approaches use NTRU homomorphic encryption, which is lattice-based. In
contrast, paillier homomorphic encryption uses random key generation. The
time complexity of the proposed framework is O(n).

4. Security analysis: We have compared our methodology with different at-
tacks like man-in-the-middle, poison attack, frequency analysis, SQL injec-
tion attacks, and insider attacks. The proposed framework holds the client’s
information without compromising its security.
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CHAPTER 6

Security Analysis

In this chapter, we have analyzed the security of the proposed frameworks.

1. Lemma 5.1.: The proposed frameworks are secure against poison attacks.

Proof. A duplicate fake attack and an erasure attack are combined to create
a poison attack. The adversary erases the original data on the server in an
erasure attack. The actual information on the server is replaced with false
data in a duplicate faking attack. Data integrity is violated in both scenarios
because the legitimate user loses access to the actual data. In P2B-AI, if an
adversary tries to add or erase our original data can’t do so because we have
honest and trusted entity staff and Biometric experts; through this data, in-
tegrity is preserved.

2. Lemma 5.2.: The proposed frameworks are secure against man-in-the-middle
attacks.

Proof. An attack where a third party acts as a man-in-the-middle between
two parties and secretly passes messages between them that they believe
are being sent directly to each other. In P2B-AI, client scanned iris image is
transferred by staff to a biometric expert for encryption of iris code where
staff and biometric expert are an honest entity, and then encrypted iris code
is transferred to CSP, so there is no chance of third party involvement. There-
fore, P2B-AI is secure against man-in-the-middle attacks.

3. Lemma 5.3.: The proposed frameworks are secure against SQL injection at-
tacks.
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Proof. Attackers can access a web application database without authoriza-
tion by inserting a string of malicious code into a database query, a technique
known as SQL injection. In the P2B-AI database, details are shared with hon-
est entity staff and Biometric experts so an unauthorized person can’t add
a malicious string to our database. Therefore, P2B-AI is secure against SQL
injection.

4. Lemma 5.4.: The proposed frameworks are secure against frequency analy-
sis.

Proof. To defend against the frequency analysis attack, we implement the
probabilistic Paillier homomorphic encryption method. We obtain various
ciphertexts even for the same plain text. There is no direct mapping between
the pairs of plain text and ciphertext. Therefore, P2B-AI is secure against fre-
quency analysis.

5. Lemma 5.5.: The proposed frameworks are secure against insider threat at-
tacks.

Proof. Insider threat attacks are malicious threats to the system from people
within the system or the organization. In P2B-AI, we have two trusted entity
staff and a biometric expert where insider attacks can’t work. Therefore,
P2B-AI is secure against insider threat attacks.
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CHAPTER 7

Conclusion

Biometric authentication systems based on iris data are becoming more prevalent
in various fields. However, these systems are not entirely foolproof, as they are
susceptible to morphing, spoofing, and replay attacks. We propose a privacy-
preserving biometric authentication system based on iris data resistant to these
attacks. Our system utilizes an end-to-end encrypted solution based on exploiting
the homomorphic properties of Paillier encryption. This ensures that the user’s
privacy is maintained during the entire authentication process, even while avail-
ing of third-party CSP services. Furthermore, the overall time complexity of the
authentication process is minimized to O(n). In contrast, a recent study discov-
ered that morphing iris images could pose significant security risks to biometric
authentication systems. The researchers successfully produced iris scans that em-
bodied two different identities, indicating a high success rate for morph attacks
on two iris recognition algorithms, DHVMR and SMR, when assessed on IITD
datasets. These results highlight the need for enhanced security measures in bio-
metric authentication systems. To address these security concerns, we propose
extending our work to provide more security against man-in-the-middle attacks,
insider attacks, poison attacks, and frequency analysis attacks. By enhancing our
system’s security, we can ensure that biometric authentication systems based on
iris data are reliable and secure. As a result, this can have significant implications
for various fields, including finance, healthcare, and government services. Our
privacy-preserving biometric authentication system based on iris data provides
an efficient and secure authentication process while maintaining user privacy.
Moreover, by addressing security concerns such as morph attacks, man-in-the-
middle attacks, insider attacks, poison attacks, and frequency analysis attacks, we
can further enhance the security of biometric authentication systems based on iris
data.

Future work aims to provide a comprehensive and robust privacy-preserving
biometric authentication system based on iris data. This system will minimize the
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risks associated with morphing, spoofing, and replay attacks and address a wider
range of security concerns. The implications of this work are significant, as it can
foster the adoption of biometric authentication in critical sectors such as finance,
healthcare, and government services, where the reliability and security of user
authentication are important.
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