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Abstract

Amongst various biometrics, voice is the most natural and convenient way of the
communication for human-machine interaction. To that effect, the use of Auto-
matic Speaker Verification (ASV) for authentication is increasing in various sen-
sitive applications, which create a chance for fraudulent attack as attackers can
breach the authentication by using various spoofing attacks. To alleviate this is-
sue, we can either develop an ASV system, which is inherently protected from
the spoofing attacks or develop a separate countermeasure (CM) system that can
assist the ASV system in tandem against the spoofing attacks. The earlier ap-
proaches have trade-off between performance of the ASV system and robust-
ness against spoofing attacks. Hence, it would be advantageous to implement
the separate Spoof Speech Detection (SSD) system, and hence majority research
attempts are focusing upon the later approach. To that effect, various interna-
tional challenge campaigns were organized during INTERSPEECH conferences,
such as ASVSpoof 2015, ASVSpoof 2017, and ASVSpoof 2019, which provides
standard datasets, protocol, and evaluation metrics. This thesis focuses on devel-
oping the handcrafted feature sets for CM systems against the spoofing attacks,
namely, Speech Synthesis (SS), Voice Conversion (VC), and replay. These feature
sets are either developed by applying the subband filtering on the speech signals
or derived from the spectrogram representations.

In this thesis work, various subband filtering-based feature sets are developed,
namely, Enhanced Teager Energy-Based Cepstral Coefficients (ETECC), Cross-
Teager Energy Cepstral Coefficients (CTECC), and Energy Separation Algorithm-
based Instantaneous Frequency estimation for Cochlear Cepstral Features (CFCCIF-
ESA). These feature sets are either modification in Teager Energy Operator (TEO)-
based representations or utilization of Energy Separation Algorithm (ESA) for In-
stantaneous Frequency (IF) estimation. The ETECC feature set is developed by
accurately estimating the energies in high frequency regions using compensation
of the signal mass. In Teager Energy-Based Cepstral Coefficients (TECC), TEO is
utilized to estimate the energy, which considers the approximation sin(ω) ≈ ω,
which is applicable for low frequencies. However, the discriminative information

xi



for the replay detection is prominently present in the mid and high frequency re-
gions. Hence, ETECC feature set is proposed to obtain the efficient representation
for SSD task by accurately estimating the energies at high frequency regions. Fur-
thermore, signal processing-based approach is presented for replay SSD in Voice
Assistants (VAs). It utilizes the Cross-Teager Energy Operator (CTEO) for extract-
ing the acoustic cues from replay speech. CTEO gives the interactions among
the multi-channel signal by estimating the cross-Teager energies between signals.
To that effect, it is necessary to efficiently represent the acoustic cues for replay
spoofs and hence, maximum cross-Teager energies among the subband filtered
multi-channel signal is utilized for feature representation. Thus, the rationale be-
hind optimal channel selection is to find the most noisy (distorted) transmission
channel. The cepstral features extracted using CTEO are referred as Cross-Teager
Energy Cepstral Coefficients (CTECCmax). The experiments are performed using
Realistic Replay Attack Microphone Array Speech Corpus (ReMASC), which is spe-
cially designed for the replay SSD in VAs. The proposed CTECCmax feature set
performs better than other state-of-the-art feature sets. The proposed CFCCIF-
ESA feature set combines the magnitude and phase (in the form of IFs) informa-
tion to develop the efficient feature representation for SS, VC, and replay spoof-
ing attacks. The proposed CFCCIF-ESA utilizes ESA to accurately estimate the
modulation patterns due to their relatively low computational complexity, high
time resolution, and instantaneously adapting nature. In previously proposed
Cochlear Filter Cepstral Coefficient Instantaneous Frequency (CFCCIF) feature
set, IFs were estimated using Hilbert transform-based approach, whose time res-
olution is relatively low (as it requires a segment of speech) as compared to the
ESA-based approach.

Furthermore, Constant-Q Transform (CQT)-based feature representation and
Spectral Root Cepstral Coefficients (SRCC) are developed using spectrogram rep-
resentations and effectively utilized for anti-spoofing. According to Heisenberg’s
uncertainty principle in signal processing framework, the CQT has variable spectro-
temporal resolution, in particular, better frequency resolution for low frequency
region and better temporal resolution for high frequency region. This property of
the CQT representation is effectively utilized to identify the low frequency charac-
teristics of pop noise. Here, pop noise is attributed to the live speaker and hence, it
is exploited for Voice Liveness Detection (VLD) task. SRCC feature set is derived
from the theory of homomorphic filtering, which obeys the generalized superpo-
sition theory. In spectral root homomorphic deconvolution system, convolution-
ally combined vectors are mapped to another convolutionally combined vector
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space, where signal components are more easily separable by liftering operation.
Logarithm operation in Mel Frequency Cepstral Coefficients (MFCC) extraction
is replaced by power-law nonlinearity (i.e., (·)γ) to derive SRCC feature set. The
proper choice of the γ depends upon the pole-zero arrangements in the transfer
function obtained from the speech signal and it helps to capture the system infor-
mation of the speech signal, with a minimum number of cepstral coefficients. In
this thesis, optimum γ-value is chosen by estimating the energy concentration in
cepstral coefficients and by visualizing the spectrogram w.r.t. γ-value.

To validate performance of our proposed feature sets, the experiments are per-
formed using various datasets, state-of-the-art feature sets, classifiers, and eval-
uation metrics. The development and performance analysis of each proposed
feature set is provided in the corresponding chapters. Furthermore, other contri-
butions in the thesis, namely, feature normalization for anti-spoofing, analysis on
Delay and Sum (DAS) vs. Minimum Variance Distortionless Response (MVDR)
beamforming techniques for anti-spoofing in VAs, severity-level classification of
dysarthric speech, and classification for normal vs. pathological cries, are also
discussed. Thesis concludes with potential future research directions and open
research problems.
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CHAPTER 1

Introduction

1.1 Motivation

Speech is the primary and widely used mode of communication between hu-
mans. It is a form of quasi-periodic signal with a basic purpose of transmission
(and reception) of information from one person to the other, or from a person
to a machine or vice-versa [42]. Speech complexity can be appreciated by the
fact that an utterance can convey completely different meanings simply by stress-
ing a particular word or changing the position of pauses. Even though speech
is a one-dimensional signal, it contains several levels of the information, such as
linguistic message, speaker’s identity, gender, health, emotion, attitude, acoustic
environment, etc. [43]. This sophisticated information in the speech signal can
be exploited for the advancement in technology to leverage the quality of human
life. To that effect, several speech signal processing-based applications are devel-
oped, such as Automatic Speech Recognition (ASR), automatic speaker recogni-
tion, speech enhancement, speaker diarization, voice conversion, infant cry analy-
sis, dysarthric speech classification and enhancement, whispered speech recogni-
tion, and many more. Among various speech technologies, an automatic speaker
recognition system aims at identifying speaker-specific information, which can
be used later for recognition purposes [44]. An automatic speaker recognition
system can be divided into two categories, namely, Speaker IDentification (SID)
and Automatic Speaker Verification (ASV). A SID system identifies an individual
speaker from a pool of speakers, which may be an open or closed set of speak-
ers [43,45]. An ASV system, on the other hand, verifies the claimed identity of the
speaker [46].

Various biometric traits have been successfully deployed for different person
verification systems, such as voice, signature, gait, face, iris, fingerprint, palm-
print, palm/finger vein, etc. [47]. Naturally, humans have an ability to identify a
person jointly using face and voice biometrics, i.e., through multimodal process-
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ing. With the recent development in technology, ASV systems are effectively used
as a voice biometric. The advantage of using speech as a biometric lies in its sim-
plicity to gain a access remotely to recognition systems. Other biometrics, such
as iris and thumb impression, require the person to be in physical contact with
the system for the purpose of verification. However, voice biometric provides
a touch-free verification environment. Recent developments in voice biometrics
have got them wide acceptance because of their convenience, in particular, voice
is natural to produce and non-invasive to collect via low cost microphones. Ad-
vancements in computational capabilities have led to better machine learning al-
gorithms through which noise robust high performance ASV systems have been
developed [45].

Figure 1.1 shows the illustration of a generic ASV system. A typical ASV
system operates in two stages, namely, the enrollment stage and the recognition
stage. In the enrollment stage, the speech samples are acquired from the speak-
ers and a salient feature set (speaker-specific) extracted and stored in a database
(often referred to as a template or speaker model), along with an identifier. Dur-
ing the verification stage, the system once again acquires the speech samples of
a speaker, extracts a feature set from it, and compares this feature set against the
templates in the database in order to verify the claimed identity. The comparison
is performed by the matcher as shown in Figure 1.1. The matcher determines a
match score, which represents the relative similarity of the sample to an already
stored template. Finally, the decision module uses the relative score (usually, a
log-likelihood ratio, i.e., LLR) to either accept or reject the claimed identity.

The desirable characteristics of the speaker-specific feature set for designing
ASV system are [43, 46]:

• Occurring naturally and frequently in speech.

• Easy to extract.

• Efficient in representing the speaker-dependent information and should not
be affected by speaker’s health and emotions.

• Stable over time.

• Not getting affected w.r.t. transmission channel characteristics or acoustic
environments.

• Not susceptible to various spoofing attacks, such as identical twins, profes-
sional mimics, speech synthesis (SS), voice conversion (VC), and replay.
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Figure 1.1: Illustration of the Typical ASV System with Possible Spoofing Attack
Points. Point-1 and Point-2 Corresponds to Direct Attacks. Point-3 to Point-8
Corresponds to Indirect Attacks. Adapted from [28].

In general, the feature sets can be classified as handcrafted features vs. data-driven
features. The extraction of crucial handcrafted features for speech applications
requires knowledge of the speech production and perception mechanism. Con-
sidering this domain knowledge, mathematical models are defined based on the
underlying physiological transformations in the speech production/perception
mechanism. On the other hand, data-driven features extract the meaningful infor-
mation mostly using unsupervised learning. It requires powerful deep learning
algorithms, which should have the ability to learn features automatically. It also
requires complex network architecture and a considerable amount of calculation
time to attain better accuracy of classification. Furthermore, sufficient amount
of statistically meaningful data is required for the training the deep learning algo-
rithms, which can extract the meaningful features. However, handcrafted features
can be employed for the intended task irrespective of the size of the dataset. This
thesis based on the development of the handcrafted features for the anti-spoofing
task.

Advancements in the technology have led to increase in vulnerability to vari-
ous spoofing attacks mentioned above [47]. Spoofing refers to an intentional cir-
cumvention, wherein an imposter tries to manipulate a biometric system simply
by masquerading as another genuinely enrolled person [28,48]. The various com-
ponents of ASV and links between them are vulnerable to possible attack points,
as shown in Figure 1.1 [49]. These spoofing attacks can be categorized as direct at-
tacks and indirect attacks. Direct attacks are applied at the microphone and trans-
mission levels, which are labelled as point-1 and point-2, respectively, in Figure
1.1. These attacks include the impersonation (a.k.a. human mimicking), which
can be performed by the identical twins and professional mimics by exploiting
physiological characteristics and skillfulness, respectively. Furthermore, it also in-
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cludes the SS, VC, and replay attacks, which can be presented at the microphone
and transmission channel. Indirect attacks are performed within the ASV system
itself, which are shown as attack points-3 to -8 in Figure 1.1. Indirect attacks gen-
erally require system-level access, for example attacks that interfere with feature
extraction (point-3 and -4), models (point-5 and -6) or score and decision logic
computation (point-7 and -8). This thesis mainly focuses on technology-based
direct attacks, namely, SS, VC, and replay.

In the practice, we would like an ASV system to be robust against variations,
such as microphone and transmission channel, intersession, acoustic noise, speaker
aging, etc. A robust ASV system may become vulnerable to various spoofing at-
tacks as it tries to nullify these effects and normalize the spoofing speech toward
the natural speech [50, 51]. Furthermore, there are advancement in SS- and VC-
based technologies lead to vocoders, neural network-based generative architec-
ture, such as WavNet, which can be used to embed the speaker-specific charac-
teristics in the speech signals. In addition, replay signals are more threat to ASV
systems as high quality recording devices are easily available in the market. Fur-
thermore, Voice Assistants (VAs) are also emerging in recent days, which are uti-
lized to control smart home appliances, activate home security systems, purchase
items online, initiate phone calls, and complete many other tasks with ease. It is
all the more hazardous if a fraudulent person could access the VAs using spoof-
ing attacks. Hence, we would expect that spoofing attack should be alleviated
for ASV and VAs. It can be accomplished by either developing the ASV or VA
system, which has inherent capability to alleviate spoofing attacks [52] or imple-
menting the separate countermeasure (CM) system against spoofing along with
ASV system [28]. However, there is a trade-off between noise robust ASV system
and its capability to resist the spoofing attacks. Hence, the latter approach of the
developing separate CM system against spoofing attack is advantageous, and this
thesis contributes to feature-based approach for developing CM systems.

The functional schematic of the Spoof Speech Detection (SSD) or CM system
along with ASV system is shown in Figure 1.2. The ASV system verifies the
claimed identity by using the speech signal presented to the ASV system. How-
ever, the presented signal can be a spoofed speech signal, and it can attack the ASV
system if its characteristics are very similar to the stored templates (i.e., speaker
models) in the ASV system. To alleviate this issue, the SSD system is employed
as a CM system before ASV system as shown in Figure 1.2. The SSD system will
identify whether the presented speech signal is coming from the natural source
of the speech signal (i.e., natural speech production mechanism). If the presented

4



Figure 1.2: Functional Schematic of SSD System in Tandem with ASV System.
After [29].

speech signal is identified with synthetic or replay speech characteristics, then it is
considered as spoof speech signal, and it is restricted from the further processing.

1.2 Unnaturalness in the Spoof Speech Signals

Let us consider the natural speech production mechanism in brief, to understand
the difference between naturally produced speech and spoof speech signals. Nat-
ural speech signal is produced using coordination among various speech organs,
namely, lungs, larynx, and vocal tract system. Lungs act as a power supply and
provides controlled airflow to the larynx stage. The airflow is modulated by the
larynx and produces either periodic air puffs, noisy airflow or impulse-like exci-
tation to the vocal tract system. These modulated signals are also considered as
source signal in signal processing perspective. These source signals are provided
to the vocal tract system, which mainly includes oral, nasal, and pharynx cavi-
ties. The vocal tract system is considered as system in order to model the speech
production mechanism and hence, it supposed to perform the necessary spectral
coloring of laryngeal excitation source signal. To implement the spoofing attack,
the speech signal can be manipulated using SS, VC or replay mechanism. During
this manipulation and implementation of the spoofing attacks, unnaturalness (or
artifacts) is introduced in the spoof speech signal. The possible characteristics of
this unnaturalness in the spoof signal are discussed next:

• Unnaturalness in SS and VC:

a. SS- and VC-based speech signals are conventionally generated using
vocoders and unit selection synthesis (USS). Speech Transformation
and Representation using Adaptive Interpolation weiGHted specTrum
(STRAIGHT) and Mel log spectrum approximation (MLSA) vocoders
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are generally used to build SS- and VC-based spoofing attacks. Various
factors may cause the quality degradation for the vocoder generated
speech signals, such as modelling accuracy and quality of vocoders,
oversmoothing of spectral parameter trajectories, overfitting, and time-
independent mapping in VC techniques.

b. Furthermore, vocoder-based signals are generated using magnitude in-
formation in the spectrum, ignoring the phase-based information. The
artifacts generated due to these degradation factors can be utilized for
the SSD task. In USS, which is utilized for speech synthesis, speech
segments corresponding to speech sound units (such as, phonemes,
syllables, etc.) are concatenated. The unnaturalness is introduced in
the USS-based synthetic speech due to various factors, such as error
in automated labelling of the speech sound units, the discontinuity at
the joints, linear phase mismatches at the joints, lack of text-dependent
prosody, etc.

However, LA scenario in ASVSpoof 2019 dataset consists of advanced architec-
tures of Text-to-Speech (TTS) and VC, which produces the spoofed speech signals
with high perceptual naturalness and speech quality. Some spoofed data is even
challenging to detect for human beings. Therefore, the ASVspoof 2019 database is
expected to be used to examine how CMs perform facing the advanced TTS and
VC spoofing systems. This is also analyzed by visualizing features for spoofed
vs. bonafide in a 2-D space followed by the clustering process to find out which
attacks are naturally grouped together [4].

The speech signal which is secretly (and distantly) recorded from the genuine
speaker and played back is known as replay speech signal. To mount the spoofing
attack, the replay speech signal is presented to the ASV/VA system.

• Unnaturalness in Replay Speech Signal:

a. The additional processing for the generation of the replay speech sam-
ple includes the characteristics induced by the secret (and distantly
placed) recorder, room acoustics of the recording environment, and
playback (i.e., loudspeaker) devices. Playback devices are nothing but
the loudspeakers, which typically have the non-flat magnitude frequency
response that is acting as bandpass filter [53]. The recording device af-
fects similarly on the input signal.

b. In digital recording, the signal passes through an analog-to-digital con-
verter (ADC), which uses the lowpass anti-aliasing filter. The spoofed
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speech signal is processed through the anti-aliasing filter at least twice.
It produces artifacts near the Nyquist frequency.

c. Finally, room acoustics induces the reverberation effect, which causes
temporal smearing due to the Short-Time Fourier Transform (STFT)
[54–56].

1.3 Development of Standard Datasets for Voice Anti-

Spoofing

Vulnerabilities and CMs for the other biometric modalities, such as face, finger-
print, etc. had been widely studied [47, 57–59]. The initiative for the voice bio-
metric was taken by the research community and results in the organization of
the first special session in Spoofing and Countermeasures for ASV, held during IN-
TERSPEECH 2013 [60]. At that opportunity, specific vulnerabilities and their CMs
were presented in paper [61]. The search for a standard dataset, evaluation met-
rics, and protocols was also discussed in that paper, aiming at the development of
an efficient CM system for unseen environments in the realistic scenarios [61].
This resulted in the development of the standard dataset, evaluation metrics,
and protocols for the ASVSpoof 2015 Challenge - a special session during INTER-
SPEECH 2015 [2]. It allowed for performance comparisons among various CM
systems on a common evaluation platform across different sites. The SS- and
VC-based spoofing attacks have been taken into consideration during this chal-
lenge. The second ASVSpoof challenge was organized during INTERSPEECH
2017, which motivated to develop CMs against replay attacks. During INTER-
SPEECH 2019, ASVSpoof 2019 challenge was organized, which focused on all the
three major attacks, namely, SS, VC, and replay attacks. This edition of challenge
consists of two scenarios, namely, Logical Access (LA), and Physical Access (PA).
LA scenario includes the up-to-date SS- and VC-based systems (e.g., use of neural
vocoders) to generate the spoof speech signals. PA scenario includes a controlled
setup in the form of replay attacks, simulated using a range of real replay de-
vices and carefully controlled acoustic conditions, which brings new insights into
the replay spoofing problem. The latest edition of this challenge series, namely,
ASVSpoof 2021 challenge includes DeepFake speech detection including modifi-
cation in LA and PA scenarios of ASVSpoof 2019 challenge datasets. The replay
configuration is modified as compared to the ASVSpoof 2019 challenge by intro-
ducing real and variable physical spaces. The ASVspoof 2021 LA evaluation data
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includes a collection of bonafide and spoofed utterances transmitted over a va-
riety of telephony systems including Voice-over-IP (VoIP), and a public switched
telephone network (PSTN), which utilizes the various speech codecs. Thus, the
transmission channel and compression variability (due to codecs) in testing con-
ditions is introduced in LA scenario.

These challenge corpora are designed to develop a CM for the ASV systems
and not for VAs. A VA is said to be under replay attack, when an attacker tries to
gain illicit access to the VA simply by replaying the voice commands of a genuine
user. Hence, it is necessary to develop CMs for VAs as well. Although, the design
of CM systems for ASV and VAs looks similar, there are important differences in
anti-spoofing strategies for these systems. These differences are as follows [9]:

• In ASV applications, the close-distance (i.e., near-field speech) features can
be preferred for SSD [9, 62]. On the other hand, these features are deterio-
rated due to longer distant (i.e., far-field) between actual speaker and micro-
phone.

• VAs use microphone array for speech enhancement purpose, whereas ASV
systems primarily use single microphone to record the speech samples. How-
ever, author believe that given the prevalence of VA systems, it is likely that
they become a primary mean for ASV system including relevance of distant
speech.

• Modern ASV systems follow strict ASV model, whereas VAs use less strict
ASV model [63]. This makes it easier for the attacker to obtain a clean source
recording to attack VAs.

To address this issue, Realistic Replay Attack Microphone Array Speech Corpus
(ReMASC) and Voice Spoofing Detection Corpus (VSDC) datasets have been re-
leased, which are specifically designed to develop CMs against replay spoofing
attack in VAs [9, 64].

1.4 Contributions of the Thesis

This thesis aims at developing effective CMs for SSD task, in particular, devel-
opment of the handcrafted feature sets for the classification of genuine vs. spoof
speech utterances. These CMs are built for anti-spoofing against SS, VC, and re-
play attacks. Furthermore, depending upon the distance between actual speaker
and microphone, decision can be taken for appropriate feature extraction scheme.
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For example, CTECCmax should be utilized for long distance and pop noise detec-
tion algorithms should be utilized for short distance. These feature sets are either
developed by applying the subband filtering on the speech signals or derived
from the spectrogram representations.

1.4.1 Subband Filtering-Based Features

• Enhanced Teager Energy-Based Cepstral Coefficients (ETECC)
The proposed ETECC feature set is developed from Teager Energy Cepstral
Coefficients (TECC) by compensating the signal mass. In Teager Energy Op-
erator (TEO), we consider the approximation sin(ω) ≈ ω. The TECC feature
set is extracted based on this approximation. However, the discriminative
information for the replay SSD is prominently present in the mid- and high-
frequency regions. Hence, ETECC feature set is proposed to accurately es-
timate the energies at higher frequencies, which is desirable for replay SSD
task.

• Cross-Teager Energy Cepstral Coefficients (CTECCmax)
This feature set is proposed for a multichannel input using the concept of
cross-Teager energy operator (CTEO), which measures the interaction be-
tween the two channels. To that effect, CTEO is used to estimate the most
noisy transmission channels for effective SSD task. This idea develops CTECCmax

feature set for SSD task on VAs.

• Energy Separation Algorithm-based Instantaneous Frequency estimation
for Cochlear Cepstral Features (CFCCIF-ESA)
Originally, Cochlear Filter Cepstral Coefficient Instantaneous Frequency (CFC-
CIF) feature set was proposed to develop CMs for SS and VC [65], where
Instantaneous Frequencies (IFs) were estimated via analytic signal genera-
tion using Hilbert transform (HT). In our proposed feature set, IFs are es-
timated using Energy Separation Algorithm (ESA) to derive CFCCIF-ESA,
which gives relatively better performance over CFCCIF.

1.4.2 Features Derived from Spectral Representations

• Spectral Root Cepstral Coefficients (SRCC)
In this work, deconvolution of a speech signal is performed by selecting an
appropriate value of spectral root (i.e., γ) in the original homomorphic de-
convolution framework [66]. In this technique, feature vectors are mapped
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Figure 1.3: Flowchart Depicting Organization of this Thesis.

from one convolutional space to another convolutional space, where the
convolved components are more easily separable than the previous space.
This technique is used here for replay SSD task on ASV and VAs.

• Constant-Q Transform (CQT) and Its Cepstral Representation
In this work, CQT is used to extract the discriminative features from the
pop noise regions in the speech utterance to detect liveness of the speaker.
In realistic scenarios of speech production and perception, the perceived
frequency of the speech signal doesn’t have a constant frequency interval,
rather it has a geometrical distribution [14]. Hence, we propose to use CQT
as it mimics the speech perception mechanism. The constant Q-factor in
CQT, yields better frequency resolution for lower frequencies and hence, it
can effectively detect the pop noise, which posses the low frequency charac-
teristics.
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1.5 Organization of the Thesis

The organization of the rest of the chapters in the thesis is shown via a flowchart
in Figure 1.3 and briefly described next.

Chapter 2 discusses the literature search of various methods proposed in the
anti-spoofing literature to be able to position the contributions of this thesis work
in the history of the problem.

Chapter 3 presents details of the experimental setup that is used to perform ex-
periments reported in this thesis. These details include various datasets, feature
extraction techniques, classifiers, performance evaluation metrics, and score-level
fusion techniques. The variations in the data collection strategy along with the
statistics is given in dataset Section. The theoretical description of state-of-the-art
feature sets and classifiers is explained in corresponding Sections. Lastly, perfor-
mance evaluation metrics and data fusion techniques are explained.

Chapter 4 discusses the performance of the various feature sets, which are de-
rived using the concept of TEO. It includes ETECC, CTECC, and CFCCIF-ESA
feature sets. Initially, basics of TEO are explained as it is the fundamental algo-
rithm to derive these feature sets. Then, the development of each of these feature
sets along with the explanation about their suitability to the intended SSD task is
explained. Furthermore, the parameter tuning of the feature sets and classifiers is
explained, which is followed by the experimental results.

Chapter 5 discusses the performance of the spectral-based feature sets, namely,
CQT and SRCC feature sets, which are employed for replay SSD task. The CQT
is utilized for Voice Liveness Detection (VLD), where the live speech is charac-
terized by presence of the low-frequency pop noise. The capability of the CQT
to capture the low frequency contents is exploited for locating the characteris-
tics of pop noise. Furthermore, SRCC feature set employ power-law nonlinearity
instead of the logarithmic nonlinearity, which may be more desirable for feature
representation. The detailed explanation of the CQT and SRCC feature sets, their
parameter tuning, and experimental setup is explained in Chapter 5.

Chapter 6 discusses the contributions of this thesis in the other speech technol-
ogy applications. It includes the analysis of Cepstral Mean and Variance Normal-
ization (CMVN) and various beamforming approaches for anti-spoofing, severity-
level classification of the dysarthric speech, and classification of normal vs. patho-
logical infant cry.

Chapter 7 presents the overall summary of the work presented in this thesis.
This Chapter also discusses the applications, limitations of the present work, and
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future research directions for the task of replay SSD on VAs and ASV systems.

1.6 Chapter Summary

In this chapter, we discussed the brief introduction of ASV field, its vulnerabil-
ity towards possible spoofing attacks and hence, need to develop CM systems
to alleviate such spoofing attacks. Furthermore, the initiative and efforts taken
by research community to systematically pose the anti-spoofing problem was dis-
cussed. Finally, it gave the brief details of the contributions of this thesis, in partic-
ular, the development of the various feature sets to alleviate the issue of spoofing.
The next chapter discusses in detail the development of the CM system, which in-
cludes various novel feature sets and classifiers on various datasets. Furthermore,
research gap w.r.t. the literature and contributions of this thesis to fill this research
gap is also discussed in the next chapter.
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CHAPTER 2

Literature Search

2.1 Introduction

This chapter discusses the literature review on various widely used CM approaches
on publicly available anti-spoofing datasets. ASV systems are prone to spoofing
attacks based on VC [67], [68], SS [69], [70], impersonation [71], replay [72] [73],
and twins [28]. In addition, the spoofing attacks on VAs have also gained a trac-
tion, and it leads to the development of the ReMASC and VSDC datasets with pos-
sible CM strategies for VAs. In subsequent Sections, the literature survey on the
development of the various CM approaches w.r.t. various datasets are discussed.
The literature search presented in this chapter will help us to understand various
gap areas or research problems, which demands immediate attention from the
community and thus, to position the key contributions made in this thesis as a
humble step to fill this gap area.

2.2 Studies on SSD for SS and VC Attacks

In this Section, the performance of the various architectures (feature sets and clas-
sifiers) on the evaluation set of ASVSpoof 2015 challenge dataset is studied. This
dataset is created using conventional vocoder generated SS- and VC-based spoof
speech signals. It also includes the unit selection-based SS signals, which are
difficult to identify as spoof signals. The evaluation set is chosen such that it
should reflect the generalization capability in practical scenarios. The evaluation
set consists of the unknown attacks, which successfully assesses the generalization
capability of the SSD system. The more details of the dataset are explained in
Chapter 3.2.1. Table 2.1 shows the results on the evaluation set for the various
SSD architectures developed on ASVSpoof 2015 challenge dataset using conven-
tional Gaussian Mixture Model (GMM)-based, Support Vector Machine (SVM),
and deep neural network (DNN)-based classifiers.
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The score-level fusion of CFCCIF and Mel Frequency Cepstral Coefficients
(MFCC) feature sets was the best performing (winner) SSD system during ASVSpoof
2015 challenge organized during INTERSPEECH 2015 [29]. The CFCCIF feature
set is an extension of Cochlear Filter Cepstral Coefficient (CFCC) feature set. The
results of the individual feature sets, which are derived using cochlear filterbank,
are also shown in Table 2.1. The i-vector feature set, which was originally de-
veloped for ASV task also produced relatively better results than the other fea-
ture sets [74, 75]. In [76], several feature sets have been studied, such as MFCC,
inverse-MFCC (IMFCC), Linear Frequency Cepstral Coefficients (LFCC), Rectan-
gular Filter Cepstral Coefficients (RFCC), Linear Prediction Cepstral Coefficients
(LPCC), Subband Spectral Flux Coefficients (SSFC), Spectral Centroid Magnitude
Coefficients (SCMC), Subband Centroid Frequency Coefficients (SCFC), All-pole
Group Delay Function (APGDF), and Relative Phase Shift (RPS). Among these
feature sets, LFCC gave relatively better performance, which is shown in Ta-
ble 2.1. The phase information being discriminative acoustic cue for the given
SSD task, phase-based features, such as RPS and Modified Group Delay Cep-
stral Coefficients (MGDCC) were exploited by many participant teams in this
challenge [76–79]. In another study, SVM with Generalized Linear Discriminant
Kernel (GLDS-SVM) is utilized as a classifier, however, GMM shows the better
performance than the GLDS-SVM classifier [80]. The study in [81] reports the de-
velopment of the SSD system using various magnitude- and phase-based feature
sets (referred to as M & P feats in Table 2.1, such as MFCC, product spectrum-
based cepstral coefficients, MGDCC, weighted linear prediction group delay cep-
stral coefficients, linear prediction residual cepstral coefficients, Cosine Normal-
ized Phase-based Cepstral Coefficients (CNPCC), and a combination of MFCC-
CNPCC. Their best performing system obtained using score-level fusion gave
2.694 % Average Equal Error Rate (AEER). The analysis of the Linear Prediction
(LP) error was also utilized for SSD of SS and VC-based spoof signals [82]. In [79],
the various magnitude- and phase-spectrum-based feature sets, such as normal-
ized unique local binary patterns (NULBP), modified group delay function fea-
tures, and Cosine Normalized Phase Features (CNPF), are utilized to extract the
complementary information via data fusion strategy for the SSD systems.

During the post evaluation of the ASVSpoof 2015 challenge, constant-Q cep-
stral coefficients (CQCC) feature set, which possesses a variable spectro-temporal
resolution, gave the state-of-the-art results using ∆∆ features [83]. Furthermore,
the hierarchical scattering decomposition technique is proposed in [84], which
derives the Scattering Cepstral Coefficients (SCC) feature set. It is viewed as a
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generalization of all the constant-Q spectral decomposition, and produced the
remarkable performance with reduced AEER of 0.18 %. In [85], performance of
the proposed signal-based overlapped block transformation (SOBT), Mel warping
overlapped block transformation (MOBT), signal-based frequency cepstral coeffi-
cients (SFCC), inverted signal-based frequency cepstral coefficients (ISFCC), and
inverted Mel warping overlapped block transformation (IMOBT) feature sets are
investigated for SSD task and consequently able to produce 0.86 % Equal Error
Rate (EER) using ISFCC feature set. The excitation source-based features, namely,
fundamental frequency (F0) contour and strength of excitation (SoE) at the glot-
tis, are also explored using GMM-based classification system, where score-level
fusion is performed using MFCC and CFCCIF feature sets to produce better re-
sults [86, 87]. In [88], MFCC, modified relative phase (MRP) and MGDCC fea-
ture sets are utilized with GMM as a classifier. The score-level fusion of the
SSD systems obtained using these three feature sets produced the 0.76 % AEER.
In [89], three major types of artifacts related to magnitude, phase, and pitch (or
fundamental frequency, F0) variation introduced during the generation of syn-
thetic speech, are exploited using three feature sets, namely, CQCC, APGDF, and
fundamental frequency variation (FFV), respectively. These feature sets are con-
catenated, and acronymed as CAF. The novel FFV feature, introduced in [89] to
extract pitch variation at the frame-level, provides complementary information to
CQCC and APGDF.

In [90], two magnitude spectrum-based and five phase-based features have
been applied using multilayer perceptron to train the SSD systems. The appropri-
ate fusion of these SSD systems gave 2.62 % AEER on the evaluation set. In ad-
dition, Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) are employed, where CNN is used to extract the features from the speech
signal, and RNN captures the long-term dependencies in those features for the
SSD task [91]. The other feature sets utilized in the same study are: TEO critical
band autocorrelation envelope, perceptual minimum variance distortionless re-
sponse, and a more general spectrogram. In [92], log-magnitude spectrum and
RPS feature sets are employed along with two DNN architectures, where one
DNN architecture was used as a classifier, and the other used to extract bottle-
neck features. In [93], the feature sets derived from CQT, namely, short-term
spectral statistics information (STSSI), Constant-Q Statistics-plus-Principal Infor-
mation Coefficients (CQSPIC), octave-band principal information (OPI), and full-
band principal information (FPI) are proposed, and these feature sets are trained
using DNN classifier.
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Among these features, CQSPIC-A shows the remarkable performance as shown
in Table 2.1 [93], where, -A refers to ∆∆-features. Other study in [95] proposes a
subband transform rather than the fullband transform on CQT with three differ-
ent scales, i.e., linear, octave, and Mel scale to derive three feature sets, namely,
Constant-Q Equal Subband Transform (CQ-EST), Constant-Q Octave Sub-band
Transform (CQ-OST), and Discrete Fourier Mel Subband Transform (DF-MST).
The CQ-EST-DA (-DA refers to combination of ∆ and ∆∆ features) feature set with
DNN classifier gave the 0.056 % AEER. Recently, the Multilevel Transform (MLT)
is applied to CQT to derive Constant-Q Multi-level Coefficients (CMC) [96]. It
can be observed from Table 2.1 that the CQCC and feature sets derived from the
CQT are producing relatively better results and thus, it shows their generalization
capability to perform better on unseen spoofing attacks.

2.3 Studies on Real Replay SSD

This Section discusses various architectures proposed on ASVSpoof 2017 chal-
lenge dataset, which comprise real replay scenario. The spoof speech utterances
in this dataset are collected from seven environments, namely, anechoic room,
analog wire, balcony, canteen, home, office and studio. The recordings in various
environments produces the variability in the spoof speech signals in terms of en-
vironments [3]. Furthermore, various recording/playback devices also employed
to increase the variability. The details of the dataset are discussed in Chapter 3.
Some notable contributions on ASVSpoof 2017 database are as shown in the Ta-
ble 2.2. The best possible performance is achieved by MGDCC feature set with
Residual Networks (ResNet) as a classifier [97]. Siamese embeddings are also em-
ployed for replay spoof detection in [98]. In [99], Mel Filterbank Slope (MFS) and
Linear Filterbank Slope (LFS) feature sets are proposed, which captures low fre-
quency information corresponding to that of the low quality recording devices
and high frequency information corresponding to that of a high quality recording
device, respectively. Furthermore, DenseNet-long short-term memory (LSTM) is
proposed for replay anti-spoofing in [100]. Spectral envelope centroid frequency
and spectral envelope centroid magnitude features are introduced in [101], which
are based on Spatial Differentiation. The novel Adaptive Relative Phase (ARP)
and Adaptive Frequency Cepstral Coefficients (AFCC) feature sets are proposed
in [102] along with the design of the attention-based adaptive filters. Further-
more, auditory filterbank learning using Convolutional Restricted Boltzmann Ma-
chine (ConvRBM) with the pre-emphasized speech signals is exploited to extract
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Amplitude Modulation and Frequency Modulation (AM and FM)-based features.
Cepstral processing is performed on ConvRBM-based short-time AM and FM fea-
tures to give AM-ConvRBM-CC and FM-ConvRBM-CC feature sets [103]. Other
feature sets and classifiers, which are used for ASVSpoof 2015 challenge dataset
can be observed in Table 2.2 and details regarding the architectures can be studied
from corresponding references [17, 104–107].

2.4 Studies on SSD for SS, VC, and Simulated Replay

This Section discusses various architectures proposed on ASVSpoof 2019 chal-
lenge dataset, which comprises the three major spoofing attacks, namely, SS, VC,
and simulated replay attacks. The brief description of the dataset can be studied
in Chapter 3. The simulated (controlled) replay and Neural Network (NN)-based
SS/VC-generated spoofing signals are utilized in this challenge. In [108], vari-
ous systems are combined, which are based on unified/entire feature maps along
with variations of squeeze-excitation and residual networks, such as SENet34,
SENet50, ResNet, Dialated Resnets, and attention filtering network. i-vectors
extracted from MFCC, IMFCC, CQCC, sub-band centroid magnitude coefficient
(SCMC) features are utilized with CNN, RNN, Wave-U-Net, GMM, and SVM clas-
sifiers [109]. The DKU system in [110] presents the CM system in PA scenario
through data augmentation, which utilizes CQCC, LFCC, IMFCC, STFT-gram,
Group Delay-(GD) gram, joint-gram as feature sets, and ResNet as a classifier.
Bayesian neural networks are employed in [111] considering their capability to
generalize the model. Angular margin-based softmax activation was utilized in
Light-CNN (LCNN) along with CQT, LFCC, Fast Fourier Transform (FFT), and
Discrete Cosine Transform (DCT) representations [112]. In another approach, Log-
CQT, Log Mel Spectrogram (LMS), Phase features, i-vector, and Variational Au-
toencoder (VAE)-log-CQT representations are utilized with ResNet, LCNN with
multilabel output, and context gate CNN (CGCNN). In [113], Single Frequency
Cepstral Coefficients (SFCC), Zero-Time Windowing Cepstral Coefficients (ZTWCC),
and Instantaneous Frequency Cepstral Coefficients (IFCC) feature sets are utilized
with the conventional GMM-based classifier. CQT and its variants are exploited
in [114, 115]. Utterance-level embeddings are extracted using a Light Convolu-
tional Gated Recurrent Neural Network (LC-GRNN) [116]. In another study, com-
bination of the VGG and LCNN architecture is exploited along with MFCC, CQT,
CQCC, and power spectrogram representations [117]. The results obtained with
above mentioned approaches are shown in Table 2.3.
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Table 2.2: Results Obtained on ASVSpoof 2017 Version 2.0 Dataset for Various
Systems Reported in the Literature.

Authors Feature Sets Classifiers % EER
(Source) Dev Eval

Tom et. al. [97] MGDCC ResNet 0 0
Sriskandaraja et. al. [98] Siamese Embedding GMM - 6.40

Features
Lavrentyeva et. al. [17] Spectrogram CNN and RNN 3.95 6.73

Spectrogram LCNN 4.53 7.37
Saranya et. al. [99] MFS GMM 3.58 7.82

LFS GMM 5.13 9.82
Weicheng Cai et al. [104] CQCC (Baseline) GMM 10.25 22.39

MFCC GMM 26.78 26.31
Patil et. al. [105] CFCCIF GMM 12.98 14.77

LFCC GMM 16.76 13.9
Kamble et. al. [106] TECC GMM 9.55 11.73

Hybrid Feature GMM 8.67 25.63
Hybrid Feature DenseNet 5.62 12.39

Lian Huang Hybrid Feature LSTM 9.45 15.64
et. al. [100] CQCC DenseNet 7.65 17.73

MFCC DenseNet 6.77 15.86
CQCC DenseNet-LSTM 3.87 12.64

Buddhi Wickramasinghe CF GMM - 10.84
et. al. [101] CM GMM - 10.93

AFCC GMM 4.01 27.80
ARP GMM 9.11 12.65

Meng Liu CQCC+AFCC - 3.57 28.02
et. al. [102] CQCC+ARP - 2.26 12.58

AFCC+ARP - 2.23 11.95
ARP+AFCC+CQCC - 2.20 11.43

RFCC GMM 6.91 11.90
LPCC GMM 5.94 25.20

Roberto Font [107] SCFC GMM 24.51 24.83
et. al. SCMC GMM 9.32 11.49

SSFC GMM 12.81 22.38
Sailor et. al. [103] AM-ConvRBM-CC (S1) GMM 2.92 12.76

FM-ConvRBM-CC (S2) GMM 5.44 14.96
S1 + S2 GMM 0.82 8.89
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Table 2.3: Results Obtained on ASVSpoof 2019 Dataset (LA and PA Scenario) for
the Various Architectures in the Literature.

Source Feature Sets Classifiers
LA PA

Dev Eval Dev Eval
% EER t-DCF % EER t-DCF % EER t-DCF % EER t-DCF

[108]
Unified/Whole SENet34, SENet50,

0 0 6.70 0.155 0.129 0.003 0.59 0.016
Feature Map ResNet, Dialated ResNets

[109]
i-vectors extracted CNN, CRNN,

0 0 2.64 0.0755 4.85 0.1316 5.43 0.1465from MFCC, IMFCC, GMM, SVM
CQCC, SMCC Wave-U-Net

[110]
CQCC, LFCC, STFT-gram

ResNet - - - - 0.24 0.0064 0.66 0.0168
IMFCC, GD- & joint-gram

[111] Mel Spectrogram
Baysian NN

- - - - 0.78 0.0170 0.88 0.0219
(CNN, LCNN)

[112] CQT, LFCC, FFT, DCT LCNN 0 0 1.84 0.0510 0.0154 0.0001 0.54 0.0122

[130]
CQT, Phase Vector ResNet, LCNN, CGCNN

0.90 0.027 3.56 0.1118 0.0049 0.16 1.16 0.03550
LMS, i-vector

[113] SFCC, ZTWCC, IFCC GMM 0 0 0.1239 4.92 0.2169 10.11 0.2810 12.20
[115] CQCC, eCQCC, ICQCC, CMC, GMM, DNN

0 0 4.13 0.1264 1.26 0.027 5.95 0.1381
CQ-EST, CQ-OST, CQSPIC

[116]
Embedding Extracted SVM, LDA, PLDA

0 0 6.28 0.1523 0.73 0.0203 2.23 0.0614
using LC-GRNN

[117]
MFCC, CQT, CQCC VGG, LCNN

0 0 8.01 0.2080 0.66 0.0170 0.0372 1.51
Power Spectrogram

Furthermore, Butterfly Unit (BU) for multitask learning is employed in [118].
x-vector embeddings extracted from MFCCs with CNN classifier are utilized in
[119]. Other possible approaches for ASVSpoof 2019 dataset can be studied from
[4, 120–129].

2.5 Studies on SSD for SS, VC, Replay, and DeepFake

Attacks

This is the 4th edition of the bi-annual ASVSpoof challenge campaign, and it also
includes the DeepFake speech detection task along with LA and PA scenarios in
ASVSpoof 2019 challenge. However, it introduces the difficulty by introducing
transmission channel and compression variability in LA scenario, and real phys-
ical spaces in PA scenario. The further details of the dataset can be studied from
Chapter 3. In [131] spectro-temporal Graph Attention Network (GAT), which
learns the relationship between acoustic cues spanning different sub-bands and
temporal intervals is proposed. The model-level graph fusion of spectral (S) and
temporal (T) sub-graphs and a graph pooling strategy (RawGAT-ST) is employed
to achieve the better performance. SELCNN network is proposed in [132], which
inserts squeeze-and-excitation (SE) blocks into a LCNN to enhance the capacity
of hidden feature selection. Then, multitask learning (MTL) frameworks is im-
plemented using SELCNN followed by the bidirectional long short-term memory
(Bi-LSTM) as the basic model. Other evidences of squeeze excitation networks can
be studied in [133,134]. In [135], the difference between the vocoder-filtered audio
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and the original audio is used as the input feature and multiple outlier detection
model is adopted as the backend classifier. In the other study, raw differentiable
architecture search system is employed for DeepFake and anti-spoofing [136].
Various data augmentation techniques over CQT are utilized in [137] for Deep-
Fake and anti-spoofing. Multiple-point input for CNNs is explored in [138]. The
interesting study, which analyzes the significance of the leading and trailing si-
lence regions, can be studied in [139]. In the other studies, Time Delay Neural
Networks (TDNN) and its variants are utilized for anti-spoofing [140, 141]. Fur-
thermore, the activation functions are analyzed for robust end-to-end spoofing at-
tack detection system in [142]. A Higher-Order Statistics Pooling (HOSP) method
for extracting the utterance-level embedding is adopted in [143]. Other studies on
ASVSpoof 2021 dataset can be studied in [144, 145].

2.6 Other Datasets Used

Other than the datasets released as a part of ASVSpoof challenge campaigns,
research community also contributed in designing the other datasets for anti-
spoofing research, such as POp noise COrpus (POCO), ReMASC, and VSDC. In
particular, POCO dataset is designed for Voice Liveness Detection (VLD), whereas
ReMASC and VSDC are designed for replay SSD task on VAs. This Section is ded-
icated to the various CM approaches developed on these datasets.

Pop noise can be utilized as acoustic signature of the live (or genuine) speaker.
To that effect, a few attempts are reported to utilize the pop noise as a signature
to detect the presence of the live speaker in front of the ASV system. In [34], au-
thors collected their own dataset and proposed two STFT-based approaches for
the VLD task. This study was extended in [62] with more detailed experimental
setup and analysis of results. In one of the approach, features are extracted from
the low frequency regions because pop noise has the low frequency characteris-
tics. In the second approach, subtraction is performed on the STFT spectrogram
obtained from pop noise and corresponding non-pop noise utterance. The study
is extended in [146,147] by selecting the pop noise-specific phonemes in the utter-
ances, and it proved to be the efficient approach for pop noise detection. Further-
more, in [148], a robust software, namely, VoicePop is designed and implemented
on smartphones for anti-spoofing, where Gammatone Frequency Cepstral Coef-
ficients (GFCC) are utilized for feature extraction. During INTERSPEECH 2020,
POCO dataset was released along with the baseline algorithm, which is specifi-
cally designed for pop noise detection [8]. Using this dataset, a few architectures
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on VLD can be studied [35, 149–152], which utilizes Modified Group Delay Func-
tions (MGDF), CQT, STFT as feature representations along with GMM, SVM, and
CNN as classifiers.

To address the replay SSD for VAs, ReMASC and VSDC datasets are developed
[9,153]. Both the datasets consist of microphone array for distant (far-field) speech
recognition. During design of the VSDC dataset, single- and multi-order replay
was also considered using drop-in feature in a VA, which will be useful to design
CM in that context [153]. The CQCC-GMM baseline is also provided along with
the dataset. In [154], cross-dataset performance is assessed for one-point and two-
point replay SSD task. One of the architecture developed on ReMASC dataset can
be studied in [12]. In addition, this thesis contributes in assessing the performance
of the proposed ETECC, CTECC, and SRCC feature sets on the ReMASC dataset.

2.7 Gap Area in the Anti-Spoofing Literature

Numerous gap research areas can be found via the literature search presented in
the earlier Sections of this Chapter. However, this thesis picks up the following
research gaps and attempts to alleviate those gaps:

• In the earlier studies, TECC feature set was proposed for SSD task [41]. In
TECC, TEO estimates the instantaneous (or running estimate of) energy of
the signal by considering the approximation sin(ω) ≈ ω, which is applica-
ble (or valid) for the lower frequencies. Whereas, the distortions introduced
due to replay mechanism is bandpass in nature, i.e., high frequency regions
are also affected in replay spoof signals. These distortions in high frequency
regions could not captured using TECC.

• The proposed CFCCIF feature set combines magnitude and phase informa-
tion and produces an efficient representation for building the CM against
VC- and SS-based spoofing attacks. Phase information is presented in the
form of Instantaneous Frequency (IF), which is extracted using HT. How-
ever, it could not estimate the IF instantaneously and requires the entire seg-
ment of the speech signal.

• The earlier proposed anti-spoofing approaches were designed for ASV sys-
tem. Whereas, the utility of the voice biometrics in VAs is increasing expo-
nentially in recent times. However, less attention is being given to develop
the CMs for anti-spoofing on VAs.
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• Intuitively, anti-spoofing can be implemented by emphasizing the charac-
teristics of the live speaker. The presence of the pop noise was utilized as
characteristics of the live speaker. The pop noise has the low frequency
characteristics, which should be effectively captured for the VLD task. In
the literature, this pop noise is tried to emphasize using STFT spectrogram,
whose resolution at low frequency region is moderate due to linear spacing
of the frequency bins.

• In MFCC, logarithmic cepstrum is utilized, which cannot be tuned based on
the system property of the speech signal. Hence, it may sometime fail to
capture the system property effectively using a lesser number of cepstral
coefficients.

2.8 Key Contributions in the Thesis

Considering the gap areas mentioned above and discussions w.r.t. contributions
in this thesis in Chapter 1, a humble attempt is made to fill these gaps in order to
improve the performance of the CMs against spoofing attacks on ASV and VAs.
To that effect, the following feature sets are proposed in this thesis:

• ETECC feature set is proposed, which is derived using the novel energy op-
erator, namely, Enhanced Teager Energy Operator (ETEO). It uses recently
introduced concept of the signal mass and estimates the energies more accu-
rately for the entire frequency range, more so, for high frequency regions.

• In proposed CFCCIF-ESA feature set, IFs are estimated using ESA. This ap-
proach of IF estimation helps to estimate the IFs more accurately and in-
stantaneously. The significant improvement is observed for CFCCIF-ESA
feature set over the existing CFCCIF feature set.

• The acoustic information in the microphone array is exploited using CTECCmax

feature set for replay SSD task on VAs. In the proposed CTECCmax frame-
work for anti-spoofing, the cross-Teager energy among the subband chan-
nels of microphone array is maximized to extract the noise distortions intro-
duced because of the acoustic environment.

• The low frequency characteristics of the pop noise is emphasized by CQT.
In particular, the parameters of the CQT are tuned to obtain the desired fre-
quency resolution in low frequency regions. The geometrical spacing be-
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tween the frequency bins of CQT helps to achieve the high frequency reso-
lution in the low frequency regions.

• SRCC feature set is proposed to effectively estimate the system information
the feature set with a less number of coefficients.

2.9 Chapter Summary

This Chapter discusses the literature search on voice anti-spoofing for ASV and
VAs. It generally includes the development of the CM systems against spoof-
ing attacks. The first profound step was taken during the first special session
in Spoofing and Countermeasures for ASV, held during INTERSPEECH 2013. After
that, four bi-annual ASVSpoof challenges were organized, which provided the
common platform to validate the performance of the CM systems. This chap-
ter provided the overview of the various approaches proposed on those datasets
including the other datasets, such as BTAS 2016, POCO, and ReMASC datasets.
Given this literature search, few research gaps were observed followed by the con-
tribution in the light of these gap areas. The next chapter discusses the details of
experimental setup used in this thesis work.
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CHAPTER 3

Experimental Setup

3.1 Introduction

This chapter discusses various components of experimental setup that are exten-
sively used in various experiments reported in this thesis. In particular, various
datasets, feature sets, classifiers, evaluation metrics, and score-level fusion strate-
gies are briefly discussed in this chapter. Various datasets, such as ASVSpoof 2015,
ASVSpoof 2017, ASVSpoof 2019, POCO, and ReMASC datasets had been utilized
in order to investigate significance of the proposed handcrafted feature sets. Fur-
thermore, CQCC, LFCC, and MFCC are explained in brief as these are the base-
line feature sets in ASVSpoof challenge campaigns during INTERSPEECH con-
ferences. In addition, TECC, Squared Energy Cepstral Coefficients (SECC), and
cepstrals have been discussed as these feature sets were utilized for comparison
with the proposed feature sets. In addition, various classifiers, such as GMM,
SVM, CNN, LCNN, and ResNet are discussed. Finally, the score-level (data) fu-
sion strategies are also discussed.

3.2 Standard Anti-Spoofing Corpora

As discussed in Chapter 2, significant efforts have been made by the ASVSpoof
challenge organizers to release standalone and statistically meaningful corpora
for anti-spoofing research. Such corpora are very important w.r.t. reproducible
research - a global concern. Until 2013, there were no standard datasets, method-
ology, or evaluation methods for anti-spoofing research and hence, this was a
serious hindrance to design an effective and consistent CM system w.r.t. repro-
ducible research. Reproducibility is a recent concern expressed by computational
researchers working in the signal processing and machine learning field [155].
In this context, the study reported in [156], inspired the special session, “Repro-
ducible Signal Processing Research", at the IEEE International Conference on Acous-
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tics, Speech, and Signal Processing (ICASSP) 2007. A study from that session by
Kovacevic [157] and a recent study in [158] revealed the reproducibility crisis and
necessary initiative towards open codes and data. In particular, research is re-
producible if all the necessary information that is related to the work, including,
but not limited to, text, data, and code is made available so that anyone, any-
where can reproduce the results at any point of time given similar computational
resources [159].

The speaker recognition, one of the potential research issue in speech signal
processing, continues to be data-driven field and so is the anti-spoofing field.
In particular, results obtained for ASV or CM/SSD systems are meaningless if
recording conditions of the corpus are not known. To that effect, the first signifi-
cant step taken towards the development of CM systems was during the first spe-
cial session in Spoofing and Countermeasures for ASV, held during INTERSPEECH
2013 [60]. One of the studies in that session discussed the need for a standard
dataset, evaluation metrics, and protocols aiming at the development of an ef-
ficient CM system for unseen environments in realistic scenarios [61]. This re-
sulted in the development of the ASVSpoof challenge campaigns. In particu-
lar, ASVSpoof 2015 challenge considered the SS- and VC-based spoofing attacks,
whereas ASVSpoof 2017 challenge considers the replay attack. Furthermore, ASVSpoof
2019 challenge considers all the three kinds of attacks in two scenarios, namely, LA
and PA. The LA-scenario includes state-of-the-art SS- and VC-based approaches
during those time, and the PA-scenario consists of simulated replay attack. ASVSpoof
2019 challenge includes the DeepFake challenge in addition to the LA and PA sce-
narios in ASVSpoof 2019 dataset. Here, we first discuss details of various corpora
used in this thesis.

3.2.1 ASVSpoof 2015 Challenge Dataset

This dataset was developed for ASVSpoof 2015 Challenge campaigns, which is
organized during INTERSPEECH-2015 to address the SS- and VC-based spoof-
ing attacks.1 The genuine speech samples are recorded from a total of 106 sub-
jects, which consists of 45 male and 61 female speakers. Genuine utterances are
collected with minimum background and transmission channel noise. Ten differ-
ent algorithms of SS and VC (details given in Table 3.2) are utilized to generate
spoofed speeches [2, 160].

These spoofed signal classes are labelled as S1, S2, ..., S10. Among these, train-

1The ASVSpoof 2015 dataset along with the standard protocols is publicly available at
https://datashare.ed.ac.uk/handle/10283/853 {Last Accessed: June 1, 2022}.
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Table 3.1: Statistics of the ASVSpoof 2015 Challenge Dataset Partition. After [2].

Subset
# Speakers # Utterances Spoofing
M F Genuine Spoof Approaches

Train 10 15 3750 12625 S1 to S5
Dev 15 20 3497 49875 S1 to S5
Eval 20 26 9404 184000 S1 to S10

Dev = Development, Eval = Evaluation.

Table 3.2: Spoofing Algorithms Implemented in the ASVSpoof 2015 Challenge
Dataset. After [2].

Subset
# Utterances

Vocoder
Spoofing

Train Dev Eval Algorithm

Genuine 3750 3497 9404 None None
S1 2525 9975 18400 STRAIGHT VC
S2 2525 9975 18400 STRAIGHT VC
S3 2525 9975 18400 STRAIGHT SS
S4 2525 9975 18400 STRAIGHT SS
S5 2525 9975 18400 MLSA VC
S6 0 0 18400 STRAIGHT VC
S7 0 0 18400 STRAIGHT VC
S8 0 0 18400 STRAIGHT VC
S9 0 0 18400 STRAIGHT VC

S10 0 0 18400 None SS

ing and development (Dev) subsets uses S1 to S5 algorithms, whereas evaluation
(Eval) subset includes S1 to S10. As the spoofing algorithms in the Dev set are
seen by the training model of SSD system, these spoofing attacks are called as
known attacks. Whereas the spoofing algorithms not seen by the training model
in the Eval set are known as unknown attacks. Among these spoofing algorithms,
S3, S4, and S10 uses speech synthesis algorithms, and the others are VC-based
approaches. S1-S9 uses vocoder-based algorithms, and S10 uses unit selection-
based approach for speech synthesis. Two vocoders, namely, STRAIGHT [161]
MLSA [162, 163], are utilized to implement vocoder-based algorithm. The details
of these spoofing algorithms can be studied in [2]. The statistics of the partition
of ASVSpoof 2015 dataset into training, Dev, and Eval set is provided in Table 3.1.
Furthermore, the statistics of the partition of the dataset w.r.t. spoofing algorithms
is shown in Table 3.2.
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Table 3.3: Statistics of the ASVSpoof 2017 Dataset for the Environment-
Independent Case. After [3].

Subset # Spk
Utterances

Environments
Genuine Spoof

Train 10 1507 1507 E3, E6
Dev 8 760 950 E3, E5, E6
Eval 24 1298 12008 E1 - E7

Total 42 3565 14465
E1: Anechoic Room, E2: Analog Wire, E3: Balcony, E4:

Canteen, E5: Home, E6: Office, E7: Studio, Spk: Speaker

Table 3.4: Distribution of Spoof Speech Utterances Among the Environments in
ASVSpoof 2017 Dataset

Environment # Utterances Environment # Utterances
Anachoic 748 Canteen 3517

Analog Wire 543 Office 7565
Balcony 1184 Studio 342
Home 570 - -

- : Not applicable

3.2.2 ASVSpoof 2017 Challenge Dataset

This dataset was released for ASVSpoof 2017 challenge organized during INTER-
SPEECH 2017, and later it was made publicly available [164]. However, data
anomalies, such as silence regions and zero values (i.e., artificial silence regions),
have been noticed by the challenge organizers and then these anomalies are fixed
in the second version of the dataset, which is known as ASVSpoof 2017 Version 2.0
dataset [3] 2. In this dataset, genuine utterances are selected from the RedDots cor-
pus, which is designed for text-dependent ASV using ten prompt sentences [165].
Replay spoof signals are generated in 177 sessions using various acoustic envi-
ronments and heterogeneous devices. The standard partition of the dataset into
training, Dev, and Eval is done as shown in Table 3.3 [3]. The dataset comprised of
61 distinct replay configurations, which are a combination of a playback device, a
recording device, and an acoustic environment.

These configurations pose varying amount of difficulty to detect the replay
spoof speech signal and hence, poses the varying threat depending upon the re-
play configurations. ASVSpoof 2017 dataset is collected in a total of 26 different

2The ASVSpoof 2017 V2.0 dataset along with protocols and extended metadata is available
online at https://datashare.ed.ac.uk/handle/10283/3055 {Last Accessed: June 1, 2022}.
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acoustic environments. The two balcony and one canteen are high ambient noise
environments, which are relatively easy for SSD and hence, it produces low threat
to the ASV system. The eight home and ten office conditions consists medium
ambient noise-level and hence, produce medium-level threat to the ASV system.
However, an anachoic room, studio, and analog wire recordings exhibit very low
additive noise and hence, poses the graver threat to ASV system. The distribution
of the spoof utterances among the various environments is shown in Table 3.4.
Furthermore, 26 playback devices with varying quality are utilized. These play-
back devices may be consumer grade replay devices with smaller loudspeakers
(i.e., low threat), consumer grade replay devices with larger loudspeakers (i.e.,
medium threat), and professional audio equipments (i.e., graver threat). Replay
samples are recorded with 25 various recording devices, and categorized into low,
medium, and graver threats, depending upon the quality of recording device. In
addition, it can be observed that the replay environments, which poses the graver
threats, are included in the Eval set so that the CM models can be assessed on
difficult unknown attacks.

The experiments are also performed for environment-dependent scenario on
ASVSpoof 2017 dataset, where target environment is seen by the defense model.
In this case, training and testing are performed on each individual environment.
The distribution of the number of spoof speech utterances for each environment is
varying and shown in Table 3.4. To develop an individual environment-dependent
SSD system, half of the spoofed speech utterances for the corresponding environ-
ment were chosen for training, whereas the remaining half were used for testing
the model performance. To train the genuine and the spoofed speech models, an
equal number of utterances were selected.

3.2.3 ASVSpoof 2019 Challenge Dataset

ASVSpoof 2019 challenge considers all the three major spoofing attacks, namely,
SS, VC, and replay spoofing attacks [4]. However, this challenge is explored in
two scenarios, namely, PA and LA. PA addresses the replay spoofing attacks,
whereas LA addresses SS- and VC-based spoofing attacks3. Though ASVSpoof
2019 dataset considers a similar kind of spoofing attacks as that of ASVSpoof 2015
and ASVSpoof 2017 challenge campaigns, there are important modifications per-
formed in 2019 edition than the previous challenges. In ASVSpoof 2015 challenge,
traditional vocoders, such as STRAIGHT and MLSA, were utilized for the gener-

3The ASVSpoof 2019 dataset, along with its protocols, is available at
https://datashare.ed.ac.uk/handle/10283/3336 {Last Accessed: June 1, 2022}.
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Table 3.5: Statistics of the ASVSpoof 2019 Dataset. After [4].

# Speakers # Utterances

# Subset # Male # Female
Logical Access (LA) Physical Access (PA)
# Bonafide # Spoof # Bonafide # Spoof

Train 8 12 2580 22800 5400 48600

Dev
8 (4 target, 12 (6 target,

2548 22296 5400 24300
4 non-target) 6 non-target)

Eval
30 (21 target, 37 (27 target,

7355 63882 18090 116640
9 non-target) 10 non-target)

ation of SS and VC spoofs. Whereas in ASVSpoof 2019 challenge dataset, neural
network-based vocoders are utilized, which produces (or synthesize) the voice
comparable to that produced by the humans. In ASVSpoof 2017 challenge, the
speech signal recordings are of real replayed spoofing attacks. The use of uncon-
trolled setup in ASVSpoof 2017 challenge made it difficult to analyze the results.
Whereas, ASVSpoof 2019 PA dataset consists of replay attacks simulated using a
range of real replay devices and carefully controlled acoustic conditions. This con-
trolled setup brings new insights into the replay spoofing problem w.r.t. possible
analysis of performance of SSD system for real vs. simulated replay. ASVSpoof
2015 and ASVSpoof 2017 editions of ASVSpoof challenge focused on the devel-
opment and assessment of standalone CMs, whereas ASVspoof 2019 challenge
adopted for the first time a new ASV-centric performance metric in the form of
the tandem Detection Cost Function (t-DCF).

The ASVSpoof 2019 dataset is adapted using Voice Cloning Toolkit (VCTK)
corpus [166], which is recorded in a hemi-anechoic chamber at a sampling rate
of 96 kHz. The speech signals in VCTK corpus are downsampled to 16 kHz
with a resolution of 16 bits-per sample, and considered as genuine speech sig-
nals in ASVSpoof 2019 dataset. The speakers are partitioned into the training,
Dev, and Eval sets in ASVSpoof 2019 dataset as shown in Table 3.5. Furthermore,
the Multi-speaker Multi-style Voice Cloning Challenge (M2VoC) was organized
during ICASSP 2021, which provides a common sizable dataset as well as a fair
testbed for the benchmarking of the popular voice cloning task [167]. The goal of
this challenge is to adapt an average Text-to-Speech (TTS) model to the stylistic
target voice with limited data from the target speaker, evaluated by speaker iden-
tity and speaking style similarity. The challenge consists of two tracks, namely,
few-shot track and one-shot track, where the participants are required to clone
multiple target voices with 100 and 5 samples, respectively.
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Table 3.6: Algorithms for LA Spoofing Systems. Here, ∗ Indicates Neural
Network-Based Algorithm. After [4].

Algorithm Input Waveform Generator
A01 Text WaveNet∗ [168]
A02 Text WORLD [169]
A03 Text WORLD
A04 Text Waveform Concat.
A05 Speech (human) WORLD
A06 Speech (human) Spectral Filtering + OLA
A07 Text WORLD
A08 Text Neural Source-Filter∗

A09 Text Vocaine
A10 Text WaveRNN∗

A11 Text Griffin-Lim
A12 Text WaveNet∗

A13 Speech (TTS) Waveform Filtering
A14 Speech (TTS) STRAIGHT
A15 Speech (TTS) WaveNet∗

A16 Text Waveform Concat.
A17 Speech (human) Waveform Filtering
A18 Speech (human) MFCC Vocoder
A19 Speech (human) Spectral Filtering + OLA

3.2.3.1 Logical Access (LA)

In this scenario, fraudulent person tries to attack by gaining the access of the ASV
system. For example, in telephone banking, an attacker may acquire the access
and try to breach the ASV using the digital copy of the voice of the authentic
speaker. It includes the SS- and VC-based attacks, which can be performed post-
sensor. The SS and VC technologies are exploited to transform the given text and
voice, respectively, to the target speaker. The statistics of the ASVSpoof 2019 LA
dataset is shown in Table 3.5 [4]. The spoof utterances in training and Dev sets are
generated using four TTS and two VC algorithms. Here, spoofing utterances in
the Dev set uses the similar algorithms as that of the training set. Hence, Dev set
comprises known attacks. Spoofed samples in Eval set are generated using 7 TTS
and 6 VC algorithms, where 2 algorithms are utilized for known attacks, and 11
algorithms are utilized for unknown attacks. In total, 19 TTS and VC algorithms
are utilized, denoted as A01 to A19, are described in brief as shown in Table 3.6.
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Table 3.7: Parameter Settings for Acoustic Configurations to Generate Simulated
Replay Spoofs ASVSpoof 2019 Challenge Dataset. After [5].

a b c
Room Size (in m2) 2-5 5-10 10-20

T60 (in ms) 50-200 200-600 600-1000
Talker-to-ASV Distance (in cm) 10-50 50-100 100-150

Table 3.8: Parameter Settings for Replay Configurations in ASVSpoof 2019 Chal-
lenge Dataset. After [5].

A B C
Da (in cm) 10-50 50-100 >100

(Q) perfect high low

3.2.3.2 Physical Access (PA)

The replay spoof speech signals are generated with various acoustic and replay
configuration parameters. The grading of the acoustic configuration parameters,
such as room size, reverberation time in T60, and talker-to-ASV distance, is shown
in Table 3.7. Whereas, grading of the replay configuration parameters, such as
attacker-to-talker recording distance (Da) and loudspeaker quality (Q), is shown
in Table 3.8. The statistics of the partition of the utterances into training, Dev, and
Eval set, are shown in Table 3.5. The partition of the speakers is similar to that of
LA scenario.

3.2.4 ASVSpoof 2021 Challenge Dataset

This dataset was released during a satellite event of INTERSPEECH 2021 for de-
veloping countermeasures for ASV systems [170]. This dataset aims to develop
generalized countermeasures against LA, PA, and DeepFake attacks. Furthermore,
the ASVSpoof 2021 dataset is partitioned into training, Dev, and Eval sets, where
the training and Dev sets are the same as that of ASVSpoof 2019 dataset. However,
the Eval set of ASVSpoof 2021 challenge contains new utterances. In particular, for
LA scenario, Eval set utterances are generated by transmitting genuine utterances
across VoIP networks. This results in the presence of coding and transmission
artifacts, but no additive noise. The PA Eval set predominantly contains real re-
played speech. However, a small proportion of simulated replay is also present.
These factors are similar to that of ASVSpoof 2019, but are more comprehensive.

Furthermore, the ASVSpoof 2021 dataset additionally introduced speech Deep-
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Fake data for the first time in the anti-spoofing literature. The DF evaluation data
is a collection of bonafide and spoofed speech utterances processed with different
lossy codecs, namely, mp3, m4a, and ogg, which are used typically for media stor-
age. Audio data is encoded and then decoded to recover uncompressed audio.

The DeepFake dataset is generated using TTS and VC algorithms. The LA
subset also uses the TTS and VC utterances, however the DeepFake utterances
include compressed data (rather than telephony). The compression methods in-
clude mp3 and m4a.

3.2.5 Biometrics: Theory, Applications, and Systems 2016 (BTAS

2016) Dataset

This dataset was released for the speaker anti-spoofing competition during IEEE
International Conference on Biometrics: Theory, Applications, and Systems (BTAS
2016) [7]. It considers all the major types of spoofing attacks, namely, replay, SS,
and VC. 4BTAS 2016 dataset uses AVSpoof dataset [6]. Genuine utterances in
BTAS 2016 dataset are recorded from the 44 subjects, which consists of 31 males
and 13 females. The recording is performed in 4 sessions over the period of
2 months, with varying recording setups and environmental conditions. Three
types of recording devices, namely, laptop using microphone AT2020USB+, Sam-
sung Galaxy S4 phone, and iPhone 3GS are utilized for the genuine speech signal
recording, which consists of 3 types: (1) reading part of 10 or 40 pre-defined sen-
tences read by subjects (read), (2) pass-phrases part of 5 short prompts read by
subjects (pass-phrases), and (3) free speech part of a free speech about any topic
for 3 to 10 minutes (free). The details of the BTAS 2016 dataset recordings w.r.t.
the session and recording type is shown in Table 3.9. The statistics of the dataset
w.r.t. replay configuration is shown in Table 3.10. It can be observed that the train-
ing and Dev set consists of the similar kind of spoofing attack algorithms. Hence,
known attacks are present in the Dev set. However, the test set consists of two
unseen replay attacks, which are known as unknown attacks.

3.2.6 POp noise COrpus (POCO)

Since the past 08 years, significant amount of work has been done in the SSD
literature for ASV task. However, detection of live speech has only been paid

4The BTAS 2016 dataset is available at https://www.idiap.ch/en/dataset/avspoof {Last Accessed:
June 1, 2022}.
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Table 3.9: Statistics of the BTAS 2016 Dataset w.r.t. the Session and Recording
Type. After [6].

Recording
Session 1 Session 2-4 Total

type
read 10 sentences 40 sentences 25.96 hours

pass-phrases 5 10 4.73 hours
free ≥ 5 min ≥ 3 min 38.51 hours

Table 3.10: Number of Utterances in BTAS 2016 Dataset. Acronyms in this Table
Stands for the Following Terms: SS- Speech Synthesis, VC- Voice Conversion,
RE- Replay, LP- Laptop, PH1- Samsung Galaxy S4 Phone, PH2- iPhone 3GS,
PH3- iPhone 6S, HQ- High Quality Speakers. After [7].

Train Dev Test
Genuine 4973 4995 5576

Spoof 38580 38580 44920
SS-LP-LP 490 490 560

SS-LP-HQ-LP 490 490 560
VC-LP-LP 17400 17400 19500

VC-LP-HQ-LP 17400 17400 19500
RE-LP-LP 700 800 800

RE-LP-HQ-LP 700 800 800
RE-PH1-LP 700 800 800
RE-PH2-LP 700 800 800

RE-PH2-PH3 - - 800
RE-LPPH2-PH3 - - 800

- : Not Applicable

attention to recently, by using the recent standard corpora, POCO [8] 5. For live-
ness detection of speech, pop noise is utilized as a characteristic of live speech.
Pop noise is produced due to the breathing effects captured by the microphone.
If microphone in ASV system is assumed to be placed close to the genuine/live
speaker, then it is able to capture the pop noise effectively. Therefore, pop noise
becomes a suitable acoustic feature for distinguishing a live speech from a spoof
(especially replayed) speech signal. To that effect, the POCO dataset is developed
to investigate the voice liveness detection for ASV.

The POCO dataset consists of speech recordings of 66 speakers (32 male and
34 female) aged from 18 to 61 years, with varying levels of English language flu-
ency and accent. The dataset is recorded with 22050 Hz sampling frequency and a

5The POCO dataset can be found at https://github.com/aurtg/poco {Last Accessed: June 1, 2022}.
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bit-depth of 16-bits. The dataset is organized into three parts, namely, Recording
with microphone A (RC-A), Eavesdropping (RP-A), and Recording with micro-
phone array (RC-B). These parts differ from each other in number of microphones,
type of microphone(s) used, and presence/absence of pop filter. The details of
these 3 parts of the dataset are given in Table 3.11. The subset RC-A represents
live speaker recordings having pop noise. The subset RP-A consists of emulated
scenario of spoofed speech by using pop filter to eliminate/diminish pop noise.
While RC-A and RP-A consists of speech data captured by a single microphone,
the subset RC-B consists of speech data captured by an array of 15 microphones.
Like the RC-A subset, the RC-B subset also doesn’t use pop filter and hence, cor-
responds to the live speech. Speech signals in RC-B set are recorded in 3 settings
w.r.t. speaker-microphone distances, namely, 5 cm, 10 cm, and 20 cm. The ef-
fect of human breath on the microphone depends on the uttered phoneme type.
Thus, the POCO dataset is collected such that it consists of speech recordings of 44
words corresponding to 44 phonemes in the English language, as shown in Table
3.12.

Table 3.11: The Three Subsets of POCO Dataset. After [8].

Subset
Microphone

Name
Microphone

Directionality
Number of

Microphones

Distance of Speaker
from the Microphone

(in cm)
Pop Filter

RC-A
Audio-Technica

AT4040
Cardoid 1 10 No pop filter used

RP-A
Audio-Technica

AT4040
Cardoid 1 10 TASCAM TM-AG1

RC-B
Audio-Technica

AT9903
Omnidirectional 15 5, 10, and 20 No pop filter used

For each of the recording setting (RC-A, RP-A, RC-B (5 cm), RC-B (10 cm),
and RC-B (20 cm)), each word shown in Table 3.12 was repeated 3 times by every
speaker. Furthermore, in the case of RC-B setting, where multiple microphones
were used, all the microphones were tuned independently so that the maximum
volume remained below the threshold of −6 dB. The standard partition is not
provided by the organizers and hence, experiments using this dataset can be con-
ducted by considering non-overlapping training and testing subsets.
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Table 3.12: The Set of Words Utilized in POCO Dataset. After [8].

44 Words in the POCO Dataset
about arm laugh bird bug busy chair
chip dad division end exaggerate fat five

funny gun his honest hop join kit
leather live monkey open paw pay pin

pink quick summer sham shout sit spider
steer run thong tip tourist who wolf
you be

Table 3.13: Microphone Array Settings for ReMASC Dataset. After [9].

Device D1 D2 D3 D4

Model
Google

AIY
Respeaker
4 Linear

Respeaker
V2

Amlogic
113X1

Sample
Frequency

44100 44100 44100 16000

Number of
Channel

2 4 6 7

Bit Depth 16 16 32 16
Microphone

Array Structure
2-Mic
Linear

4-Mic
Linear

6-Mic
Circular

6-Mic Circular
& 1 Central Mic

Table 3.14: Statistics of the ReMASC Dataset w.r.t. Various Acoustic Environ-
ments. After [9].

Environment # Subjects # Genuine # Spoof
Outdoor 12 960 6900
Vehicle 10 3920 7644

Indoor-1 23 2760 23104
Indoor-2 10 1600 7824

3.2.7 Realistic Replay Attack Microphone Array Speech Corpus

(ReMASC)

ReMASC corpus is specifically designed to develop the CMs for VAs [9]6. There
are important differences between ASV and VAs, primarily, the distance between
the speaker and the microphone is larger in VAs. Furthermore, VAs utilize a mi-
crophone array as opposed to the single microphone in ASV. In the ReMASC
dataset, 132 voice commands are used. These voice commands consists of 273
unique words for phonetic diversity. The number of speakers in the dataset are
50, among which 22 are female speakers, and 28 are male speakers. Furthermore,

6This dataset is publicly available at https://github.com/YuanGongND/ReMASC {Last Accessed:
June 1, 2022}.
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Table 3.15: Statistics of the Subset of the ReMASC Dataset Partitioned into Three
Subsets. After [9].

Training Dev Eval
Genuine 2820 924 3308

Spoof 7392 1884 9203
Total 10212 2808 12511

36 speakers are native speakers of English language, 12 are Chinese native speak-
ers, and 2 are Indian speakers. The speech data is collected for 4 systems, details
of which are shown in Table 3.13. Furthermore, to study the effect of record-
ing device in replay attack, one low quality (iPod Touch (Gen5)), and one high
quality recorder (Tascam DR-05) is used. It is observed that even with Tascam
DR-05, channel and background noise are unavoidable. To that effect, for addi-
tional replay source recordings, Google TTS is used, which is free from transmis-
sion channel and background noise. For playback, 4 devices are used: A) Sony
SRSX5, B) Sony SRSX11, C) Audio Technica ATH-AD700X headphone, and D)
iPod Touch. Moreover, an additional playback device is used in the vehicular en-
vironment as the built-in vehicular audio system. The ReMASC data is recorded
in 4 types of environments, namely, outdoor environment, vehicle environment,
indoor environment-1, and indoor environment-2. The statistics of the dataset
along with corresponding environments is shown in Table 3.14.

For this dataset, standard partition, protocols, and performance evaluation
metrics are not provided by the dataset organizers. However, in this thesis, we
have utilized the ReMASC dataset, which consists of ∼25500 of utterances that
are partitioned into three subsets, namely, training, Dev, and Eval sets. The cor-
responding statistics are shown in Table 3.15. Notably, the partition is disjoint in
terms of the speakers and the data distribution among the environments is non-
uniform. Various datasets designed for various spoofing attacks are summarized
in Table 3.16.

3.3 Existing Feature Sets

In this thesis, results for the proposed feature sets are compared with existing
state-of-the-art feature sets, such as CQCC, MFCC, LFCC, SECC, and TECC. The
proposed feature sets are described in subsequent chapters. However, the var-
ious state-of-the-art feature sets, which are repeatedly explored along with the
proposed feature sets for performance comparison, are described next:
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Table 3.16: Summary of Various Datasets Utilized in this Thesis.

Dataset Spoofing Attacks Remark
ASVSpoof 2015 SS and VC Vocoders and USS

BTAS 2016 SS, VC and Replay Common Consumer Grade Devices

ASVSpoof 2017 Real Replay
Real Replay using Common

Consumer Grade Devices

ASVSpoof 2019
SS, VC (LA) Adavanced NN-based SS and VC,

Simulated Replay (PA) Simulated (Controlled) Replay

ASVSpoof 2021
DeepFake Processed with Different Lossy Codecs

LA Channel and Compression Variability
PA Real, Variable Spaces

ReMASC Real Replay For VAs
POCO Simulated Replay VLD
VSDC Multi-Order Replay For VAs

3.3.1 CQCC

This feature set is derived from CQT, which is well known for the analysis of
speech signal. In STFT, central frequencies of the subband filters are linearly-
spaced, whereas in CQT, they are geometrically-spaced. The CQT is perceptually-
motivated based on Weber’s law, which states that the change in a stimulus that
will be just noticeable is a constant ratio of the original stimulus. When this law
is applied to the perception mechanism of the sound, then it gives higher fre-
quency resolution at lower frequency regions, and lower frequency resolution at
high frequency regions [171]. CQT maintains a constant Q-factor for all the sub-
band filters. Uniform sampling is performed on CQT followed by DCT to derive
CQCC feature set [172]. The details of the CQT are discussed in Chapter 5.2.3,
where it is used for VLD. The parameters of the CQT can be tuned based on the
application. To develop the CM system for ASV, CQCC features are extracted by
setting the maximum frequency to Nyquist rate, and minimum frequency at 15
Hz. The number of bins per octave is set to 96. Features are extracted with 30
DCT static coefficients (with log-energy) appended by ∆ and ∆∆, resulting in a
total 90-D feature vector.

3.3.2 Cepstral Feature Sets

This feature set is extracted from the log-magnitude spectrogram followed by
DCT. The Nyquist frequency range in log-magnitude spectrogram is extracted by
using 257 frequency bins. 40 coefficients are retained as the static coefficients with
∆ and ∆∆ coefficients appended to it in order to form the 120-D cepstral feature
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set.

3.3.3 MFCC and LFCC

MFCC is proved to be one of the most successful feature set in a wide range of
speech technology applications including speech and speaker recognition. It also
mimics the auditory representation, such as CQCC. The windowed speech sig-
nal is processed through Fourier transform to produce STFT. The weighted sum
is performed for each Mel scale subband filter. Then, DCT is applied and de-
sired number of cepstral coefficients are extracted to get MFCCs. In this thesis,
we have used 40 Mel scale subband filters for feature extraction. 13-D and 40-D
static coefficients have been extracted for various experiments. For the SSD task,
LFCC is found to be a successful feature set, which is used as a baseline feature
set for ASVSpoof 2019 challenge [5,76]. In case of LFCC, Mel scale filterbank is re-
placed by linear-scale filterbank, where central frequencies of the subband filters
are linearly-spaced. LFCCs are extracted with 40 linear-scale subband filters. All
40 cepstral coefficients are retained and appended with ∆ and ∆∆ coefficients to
form 120-D LFCC feature set.

3.3.4 TECC and SECC

In this thesis, enhanced-TEO and cross-TEO-based feature sets, namely, ETECC
and CTECC are proposed for SSD task. Enhanced-TEO and cross-TEO are the
modifications of TEO [173]. Hence, for fair comparison, the performance of the
proposed feature sets are compared against TEO- and squared energy operator-
based, TECC and SECC feature sets. Except for the energy estimation approach,
the remaining procedure for the extraction of TECC and SECC feature sets is sim-
ilar to that of ETECC feature set as explained in Chapter 4, Section 4.4.2.

3.4 Classifiers Used

3.4.1 Gaussian Mixture Model (GMM)

GMM is a type of clustering, where each cluster has a shape of Gaussian distribu-
tion. The probability density function (pd f ) for a univariate Gaussian distribution
is given [174]:

f (x) =
1

σ
√

2π
e−

1
2

(
x−µ

σ

)2

, (3.1)
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where µ and σ are the mean and variance of a Gaussian distribution, respectively.
Here, we have soft decisions, i.e., a certain probability is assigned to a particular
data point for its belonging to a specific cluster. This means each data point could
belong to any distribution with a corresponding probability. To estimate this type
of model, Expectation Maximization (EM) algorithm is employed. The EM al-
gorithm is exploited in GMM to find out the Maximum Likelihood Estimation
(MLE) parameters for the given data. In EM algorithm, first the Gaussian dis-
tribution is utilized to obtain random clusters for initialization of the algorithm.
After that, the probabilities of each data point for belonging to a particular cluster
is calculated. Using this probability information, the clusters are re-estimated by
updating their means and variances.

GMM for genuine (natural) speech (λn) is trained using genuine utterances,
whereas GMM for spoofed speech (λs) is trained using spoofed utterances from
the training set. Now, these trained GMMs are used for testing purpose. The final
scores for the extracted features (X) of the test utterance, are calculated in terms
of log-likelihood ratio (LLR) as follows:

LLR = log(p(X|λn))− log(p(X|λs)), (3.2)

where p(X|λn) and p(X|λs) are the likelihood scores obtained using GMM for
genuine and spoofed utterances, respectively. The obtained scores help to classify
whether the unknown sample belongs to the natural or spoofed class.

3.4.2 Support Vector Machine (SVM)

In Chapter-4 and Chapter-5, SVM is utilized as a classifier for experiments. SVM
is a non-probabilistic binary linear classifier, as it assigns any new data point di-
rectly to one of the classes. The SVM gives an optimal hyperplane, given labeled
training data, which categorizes new examples [174]. Consider a linear model
given by:

z(x) = wTψ(x) + b, (3.3)

where w represents the weight vector, ψ(x) represents the fixed feature space
transformation, and b represents the bias. We are interested to obtain all the data
points correctly classified, i.e., tny(xn) > 0. Here, xn represents the nth input
data point, y(xn) represents the output, and tn represents the corresponding tar-
get value, which takes value -1 and 1. If the data point is correctly classified, then
tny(xn) will always be positive. Furthermore, the distance (d) between the data
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point xn, and decision hyperplane is given by [174] :

d =
tnz(xn)

||w|| =
tn(wTψ(xn) + b)

||w|| . (3.4)

Now, the margin is given by the perpendicular distance of the hyperplane to the
closest data point, xn. Here, the motive is to optimize the parameter w and b
in order to maximize this distance. Hence, the solution for maximum margin is
given by [174] :

arg max
w,b

[ 1
||w|| min(tn(wTψ(xn) + b))

]
. (3.5)

This optimization problem is further evaluated by use of Lagrange theorem to
obtain the optimum hyperplane for classification purpose [174].

If the given data is not linearly separable, then the kernel trick is used for
transformation of data into a suitable form for the classification task [174]. This
transformation in SVM is motivated by the Cover’s theorem, which states that
given a set of training data that is not linearly separable, one can transform it into
a training set that is linearly separable by projecting it into a higher-dimensional
space via some non-linear transformation [175]. We have used 2-class linear ker-
nel for the classification task. Furthermore, the regularization parameter instructs
the SVM optimization about the maximum limit of misclassifying each training
example, i.e., how much it can misclassify. For large values of regularization pa-
rameters, a smaller margin hyperplane will be chosen by the optimizer if that
hyperplane does a better job of getting all the training points classified correctly.
On the other hand, a very small value of regularization parameter will direct the
optimizer to look for a larger-margin separating hyperplane, even if that hyper-
plane misclassified more points. In this thesis, L2 regularization is used along
with hinge loss for "maximum-margin" classification [176].

3.4.3 Convolutional Neural Network (CNN)

CNN are a special type of neural networks that processes data in a grid topology
[177]. Rather than the conventional matrix multiplication, CNNs use convolution
operation in their structure. In deep learning, a convolution operation is applied
on a multi-dimensional input array using a multi-dimensional kernel. The Kernel
is kept smaller than the size of the input and slides over the entire input during
its operation. In this way, convolution operation accomplishes parameter sharing
resulting in the need of lesser parameters and hence, lesser memory requirement
for a specific task. Let the features extracted from the speech signal is denoted
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as X ∈ Rf x t x c, where t, f, and c are time index, frequency index, and number
of input channels, respectively, convolution is done using a weight matrix W ∈
Rm x m, which transforms the matrix into X1 ∈ R(f-m+1) x (t-m+1) x c1

, where c1 is the
number of output channels. Generally, the convolution operation is followed by a
pooling operation that reduces the variability arising in the input. Studies suggest
that deep learning architectures are more capable to exploit the discriminative
features and use them to get trained for classifying the unknown speech signal
accurately. Hence, CNN is used as a classifier for VLD, SS, and VC-based SSD
task.

3.4.4 Light-CNN

The LCNN architecture is employed in this thesis since it is one of the successful
architectures for replay SSD task [17, 112]. LCNN architecture uses Max-Feature-
Map (MFM) activation operation, which is a special case of max-out, for learning
with a few parameters [178]. MFM utilizes competitive selection strategy, which
plays the role of efficient feature selection. MFM function is defined as [178]:

yk
ij = max(xk

ij, xk+ N
2

ij ), (3.6)

where the number of channels of the input convolution layer is 2N, (1 ≤ k ≤ N),
(1 ≤ j ≤ W), and (1 ≤ i ≤ H). Here, i and j indicate the feature component and
frame number, respectively. Each convolution layer is a combination of two inde-
pendent terms previously calculated from the input layer’s output. The MFM ac-
tivation function is used then to calculate element-wise maximum of those parts.
Max-pooling layers with an optimum size of the kernel and stride is used for di-
mensionality reduction.

3.4.5 Residual Neural Networks (ResNet)

ResNets are one of the popular DNN-based classifiers and introduced to take the
advantage of DNN by integrating the high/mid/low-level features. DNN ar-
chitectures are generally facing the problem of vanishing/exploding gradients
and could not learn the fine high-level features and hence, affecting the perfor-
mance of the system. To alleviate this issue, ResNets are introduced, which uti-
lizes the identity mapping as shown in Figure 3.1 [18]. In Figure 3.1, F(y) repre-
sents the mapping of input signal y by the block of convolutional layers. Identity
mapping allows to stack more number of layers without introducing the vanish-
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Figure 3.1: Residual Learning: A Building Block. After [18].
.

ing/exploding gradients and permits the possibility of smooth convergence. The
increase in layers of DNN allow to learn high-level features and thus, improving
the performance of the system. ResNets are utilized in this study as they are one
of the successful architectures for SSD task in ASVSpoof 2019 and ASVSpoof 2021
challenge campaigns [108, 134, 142–145]. In this thesis, ResNet architecture is em-
ployed for pop noise detection and severity-level classification of the dysarthric
speech.

3.5 Performance Evaluation Metrics

For evaluation of the SSD and VLD systems, various performance measures have
been employed, namely, Equal Error Rate (EER), t-DCF, % classification accu-
racy, and Area Under the Curve (AUC). These performance metrics are briefly
explained as follows:

3.5.1 Equal Error Rate (EER)

The LLR scores obtained from CM system is used to compute % EER. The EER
is derived from the detection error trade-off (DET) curve, which represents the
performance on detection tasks that involve the trade-off of error types [179]. In
SSD task, there are two types of errors, i.e., false alarm rate (Pf a(s)) and miss rate
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(Pmiss(s)). For arbitrary threshold s, these error rates are defined as:

Pf a(s) =
Number of spoofed trials with score > s

Total number of spoofed trials
, (3.7)

Pmiss(s) =
Number of genuine trials with score ≤ s

Total number of genuine trials
. (3.8)

The EER refers to the threshold sEER at which both the error rates are equal. In
particular,

EER = Pf a(sEER) = Pmiss(sEER). (3.9)

3.5.2 tandem - Detection Cost Function (t-DCF)

We also utilized the other performance metric called t-DCF, which allows the joint
(tandem) evaluation of the SSD and ASV systems [30]. Hence, it will require the
LLR score-values from SSD as well as ASV systems. As the ASV system scores
for ASVSpoof 2019 challenge dataset are provided by the challenge organizers,
we used t-DCF for the evaluation of this dataset. The t-DCF is the extension of
the Detection Cost Function (DCF), which was used in the NIST challenges [180].
DCF requires the values of target priors, costs for missing the target (Cmiss), false
alarm (C f a), and error probabilities (Pmiss and Pf a) of ASV system. t-DCF takes
into account all these parameters for both SSD and ASV systems. With cascade
or parallel arrangement of SSD and ASV systems, there are six possible action
pairs based on acceptance or rejection by the combined SSD and ASV systems.
Proposition set represents actual states of the nature consists of three classes, i.e.,
target, non-target, and spoof speech utterances, which will have their own prior
as πtar, πnon, and πspoo f , respectively. Let Casv

f a and Casv
miss represents the cost of

ASV system accepting a non-target trial and rejecting a target trial. Also, Ccm
f a

and Ccm
miss represent the cost of SSD system accepting a spoof trial and rejecting

a human trial, respectively. Error probabilities of the ASV and SSD systems are
independent. Hence, their joint error probability is the multiplication of the two
independent error probabilities. Let s and t be the thresholds for the SSD and ASV
systems, respectively. Then, error probabilities of various errors can be obtained
as [30]:

• SSD does not miss the genuine speech and ASV rejects the target:

Pa(s, t) = (1 − Pcm
miss(s)) · Pasv

miss(t). (3.10)
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• SSD does not miss the genuine speech and ASV accepts the non-target:

Pb(s, t) = (1 − Pcm
miss(s)) · Pasv

f a (t). (3.11)

• SSD passes the spoof speech and ASV does not miss the target:

Pc(s, t) = Pcm
f a (s) · (1 − Pasv

miss,spoo f (t)). (3.12)

• SSD misses the genuine speech:

Pd(s) = Pcm
miss(s). (3.13)

By computing the priors, error probabilities and costs, t-DCF is defined as:

t − DCF(s, t) = Casv
miss · πtar · Pa(s, t) + Casv

f a · πnon · Pb(s, t)+

Ccm
f a · πspoo f · Pc(s, t) + Ccm

miss · πtar · Pd(s). (3.14)

The summary of t-DCF computation for ASV and CM system is systematically
demonstrated in Figure 3.2.

3.5.3 % Classification Accuracy

Percentage classification accuracy is a performance metric used to measure the
number of data points classified correctly among all the test samples. In general
terms, it is the estimation of the degree of closeness of a predicted value to that of
the true value. Mathematically, % classification accuracy is defined as :

% Classi f ication Accuracy =
Number o f data points correctly classi f ied

Total number o f data points
× 100.

(3.15)

3.5.4 Area Under the Curve (AUC) for Overlapping Region

Furthermore, the performance of our SSD systems can be evaluated using the area
under the curve (AUC) for the overlapping region between the probability den-
sity functions (pd f s) of the LLR scores for genuine and spoof speech utterances,
as shown in Figure 3.3. In this case, AUC provides an aggregate measure of per-
formance of a model across all the possible classification thresholds.
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Figure 3.2: A Tandem System Consisting of ASV and SSD Modules is Evaluated
using Three types of Trials: Targets, Nontargets, and Spoofing Attacks. Adapted
from [30].

3.6 Score-Level Data Fusion

The score-level data fusion is performed on LLR scores (as shown in eq. (3.2)) ob-
tained from the multiple systems in order to capture the possible complementary
information. Score-level fusion of two systems using linear weighted sum is given
as:

LLR f used = β · LLRS1 + (1 − β) · LLRS2, (3.16)

where LLRS1 and LLRS2 are the LLR scores derived from the system S1 and sys-
tem S2, respectively. The fusion parameter β ϵ [0, 1] determines the contribution
of each of the system during score-level fusion. This fusion can be performed by
using well known Bosaris’ toolkit, which provides a logistic regression solution
to train a combination of weights for fusing multiple subsystems into a single
sub-system, outputting a well-calibrated LLR [181]. To obtain the appropriate
combination of weights, parameters were optimized as in the following mapping
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Figure 3.3: Demonstration of the AUC of the Overlapping Regions for the pd f s
of the LLR Scores for the Two-class Classification Task. After [1].

function:

lt = a +
N

∑
i=1

bisit + q′tWrt, (3.17)

where lt is the fused and calibrated output LLR for trial t, N is the number of
sub-systems to be fused, sit is the score of sub-system i for trial t, and qt and rt

are optional quality vectors derived from the two sides (enroll, verify) of trial t. q′t
represents the transpose of the vector, qt. The parameters to be optimized are the
scalar offset a, the scalar combination of weights bi, and the asymmetric matrix
W, which effectively combines the two quality vectors into a quality score for the
trial. The parameters are optimized using logistic regression, which minimizes an
objective function.

The score-level fusion can be performed for two different systems having dif-
ferent feature sets and common classifier. This fusion can capture the possible
complementary information in the feature sets for the intended task. Similarly,
classifier-level fusion of the scores can be performed for the systems having differ-
ent classifiers and common feature set and may be able to produce the relatively
better performance than the standalone SSD system. This strategy can capture the
possible complementary information in different classifiers.

3.7 Chapter Summary

In this chapter, various components of experimental setup, such as datasets, fea-
ture sets, classifiers, evaluation metrics, and score-level fusion techniques that are
utilized in this thesis are discussed. The details of the data collection strategy,
along with the statistics of the partition is provided. Furthermore, the brief tech-
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nical details of the feature sets and classifiers utilized in this thesis are discussed.
Finally, various evaluation metrics and score-level data fusion techniques are dis-
cussed. In subsequent chapters, several proposed feature sets are discussed. To
that effect, experimental setup components required to validate the performance
of the proposed feature sets can be referred from Chapter 3.
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CHAPTER 4

Features using TEO

4.1 Introduction

This1 chapter discusses the proposed handcrafted features, namely, ETECC, CTECC,
and CFCCIF-ESA, which are derived using the concept of TEO and effectively
utilized in this thesis for building the CMs against the major spoofing attacks.
The ETECC feature set utilizes Enhanced Teager Energy Operator (ETEO), which
is able to capture the high frequency energies more accurately by compensat-
ing the signal mass. To that effect, it effectively captures the energies in the mid
and high frequency regions, where replay characteristics are present. Further-
more, CTECCmax feature set in this thesis captures the maximum relation distor-
tion among the multi-channel subband filtered signals, and able to produce better
performance than the other existing feature sets. TEO-based ESA algorithm is uti-

1This Chapter is based on the following publications:

• Ankur T. Patil, Rajul Acharya, Hemant A. Patil, and Rodrigo Capobianco Guido, "Improv-
ing the potential of Enhanced Teager Energy Cepstral Coefficients (ETECC) for replay attack
detection," in Computer, Speech & Language, Elsevier, vol. 72 (2022), pp. 101281.

• Rajul Acharya, Harsh Kotta, Ankur T. Patil, and Hemant A. Patil, "Cross-Teager Energy
Cepstral Coefficients for Replay Spoof Detection on Voice Assistants," in International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Ontario, Canada,
June 2021, pp. 6364-6368.

• Ankur T. Patil, Rajul Acharya, Pulikonda Krishna Aditya Sai, and Hemant A. Patil, "Energy
Separation-Based Instantaneous Frequency Estimation for Cochlear Cepstral Feature for
Replay Spoof Detection," in INTERSPEECH, Graz, Austria, September 2019, pp. 2898-2902.

• Ankur T. Patil, Hemant A. Patil, and Kuldeep Khoria, "Effectiveness of Energy Separation-
Based Instantaneous Frequency Estimation for Cochlear Cepstral Features for Synthetic and
Voice Converted Spoofed Speech Detection," in Computer, Speech & Language, Elsevier,
vol. 72 (2022), pp. 101301.

• Ankur T. Patil, Anand Therattil, and Hemant A. Patil, “On Significance of Cross-Teager
Energy Cepstral Coefficients for Replay Spoof Detection on Voice Assistants," submitted in
Computer, Speech & Language, Elsevier, July 2022.
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lized in CFCCIF framework to estimate the IFs. The subsequent section of this
chapter includes motivation of TEO, derivation of TEO, and ESA followed by the
details of the proposed feature sets and their performance for SSD task.

4.2 Motivation for TEO

In the traditional signal processing literature, signal energy is estimated by using
the square operation (i.e., L2 norm) over the entire signal under analysis, produc-
ing a scalar. This approach obviously fails to capture the existing speech nonlin-
earities including the properties of airflow pattern in the vocal tract system. To
overcome this issue, TEO was proposed in [182]. TEO is a nonlinear differen-
tial operator, which accounts for the energy of the system required to generate a
signal. Furthermore, the concept of TEO is extended to separate the amplitude
modulation and frequency modulation in speech signals with high time resolu-
tion [31, 183]. The simple structure of the discrete-time version of TEO greatly
reduces the time complexity in computation. These favorable properties of TEO
motivated to develop TECC, which have been adopted for speech recognition
task for normal vs. whispered speech [40, 184]. Furthermore, TECC has been con-
sidered one of the best performing feature set for the recognition of whispered
speech [184]. In addition, TECC has also been useful to capture speech rever-
beration [106], which motivated its application for replay SSD task. The major
contribution of this thesis is development of the three new feature sets, namely,
ETECC, CTECCmax, and CFCCIF-ESA, which are based on the concept of TEO
and these features have been successfully employed for the SSD task.

Recently, a mechanical mass analogy for digital signals was introduced in the
literature, modifying TEO to produce the exact representation of signal’s energy,
as shown in the original study reported in [185]. The results described in that
scientific piece of work clearly show that the introduced ETEO provides a better
estimate of signal energy in comparison with the original TEO. Subsequently, the
associated concepts of ETEO along with subband filtered speech signals have been
successfully exploited to produce a specialized set of features known as ETECC
for replay SSD task [10, 32]. The replay mechanism characteristics is supposed to
exhibit in mid- and high-frequency regions and hence, proposed ETECC feature
set is one of the successful candidate for replay SSD task.

Furthermore, a modified version of TEO for multi-channel signals, i.e., cross-
TEO (CTEO) was utilized for replay SSD for VAs [186]. Modern VAs make use of
microphone arrays, which help in better sound source identification using direc-
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tivity cues (i.e., exploiting the spatial diversity). In such cases, CTEO was devel-
oped in [186], to select the appropriate subband channel for low noise compen-
sation to improve the performance of the Automatic Speech Recognition (ASR)
systems [187]. The speech signal recorded by a playback device contains distor-
tions due to the intermediate devices. In [188], it is shown that a replayed speech
signal shows lower damping as compared to its genuine speech because of the dis-
tortions introduced due to replay configurations. As a result of such distortions
in replay signals, spectral spread is observed in the frequency-domain. Hence,
the key idea of using a multi-channel energy tracking scheme using TEO was in-
vestigated, where the most noisy channels are selected via CTEO-based feature
set, referred to as CTECCmax. The key idea here is to select the most noisy sub-
band channel (as opposed to the least subband channel for speech recognition
task [187]) to track maximum distortions in the transmission channel due to re-
play conditions. Thus, the greater the distortions in the speech signal, the more
likely it is to be a replayed signal. It is the first study of its kind to exploit max-
imum distortion due to replay noise as a discriminative feature using CTEO for
SSD task on VAs [11].

The CFCCIF-ESA feature set is proposed to combine the envelope (magni-
tude) information along with the phase information (in the form of IF) to effec-
tively detect the SS, VC, and replay SSD. Previously proposed CFCCIF feature
set composed of the information obtained from the magnitude envelope derived
using cochlear filterbank and instantaneous frequency (IF), which is derived from
Hilbert transform-based approach. However, this approach requires a speech seg-
ment of 10-30 ms and thus, it limits time resolution of IF estimation and hence,
defeats the key objective of IF estimation to be able to fit the frequency of a si-
nusoid (corresponding to a monocomponent signal) locally and almost instan-
taneously [189]. Whereas, TEO-based ESA is known to accurately estimate the
amplitude- and frequency-modulation patterns due to their relatively low com-
putational complexity, high time resolution, and instantaneously adapting nature.
To that effect, the ESA is exploited in CFCCIF framework instead of Hilbert trans-
form to estimate the IFs of the subband filtered signal using cochlear filterbank,
and consequently, it forms the structure of CFCCIF-ESA feature set.

The chronological development of the proposed feature sets are illustrated in
brief (as discussed for each feature set in this Section) in Figure 4.1. The next
Section of this chapter explains the mathematical description of the TEO. Fur-
thermore, subsequent Sections explain the functionality of the proposed ETECC,
CTECCmax, and CFCCIF-ESA feature sets along with related experimental setup
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Figure 4.1: Brief Illustration of the Chronological Development of the Proposed
TEO-based Features: ETECC, CTECC, and CFCCIF-ESA.

and results.

4.3 Derivation of TEO and ESA

Energy serves as link between speech production and perception because hearing
is the process of detecting energy [190, 191]. It was studied that the speech fine
structures could not be extracted using the Fourier analysis [192]. This issue is
alleviated using the TEO, which estimate the energy of the harmonic oscillator.
The oscillating mass m suspended by spring with stiffness k forms the Simple
Harmonic Motion (SHM). The dynamics describing SHM is given by 2nd order
ordinary differential equation, d2y

dt + k
m y = 0, and whose solution is given by:

y(t) = A cos (ωt + θ), (4.1)

where A is amplitude, ω is frequency, and θ is phase. It can be observed that
solution for SHM (i.e., y(t)) is a monocomponent signal. The energy (E) of a
spring-mass system is directly proportional to the squared multiplication of its
amplitude by its frequency of oscillations. Particularly,

E =
1
2

mA2ω2, i.e., E ∝ A2ω2, (4.2)
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where m, A, and ω correspond to the mass of the suspension, to the amplitude,
and to the frequency of oscillations, respectively. The continuous-time version of
TEO for signal y(t) is given by [182]:

ψ{y(t)} = (
dy(t)

dt
)2 − y(t).

d2y(t)
dt2 , (4.3)

ψ{y(t)} = ẏ2(t)− y(t) · ÿ(t). (4.4)

where ẏ(t) and ÿ(t) represents the single and double derivative of the signal y(t).

In [182], AM-FM signals are modeled analogously to the mass-spring systems
with the help of TEO, which is adopted to get the running estimate of signal’s en-
ergy [31]. The non-linear modelling of the human speech production as in [192],
[193], and [194], has been adopted for modelling and detecting modulations in
speech resonances [42]. To derive the expression of the TEO, let us consider the
discrete-time signal y(n) = A cos (ωn + θ), which represents the SHM. Further-
more, y(n − 1) = A cos (ω(n − 1) + θ) and y(n + 1) = A cos (ω(n + 1) + θ) rep-
resents the immediate past and future samples of the signal y(n), respectively.
Using the trigonometric identity for the arguments c and d,

cos (c + d) · cos (c − d) =
1
2
[cos(2c) + cos(2d)]. (4.5)

We obtain,

y(n + 1) · y(n − 1) =
A2

2
[cos (2ωn + 2θ) + cos (2ω)]. (4.6)

Furthermore, we have:

cos (2c) = 2 cos2 (c)− 1 = 1 − 2 sin2 (c). (4.7)

From eq. (4.6) and trigonometric identity in eq. (4.7), we get:

y(n+ 1) · y(n− 1) = A2 cos2 (ωn + θ)− A2 sin2 (ω) = y2(n)− A2 sin2 (ω). (4.8)

Hence,
A2 sin2 (ω) = y2(n)− y(n + 1) · y(n − 1). (4.9)

If we restrict the value of ω < π/2 in eq. (4.9), then sin (ω) ≈ ω (i.e., this approx-
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imation holds good for lower frequency region of the spectrum) and hence:

A2ω2 ≈ y2(n)− y(n + 1) · y(n − 1). (4.10)

As suggested in eq. (4.2), the LHS of eq. (4.10) is nothing but energy E of the
system to generate the signal. Thus, RHS of eq. (4.10) can be utilized to estimate
the instantaneous energy of the signal y(n), which is known as TEO and repre-
sented as ψ{y(n)} [182]. Hence, using eq. (4.2), eq. (4.10), and representation of
TEO, we have [182]:

ψ{y(n)} = y2(n)− y(n − 1) · y(n + 1) = A2 sin2(ω) ≈ A2ω2. (4.11)

From eq. (4.11), it can be observed that TEO can produce positive as well as neg-
ative values. To alleviate this issue, we took absolute value of the TEO profile so
that we obtain the positive energy values.

From eq. (4.11) and eq. (4.2), ideally TEO is developed only for monocompo-
nent signals (moreover, solution of SHM is also a monocomponent signal). Fur-
thermore, TEO possess time invariant property, which can be proved as follows.

For the system given in eq. (4.11), let us consider any arbitrary input y1(n) and
any shift by k samples.

v1(n) = ψ{y1(n)} = y2
1(n)− y1(n − 1) · y1(n + 1). (4.12)

Let us consider the second input obtained by shifting y1(n) by k samples, i.e.,

y2(n) = y1(n − k). (4.13)

The output corresponding to the input y2(n) is:

v2(n) = ψ{y2(n)} = y2
1(n − k)− y1(n − k − 1) · y1(n − k + 1). (4.14)

Similarly, from eq. (4.12):

v1(n − k) = y2
1(n − k)− y1(n − k − 1) · y1(n − k + 1). (4.15)

Comparing eq. (4.14) and eq. (4.15), we see that v2(n) = v1(n − k). Hence,
TEO is time invariant. Hence, the feature sets derived using TEO are shift (time)
invariant.

To estimate the individual contribution of amplitude A and frequency ω to
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the total energy, ψ{y(n)}, Energy Separation Algorithm (ESA) was developed, as
in [31]. To understand the development of ESA in brief, let us first consider the
real-valued continuous-time AM-FM signal is given by [42]:

y(t) = a(t) · cos(ϕ(t)),

= a(t) · cos(ωct + ωm

∫ t

0
p(λ)dλ + θ),

(4.16)

where a(t) represents a time-varying amplitude signal modulated by the high
frequency signal cos(·), which results in AM. The time-varying instantaneous fre-
quency (ωi) is given by [31, 42]:

ωi(t) =
d
dt

ϕ(t) = ωc + ωm · p(t), (4.17)

where |p(t)| ≤ 1, ωm corresponds to a maximum frequency deviation from ωc,
and θ is a phase offset. Applying TEO to the signal y(t) results in,

ψ{y(t)} ≈ a2(t) · ω2
i (t). (4.18)

As discussed earlier, TEO is developed only for monocomponent signals. How-
ever, speech signals can be considered as the mixture of multi-component reso-
nances, due to various cavities in the vocal tract system. Hence, bandpass filter-
ing can be applied on speech signal to approximate the subband filtered signal as
a monocomponent signal. Bounds are derived for the approximation errors for
these subband filtered signals, which are negligible under general realistic condi-
tions [194].

The instantaneous amplitude, a(t), and instantaneous frequency, ωi(t), are es-
timated using ESA [31]. Let,

ẏ(t) = ȧ(t) cos (ϕ(t))− a(t)ωi(t) sin (ϕ(t)). (4.19)

To make eq. (4.18) a valid approximation, let us assume two constraints:

• a(t) and p(t) are bandlimited with the highest frequencies ωa and ωp, re-
spectively, and ωa,ωp << ωc.

• ω2
a + ωmωp << (ωc + ωm)2

With the above two constraints, we have,

ψ{ẏ(t)} ≈ ψ{a(t)ωi(t) sin (ϕ(t))} ≈ a2(t) · ω4
i (t). (4.20)
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By combining eq. (4.18) and eq. (4.20), we get [42]:

|a(t)| ≈ ψ{y(t)}√
ψ{ẏ(t)}

, (4.21)

ωi(t) ≈

√
ψ{ẏ(t)}
ψ{y(t)} , (4.22)

where ẏ(t) represents the first-order derivative of the signal, y(t). The ESA is
applicable under the constraints that y(t) is a narrowband signal. For discrete-
time systems, many variants of ESA are derived considering various approxima-
tions of derivative operator and AM-FM signal. One of the popular Discrete-time
Energy Separation Algorithm (DESA) employs backward difference method, i.e.,
dy(t)

dt ≈ y(n)− y(n − 1), (a.k.a. DESA-1a algorithm, where ’1’ and ’a’ corresponds
to single sample difference and asymmetric difference, respectively) and is given
by [31]:

|a(n)| ≈

√√√√ 2ψ{y(n)}
1 − (1 − ψ{y(n)−y(n−1)}

2·ψ{y(n)} )
, (4.23)

ωi(n) = arccos
[

1 − ψ{y(n)− y(n − 1)}
2ψ{y(n)}

]
. (4.24)

These algorithms exploit TEO to estimate the instantaneous amplitude and
frequency components of the signal under consideration. As speech signals are
modeled as a cascade of multi-component resonances, due to various vocal tract
cavities, bandpass filtering usually precede the application of TEO. Eq. (4.11) pro-
vides a good estimate of signal energy only when the approximation sin(ω) ≈ ω

holds true.

Based on the concept of TEO, the ETEO, and CTEO were developed and these
TEO-derived representations are effectively utilized in this thesis for replay SSD
task. Furthermore, IFs estimated using ESA are utilized in CFCCIF-ESA feature
representation, which performs relatively better against SS-, VC-based, and re-
play spoofing attacks. Each of these proposed feature sets are explained in the
subsequent Sections.
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4.4 ETECC Feature Set

4.4.1 Signal Mass (ρ) and ETEO

In order to obtain an exact estimate of signal’s energy, ETEO was originally de-
veloped in [185]. In particular, the existing TEO was modified, adopting the new
concept of signal mass. It is argued that all the discrete-time signals have a spe-
cific mass in association with them. This mass represents the resistance offered by
the signal source to oppose its inertia, and only stationary signals keep their mass
constant over time. Thus, if inertia of the signal is low, then it might be able to
oscillate with higher frequency and vice-versa. Hence, making the use of signal
mass, the exact signal energy (i.e., A2ω2) can be obtained. Notably, signal mass
can be completely derived in terms of y(n) as discussed next. TEO (ψ) applied to
any discrete-time signal y(n) gives:

λ = ψ{y(n)} = y2(n)− y(n − 1) · y(n + 1) = A2 sin2 (ω), (4.25)

λ = A2ω2 sin2(ω)

ω2 , (4.26)

λ = A2ω2 sinc2(ω) =
1
2

ρA2ω2. (4.27)

The comparison between eq. (4.2) and eq. (4.27), shows that ρ is the mass
analogy found for a signal [106]. It is variable and a function of ω. This mass
is constant for stationary signals, while it is variable for non-stationary signals.
For signals with a time-varying frequency, mass is inversely proportional to the
frequency of oscillation. When the air interacts with the cavities of the vocal
tract system, speech is produced due to resonance [42]. Such cavities accentu-
ate certain frequencies while attenuate the others [31]. Because of such variation
in frequency distribution of speech signals, a variable signal mass exists. From eq.
(4.27), ETEO, represented by Ψ, is given by:

Ψ =
λ
1
2 ρ

= A2ω2, (4.28)

where ρ is obtained based on the following procedure [185]:

y(n − 1) + y(n + 1) = A[cos(ωn + θ − ω) + cos(ωn + θ + ω)], (4.29)

∴ cos ω =
y(n − 1) + y(n + 1)

2y(n)
. (4.30)
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Thus,

ω = arccos
[y(n − 1) + y(n + 1)

2y(n)

]
. (4.31)

Using the eq. (4.31), sinc2(ω) can be derived to result in [185]:

1
2

ρ = sinc2 ω =


1, f or y(n) = 0,

sinc2
(

arccos
(

y(n-1)+y(n+1)
2y(n)

))
, f or y(n) ̸= 0,(

k2+k
√

k2−1−1
|k+

√
k2−1|. ln(|k+

√
k2−1|)

)2
, f or |k| > 1,

(4.32)

where k = y(n−1)−y(n+1)
y(n) . Using eq. (4.32), signal mass can be estimated for each of

the subband signals. Both λ and Ψ present a linear order of complexity in relation
to length of the signal under analysis [185].

Figure 4.2-(a) shows an AM-FM signal and its corresponding estimated signal
mass, where a synthetic AM-FM signal is considered as in [31], being defined as
[1 + 0.5 · cos(nπ/50)] · cos(nπ/5 + 4sin(nπ/100 + π/4)). Notably, signal mass is
low in regions, where the signal frequency is high and vice-versa. This is because,
the higher the frequency is, the lower sinc2ω is and hence, the smaller the signal
mass is. At the same time, Teager energy is relatively high for high frequency
regions, whereas enhanced Teager energy is much higher, as shown in Figure 4.2-
(b).

Figure 4.2: (a) A Synthetic AM-FM Signal Along With Superimposed Signal
Mass, and (b) TEO, ETEO Profile Along With Signal Mass for the Signal Shown
in Figure 4.2-(a). After [10, 31].
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Figure 4.3: Functional Block Diagram of the Proposed ETECC Feature Set. Af-
ter [32].

Algorithm 1 MATLAB Pseudo Code of Proposed ETECC Feature Set Extraction.
After [10].

1. x = f ilter([1 − 0.97], 1, x), pre-emphasis on speech signal x,
2. f bankG = Gabor_ f bank(Q, bw), construct the Gabor filterbank with

Q subband filters with bandwidth ’bw’,
3. for i = 1 : Q do,

y(i, :) = f ilter( f bankG)(i, :), 1, x), subband filtering using ith subband
filter,

Tsubband(i, :) = TEO(y(i, :)), estimate energy using TEO,
Msubband(i, :) = signal_mass(y(i, :)), estimate the signal mass,
Esubband(i, :) = Tsubband(i, :)./Msubband(i, :), estimate energy using ETEO,
E f rames = en f rame(Esubband(i, :), win_len, win_shi f t), framing with

appropriate window length and window shift,
Eavg(i, :) = mean(E f rames), Averaging over each frame,

end for
4. Elog = log(abs(Eavg)),
5. Estatic = DCT(Elog), static coefficients,
6. E∆ = delta(Estatic), velocity coefficients,
7. E∆∆ = delta(E∆), acceleration coefficients,
8. ETECC = [Estatic; E∆; E∆∆], ETECC feature set.

4.4.2 ETECC Feature Extraction

The functional block diagram for the ETECC feature extraction strategy, as in
paper [32], is shown in Figure 4.3. Furthermore, MATLAB pseudocode for the
same is illustrated in Algorithm 1. Spoofed replay signals can be mathemati-
cally expressed as the convolution of the genuine speech with the disturbances
produced due to intermediate recording and playback channels, which are band-
pass in nature [195]. To take advantage of this fact for replay SSD task, the speech
signal is passed through a pre-emphasis filter for which the system function is
(1 − 0.97z−1), where z is the Z-transform variable. The pre-emphasized signal is,
subsequently, passed through a Gabor filterbank having linearly-spaced subband
filters [195–197].

The sound wave, i.e., the set of acoustic vibrations, is collected by pinna - a
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part of the outer ear. Three tiny bones in the middle ear, namely, malleus, incus,
and stapes, transform the acoustic vibrations into mechanical ones. The basilar
membrane (BM) in the cochlea consists of fluid, which produce travelling wave
in the BM due to mechanical vibrations. Particular frequency bands in sounds
are sensed by a specified region of the BM. The travelling waves sweep from the
base toward the apex of the cochlea and achieves a peak in the specified region,
which depends on the sound frequency. Higher frequencies are sensed by the
outer portion of the BM, and frequencies goes on decreasing as we move towards
the inner core of the cochlea. This physiological structure motivates us to model
the auditory system by using a subband filtering approach. The impulse response
of the travelling wave can be modeled by the function g(t) ∈ L2(R) (i.e., Hilbert
space of finite energy signals), which satisfies the following conditions:

• it should be the zero average function, i.e.:

∫ +∞

−∞
g(t)dt = 0 ⇒ G(ω)|ω=0 = 0, (4.33)

where G(ω) is Fourier transform of the g(t);

• it suggests that G(ω) is bandpass in nature. The bandpass nature of the filter
also helps to approximate the numerical computation [198];

• it also ensures the existence of a number Cg such that Cg =
∫ +∞

0
|G(ω)|2

ω dω <

+∞, which satisfies the admissibility condition in the original wavelet litera-
ture [199, 200];

• it decreases to zero on both the ends. Similar nature is observed in psycho-
acoustic experiments with the BM [201]. The impulse response of the second
subband filter in the filterbank is shown in Figure 4.4.

Gabor filterbank satisfies all the above mentioned conditions to represent the
impulse response of an auditory system [202]. Since the Fourier transform of a
Gaussian function is a Gaussian, the impulse and frequency responses of Gabor
filter are given by [31]:

g(t) = exp(−a2t2) · cos(ωct), (4.34)

and

G(ω) =

√
π

2a

(
exp

[
− (ω − ωc)2

4a2

]
+ exp

[
− (ω + ωc)2

4a2

])
, (4.35)
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where ωc represents the center frequency of a Gabor filter, and a controls its band-
width. The frequency scale of the filterbank can be chosen either Equivalent Rect-
angular Bandwidth (ERB), Mel or linear depending upon the application.

The center frequencies and bandwidths for ERB or Mel scale filterbank emu-
late the filter structure in the human auditory system. For those filterbanks, center
frequency and edges of the subband filters are linearly-spaced in lower frequency
regions, whereas they are logarithmically increasing for the frequencies above 1
kHz. For linear scale filterbank, center frequencies and edges of the subband fil-
ters are linearly-spaced for the entire frequency range. In the proposed ETECC
feature set, linear-scale Gabor filterbank is used by keeping the constant band-
width for all the subband filters. This arrangement may help to estimate the reli-
able spectral information as it has the constant resolution across entire frequency
range.

Gabor filter is a smooth function with a compact support and also possesses
the optimal joint time-frequency resolution. The compact support of Gabor fil-
ter does not allow noise and distortions, present at distinct locations, to interfere
with the Gabor filter in either time or frequency-domain. The optimal criteria for
joint time-frequency resolution is achieved by minimum time-bandwidth product
(TBP) dictated by Heisenberg’s uncertainty principle, in signal processing frame-
work [200]. In particular, the temporal variance (σ2

t ) and the frequency variance
(σ2

ω) of a signal, x(t) ∈ L2(R), satisfy

σ2
t · σ2

ω ≥ 1/4. (4.36)

Above inequality is obtained using Plancherel identity and Cauchy-Schwartz in-
equality. The theoretical proof of Heisenberg’s uncertainty principle is provided
in APPENDIX A. Eq. (4.36) becomes equality, when x(t) is a Gaussian [200]. The
product term, σ2

t · σ2
ω in eq. (4.36) is referred to as TBP. TBP indicates the area of

Heisenberg’s box, which represents the “richness” of signal information. Gabor
filter has an important frequency response characteristic: the linear phase. Thus,
it keeps the pattern or shape of the filtered output speech signal intact.

Subband filtering, as explained above, emulates the impulse response of the
cochlea. Different regions of the BM respond to different frequency contents of
the speech signal. The incident wave causes displacement of the inner hair cells
to initiate neural activity responsible for the sound perception. The inner hair cells
generate the neural activity in a single direction. This single direction movement
can be represented by an energy function. In our earlier work, single direction
movement is represented by the square of the filterbank output [105], however,
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(a)

(b)

Figure 4.4: (a) Impulse Response of 2nd a Bandpass Filter in the Bank of 10 Sub-
band Filters in a Gabor Filterbank with Linearly-Spaced Center Frequencies
Between 0 Hz to 8 kHz, and (b) Frequency Response of a Gabor Filterbank.

it can be replaced by the other energy measures, such as TEO or ETEO, for more
accurate estimation of the energy. In our proposed algorithm, ETEO is used as an
energy measure at the filterbank output to mimic the single direction movement
of the inner hair cells of the cochlea.

In the proposed framework, ETEO profile is estimated as given in eq. (4.28)
for each subband filtered output. The numerator of eq. (4.28) represents the TEO
profile, whereas the denominator consists of signal mass, which is, as mentioned,
the key term for exact estimation of the energy. The unwanted glitches and spikes
in the signal mass representation are eliminated by third-order one-dimensional
median filter. The traveling wave in BM stimulates inner hair cells to generate the
nerve impulses. This physiology can be modeled as estimating the energy of the
subband filtered output, which can be referred to as hair cell output, expressed
as [198]:

H(i, b) = Ψ(s(i, b)), (4.37)

where s(i, b) represents the bth output sample of ith a subband filter in a Gabor
filterbank, and Ψ(·) represents the ETEO operator in eq. (4.28).

The inner hair cell output in cochlea is then transformed to an electrical signal,
which is carried by the auditory nerves to the brain [203]. Its intensity can be
modeled by Nerve Spike Density (NSD), which is computed by enframing and
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averaging short frames of 25 ms with a frame shift of 10 ms, i.e.,

NSD(i, j) =
1
l

n+l−1

∑
b=n

H(i, b), n = 1, N, 2N, .....; ∀i, j, (4.38)

where i is ith subband, j is the frame count of the speech sample, b is the sample
number, l is the frame length, and N is the frame shift duration.

NSD output, which is logarithmic in this case, is further applied to the scales of
loudness functions [204]. Logarithmic operation also helps to reduce the dynamic
range of data. Finally, DCT is applied to obtain the cepstral representation, subse-
quently normalized with Cepstral Mean Normalization (CMN) to obtain the static
ETECC feature set. In order to extract transitional information, velocity (∆) and ac-
celeration (∆∆) coefficients are appended along with the static feature coefficients
in order to form static + dynamic feature vector.

4.4.3 Spectrographic Analysis

4.4.3.1 TEO vs. ETEO Profiles

Figure 4.5 depicts TEO and ETEO profiles for a sample speech utterance found in
ASVSpoof 2017 version-2 dataset. Specifically, Figure 4.5-(a) partially magnified
in (b), and Figure 4.5-(c), partially magnified in (d), show TEO and ETEO pro-
files for 5th and 15th subband output signals, respectively. From Figure 4.5-(a),
we can observe that both TEO and ETEO profiles are completely overlapping for
lower subband signals. This is because, for lower frequencies, the assumption
sin(ω) ≈ ω holds true [182]. This means that the denominator in eq. (4.28) equals
the unity, giving identical TEO and ETEO profiles. Furthermore, low frequency
subband signals are smooth and slowly-varying. By observing eq. (4.32), it can
be argued that the signal mass will be approaching to its maximum value for low
frequency signals. This fact can be observed in Figure 4.5-(a) and Figure 4.5-(b),
where TEO and ETEO profiles seem to be overlapping (almost exactly) for low
frequency subband signals.

Contrary to this, for higher frequencies, Kaiser’s approximation in eq. (4.11) is
no longer valid and consequently, significant differences in TEO and ETEO pro-
files are observed suggesting that the latter gives an exact estimate for signal’s
energy. This fact can be observed in Figure 4.5-(c) and Figure 4.5-(d), which show
the non-overlapping profiles for TEO and ETEO. Mathematically, when ω = 0,
i.e., sinc2(ω) = 1 then, ETEO profile will be similar to that of TEO. Increment in
ω leads to reduction in sinc2(ω) term and hence, signal mass also reduces. Ad-
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Figure 4.5: Energy Estimated by TEO and ETEO for (a) 5th and (c) 15th Subband
Filter Output. A Magnified View for the Corresponding Encircled Region is
Shown in (b), and (d), Respectively.

ditionally, from eq. (4.27) and eq. (4.28), we can infer that the energy estimated
using ETEO is greater than that obtained by using TEO for the higher frequencies.

4.4.3.2 Waterfall Plot of TECC vs. ETECC Feature Sets

Figure 4.6 shows the waterfall plots for TECC and ETECC feature sets in three
dimensions. It also demonstrates the capability of ETECC feature set against the
TECC feature set for replay SSD task. Panel-I and Panel-II show the waterfall
plots for the genuine speech and its corresponding spoofed speech chosen from
ASVSpoof 2017 Version-2 dataset. Since replay speech signals can be modeled as
being the convolution of the genuine speech signal with transmission channel ef-
fects induced by replay mechanism, which are bandpass in nature, spectral spread
in the replay signal appears in the marked region with dotted square in the Pan-
els. Additionally, for higher frequencies, log-energies estimated using ETEO are
higher than those of TEO. The reasoning for this fact is discussed in Section 4.4.3.1.
In the literature, it is also shown that the higher frequencies are more important
for replay SSD, and since ETEO provides an exact estimate of signal’s energy for
the higher frequencies as particularly discussed in Section 4.4.1. Furthermore, ex-
perimental results in subsequent sections shows that ETEO-based ETECC feature
set shows relatively the best performance.

4.4.4 Experimental Setup

To evaluate the performance of the ETECC feature set, several datasets for anti-
spoofing research, namely, ASVSpoof-2015, -2017, -2019, BTAS, and ReMASC are
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Figure 4.6: Waterfall Plot of Genuine (Panel I) and Spoof (Panel II) Speech Ut-
terances: (a), (c) Waterfall Plots Obtained using TECC Feature Set, and (b),(d)
Waterfall Plots Obtained using ETECC Feature Set. After [32].

utilized with corresponding dataset configuration shown in Table 3.1, Table 3.3,
Table 3.5, Table 3.10, and Table 3.15, respectively. The experiments are also ex-
tended for environment-dependent scenario on ASVSpoof 2017 and ReMASC
datasets, as discussed in Section 3.2.2 and Section 3.2.7, respectively.

The cepstral feature sets in this study are mainly categorized as spectral-based
and subband-filtering-based features. The CQCC, MFCC, and LFCC feature sets
are spectral-based feature sets, where magnitude in frequency-domain represen-
tation is utilized to estimate the cepstrum. On the other hand, TECC, SECC, and
ETECC are processed through subband filters, where the impulse response of the
subband filters are convolved with the speech signal. Even though all these six
feature sets are cepstral feature, there is a slight difference in the way cepstrum
is computed, either via frequency-domain subband or time-domain subband sig-
nals.

It has been observed that feature normalization techniques, such as CMN and
Cepstral Mean and Variance Normalization (CMVN) are performing better on
ASVSpoof 2017 version 2.0 dataset. Hence, these normalization techniques are
applied on ASVSpoof 2017 version 2.0 dataset only. Furthermore, it is also ob-
served that CMN works better for subband energy-based features and hence, the
TECC, SECC, and ETECC feature sets are normalized by CMN. Other features in
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our study, i.e., CQCC, LFCC, and MFCC are normalized by CMVN.

The study on ETECC feature set utilizes the GMM, CNN, and LCNN classi-
fiers at the back-end. The parameter tuning for the GMM classifier is analyzed in
Section 4.4.5.2. The CNN and LCNN models are implemented as described in Sec-
tion 3.4. These models require constant input size. The proposed ETECC feature
set is 120-dimensional (120-D) representation, and we kept the number of frames
constant to 400 by appending or concatenating the required number of frames of
a given utterance. Hence, feature representation of the proposed ETECC feature
set becomes of size 120× 400 for CNN and LCNN classifiers. For implementation
of the CNN for 120-D feature set, we used Rectified Linear Unit (ReLU) as a non-
linear activation function along with batch normalization. Xavier’s initialization
was used for convolutional layers [205]. Adaptive moment estimation (ADAM)
optimizer with momentum of 0.9 and a learning rate of 10−4 was used for train-
ing [206]. We used five convolutional layers followed by two fully connected (FC)
layers. The last FC layer uses the softmax function to generate the scores, which
is further utilized for evaluation of the system. For LCNN classifier, ReLU activa-
tion function is replaced by MFM activation. Other hyperparameters for LCNN
classifier remains the same as that of CNN classifier. The details of the CNN and
LCNN architecture for the 120-D feature representation is described in Table 4.1
and Table 4.2, respectively. For the other feature sets, the model architecture of
CNN and LCNN classifiers is modified based upon the dimension of the feature
vector. The CNN and LCNN models are trained upto 20 epochs. The training
loss is computed for every epoch and the model was saved if it produces the least
amount of % EER on the Dev set. The experiment is ran on the Eval set for the
model, which shows the least amount of % EER on the Dev set.

For the study on ETECC feature set, EER and t-DCF are utilized as perfor-
mance metrics, whereas the score-level fusion is performed using two popular
approaches, namely, linear weighted sum and logistic regression solution [181]. The
evaluation metrics and score-level fusion methods are described in Section 3.5 and
Section 3.6, respectively.

4.4.5 Experimental Results

4.4.5.1 Paraconsistent Feature Engineering (PFE) for Ranking

In this work, paraconsistent logic (PL), by means of Paraconsistent Feature Engi-
neering (PFE) is used to quantitatively analyze the efficacy of proposed ETECC
feature set for replay SSD task on ASVSpoof 2017 version 2.0 dataset [207]. An
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Table 4.1: Details of the Proposed CNN Architecture for SSD System. After [10].

Layer Filter/Stride Output # Parameters
Conv1 5x5/1x1 16 x 120 x 400 416
MaxPool1 2x2/1x2 16 x 60 x 200 -
Conv2 3x3/1x1 32 x 60 x 200 4640
MaxPool2 2x2/1x2 32 x 30 x 100 -
Conv3 3x3/1x1 64 x 30 x 100 18496
MaxPool3 2x2/2x2 64 x 15 x 50 -
Conv4 3x3/1x1 16 x 15 x 50 9232
MaxPool4 2x2/2x2 16 x 7 x 25 -
Conv5 3x3/1x1 16 x 7 x 25 2320
MaxPool5 2x2/2x2 16 x 3 x 12 -
FC6 - 1 x 200 115400
FC7 - 1 x 2 402

ideal feature set for a certain classification task should exhibit intra-class similari-
ties as well as inter-class distinction. Based on PFE, such an analysis is performed,
initially by normalizing the feature sets in the range 0 ∼ 1. Among a variety of
techniques for normalization, we performed the operation for which the sum of
feature vector representation is the unity. For this reason, we used softmax func-
tion, which maps the D-dimensional input feature vector Z to the pd f consisting
of D number of probabilities and thus, normalizing the features in the range [0,1].
This conversion of the feature vector to the pd f using softmax function not only
ensures the intended normalization, but also forces the sum of the feature vector
elements to be exactly 1 [174]. The softmax function ρ(·) is mathematically written
as:

ρ(Zi) =
eZi

∑D
j=1 eZj

, for i = 1, 2, ...D. (4.39)

Once our normalized feature vectors are obtained, intra-class similarities and
inter-class distinction are defined by the parameters α and β, respectively. To
calculate α, the similarity vector for each dimension of the feature vector is com-
puted. Let us consider 1 − dimensional feature representation for K number of
samples, as X[·] = [x1, x2, ..., xK]. Then, the deviation for the set of K real numbers
will be the difference between the largest and smallest values in X, i.e.,

A = L(X[·])− S(X[·]). (4.40)

To find an advantageous intra-class similarities, A should be as small as pos-
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Table 4.2: Details of the Proposed LCNN Architecture for SSD System. Af-
ter [10].

Layer Filter/Stride Output # Parameters
Conv1 5x5/1x1 32 x 120 x 400 832
MFM1 - 16 x 120 x 400 -
MaxPool1 2x2/1x2 16 x 60 x 200 -
Conv2a 1x1/1x1 32 x 60 x 200 544
MFM2a - 16 x 60 x 200 -
Conv2b 3x3/1x1 64 x 60 x 200 9280
MFM2b - 32 x 60 x 200 -
MaxPool2 2x2/1x2 32 x 30 x 100 -
Conv3a 1x1/1x1 64 x 30 x 100 2112
MFM3a - 32 x 30 x 100 -
Conv3b 3x3/1x1 128 x 30 x 100 36992
MFM3b - 64 x 30 x 100 -
MaxPool3 2x2/2x2 64 x 15 x 50 -
Conv4a 1x1/1x1 128 x 15 x 50 8320
MFM4a - 64 x 15 x 50 -
Conv4b 3x3/1x1 64 x 15 x 50 36928
MFM4b - 32 x 15 x 50 -
MaxPool4 2x2/2x2 32 x 7 x 25 -
Conv5a 1x1/1x1 64 x 7 x 25 2112
MFM5a - 32 x 7 x 25 -
Conv5b 3x3/1x1 32 x 7 x 25 9248
MFM5b - 16 x 7 x 25 -
MaxPool5 2x2/2x2 16 x 3 x 12 -
FC6 - 1 x 128 73856
MFM6 - 1 x 64 -
FC7 - 1 x 2 130

sible. Let Y = 1 − A be the standard similarity measure, where Y ≈ 0 indicates
low similarity, and Y ≈ 1 indicates high similarity between feature vectors of the
same class. For multi-dimensional feature representation, the computation of Y
for each dimension should be carried out independently to form a similarity vec-
tor, which is computed for each class. Let us consider that the given classification
task consist of N number of classes and similarity vector for class-c can be rep-
resented as Yc = [yc(1), yc(2), · · · , yc(D)], being D the dimension of the feature
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vector. The intra-class similarity for class-c is computed as in [207], i.e.,

Yc =
1
D

D

∑
i=1

yc(i). (4.41)

To assess the worst-case similarity among all the classes, α is defined as:

α = min{Y1, Y2, · · · , YN}. (4.42)

The inter-class distinction is estimated by computing the two range vectors
for each class of size, D. One of the range vector consists of minimum value
computed over each dimension for feature vector. Other range vector gives the
maximum value obtained over each dimension for the entire feature set. This
computation is nicely depicted in [207]. These range vectors are expected to store
the interval in which all the feature vectors of a class should lie. Once range vec-
tors are obtained, dimension-wise comparison between each feature vector of one
class and the range vector of all the other classes is performed to determine the
number of overlapping feature vector elements, Z.

Each overlap indicates that a feature vector from one class conquered the range
of the other class, which is undesirable for the classification task. Next, β is de-
fined as [207]:

β =
Z
F

, (4.43)

where F is the maximum possible number of overlaps. Considering that each of
the N classes accommodate S feature vectors of size D, then we can easily find
that F = N · (N − 1) · S · D.

The parameters α and β can now serve to compute the degree of certainty, i.e.,
G1 = α − β, and degree of contradiction, i.e., G2 = α + β − 1. Considering that
0 ⩽ α, β ⩽ 1, then −1 ⩽ G1, G2 ⩽ 1. The two-dimensional plane, where G1 and
G2 are defined, is known as paraconsistent plane. For better performance of the
feature sets, the point P = (G1, G2) should lie nearer to the corner (1, 0), as it is the
ideal case for the feature set to be fully linearly-separable. The distance between
the point P = (G1, G2) for each feature set and the reference point Q = (1, 0)
in the paraconsistent plane is denoted as d(P, Q) and is estimated by using the
Euclidean distance formula. The overall procedure of PFE is briefly illustrated in
Algorithm 2 [207].

In our application, experiments are performed on the training set of ASVSpoof
2017 version-2 dataset for paraconsistent feature analysis. The training data con-
sists of 1507 utterances for each of the genuine as well as spoof speech class [3].
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Algorithm 2 MATLAB Pseudo Code to implement the PFE. After [207].

1. Normalize the feature set using softmax function,
2. Intra-class Similarity measurement:

for c = 1 : N do, N - number of classes,
for i = 1 : D do, D - number of dimensions of feature vector,

Ac(i) = L(Xc(i, :))− S(Xc(i, :)), compute deviation,
Yc(i) = 1 − Ac(i), similarity index,

end for
Yc =

1
D ∑D

i=1 yc(i), arithmatic mean along all dimensions,
end for
α = min{Y1, Y2, · · · , YN}, worst case intraclass similarity,

3. Inter-class Dissimilarity measurement:
for c = 1 : N do, N - number of classes,

for i = 1 : D do, D - number of dimensions of feature vector,
Vmin(i) = min(X(i, :)), elementwise minimum values of whole set,
Vmax(i) = max(X(i, :)), elementwise maximum values of whole set,

end for
Compute Z, Z - number of overlapping feature elements,

end for
F = N · (N − 1) · S · T, S - number of feature vectors
β = Z

F

4. G1 = α − β, degree of certainty,
5. G2 = α + β − 1, degree of contradiction,
6. P = (G1, G2), point in paraconsistent plane,
7. Find distant d(P, Q), where Q = (1, 0).

The results obtained by using paraconsistent analysis over CQCC, LFCC, MFCC,
cepstral, SECC, TECC, and ETECC feature sets are shown in Table 4.3. Particu-
larly d(P, Q) for both TECC and ETECC are the smallest, i.e., they are linearly-
separable due to high intra-class similarity and low inter-class dissimilarity and
hence, they are better feature sets for the given classification task.

4.4.5.2 Results on ASVSpoof 2017 Version-2 Dataset

• Effect of the Type of Filterbank

The proposed feature set adopts a Gabor filterbank using linearly-spaced sub-
band filters. The performance of the proposed feature set with Gabor filterbank
was compared with the other filterbanks, namely, Gammatone, Cochlear, and
Mexican hat, which are used in the speech literature. Gammatone filterbank de-
scribes the shape of the impulse response function of the auditory system as es-
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Table 4.3: Evaluation of Various Feature Sets with Paraconsistent Framework on
ASVSpoof 2017 Version-2 Dataset. After [10].

Feature Set α β G1 G2 d(P, Q)

CQCC 0.48 1 -0.52 0.48 1.5940
LFCC 0.55 0.99 -0.44 0.54 1.5379
MFCC 0.29 1 -0.71 0.29 1.7344

Cepstral 0.48 0.99 -0.51 0.47 1.5814
SECC 0.65 0.99 -0.34 0.64 1.4850
TECC 0.66 0.99 -0.33 0.65 1.4803

ETECC 0.66 0.99 -0.33 0.65 1.4803

timated by the reverse correlation function of neural firing times [208, 209]. The
Gammatone filter is defined in the time-domain (impulse response function) as:

gt(t) = tn−1 · exp(−2πbt) · cos (2π fct + θ) · U(t), (4.44)

where n controls the relative shape of the envelope, b controls the duration of
the impulse response function, fc determines the frequency of the carrier, θ repre-
sents the phase of the carrier, and U(.) represents the unit-step function. All the
four parameters have corresponding effects on the frequency-domain character-
istics of the Gammatone filter. The eq. (4.44) represents an amplitude modulated
carrier tone of frequency fc with an envelope proportional to tn−1 · exp(−2πbt),
which is the familiar with Gamma distribution from statistics. Considering the
nature of these two components, the filterbank is known as Gammatone filter-
bank. The Mexican hat filterbank is derived from the negative normalized second-
order derivative of a Gaussian function [210]. The details of the cochlear filterbank
can be studied in Section 4.6.1. Furthermore, the magnitude of the frequency re-
sponses of the various filterbanks utilized in this study, are depicted in Figure
4.7 to understand their statistical behavior. Notably, from Figure 4.7, it can be
observed that:

• variance of the frequency responses of subband filters in frequency-domain
is constant for Gabor and Mexican-hat filterbank.

• variance of the frequency response of subband filters in frequency-domain
is increasing with increase in frequency. It is very high for higher frequency
subband filters.

Additionally, authors also analyzed the spectral energy densities where en-
ergies are estimated using ETEO (abbreviated as ETEO-spectrogram). ETEO-
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Figure 4.7: Frequency Response of (a) Gabor Filterbank, (b) Cochlear Filterbank,
(c) Gammatone Filterbank, and (d) Mexican-hat Filterbank.

Figure 4.8: ETEO-spectrogram Representation Obtained from (a) Gabor, (b)
Cochlear, (c) Gammatone, and (d) Mexican-hat Filterbank with 40 Subband
Filters in the Filterbank for Genuine (Panel-1), and it’s Corresponding Spoof
(Panel-2) Speech Utterance.
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Table 4.4: Results (in % EER) for ETECC Feature Set w.r.t. Type of the Filterbank.
After [10].

Filterbank Type Dev Eval

Gammatone 29 30.21
Mexican hat 9.11 29.77

Cochlear 11.82 16.56
Gabor 5.55 10.75

spectrogram is obtained for three randomly selected genuine and their corre-
sponding spoof speech utterances using various filterbanks utilized in this study.
Spectrograms for one of the genuine vs. spoof utterance are depicted in Figure
4.8, where it can be observed that:

• Gabor filterbank has optimal time-frequency resolution. This means that Ga-
bor filter tend to emphasize approximately equally in both the domains.
This fact, however, is not true for the other filterbanks included here for
analysis. For instance, observing Figure 4.8(a) and Figure 4.8(b), it can be
easily said that Gabor filterbank gives a more profound representation than
the other filterbanks for both the genuine and spoof speech utterances.

• when comparing Figure 4.8(a) and Figure 4.8(c), we can say that Gamma-
tone filterbank has comparatively much poor representation both in lower
and high frequency regions. Smearing in spectrograms is observed for Gam-
matone filterbank, which is somehow related to the time-domain represen-
tations of both the subband filters. The similar observations can be noticed
for the other pair of utterances.

The center frequencies of the subband filters in this filterbank are also linearly-
spaced. The performance of ETECC feature set on varying the type of the filter-
bank was compared with % EER metric, as shown in Table 4.4. The best perfor-
mance is observed for the feature set extracted using a Gabor filterbank. This may
be due to the fact that Gabor filters are smooth, possess excellent time-frequency
resolution and maintain their shape across entire frequency range (discussed in
sub-Section 4.4.2).

• Parameter tuning

Initially, training and Dev subsets were used to finetune the feature and model
parameters, such as number of subband filters in the Gabor filterbank, bandwidth
of the subband filters, frame length, dimension of feature vector, the number of
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(a) (b)

Figure 4.9: Variation of % EER of Dev set with the (a) Bandwidth of Subband Fil-
ters in the Gabor Filterbank, and (b) Speech Frame Length of Analysis Window
during ETECC Feature Extraction. After [10].

mixtures in GMM, frequency region of subband filtered representation, and static
vs. dynamic features. The system performance was then assessed over the Eval
subset with the parameters previously tuned on the Dev set.

• Effect of Bandwidth of the Subband Filters

The authors of paper [197] showed that the quality of the subband features
extracted for SSD task depends on their half-power bandwidth. Hence, the
effective Root Mean Square (RMS) bandwidth of bandpass filters is varied
from 100 Hz to 250 Hz. For these experiments, frame length is set to 25 ms
as vocal tract system is reasonably modeled as a Linear Time-Invariant (LTI)
system within this short duration of frame length. In the previous studies
of TECC and ETECC feature extraction, the number of subband filters and
the number of cepstral coefficients were set to 40 and 120, respectively, to
provide the relatively best SSD performance [32, 106]. Hence, we initial-
ized with the similar setting for these two parameters. Results obtained by
varying the bandwidth are shown in Figure 4.9-(a). Clearly, the best per-
formance was obtained by tuning the bandwidth to 200 Hz and hence, the
center frequency of subband filter was fixed to that frequency for the next
set of experiments.

• Effect of Frame Length for Analysis Window

Experiments were also performed to fine-tune the appropriate value of the
frame length by varying it from 20 ms to 80 ms. Meanwhile, the bandwidth
of each subband filter was set to 200 Hz as discussed earlier, whereas all
the other feature and model parameters were kept the same. From Figure
4.9(b), it can be observed that a lower % EER was obtained for a frame length
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(a) (b)

Figure 4.10: Variation of % EER of Dev Set with the (a) Number of Subband Fil-
ters, and (b) Dimensions of ETECC Feature Vector (Including Static, ∆, and ∆∆
Coefficients). After [10].

of 25 ms for analysis window. Beyond this point, EER increases as the frame
length increases and hence, a frame length of 25 ms was kept for the remain-
ing set of experiments.

• Effect of Subband Filters in Gabor Filterbank

Original investigations reported in [40] reveal that the human auditory sys-
tem consists of thousands of auditory filters. This motivated us to analyze
the effect of varying the number of subband filters in a Gabor filterbank.
Results with varying the number of subband filters were reported in Figure
4.10(a). For this experiment, bandwidth and frame length were set to 200
Hz and 25 ms, respectively, as they provide the lowest % EER. Notably, the
best performance on the Dev set was obtained by using 40 subband filters
in the filterbank. We obtained 5.55 % EER on the Dev set. Figure 4.10(a)
also suggests that the performance deteriorates consistently on the Dev set
as the number of subband filters in the filterbank crosses 40. These results
are in contradiction to our motivation suggested in [40]. One possible ex-
planation might be that, as the number of subband filters increases, over-
laps between any two consecutive subband filters occur in the frequency-
domain and hence, discriminative information is lost, resulting in perfor-
mance degradation for the SSD task.

• Effect of Dimension of Feature Vector

The experiments were also performed to fine-tune the optimal number of di-
mensions of the proposed ETECC feature set. ETECC feature vector contain
static, ∆, and ∆∆ coefficients. In this experiment, the dimension varies from
45 to 120, and the results are shown in Figure 4.10(b), which clearly reveals
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Table 4.5: Results (in % EER) for Varying Number of Mixtures in GMM for the
Features Extracted using 40 Subband Filters in Gabor Filterbank. After [10].

# Mixtures in GMM Dev Eval
64 5.77 11.83

128 5.51 11.88
256 5.82 11.06
512 5.55 10.75
1024 5.32 11.38

that 120-D ETECC feature representation offers relatively best performance
for the replay SSD task. Results are better for higher dimensions (here 120)
primarily due to reduction in feature occupancy and thereby increasing fea-
ture discrimination and inter-class separability in higher-dimensional fea-
ture space.

• Effect of Number of Mixtures in GMM

The number of mixtures to be used for training the GMM depends upon
the amount of training data and dimension of the feature representation. If
the size of the training data is small, with lesser dimension of feature rep-
resentation, then a small number of mixtures are required to produce good
results. As the size of the training data and dimension of the feature vector
increases, the number of mixtures should also increase in order to model the
overall data distribution properly. To select the optimum number of mix-
tures, experiments were performed with 120-D ETECC feature vector and,
observably, better performance on the Eval set was obtained by using 512
mixtures in the GMM as shown in Table 4.5. This result indicate that a small
number of mixtures (in particular, 64, 128, and 256) are not able to model
the overall distribution properly, whereas degradation in results for 1024
mixtures indicate overfitting of the data using GMM.

• Effect of Low, Mid, and High Frequency Subband Filters

The authors of paper [195] found that the effect of replay mechanism con-
tributes more in high frequency regions. To analyze such an effect, experiments
were performed by selecting the low, mid, and high frequency regions and by
choosing the corresponding subband filters in the filterbank to keep the remain-
ing feature extraction scheme intact. The analysis was performed with 40 subband
filters in the filterbank, as it produces relatively optimal results, as shown in Ta-
ble 4.6. The prominent observation is that all the frequency regions are important
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Table 4.6: Results (in % EER) for Subband Filters in Low, Mid, and High Fre-
quency Regions. After [10].

Frequency Range of ETECC TECC
Regions Subband Filters Dev Eval Dev Eval

Low 1-20 21.94 23.67 22.12 23.51
Mid 11-30 35.75 29.97 34.72 29.56
High 16-40 12.12 17.15 12.78 17.60
High 21-40 12.50 18.39 11.99 18.75

Mid & High 11-40 10.44 15.06 10.69 15.97
All 1-40 5.55 10.75 5.87 11.34

to produce the better performance. However, high frequency regions contribute
relatively more in the replay SSD task, as they cause significant reduction in %
EER in comparison with the low and mid frequency subband filters in the filter-
bank. Thus, ETECC provides better results, albeit marginally, than the TECC for
high frequency regions. This indicates the capability of ETEO to capture impor-
tant details, via signal mass, specially in the high frequency regions, as illustrated
in Section 4.4.1. However, it should be noted from Table 4.6 that TECC produces
marginally better results than the ETECC for low and mid frequency regions.

• Effect of Static vs. Dynamic Features

This experiment was performed to analyze the individual contribution of the
static, ∆, and ∆∆ features of ETECC. Along with individual performance of these
features, we also analyzed the performance of their possible combination. From
Table 4.7, we can note that the performance of the ∆ features is better than the
static and ∆∆ features alone. The combination of the static and ∆ features gave
% EER of 11.52 % on the Eval set, whereas the combination of static, ∆, and ∆∆
features provide a % EER of just 10.75 %. Thus, the static and ∆ features contribute
more in producing the better results.

• Results using Various Feature Sets and Classifiers

The performance of CQCC (baseline), Cepstral, MFCC, TECC, LFCC, SECC, and
ETECC feature sets is shown in Table 4.8 in terms of % EER on Dev and Eval
sets. GMM is used as the back-end classifier for all of these feature sets. CMVN
is used for CQCC, MFCC, Cepstral, and LFCC feature sets while CMN is used for
TECC, SECC, and ETECC feature sets. The 90-D CQCC baseline provided 12.270
% and 18.810 % over Dev and Eval sets, respectively. On the other hand, 39-D
state-of-the-art MFCC feature set provided 22.39 % and 25.34 % on Dev and Eval
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Table 4.7: Results (in % EER) for Static, ∆, and ∆∆ Features for ETECC Feature
Set. After [10].

# Static vs. Dynamic Features Dev Eval
static (40-D) 7.02 16.09

∆ (40-D) 6.37 14.33
∆∆ (40-D) 9.17 17.46

static + ∆ (80-D) 5.49 11.52
static + ∆∆ (80-D) 6.92 13.41

∆ + ∆∆ (80-D) 6.44 14.30
static + ∆ + ∆∆ (120-D) 5.55 10.75

sets, respectively. Also, the cepstral feature set derived from STFT shows the EER
of 10.18 % and 15.30 % for Dev and Eval set, respectively. The performance of
LFCC, SECC, and TECC feature sets with 120 elements was also evaluated for
comparison. Furthermore, we extended the experiments with two deep learning
classifiers, namely, CNN and LCNN.

ETECC-GMM SSD system produced 5.55 % and 10.75 % EER on Dev and Eval
sets, respectively, whereas SECC-GMM SSD system produced 7.46 % and 13.84 %
EER on Dev and Eval sets, respectively. Those results directly suggest that energy
operator-based feature set performs well for replay SSD task. Also compared with
alternate energy measures, such as TEO and squared energy function, ETECC fea-
ture set showed the best performance. An important absolute reduction of 6.72 %
and 8.06 % in EER was observed, when the performance of ETECC feature set was
compared to the baseline CQCC feature set. Besides this, we can note from Table
4.8 that ETECC performs better using deep learning architectures, i.e., CNN and
LCNN over TECC feature set. Furthermore, it can be observed that the conven-
tional GMM classifier is performing better than the deep learning-based CNN and
LCNN classifiers. It can be due to the data being relatively better approximated
to be Gaussians and the characteristics are better suited for GMM. This kind of
results are also observed for further experimental results obtained in this thesis.
Notably, in the ASVspoof 2021 PA challenge, the LFCC-GMM baseline (with 39.79
% ERR) showed better performance as compared to LFCC-LCNN baseline (with
42.16 % ERR) [170]. This also shows that GMM can indeed perform better than
the CNN.

Interestingly, score-level fusion of our ETECC feature set with the other fea-
ture sets was carried out by using two methods, and the results are reported in
Table 4.9. The first method of fusion is linear regression, where two scores were
combined as per eq. (3.16). Fusion results of ETECC with all the other feature sets
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Table 4.8: Results (in % EER) on Eval and Dev Datasets for Individual SSD Sys-
tems. After [10].

Feature Sets % EER
Dev Eval

CQCC-GMM (Baseline) (S1) 12.27 18.81
MFCC-GMM (S2) 22.39 25.34

Cepstral-GMM (S3) 10.18 15.30
LFCC-GMM (S4) 14.44 13.73
TECC-GMM (S5) 5.87 11.34
SECC-GMM (S6) 7.46 13.84

ETECC-GMM (S7) 5.55 10.75
TECC-CNN (S8) 8.35 14.33

TECC-LCNN (S9) 7.19 14.05
ETECC-CNN (S10) 8.83 15.02

ETECC-LCNN (S11) 6.98 13.54

were found to be approximately the same.

Table 4.9: Results (in % EER) on Score-Level Fusion on Eval and Dev Datasets
using Linear and Logistic Regression. After [10].

Score-Level Fusion Linear Linear Logistic Regression
of SSD Systems Regression (using Bosaris Toolkit) [211]

Dev Eval Dev Eval
S1 + S7 5.55 10.54 5.75 10.59
S2 + S7 5.14 10.53 5.56 11.24
S3 + S7 5.55 10.68 4.75 10.81
S4 + S7 5.55 10.67 5.17 10.83
S5 + S7 5.40 10.69 5.51 10.87
S6 + S7 5.51 10.69 5.65 10.74

S1 + S2 + S3 + S4 + S5 + S6 5.33 10.62 6.78 11.31
S1 + S2 + S3 + S4 + S5 + S6 + S7 4.69 10.43 5.61 11.27

S7 + S10 + S11 4.91 10.46 6.64 12.67

System S1 - S10 are as per Table 4.8. ’+’ indicates the score-level fusion of systems.

The performance of the above mentioned feature sets can, in addition, be in-
spected based on a DET curve [179]. Observing the DET plots, as shown in Figure
4.11, we can see that the miss probabilities of CQCC and LFCC feature sets are
notably high for any given value of false alarm probability. This is an unwanted
characteristic for a good SSD system.

The LLR score distribution of genuine vs. impostor utterances on Eval and
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Figure 4.11: Individual DET Curves on (a) Dev, and (b) Eval Sets. After [10].

Figure 4.12: LLR Scores Distribution on Dev Set, (Panel I) and Eval Set (Panel II)
using (a),(b) CQCC, (c),(d) TECC, and (e),(f) ETECC Feature Sets. After [10].

Dev sets are shown in Figure 4.12. The common area under the two Gaussian-like
curves in Figure 4.12 is just the probability of misclassification [212]. We call this
area as intersecting area. The lesser the intersecting area is, the lesser the probabil-
ity of misclassification is and hence, the lesser the % EER for such a feature set will
be. Visually, we observe that the intersecting area is relatively smaller for ETECC
feature set, followed by TECC feature set and then the baseline CQCC feature set.
This is an indication of a better classification (in particular, feature discrimination)
ability of the proposed ETECC feature set.

• Results for the Environment-Dependent Scenario
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Table 4.10: Results (in % EER) of Environment-Dependent Case on ASVSpoof
2017 Dataset. After [10].

Environment CQCC TECC ETECC
Anechoic Room 0.26 0.20 0

Analog wire 11.42 11.78 9.10
Balcony 0 0 0
Canteen 0.93 0.17 0.46
Home 2.12 2.12 1.54
Office 5.63 4.37 2.35
Studio 0 0 0

The experiments performed for the environment-dependent scenario are re-
ported in Table 4.10. In this case, the individual system was trained and tested for
single environment only. The distribution of the number of spoof speech utter-
ances for each environment is varying and shown in Table 3.4. To develop an indi-
vidual environment-dependent SSD system, half of the spoofed speech utterances
for the corresponding environment were chosen for training, whereas the remain-
ing half were used for testing the model performance. To train the genuine and the
spoofed speech models, an equal number of utterances were selected. In particu-
lar, environment-dependent-based SSD performs much better for un-normalized
(i.e., without CMN/CMVN) feature sets. For the standard protocols provided
by ASVSpoof 2017 challenge organizers, Eval set consists of speech samples for
seen and unseen environments [3]. For these protocols, normalized feature sets
perform better than the un-normalized ones. This contradictory behavior was an-
alyzed in [21] for the baseline CQCC feature set. Additionally, ETECC feature set
performs better for all the environments over the CQCC feature set. Furthermore,
for three environments, namely, anechoic room, balcony, and studio, it provides 0
% EER.

4.4.5.3 Results on ASVSpoof 2019 Challenge, BTAS, and AVSspoof 2015 Chal-
lenge Datasets.

Following the same details mentioned above for the previous procedures, the re-
sults on ASVSpoof 2019 challenge for PA scenario, ASVSpoof 2019 challenge for
LA scenario, BTAS, and AVSspoof 2015 challenge datasets can be found in Tables
4.11, 4.12, 4.13, and 4.14, respectively. It can be observed from Table 4.13, that the
proposed ETECC feature set performs better than the TECC and baseline CQCC
feature sets for BTAS dataset. In addition, proposed ETECC feature sets performs
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better than the CQCC feature set for LA-scenario in ASVSpoof 2019 challenge
dataset as shown in Table 4.12. However, TECC performs slightly better than the
ETECC feature set. Furthermore, ETECC feature set could not perform better than
the baseline CQCC feature set for PA scenario in ASVSpoof 2019 challenge dataset
and ASVSpoof 2015 challenge dataset (Table 4.11 and Table 4.14). This could be
the limitation of our proposed feature set that it could not perform better for all
the datasets designed for anti-spoofing research.

4.4.5.4 Results on ReMASC Dataset

• Results on Dev and Eval Sets

To check the efficacy of ETECC feature set over ReMASC, experiments were
performed according to the dataset configuration given in Table 3.15. The com-
parison was carried out with the other conventional feature sets for replay SSD
task, namely, CQCC, LFCC, and MFCC. The experiments were also performed
with TECC feature set so that we can validate the efficiency of energy tracking
with the novel signal mass concept embedded in the proposed ETECC feature set.
The results are shown in Table 4.15. The absolute reduction in % EER of 4.12 %
and 7.89 % was observed for ETECC feature set against the baseline CQCC-GMM
SSD system, for Dev and Eval subsets, respectively. Furthermore, the absolute
reduction in % EER of 2.12 % and 1.19 % was observed for ETECC feature set
against the TECC, for Dev and Eval subsets, respectively.

• Results on Environment-Dependent vs. Independent Scenarios

Experiments were also performed for environment-dependent vs. indepen-
dent scenarios. For the former, the target environment is already seen by the de-
fense model, whereas for environment-independent scenario, the defense model
was trained on any of the three environments and tested on the fourth environ-
ment. This set of experiments are useful to compare and analyze the effect of
environment-independent vs. -dependent scenario, in particular, how indepen-
dence of the environment contribute to the difficulty in the SSD task. In addition,
the environment-dependent scenario is important for realistic applications of VAs.
In particular, VAs are primarily used in home applications and hence, the acoustic
environment for training and testing is expected to be similar, if not identical.

For the experiments on environment-dependent scenario, each environment
was partitioned into two disjoint and speaker-independent sets of roughly the
same size. The environment-wise statistics of the ReMASC dataset are shown in
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Table 4.11: Results (in % EER) on ASVSpoof 2019 Challenge Dataset for PA Sce-
nario. After [10].

SSD System
Dev Eval

t-DCF EER t-DCF EER
CQCC-GMM (Baseline) 0.2007 10.25 0.2499 11.44

TECC-GMM 0.2113 9.58 0.2815 11.60
ETECC-GMM 0.2166 9.85 0.2845 11.77

Table 4.12: Results (in % EER) on ASVSpoof 2019 Challenge Dataset for LA
Scenario. After [10].

SSD System
Dev Eval

t-DCF EER t-DCF EER
CQCC-GMM (Baseline) 0.0145 0.4709 0.2687 11.10

TECC-GMM 0 0 0.1709 6.87
ETECC-GMM 0 0.0022 0.1718 7.36

Table 4.13: Results (in % EER) on BTAS Dataset. After [10].

SSD System Dev Eval
CQCC-GMM (Baseline) 2.57 4.45

TECC-GMM 2.13 4.99
ETECC-GMM 1.50 2.95

Table 4.14: Results (in % EER) on ASVSpoof 2015 Challenge Dataset. After [10].

SSD System
Dev Eval
EER EER

CQCC-GMM (Baseline) 0.03 4.57
TECC-GMM 0.13 7.80

ETECC-GMM 0.14 8.15

Table 4.15: Results (in % EER) on ReMASC Dataset using GMM Classifier. Af-
ter [10].

SSD System Dev Eval
CQCC (Baseline) 20.57 23.31

LFCC 28.89 26.31
MFCC 36.43 31.53
TECC 18.57 16.61

ETECC 16.45 15.42
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Table 3.14. The results obtained using CQCC, TECC, and ETECC feature sets
with GMM classifier are reported in Table 4.16. Particularly for this scenario,
we reported the results with the application of the CMVN for each utterance, as
it has shown significant improvement. The analysis for the application of the
CMN/CMVN techniques on environment-dependent vs. -independent scenario
is discussed in Chapter 6 (Section 6.2). This needs further investigation and re-
mains an open research problem. Notably, TECC performs better than the ETECC
feature set for all the environments.

For an environment-independent scenario, results are shown in Table 4.16. It
clearly indicates that the proposed ETECC feature set performs better than the
TECC and CQCC feature sets, for three unseen environments, namely, environ-
ment A, B, and C, whereas all of the feature sets show the poor performance on
environment D indicating environment D could not be expressed as linear com-
bination of the other environments. In this scenario, results for environment-A
perform well for un-normalized feature sets. For B and C as test environments,
CMVN applied on feature set showed a significant improvement on the perfor-
mance over un-normalized feature sets.

It can be also observed that TECC feature set performs better than the ETECC
feature set in Env-D for environment-independent case. It might be due to noise
suppression capability of the TEO especially for the vehicle noise (as originally
reported for noise robust speech recognition in car [213]), whereas noise suppres-
sion capability of ETEO remains an open research question for the future study.

The performance of the ETECC feature set is summarized in Chapter Sum-
mary (Section 4.7). In the next sub-Section, the development and the performance
of the proposed CTECCmax feature set is discussed.

Table 4.16: Results (in % EER) for Environment-Dependent vs. -Independent
Case on ReMASC Dataset on GMM Classifier. After [10].

Acoustic
Feature Set Env-A Env-B Env-C Env-D

Environment

Env-Dependent
CQCC 23.27 42.62 12.96 15.85
ETECC 15.81 37.11 15.11 12.30
TECC 15.09 33.77 14.11 10.35

Env-Independent
CQCC 35.65 40.89 35.95 49.99
ETECC 28.99 32.45 29.97 49.91
TECC 34.85 33.79 31.62 49.12

Env = Environment
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4.5 CTECCmax Feature Set

Modern VA technology is highly convenient to control the various household de-
vices and applications. However, these devices are highly vulnerable to various
spoofing attacks such as replay, impersonation, SS, and VC [48, 214]. Although,
the design of CM systems for ASV and VAs looks similar, there are important
differences in developing the anti-spoofing strategies for ASV and VAs. In par-
ticular, VAs are designed for long-distant speech recognition, where close-distant
features could not be employed for the spoofed SSD task. In addition, ASV is
generally implemented with a single microphone, whereas VAs generally make
use of microphone array [9]. Considering these differences, ReMASC dataset has
been released, which is specifically designed to develop countermeasures against
replay spoofing attack on VAs [9]. In this work, CTEO-based feature set is pro-
posed to build CM system against replay spoofing attacks for VAs.

The CTEO estimates interaction between two signals in terms of relative en-
ergy, as proposed in [215], in particular, CTEO shows the relative changes be-
tween two signals [216]. Furthermore, the link between TEO and ambiguity func-
tion was studied in [217], which helps to estimate the second moment angular
bandwidth and the moments of a signal duration (spread), as well as that of its
spectrum. CTEO for complex-valued signal was proposed in [218]. In [219], a
novel similarity measure based on TEO was introduced for time series analysis,
and the performance of this similarity measure is compared against the conven-
tional approaches, namely, Euclidean distance and correlation coefficient. The
CTEO was also used to redefine the general wave equations [220]. Furthermore,
in [221], quadratic superposition law was used for transient detection. Other ap-
plications of the CTEO, such as medical imaging, signal detection, time-delay esti-
mation, white-light scanning interferometry, etc., can be studied in [222–224]. For
the speech applications, CTEO is exploited for far-field ASR and signal detection
(because the TEO requires a single channel input, whereas CTEO exploits the spa-
tial diversity information from multiple channels) [186, 225]. Furthermore, mod-
ulation features extracted using CTEO are also explored for ASR [187, 226]. The
selected chronological progress for the proposed CTECCmax feature set is shown
in Figure 4.13.

While there are other potential approaches, such as beamforming methods, to
exploit the spatial diversity of speech waves via microphone array. In particular,
state-of-the-art Minimum Variance Distortionless Response (MVDR) is an efficient
beamformer that maximizes the array gain, which is a measure of the increase in
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Figure 4.13: Selected Chronological Progress to Develop CTECCmax Feature Set
for Anti-Spoofing.

signal-to-noise ratio (SNR) that is obtained from the microphone array rather than
a single microphone channel. However, MVDR suffers from a serious limitation
of having low directivity factor in low frequency regions that carry important dis-
criminating acoustic cues for genuine vs. replay spoof. In addition, the filtering
process in MVDR distorts the characteristics of speech spectrum [186]. To that
effect, we employ CTEO framework to exploit spatial diversity in array. In partic-
ular, this study proposes the CTECCmax for replay SSD on VAs that process multi-
channel inputs. The earlier study proposed CTECCmax feature set for far-field
ASR, where it considered the minimum cross-Teager energies between the sub-
band filtered signals to capture the noise-robust feature representation. However,
in our work, we select the most noisy transmission channel in order to track max-
imum distortions due to replay conditions, i.e., it provides the more discrimina-
tive information of the underlying acoustical environment in which replay attack
is mounted on VAs. This is the key novelty of the proposed CTECCmax feature
set for replay SSD task. The proposed approach captures the maximum distortion
and hence, it is acronymed as CTECCmax. Since, the earlier version of CTCCC
was utilized for far-field ASR to capture the minimum distortion, we abbreviate
it as CTECCmin. The experiments were performed on the dataset configurations
as suggested in a recent study [12], where complex deep learning architecture has
been utilized for extracting the information from multi-channel speech signal to
build the SSD system. It has been observed that the proposed CTECCmax fea-
ture set outperforms the other existing feature sets, as well as the complex deep
learning architecture proposed in [12]. Further theoretical analysis, experimental
setup, and results are discussed in subsequent Sections.

4.5.1 Cross-Teager Energy Operator (CTEO)

As discussed in Section 4.3, TEO was originally developed for single channel
signals [182]. Hence, to track the cross-Teager energies between two channels,
CTEO is developed in [215], and can be denoted as Ψcr{·}. CTEO is a non-linear
quadratic operator, which estimates the relative rate of change of energies be-
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tween signals. The Cross-Teager Energy (CTE) between the two real-valued sig-
nals, x(t) and y(t) in continuous-time domain is represented as [186]:

Ψcr{x(t), y(t)} = ẋ(t)ẏ(t)− x(t)ÿ(t), (4.45)

Ψcr{y(t), x(t)} = ẏ(t)ẋ(t)− y(t)ẍ(t). (4.46)

The concept of TEO and CTEO can also be derived using Lie bracket [216].
Instantaneous differences in the relative rate of change between two signals x(t)
and y(t) can be measured via their Lie bracket ([·]) as follows [216]:

[x(t), y(t)] = ẋ(t)y(t)− x(t)ẏ(t). (4.47)

In eq. (4.47), if y(t) = ẋ(t) then it becomes TEO as given in eq. (4.4). If x(t)
and y(t) represent displacements in some generalized motions, then the quantity
[x(t), ẏ(t)] = ẋ(t)ẏ(t) − x(t)ÿ(t) has dimensions of energy and hence, it can be
referred to as cross-Teager energy between x(t) and y(t). Hence, eq. (4.48) is sup-
posed to estimate the cross-Teager energy between two signals, x(t) and y(t) and
can be referred to as CTEO [186]:

Ψcr{x(t), y(t)} = ẋ(t)ẏ(t)− x(t)ÿ(t). (4.48)

From eq. (4.46), we have Ψcr{x(t), x(t)} = Ψ{x(t)}, Ψcr{y(t), y(t)} = Ψ{y(t)}
and Ψcr{0, x(t)} = Ψcr{x(t), 0} = 0, Ψ{b} = 0, where b is a constant. From eq.
(4.45) and eq. (4.46), the non-commutative property of CTEO is observed, i.e.,
Ψcr[x(t), y(t)] ̸= Ψcr[y(t), x(t)] [215], [225]. Using eq. (4.45), the average CTEO
(Ψavg

cr [·]) between the continuous-time real-valued signals is estimated as [225]:

Ψavg
cr {x(t), y(t)} =

1
2
[Ψcr{x(t), y(t)}+ Ψcr{y(t), x(t)}]. (4.49)

However, the definition of CTEO can be extended to complex-valued signals
as given in [218]. Furthermore, for the discrete-time signals x(n) and y(n), aver-
age cross-Teager energies are estimated as [173]:

Ψavg
cr {x(n), y(n)} = x(n)y(n)− 0.5[x(n + 1)y(n − 1)

+x(n − 1)y(n + 1)].
(4.50)

From eq. (4.50), the excellent time resolution of the CTEO can be observed. Subse-
quently, the later part of the paper deals with the real-valued continuous-time do-
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main representation of speech signal, which can be further extended to discrete-
time domain.

Let us consider the signal xi(t) in N-sensor microphone array, where i ∈ [1, N]

and xi(t) is represented as:

xi(t) = si(t) + ni(t), i = 1, 2, ..., N. (4.51)

It should be noted that si(t), i.e., the speech recording at the ith microphone is
indeed dependent on geometry of microphones (details mentioned in Table 3.13)
and it should be noted that reverberation phenomenon is not considered via eq.
(4.51) [186,187]. For ASR task, it makes sense to choose the microphone-pair with
the lowest cross-Teager energies as it will minimize the environmental distortion
(including reverberation) and thus, increases performance of ASR system. On the
other hand, this environmental distortion, in particular, reverberation could serve
as an important acoustic cue to discriminative between genuine and replay at-
tack should we choose relatively maximum energy in microphone-pair and thus,
increases replay SSD performance.

The output signal of each sensor xi(t) is decomposed using a suitable filter-
bank into L subband signals, and subband filtered signal for jth is represented
as:

xij(t) = xi(t) ∗ gj(t), j = 1, 2, ..., L, (4.52)

where ’*’ represents the convolution operation and xij(t) represents the subband
filtered signal obtained for the ith channel and jth subband filter (having gj(t) as
impulse response) in the filterbank. Considering two sensor inputs (p, q) and jth

subband filter of the filterbank, the CTEO will be expressed as:

Ψcr{xpj(t), xqj(t)} = ẋpj(t)ẋqj(t)− xpj(t)ẍpj(t). (4.53)

From the eq. (4.11), eq. (4.51), and eq. (4.53), we obtain:

Ψcr{xpj(t), xqj(t)} = Ψ{sj(t)}+ Ψcr{npj(t), nqj(t)}

+ Ψcr{sj(t), nqj(t)}+ Ψcr{npj(t), sj(t)}.
(4.54)

The replay noise is represented by the last three terms on the Right-Hand Side
(RHS) of eq. (4.54). Taking expectation operator (E[·]) on eq. (4.54), we get:

E[Ψcr{xpj(t), xqj(t)}] = E[Ψ{sj(t)}] + E[Ψcr{npj(t), nqj(t)}]. (4.55)

The last two terms of RHS side of eq.(4.54) are zero-mean and hence, the ex-
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pectation operator is zero [186]. However, the second term represents the error in
eq. (4.55) [31]. Hence, the modified equation is given as:

E[Ψcr{xpj(t), xqj(t)}] = E[Ψ{sj(t)}] + error, (4.56)

where error = E[Ψcr{npj(t), nqj(t)}]. Let us denote Γ the concentration of noise
power within the subband filter’s passband. Using Cauchy-Schwartz inequality
for two random variables X and Y, we have [227, 228]:

|E(XY)|2 ≤ E(X2)E(Y2), (4.57)

where (XY) is the inner product between the random variables X and Y. There-
fore, using eq. (4.57), the relation between the noise power (proof is given in Ap-
pendix), we obtain:

|Γ(pq)j
|2 ≤ Γpj Γqj , (4.58)

where Γpj is the noise power concentration of the jth subband and pth channel.
Moreover, Γpj is proportional to the error term in eq. (4.56), where the error term
is the varying, whereas the source signal through the bandpass filter remains the
same throughout the analysis. For ASR, the desirable speech signal representation
should contain the least amount of noise component. Hence, the representation
with minimum error is chosen for ASR application as explained in [187]. Whereas,
for replay SSD, it is necessary to emphasize the distorted channel information and
hence, we have chosen the channels, which corresponds to maximum error in eq.
(4.56). By maximizing the error, the additional acoustical representation can be ob-
tained. With respect to the analysis of CTEO, we have NC2 possibilities of channel-
pairs for each ith subband. Estimating average CTE for all the channel-pairs and
then choosing the one with the highest average energy is a feasible, however, it
is computationally expensive approach. To reduce the computational complex-
ity, the two channels with the highest average Teager energy can be chosen and
CTE between those two channels can be utilized for further representation. Fur-
thermore, among the set of the one average CTE and two Teager energies, the
subband filtered signal with the maximum energy is selected for classification be-
tween genuine and replay utterances, namely, Maximum Energy Signal (MES).
Mathematically, MES can be represented as [11]:

MES =max(p,q)(E[Ψavg
cr {xpj(t), xqj(t)}], E[Ψ{xpj(t)}], E[Ψ{xqj(t)}]). (4.59)

From eq. (4.59), the MES contains the maximum distortions, such as acousti-
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cal environment and intermediate device responses, these non-linearities are cap-
tured by the MES. Hence, for the replay SSD, the MES is selected for further pro-
cessing.

4.5.2 CTECCmax Feature Extraction Procedure

Figure 4.14 shows the functional block diagram of the CTECCmax feature set de-
veloped for replay SSD task on VAs. The dataset consists of the recordings from a
variety of VAs having various sampling rates (as shown in Table 3.13). Hence, the
input speech of each channel is re-sampled at 16 kHz. Each of the signal from N-
channel microphone array is processed through a Gabor filterbank, which possess
excellent time-frequency resolution (because the Fourier transform of a Gaussian
function is also a Gaussian. Further, Gaussian belongs to the class of infinitely dif-
ferentiable functions, in particular, {gj(t) ∈ C∞}, j ∈ [1, 160] and hence, they have
faster decay in frequency-domain [200]). The Gabor filterbank consist of linearly-
spaced 160 subband filters and hence, we obtain 160 subband filtered signals for
each channel. Then, a TEO profile for each subband filtered signal is obtained.
Furthermore, average of the TEOnj are compared, where n ∈ [1, N] (N corre-
sponds to number of channels in the microphone array as shown in eq. (4.51))
and j ∈ [1, 160]. Then, two channels p and q are selected such that they have
maximum average TEO. Using eq. (4.50) on the p and q, the average CTEO is es-
timated. Windowing is performed on the subband filtered signal with a window
size of 25 ms and window shift of 10 ms, which provides m frames. Averaging
on each frame is performed, which provides the average energy for a frame in
consideration. Then logarithm operation is performed, which is followed by Dis-
crete Cosine Transform (DCT) to obtain the cepstral representation. Initial 70 DCT
(static) features are concatenated with dynamic ∆ and ∆∆ coefficients, which re-
sults in 210-dimensional (D) CTECCmax feature vector. It can be clearly observed
that for a single channel case, the proposed CTECCmax feature set would result in
TECC feature set representation as there would be no channel selection procedure
to follow after estimating the TEO profile for each subband [106]. The MATLAB
pseudocode for implementation of CTECCmax is shown in Algorithm 3. The orig-
inal CTECCmin feature set, which was proposed for ASR to minimize the distor-
tions, can be computed by replacing maxk(·) in line 9 and line 13 in Algorithm 3
to mink(·).
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Algorithm 3 MATLAB Pseudocode of Proposed CTECCmax Feature Set Extrac-
tion. After [11].

1. x = ReSample(x, 16000), resampling of signal to 16 kHz,
2. f bankG = Gabor_ f bank(Q, bw), construct the Gabor filterbank having Q subband filters
with

bandwidth bw,
3. for i = 1 : Q do,

for j = 1 : N do, N represents number of channels in microphone array,
y(j, i, :) = f ilter( f bankG)(i, :), 1, x(j, :)), subband filtering using ith subband filter,
Tsubband(j, i, :) = TEO(y(j, i, :)), estimate energy using TEO,

end for
Tavg(1 : N) = mean(Tsubband(j, i, :)), estimate average for each subband channel,
[∼, k] = maxk(Tavg(1 : N), 2), sorting w.r.t. energy,
Csubband(i, :) = cross_TEOavg(y(k(1), i, :), y(k(2), i, :)), estimate average-CTE between two

highest TE signals
Cavg(i) = Csubband(i, :)
f eat1(1 : 3, :) = [Tsubband(k(1), i, :); Tsubband(k(2), i, :); Csubband(i, :)]
[∼, k2] = maxk(Tavg(k(1)), Tavg(k(2)), Cavg(i)), sorting among two TE and one CTE,
f eat(i, :) = f eat1(k2, :), choose highest among two TE and one CTE,
C f rames = en f rame( f eat(i, :), win_len, win_shi f t), framing on selected feature vector,
Cavg(i, :) = mean(C f rames), Averaging over each frame,

end for
4. Clog = log(abs(Cavg)),
5. Cstatic = DCT(Clog), static coefficients,
6. C∆ = delta(Cstatic), velocity coefficients,
7. C∆∆ = delta(C∆), acceleration coefficients,
8. CTECC = [Cstatic; C∆; C∆∆], CTECCmax feature set.

4.5.3 Experimental Setup

The experiments for the proposed CTECCmax feature set were performed using
ReMASC dataset with configuration shown in Table 3.15. The experiments are
also extended for the recordings from the individual devices. For this case, the
dataset for each of the device is partitioned with 90 % training and 10 % Dev set
with overlapping speakers. The device-specific partition of the dataset is given in
Table 3.13. CQCC (Baseline), MFCC, LFCC, and CTECCmax feature sets are uti-
lized in this work along with GMM, CNN, and LCNN as classifiers. Furthermore,
the various systems are evaluated using the % EER as an evaluation metric.

4.5.4 Spectrographic Analysis

Panel 1 and Panel 2 of Figure 4.15 shows genuine and replay speech signal corre-
sponding to the same utterance "Hey Cortana, remind me to pick up Chick-fil-A",
respectively. Figure 4.15(a) and Figure 4.15(b) shows the time-domain signal, and
its corresponding STFT spectrogram, respectively. However, Figure 4.15(c) and
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Figure 4.15(d) shows the spectrogram representations for TECC and CTECCmax

feature sets, respectively. Spectrogram representations for TECC and CTECCmax

feature sets refers to the feature representation via ESD obtained just before ap-
plying the DCT operation. It can be observed from Figure 4.15(b), Figure 4.15(c),
and Figure 4.15(d) that the STFT-based representations have the less difference
in the speech vs. silence regions. Hence, it is not able to effectively emphasize
the speech information, however, it is more effectively emphasized by the ESD
corresponding to CTECCmax feature set. This might be the reason that the pro-
posed CTECCmax feature set performs relatively better for replay SSD task, than
the other feature sets used in this study.

CTECCmax has two advantages, namely, first it is capturing the characteristics
of utterance in more clear way. This can be observed with the absence of back-
ground noise in the Figure 4.15(d) (for CTECCmax) as compared to corresponding
regions of ESD in Figure 4.15(c). However, in Figure 4.15(d) (Panel II) inspite
of background noise supression capability of the proposed CTECCmax feature set,
we observe a distinct and continuous band of energy in very low frequency region
across the entire time duration. This means that the continuous band of energy is
only due to the replay effect, making it a distinguishing acoustic cue for replay
SSD task. Notably, this band of ESD is the most distinct in the CTECCmax -based
ESD representation as shown in Figure 4.15(d) (Panel II) as compared to their
STFT and TECC representation in Figure 4.15(b) and Figure 4.15(c), respectively.

Second, noise suppression capability of the CTECCmax is observed from the
spectrogram. It can be observed that there is a sudden discontinuity of back-
ground noise around 6000 Hz, in particular, for STFT and TECC-based ESD rep-
resentation as shown in Figure 4.15(b) and Figure 4.15(c), respectively. However,
the background noise as well as sudden discontinuities in noise are suppressed
significantly in the corresponding CTECCmax representation.

4.5.5 Results on Individual Systems and Their Fusions

Results for CQCC (Baseline), MFCC, LFCC, and CTECCmax feature sets are shown
in Table 4.17 for the dataset configuration in Table 3.15. For each of these fea-
ture sets, % EER is shown on Dev and Eval dataset using GMM as the back-end
Bayesian classifier. It can be observed that we obtained absolute reduction in
EER of 4.11 % and 7.38 % on Dev and Eval sets, respectively, as compared with
the baseline CQCC-GMM system. It can also be observed that CTECCmax per-
forms better than CTECCmin, which validates our approach of maximizing the
distortions present in the signal in order to identify degradation in speech utter-
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Figure 4.15: Spectrogram Plot of CTECCmax (Panel I) vs. CQCC (Panel II) Feature
Sets : (a), (b) for Genuine Speech Signal, and (c), (d) for Spoofed Speech Signal.
After [11].

ance due to replay configurations. Experiments are also performed using LCNN
with CQCC and CTECCmax feature set, showing the similar trends in results as
in GMM. Furthermore, EER is reduced to 13.49 % and 13.99 % using score-level
fusion of CTECCmax-GMM and CTECCmax-LCNN systems on Dev and Eval sets,
respectively, indicating both of these systems capture complementary informa-
tion.
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Table 4.17: Results (in % EER) on ReMASC Dataset. After [11].

Feature Set Dev Eval
CQCC-GMM 20.57 23.31

CQCCmax-GMM 18.65 22.67
LFCC-GMM 23.44 21.79

LFCCmax-GMM 21.73 22.12
MFCC-GMM 36.43 31.53

CTECCmin-GMM 20.56 17.30
CTECCmax-GMM (A) 16.46 15.93

CQCC-LCNN 22.31 25.88
CTECCmax-LCNN (B) 16.87 19.70

A + B 13.49 13.99

‘+’ denotes score-level fusion.

4.5.6 Results Obtained on Environment-Dependent and Environment-

Independent Scenarios

For environment-dependent scenario, the target environment is already seen by
the defense model. In this case, each environment is partitioned into two dis-
joint and speaker-independent sets of roughly the same size. The results obtained
using CQCC and CTECCmax feature sets with the application of CMVN, are re-
ported in Table 4.18. It is noteworthy that in this scenario, CMVN had improved
the performance of both the systems. It can be observed from Table 4.18 that in
case of Env-A and Env-B, CTECCmax shows absolute reduction of 10.23 % and
15.84 %, respectively, over CQCC feature set possibly because replay configura-
tions in Env-A and Env-B are more noise-dominant in the sense that both genuine
and spoof utterances have greater noise imbalances. Hence, these environments
show better discrimination. This observation is well supported by experimental
results obtained on Env-C and Env-D, where % absolute reduction obtained is
just 3.05 % and 5.8 %, respectively, over CQCC feature set, possibly due to the
fact that for these replay configurations, background noise in genuine and spoof
configuration is more or less the same.

Environment-independent experiments, on the other hand, are performed by
training defense models on any of the three environments, and tested on the
fourth unseen environment. Results suggest that the performance of CTECCmax

feature set is better than the baseline system on environment A, B, and C, which
shows that the proposed cross-Teager energy-based features provides stronger
feature discrimination ability to the unseen environment conditions. However,
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Table 4.18: Results in % EER for Environment-Dependent vs. Environment-
Independent Case on ReMASC Dataset. After [11].

Feature Set Env-A Env-B Env-C Env-D
Environment CQCC 23.27 42.62 12.96 15.85
Dependent CTECCmax 13.04 26.78 9.91 10.05

Environment CQCC 35.65 40.89 35.95 49.99
Independent CTECCmax 28.49 34.68 32.52 49.99

both baseline CQCC, and CTECCmax feature set perform poorly on environment
D, which indicates that it is completely different from A, B, and C. Hence, this
aspect needs further investigation and is an open research issue.

4.5.7 Results using Individual Recording Devices

For performance analysis on individual devices, we use the core set for training
and Dev set, whereas Eval set is utilized for testing. The training and Dev sets
consist of 90 % and 10 % of the core set, respectively, of each recording devices
with overlapping speakers. Additionally, for the data collection, various record-
ing devices are utilized with different specification as shown in Table 3.13 [9]. The
performance of the proposed CTECCmax feature set is compared against the state-
of-the-art features, such as MFCC, CQCC, LFCC, and TECC, extracted from the
first channel of the microphone array. The GMM, CNN, and LCNN classifiers are
utilized for performance analysis on individual devices. Initially, the parameters
of the proposed CTECCmax, namely, number of subband filters in the filterbank
and number of dimensions of the feature vector are fine-tuned for optimal per-
formance using several experiments. It can be observed from Figure 4.16 that
the relatively better results are obtained for all the four devices (D1-D4) with 160
number of subband filters. Furthermore, with 160 number of subband filters in
the filterbank, experiments are extended by varying the dimension of the feature
vector, which includes static, ∆, and ∆∆ coefficients. It can be observed from
Figure 4.17 that 210-D feature set produce the optimum % EER for all the four de-
vices. Moreover, Figure 4.18 represents the performance of the 210-D feature set
w.r.t. number of mixtures used in GMM classifier. It can be observed from Figure
4.18 that the optimum performance is obtained using 512 mixtures in GMM. Fur-
ther experiments are performed with the CTECCmax feature set extracted using
160 number of subband filters and 210-D feature representation, which includes
static, ∆, and ∆∆ features.

The comparison of the proposed CTECCmax-GMM architecture and the deep
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Figure 4.16: Results using CTECCmax w.r.t Number of Subband Filters used in
Gabor Filterbank: (a) Dev Set, and (b) the Eval Set.

Figure 4.17: Results w.r.t Dimension of CTECCmax Feature Vector: (a) Dev Set,
and (b) Eval Set.
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Figure 4.18: Results w.r.t Number of Mixtures in GMM using CTECCmax: (a) Dev
Set, and (b) Eval Set.

learning-based approach utilized in [12] is shown in Table 4.19 w.r.t. the num-
ber of channels utilized in each device. Both the architectures exploit the multi-
channel information representation for replay SSD task. The architecture in [12]
was considered as a baseline architecture in our work. As shown in Table 3.13,
the devices D1, D2, D3, and D4 consists of 2, 4, 6, and 7 channels, respectively. It
can be observed from the Table 4.19 that the proposed CTECCmax feature set per-
forms relatively better than the baseline architecture for devices D1, D2, and D4,
when all the available channels in the microphone array were utilized for feature
representation. Whereas, the comparable performance is observed for the device
D3.

Furthermore, the performance comparison of the proposed CTECCmax feature
set with the other features using GMM classifier is shown in Table 4.20. It can be
observed that the proposed CTECCmax feature set performs better than the other
feature sets, except for device D1. In addition, similar trends in results are ob-
served for all the feature sets using deep learning-based architectures, such as
CNN and LCNN as shown in Table 4.21 and Table 4.22, respectively. On the
whole, the proposed CTECCmax feature set is useful representation for the replay
SSD for VAs, where multi-channel information can be exploited. Furthermore,
the LLR score distribution of genuine vs. spoof speech utterances on Eval set for
device D4 is shown in Figure 4.19. The common area under the two Gaussian-
like curves in Figure 4.19 is the probability of misclassification [212]. We call this
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area as intersecting area. The lesser the intersecting area is, the lesser the proba-
bility of misclassification is and hence, the lesser the % EER for such a feature set
will be. It can be observed from Figure 4.19 that the proposed CTECCmax fea-
ture set occupies relatively the least amount of area, indicating its relatively better
discrimination power than the other feature sets.

Table 4.19: Results (in % EER) for Comparison of CTECCmax with Existing Archi-
tecture in [12] on Eval set for Various Devices. After [13].

Device
Channels Utilized for Replay SSD

1 2 3 4
[12] CTECCmax [12] CTECCmax [12] CTECCmax [12] CTECCmax

D1 16.6 22.0 14.9 8.84 - - - -
D2 23.7 25.80 19.5 15.74 16.7 16.33 15.4 13.01
D3 23.7 24.63 19.1 17.31 17.6 19.755 17.0 19.10
D4 27.5 29.79 21.5 21.47 20.6 21.19 21.3 20.3

Device
Channels Utilized for Replay SSD

5 6 7 - -
[12] CTECCmax [12] CTECCmax [12] CTECCmax - -

D1 - - - - - - - -
D2 - - - - - - - -
D3 17.1 19.71 16.5 16.53 - - - -
D4 20.7 20.25 19.9 21.15 19.8 16.41 - -

Table 4.20: Results (in % EER) on Dev and Eval Set w.r.t. Various Feature Sets
and Devices using GMM Classifier. After [13].

Device D1 D2 D3 D4
Feature Set Dev Eval Dev Eval Dev Eval Dev Eval

MFCC 9.16 7.98 16.87 26.02 19.71 20.37 12.23 26.99
CQCC 2.88 11.9 4.59 28.68 4.07 23.91 1.88 29.392
LFCC 2.26 8.04 3.45 20.09 4.75 19.32 3.43 23.18
TECC 9.15 22.0 12.34 25.80 10.85 24.63 13.72 29.79

CTECCmin 0.429 8.00 1.90 20.07 2.07 19.19 1.04 19.68
CTECCmax 0.86 8.84 1.25 13.01 0.87 16.53 0.67 16.41

4.5.8 Detection Error Trade-off (DET) Curves

The performance of proposed feature set is also evaluated using the DET curves
for various feature sets because it gives SSD performance at various operating
points of the SSD system. Figure 4.20 shows the DET curves obtained for the
devices D1, D2, D3, and D4 for Dev and Eval sets. Figure 4.20(a) and Figure 4.20(e)
shows the DET curves for device D1 on Dev and Eval set, respectively. Similarly,
(Figure 4.20(b), Figure 4.20(f)), (Figure 4.20(c), Figure 4.20(g)), and (Figure 4.20(d),
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Table 4.21: Results (in % EER) on Dev and Eval Set w.r.t. Various Feature Sets
and Devices using CNN Classifier. After [13].

Device D1 D2 D3 D4
Feature Set Dev Eval Dev Eval Dev Eval Dev Eval

MFCC 3.93 14.89 5.91 24.80 8.63 21.65 7.18 24.86
CQCC 6.29 17.92 9.14 36.06 16.50 32.30 13.70 40.90
LFCC 4.72 15.40 6.89 36.70 5.75 26.50 7.18 25.94
TECC 19.48 29.4 19.30 27.21 15.38 26.05 26.94 29.90

CTECCmin 2.36 14.39 5.37 27.54 2.87 27.81 1.79 22.82
CTECCmax 2.76 11.11 3.76 23.37 2.87 25.17 3.59 22.82

Table 4.22: Results (in % EER) on Dev and Eval Set w.r.t. Various Feature Sets and
Devices using LCNN Classifier. After [13].

Device D1 D2 D3 D4
Feature Set Dev Eval Dev Eval Dev Eval Dev Eval

MFCC 7.08 12.87 11.82 29.38 16.54 27.46 16.16 34.41
CQCC 10.23 18.43 16.67 35.39 17.26 25.70 13.77 37.47
LFCC 12.59 20.20 16.66 38.56 17.98 28.87 18.56 39.07
TECC 29.91 32.32 30.64 35.05 30.21 33.45 36.51 38.91

CTECCmin 9.44 16.41 4.83 25.70 8.63 27.4 4.79 30.45
CTECCmax 3.56 16.91 4.32 28.21 9.35 21.3 6.58 24.34

Figure 4.19: LLR Scores Distribution on Eval Set of D4: (a) MFCC, (b) CQCC, (c)
LFCC, (d) TECC, (e) CTECCmin, and (f) CTECCmax. After [13].
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Figure 4.20: DET Curves Obtained for Various Feature Sets as Shown in Leg-
ends. Figure 4.20(a) and Figure 4.20(e) shows the DET Curves for Device D1 on
Dev and Eval Set, Respectively. Similarly, (Figure 4.20(b), Figure 4.20(f)), (Figure
4.20(c), Figure 4.20(g)), and (Figure 4.20(d), Figure 4.20(h)) shows the DET Plots
for Device D2, D3, and D4 on (Dev, Eval) Set, Respectively. The Legend shown in
Figure 4.20(a) is Similar for Remaining DET Plots.

Figure 4.20(h)) shows the DET plots for device D2, D3, and D4 on (Dev, Eval) set,
respectively. It can be observed that the CTECCmax outperforms the other feature
sets for all the devices (except device D1) for MFCC, and LFCC feature set at all
the operating points of SSD system.

The performance of the proposed CTECCmax feature set is summarized in
summary (i.e., Section 4.7). In the next Section, the development and the per-
formance of the proposed CFCCIF-ESA feature set is discussed.

4.6 CFCCIF-ESA Feature Set

4.6.1 Proposed CFCCIF-ESA Feature Set

As shown in the Figure 4.21, the proposed CFCCIF-ESA feature set is an adap-
tion of the CFCC feature set, which extracts the magnitude information from the
subband filtering using cochlear filterbank. The CFCC feature set was developed
for speaker recognition task, and shows the relatively better performance than
MFCC, Perceptual Linear Prediction (PLP), and relative spectral-PLP (RASTA-
PLP) features under noisy or signal degradation conditions [33]. Furthermore,
the IF information is incorporated along with magnitude information, to adapt
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Figure 4.21: Functional Block Diagram of the CFCC, CFCCIF, and Proposed
CFCCIF-ESA Feature Set. After [1, 33].

Figure 4.22: Selected Chronological Progress of the Proposed CFCCIF-ESA Fea-
ture Set. After [1].

CFCCIF feature set, where IFs were estimated using Hilbert transform approach.
Further, IFs are estimated with ESA and embedded with magnitude information,
to give CFCCIF-ESA feature set. The CFCCIF and the proposed CFCCIF-ESA fea-
ture sets are developed for anti-spoofing. The selected chronological progress for
the proposed CFCCIF-ESA feature set is shown in Figure 4.22.

The CFCC feature extraction emulates the human peripheral hearing system
and involves cochlear filter-based on auditory transform (AT), hair cell function,
non-linearity, and DCT [33]. The AT basically models the traveling wave in the
cochlea (in particular, BM), where the decomposition of the sound wave takes
place into a set of subband signals [198]. The travelling wave can be modeled by
the impulse response function, γ(t) ∈ L2(R) (i.e., Hilbert space of finite energy
signals), which satisfy the following conditions:

• It should be the zero average function, i.e.,

∫ +∞

−∞
γ(t)dt = 0 ⇒ Γ(ω)|ω=0 =

∫ +∞

−∞
γ(t)e−jωtdt|ω=0 = 0, (4.60)

where Γ(ω) is Fourier transform of the γ(t), i.e., Γ(ω) = F{γ(t)}, where
F{·} represents the continuous-time Fourier transform (CTFT) operation.

• It suggests that Γ(ω) is bandpass in nature. The bandpass nature of the filter
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Figure 4.23: (a) Impulse Response of 2nd Subband (Cochlear) Filter, and (b)
Corresponding Frequency Response of Cochlear Filterbank Consisting of Ten
Subband Filters. After [1].

also helps to approximate the numerical computation [198],

• It decreases to zero on both the sides of t, and it has unit norm, i.e.,∫ +∞

−∞
(1 + |t|)|γ(t)|dt < +∞, and ||γ(t)|| = 1. (4.61)

Similar nature is observed in psycho-acoustic experiments with the BM [201].
The impulse response of 2nd subband filter in the filterbank is shown in Fig-
ure 4.23.

• Eq. (4.60) indicates that the function γ(t) has zero d.c. (average) value, i.e.,
it is wavy in nature, whereas eq. (4.61) indicates that γ(t) must decay after a
certain short interval of time.

The subband filters in the cochlear filterbank satisfies the above conditions
[198]. The AT (X(u, v)) of the speech signal, x(t) ∈ L2(R) w.r.t the impulse re-
sponse of the BM (γ(t)) is given by [33, 198]:

X(u, v) =
∫ +∞

−∞
x(t − τ) · γ∗

u,v(τ)dτ, (4.62)

and
γu,v(t) =

1√
u

γ
( t − v

u

)
, (4.63)

where the parameter u ∈ R+, and v ∈ R, represents the scaling and translation
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parameters, respectively, and * indicates the complex conjugate operation. The
scaling parameter u allows to set the center frequency of the subband filters in the
cochlear filterbank. The value of u is calculated by using the lowest frequency fl,
and center frequency, fc, for each subband filter of the cochlear filterbank [198],
i.e.,

u =
fl
fc

. (4.64)

Frequency scale of the filterbank determines the kind of spacing between the cen-
ter frequencies of the subband filters in the filterbank. The frequency scale of
the filterbank can be chosen either ERB, Mel or linear depending upon the ap-
plication. In this work, we used linear-scale cochlear filterbank by keeping the
constant bandwidth for all the subband filters, i.e., it has the constant resolution
across the entire frequency range. Furthermore, the cochlear filter is defined as
in [33]:

γu,v(t) =
1√
u

( t − v
u

)α

· exp
[
− 2π fl β

( t − v
u

)]
× cos

[
2π fl

( t − v
u

)
+ θ

]
U(t − v),

(4.65)
where U(.) represents the unit-step function. The parameters α and β are tuned
to set the width and shape, respectively, of the frequency response of the cochlear
filter.

Next, we find the frequency response of cochlear filter, γu,v(t). For simplicity
and clarity in derivation, let u = 1, and v = 0 in eq. (4.62) to produce the sample
cochlear filter, i.e.,

γ1,0(t) =
[
tα exp(−2π fl βt)

]
· cos(2π flt + θ)U(t). (4.66)

Applying CTFT on both the sides of eq. (4.66), we get [1],

F
[
γ1,0(t)

]
=

1
2π

F
[
tα exp(−2π fl βt)u(t)

]
∗ F

[
cos(ωct + θ)

]
, (4.67)

where ∗ represents the convolution operation in the frequency-domain (due to
modulation theorem for CTFT [42, 200]). Rewriting eq. (4.67) as,

Γ1,0(ω) =
1

2π

( α!
(jω − 2π fl β)α+1

)
∗
(

πejθδ(ω − ωc) + πe−jθδ(ω + ωc)
)

, (4.68)

where δ(·) represents Dirac-delta function in the frequency-domain. The eq. (4.68)
consist of two terms combined by the convolution operation. In particular, the
first term represents the shape and size of the cochlear filter in the filterbank,
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whereas the second term indicates location of impulses at the center frequency of
the cochlear filter. Thus, the spectrum of the subband filter is replicated around
the center frequency, ωc. Furthermore, by varying the value of α and β, the shape
and width of the frequency response of the subband filters in the cochlear filter-
bank can be varied in order to achieve adaptive time-frequency resolution [200].

The subband filtering imitates the bandpass characteristics of the impulse re-
sponse of the BM of various locations w.r.t. place theory of hearing. The inner hair
cell is responsible for the automatic movement of BM for neural activities. Various
regions in BM move up and down (vibrates) according to the frequency content
in the signal. These vibrations further results in the movement of uppermost hair
cells, which commences of the neural activity. This neural activity is generated in
a single direction by the inner hair cells and hence, it can be effectively modelled
by a square function as [33]:

H(u, v) = (X(u, v))2, ∀X(u, v), (4.69)

where X(u, v) is the cochlear filterbank output, and H(u, v) is the hair cell func-
tion. The output of the hair cell is transformed to electrical signals, which are
then sent to the brain by the auditory nerves. The NSD can be used to model the
intensity of this electrical signal, which is computed as [33]:

NSD(i, n) =
1
w

m+w−1

∑
c=m

H(i, c), m = 1, h, 2h, .....; ∀i, n, (4.70)

where w is the window length, n is the frame count, and h is the hop size of the
window function. Furthermore, scales of loudness functions proposed by Stevens
is applied to the received output [203, 204, 208]. In particular,

z(i, j) = log(NSD(i, j)). (4.71)

Finally, DCT is performed in order to achieve feature decorrelation, energy com-
paction, and dimensionality reduction of CFCC feature vector [33].

CFCCIF is an extension of the CFCC feature set, where the information ob-
tained from IF is combined with the CFCC feature set. The CFCCIF feature set
was first time proposed in [65] for SSD task in ASVSpoof 2015 challenge during
INTERSPEECH 2015. In CFCCIF feature set, IFs were estimated using the tra-
ditional segmental Hilbert transform-based approach. The details of the Hilbert
transform approach, are given in the Appendix B. However, IF can be more ef-
fectively estimated for speech signal using ESA as explained in [31]. The brief
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explanation of the ESA is given in Section 4.3. Among the various DESA algo-
rithms, DESA-1a algorithm is utilized in this study to estimate the instantaneous
frequency.

In CFCC feature set, the averaging operation is performed on each subband
signal while computing the NSD. It performs the lowpass filtering operation to
suppress the fast temporal modulations in the subband signals [229]. Further-
more, sharp variations in the phase of the travelling wave occurs at every center
frequency of the cochlear subband filter from base to the apex of the BM [230]. We
argue that these sharp variations are represented by IFs. We know that vocoder-
based speech signal is lacking the phase information as in natural speech signal.
Furthermore, temporal discontinuities are present due to joining of speech sound
units in the vocoder-dependent speech signal. To capture this distorted phase
information and temporal discontinuities, we propose to use the Average Instan-
taneous Frequency (AIF) with the envelope representations obtained in the CFCC
feature set. To that effect, let xi(t) be the subband signal corresponding to the ith

subband filter. Framing and windowing is performed on each subband signal,
and framewise average IF is estimated for each subband as follows:

AIF(i, n) =
1
w

m+w−1

∑
c=m

IF(i, c), m = 1, h, 2h, ...; ∀i, n, (4.72)

where w is the window length, n is the frame count, and h is the hop size of
window function. Let z(i, t) represents the combination of the NSD (in eq. (4.70))
and AIF (in eq. (4.72)) for ith subband and mathematically, it is estimated as [29]:

z(i, t) = S(i, t)× AIF(i, t). (4.73)

The study reported in [231] uses the feature combination strategy by concatenat-
ing the average IFs with envelope features. However, it results in increase in
dimension of the feature vector by a factor of two. Motivated from the original
study in [232], the relative perceptual importance of the envelope and fine time
structure is investigated by synthesizing the auditory chimeras; which has the en-
velope of the one sound and the fine structure of the other sound. Here, auditory
chimeras are formed by the multiplication of the envelope and fine structure. The
similar strategy is followed in CFCCIF-ESA feature set, where the multiplication
of the NSD and AIF is performed. It helps to reduce the dimensionality of the
feature vector. Furthermore, the random IF estimated in silence regions will be
suppressed by multiplication operation as silence region possess low amplitude
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values in the envelope structure. The partial derivative operation performed on
z(i, t) can be expressed using a chain rule, i.e.,

∂z(i, t)
∂t

= AIF(i, t)
∂S(i, t)

∂t
+ S(i, t)

∂AIF(i, t)
∂t

. (4.74)

From eq. (4.74), it can be observed that the derivative of the z(i, t) consists of two
terms. The first term represents the changes in the NSD weighted by the AIF,
whereas the second term represents the changes in the AIF weighted by the NSD.
Furthermore, the DCT operation (as in the other cepstral features) is performed on
the derivative of the z(i, t), to obtain energy compact decorrelated CFCCIF feature
set with a reduced dimension of feature vector.

As discussed earlier, in the CFCCIF feature set, IFs were estimated using the
traditional segmental Hilbert transform-based approach, which uses the speech
segment (of 10-30 ms duration) to derive the instantaneous (i.e., analytic) phase.
Hence, the traditional Hilbert transform-based analytic signal generation approach
requires signal for a longer duration (i.e., it is segmental approach) and hence, it
averages out (blunts) the fine variations in IFs w.r.t. time. Whereas, in the pro-
posed CFCCIF-ESA feature set, IFs were estimated using ESA, which uses only a
few adjacent (5 − 7) samples in order to estimate the IF [194]. The ESA is not only
computationally efficient but also captures instantaneously adapting nature of the
modulation pattern in the time-varying speech signal [183, 194, 233]. Hence, ESA
is able to estimate the IFs more accurately for the time-varying signals with the
constraint of the narrowband signal (because the concept of IF is primarily devel-
oped for the monocomponent signal [234]). The functional block diagram depict-
ing feature extraction procedure for CFCC, CFCCIF, and CFCCIF-ESA is shown in
Figure 4.21. Furthermore, MATLAB pseudocode for the proposed CFCCIF-ESA
feature set is illustrated in Algorithm 4.

4.6.2 Analysis of Phase-Related Artifacts in SS and VC Spoof

The phase-based information is generally neglected in several speech technology
applications [235]. However, recently there are numerous amounts of evidences,
which suggest the significance of the phase information. In [236], the complemen-
tary information in phase is utilized to enhance the performance of the SSD sys-
tem against replay spoofing attacks. In addition, the person identification system
using humming exploited the phase information for better performance [237,238].
The phase information is also exploited in many other speech signal processing
applications, such as speech enhancement, source separation, speech synthesis,
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Algorithm 4 MATLAB Pseudo Code of Proposed CFCCIF-ESA Feature Set Ex-
traction. After [1].

1. f bankC = Cochlear_ f bank(Q, α, β, u), construct the cochlear filterbank
with Q subband filters and optimum set of values α, β, and u,

2. for i = 1 : Q do,
y(i, :) = f ilter( f bankC)(i, :), 1, x), subband filtering using ith

subband filter,
Hsubband(i, :) = (y(i, :))2, hair cell function,
H f rames = en f rame(Hsubband(i, :), win_len, win_shi f t), framing

with appropriate window length and window shift,
NSD(i, :) = mean(H f rames), estimation of NSD,
IF(i, :) = IF_using_ESA(y(i, :)), estimation of IF using ESA,
Z(i, :) = NSD(i, :)× IF(i, :), combination of NSD and IF,
F(i, :) = Z(i, n)−Z(i, n− 1), single sample backward difference,

end for
3. Flog = log(F), logarithmic operation,
4. Fstatic = DCT(Flog), static coefficients,
5. F∆ = delta(Fstatic), velocity coefficients,
6. F∆∆ = delta(F∆), acceleration coefficients,
7. CFCCIF-ESA = [Fstatic; F∆; F∆∆], CFCCIF-ESA feature set.

speech and speaker recognition [235, 239–243].

In this Section, we analyze the artifacts generated by SS and VC methods uti-
lized in ASVSpoof 2015 challenge. SS is being extensively used in various appli-
cations, such as e-book readers, speech-to-speech translation systems, and spoken
dialogue systems. The advanced approaches, such as the unit selection approach
of SS, can select the appropriate speech sound units and concatenate them in or-
dered sequence to generate the synthesized speech, which can adopt the speaker’s
identity and linguistic content. Hence, SS-based spoofed speech signal can breach
the ASV system. The vulnerability of the ASV system to SS-based attack was
studied in [28,244]. It has been observed that the dynamic variation of the speech
signal parameters in synthesized speech signal is much lesser than the param-
eters of the natural speech signal [244]. It is also studied that, human auditory
system is relatively less sensitive for phase spectrum than the magnitude spec-
trum characteristics [42, 245]. To that effect, SS-based vocoders are designed in
such a way that they do not take the phase characteristics (in time and frequency-
domain) into account. Hence, there exist the difference in phase characteristics of
natural vs. synthesized speech, which can be exploited for the SSD task. To inves-
tigate this issue, the IFs of the natural and SS-based speech signals are depicted
in Figure 4.24 and Figure 4.25, where IFs were estimated using ESA. IFs repre-
sents the derivative of time-domain phase characteristics. It can be observed that
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the dynamic variations in IFs (indicating energy modulations in acoustic signal
generation process [193]) for genuine speech signal is much more than that of the
synthesized speech.

VC technique converts the given source speaker’s voice to target speaker’s
voice [68, 246]. In this conversion process, input speech signal characteristics,
such as voice timbre, F0, and duration, are mapped to that of target speaker(s).
It can be achieved through the various spectral mapping techniques. In VC,
vocoders are used similar to that of SS technology. Hence, artifacts introduced
by the vocoders into the converted speech signal would be the similar to that of
synthesized speech.

Similar analysis is performed on ASVSpoof 2019 LA dataset, where synthetic
speech signal was produced by advanced neural-network-based waveform mod-
elling techniques, known as WaveNet architectures [168]. These architectures can
produce the synthetic speech signals as natural speech produced by the humans.
However, the analysis performed to detect the artifacts using IFs shows that the
difference between the genuine vs. spoof speech signal for ASVSpoof 2019 LA
dataset is not distinct as compared to that of ASVSpoof 2015 dataset. This might
be due to the fact that the nature of the IFs estimated for the synthetic speech
signals in ASVSpoof 2019 dataset would be as natural as that of genuine speech
signal. Thus, the effectiveness of the IF approach is determined by the vocoder. In
particular, with neural-network-based vocoders, the proposed IF estimation ap-
proach does not work. Given this, the key objective of this study is to develop
an effective feature set for ASVSpoof 2015 dataset that captures these variations
in IFs in the traditional theoretical framework of CFCCIF, where IF is estimated
using ESA.

4.6.3 Experimental Setup

The performance of the proposed CFCCIF-ESA feature set is evaluated using
ASVSpoof 2015 and ASVSpoof 2017 datasets, which are described in brief in sub-
Section 3.2.1 and sub-Section 3.2.2, respectively. The performance of the pro-
posed feature set is compared against the state-of-the-art feature sets, such as
CQCC, MFCC along with companion feature sets, such as CFCC and CFCCIF.
For ASVSpoof 2015 dataset, GMM and CNN classifiers are utilized. The theoreti-
cal explanation of the GMM and CNN classifiers is provided in sub-Section 3.4.1
and sub-Section 3.4.3, respectively. The details of the CNN architecture utilized
for the proposed CFCCIF-ESA feature set on ASVSpoof 2015 dataset is shown in
Table 4.23. Whereas, for ASVSpoof 2017 dataset, GMM-based classifier is utilized.
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Figure 4.24: Ten IF Contours of the Subband Filtered Genuine Speech Signal.
Subband Filtering is Performed by the Cochlear Filterbank with Ten Subband
Filters (and hence, Ten IF Contours) Covering the Nyquist Sampling Frequency
Range. After [1].

Figure 4.25: Ten IF Contours of the Subband Filtered SS- and VC-based Spoof
Speech Signal. Subband Filtering is Performed by the Cochlear Filterbank with
Ten Subband Filters (and hence, Ten IF Contours) Covering the Nyquist Sam-
pling Frequency Range. After [1].
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Table 4.23: Details of the Proposed CNN Architecture for SSD System. After [1].

Layer Filter/Stride Output Parameters
Conv1 5 x 5/1 x 1 16 x 16 x 398 416
BN1 - 16 x 16 x 398 32
MaxPool1 2 x 2/2 x 2 16 x 8 x 199 -
Conv2 3 x 3/1 x 1 32 x 8 x 199 4640
BN2 - 32 x 8 x 199 64
MaxPool2 2 x 2/2 x 2 32 x 4 x 99 -
Conv3 3 x 3/1 x 1 64 x 4 x 99 18496
BN3 - 64 x 4 x 99 128
MaxPool3 2 x 2/2 x 2 64 x 2 x 49 -
Conv4 3 x 3/1 x 1 16 x 2 x 49 9232
BN4 - 16 x 2 x 49 32
MaxPool4 2 x 2/2 x 2 16 x 1 x 24 -
FC5 - 1 x 200 77000
FC6 - 1 x 2 402

The score-level fusion approaches, i.e., linear fusion and using logistic regression
solution are employed to combine the complementary information (Chapter 3,
Section 3.6) in various SSD systems.

4.6.4 Experimental Results on ASVSpoof 2015 Dataset

This Section begins with the comparison of the proposed CFCCIF-ESA feature set
with the other feature sets reported in the literature on ASVSpoof 2015 challenge
dataset. Furthermore, it proceeds with the detailed analysis of results obtained by
the proposed CFCCIF-ESA feature set, which includes the parameter tuning and
evaluation using various performance metrics.

4.6.4.1 Comparison with Other Feature Sets on Eval Set

In this Section, the performance of the proposed CFCCIF-ESA feature set is com-
pared against the earlier reported studies in the literature on ASVSpoof 2015 chal-
lenge dataset. The Eval set consists of the unknown attacks, which successfully as-
sesses the generalization capability of the SSD system. Table 4.24 shows the results
on the Eval set for the SSD architectures developed on ASVSpoof 2015 challenge
dataset using conventional GMM and SVM classifiers, whereas Table 4.25 shows
the results on Eval set for the SSD systems, which uses DNN architectures either
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for feature representation or as a classifier. The brief details of the systems shown
in Table 4.24 and Table 4.25 are already discussed in Chapter 2 (Section 2.2).

From the studies reported in the literature and w.r.t. Table 4.25, it can be ob-
served that the CQCC and the other feature sets derived from the CQT are pro-
ducing relatively better results and thus, shows their generalization capability.
The results of the proposed CFCCIF-ESA feature set trained on GMM and CNN
classifiers are shown in Table 4.24 and Table 4.25, respectively. The CFCCIF-ESA-
GMM system shows the significant improvement in the performance over all the
other feature sets, except CQT-derived feature sets. In addition, the proposed
feature set shows relatively moderate performance on known attacks, however,
it shows the significant performance improvement (in particular, 3.05 % EER)
on S10 attack as compared to the other feature sets except CQT-derived feature
sets. Here, S10 attack uses unit selection approach for speech synthesis, and it
is known to be most difficult to detect for the other feature sets. AEER for un-
known attacks using CFCCIF-ESA-GMM system is as low as 1.00 %. This shows
the generalization capability of the proposed feature set for the realistic unknown
attack scenarios. Furthermore, when CNN is employed with CFCCIF-ESA feature
set, it shows improved results over its GMM-based counterpart. The score-level
fusion using linear weighted fusion of the CNN- and GMM-based SSD systems
shows the % AEER reduced to 0.31 %, when fusion parameter β in eq. (3.16) is
determined using the Dev set. In addition, fusion is also performed using logistic
regression solution of score calibration using Bosaris toolkit, where the parame-
ters in eq. (3.17) are trained on Dev set to obtain the best possible performance,
and then used on Eval set for the score calibration. However, when fusion is per-
formed directly onto the scores obtained on the Eval set, then it shows the AEER
as 0.29 % (which is referred to as ideal in the last row of Table 4.25). It suggests
that the GMM- and CNN-based classifiers captures the complementary information
for the proposed CFCCIF-ESA feature set in the SSD task. In addition, it can be
observed that, our proposed CFCCIF-ESA feature set shows significantly better
performance for S10-attack, which is difficult to detect for the other feature sets.
The performance analysis of various SSD systems, which are showing promising
results on S10-attack, is discussed further in more details in Section 4.6.4.4.
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4.6.4.2 Detailed Analysis

• Parameter Tuning

The results reported in Table 4.24 and Table 4.25 for the proposed CFCCIF-ESA
feature set are obtained by performing parameter tuning (such as feature parame-
ters α and β, number of subband filters in the filterbank, and dimension of feature
vector) on Dev set with GMM classifier. As given in [29], we performed the initial
experiment with β = 0.035 and varying α with 40 subband filters in the filterbank.
In addition, the feature vector dimension is set to 36, which includes 12-static, ∆,
and ∆∆ features. It was observed that α = 3 gives relatively better performance.
Then, β is varied by keeping the value of α = 3. Better performance was obtained
with α = 3, and β = 0.005, which determines the shape and width of the frequency
response, respectively, of the subband filters in the cochlear filterbank. Then, by
fixing the optimized value of α and β, the experiments are performed with varying
number of subband filters in the cochlear filterbank. It can be observed from Fig-
ure 4.26 that the better results are obtained as we keep on increasing the number
of subband filters in the filterbank. It has been observed that, the performance is
improved as the number of subband filters reaches to 60, and then very little vari-
ation in the % EER was observed after 60 subband filters. It might be due to the
fact that TEO is historically developed for monocomponent signals (as discussed
in Section 4.3), and modelling the energy of SHM [182]. However, the bounds
derived in [194] suffices the applicability of TEO for subband filtered signals for
estimating the reasonably accurate IFs. In addition, human auditory system for
hearing depends upon thousands of subband filters [40]. Furthermore, with in-
crease in number of subband filters in the cochlear filterbank, the approximation
errors may keep on reducing and hence, the estimated IFs have the more accurate
values with increase in subband filters. It is obvious that with the greater number
of subband filters, each subband filtered signal is approximating the monocom-
ponent nature of the signal, and helps to predict IFs more accurately. Further-
more, experiments are performed using the varying number of dimensions of the
CFCCIF-ESA feature vector. It has been observed that relatively better perfor-
mance is obtained with 18-D CFCCIF-ESA feature set, which includes static, ∆,
and ∆∆ features.

• Effect of the Various Filterbanks

The proposed feature set adopts a cochlear filterbank using linearly-spaced sub-
band filters. To validate the effectiveness of the cochlear filterbank in CFCCIF-
ESA feature set, experiments are performed with the other filterbanks, such as
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Figure 4.26: Results (in % EER) w.r.t. Number of Subband Filters on the Dev Set.
After [1].

Gammatone and Gabor filterbanks, which allows to derive subband-based fea-
tures for speech signal processing applications [41,247]. The cochlear filterbank is
replaced by Gabor and Gammatone filterbanks by keeping the remaining archi-
tecture intact as that of the proposed feature set. Table 4.26 shows the results for
the proposed CFCCIF-ESA feature set and the feature sets derived by replacing
the cochlear filterbank with Gabor and Gammatone filterbanks in the proposed
feature set architecture. The impulse response of the Gabor’s subband filter is
given by [31]:

g(t) = exp(−a2t2) · cos(ωct), (4.75)

where ωc represents center frequency of a Gabor filter, and a controls its band-
width. From Table 4.26, it can be observed that the performance of the cochlear
filterbank shows the significant improvement over Gabor and Gammatone filter-
banks. Moreover, the performance of the Gabor filterbank is relatively nearer to
the cochlear filterbank, which is quite expected due to their similar mathematical
structure as can be seen from eq. (4.65) and eq. (4.75).

To analyze the effect of filterbank on the performance of the proposed CFCCIF-
ESA feature set, we have observed the frequency response of various filterbank
structures consisting of 10 subband filters and occupying the entire frequency
range for a given sampling frequency. From Figure 4.27, it can be observed that
the bandwidth of the cochlear filterbank is narrowest (and hence, having rela-
tively best quality factor) among the three filterbanks. From the time-frequency
analysis literature [248], IF of the monocomponent signal is defined as the fre-
quency of the sinusoid, which locally fits into infinitesimal smaller window ap-
plied onto the signal and hence, IF estimation is expected to be relatively accurate
for narrowband filtered output signal than its monocomponent counterpart. The
study reported in [31] shows that IFs can be more accurately estimated for the nar-
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rowband signals. From Figure 4.27, it can be observed that the subband filtered
signals obtained from the cochlear filterbank would be the more narrowband as
compared to that of Gabor and Gammatone filterbanks. We know that,

Q ∝
1
B

, (4.76)

where Q and B represents quality factor and bandwidth, respectively, of the subband
filters. Thus, cochlear filterbank will have higher quality factor and higher fre-
quency selectivity. Hence, the proposed feature set framework, which utilizes IFs,
might be more suitable using cochlear filterbank. Moreover, the subband filters
of the Gammatone filters in higher frequency range, have higher bandwidth (and
thus, poor quality factor and hence, poor frequency selectivity). And hence, IFs
estimated from the subband filtered signals using Gammatone filterbank would
not be accurate. This might be the reason that the Gammatone filterbank is pro-
ducing relatively bad performance in the CFCCIF-ESA framework.

Table 4.26: Results (in % EER) on Proposed CFCCIF-ESA Feature Set Framework
with Various Filterbank Structures. After [1].

Filterbank Structure Dev Eval
Gabor 1.03 2.56

Gammatone 13.13 10.56
Cochlear 0.6 0.85

Figure 4.27: Frequency Response of Filterbanks with 10 Subband Filters: (a)
Gabor, (b) Cochlear (α = 3 and β = 0.005), and (c) Gammatone. After [1].
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Table 4.27: Results in % EER, % Classification Accuracy, and AUC of Intersection
of the Probability Density Functions (pd f s) Obtained from the LLR Scores for
Dev and Eval Set of ASVSpoof 2015 Dataset. After [1].

SSD System % EER AUC % Classification Accuracy
Dev Eval Dev Eval Dev Eval

CFCC-GMM 1.47 1.77 0.0368 0.0560 98.19 96.64
CFCCIF-GMM 0.78 1.27 0.0266 0.0433 98.43 96.63

CFCCIF-ESA-GMM (A) 0.6 0.85 0.0204 0.0390 98.52 97.23
CFCCIF-ESA-CNN (B) 0.044 0.82 0.0037 0.0328 99.73 97.45

(A) + (B) 0.028 0.45 0.0031 0.0206 99.69 98.38

4.6.4.3 Assessment of the Proposed CFCCIF-ESA Feature Set using Various
Performance Metrics

In this study, we assessed the performance of the proposed CFCCIF-ESA fea-
ture set using three performance metrics, namely, % EER, % classification accu-
racy, and AUC of the overlapping regions for the pd f s of the LLR scores for
genuine and spoof speech utterances. Table 4.27 shows the performance of the
proposed CFCCIF-ESA feature set along with the earlier cochlear filter-based fea-
tures, namely, CFCC and CFCCIF2. The feature parameters of the CFCC, CFCCIF,
and CFCCIF-ESA are set for corresponding best possible results. It can be ob-
served from Table 4.27 that the proposed feature set gives better % classification
accuracy and less AUC than the CFCC and CFCCIF feature sets. In addition, re-
sults are improved further using CNN. Furthermore, the classifier-level fusion of
the GMM and CNN using proposed feature set gives all the more better results.

Figure 4.28 shows the LLR score densities of genuine vs. spoof speech utter-
ances obtained from the SSD systems with various feature sets and classifiers. Fig-
ure 4.28 (a), (b), (c), (d), and (e) shows the genuine vs. spoof speech LLR score dis-
tribution on Dev set obtained from CFCC-GMM, CFCCIF-GMM, CFCCIF-ESA-
GMM (A), CFCCIF-GMM-CNN (B), and score-level fusion of the SSD system (A)
and (B), respectively. However, Figure 4.28 (f), (g), (h), (i), and (j) shows the score
distribution on the Eval set obtained from CFCC-GMM, CFCCIF-GMM, CFCCIF-
ESA-GMM (A), CFCCIF-GMM-CNN (B), and score-level fusion of the SSD sys-
tems (A) and (B), respectively. It can be observed from Table 4.27 that the AUC
for the overlapping region between the pd f s of the LLR scores for genuine and

2Here, feature parameters of CFCC feature set shows the better performance for the parameter
set as suggested in [29] (i.e., α=3, and β = 0.035) with 60 subband filters in the filterbank. However,
CFCCIF and CFCCIF-ESA feature sets are tuned with the parameter set as explained in sub-Section
4.6.4.2 (i.e., α=3, and β = 0.005, 60 subband filters in the filterbank and 18-dimensional feature set,
which includes static, ∆, and ∆∆ features).
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Figure 4.28: LLR Score Distribution of Genuine vs. Spoof Speech Distribution
for the SSD Systems Developed using Various Feature Sets and Classifiers. (Fig-
ure 4.28 (a) and (f)), (Figure 4.28 (b) and (g)), (Figure 4.28 (c) and (h)), (Figure
4.28 (d) and (i)), and (Figure 4.28 (e) and (j)) Shows the LLR Score Distribution
for the SSD Systems CFCC-GMM, CFCCIF-GMM, CFCCIF-ESA-GMM (A),
CFCCIF-ESA-CNN (B), Score-Level Fusion of (A) and (B) on Dev and Eval Set,
Respectively. After [1].

Figure 4.29: DET Curves Obtained from the SSD Systems Implemented using
CFCC, CFCCIF, and Proposed CFCCIF-ESA Feature Sets on ASVSpoof 2015
dataset. Figure 4.29(a) and Figure 4.29(b) Shows the DET Plots for Dev and Eval
Set, Respectively. DET Curves for CFCCIF-ESA-CNN and CFCCIF-ESA-Fusion
are not Visible in Figure 4.29(a) Due to % EER is Approaching to Zero. After [1].
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spoof speech utterances is minimum for the proposed CFCCIF-ESA feature set.
The AUC is larger for the CFCC feature set than the CFCCIF/CFCCIF-ESA fea-
ture sets, which indicates the significance of the IF in the proposed feature set
architecture for relatively better performance. The exact values of the AUC are
shown in Table 4.27. Furthermore, score-level fusion of the CFCCIF-ESA-GMM
and CFCCIF-ESA-CNN shows the significant reduction in the AUC.

Figure 4.29 (a) and Figure 4.29 (b) shows the DET curves for the CFCC-GMM,
CFCCIF-GMM, CFCCIF-ESA-GMM (A), CFCCIF-GMM-CNN (B), and score-level
fusion of the SSD system (A) and (B) on the Dev and Eval set, respectively. As the
% EER for CFCCIF-GMM-CNN system is near to zero for Dev set, we cannot ob-
serve the corresponding DET curves. The similar inferences can be drawn from
DET curves as that of the pd f of LLR scores of the genuine vs. spoof speech utter-
ances.

4.6.4.4 Performance Analysis on S10 Spoofing Attack

In ASVSpoof 2015 challenge dataset, ten different kinds of spoofing attacks, la-
belled as S1 to S10, are utilized. To the best of author’s knowledge and belief,
Table 4.28 represents the performance of the various state-of-the-art feature sets in
the literature and in this study, which shows the promising performance against
the S10 spoofing attack.

Table 4.28: Results (in % EER) for the Various Feature Sets for S10 Spoofing
Attack Detection. After [1].

Feature Set Classifier % EER
CQCC-A [83] GMM 1.065

CAF [89] GMM 0.30
FFV-SD [89] GMM 18.59

APGDF-A [89] GMM 6.40
SCC [84] GMM 3.94

CQSPIC-A [93] DNN 0.368
CQEST-DA [95] DNN 0.456

CMC-A [96] DNN 0.221
CFCCIF [29] GMM 15.42

CFCCIFS [29] GMM 11.71
CFCC [29] GMM 12.28

CFCCIF-ESA GMM 3.05
(Proposed) CNN 1.15
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Figure 4.30: The Speech Signal and Spectrographic Representation of the Gen-
uine vs. S10-attack. Panel-I and Panel-II Shows the Speech Signal with its Spec-
trographic Representation of the Genuine and S10-attack, Respectively. Figure
4.30(a) Represents the Speech Signal. Whereas, Figure 4.30(b), Figure 4.30(c), and
Figure 4.30(d) Represents the Corresponding Spectrogram Obtained from STFT,
CQT, and CFCCIF-ESA Feature Set, Respectively. After [1].

Among the feature sets reported in Table 4.28, CQCC-A, CQSPIC-A, CQEST-
DA, and CMC-A are derived from CQT, which uses the variable spectro-temporal
resolution. The SSD system for CQCC-A is developed using GMM classifier,
whereas CQSPIC-A, CQEST-DA, and CMC-A uses the DNN-based classifier. All
these CQT-based SSD systems performs better than our proposed SSD systems
based on CFCCIF-ESA feature set. The CAF feature set is also performing better
than our proposed CFCCIF-ESA feature set. However, CAF feature set is formed
by concatenating the three feature sets, namely, CQCC, APGDF, and FVV. On the
other hand, proposed CFCCIF-ESA feature set performs significantly better than
the standalone APGDF-A and FVV feature sets, as shown in Table 4.28. The pro-
posed CFCCIF-ESA feature set also performs relatively better than SCC feature
set. The comparison is also shown with the other cochlear filter-based features,
such as CFCC, CFCCIF, and CFCCIFS. Whereas, the proposed CFCCIF-ESA fea-
ture set performs significantly better than their CFCC, CFCCIF, and CFCCIFS
counterparts. Overall, the proposed CFCCIF-ESA feature set performs signifi-
cantly better than the other state-of-the-art feature sets, except CQT-based feature
sets for S10-based spoofing attack detection.

To analyze the ability of the CQT-based feature sets vs. cochlear filterbank-
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based feature sets for the SSD task, we observed the spectrograms for STFT, CQT,
and CFCCIF-ESA feature set. Here, spectrogram of CFCCIF-ESA feature set refers
to the spectral representation of CFCCIF-ESA feature set, which is obtained be-
fore DCT operation in CFCCIF-ESA feature extraction framework. Panel-I and
Panel-II in Figure 4.30 shows the speech signal along with its spectrographic rep-
resentations for the genuine and S10-attack, respectively. Figure 4.30(a) repre-
sents the speech signals, whereas, Figure 4.30(b), Figure 4.30(c), and Figure 4.30(d)
represents the spectrogram obtained from STFT, CQT, and CFCCIF-ESA feature
sets, respectively. It can be observed that the silence region is more prominently
emphasized by CQT-based spectrogram than the STFT- and CFCCIF-ESA-based
spectrograms. In the other words, CQT-based features are able to detect the dis-
continuity in energy flow of speech wave, which is very much prevalent in S10-
attack, as it involves concatenation of natural speech sound units and thus, there
will be a discontinuity at the joint location of speech sound units. This might be
the reason for better performance of the CQT than the CFCCIF-ESA feature set [1].

4.7 Chapter Summary

In this chapter, three feature sets, namely, ETECC, CTECC, and CFCCIF-ESA are
developed for the SSD task. These feature sets are derived based on the concept
of TEO.

ETECC feature set is developed using the concept of ETEO, which uses the
concept of signal mass to get a more precise estimate of signal energy in compar-
ison with TEO. Particularly, the TEO-related approximation sin(ω) ≈ ω holds
true only for lower frequencies and hence, is not suitable for higher frequency
contents of signals. The concept of signal mass in ETEO compensates the energy
in the high frequency regions to provide a more precise estimate of signal energy.
Subband filtering was performed using Gabor filterbank with linearly-spaced fre-
quency responses. Subband filtering helps to approximate the subband filtered
signal to a monocomponent signal, which eases the accurate estimation of the en-
ergies. Furthermore, PFE analysis on ASVSpoof 2017 dataset is also performed
for the feature sets in this study. The extensive set of experiments are performed
for parameter tuning of the proposed ETECC feature set. Furthermore, the ex-
periments are extended to compare the performance of the state-of-the-art feature
sets. The relatively better performance of ETECC is observed than the other fea-
tures on ASVSpoof 2017 and ReMASC datasets.

In CTECCmax feature set, the multi-channel information in microphone array is
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exploited for the replay SSD in VAs. To that effect, we provide the mathematical
analysis for choosing the appropriate subband channel information (in particu-
lar, maximum noise distortion including acoustic reverberation due to replay at-
tack) among the multiple subband channels obtained from the microphone array.
The appropriate subband channel information is based on maximum cross-Teager
energy (as opposed to minimum cross-Teager energy as in the speech recogni-
tion literature) estimation among the subband channels, to derive the proposed
CTECCmax feature set. The experiments are performed using ReMASC dataset.
In replay SSD, it is necessary to emphasize the acoustic effects and hence, we
chose maximum cross-Teager energy to extract these acoustic effects. The proposed
CTECCmax feature set outperforms the results reported in recently proposed com-
plex deep learning-based architecture and other state-of-the-art feature sets com-
monly used in the anti-spoofing literature. One of the limitations of ReMASC
dataset is absence of well known data partition that is universally accepted (for
example, we followed data partition w.r.t study reported in [12]) and then, there
is need to address this in the near future.

Further, the CFCCIF-ESA feature set is developed, which effectively combines
the magnitude and phase information to detect the SS-, VC-, and replay spoof-
ing attacks. The performance of the CFCCIF-ESA feature set is evaluated on
ASVSpoof-2015 and -2017 datasets. The discriminative acoustic cue for SS- and
VC-based attacks lies in the presence of the artifacts in synthesized and voice-
converted speech signals, wherein the speech signal is generated using only mag-
nitude information of the spectrum, neglecting the phase component during sig-
nal reconstruction. Thus, phase information in those speech signal is not as natu-
ral as in genuine speech signals. This fact is analyzed by visualizing the IFs from
genuine and synthetic spoof speech signals. The proposed CFCCIF-ESA feature
set combines the implicit information from magnitude envelopes and IFs esti-
mated using ESA, from the subband filtered signals. The cochlear filterbank is
utilized in the subband filtering. In this work, IFs are estimated using ESA, which
have relatively low computational complexity, high time resolution, and instanta-
neously adapting nature, as compared to the Hilbert transformed-based approach
that has poor time resolution, and requires the computationally complex task of
phase unwrapping.

The capability of the ESA is reflected into better performance for SSD task.
With the proposed feature set, we have employed two classifiers, namely, GMM
and CNN. Parameters of the proposed feature set are fine-tuned by observing
the performance of the SSD system trained using GMM, and tested on the Dev
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set. In addition, the experiments are performed by replacing the cochlear fil-
terbank by Gabor and Gammatone filterbank structures in the proposed feature
set framework. Relatively better performance is observed for cochlear filterbank,
which indicates that the cochlear filterbank is the better choice for given feature
set framework. The estimated set of parameters for the better performance are
further utilized to test the performance on the Eval set. Furthermore, it can be
observed that, our CFCCIF-ESA shows significantly better performance for S10-
attack, which is known to be most difficult to detect for the other feature sets
reported in the anti-spoofing literature. It is observed that the CFCCIF-ESA out-
performs the other feature sets except CQT-derived feature sets. Given this limita-
tion, there is further scope for the improvement and which we believe is an open
research problem. The proposed feature set can be modified w.r.t. the filterbank
structure. In addition, the simulation of unidirectional nature of the basilar mem-
brane (BM) movement can be thoughtfully altered by the other suitable function,
while deriving the CFCC feature set. Furthermore, there is no known study an-
alyzing the benefit of cochlear filter for speech synthesis and hence, its an open
research problem.

In the next chapter, the capability of the CQT to emphasize the lower frequency
region is utilized to extract the acoustic characteristics of the pop noise, which is
low frequency in nature. The pop noise can be considered as the characteristics
of the live speaker in front of the ASV system and hence, it can be utilized in SSD
task.
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CHAPTER 5

Spectral-Based Features for Anti-spoofing

5.1 Introduction

In1 the earlier chapter, the development of the CM system against spoofing at-
tacks using TEO-based feature sets, which are derived using subband filtering, are
discussed. In this chapter, the spectral-based representations, namely, CQT and
SRCC feature sets for SSD task are discussed. The CQT is utilized for VLD, where
presence of the pop noise is supposed to be the characteristics of the live speech.
The capability of the CQT to capture the low frequency contents is exploited for
locating the pop noise characteristics. Other spectral-based SRCC feature set is
proposed, which uses power-law nonlinearity instead of the logarithmic nonlinear-
ity. The power-law nonlinearity is more desirable for feature representation as it
provides the flexibility for more compressed representation. The details of the fea-

1This Chapter is based on the following publications:

• Kuldeep Khoria, Ankur T. Patil, and Hemant A. Patil, "On Significance of Constant-Q
Transform for Pop Noise Detection" in Computer, Speech & Language, Elsevier, vol. 77
(2023), pp. 101421.

• Ankur T. Patil, Kuldeep Khoria, Hemant A. Patil, "Voice Liveness Detection using
Constant-Q Transform-Based Features", to appear in European Signal Processing Confer-
ence (EUSIPCO)-2022, Belgrade, Serbia, August 2022.

• Ankur T. Patil, Harsh Kotta, Rajul Acharya, and Hemant A. Patil, "Spectral Root Features
for Replay Spoof Detection in Voice Assistants" in International Conference on Speech and
Computer (SPECOM), St. Petersburg, Russia, Sept. 2021, pp. 504-515.

• Kuldeep Khoria, Ankur T. Patil, and Hemant A. Patil, "Significance of Constant-Q Trans-
form for VoiceLiveness Detection" in European Signal Processing Conference (EUSIPCO),
Dublin, Ireland, August 2021, pp. 126-130.

• Prasad A. Tapkir, Ankur T. Patil, Neil Shah, and Hemant A. Patil, "Novel spectral root
cepstral features for replay spoof detection." in 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, Hawaii,
USA, November 2018, pp. 1945-1950.
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ture set development, experimental setup, and results for CQT and SRCC feature
sets are explained in subsequent Sections.

5.2 CQT for Voice Liveness Detection (VLD)

5.2.1 Literature in Brief

In the earlier chapters, the development of the CM system against spoofing at-
tacks for ASV and VAs are discussed. In the development of those CMs, distor-
tions are introduced by the spoof generation mechanism as an acoustic signature,
which are utilized to detect the spoofing attack. However, less attention is be-
ing given towards the liveness detection of voice to avoid the possible spoofing
attacks. If the distance between the speaker and microphone is less, then the mi-
crophone can capture the pop noise as an important acoustic signature for live
speaker [8]. Pop noise is nothing but the distortion in the speech signal intro-
duced by the speaker’s breath sound [148]. Thus, pop noise can be attributed to
the presence of live speaker, and it can be exploited for liveness detection to al-
leviate the spoofing attacks. To that effect, recently POCO dataset is developed,
which can be used to build the countermeasure strategies against spoofing attacks
by identifying the presence of pop noise present in live, i.e., genuine speaker’s
voice [8].

To the best of author’s knowledge and belief, the problem of VLD was intro-
duced first time in [34], where possible methodologies of the pop noise (liveness)
detection were discussed. They proposed two approaches, namely, low frequency-
based single channel detection, and subtraction-based pop noise detection with two chan-
nels. In the first approach, the presence of the pop noise at low frequency region
is exploited to detect the liveness in the speech signal. Here, the low frequency
region in the spectrogram is processed to extract the period of the pop noise in
the input speech signal. The latter approach is based on the multi-channel mi-
crophone, which extracts the evidences of pop noise from the entire frequency
range. However, this approach cannot succeed if the imposter embeds the pop
noise from his/her own breathing. In addition, performance of these approaches
depends upon microphone quality and linguistic content of the utterances. To
that effect, phoneme-based pop noise detection is performed in [147], where pop
noise duration is detected in the utterance and estimated phonemes in this dura-
tion are analyzed for VLD. This approach is further extended with GFCC feature
set for pop noise detection in [148].
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Recently, POCO is developed, which can be used to build the VLD system
by identifying the pop noise, which is the characteristics of the live (genuine)
speech [8]. Identifying the pop noise for live speaker detection might be useful
strategy in the applications, where the testing microphone is placed at a short
distance from the speaker, and consequently, this strategy may protect the ASV
system from the spoofing attacks (of course, with the assumption that spoofed
speech is not recorded with wiretapping). The architecture proposed in [34] is
the popular approach for the VLD and consequently, it is utilized in the original
POCO dataset reported in [8]. In this thesis, we exploited the CQT for VLD. The
historical evolution of the CQT through STFT can be studied from [14, 202, 249–
253]. The CQT and its derivatives were successfully utilized for anti-spoofing
task. The timeline for the CQT and its derived feature sets for anti-spoofing task,
is shown in Figure 5.1, and explained in brief as follows [15]:

• Motivated from the original work by Wiener [249] for estimation of the
power spectrum, Schroeder and Atal defined the STFT for a practical and
well-behaved signal (such as speech wave) [250] as opposed to work of Ga-
bor [202], where STFT involved integration from −∞ to +∞.

• In [251], short-time spectral analysis is performed with non-uniform sub-
band filters, which leads to invertible integral transform via Mellin trans-
form, of course with the assumption of causal window function in STFT.
In [254], the window is not restricted to be causal, however, the window ar-
gument is chosen to be the product of time and frequency and reciprocal of a
factor related to Q (i.e., filter selectivity or its quality factor), where synthesis
(inverse) integral involved Hilbert transform.

• In [252], the constant-Q spectral analysis was indicated as a means for im-
plementing ‘Fourier-Mellin’ transform for speech analysis.

• Furthermore, inverting integral transforms is presented in [253], for the short-
time and the average-power spectrum resulting from any constant-Q spectral
analysis.

• The CQT was proposed for the first time (1991) to model the geometrical
spacing between the western musical notes [14].

• In 2016, CQCC feature set was proposed as state-of-the-art feature set for
anti-spoofing task on ASVSpoof 2015 dataset [83]. Recently, CQCC is also
applied for infant cry classification task [26].
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Figure 5.1: Selected Chronological Progress for CQT and its Derived Feature Sets
for Speech Analysis and Anti-spoofing Tasks. After [15].

• In 2017, CQCC was utilized as one of the baseline feature set during the
ASVSpoof 2017 challenge [255].

• In 2018, the feature sets derived from CQT, namely, STSSI, CQSPIC, OPI,
and FPI are proposed, and these feature sets are trained using DNN classi-
fier. Among these features, CQSPIC-A shows the remarkable performance,
where -A refers to ∆∆-features [93].

• In 2019, other study in [95] proposes a subband transform rather than the
fullband transform on CQT with three different scales, i.e., linear, octave,
and Mel scale to derive three feature sets, namely, CQ-EST, CQ-OST, and
DF-MST. The CQ-EST-DA (-DA refers to combination of ∆ and ∆∆ features)
feature set with DNN classifier gave the better performance.

• Also, the MLT is applied on CQT to derive CMC [96].

• In our recent work, we exploited the geometric frequency spacing of the
CQT-based spectral representation for the VLD task [35].

The key motivation of using CQT is its high frequency resolution in low fre-
quency regions and hence, it is capable of capturing the prominent acoustic cues
related to pop noise for VLD task. The work reported in this chapter comprise the
following contributions: [35, 151]
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• the detailed mathematical and spectrographic analysis of CQT vs. STFT is
presented, which demonstrates the capability of CQT over STFT to capture
the details of the pop noise;

• as per Heisenberg’s uncertainty principle in signal processing framework
[200], analysis of various window functions is performed in CQT w.r.t. win-
dow length, window type, and Heisenberg’s box;

• the performance of the VLD system for the various frequency ranges, and
speaker-microphone distances is analyzed;

• a new database from POCO database is generated by simulation of replay
mechanism to analyze the effect of reverberation along with pop noise;

• we extended experiments by considering two state-of-the-art deep learning
architectures, namely, CNN, LCNN, and ResNet, to work as classifiers in
conjunction with the proposed CQT-based features, and reported the results
for VLD task;

• The experiments using proposed CQT-based feature sets are extended on
ASVSpoof challenge datasets, namely, ASVSpoof 2019 PA and ASVSpoof
2017 version 2.0 dataset.

5.2.2 VLD-ASV System and Baseline

In the practice, we would expect an ASV system to be robust against any or all
of the possible spoofing attacks. Replay, unlike any other spoofing attack, is the
most accessible kind of spoofing attack, wherein the attacker tries to imitate the
target speaker simply by replaying the pre-recorded voice samples and thus, the
attacker need not have a detailed technical skills/knowledge. The replay speech
recorded with a high quality recorder and playback device in a clean recording en-
vironment is very hard to detect as it is very similar to the genuine speech [256].
Hence, replay attacks are very easy to mount, however, the present ASV systems
find it very hard to detect it. To that effect, we propose an efficient approach
of VLD, which aims to detect presence of ‘live’ speaker in front of ASV system.
In VLD, it uses the pop noise as an acoustic signature of the live speaker and it
can assist the current countermeasure strategies of anti-spoofing for ASV. Detailed
discussion of pop noise, VLD, STFT-based baseline, and proposed CQT-based fea-
ture extraction is discussed in the next sub-Sections.
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5.2.2.1 Pop Noise and VLD System

During natural speech production mechanism, airflow travels from the lungs to
the vocal folds. This airflow excites the vocal tract system, which can be mod-
eled as the cascade of several 2nd order resonators (i.e., the organ pipes). This
model represents the bursts of air coming out of the organ pipe (i.e., mouth and
nostrils) [42]. If this sound wave is captured at a short distance from the micro-
phone and a speaker, the microphone along with the speech signal also captures
the friction between the lips as bursts. The sound produced because of these bursts
is termed as pop noise [34]. The speaker-microphone distance and the intensity of
the pop noise detected via microphone have inverse relationship with each other.
The intensity of the recorded pop noise cannot be high if the distance between
the microphone and the speaker is large enough (generally > 50 cm). This phe-
nomenon can be used as an acoustic signature of the live speaker. Generally, the
attacker may not be able to place the recording device near the speaker, which
leads to the absence of the pop noise in the recorded voice. Hence, detection of
pop noise can provide genuine acoustic cues for VLD, which will further be able to
distinguish between the live (genuine) speech and replayed speech. Thus, VLD
can be used to prevent the spoofing attacks.

The main task of the VLD system is to detect attributes of the live speaker,
which is present in front of the ASV system. To that effect, the presence of the pop
noise in the speech signal of a live speaker, is used as a discriminative acoustic
feature. Thus, the speech is presented to the VLD system, where the pop noise
detection algorithm detects the presence of the pop noise in the speech signal. If
pop noise in the speech signal is detected, then the signal is passed to the ASV
system for the verification. Figure 5.2 represents a schematic of ASV system being
assisted by the VLD system.

Figure 5.2: A Schematic of VLD System in Tandem with ASV System. After [34].
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5.2.2.2 STFT-Based Baseline Algorithm

In [34], the features for pop noise detection are derived from the conventional
STFT. The same algorithm is used in [8] for VLD using the POCO dataset. Hence,
we consider it as a baseline approach, and consequently modified it to efficiently
detect the liveness in the speech signal. In this baseline, energy spectral den-
sity (ESD) of the speech signal is estimated using spectrogram. Let x(n) be the
discrete-time input speech signal. Then, discrete-time STFT of x(n) is calculated
as [42]:

X(ω, τ) =
∞

∑
n=−∞

x(n) · w(n, τ) · e−jωn, (5.1)

where w(n, τ) represents the analysis window, centered at time τ. It should be
noted that w(n, τ) is a function of only time parameter, τ as independent variable.
Eq. (5.1) can be rewritten as:

X(ω, τ) =
∞

∑
n=−∞

x(n, τ) · e−jωn, (5.2)

where x(n, τ) = x(n) · w(n, τ) is the windowed speech segment. Now, the spec-
trogram (i.e., ESD) is obtained by calculating the magnitude square of X(ω, τ),
i.e.,

S(ω, τ) = |X(ω, τ)|2. (5.3)

Here, S(ω, τ) ∈ L2(R2) (i.e., Hilbert space of finite energy signals over R2) [200].
Next, Seng(ω, τ) is calculated by considering ESD from S(ω, τ) ranging within the
frequency bins corresponding to [0, ωmax], i.e.,

Seng(ω, τ) = S(ω, τ)0≤ω≤ωmax . (5.4)

Here, ωmax is the digital frequency in rad/s, and let fmax be the corresponding
frequency in Hz. Since the pop noise is observed in the lower frequency region
of the spectrogram features, fmax may vary between 40 − 100 Hz. Let Savg be the
average of the ESD for each frame and computed as:

Savg(τ) =
1

Nb

ωmax

∑
ω=0

Seng(ω, τ), (5.5)

where Nb represents number of frequency bins corresponding to fmax Hz. Mean
and standard deviation are estimated for averaged ESD Savg(τ) in order to nor-
malize it. As pop noise event lasts for a very short period of time (typically 20-100
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ms) [147], 10 speech frames with the largest ESD were chosen using the Savg(τ)

and corresponding speech frames in Seng(ω, τ) are considered as a feature repre-
sentation for pop noise detection 2. This feature set with appropriate labels is fed
to a suitable classifier. The more details of this baseline algorithm can be found
in [34].

2Empirically, it was observed that the performance of the proposed CQT-based feature set is
fairly consistent w.r.t. variation in number of frames. In addition, the selection of 10 speech frames
per utterance is also suitable choice for the fair comparison with STFT-based algorithm in [34],
which also uses 10 speech frames per utterance. Hence, we considered 10 speech frames as an
optimum value for our further experiments in this chapter.
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5.2.3 Proposed CQT-Based Algorithm

In the proposed approach, we employ CQT instead of STFT in order to obtain
the high resolution frequency bins in the low frequency regions. The functional
block diagram of the proposed algorithm along with baseline is shown in Fig-
ure 5.3. Following Brown’s original approach [14], the frequency bins in CQT
are geometrically-spaced as opposed to the linear spacing of bins in the STFT.
By selecting the appropriate parameters of the CQT, we can locate the fine struc-
tural details of the spectrum of the pop noise, which are lying at very low fre-
quency regions. Because of the geometrical spacing between the frequency bins
in CQT, the low frequency region is well emphasized. For a time-domain signal,
x(n), CQT maps it into the time-frequency representation such that the quality
factor, Q remains constant, and the center frequencies of the frequency bins are
geometrically-spaced. Moreover, such constant Q analysis of the speech signals
is desirable from both theoretical and practical viewpoints. In particular, CQT
helps to preserve form-invariance property, such as the linear time-scaling property
of the CTFT, which does not hold for STFT (because the analysis window used in
STFT is a function of only the time parameter, τ as in eq. (5.1)). Furthermore, such
form-invariance property is desirable for pattern recognition applications, where
we want feature descriptors of a pattern to be invariant w.r.t. scale, shift, rotation,
shape, etc. [200].

5.2.3.1 Development of CQT

Next, we develop expression for CQT. In the signal processing literature, discrete
Fourier transform (DFT) is nothing but a uniformly sampled version of discrete-
time Fourier transform (DTFT) [257]. In particular,

X(ejω) =
+∞

∑
n=−∞

x(n) · e−jωn, (5.6)

and

X(k) =
N−1

∑
n=0

x(n) · e−j( 2π
N )kn, (5.7)

where X(ejω) and X(k) represents DTFT and DFT of a discrete-time signal, x(n),
respectively. Thus, eq. (5.6) and eq. (5.7) are related by ω = (2π

N k) = 2π
T = 2π

(N/k) ,
implying period in samples is T = N

k and hence, number of cycles analyzed is
equal to k. For speech signal processing applications, the speech signal is seg-
mented using appropriate fixed window length at the segmental-level (i.e., fram-
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ing) and appropriate % frame overlap. Each segment is then multiplied using a
suitable window function (such as rectangular, Hamming, Hann, Gaussian, etc.)
to avoid the spectral leakage. It should be noted that the role of the window func-
tion is to modify the shape of the segment of the speech signal. Let xs(n) and w(n)
represents the segment of the speech signal and window function, respectively,
then DFT of the windowed signal is represented as:

Xs(k) =
N−1

∑
n=0

xs(n) · w(n) · e−j( 2π
N )kn. (5.8)

The index of each segment of the speech signal is supposed to have range from
n = 0 to n = N − 1 for DFT computation. The DFT is performed on each segment
of the speech signal x(n), and it leads to STFT. It can be observed from eq. (5.7)
that the frequency resolution or bandwidth (∆ f ) for DFT is equal to the sampling
rate (Fs) divided by the window size (i.e., number of samples analyzed via time-
domain window). Thus, in order to have the ratio of frequency ( f ) to bandwidth
(∆ f ) to be constant (called as constant Q), the window size (δt) in the time-domain
must vary inversely with frequency. In particular, we have,

Quality f actor (Q) =
Center f requency ( f )

Bandwidth (∆ f )
. (5.9)

For Q to be fixed, we have,

∆ f ( f requency resolution) =
Sampling Rate (Fs)

Window size (∆t) in time − domain
. (5.10)

Since the sampling rate (Fs) of given data is fixed, eq. (5.10) can be written as:

∆t · ∆ f ≥ constant. (5.11)

Eq. (5.11) is a manifestation of Heisenberg’s uncertainty principle in signal pro-
cessing framework (details given in Appendix A, where ∆t and ∆ f are repre-
sented in the form of temporal variance σ2

t , and frequency variance σ2
ω, respec-

tively). Let us consider ∆t as N(k), i.e., length of time-domain function in samples
at frequency, fk. From eq. (5.10), we have,

∆ fk =
Fs

N(k)
, (5.12)

∴ N(k) =
Fs

∆ fk
, (5.13)
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∵ Q =
fk

∆ fk
=⇒ ∆ fk =

fk
Q

. (5.14)

Using eq. (5.14) in eq. (5.13), we get,

N(k) =
(Fs

fk

)
· Q = Tk · Q, (5.15)

where Tk = Fs
fk

is the period in samples, and it can be observed from eq. (5.15)
that window N(k) contains Q number of complete cycles for the kth frequency
component, fk. From eq. (5.15), we have,

N(k)
Q

= Tk. (5.16)

Comparing eq. (5.16) with frequency spacing in the traditional DFT (where, ωDFT =
2πk
N ), we get the frequency spacing for CQT (ωCQT) as:

ωCQT =
2π
N(k)

Q

=
( 2π

N(k)

)
· Q. (5.17)

Using eq. (5.7) and eq. (5.17), we obtain,

Xs(k) =
N(k)−1

∑
n=0

xs(n)wk(n)e
−j
(

2π
N(k) Qn

)
. (5.18)

The window function wk(n) has the identical shape for analysis of each frequency
component fk, however, its length is determined by N(k) and thus, it is a function
of both time and frequency bin index. Furthermore, because number of terms in
each Xs(k) varies with k, we must normalize sum in eq. (5.18) and thus, we get the
expression of CQT as [14]:

XCQT
s (k) =

1
N(k)

N(k)−1

∑
n=0

xs(n)wk(n)e
−j
(

2π
N(k) Qn

)
. (5.19)

The earlier original investigations have shown that since the time-domain win-
dow wk(n) is a function of both time and frequency parameters, the resulting
transform integral yields constant Q (or constant percentage bandwidth) analy-
sis, and also obeys form-invariance property [253]. Q is the quality factor, which
is the ratio of center frequency to the bandwidth of each window, and it is given
by eq. (5.14) [14]:

∵ Q =
fk

∆ fk
=⇒ ∆ fk =

fk
Q

. (5.20)
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∴ Q =
fk

fk+1 − fk
=

1
21/B − 1

, (5.21)

where B represents the number of bins per octave, and fk represents the frequency
of kth the spectral component, which is given by:

fk = (2
k−1

B ) fmin, (5.22)

where fmin is the minimum frequency of the signal. Here, f is varied from fmin to
fmax, which is chosen to be below Nyquist rate. Furthermore, we have used the
resampling method in [172] to convert the geometrically-spaced frequency scale
to linearly-spaced in order to obtain lower-dimensional feature representation. It
helps to avoid computational complexity. In particular, the original CQT requires
567 frequency bins to represent the 0 to 40 Hz frequency range, whereas the uni-
formly resampled CQT requires only 118 frequency bins.

5.2.3.2 Spectrographic Analysis

As explained in the sub-Section 5.2.2.1, pop noise is a low frequency signal. Hence,
it’s spectral details also lie in the low frequency regions. The STFT transforms the
speech signal into time-frequency domain, which possesses the constant separa-
tion between the frequency bins because STFT has constant resolution in the entire
time-frequency plane (as per Heisenberg’s uncertainty principle in signal process-
ing framework [200]). However, the CQT displays the frequency-domain repre-
sentation with high frequency resolution at lower frequency regions and vice-
versa. Hence, CQT efficiently captures the spectral details of the pop noise. This
can be observed from the waterfall plot for word “laugh" and it’s top view of the
STFT- and CQT-gram for the genuine vs. spoof speech signal as shown in Fig-
ure 5.4. The parameters of the CQT are tuned in order to emphasize the lower
frequency regions, where the spectral details of pop noise are lying. The rectan-
gular box in Figure 5.4 and Figure 5.5 represents the intended portion of the pop
noise, whereas the encircled area represents the fundamental frequency (F0) of
the speech signal and its harmonics. It can be observed that the CQT gives more
emphasis on pop noise region than the F0 and its harmonics, as compared to its
STFT counterpart. It can be clearly observed from Figure 5.4 that the CQT-gram
emphasizes the pop noise vividly as compared to the traditional STFT-gram. The
higher resolution property of the CQT allows the pop noise to occupy more area
in the CQT-gram with higher intensity as compared to the STFT-gram. Because
of having the larger region for pop noise in CQT-gram, it is much easier (than
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its STFT counterpart) for the back-end classifier to discriminate the live vs. spoof
speech signal. From Figure 5.4, it can be observed that the difference between
the genuine vs. spoof speech signal is much more vivid in CQT as compared to
its STFT counterpart. The non-linear geometrical spacing between the frequency
bins can be clearly observed for the CQT-gram as opposed to the linear separation
in STFT-gram. Furthermore, we have illustrated similar plots for the word “chip"
in Figure 5.5. It can be observed that the difference in the spectral regions is very
little for both the feature sets, which gives a cue that the probability of presence of
pop noise in word “chip" is lower and hence, we get a relatively poor performance
for this utterance (which will be discussed in the sub-Section 5.2.5).

5.2.3.3 CQT vs. STFT for Pop Noise Detection

Table 5.1 represents the comparison of CQT, resampled CQT, and STFT for various
parameters utilized in this study. As the pop noise is present in the lower fre-
quency regions (in particular, up to 40 Hz), we show the number of bins required
to represent the frequency range fmin - f40Hz. It can be observed from Table 5.1
that 567 frequency bins are required for CQT to represent the frequency range of
fmin - f40Hz. However, resampled CQT takes 118 frequency bins to represent the
frequency range of fmin - f40Hz. In our previous work [35], we utilized the 1 fre-
quency bin per Hz for the STFT to represent the Nyquist frequency range, which
is shown as STFT-1 in Table 5.1. For fair comparison, we also performed the ex-
periments for STFT with 3 frequency bins per Hz as the resampled CQT utilizes
the similar frequency resolution. In Table 5.1, this high frequency resolution STFT
is denoted as STFT-2. However, empirically, it has been observed that the STFT-
based features with 1 frequency bins per Hz gives the better performance. Hence,
the results reported in this thesis for STFT utilizes the frequency resolution of 1
frequency bin per Hz.

The MATLAB pseudocode of the proposed CQT-based approach is shown in
Algorithm 5. Here, fCQT is obtained by uniform resampling of log-power mag-
nitude CQT spectrum. ESD Seng is obtained by considering frequency bins ( fbins)
within the interval [0, fmax] and taking absolute of it. As pop noise is present
at low frequency region, we have varied fmax from 10 Hz to 100 Hz in order to
observe the effect of presence of pop noise. Furthermore, the average of CQT
spectrogram fk,avg is computed for each column vector in order to obtain it frame-
wise. Furthermore, we found the Q-factor pertaining to pop noise detection is
Q = 134 as opposed to Q = 34 for analysis of western music as in Brown’s orig-
inal work [14]. Then normalization of fk,avg is done to zero-mean and unit stan-
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Figure 5.4: Panel-I and Panel-II Depicts the Spectrographic Analysis for Genuine
vs. Spoof Speech Signal for Word “Laugh", Respectively. (a) the Waterfall Plot for
STFT, (b) the Top-view of the STFT Waterfall Plot, (c) Waterfall Plot for CQT, and
(d) the Top-view of the CQT Waterfall Plot. The Rectangular Box Represents the
Intended Location of the Pop Noise, whereas the Encircled Region Represents
the Presence of F0 and Its Harmonics. After [15].
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Figure 5.5: Panel-I and Panel-II Depicts the Spectrographic Analysis for Genuine
vs. Spoof Speech Signal for Word “Chip", Respectively. (a) the Waterfall Plot for
STFT, (b) the Top-view of the STFT Waterfall Plot, (c) Waterfall Plot for CQT, and
(d) the Top-view of the CQT Waterfall Plot. The Rectangular Box Represents the
Intended Location of the Pop Noise, whereas the Encircled Region Represents
the Presence of F0 and Its Harmonics. After [15].
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Table 5.1: The Comparison of the CQT, Resampled CQT, and STFT w.r.t. the Var-
ious Spectrographic Parameters for Pop Noise Detection with Fs = 22050 Hz.
After [14].

Uniformly STFT-1 STFT-2
Parameter CQT [14] Resampled [35] [15]

CQT [172]

fmin 0.67 Hz 0.67 Hz 1 Hz 0.33 Hz
fNyquist =

Fs
2 11050 Hz 11050 Hz 11050 Hz 11050 Hz

f40Hz 40 Hz 40 Hz 40 Hz 40 Hz
Number of Frequency

Bins for fNyquist 1345 32850 11050 33075
Number of Frequency

Bins for f40Hz 567 118 40 120

Resolution varying = f ·k
Q 0.3365 Hz 1 Hz 0.3333 Hz

Quality Factor (Q) Constant Variable Variable Variable

dard deviation to obtain fk,avg,norm. As pop noise lasts for a very short period of
time [34], 10 frames (equivalent to 20 ms) from fk,avg,norm having the largest ESD
is considered, and then taking frames corresponding to that indices from Seng in
order to obtain the ESD of the pop noise region.

In the anti-spoofing literature, the cepstral features, namely, CQCC and LFCC
have shown good performance for SSD. Hence, in this thesis, we extended the
experiments on POCO dataset. CQCC is obtained by performing the DCT opera-
tion on the uniformly resampled CQT [172]. Resampling is necessary to linearize
the scale of the CQT so that DCT can be applied [258]. In CQT, frequency bins
are geometrically-spaced, whereas the frequencies of the basis functions in the
DCT are linearly-spaced. Resampling is performed on CQT to make the scale of
the CQT similar to that of the frequencies of the basis functions in the DCT. Re-
sampling allows us to extract the cepstral coefficients of CQT by preserving the
orthogonality condition of the DCT basis functions. 90-dimensional (i.e., 90-D)
CQCC consists of static, ∆, and ∆∆ features and it is extracted using the desirable
parameters for this application, i.e., fmin = 0.67 Hz, and B = 96. The LFCC feature
set is extracted by applying the triangular-shaped linearly-spaced subband filters
on STFT spectrogram and then followed by DCT operation. 40 subband filters are
utilized in the filterbank and all 40 cepstral coefficients are retained and appended
with ∆ and ∆∆ coefficients to form 120-D LFCC feature set.

Furthermore, we exploit Heisenberg’s uncertainty principle in signal process-
ing framework to analyze the temporal variance (σ2

t ) and frequency variance (σ2
ω)
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Algorithm 5 MATLAB Pseudo Code of Proposed CQT-based Algorithm. After
[15].

1. fk = (2
k−1

B ) fmin, geometrically-spaced frequency bins,
2. N(k) = Fs

∆ fk
,

3. XCQT
s (k) = ⟨xs(n) · w(n), ej 2πQn

N(k) ⟩, computation of CQT,
4. for i = 1 : Ncolumns(XCQT) do, framewise concatenation of CQT,

XCQT(k, i) = XCQT
xsi (k), CQT computed for corresponding

segment xsi for ith column,
end for

5. Seng = (abs(XCQT(1 : Xbins( fmax), :)))2, Taking bins up to fmax only,
6. for i = 1 : N f rames(Seng) do, N f rames corresponds to

number of frames,
Xk,avg(i) = mean(Seng(:, i)), Taking average of CQT spectrogram

along frequency bins,
end for

7. MN = mean(Xk,avg), SD = std(Xk,avg), Estimate mean and standard
deviation,
8. for i = 1 : N f rames(Seng) do

Xk,avg,norm(i) = (Xk,avg(i)− MN)/SD, Normalizing,
end for

9. [Xk,avg,norm,sort, index] = sort(Xk,avg,norm), Sorting,
10. Xk,avg,initial = Xk,avg,norm,sort(1 : 10, :), Taking initial 10 frames,
11. indexinitial = index(1 : 10, :), Taking corresponding indices,
12. CQTf eatures = Seng(:, indexinitial(i)), Feature set

of the analysis window function for CQT and STFT. As per the uncertainty prin-
ciple, σ2

t · σ2
ω ≥ 1

4 (proof is given in the Appendix A). The area σ2
t · σ2

ω is called
as Heisenberg’s box (or TBP) in the time-frequency plane [200]. In the traditional
STFT, the area of Heisenberg’s box for the analysis window always remains con-
stant (in the entire time-frequency plane) as opposed to the CQT, where the lower
frequency region possesses higher frequency resolution and lower temporal res-
olution and vice-versa [202]. The Table 5.2 shows the length of the analysis win-
dow for the various analysis frequencies in the CQT w.r.t. the CQT parameters
utilized in this study. It can be clearly observed from Table 5.2 that the length
of the analysis window is very large for lower frequencies, and vice-versa. How-
ever, in STFT, the length of the analysis window remains constant across the entire
time-frequency plane [200].

Furthermore, we analyzed the TBP for CQT at various frequencies using sev-
eral analysis windows, namely, Hamming, hann, and Gaussian. The hann win-
dow is also known as raised cosine [259]. The TBP for the analysis window is
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Table 5.2: Window Length in Samples as a Function of Analysis Frequency ( fk).
After [14].

k Frequency (Hz) Window (Samples) Duration (s)

1 0.6729 4390912 199.13
10 0.7181 4114652 186.60

100 1.3753 2148411 97.43
200 2.83 1043625 47.32
300 5.82 506957 23
400 12 246262 11.16
500 24.69 119626 5.42
600 50.84 58110 2.63
700 104 28228 1.28
800 215 13712 0.62

1200 3870 763 0.0346
1300 7970 370 0.0168
1345 11025 268 0.0122

computed as the product of the temporal and frequency variances of the anal-
ysis window. Figure 5.6(a), Figure 5.6(b), and Figure 5.6(c) shows the temporal
variance, frequency variance, and TBP for various window functions. It can be
observed that the TBP for hann and Gaussian window is constant w.r.t. analysis
frequency, whereas it goes on decreasing for Hamming.

5.2.4 Experimental Setup

5.2.4.1 Dataset Used

In this work, we have used the POCO dataset. The detailed discussion of the
POCO dataset can be studied in Chapter 3 (Section 3.2.6). We partitioned the
speech samples from RC-A and RP-A into three subsets, namely, training, Dev,
and Eval. The dataset is partitioned with a ratio of 40 %, 20 %, and 40 % into
these subsets. We also ensured that the speakers are exclusive in each subset and
the ratio between male and female speakers is maintained. The detailed statis-
tics of this data distribution is given in Table 5.3. However, an adapted version
of the dataset by including the simulated replay mechanism is explained in the
following Section.

To investigate the effect of replay spoof mechanism in the context of pop noise,
we have generated the simulated replay dataset from the POCO database. The
procedure followed for this is the same as that followed for the generation of the
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Figure 5.6: (a) Temporal Variance (σ2
t ), (b) Frequency Variance (σ2

ω), and (c) TBP
(i.e., σ2

t · σ2
ω) for Hamming, Gaussian, and hann Windows. After [15].
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Table 5.3: Statistics of the POCO Dataset used for Experiments in this Thesis. After
[8, 15].

Subset # Utterances # Speaker # Male # Female

Training 6952 27 13 14
Dev 3432 13 6 7
Eval 6600 26 13 13

replay speech samples in ASVSpoof 2019 challenge dataset [5]. The details can
be studied in [260, 261]. The replayed speech is generally known to observe the
reverberation effect of the associated acoustic medium. To replicate this effect, the
geometrical acoustics is generated by using an image-source model equivalent to
a perfect rectangular parallelepiped room to churn out an impulse response to a
directional receiver from each omni-directional primary source [36]. It is assumed
that the replayed speech is first recorded by a microphone before it is being re-
played from the non-linear replay device. Figure 5.7 illustrates the schematic dia-
gram for generating synthetic replay using image-source model, in particular, the
manner in which the images of the source are spatially arranged. The highlighted
rectangle represents the original room.

For the generation of simulated replayed speech, it is required to define the
surface material of the room, it’s dimensions, the location of the primary source,
and the receiver system. Then, the impulse response of the simulated room is
estimated using the reverberation time (RT), which is calculated using Norris-
Eyring formula given by [16, 262, 263]:

RT =
KV

−N ln(1 − αm)
, (5.23)

where K is a constant determined by Sabine’s formula [264], and is taken as 0.161,
V is the volume of the room, N is a number of surfaces in the room, and αm is the
average coefficient of absorption, which is defined as:

αm =
∑n=N

n=1 snαn

N
, (5.24)

where sn and αn is the nth element of surface, and the corresponding coefficient of
absorption, and N = s1 + s2 + ...... + sN .

Then, the image source-to-receiver responses are calculated using the method
of image source [36]. The individual image source responses are gathered to ob-
tain the complete impulse response from each primary source to the receiver. Fi-
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Table 5.4: Parameter and Corresponding Configuration for Replay Mechanism.
After [16].

Parameter Configuration

Room Size 3.55 m2

Sensor Position (2,1,1.4)
Source Directivity Omnidirectional
Sensor Directivity Omnidirectional

Reverberation Time 0.07 sec

Figure 5.7: Schematic Diagram for Generation of Synthetic Replay using Image
Source Model. After [36].

nally, the obtained two-channel impulse response is convolved with the audio
files to obtain the synthetic replayed speech, which will approximate to originally
replayed speech. Table 5.4 represents the parameter and corresponding config-
uration assumed for the replay mechanism. The source position is varied from
10 cm to 90 cm for observing the effect of variation in distance between speaker
and attacker’s recording device. We have added the replay mechanism on RP-A
subset to obtain the new replayed subset, named as, REP-A.

The experiments using proposed CQT-based feature sets are extended on ASVSpoof
challenge datasets, namely, ASVSpoof 2019 PA and ASVSpoof 2017 version 2.0
dataset. These are popular datasets in the literature for replay anti-spoofing. The
detailed statistics of the ASVSpoof 2019 PA dataset and ASVSpoof 2017 version-2
dataset are shown in Table 3.5 and Table 3.3, respectively. Further details of these
datasets can be studied in [3, 4].
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5.2.4.2 Classifiers Used

In this study, we utilized the GMM, SVM, CNN, LCNN, and ResNet as classi-
fiers. The CNN used in this work consists of four convolution layers, and 1 FC
layer. The output of these four convolutional layers have 4, 16, 32, and 8 channels,
respectively. The convolution operations are done using kernel size of 3x3. In
addition, convolution operation is performed using zero-padding with a stride of
1. The final convolution block is followed by a fully-connected linear layer with
1312 hidden units. The output of the final layer is activated using a sigmoid func-
tion, which makes the final decision of whether the utterance contains pop noise
or not. ReLU function is used as the activation function in the hidden layers. The
model is trained using Stochastic Gradient Descent (SGD) algorithm with a batch
size of 64, and learning rate of 0.001. Binary cross-entropy loss is chosen as the
loss function. The experiments are executed for a total number of 400 epochs.
LCNN architecture uses four convolutional layers, each followed by MFM acti-
vation function. The fully-connected FC5 layer contains a low-dimensional high-
level audio representation. Then, the FC6 layer with softmax activation function
was used to distinguish between spoofing and genuine classes during the train-
ing process. The details of LCNN architecture utilized for CQT-based feature set
are shown in Table 5.5. ResNet is employed for this task to take the advantage of
high-level features.

5.2.5 Experimental Results

In this Section, we evaluate the performance of CQT-based proposed VLD system
for different evaluation factors. In addition, we have also compared the proposed
approach with cepstral-based features, namely, LFCC and CQCC. Furthermore,
we have analyzed the effect of variation in the frequency range, wordwise clas-
sification accuracy, and phoneme-based performance. We have also shown the
analysis by considering REP-A subset in which we have embedded the simulated
replay mechanism in order to observe the performance for a realistic anti-spoofing
scenarios. The results are reported using % Classification Accuracy and % EER.

5.2.5.1 Effect of Variation in Frequency Range

In this Section, we illustrate the effect of variation in the frequency range for lower
frequencies (as pop noise is present in the low frequency region). The experiment
is performed using RC-A and RP-A subsets, explained in Chapter 3, Section 3.2.6.
The system is designed using the feature set derived from the CQT along with
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Table 5.5: Details of the Proposed LCNN Architecture for VLD. After [17].

Layer Filter/Stride Output # Parameters

Conv1 5x5/1x1 8 x 88 x 8 205
MFM1 - 4 x 88 x 8 -
Conv2a 1x1/1x1 8 x 88 x 8 40
MFM2a - 4 x 88 x 8 -
Conv2b 3x3/1x1 32 x 86 x 6 1184
MFM2b - 16 x 86 x 6 -
Conv3a 1x1/1x1 32 x 86 x 6 544
MFM3a - 16 x 86 x 6 -
Conv3b 3x3/1x1 64 x 84 x 4 9280
MFM3b - 32 x 84 x 4 -
Conv4a 1x1/1x1 64 x 84 x 4 2112
MFM4a - 32 x 84 x 4 -
Conv4b 3x3/1x1 16 x 82 x 2 4624
MFM4b - 8 x 82 x 2 -

FC5 - 1 x 128 168k
MFM5 - 1 x 64 -

FC6 - 1 x 1 65

SVM classifier. The details of the proposed feature set and classifier, are discussed
in Section 5.2.3 and Chapter 3 (Section 3.4.2), respectively. The experiments are
performed with the variation of the lower range of frequencies, and the corre-
sponding results are displayed in Table 5.7. It can be observed from Table 5.7 that
the % classification accuracy for lower frequency range (i.e., 1-10 Hz, 1-20 Hz, and
1-30 Hz) is almost equal and is relatively maximum. As we increase the frequency,
the performance of the pop noise detection system degrades. This finding validate
the fact that the pop noise is predominantly present at low frequency regions, i.e.,
below 30 Hz for CQT-based feature set. Hence, we set the value of fmax to 30 Hz
for the CQT-based features used in the further set of experiments.

Furthermore, experiments are performed for CQT vs. resampled CQT using
SVM classifier by setting fmax to 30 Hz. It can be observed from Table 5.8 that the
resampled CQT performs comparatively better than the original CQT. Consider-
ing these two advantages concerned with the VLD task (i.e., better performance
with lower-dimensional feature set), we employed the resampled CQT-based fea-
ture representation for all the experiments in this chapter.
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Table 5.6: Details of the Proposed ResNet Architecture for VLD. After [18].

Layer Filter Output

Conv1 7×7, 16 90×10

Conv2
[3 × 3, 16
3 × 3, 16

]
× 2 90×10

Conv3
[3 × 3, 32
3 × 3, 32

]
× 2 45×5

Conv4
[3 × 3, 64
3 × 3, 64

]
× 2 23×3

Conv5
[3 × 3, 128
3 × 3, 128

]
× 2 12×2

FC6 - 768

Table 5.7: Results (in % Classification Accuracy) for CQT-SVM-based Pop Noise
Detection using RC-A (genuine) vs. RP-A (spoof) Dataset with Variation in Fre-
quency Range. After [15].

Frequency Range Dev Eval

1-10 Hz 79.77 78.39
1-20 Hz 79.95 78.26
1-30 Hz 79.34 78.42
1-40 Hz 77.88 74.92
1-50 Hz 68.04 64.80
1-60 Hz 79.17 74.47
1-70 Hz 71.15 67.86
1-80 Hz 78.55 74.71

Table 5.8: Results in (% Classification Accuracy) for the Original CQT-based Al-
gorithm vs. Resampled CQT-based Algorithm using SVM Classifier on POCO
Dataset. After [15].

CQT Version Dev Eval
Original CQT 74.98 74.50

Resampled CQT 79.84 78.88

5.2.5.2 Effect of Number of Frames

In this sub-Section, we analyzed the performance of the proposed feature set by
varying the number of frames of the speech signal. It can be observed from Ta-
ble 5.9 that, as we increase the number of frames, the classification accuracy in-
creases as well. However, the improvement in classification accuracy by consid-
ering higher number of frames is not that significant when compared to the less
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number of frames. Furthermore, it is interesting that the given feature represen-
tation produce the comparable performance using only a single frame. To have
a lower dimension feature representation and due to the fact that pop noise lasts
only for a short period of time (i.e., 20 - 100 ms [34]), we considered 10 frames
as an optimum value for our further experiments. Furthermore, the selection of
10 frames per utterance is also suitable choice for the fair comparison with STFT-
based algorithm, which also uses 10 frames per utterance.

Table 5.9: Results (in % Classification Accuracy) for Varying the Number of
Frames in Proposed CQT-based Algorithm with SVM Classifier on POCO
Dataset.

# Frames Dev Eval
1 79.02 78.30
2 79.02 78.38
3 79.08 78.45
4 79.11 78.38
5 78.9 78.45

10 79.34 78.42
20 79.81 77.83
30 79.28 78.22
40 79.78 78.74
50 79.53 78.86
60 79.84 78.76
70 80.16 79.09
80 80.3 79.18
90 80.71 79.48
100 80.65 79.8

5.2.5.3 Effect of Various Analysis Window Functions in CQT

In our recent work, we reported the experimental results with hann window as an
analysis window in CQT for VLD task [151]. Experiments are also performed with
the other window functions, namely, Hamming, and Gaussian in the proposed
CQT-based feature set along with various classifiers, and results are reported in
Table 5.10. It can be observed that the Gaussian window is more suitable for all
the classifiers (considered in this study) as it shows the relatively better results for
all the classifiers, on Eval set. This is in agreement with the fact that Gaussian win-
dow possess lowest TBP value amongst all window functions in the framework
of Heisenberg’s uncertainty principle. As best possible results are obtained with
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Table 5.10: Results (in % Classification Accuracy) of Proposed CQT-based Ap-
proach with Different Window Functions using Various Classifiers.

Hann Hamming Gaussian
Feature Set Classifier Dev Eval Dev Eval Dev Eval

CQT SVM 79.34 78.42 79.05 78.14 79.84 78.88
CQT GMM 73.48 72.59 72.73 72.18 74.07 72.64
CQT CNN 82.27 79.77 82.51 81.78 81.52 81.82
CQT LCNN 83.68 81.93 83.91 81.89 84.84 82.45
CQT ResNet 82.45 79.43 82.54 78.86 83.04 80.42

Gaussian window, further experiments are performed with the Gaussian window
in CQT-based feature set.

5.2.5.4 Comparison of Results for STFT vs. CQT using Various Classifiers

In this sub-Section, we show the comparison of the results for proposed CQT-
based algorithm with STFT-based baseline algorithm. For STFT-based baseline
algorithm (SVM as a classifier), we utilized the similar approach as explained
in [34], and the same approach was utilized in the original POCO dataset pa-
per [8]. We could reproduce the results given in [8] on STFT-based feature set
using cross-validation, and were reported in our earlier work [35]. Furthermore,
we partitioned the dataset in our earlier work [35], and the similar subsets are uti-
lized in this work. For the proposed CQT-based algorithm, fmax is tuned to 30 Hz,
and analysis window is set to be Gaussian, as discussed in sub-Section 5.2.5.1 and
sub-Section 5.2.5.3, respectively. From Table 5.11, it can be observed that when
SVM is used as a classifier, the evaluation accuracy is 67.93 % for STFT-based
baseline algorithm, whereas it is 78.88 % for the proposed CQT-based algorithm.
Thus, there is an approximate 11.25 % of improvement from the baseline system.
Also with GMM as a classifier, the % classification accuracy of 53.85 % is obtained
on Eval set for the STFT-based baseline algorithm and % classification accuracy
of 72.64 % is obtained using proposed CQT-based algorithm. Here, we obtain
an absolute improvement of 18.79 % from the baseline algorithm. Furthermore,
when CNN is used as a classifier, the baseline algorithm gives a classification ac-
curacy of 71.81 %, which is 81.82 % for the proposed algorithm. Here also, the
absolute improvement of 10.01 % in classification accuracy is obtained for the
proposed CQT-based algorithm when compared with the STFT-based baseline al-
gorithm. Furthermore, LCNN and ResNet classifiers shows the similar trends in
performance for the baseline vs. proposed algorithm, and in particular, LCNN

151



Table 5.11: Comparison of Proposed CQT-based Approach with the STFT-based
Baseline Approach using Various Classifiers. After [15].

Feature Set Classifier
% Accuracy % EER
Dev Eval Dev Eval

STFT SVM 65.61 67.93 37.61 35.11
STFT GMM 55.22 53.85 40.42 41.60
STFT CNN 70.57 71.81 31.80 29.15
STFT LCNN 70.60 71.90 30.37 28.69
STFT ResNet 72.05 71.84 34.34 33.86
CQT SVM 79.84 78.88 20.49 21.37
CQT GMM 74.07 72.64 25.70 26.52
CQT CNN 81.52 81.82 18.67 18.25
CQT LCNN 84.84 82.45 15.84 17.78
CQT ResNet 83.04 80.42 23.64 22.96

shows the absolute improvement in classification accuracy of 0.77 % and 2.3 % for
CQT-based algorithm over the CNN and ResNet classifiers, respectively. Over-
all, the proposed algorithm shows the significant improvement over the baseline
algorithm for all the four classifiers (considered in this study) indicating utility
of proposed feature set across various statistical (GMM), discriminative (SVM),
and deep learning-based (CNN, LCNN, and ResNet) classifiers. In baseline algo-
rithm, the maximum frequency ( fmax) for pop noise detection was considered to
be 40 Hz as it was given in [8, 34]. The performance of these systems is evaluated
using the other evaluation metric, i.e., % EER. From Table 5.11, it can be observed
that the similar trends in the results are observed for % EER.

Furthermore, we have performed the experiments on POCO dataset using
cepstral-based feature sets, namely, CQCC and LFCC; since these feature sets are
utilized as baseline systems for ASVSpoof challenges (i.e., ASVSpoof-2015, -2017,
-2019, and -2021 challenge campaigns). The experiments are performed using all
classifiers in this study, namely, GMM, SVM, CNN, LCNN, and ResNet and the
results are reported in Table 5.12. It can be observed from Table 5.12 and Table 5.11
that the cepstral-based features (i.e., LFCC and CQCC) could not perform well for
VLD task as compared to the STFT-based and proposed CQT-based feature sets.

Figure 5.8 shows the DET curves for the STFT-based baseline algorithm and
CQT-based proposed algorithm along with GMM, SVM, CNN, LCNN, and ResNet
as classifiers. Figure 5.8(a) and Figure 5.8(b) depicts the performance of the men-
tioned algorithms on Dev and Eval sets, respectively. It can be observed from
Figure 5.8 that the DET curves shows the better performance for CQT-based al-
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Table 5.12: Comparison of CQCC and LFCC Feature Sets using Various Classifiers
on POCO Dataset. After [15].

Feature Set Classifier
Accuracy EER

Dev Eval Dev Eval

CQCC GMM 78.47 67.95 21.70 31.00
CQCC SVM 63.69 57.67 35.75 41.27
CQCC CNN 67.04 60.06 47.59 46.47
CQCC LCNN 69.25 63.00 43.09 43.65
CQCC ResNet 65.99 60.19 45.05 48.72
LFCC GMM 81.82 72.47 18.23 26.59
LFCC SVM 50 50 50 50
LFCC CNN 68.91 61.87 31.07 37.66
LFCC LCNN 66.84 60.37 33.39 39.08
LFCC ResNet 67.33 60.59 32.67 39.05

gorithms over STFT-based baseline algorithm for all the five classifiers. Further-
more, proposed CQT-based feature set with LCNN gave relatively best perfor-
mance. Moreover, these results using DET curves are in agreement with % classi-
fication accuracy for the same experiment as shown in Table 5.11.

Furthermore, the experiments were performed by increasing the amount of
training data in order to majorly investigate the improvement in the performance
for CNN, LCNN, and ResNet architectures, since deep learning architectures are
known to perform well for a large amount of training data. To that effect, we
divided the dataset into two parts, i.e., training and testing with a ratio of 80 % and
20 %, respectively. The corresponding results are presented in Table 5.13. It can
be observed that the performance of both the baseline and proposed approaches
with SVM as a classifier is almost the same as stated in Table 5.11, where dataset
division is 40 % training, 20 % Dev, and 40 % Eval. However, the proposed CQT-
based algorithm shows the marginal improvement over all the algorithms.

Next, the experiments are performed to obtain the wordwise % classification
accuracy to observe the significance of presence of pop noise for each word. Fig-
ure 5.9 represents the comparison of wordwise accuracy on Dev set for baseline
and proposed algorithm for SVM, GMM, CNN, LCNN, and ResNet. Similarly,
Figure 5.10 represents the comparison of wordwise accuracy on Eval set for base-
line and proposed algorithm. Here, for Eval set, it can be observed that for words,
such as ‘busy’, ‘division’, ‘fat’, ‘funny’, ‘five’, ‘thong’, and ‘shout’, the accuracy is
around 80 %, 55 %, 85 %, 90 %, and 85 % for the proposed CQT-based algorithm
for SVM, GMM, CNN, LCNN, and ResNet, respectively. For the other words,
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Figure 5.8: DET Curves for the Proposed CQT-based Algorithm vs. STFT-based
Baseline Algorithm for Various Classifiers on (a) Dev, and (b) Eval Set. Legends
in Figure 5.8(b) are the Same as that of Figure 5.8(a). After [15].

the accuracy is a bit lower, still when compared with the baseline algorithm, the
proposed methods perform well except for the few words, such as ‘laugh’, ‘who’,
and ‘wolf’. Furthermore, the % classification accuracy is computed w.r.t. various
classes of phonemes, namely, affricate, fricative, plosive, and nasal, as shown in
Table 5.14. The results are shown w.r.t. initial dataset division, i.e., 40 % training,
20 % Dev, and 40 % Eval.

It can be observed from Table 5.14 that average accuracy for affricate sound
is relatively highest followed by nasal, fricative, and plosive sounds (where pop
noise can be present at the start or can overlap with the sound, or it can occur
at the end of the sound). Relatively better results for affricate sound can be jus-
tified by the fact that affricates are the counterpart of diphthongs and thus, they
are transitional speech sounds, consisting of consonant-plosive-fricative combi-
nations, rapidly transiting from plosives to fricatives. Moreover, production of
plosive requires a sequence of events, in particular, complete closure of the oral
tract, generation of turbulence for a very short-time duration (i.e., burst), gen-
eration of aspiration, and the onset of the following vowel. On the other hand,
production of fricative involves generation of frication noise by turbulent airflow
at some point of constriction created by the tongue, a constriction that is narrower
than with the vowels [42]. These production characteristics of plosives and frica-
tives makes their spectrum to occupy high frequency region and hence, requires
high temporal resolution of analysis window function. To that effect, it can be
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Table 5.13: Comparison of Proposed Approach vs. the Baseline Approach with
Larger Training Data (80 % Training, 20 % Testing) for Various Classifiers on
POCO Dataset. After [15].

Feature Set Classifier Accuracy (%) EER (%)

STFT SVM 66.78 37.04
STFT GMM 55.48 40.30
STFT CNN 70.62 30.30
STFT LCNN 71.76 28.85
STFT ResNet 74.21 34.01
CQT SVM 80.59 20.13
CQT GMM 74.21 25.37
CQT CNN 85.22 15.44
CQT LCNN 85.90 15.22
CQT ResNet 84.09 23.39

observed from Table 5.2 that CQT has high temporal resolution to be able to de-
tect pop noise in affricate, fricative, and plosive sounds, whereas for STFT, the
analysis window duration is fixed in the entire time-frequency plane and hence,
it performs poorer than the proposed approach. On the other hand, production
of nasal sound involves complete closure of the oral cavity and passing of quasi-
periodic airflow puffs (from the vibrating vocal folds) to the nasal cavity due to
lowering of the velum. Due to large volume of nasal cavity (than the oral cavity),
nasal sound is dominated by low frequency resonance (nasal formant) and ESD.
Furthermore, nasal formants have higher -3 dB bandwidth, since various energy
losses are high as quasi-periodic airflow passes through complexly configured
surface and thus, quickly damping its impulse response [42]. Thus, due to fixed
duration of analysis window in STFT, it is difficult to detect pop noise event in
the nasal sounds, whereas CQT is able to do it very effectively, due to its variable
spectro-temporal resolution.

5.2.5.5 Inclusion of Replay Mechanism

The VLD can be viewed as another approach for SSD system, i.e., the pop noise
detection in low frequency regions. Hence, in the framework of discussion re-
lated to Figure 5.2 in sub-Section 5.2.2.1, we extend this study by incorporating
(simulated) replay mechanism in RP-A subset, which results in REP-A subset.
This replay mechanism will enhance the characteristics of the spoof speech signal.
We performed the experiments for classification of REP-A vs. RC-A to analyze
the performance of the VLD system, when spoof speech signal consists of replay
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Figure 5.9: Comparison of Wordwise % Classification Accuracy on Dev set with
(a) SVM, (b) GMM, (c) CNN, (d) LCNN, and (e) ResNet as Classifier for STFT
(Baseline) and CQT (Proposed) Feature Set. After [15].
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Figure 5.10: Comparison of Wordwise % Classification Accuracy on Eval set
with (a) SVM, (b) GMM, (c) CNN (d) LCNN, and (e) ResNet as Classifier for
STFT (Baseline) and CQT (Proposed) Feature Set. After [15].
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Table 5.14: Comparison of Baseline vs. Proposed Approach for Different Types of
Phonemes using Various Classifiers. After [15].

Feature set Classifier Average Accuracy Eval (%)
Affricate Fricative Plosive Nasal

STFT SVM 74.43 67.83 61 65.11
STFT GMM 52.83 53.69 53.55 55.11
STFT CNN 76 70.39 66.16 74.22
STFT LCNN 76.5 70.24 65.77 72.22
STFT ResNet 76.66 69,81 66.11 72
CQT SVM 82.56 79.12 72.88 81.22
CQT GMM 77.12 72.36 73.44 73.11
CQT CNN 84.78 80.57 77.89 82.89
CQT LCNN 86 83.06 81.88 85.44
CQT ResNet 84.5 79.93 78.44 83.77

characteristics along with pop noise. In addition, experiments are performed for
RP-A vs. REP-A classification to analyze the effect on performance of SSD task
with only replay characteristics. Furthermore, we analyze the effect of the replay
mechanism on the performance of SSD task w.r.t. variation in the frequency range
of analysis and the distance between the genuine speaker and attacker’s micro-
phone.

• Effect of Distance Between the Genuine Speaker and Attacker’s Micro-
phone

In this sub-Section, we analyze the effect of distance between the genuine speaker
and attacker’s microphone for RC-A vs. REP-A subset by inclusion of replay
mechanism. From Table 5.15, it can be observed that for 30 cm distance, i.e., the
scenario when the attacker’s microphone is close to the genuine speaker, the %
classification accuracy obtained is lowest. This was as expected since when the
microphone is close to the speaker, the effect of room acoustics during its replay
will be minimum and hence, the replayed signal will be similar to the genuine
signal (i.e., the distortions in the replayed signal will be less). As we increase the
distance between speaker and microphone, the % classification accuracy also in-
creases and is almost stable after distance of 50 cm. This may be due to the fact
that as the distance between the speaker and microphone increases, the effect of
room acoustics also increases while replaying it and hence, the replayed signal
contained more distortions. We have considered the minimum distance as 30 cm
due to the fact that in genuine speech recording (RC-A), the distance between
speaker and microphone is kept 10 cm, and it is assumed that the attacker will be
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Table 5.15: Effect of Varying Distance between Subject Speaker and Microphone
on Performance (in % Classification Accuracy) of RC-A vs. REP-A Subset with
SVM as a Classifier. After [15].

Feature Set Distance Accuracy (%) EER (%)
Dev Eval Dev Eval

STFT 30 cm 67.42 67.05 30.56 31.54
STFT 50 cm 65.24 65.68 34.37 34.61
STFT 70 cm 62.00 60.36 38.45 35.85
STFT 90 cm 64.48 63.77 35.56 36.11
CQT 30 cm 88.71 87.02 11.73 12.84
CQT 50 cm 93.01 91.21 6.8 8.67
CQT 70 cm 92.74 91.73 7.15 8.12
CQT 90 cm 92.45 91.71 7.44 8.14

at least at a distance of more than 10 cm.

• Performance Evaluation w.r.t. Only Replay Mechanism

In this sub-Section, we analyzed the performance of the effect of the only replay
mechanism by performing the classification of RP-A vs. REP-A subset with SVM
as a classifier. This analysis shows the significance of the pop noise in SSD task.
Here, original RP-A subset is considered as genuine speech samples. Whereas,
REP-A subset, which is created by embedding the replay mechanism into the orig-
inal RP-A subset, is considered as spoof speech samples. This creates the similar
scenario as that of the SSD task in ASVSpoof 2019 PA dataset, i.e., classification
of the genuine vs. spoof speech signal without presence of pop noise. It can be
clearly observed from Table 5.15 and Table 5.16 that the results obtained with pop
noise inclusion shows much better performance than without pop noise scenario
in genuine vs. SSD task.

• Effect of Frequency Range ( fmax)

In the proposed CQT-based algorithm, the optimal value of the fmax is selected
as 30 Hz. However, the effect of additionally incorporated replay mechanism can
exist for the entire frequency range. Hence, we extend the analysis by increasing
the value of the fmax in the proposed CQT-based algorithm. For this set of experi-
ments, SVM is utilized as a classifier. The distance between genuine speaker and
attacker’s microphone is fixed at 50 cm as performance saturates after that. From
Table 5.17, it can be observed that for the higher frequency range, the % classifi-
cation accuracy increases and the corresponding % EER decreases. For frequency
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Table 5.16: Effect of Varying Distance between Subject Speaker and Microphone
on Performance (in % Classification Accuracy) of RP-A vs. REP-A Subset with
SVM as a Classifier. After [15].

Feature Set Distance Accuracy (%) EER (%)
Dev Eval Dev Eval

STFT 30 cm 67.25 57.97 34.92 30.00
STFT 50 cm 56.09 52.47 42.84 41.24
STFT 70 cm 52.97 54.02 47.08 46.24
STFT 90 cm 54.17 53.76 44.56 44.41
CQT 30 cm 74.36 73.48 23.71 24.65
CQT 50 cm 80.80 78.74 18.23 20.90
CQT 70 cm 81.99 80.91 18.1 18.53
CQT 90 cm 82.66 82.56 17.22 17.13

range of 1000 Hz, accuracy is 98.72 % and 97.82 % for Dev and Eval set, respec-
tively, and EER is as low as 0.48 % and 0.92 % for Dev and Eval set, respectively.
This may be due to the fact that as we consider the higher frequency range, the
effect of replay mechanism, i.e., the reverberation effect also escalates and hence,
the classifier obtains more distinguished acoustic cues and does the classification
task more effectively.

5.2.5.6 Performance Evaluation using ASVSpoof Challenge Datasets

As ASVSpoof challenge datasets are well known datasets in the voice anti-spoofing
literature, we have extended the experiments using proposed CQT-based feature
set on ASVSpoof 2019 PA and ASVSpoof 2017 version-2 datasets. The perfor-
mance is compared with the CQCC feature set, which was utilized as a base-
line feature set in ASVSpoof challenge campaigns. The results are reported in
Table 5.18, and it can be observed that comparable performance is obtained on
ASVSpoof 2019 PA dataset for the proposed CQT-based feature set as compared
to the CQCC feature set. Whereas, proposed CQT-based feature set shows the
poor performance on ASVSpoof 2017 version-2.0 dataset. The proposed feature
set is designed to capture the low frequency spectral characteristics of the signal,
in particular, 0-30 Hz frequency band. The spoof utterances in ASVSpoof 2019 PA
dataset are simulated using a range of real replay devices and carefully controlled
acoustic conditions. This simulated replay mechanism has well-behaved bandpass
characteristics that distort the low and high frequency characteristics in the replay
spoof signal. Hence, the proposed CQT-based feature set might succeed to cap-
ture the low frequency distortions introduced due to the replay mechanism and
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Table 5.17: Results (in % Classification Accuracy and % EER) for RC-A vs. REP-A
with Various Frequency Ranges. After [15].

% Acc. % EER
Frequency Range Dev Eval Dev Eval

1-10 Hz 90.03 88.88 9.69 10.60
1-20 Hz 91.78 90.23 7.98 9.63
1-30 Hz 93.01 91.23 6.88 8.67
1-40 Hz 89.48 87.67 9.45 11.89
1-50 Hz 89.25 87.15 8.78 10.92
1-60 Hz 91.20 87.71 8.03 11.59
1-70 Hz 89.19 86.33 7.00 10.61
1-80 Hz 95.16 92.47 4.72 7.38
1-90 Hz 85.81 84.21 4.80 5.82

1-100 Hz 96.71 95.47 3.12 4.25
1-200 Hz 97.23 96.79 1.79 3.04
1-400 Hz 97.32 97.02 1.42 2.18
1-600 Hz 99.01 98.08 0.92 1.56
1-800 Hz 99.21 98.59 0.73 1.35

1-1000 Hz 98.72 97.82 0.48 0.92

Table 5.18: Results (in % EER) on ASVSpoof 2019 PA and ASVSpoof 2017
Version-2.0 Dataset using Proposed CQT-based Feature Set vs. CQCC (Chal-
lenge Baseline).

Feature Set Dataset Used Dev Eval
Proposed CQT-based ASVSpoof 2019 11.12 12.75

CQCC (The parameters and PA scenario 9.87 11.04
frequency range of CQT ASVSpoof 2017 41.05 43.27

is as mentioned in this study) version-2 12.27 18.81

consequently producing the good performance using feature set that exploit char-
acteristics of low frequency regions. On the other hand, ASVSpoof 2017 version-
2.0 dataset consists of spoof speech utterances with real replay mechanism, whose
frequency response would not be well-behaved bandpass in nature. This might
be the reason that the proposed CQT-based feature set could show the good per-
formance on ASVSpoof 2019 PA dataset and poor performance on ASVSpoof 2017
version-2 dataset.
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5.3 Spectral Root Homomorphic Filtering-Based Fea-

tures for Replay SSD in ASV and VAs

In this Section, we exploited homomorphic filtering-based approach for feature
extraction. For homomorphic filtering-based approaches, the speech signal can be
expressed as convolution of the glottal airflow (i.e., speech excitation source) with
the impulse response of the vocal tract system [265]. A replayed speech signal can
be considered as the convolution of natural speech with the impulse responses
of recording, and playback devices as well as the acoustic environments [72].
Hence, for replay detection, the challenge is to estimate the characteristics of the
extra convolved elements with genuine speech signal. A blind deconvolution ap-
proach could be used that requires a-priori knowledge of signal components. If
one of the convolved components of the signal is known, then the other could
be easily estimated using linear inverse filtering. LP analysis can be used to es-
timate the system function, with assumption that the all-pole LTI system con-
volves with a train of pulses or random noise [266,267]. If the general characteris-
tics of one of the signal component is known, then homomorphic deconvolution
system model can be used. In this case, either of logarithmic homomorphic de-
convolution system (LHDS) or using spectral root homomorphic deconvolution
system (SRHDS) could be used to perform deconvolution operation [268–270]. In
LHDS, convolutionally-combined signals are mapped to additively combined sig-
nals, on which time-gating is applied for signal separation [271]. The time-gating
in cepstral-domain is known as liftering. In SRHDS, convolutional vector space
is mapped to another convolutional vector space, where signal components are
more easily separable by liftering operation [66]. For replay detection on ASV and
VAs, we employ SRHDS along with Mel filterbank to derive SRCC feature set [20].
Furthermore, the feature extraction algorithm can be independently applied to the
magnitude and phase of the spectrum to give Magnitude-SRCC (MSRCC) and
Phase-SRCC (PSRCC), respectively. The key novelty in proposed SRCC feature
set is the use of power-law nonlinearity that does not depend critically on the in-
put amplitude and thus, suitable for VAs that predominantly use far-field speech
signal. Furthermore, we investigated the two approaches to systematically choose
the optimum value of γ-parameter, which are explained in detail along with sup-
porting results.
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5.3.1 Speech Signal Modeling

Speech signal, x(n) can be expressed as the convolution of glottal airflow (i.e.,
excitation source signal), g(n), with the impulse response of vocal tract system,
v(n) [42], i.e.,

x(n) = g(n) ∗ v(n), (5.25)

where symbol ‘*’ refers to the convolution operation. For our application, we refer
x(n) in eq. (5.25) as genuine speech signal. The glottal airflow is quasi-periodic
(or impulse-like) in nature for voiced speech. It can be approximated as pulse-
train for speech signal modeling. The replayed version of the genuine speech
signal includes additional components, which are impulse responses of playback
device pd(n), playback environment pe(n), recording device rd(n), and recording
environment re(n) [72]. These components in the replay speech signal, y(n) are
convolutionally-combined with the genuine speech signal, x(n), i.e.,

y(n) = x(n) ∗ pd(n) ∗ pe(n) ∗ rd(n) ∗ re(n). (5.26)

Eq. (5.26) can be written as,

y(n) = x(n) ∗ N(n) = g(n) ∗ v(n) ∗ N(n), (5.27)

where N(n) = pd(n) ∗ pe(n) ∗ rd(n) ∗ re(n), and it is the overall impulse response
that represents distortion in the genuine speech signal due to replay attack. One
of the component in x(n) and hence, in y(n), is the glottal airflow g(n), which is
quasi-periodic in nature. As the characteristics of one signal, g(n), is known, ho-
momorphic signal processing techniques can be used to estimate the cepstrum for
rest of the signal. To that effect, v(n) in genuine and v(n) ∗ N(n) in spoof speech
signal can be estimated. These estimated components can serve as discriminative
acoustic cues for the SSD task.

5.3.2 Cepstrum Analysis: Logarithmic vs. Spectral Root

In evaluation of the logarithmic cepstrum, convolutionally-combined vector space,
x(n) = g(n) ∗ v(n), is mapped to the additively combined vector space, x̂(n) =

ĝ(n) + v̂(n), such that the contribution of glottal airflow g(n), and impulse re-
sponse of vocal tract system, v(n) can be distinctly observed [42, 270]. The loga-
rithmic cepstrum is estimated as the inverse Fourier transform of the logarithm of
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the Z-transform of the given signal x(n), i.e.,

x̂(n) = Z−1(log(Z(x(n)))), (5.28)

where Z(·) represents the Z-transform operator. Because of the transformation
given in eq. (5.28), convolutional vector space is transformed to additive vector
space [66]. This transformation takes place in such a way that the duration of
the pulse-train, ĝ(n) remains the same as that of g(n), however, v̂(n) should get
compressed (in quefrency-domain) than the v(n) [270]. Here, x̂(n), ĝ(n), and
v̂(n) are referred to as logarithmic cepstrum of their corresponding time-domain
signals, x(n), g(n), and v(n), respectively. With similar analogy, cepstrum of the
replay speech signal is given by [268, 270],

ŷ(n) = x̂(n) + N̂(n) = ĝ(n) + v̂(n) + N̂(n). (5.29)

Algorithm 6 Computing the Spectral Root Cepstrum. After [42].

1. x(n) = g(n) ∗ v(n),
2. On applying Z-transform, X(Z) = G(Z) · V(Z),
3. X(Z) raised to γ power, [X(Z)]γ = [G(Z)]γ · [V(Z)]γ,

i.e., (X̌(Z) = Ǧ(Z) · V̌(Z)),
4. Applying inverse Z-transform, x̌(n) = ǧ(n) ∗ v̌(n),
5. Perform the same operations on y(n) to get y̌(n).

Spectral root cepstrum is obtained by transforming the convolutional vector
space, x(n) = g(n) ∗ v(n), to another convolutionally-combined vector space,
x̌(n) = ǧ(n) ∗ v̌(n), such that the elements are more easily separable in the trans-
formed vector space than the earlier one. Here, x̌(n), ǧ(n), and v̌(n) represents
spectral root cepstrum of the signals x(n), g(n), and v(n), respectively. Here, log-
arithmic non-linearity in LHDS is replaced by power-law nonlinearity, (·)γ .

Spectral root cepstrum for signals, x(n) and y(n) are expressed as follows:

x̌(n) = ǧ(n) ∗ v̌(n), (5.30)

y̌(n) = x̌(n) ∗ Ň(n) = ǧ(n) ∗ v̌(n) ∗ Ň(n). (5.31)

The steps for computing the spectral root cepstrum are given in Algorithm 6. In
general, pole-zero sequence of v(n) is an infinitely long sequence [66]. Hence, v̌(n)
will also be infinitely long. In this situation, we select ‘γ’ to maximally compress
v̌(n) such that it has the smallest energy concentration in the low-time region,
where −1 ≤ γ ≤ 1. The appropriate value of the ‘γ’ depends upon the pole-zero

164



combination of the system function. To understand the appropriate choice of γ

depending upon pole-zero location of the system function, let us assume g(n) is
a periodic train of pulses then, according to the computation given in Algorithm
6, ǧ(n) will also be the periodic train of pulses with similar duration [42, 66]. In
particular,

g(n) = δ(n) + βδ(n − N), 0 < β < 1, (5.32)

where δ(n) represents the unit impulse function, and N represents the spacing
between two impulses. If v(n) is the all-pole sequence of order q and q < N, then:

G(z) = 1 + βz−N. (5.33)

Suppose we form the spectral root cepstrum of x(n) with γ = −1. Then, using
the Taylor series expansion for 1

1+βz−1 and replacing z by zN, it can be seen that

the inverse z-transform of G−1(z) is an impulse train with impulses spaced by N
samples. Also, V−1(z) is all-zero, since V(z) is all-pole, so that v̌(n) is a q-point
sequence. Because q < N, v(n) can be deconvolved from x(n) by inverting X(z)
to obtain X−1(z), and liftering g−1(n), the inverse z-transform of G−1(z), using a
right-sided lifter of q samples. Similarly, for all-zero sequence, γ = 1 will be the
desirable value to efficiently extract v̌(n). However, in practical case, the value of
γ will vary between -1 to +1. If the number of poles are larger than the zeros, then
the desired value of γ should be negative and vice-versa.

The energy concentration of the first n points of v̌(n) relative to its total energy
is given by [66]:

d(n) = ∑n
k=1 |v̌(k)|2

∑C
k=1 |v̌(k)|2

, (5.34)

where n is a number of samples in time-gating [66], and C corresponds to the total
number of cepstral coefficients. For our application, we select γ, and number of
samples (n in eq. (5.34)) for time-gating such that it can discriminate between
v̌(n) (eq. (5.30)) in genuine speech samples, and v̌(n) ∗ Ň(n) (eq. (5.31)) in spoof
speech samples. The application of eq. (5.34) to select the appropriate value of γ,
is discussed in Section 5.3.5.

5.3.3 Proposed SRCC Feature Set

In this study, we proposed to use the SRCC feature set, which uses the triangu-
lar Mel filterbank along with power-law nonlinearity as shown in Figure 5.11.
Furthermore, the processing is performed on the magnitude and phase part of
the spectrum to produce MSRCC and PSRCC, respectively. Windowing is per-

165



Figure 5.11: Functional Block Diagram of SRCC (MSRCC and PSRCC) Feature
Set Extraction. After [20].

formed on the input speech signal with optimum window and hopping length
as reported in speech signal processing literature. The qth cepstral coefficient is
extracted using magnitude spectrum to give MSRCC as [19]:

MSRCC(q) =
M

∑
m=1

(MFM(m))γ cos

[
q(m − 1

2)π

M

]
, (5.35)

where the Mel Frequency Magnitude (MFM) spectrum is defined as:

MFM(m) =
K

∑
k=1

|X(k)|Hm(k), (5.36)

where X(k) represents k-point DFT of the signal, x(n), Hm(k) is the mth Mel-scaled
bandpass filter. Root Spectrum in Mel Scale (RSMS) is given by:

RSMS(m) = (MFM(m))γ. (5.37)

The value of γ is chosen so as to have maximum distinction between genuine and
spoof utterances of the ReMASC dataset. Furthermore, PSRCC is derived using
unwrapped phase as:

PSRCC(q) =
M

∑
m=1

(MFP(m))γ cos

[
q(m − 1

2)π

M

]
, (5.38)

where the Mel Frequency Phase (MFP) spectrum is defined as:

MFP(m) =
K

∑
k=1

∡X(k)Hm(k), (5.39)

where ∡X(k) represents the unwrapped phase of the X(k).
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5.3.4 Experimental Setup

In this study, we utilized the ReMASC dataset to build the CMs against the replay
attack for VAs and ASV system [9]. The dataset configuration used for the exper-
iment for ReMASC and ASVSpoof 2017 challenge datasets is shown in Table 3.15
and Table 3.3, respectively, of chapter 3. The performance of the MFCC, LFCC,
and CQCC feature sets is explored along with the proposed MSRCC, PSRCC,
and RSMS feature representations. GMM, CNN, and LCNN are utilized as classi-
fiers along with % EER as evaluation metric for various experiments in this work.
Score-level fusion is performed to obtain the possible complementary information
in various SSD systems.

5.3.5 Experimental Results on ReMASC Dataset

For the given dataset, we have approximated the value of the γ with the help of eq.
(5.34). Initially, we have chosen three different values of γ, i.e., -0.9, 0.1, and 0.9.
The MSRCC features are extracted as explained in sub-Section 5.3.3. We computed
the energy concentration over 4000 genuine and spoof samples for n = 13 in eq.
(5.34) and averaged over all the utterances. For γ = 0.9 and −0.9, we obtained
81% energy concentration for n = 13 coefficients. Whereas, approximately 87 %
energy is preserved for the same value of n, when γ value is set to 0.1.

Furthermore, we observed the spectrogram obtained by varying the value of γ

in eq. (5.37). Figure 5.12 shows the spectrogram of the genuine and spoof speech
signal in Panel-I and Panel-II, respectively. Figure 5.12 (a), (b), (c), and (d) are
obtained for the values of γ as 0.9, −0.9, 0.1, and −0.1, respectively. It can be
observed that maximal information of the input speech signals is captured in the
spectrogram with γ = 0.1, as seen in Figure 5.12(c), where the spectral contents
of the speech signal seems to be well enhanced as compared to the Figure 5.12(a),
Figure 5.12(b), and Figure 5.12(d). In [66], the performance of the SRHDS is also
evaluated w.r.t. varying the number of poles and zeros in the system function. The
value of γ varies between -1 to 1. If system function consists of only poles then
d(n) in eq. (5.34) is maximized for γ = −1. However, for all-zero system, γ = 1
is the appropriate choice [42, 66]. For our case, d(n) is maximized for γ = 1/11
(obtained after further fine-tuning), which suggests that the system function has
more zeros than the poles. With this analysis, we have chosen the value of γ to be
1/11 for our SSD system design.

Furthermore, spectrographic analysis for RSMS vs. CQT is shown in Figure
5.13. Panel I shows the RSMS for genuine and spoof speech signal in Figure 5.13(a)
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Figure 5.12: Panel-I and Panel-II Consists of Spectrogram of Genuine vs. Spoof
Speech Signal, Respectively. Figure 5.12(a) Shows Spectrogram of the Speech
Signal as Given in eq. (5.37) for γ = 0.9. Whereas, Figure 5.12(b), Figure 5.12(c),
and Figure 5.12(d) Shows the Spectrogram for γ = −0.9, 0.1, and −0.1, Respec-
tively. After [19].

and Figure 5.13(c), respectively. Figure 5.13(b) and Figure 5.13(d) in Panel II shows
CQT-gram for genuine and spoof speech signal, respectively. It can be observed
that the highlighted region in RSMS is highly discriminative than the CQT-gram.
It may be due to the fact that the choice of appropriate γ helps by preserving the
maximum concentration of signal’s energy and hence, its behaviour is more pro-
foundly observed. It can be observed from the Figure 5.13 that a spoof signal has
lesser spectral energy in the high frequency region as compared to its genuine
counterpart, which may be due to energy decay because of replay configuration.
Thus, being able to capture the behaviour of the signal in the high frequency re-
gion allows RSMS to distinguish genuine and spoof utterances effectively.

Experiments are performed by varying the value of γ for MSRCC feature set
along with GMM classifier, and results in % EER are shown in Table 5.19. It is
observed that the γ > 0 gives better results than γ < 0, which is exactly oppo-
site to what has been reported for speech synthesis application (Chapter 6 and
Chapter 9 of [42]). In particular, γ = −1/3 gave better results in listening test
than γ = 1/3. This is because γ < 0 emphasize the pole structure (i.e., formants),
whereas γ > 0 emphasize the zeros (i.e., valleys) in the spectrum. For replay
speech, due to bandpass characteristics of the replay mechanism, the spectrum is
expected to decay faster, which is essentially encoded in the valleys in the spec-
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Figure 5.13: Plot of RSMS (Panel I) vs. CQT-gram (Panel II) Feature Sets : (a), (b)
for Genuine Speech Signal, and (c), (d) for Spoofed Speech Signal. After [19].

trum. Thus, γ > 0 is able to emphasize this information better than γ < 0 and
hence, gives the relatively better results.

Table 5.19: Variation in % EER w.r.t. γ Value for MSRCC Feature Set. After [19].

γ -1 -1/2 -1/3 -1/5 -1/7 -1/9 -1/11 -1/13 -1/15
Dev 38.78 30.64 27.92 23.04 22.69 21.59 20.94 20.46 20.25
Eval 33.33 26.17 23.74 21.59 21.38 21.12 20.74 20.40 20.85

γ 1/15 1/13 1/11 1/9 1/7 1/5 1/3 1/2 1
Dev 21.56 20.19 19.27 20.28 21.13 21.28 23.78 24.67 32.36
Eval 19.23 18.20 16.16 19.90 20.79 22.01 24.65 25.75 31.30

Results obtained are shown in Table 5.20 with % EER as a performance metric.
For MSRCC-GMM (A) system, we obtained the absolute reduction in EER of 1.3%
and 7.05% on the Dev and Eval sets, respectively, in comparison with the base-
line CQCC-GMM system. In addition, it can be observed from Table 5.20 that,
RSMS-LCNN (B) system performs superior to the CQT-gram-LCNN system. This
validates the efficacy of the proposed spectral root-based feature sets, irrespec-
tive of the classifier. The improved results on Eval set using MSRCC feature set
show its generalization capability. The performance of the MSRCC is also com-
pared with the Power Normalized Cepstral Coefficients (PNCC) and RASTA-PLP
feature sets, which are also power-law nonlinearity-based features. These feature
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Table 5.20: Results (in % EER) on ReMASC Dataset using Various Feature Sets.
After [19].

SSD System Dev Eval
CQCC-GMM 20.57 23.31
LFCC-GMM 28.89 26.31
MFCC-GMM 36.43 31.53
PNCC-GMM 22.29 25.23

RASTA-PLP - GMM 26.25 29.20
MSRCC-GMM (A) 19.27 16.26
CQT-gram-LCNN 13.20 15.14
RSMS-LCNN (B) 13.75 12.24

A + B 11.39 11.84

‘+’ denotes score-level fusion.

sets are developed to design noise-robust speech recognition system [272]. Be-
cause of their noise-robustness property, they may fail to detect the distortions in
replayed spoof speech signals. We found that PNCC also works better for the pos-
itive values of γ near zero and results in Table 5.20 are obtained with power-law
nonlinearity exponent set to γ = 1

11 . Whereas RASTA-PLP shows quite consistent
performance with variation of this exponent, however, we obtained somewhat
better results, when it is set to γ = 1

10 . We also used LFCC and MFCC feature
sets in our experiments. Both MFCC and LFCC feature sets perform poorer than
the CQCC feature set. Our primary system shows the absolute reduction in EER
of 6.82 % and 11.07 % on Dev and Eval sets, respectively, compared to the base-
line system. The fusion of the two SSD systems A and B, with fusion parame-
ter α = 0.33, gives much better performance, suggesting both of these systems
capture complementary information. Experiments performed on environment-
independent case produces relatively better results than the CQCC-GMM system
reported in [9] (i.e., 31.60 %, 29.78 %, 26.40 %, and 36.23 % EER in four successive
environments).

5.3.6 Experimental Results on ASVSpoof 2017 Dataset

In this Section, we describe the development of SSD using the proposed feature
sets. The experiments are performed on the ASVSpoof 2017 challenge database.
The full database contains three subsets: training, Dev, and Eval set. The details of
ASVSpoof 2017 is given in [165,273]. Initially, experiments are performed to opti-
mize the feature and model parameters, namely, the value of γ, frequency range
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Table 5.21: Results (in % EER) on ASVSpoof 2017 Dataset. After [20].

SSD System Dev Eval
CQCC-GMM (Baseline) [255] 12.11 29.18
MFCC-GMM (Baseline) [255] 11.21 31.30

MSRCC-GMM 8.53 18.61
PSRCC-GMM 35.53 24.35

MSRCC + PSRCC (GMM) 6.58 10.65
MSRCC-CNN 3.05 24.84
PSRCC-CNN 36.21 26.81

MSRCC + PSRCC (CNN) 2.63 17.76

in the spectrum, dimension of feature vector, and number of mixture components
in the GMM. The experiments are carried for various values of the γ ranging from
-1 to +1 for MSRCC and PSRCC feature sets. It was observed that the optimum
performance is observed for γ = −1/7. Furthermore, experiments are also per-
formed by selecting various frequency range for both MSRCC and PSRCC feature
sets. PSRCC feature set performs better for the entire frequency range, whereas
MSRCC performs better for the 6-8 kHz spectral feature representations. Further-
more, number of feature dimension and number of mixtures in GMM are selected
empirically for the optimum performance as 13 and 512, respectively. The exper-
iments are also performed using CNN as a classifier. The experimental results
are as shown in Table 5.21. The CQCC-GMM and MFCC-GMM was the baseline
systems for ASVSpoof 2017 challenge. The proposed MSRCC and PSRCC feature
sets performed better over the baseline results for both GMM and CNN classifiers.
Furthermore, the score-level fusion of the MSRCC-GMM and PSRCC-GMM sys-
tem shows the significant amount of improvement in the performance. It shows
that the complementary information is present in magnitude and phase represen-
tation for the replay SSD task. The similar results are shown in Figure 5.14 using
the DET plots.

5.4 Chapter Summary

In this study, we exploited the CQT-based algorithm to detect the liveness in the
genuine speaker by using the pop noise as a discriminative acoustic cue. The
experiments are performed on the recently released POCO dataset. The results
of the proposed approach are compared against the baseline, where feature sets
are derived from the traditional STFT. The spectrographic analysis for genuine
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Figure 5.14: DET Curves for (a) Dev Set and (b) Eval Set of ASVSpoof 2017 Chal-
lange Dataset. After [20].

(live) vs. spoof speech was performed, which showed that the pop noise is em-
phasized in a much better way in CQT-based spectrogram than it’s STFT counter-
part. The VLD systems for proposed CQT-based algorithm vs. STFT-based base-
line are developed using various classifiers, namely, SVM, GMM, CNN, LCNN,
and ResNet. The performance of the VLD system is evaluated using two per-
formance evaluation metrics, namely, % classification accuracy and % EER. It
was found that the proposed CQT-based algorithm performs better over STFT-
based baseline algorithm, for all the four classifiers. Furthermore, experiments
are performed using various analysis windows, namely, Hann, Hamming, and
Gaussian. Among these windows, Gaussian window gave relatively better per-
formance over hann and Hamming window functions and hence, we reported
remaining results using Gaussian window. Relatively better performance using
Gaussian window, might be because of the fact that Gaussian window achieves
lower bound for Heisenberg’s box corresponding to uncertainty principle in sig-
nal processing framework [200]. The relatively best performance is obtained by
CQT-based algorithm along with LCNN architecture among all the VLD systems
considered in this study. However, there is still a scope for further improvement
by utilizing more efficient pop noise detection methods (improved signal process-
ing or probabilistic approaches) and sophisticated deep learning architectures, in
particular, by exploiting various loss functions in CNN, LCNN, and ResNet [15].

In addition, we have analyzed the effect of the addition of replay mechanism
by generating simulated replay. In order to generate simulated replay, the geo-
metrical acoustics is generated by using image-source model. We have analyzed
the effect of pop noise with variation in frequency range. It was found that the
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effect of the pop noise is significantly observed below 30 Hz. Furthermore, it is
observed that after inclusion of simulated replay mechanism in pop noise detec-
tion framework, the classification accuracy is increased with increase in frequency
range. This is due to the addition of replay mechanism, the reverberation effect
is introduced in replayed speech and hence, a significant difference is obtained
at the acoustic-level between genuine (live) vs. replayed speech. However, pop
noise can be captured only from a short distance and hence, this approach of re-
play SSD is effective only when the distance between microphone and speaker is
less for genuine speech recordings. Moreover, it is assumed in the dataset that the
distance between attacker’s recording device and genuine speaker is large and
hence, the pop noise does not get captured by the recording device. The addition
of the pop noise in the spoof speech utterance can be easily performed. However,
the proposed approach did not address the issue of artificially added pop noise in
spoof speech signal, which can be easily added at the arbitrary locations in the ut-
terance. Thus, the VLD system can be further modified to detect the pop noise at
pop noise-specific phonemes and improve the security for the ASV system, which
remains an open research problem.

Furthermore, the SRCC feature set is employed for replay SSD task. We in-
vestigated physics of replay attack and spectral root cepstrum, where logarithmic
nonlinearity in MFCCs is replaced by power-law nonlinearity for replay SSD in
the context of VAs. For power-law nonlinearity, dynamic behavior of the out-
put does not depend critically on the input amplitude. A proper choice of γ in
SRCC feature extraction plays a vital role in deconvolving the input signal. The se-
lected γ value also pointed out that this system possess more zeros than the poles.
The experiments are performed on ASVSpoof 2017 and ReMASC datasets using
MSRCC and PSRCC feature sets. For ASVSpoof 2017 dataset, MSRCC and PSRCC
feature sets extract complementary information and hence, their score-level fusion
produces significant improvement in results. However, ReMASC dataset shows
the better performance with MSRCC feature set alone.

The next chapter discusses the contribution of this thesis work in the other
work on anti-spoofing and other speech technology applications, namely, clas-
sification of severity-level of dysarthric speech, and classification of normal vs.
pathological infant cries.
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CHAPTER 6

Other Applications

6.1 Introduction

In1 the earlier chapters, the proposed handcrafted feature sets for anti-spoofing
task were discussed. During this work, various feature sets and the classifier ar-
chitectures for anti-spoofing task were also applied to other applications, such as
severity-level classification of dysarthric speech and classification of normal vs.
pathological infant cries. This chapter presents the major work performed on al-
lied paths of feature development on anti-spoofing or the other applications of
speech technologies. To that effect, this chapter deals with following four major
components:

1. Significance of feature normalization methods, such as CMVN as a double-

1This Chapter is based on the following publications:

• Ankur T. Patil, and Hemant A. Patil, “Significance of CMVN for Replay Spoof Detection,"
in Asia-Pacific Signal and Information Processing Association Annual Summit and Confer-
ence (APSIPA-ASC), Auckland, New Zealand, Dec. 7-10, 2020, pp. 532-537.

• Piyushkumar Chodingala, Shreya Chaturvedi, Ankur T. Patil, and Hemant A. Patil, “Ro-
bustness of DAS Beamformer Over MVDR for Replay Attack Detection On Voice Assis-
tants," accepted in IEEE International Conference on Signal Processing and Communica-
tions (SPCOM)-2022, Bangalore, India, July 11-15, 2022.

• Siddhant Gupta, Ankur T. Patil, Mirali Purohit, Mihir Parmar, Maitreya Patel, Hemant A.
Patil, and Rodrigo C. Guido, "Residual Neural Network Precisely Quantifies Dysarthria
Severity-level based on Short-duration Speech Segments", in Neural Networks, Elsevier,
139(2021): 105-117.

• Hemant A. Patil, Ankur T. Patil, Aastha Kachhi, “Constant Q Cepstral Coefficients for Clas-
sification of Normal vs. Pathological Cry," accepted in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Singapore, May 7-13, 2022, pp 7392–7396.

• Ankur T. Patil, Aastha Kachhi, Hemant A. Patil, “Subband Teager Energy Representations
for Infant Cry Analysis and Classification," accepted in European Signal Processing Confer-
ence (EUSIPCO)-2022 Belgrade, Serbia, August 29 - Sept. 2, 2022.
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edged sword for anti-spoofing;

2. Analysis of Delay and Sum (DAS) vs. MVDR beamforming techniques for
anti-spoofing in VAs;

3. Severity-level classification of dysarthric speech;

4. Infant cry classification.

The subsequent sections of this chapter consists of brief explanation of the above
components of the work.

6.2 Significance of CMVN for Replay Spoof Detec-

tion

6.2.1 Motivation

Feature normalization techniques have been used in various speech applications,
such as automatic speech and speaker recognition, to improve the performance
of the systems [274–279]. The literature includes several forms of normalization
techniques, which includes normalization w.r.t. nth order expectation of random
variable X for each dimension. The first and second-order expectations are known
as mean and variance, respectively. If normalization is applied on the cepstral
feature representation based on mean and variance, then it is known as Cepstral
Mean and Variance Normalization (CMVN). However, if we consider only mean
value for normalization, then it is called as CMN or Cepstral Mean Subtraction
(CMS) [280, 281]. The use of normalization techniques in ASR for environmental
mismatch conditions is well known in the literature [275, 276, 279]. Further, these
normalization methods are also used for speaker recognition [281–283].

The replay spoof speech signal is formed by convolving the genuine version
of the speech sample with the impulse responses of the recording and replay en-
vironments and devices. In SSD task, we need to identify this additional trans-
mission channel effects present in spoof speech signal. The application of the
CMVN/CMN to the speech and speaker recognition system suppresses the trans-
mission channel effects. Hence, its use in SSD task seems to be counter-intuitive.
However, among the many CM systems developed on ASVSpoof-2017 dataset, it
is observed that CMVN/CMN has been effectively utilized for the replay SSD task
to give significant improvement in the performance [3, 99, 103, 105–107, 195, 284,
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285]. This contradictory results motivated us for further investigation over appli-
cability of the CMVN. We performed experiments for environment-independent
and environment-dependent scenarios. Furthermore, probability density func-
tion (pd f s) are estimated over several dimensions of feature representations.

6.2.2 Cepstral Mean and Variance Normalization (CMVN)

CMN was initially proposed to eliminate the transmission channel distortions that
are introduced into the signal by convolving the signal with the impulse response
of the transmission channel. In cepstral-domain, convolutional vector space is
mapped to the additive vector space [42,268]. The CMN estimates the mean along
every dimension of the cepstral feature representation of the speech samples and
this mean value is subtracted from the corresponding dimension to transform the
feature representation to zero-mean. Whereas, the CMVN transforms each cep-
stral feature representation of the speech sample to zero-mean and unit-variance.
Mean and variance can be estimated for a segment of the utterance to reduce the
latency period [279].

Let xt denote the d-dimentional feature vector at the frame index t of the utter-
ance, and xt(i) represent the ith component of xt. The speech utterance is passed
through frame-blocking, denoted as X = [x1, x2, ..., xT], where T denote the num-
ber of speech frames. The mean and variance are estimated for every dimension
in maximum likelihood (ML) framework as [286]:

µML(i) =
1
T

T

∑
t=1

xt(i), 1 ≤ i ≤ d, (6.1)

σ2
ML(i) =

1
T − 1

T

∑
t=1

[xt(i)− µML(i)]2, 1 ≤ i ≤ d, (6.2)

where µML and σML corresponds to mean and variance values, estimated in
ML framework. The CMVN is applied to obtain normalized cepstrum of the
frame as:

x̂t(i) =
xt(i)− µML(i)

σML(i)
, 1 ≤ t ≤ T, 1 ≤ i ≤ d. (6.3)

To visualize the effect of the CMN and CMVN, we generated the data samples
with the help of two random variables from the normal distributions, N (4, 4),
and N (2, 0.25). The scatter plot of the generated data samples is shown in Figure
6.1(a). Further, Figure 6.1(b) and Figure 6.1(c) shows the scatter plot for CMN and
CMVN normalized data samples, respectively. For CMN data samples, it can be
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Figure 6.1: Scatter Plot for (a) the Unnormalized Data, (b) with CMN, and (c)
CMVN. X = [x1 x2] Denotes the Samples Drawn from the Bivariate Gaussian Dis-
tribution. Ytick Values of Figure 6.1(b) and Figure 6.1(c) are the Same as that of
Figure 6.1(a). After [21].

observed that the data samples are centered around the origin, and variance is
maintained the same as that of the original data samples, however, with CMVN,
the mean and variance are normalized. The spread along both the axes is main-
tained at unity variance in CMVN as shown in Figure 6.1(c).

Similar kind of observations regarding feature normalization can be seen in
Figure 6.2, which shows the scatter plots for the first two dimensions (D) of the
CQCC feature set for genuine vs. two spoof speech signals. The data samples for
the genuine speech are shown by red ’*’ symbol, whereas spoof speech data sam-
ples for balcony and studio environments are shown by green and blue ’*’ sym-
bol, respectively. The CQCC feature extraction and dataset details are discussed
in Chapter 3. Figure 6.2(a), Figure 6.2(b), and Figure 6.2(c) shows the scatter plots
for original features (initial 2-D), it’s CMN, and CMVN normalized versions, re-
spectively. Again, feature representation with CMN is centered around origin
with original feature representation variance, whereas feature representation with
CMVN is zero-centered with unity variance. The other intuition from this scatter
plot is discussed in the next Sections.

6.2.3 Replay Speech Signal Modelling and CMVN

Using source-filter model, the speech signal, s(n) is modelled as the convolution
of the glottal airflow, g(n) with the impulse response of the vocal tract system,
v(n), i.e.,

s(n) = g(n) ∗ v(n). (6.4)
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In many speech signal processing applications, the speech signal is represented
in the cepstral-domain. The cepstral representation of the speech signal is ob-
tained as the inverse Fourier transform of the logarithm of the spectrum of the
speech signal. This transformation maps the convolutionally-combined vectors
to additively combined vectors [66, 265, 268–271]. Let ŝ(n), ĝ(n), and v̂(n) rep-
resents the cepstrum of the speech signal, glottal airflow, and vocal tract system,
respectively. Cepstral representation of the speech signal in eq. (6.4) is given as:

ŝ(n) = ĝ(n) + v̂(n). (6.5)

In SSD framework, the signal s(n) is treated as genuine speech signal. The
effect of the distortion due to replay mechanism on genuine speech signal, can
be modelled by linear filtering. In the replay mechanism, the genuine signal is
recorded, and again replayed back. In this process, the genuine signal is distorted
by the impulse responses of the recording environment, a(n), recording device,
b(n), playback device, c(n), and playback environment, d(n), respectively. By
linear filter theory, the replayed speech is referred to as convolution of the genuine
speech signal with this additional components, i.e.,

r(n) = s(n) ∗ a(n) ∗ b(n) ∗ c(n) ∗ d(n). (6.6)

Let all these additional elements (a(n), b(n), c(n), and d(n)) contribute to the
overall impulse response of the replay mechanism system, h(n) (i.e., h(n) = a(n) ∗
b(n) ∗ c(n) ∗ d(n)), which will distort the genuine speech signal. Hence, the re-
played signal is modeled as:

r(n) = s(n) ∗ h(n). (6.7)

In the cepstral-domain, eq. (6.7) is written as:

r̂(n) = ŝ(n) + ĥ(n). (6.8)

If an utterance consists of T number of speech frames, then the cepstrum for
each frame can be written as [287, 288]:
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Figure 6.2: Scatter Plot for (a) the Unnormalized Data, (b) with CMN, and (c)
CMVN. X = [x1 x2] Denotes the First and Second Dimension of CQCC Feature
Vector. Legends of Figure 6.2(b) and Figure 6.2(c) are the Same as That of Figure
6.2(a). After [21].

r̂1(n) = ŝ1(n) + ĥ(n),

r̂2(n) = ŝ2(n) + ĥ(n),
...

r̂T(n) = ŝT(n) + ĥ(n).

(6.9)

Taking average over the T frames, we get,

1
T

T

∑
t=1

r̂t(n) =
1
T

T

∑
t=1

ŝt(n) + ĥ(n). (6.10)

Here, we modeled the effect of distortion by linear filter approach. Then, the
distortion from the observed signal is removed by the inverse filtering. The cep-
strum is computed as the inverse Fourier transform of the logarithm of the Fourier
transform. Hence, the effect of the distortion can be removed (at least suppressed)
by subtracting the characteristics of the distortion filter from the cepstrum of the
observed signal. In eq. (6.10), the cepstrum of the distortion filter, ĥ(n), can be
subtracted to obtain the distortionless signal. Let us assume that the genuine
speech signal is the zero-mean process. Then,

ĥ(n) =
1
T

T

∑
t=1

r̂t(n) = cµ. (6.11)

Then, CMN is supposed to remove or at least suppresses the effect of the dis-
tortion from the replayed speech signal. Inevitably, the average over the cepstral
coefficients include the speech and speaker-related information, and the effect of
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the transmission channel distortion.

6.2.4 Experimental Setup

In this study, we aim to investigate the application of the CMVN for spoof detec-
tion capability over both environment-independent and environment-dependent
cases for ASVSpoof 2017 and ASVSpoof 2019 datasets. In environment-independent
case, the target environment is unseen by the defense model. To perform the ex-
periments on environment-independent case, the same statistical distribution of
the speech samples as provided by the ASVSpoof-2017 and -2019 (PA scenario)
challenge organizers are used, which is shown in Table 3.3 and Table 3.5, respec-
tively. For environment-dependent case, the target environment is seen by the
defense model. In this case, training and testing is performed on each individ-
ual environment in the corresponding dataset. The distribution of the number of
spoof speech utterances for each environment in ASVSpoof 2017 dataset is vary-
ing and shown in Table 3.4. To develop an individual environment-dependent
replay SSD system, half of the spoof speech utterances for the corresponding
environment are chosen for training purpose, and the remaining half are used
for testing the performance of the model. To train the genuine speech signal
model, equal number of genuine utterances are selected as that of spoof speech
utterances, used for training in corresponding environment. To perform experi-
ments for environment-dependent case on ASVSpoof-2019 (PA scenario) dataset,
we partitioned the dataset considering the acoustic environment (Table 3.7), and
replay configurations (Table 3.8). There are 27 different acoustic configurations,
and for each configuration, we have 1070 bonafide utterances and, 7020 spoof
utterances. Each half from the bonafide utterances are chosen for training and
testing. Among spoof utterances for each acoustic configuration, 2500 utterances
are randomly chosen for training and remaining spoof utterances are used for
testing. The replay configurations consider the 3 categories of attacker-to-speaker
recording distances (Da), and 3 categories of loudspeaker quality (Q) (defined in
Table 3.8). Various combinations of the Da and Q constitute 9 replay configu-
rations [289]. Only spoofed utterances belongs to either of these configurations.
The spoof speech model for each of the replay configuration is trained using half
of the utterances belonging to that configuration. The rest half is used for the
testing. The genuine speech model is trained using 5400 genuine utterances, and,
23000 genuine utterances are used for testing. The experiments are performed
with CQCC and LFCC feature sets.

181



Figure 6.3: Estimated pd f of Genuine and Environmentwise Spoof Speech Sam-
ples over the (a) 1st, (b) 3rd, (c) 5th, (g) 10th, (h) 12th, (i) 15th, (m) 20th, (n) 25th, and
(o) 30th Feature Dimensions with Application of CMVN, whereas Figure (d), (e),
(f), (j), (k), (l), (p), (q), and (r) shows the Estimated pd f s for without CMVN Case
with the Same Sequence of Dimensions as that of CMVN Case. Legends of all
Figures Are Similar as Given in Figure 6.3(a). After [21].

6.2.5 Experimental Results for ASVSpoof 2017 Dataset

In this Section, we present results to investigate the issue on application of the
CMVN technique for SSD task. Performance of the environment-dependent sce-
nario for CQCC and LFCC feature sets using ASVSpoof 2017 dataset is displayed
in Table 6.2. The EER is used as the performance evaluation metric. It is observed
that, for environment-independent case in ASVSpoof-2017 dataset, CMVN nor-
malization technique works significantly better.

Figure 6.3 shows the estimated pd f for a few selected dimensions of the CQCC
feature set for genuine speech samples and spoof speech samples for all the in-
dividual environments. Figure 6.3(a), Figure 6.3(b), Figure 6.3(c), Figure 6.3(g),
Figure 6.3(h), Figure 6.3(i), Figure 6.3(m), Figure 6.3(n), and Figure 6.3(o) shows
the estimated pd f s of the CQCC feature set for 1st, 3rd, 5th, 10th, 12th, 15th, 20th,
25th, and 30th dimensions with CMVN normalization, respectively. Whereas, Fig-
ure 6.3(d), (e), (f), (j), (k), (l), (p), (q), and (r) shows the estimated pd f s for 1st,
3rd, 5th, 10th, 12th, 15th, 20th, 25th, and 30th dimensions for without application
of the CMVN, respectively. This figure can be used to analyze the behavior of
the feature distribution in environment-dependent case. As observed from Fig-
ure 6.3, estimated pd f for the CMVN case, all the environments are seems to be
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Figure 6.4: Estimated pd f of Genuine and Spoof Speech Samples over the First
Feature Dimension for (a) CMVN and (b) without CMVN. Legends of Figure
6.4(b) Are Similar to that of Figure 6.4(a). After [21].

aligned with the pd f of the genuine speech signal. The alignment of the pd f is
produced because of CMVN, which further leads to degradation of the results
for environment-dependent scenario as distribution of the genuine speech data
seems to be similar to that of the spoof speech data. Observations are also made
for other dimensions of the feature vector other than mentioned dimensions, how-
ever, pd f s for a few selected dimensions are presented in Figure 6.3. It can be
observed that, after 11th dimension pd f s of the spoof speech data for the CMVN
case, all the other environments mostly aligned with the genuine data and almost
no difference exists in their pd f s. This fact can be observed from Figure 6.3(k),
(l), (p), (q), and (r), where all the pd f s are almost merged. Whereas, the pd f s of
genuine data is much different to that of individual spoof speech environments
in without CMVN case. Furthermore, for without normalization scenario, the
distinct difference in pd f s can be observed for almost all the dimensions. For
without CMVN case, if GMM parameters (i.e., mean and variance of the Gaussian
mixtures) are estimated for the pd f s of the genuine vs. any other environment
for spoof speech data, then for most of the environments, we obtained the well
distinguishable GMM parameters. In particular, it can be observed that GMM pa-
rameters of the genuine data vs. spoof speech data from balcony/studio would
be well distinguishable. Hence, corresponding SSD systems are producing 0 %
EER. However, with CMVN applied to a feature set, all the pd f s of spoof speech
signal representations for an individual environment, do not lie on either side of
the pd f of genuine signal representations. This fact is also observed from Figure
6.2(a), where the data samples for genuine speech signal lie in the middle of the
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Table 6.1: Results of CQCC-GMM and LFCC-GMM Systems in % EER for
Environment-Independent Case on ASVSpoof 2017 Dataset. After [21].

Dev Eval

CQCC
Without CMVN 10.31 28.02

CMVN 12.48 18.17

LFCC
Without CMVN 7.02 32.62

CMVN 14.79 14.83

other two spoof speech environments. Hence, cumulative distribution of all the
environments (shown in Figure 6.4) for spoof speech data, could not produce the
distinguishable GMM parameters w.r.t. genuine data.

Figure 6.4(a) and (b) shows estimated pd f of the genuine vs. spoof speech sig-
nal over the first dimension of the CQCC feature set, obtained by application of
the CMVN and without CMVN, respectively. Here, spoof speech data is obtained
from all the possible environments. In this case, if GMM parameters are estimated
from the pd f s, then Figure 6.4(a) will have the more distinguishable GMM param-
eters as the GMM parameters estimated from this pd f would be better separated
than the case of without CMVN. It is because of the fact that, pd f maxima of this
pd f are well separated in Figure 6.4(b), many local maxima are observed and ran-
dom variable corresponding to these maxima are mixing with each other. Because
of these closely-spaced GMM parameters for genuine and spoof speech signals,
the classifier model may pose ambiguity, when a test sample is presented to the
trained model for the SSD task. This might be the reason for getting better results
for environment-independent case with application of the CMVN compared to
without CMVN case. Authors believe that pd f corresponding to higher cepstral
dimensions show less discrimination between genuine vs. spoof due to decay of
cepstrum w.r.t. time [265, 270, 271].

Figure 6.5(a) and Figure 6.5(b) shows the DET curves for the system developed
using the feature set with and without application of the CMVN on ASVSpoof
2017 challenge dataset, respectively [179]. These DET curves are shown for environment-
dependent scenario. Two systems are showing 0 % EER, which cannot be ob-
served on the DET curve. However, these plots are shown by the point at the ori-
gin. It can be observed from the DET curves that the performance of environment-
dependent case is significantly improved without normalization of the feature set.
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Table 6.2: Results of CQCC-GMM System in % EER for Environment-Dependent
Case on ASVSpoof 2017 Dataset. After [21].

CQCC LFCC

CMVN
Without

CMVN
Without

CMVN CMVN
Anechoic Room 10.02 0.26 10.60 0

Analog wire 16.99 11.42 22.09 10.89
Balcony 13.81 0 9.60 0.13
Canteen 3.43 0.93 2.73 1.33
Home 7.39 2.12 9.23 2.51
Office 14.99 5.63 17.62 7.22
Studio 7.53 0 7.21 0

6.2.6 Experimental Results for ASVSpoof 2019 dataset

Figure 6.6 shows the pd f s estimated from the first cepstral (trajectory) coefficient
of the CQCC feature set for the genuine, replay spoof, and individual replay con-
figurations. As the total number of utterances for the genuine and each replay
configuration is large, we randomly selected 5000 utterances of the genuine and
individual replay configurations, to estimate the pd f s shown in Figure 6.6. The
analysis is performed for various dimensions, however, the first cepstral trajec-
tory is selected as the sample example, as observations are clearer for the first
dimension than the other dimensions. Figure 6.6(a) and Figure 6.6(c) shows the
estimated pd f s for the genuine vs. replay speech samples without and with ap-
plying the CMVN, respectively. Further, the results obtained on standard dataset
and protocols is shown in Table 6.3. From Figure 6.6(a), it can be observed that
the pd f s of bonafide and spoof is more aligned with each other than that of Figure
6.6(c). It shows that the feature set without CMVN shows the better classifica-
tion capability over the normalized feature set. These observations are reflected
via the performance of the SSD system as shown in Table 6.3, where the CMVN
shows the degraded performance than the without normalized feature set. Fig-
ure 6.6(b) shows estimated pd f s of CMVN for the bonafide vs. individual replay
configurations, where it can be observed that all of the individual pd f s of the re-
play configurations are aligned with each other and also with pd f of the bonafide
feature set. Hence, the degraded performance is observed for the environment-
dependent SSD task with application of the CMVN, as shown in Table 6.4. Figure
6.6(d), Figure 6.6(e), and Figure 6.6(f) shows the pd f s estimated for without nor-
malized feature sets of the bonafide vs. individual replay configurations. It can be
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Figure 6.5: DET Plots for Environment-Dependent Case using ASVSpoof-2017
Dataset (a) with Application of the CMVN, and (b) without Application of the
CMVN on Feature Set. Legends for Figure 6.5(a) and Figure 6.5(b) Are the Same.
After [21].

observed that for perfect replay device quality (Q), the pd f s of the replay config-
uration features are very much aligned to that of the pd f of the bonafide features.
As Q degrades, the difference between the pd f s of the bonafide vs. replay configu-
rations, is more vivid. This variation in the distribution characteristics is reflected
into the performance of the replay SSD task for environment-dependent scenario,
as shown in Table 6.4. It is also clear from Table 6.4 that the application of the
CMVN for environment-dependent case significantly degrades the performance
of the SSD system.

Table 6.3: Results of CQCC-GMM Systems ASVSpoof 2019 Dataset using Stan-
dard Protocols.

Dev Eval

ASVSpoof-2019
without CMVN 9.48 11.58

CMVN 12.42 13.78

From Table 6.3, it can be observed that application of the CMVN significantly
improves the performance on ASVSpoof-2017 challenge dataset, whereas it de-
grades the performance on ASVSpoof-2019 challenge dataset. This mysterious
results can be unfolded by comparing the pd f s shown in Figure 6.6 with pd f s es-
timated for ASVSpoof-2017 challenge dataset as reported in [21]. It can be clearly
observed that for ASVSpoof-2017 challenge dataset that the pd f s of the bonafide
data is much different to that of the individual spoof speech environments for
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Figure 6.6: All the pd f s Shown in Figure 6.6 Are Estimated from 1st Cepstral
Coefficient of the CQCC Feature Set. Figure 6.6(a) and Figure 6.6(c) Shows the
Estimated pd f s for the Genuine vs. Spoof Speech Samples without Normaliza-
tion, and CMVN, Respectively. Figure 6.6(b) Shows the Estimated pd f s for the
Genuine vs. Individual Replay Configurations with CMVN Applied on CQCC
Feature Set. Whereas, Figure 6.6(d), Figure 6.6(e), and Figure 6.6(f) Shows the
Estimated pd f s for the Genuine vs. Individual Replay Configurations without
Normalization Applied on CQCC Features. After [21].

without CMVN case. Hence, it produces better performance for environment-
dependent scenario. However, the pd f s for individual spoof speech environments
lie on both the sides of the bonafide pd f . Hence, cumulative effect of all individual
environments is aligned with bonafide pd f , which results in degradation in the re-
sults for without CMVN case. This is not the case here for ASVSpoof-2019 dataset.
It can be observed from Figure 6.6 that for without CMVN case, the pd f s of the in-
dividual replay configurations are lying on the one of the side to that of bonafide
pd f . In addition, as the Q degrades, pd f s of the bonafide data and individual
replay configurations are separated away from each other. This might be due to
the fact that simulated replay mechanism systematically alter the replay config-
uration characteristics, which results in shifting the similar pd f s in a particular
direction, as shown in Figure 6.6(d), Figure 6.6(e), and Figure 6.6(f). Hence, their
cumulative effect will not be as undesirable as that of ASVSpoof-2017 case. This is
an important finding of its kind as it can easily predict whether or not one should
use the CMVN for classification task. This finding of ours is in agreement with the
fact that CMVN acts like a double edged sword as observed originally in the speaker
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Table 6.4: Results (in % EER) for Environment-Dependent Case for Various Re-
play Configurations on ASVSpoof 2019 Challenge Dataset.

Replay Without
CMVN

Replay Without
CMVN

configuration CMVN configuration CMVN

AA 23.81 26.94 BA 22.54 30.86
AB 2.01 10.60 BB 2.01 10.35
AC 0.85 4.73 BC 0.75 5.17
CA 21.83 28.85 CB 1.77 11.19
CC 0.89 5.09 - - -

recognition literature [281,282]. In particular, such feature normalization via CMN
perform better if training and testing is done with speech recordings in different
transmission channel, acoustic environments, etc., whereas CMN could hurt the
classification/recognition performance if training and testing is done with speech
recordings in the same acoustic environments and hence, the same transmission
channel characteristics. Thus, such feature normalization should be applied very
carefully considering the type of noise, recording conditions, and application at
hand.

The SSD experiments are also performed for environment-dependent case for
the acoustic configurations, given in Table 3.7. From Table 6.5, it can be observed
that the SSD system with CMVN performs better than without CMVN case. This
trend is as similar as observed for the replay configurations case as observed in
Table 6.4.

From the results obtained in this study on ASVSpoof 2017 and ASVSpoof 2019
datasets, we observed that the application of the CMVN to the feature set do not
always guarantee better results for the classification task. However, it depends
upon the variability of the speech samples in terms of transmission channel noise.
The contradictory behavior of CMVN is observed on these two datasets. For
ASVSpoof-2019 dataset, it can be observed that the pd f s of the individual replay
configurations are lying on one of the sides than that of bonafide pd f for without
CMVN case. Furthermore, the pd f s of the replay configurations are separated
apart from the pd f of the bonafide data, as the replay configuration characteristics
are intensified. By applying CMVN, these replay characteristics are suppressed
and bringing the pd f s of bonafide and spoof data closer to each other, which loses
the classification capability to a certain extent and thus, degradation in the perfor-
mance of SSD systems. This might be because of the generation of the replayed
speech samples by simulating the acoustic and replay configurations, rather than
real replay environments in ASVSpoof 2017 counterpart. However, in ASVSpoof-
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Table 6.5: Results in (% EER) for Environment-Dependent Case for Various
Acoustic Configurations on ASVSpoof 2019 Challenge Dataset.

Replay Without
CMVN

Replay Without
CMVN

configuration CMVN configuration CMVN

aaa 10.16 16.34 bbc 3.57 5.69
aab 7.707 15.04 bca 3.04 3.28
aac 5.73 15.36 bcb 2.07 2.58
aba 3.71 3.78 bcc 1.39 1.79
abb 3.45 4.37 caa 13.92 19.58
abc 3.67 5.53 cab 13.93 21.83
aca 1.67 1.98 cac 11.84 20.33
acb 1.23 1.97 cba 4.78 5.16
acc 0.76 1.17 cbb 6.13 6.80
baa 11.11 16.57 cbc 5.59 6.71
bab 11.13 18.57 cca 3.90 3.12
bac 9.10 17.71 ccb 2.08 2.80
bba 3.67 2.90 ccc 2.61 2.56
bbb 5.11 4.30 - - -

2017 challenge dataset for without CMVN case, pd f s of the individual replay en-
vironments are lying on both the sides of the pd f of the bonafide data. Hence,
the cumulative effect of all the replay environments might create difficulty for the
classification of bonafide vs. spoof speech. However, the results are similar for
the application of CMVN in environment-dependent cases for both the datasets.
Finally, we conclude that the applicability of the CMVN on cepstral features for
the SSD task depends upon the intended dataset, which can be analyzed using
the pd f s of the sample data.

6.3 DAS vs. MVDR Beamformer: Analysis for Re-

play SSD Task

6.3.1 Motivation

As we studied in Chapter 5 (Section 5.3.1), the replay mechanism consists of the
characteristics of the recording, playback devices, and corresponding acoustic en-
vironments due to which reverberation characteristics are embedded into the re-
play spoof signal [72]. This study investigate the capability of the DAS vs. MVDR
beamformer to extract the reverberation characteristics in replay speech signals,
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which can be utilized for replay SSD task [41, 106, 290, 291]. MVDR is a state-of-
the-art beamformer for speech enhancement applications as it successfully nul-
lify the reverberation effects in distant speech signals [290, 291]. Whereas, DAS
suppresses the additive noise and retains the reverberation effect observed in the
output signal [292] and hence, we deduce that DAS is a suitable choice for replay
SSD task. This hypothesis is validated using experimental results on ReMASC.
Furthermore, TECC feature set being capable of capturing the reverberation ef-
fects, is used effectively in tandem with DAS beamformer for replay SSD task [41].

6.3.2 Signal Modeling for Microphone Array Signal

Assuming the LTI model for the acoustic medium (path) between speech sound
source and microphone array, the speech signal received by N-element micro-
phone array is given as [42, 270, 290, 293]:

xi(n) = ri(n) ∗ k(n) + ηi(n),

= yi(n) + ηi(n), i = 1, 2, ..., N,
(6.12)

where i represents the index for ith microphone in an array, ri(n) is the impulse
response of the acoustic medium between the desired source signal k(n) and ith

microphone. ’*’ represents the convolution operation and ηi(n) corresponds to
additive noise of the ith microphone. Here, for modeling of noisy speech signal
xi(n), it is assumed that the speech signal yi(n) and noise signal ηi(n) are zero-
mean and uncorrelated. During development of the replay speech signal, impulse
responses of recording devices (rd(n)), and environment (re(n)) as well as impulse
responses of playback devices (pd(n)), and environment (pe(n)) are convolved
with the source signal. Let N(n) represents the combination of these impulse
responses [72], i.e.,

N(n) = rd(n) ∗ re(n) ∗ pd(n) ∗ pe(n). (6.13)

Hence, the replay speech signal (xir(n)) can be represented as:

xir(n) = ri(n) ∗ N(n) ∗ k(n) + ηi(n),

= yir(n) + ηi(n), i = 1, 2, ..., N.
(6.14)

Thus, the characteristics of the yir(n) in eq. (6.14) is different from that of yi(n)
because of the additional impulse response N(n) caused by the replay mecha-
nism. Considering this N(n) as distinguishing acoustic characteristics of the re-
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play spoof, it can be emphasized using suitable signal processing technique for re-
play SSD. To that effect, first we present the significance of the DAS beamformer
over MVDR for replay SSD through mathematical analysis, and then it is vali-
dated using experiments.

The representation of the received signal in eq. (6.12) in the frequency-domain
can be expressed as [293]:

Xi(ω) = Ri(ω)⊙ K(ω) + Hi(ω),

= Yi(ω) + Hi(ω), i = 1, 2, ..., N,
(6.15)

where Xi(ω), Ri(ω), K(ω), Hi(ω), and Yi(ω) are the DTFTs of xi(n), ri(n), k(n),
ηi(n), and yi(n), respectively. Here, the symbol ⊙ represents the componentwise
multiplication operation (due to convolution theorem for Fourier transform). The
frequency-domain representation of N-microphone array can be represented in
the matrix form as :

X(ω) = R(ω)⊙ K(ω) + H(ω) = Y(ω) + H(ω), (6.16)

where

X(ω) = [X1(ω), .., XN(ω)]T, R(ω) = [R1(ω), .., RN(ω)]T,

K(ω) = [K(ω), .., K(ω)]T, Y(ω) = [Y1(ω), .., YN(ω)]T,

H(ω) = [H1(ω), .., HN(ω)]T.

(6.17)

6.3.3 Delay and Sum (DAS) Beamformer

The DAS is a primitive beamforming technique for noise reduction in the array
signal processing literature [292, 294]. This involves reinforcing the desired sig-
nal while suppressing the unwanted noise signals. The conventional DAS beam-
former will delay all the input signals in time w.r.t. the reference signal, such
that the array sensor can focus in one direction. Hence, the summation of the de-
layed signals with the reference signal will result in suppression of noise, which
is arriving from the other directions. Furthermore, it can be postulated that the
summation of the delayed signals leads to cancellation of additive (random) noise.
Figure 6.7 shows the functional block diagram of DAS beamformer from receiver
end. Here, weights for corresponding single channel microphone signal in a mi-
crophone array are shown. The time-domain representation of DAS beamformer
is given by [295]:
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Figure 6.7: Functional Block Diagram of DAS Beamformer having N Number of
Microphones in an Array. After [37].

d(n) =
1
β

N

∑
i=1

wixi(n − τi). (6.18)

Furthermore, the frequency-domain representation of DAS beamformer is given
by taking DTFT of eq. (6.18) [296]. In particular,

D(ω) =
1
β

N

∑
i=1

wiXi(ω)e−jωτi = WHX(ω), (6.19)

where W =
1
β

N

∑
i=1

wie−jωτi , (6.20)

where wi is the elementwise weighting for the spatial window, β is the summa-
tion of the weights, and W is the steering vector (optimized weight vector) of
desired linear phase shift and weights. The superscript H denote the Hermitian
transpose. In fact, it should be noted that it is due to this linear phase filtering,
acoustic characteristics of replay are preserved in DAS beamformed signal. The
D(ω) represents the frequency response of the beamformed signal. In the frame-
work of Wiener-Khinchin theorem [249], the power at the output of the beam-
former is estimated by taking the Fourier transform of autocorrelation function of
the beamformer output [249], i.e.,

p(ω) = E[|D(ω)|2], (6.21)

where E[·] is the expectation operator.
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6.3.4 Minimum Variance Distortionless Response (MVDR)

MVDR beamformer achieves the speech enhancement by suppressing (ideally
nullifying) the reverberation effects introduced by the room acoustics [290, 291].
In this approach, Signal-to-Noise Ratio (SNR) of the multi-channel audio signal
is significantly improved by minimizing the distortion (noise) [297]. For this for-
mulation, it is assumed that the audio signal from the reference source is distor-
tionless, which also results in preservation of all-pass characteristics. However,
MVDR increases the computational complexity of the system. The matrix for out-
put power p(ω) of MVDR beamformer is given by:

p(ω) = E[|D(ω)|2] = WHV(ω)W, (6.22)

where V(ω) and W represents the matrix of cross-power spectral density and ini-
tial weight matrix, respectively. The co-variance matrix for L number of frames is
given by [295]:

V̂(ω) =
1
L

L−1

∑
l=0

Xl(ω)XH
l (ω), (6.23)

where V̂(ω) is estimated co-variance matrix. The weights are optimized by mini-
mizing the noise with the constraint of unity gain for the desired signal, i.e.,

argmin
W

WH(ω)V̂(ω)W(ω),

subject to WH(ω)m = 1,
(6.24)

where m represents the steering vector, which is the most crucial matrix for
direction estimation of the desired signal. It provides the directional information
of microphone array. During this minimization, it affects the impulse response of
the underlying acoustic medium. Let di be the desired direction representation for
the element i. Then, the steering vector for ith element (i.e., mi) is given by [296]:

mi = ejwdi . (6.25)

Constrained minimization in eq. (6.24) is performed by using Lagrange multi-
pliers [298]. Hence, the optimum weight matrix for MVDR beamformer is given
by [296]:

Wo(ω) =
V̂−1

(ω)m

mHV̂−1
(ω)m

. (6.26)
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These optimum weights are utilized to obtain the beamformed signal from the
microphone array signal, i.e.,

D(ω) = WH
o (ω)X(ω). (6.27)

Furthermore, the output power (po(ω)) of MVDR beamformer is given by [296]:

po(ω) = WH
o (ω)V̂(ω)Wo(ω). (6.28)

6.3.5 Reverberation Analysis Using TEO

In this study, we have analyzed the effect of reverberation in genuine vs. replayed
speech signals via its time-domain representation and TEO profile. The study re-
ported in [41] shows that the TEO profile effectively captures the characteristics
of reverberation in the replay signal (which includes different reflections of the
genuine signal [299, 300]), introduced during its recording from the far-field. In
particular, there are multi-order reflections possible depending on the recording
environment [41]. In Figure 6.8, the time-domain representation of genuine (Fig-
ure 6.8(c)) and replay (Figure 6.8(d)) signals are shown. The Figure 6.8(a) and
Figure 6.8(b) represents the zoomed version of the dotted squared region from
Figure 6.8(c) and Figure 6.8(d), respectively. Furthermore, Figure 6.8(e) and Figure
6.8(f) corresponds to the zoomed version of the solid squared region from Figure
6.8(c) and Figure 6.8(d), respectively. Hence, from this zoomed figures, it can be
observed that the replayed signal has additional impulses and distortions as com-
pared to the genuine speech, which are due to the added reverberation [41, 106].

Furthermore, in Figure 6.9, we show the TEO profiles in order to observe the
Teager energy traces for genuine (Panel I) vs. replay (Panel II) for (a) ReMASC and
its (b) DAS vs. (c) MVDR beamformed versions. The additional energy traces can
be observed in Figure 6.9 for DAS over original ReMASC and its MVDR beam-
formed version via the oval and square boxes for both genuine and replay signals,
respectively. This observation is further validated via experiments performed on
TECC feature set for original ReMASC and its DAS vs. MVDR beamformed ver-
sions. The results in Table 6.6 shows that TECC-GMM system applied on DAS
beamformed signals gives relatively best performance over all the other combina-
tions.
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Figure 6.8: Time-domain Representation of (c) Genuine vs. (d) Replayed Speech
Signal from ReMASC Dataset. Figure 6.8(a) and Figure 6.8(b) Represents the
Zoomed Version of the Dotted Squared Region and Figure 6.8(e) and Figure
6.8(f) Corresponds to the Zoomed Version of the Solid Squared Region from
Figure 6.8(c) and Figure 6.8(d), Respectively. After [22].

6.3.6 Experimental Setup

For this task, we utilized the ReMASC dataset with data distribution as shown in
Table 3.15. The similar configuration was utilized in [11, 301]. The brief details
of the dataset are discussed in Chapter 3. The experiments are performed using
single channel microphone signal in microphone array and the two beamforming
techniques, i.e., DAS and MVDR. The state-of-the-art CQCC, MFCC, LFCC along
with TECC feature sets are utilized in this study. The GMM, CNN, and LCNN
classifiers are employed in this study. The brief details of the feature sets and
classifiers can be studied from the Chapter 3.

6.3.7 Experimental Results

The performance of DAS vs. MVDR beamformer is evaluated using % EER. The
SSD systems are developed for CQCC, LFCC, and TECC feature sets using GMM,
CNN, and LCNN-based classifiers for all the three datasets, i.e., ReMASC and its
DAS vs. MVDR beamformed versions. The % EER on development and eval-
uation sets are shown in Table 6.6 for all the three variants of datasets. It was
observed that only static features performed better than all the other combinations
for this dataset. Hence, all the results reported in Table 6.6 are obtained using
only static features. Furthermore, improved performance is obtained on the DAS
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Figure 6.9: TEO Profile of Genuine (Panel I) and Replayed (Panel II) Speech
Signals from (a) Original ReMASC and its (b) DAS vs. (c) MVDR Beamformed
Versions. After [22].

beamformed dataset than that for the original ReMASC and MVDR beamformed
version, for all the feature sets and classifiers considered in this study. This sug-
gests that the DAS beamforming can be potentially utilized to improve the per-
formance of the replay SSD system for VAs. In addition, the TECC feature set per-
forms better than that of other feature sets for all the classifiers and all the dataset
versions. This proves the capability of TECC to extract the reverberation charac-
teristics in replay speech signal. In particular, relatively the best performance is
observed for TECC-GMM SSD system for DAS beamformed dataset. It should
also be noted that, results of MVDR are worse than unprocessed (i.e., not beam-
formed) ReMASC data. Furthermore, the performance of all the systems are also
shown using DET curves in Figure 6.10. In particular, Figure 6.10(a) and Figure
6.10(b) shows the DET curves for Dev and Eval sets, respectively, for TECC-GMM
system on all the three versions of datasets. It can be observed from Figure 6.10
that the DAS beamformed dataset consistently performing well as compared to
the original ReMASC and its MVDR beamformed version for both Dev and Eval
sets.

Thus, from our deduction and experimental results, it can be observed that this
work is contradictory w.r.t. suitability of state-of-the-art MVDR beamformer for
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Table 6.6: Results (in % EER) on ReMASC and its DAS vs. MVDR Beamformed
Versions using Various Feature Sets and Classifiers. After [22].

Feature Set
Dataset ReMASC MVDR DAS

Classifier Dev. Eval. Dev. Eval. Dev. Eval.

CQCC
GMM 19.94 22.56 36.74 30.73 16.86 21.67
CNN 15.36 25.33 30.84 29.95 12.12 22.38

LCNN 17.85 27.64 34.30 32.80 15.25 24.78

LFCC
GMM 22.39 23.38 35.53 30.47 20.06 21.66
CNN 15.04 25.27 28.67 28.12 12.13 20.13

LCNN 15.69 24.96 35.70 32.65 16.66 22.96

TECC
GMM 20.42 17.75 36.13 26.61 16.52 14.94
CNN 15.80 23.99 31.16 28.82 13.31 21.74

LCNN 15.90 23.86 36.03 31.56 14.71 22.56

Figure 6.10: DET Curves for ReMASC and its Beamformed Versions using TECC
with GMM: (a) Dev, and (b) Eval set. After [22].

Distant Speech Recognition (DSR), indicating a straightforward generalization of
beamforming method from DSR to replay SSD in VAs is not recommended even
though DSR is very much integral part of VAs. In addition, due to linear phase
characteristics of DAS beamformer, the acoustical characteristics of reverberation
in replay spoof are presented and hence, TECC is employed to capture these re-
verberation characteristics.
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6.4 Severity-Level Classification of Dysarthric Speech

6.4.1 Motivation

Dysarthria [302] consists of a motor speech disorder in which the articulatory ele-
ments and muscles required to speak ordinarily are somehow affected, paralyzed
or damaged. Individuals suffering from dysarthria face difficulties in conveying
a spoken message or expressing voice emotions, since the vocal folds, tongue,
and associated muscles cannot be adequately controlled. Furthermore, most of
the VAs are developed based on the assumption that speech signal comes from
the healthy subjects [303, 304]. Hence, they may be suitable to develop speech
technology applications efficiently on impaired or disabled people [305–307].

To allow for dysarthric speech enhancement and patients’ progression in treat-
ment, detecting the severity-level of a pathology from a short-duration speech
segments is an essential task. Standard methods for the assessment of dysarthric
speech are traditionally based on a clinical trial by speech language pathologists,
using pre-defined rating scales or observing the movement of various articulatory
elements over the spoken time interval [308]. For dysarthria detection, specific
speech segments from a certain set of speakers can be obtained from longer du-
ration speech signals based on manual or automatic framing. In the latter case,
deep learning-based approaches have played an important role, as demonstrated
in papers [309], [310], and [311]. For the severity-based classification, most of the
methods focuses on feature-based techniques and acoustic modeling [312–321].
One of the conventional classifier-based approaches can be studied in [315, 322].
However, deep learning-based approaches can be studied in [307,323–329]. In ad-
dition, inspired by two recently-proposed CNN-based approaches used to detect
Parkinson’s disease, as documented in papers [39] and [329], our strategy focus
on a ResNet-based classification algorithm.

6.4.2 Problem Formulation

Our goal is to classify dysarthric speech based on its severity-level using short-
duration speech segment. In this study, dysarthric speech is classified in four
severity-level-based categories as shown in Table 6.7. As suggested in the [23], five
naive listeners were recruited for each speaker, and they were allowed to listen to
words as many times as needed for transcription. For each listener’s transcription,
the percentage of correct responses was calculated. The correct percentage was
then averaged across five listeners to obtain each speaker’s intelligibility. Based

198



on the averaged percent accuracy, each speaker was classified into one of four
categories as shown in Table 6.7.

Table 6.7: Severity-Level Classification Based on Intelligibility. Adapted from [23].

Intelligibility Rating (%) Severity-Level

0-25 High

25-50 Medium

50-75 Low

75-100 Very Low

Since speech is essentially produced during air exhalation, a precisely coordi-
nated respiratory support is of paramount importance for communication. In
dysarthric subjects, however, the combined pneumo-phono-articulatory cogni-
tive commands from the brain are pathologically-affected, drastically degrading
speech quality. Remarkably observable, distorted vowel sounds have been a di-
rect consequence of dysarthria, where articulatory undershoot forces a humble
vowel working space, as mentioned in papers [330] and [331]. Hence, as shown
in papers [332], [333], [334], [335], and [336], formant frequencies centralization,
uncommon formant frequencies for both front and high vowels, formants insta-
bility, and reduced slopes involving the second formant, are notable. This justifies
our efforts in using short speech segments for the detection of dysarthria, since,
presumably, they contain the formant-related information we need and, in addi-
tion, are capable of characterizing severity-levels. Based on our strong evidences,
let us move forward to the formal problem formulation.

Let X = {xi}n
i=1 denotes the features of dysarthric speech, and Y = {yi}n

i=1

denotes the corresponding labels. First, we map this labeled data, D = {xi, yi}n
i=1

as:

f (x) =


y = 0, if severity-level is high,

y = 1, if severity-level is mid,

y = 2, if severity-level is low,

y = 3, if severity-level is very low.

Problem Statement: Given a manually annotated dysarthric speech data
(D), for severity-based classification in four categories, learn severity-
based classifier (as a mapping function), F : X → Y , which can do
efficient classification using short-duration speech.

To solve our proposed problem, we certainly need an adequate classifier. Al-
though universal approximation theory [337] presents results allowing for the
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(a) (b)

(c) (d)

Figure 6.11: STFT Representation of: (a) Normal Speech, (b) Dysarthric Speech
vs. LP Spectrum of (c) Normal Speech, and (d) Dysarthric Speech. After [24].

conclusion that feedforward neural networks containing a single layer could rep-
resent any function, data overfitting and the vanishing gradient issues have forced
machine learning algorithms to advance much more. As observed in practice and
confirmed theoretically, however, expanding the networks in such a way they
get deeper does not mean just adding layers because accuracy and performance
might degrade extraordinarily fast. Thus, since they allow for training up to thou-
sands of layers with remarkable performance, ResNets [338] have been considered
one of the most groundbreaking advancements in deep neural network-related
fields. ResNet was briefly discussed in Chapter 3 and used for anti-spoofing re-
search in this thesis (Chapter 5, Section 6.5.4.2).

6.4.3 Characterizing Dysarthria in Speech Signals

Features derived from time-frequency representation of speech signal have been
used in several speech applications. In particular, the study in [339] evaluated
various acoustic features based on their relative effectiveness to estimate qual-
ity of time-frequency mask, namely, ideal binary mask (IBM) - a central research
issue in speech enhancement and source separation area. The wide range of
acoustic features (primarily motivated from robust ASR), such as MFCC, PLP,
RASTA-PLP, GFCC, PNCC, F0, etc. are considered in this study. In addition,
the study in [339] proposed a new acoustic feature called the Multi-Resolution
Cochleogram (MRCG), which is encoder multi-resolution power distribution in

200



(a) (b)

Figure 6.12: Waterfall Characteristics of: (a) Normal Speech, and (b) Dysarthric
Speech. After [24].

the time-frequency representation of a signal. Finally, study in [339] found MRCG
and pitch (F0) as complementary features using group Lasso (the least absolute
shrinkage selection operator) that improve l1/l2 mixed norm regularization on
logistic regression to investigate the complementary features. The study in [339]
is extended in [340] for monaural speech separation from a supervised learning
perspective by predicting an ideal time-frequency mask from the similar acoustic
features of noisy speech under reverberant conditions at low SNRs and employ-
ing a simple DNNs as a learning machine. The key findings of this study is that
complementary feature sets for speech separation in reverberant conditions are
different from those in anechoic conditions (as reported in [339]).

Motivated from these studies, we employ such representation for the dysarthric
severity-level classification problem. Figures 6.11-(a) and (b) show the plot of
STFT vs. LP spectrum for the normal vs. dysarthria speech case. We also show the
waterfall plot in Figure 6.12 to emphasize the corresponding joint time-frequency
characteristics during the production of dysarthric speech. From the waterfall
plots, we can observe that the formant structure is severely damaged for dysarthric
speech as compared to its normal counterpart, where formant peaks and their
evolving structures are clearly visible. Thus, the analysis presented in this Sec-
tion indicates that F0, its harmonics, formants, and their structures are severely
affected due to dysarthria, more so for high severity and hence, we propose to
exploit this unstructured spectral energy distribution captured via spectrograms
as feature representation for the proposed deep learning architecture.

201



Figure 6.13: Schematic Representation of F0 Detection. Adapted from [38].
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Figure 6.14: Schematic Representation of Proposed Methodology. After [39].

6.4.4 Proposed Approach

In this Section, a detailed description of the methodology and strategies used to
solve the proposed problem is provided. Specifically, as represented in Figure
6.14, the following three major components exist:

1. Onset-offset detection;

2. Time-Frequency (T-F) representation of selected short-duration speech seg-
ments;

3. Mapping technique for utilizing features to do efficient classification.

6.4.4.1 Onset-Offset Detection

The onset and offset regions of the speech signals were characterized, as a function
of their F0, by using the Direct Time Fundamental Frequency Estimation (DTFE)
method, described in a study reported in [38]. DTFE is a novel algorithm for F0

estimation performed directly in the time-domain. In this algorithm, F0 detection
is performed via evaluating the actual F0 candidate from the distance between
neighboring significant peaks (i.e., local extrema) that there is only one peak rep-
resenting the absolute maximum and one the absolute minimum in the quasi-
period of the signal. The structure of the F0 detection is shown in Figure 6.13.
Implementation details for pitch (F0) tracker DTFE are presented here2.

2https://personal.utdallas.edu/~hynek/tools.html {Last Accessed: July 07, 2022 }
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We carefully used that method to extract the onset and offset time stamps from
each input speech signal in our dataset. After this, the borders were detected and,
in addition, 100 ms from each signal was taken to the left and 100 ms to the right
of each border, forming the 200 ms-long signals as “chunks”. Each one of those
chunks was modeled by using the STFT, as described ahead.

6.4.4.2 Spectrogram: T-F Representation

STFT was applied to each generated chunk, for T-F representation. To feed the
classifier, 2 ms-long frames, shifted 0.5 ms over time, were considered in order to
generate a spectrogram image with dimensions of 570 × 450 pixels. Figure 6.15
shows example spectrograms for different severity-levels of dysarthria. The spec-
trograms were plotted only for one second-long, i.e., for short-duration speech
signals. Observably, the energy distribution across the frames, for speakers with
different severity-levels of dysarthria, is significantly unlike. Hence, we hypoth-
esize that those short-duration speech segments are sufficient for the intended
classification. To support our hypothesis, we show the experimental results in
Section 6.4.5.

6.4.4.3 Mapping Technique: CNN vs. ResNet

A recent trend indicates that a high number of stacked layers in neural networks
provides better results for classification task in general [341]. Nevertheless, ac-
curacy degrades rapidly after the increment in the number of layers. The rea-
son behind this is the ample training error, instead of overfitting [18]. Moreover,
current studies show that deep neural networks are more challenging to train
due to overfitting, vanishing gradient, and besides additional issues, as explained
in [342–344].

Making CNN models deeper for our task is not an appropriate solution. To
overcome the limitation of CNN-based architectures, residual learning-based clas-
sifiers, ResNet, were used in [18, 345]. The former technique is used as a baseline
for comparisons. Although ResNet uses convolution layers as its building blocks,
it is more effective than CNNs for image classification, as suggested in [18]. Thus,
we decided to use the strength of ResNet for our classification problem, analyz-
ing its results. In residual learning, f (y) is the underlying function, as shown in
Section 6.4.2, to be learned by a regular neural network-based classifier, where y
is the set of input features, i.e., spectrogram image of the chunk in our case. Due
to the network non-linearity, it is capable of learning f (y) − y along with f (y),
forcing the classifier to optimize the residual function F(y) = f (y) − y. Hence,
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Figure 6.15: STFT of the One Second of Speech Segment of Speakers with Differ-
ent Severity-Levels, When They Pronounce the Word “Command": (a) Very Low,
(b) Low, (c) Medium, and (d) High. After [24].

the original optimization function becomes F(y) + y. Although both the methods
are learning the same underlying functions, the ease of learning is different. The
main reason behind this is the associated identity mapping, as shown in [346]. Due
to the skip connections in ResNet, it would be easier to push the residual to zero
than to fit an identity mapping by a stack of nonlinear layers. This helps ResNet
in learning different patterns more efficiently, as shown in [18, 345].

6.4.5 Experimental Setup and Results

In this Section, the description about the database used for experiments is pro-
vided, and the details of hyperparameters used both in the baseline system and
in the proposed ResNet model. The results for the severity-based classification
task for different classifier architectures (GMM, CNN, LCNN, and ResNet) are
discussed along with the analysis of the effectiveness of ResNet over the other
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Table 6.8: Proposed Architectural Details of ResNet. Here, Conv1 and Conv2
show Continuous Layers of Residual Block, and Conv3 shows Parallel Down-
sampling Layer in Residual Block. After [24].

Block # of Neurons General Settings Conv1 Settings Conv2 Settings Conv3 Settings
Convolution 3200 64, 7x7, 1 - - -

Batch Normalization - 64,-,- - - -
Max Pool - 64,7x7,1 - - -

Residual Block 1280 - 64,3x3,1 64,3x3,1 -
Residual Block 1280 - 64,3x3,1 64,3x3,1 -
Residual Block 1280 - 64,3x3,1 64,3x3,1 -

Residual Down Sampling 3840 - 128,3x3,2 128,3x3,1 128,3x3,2
Residual Block 2560 - 128,3x3,1 128,3x3,1 -
Residual Block 2560 - 128,3x3,1 128,3x3,1 -

Residual Down Sampling 7680 - 256,3x3,2 256,3x3,1 256,3x3,2
Residual Block 5120 - 256,3x3,1 256,3x3,1 -
Residual Block 5120 - 256,3x3,1 256,3x3,1 -

Residual Down Sampling 15360 - 512,3x3,2 512,3x3,1 512,3x3,2
Residual Block 10240 - 512,3x3,1 512,3x3,1 -
Residual Block 10240 - 512,3x3,1 512,3x3,1 -
Average Pool - 512,8x8,- - - -

Fully-Connected Layer 4 - - -

methods for our classification task.

6.4.5.1 Dataset

Universal Access (UA) corpus [23] was used in our experiments. This dataset
includes details on speech intelligibility for each dysarthric speaker, in terms of
severity-level, based on transcription tasks at the word-level performed by the
human listeners. In our experiments, we used 8 speakers, i.e., 4 males, namely,
M01, M05, M07, M09, and 4 females, namely, F02, F03, F04, F05. Details about
them can be found in [23]. Each speaker produced a total of 765 isolated words,
in which 455 words are distinct. For training and testing, we used 90 % and 10 %
data, from 455 distinct words for each speaker, respectively.

6.4.5.2 Comparison Methods

Our ResNet model has two types of residual blocks: (i) regular residual block; and
(ii) downsampling-based residual block [18]. In this work, our ResNet structure
comprises nine regular and three downsampling-based residual blocks. In resid-
ual blocks, we used two 2-dimensional CNN layers with a kernel size of 3× 3 = 9.
However, for downsampling-based residual blocks, we increase the stride to 2 for
the first CNN block and, before adding input x to the output of second CNN
block, we use downsampling with a similar setting as the first block. Therefore,
we use one downsampling-based shortcut connection with two residual blocks to
process the downsampled output. Table 6.8 shows the architectural details of the
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proposed model. We first used a single CNN layer with 7× 7 kernel size to down-
sample the input. Later, we used a total of 14 different residual blocks and, at the
end, we adopted a single fully-connected layer with softmax activation function
to predict the severity of the input dysarthric speech spectrogram. Architectural
details related to the proposed ResNet are shown in Table 6.8.

For the baseline system, we have used GMM as a classifier [174, 212, 347, 348]
(Chapter 3). The CNN-based architecture consists of a 5 × 5 kernel for each one
of its four CNN layers: CNN-layer-A, CNN-layer-B, CNN-layer-C, and CNN-
layer-D, with 8, 16, 32, and 64 output channels, respectively [349]. Moreover,
we adopted max-pooling with a kernel size of 4 × 4 after the first three CNN
blocks. Later, we used three fully-connected layers with 128, 64, and 4 output
neurons. ReLU was used as an activation function for the hidden layers in both
the models. Accordingly, the output layers in both the models are followed by a
softmax activation function. The models were trained for 30 epochs with learning
rate of 0.0001, by using Adam optimizer [206]. The LCNN architecture was also
employed as studied in Chapter 3. The details of LCNN architecture for this task
is shown in Table 6.9.

As described in Section 6.4.4.1, 200 ms-long chunks were extracted from each
speech signal. For our experiments, we selected a different number of onset-offset
detection routines and then used them for training. In case the distance between
consecutive onset-offset tags is less than 200 ms, we used overlapped chunks. In
the case of non-overlapping chunks, we got [(number of chunks) × (200 ms)] sec-
onds of speech segment, which becomes, however, less than this in the case of
overlapping scenarios. Hence, we took a maximum of [(number of chunks) ×
(200 ms)] seconds of speech from each utterance for training. The proposed sys-
tem was assessed for different number of chunks, i.e., different speech duration,
in order to prove our hypothesis that maximum one second of speech (i.e., five
chunks) is a sufficient time for an efficient classification.

6.4.5.3 Performance Evaluation

Accuracy and F1-score were used for performance evaluation, where the former
is the number of correctly predicted wave files out of all the input wave files,
and the latter is calculated by taking the harmonic mean of precision and recall
for each class. Precision was considered as being the fraction of correct classified
instances among all the classifications for each class, and, in addition, recall was
defined as being the fraction of correct classified instances among the ones that ac-
tually belong to that class. In particular, we calculated the F1-score for each class
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Table 6.9: Details of the Proposed LCNN Architecture for Dysarthria Severity
Classes. After [24].

Layer Filter/Stride Output #Parameters
Conv1 5x5/1x1 32 x 450 x 570 2432
MFM1 - 16 x 450 x 570 -
MaxPool1 2x2/1x2 16 x 225 x 285 -
Conv2a 1x1/1x1 32 x 225 x 285 544
MFM2a - 16 x 225 x 285 -
Conv2b 3x3/1x1 64 x 225 x 285 9280
MFM2b - 32 x 225 x 285 -
MaxPool2 2x2/1x2 32 x 112 x 142 -
Conv3a 1x1/1x1 64 x 112 x 142 2112
MFM3a - 32 x 112 x 142 -
Conv3b 3x3/1x1 128 x 112 x 142 36992
MFM3b - 64 x 112 x 142 -
MaxPool3 2x2/2x2 64 x 28 x 35 -
Conv4a 1x1/1x1 128 x 28 x 35 8320
MFM4a - 64 x 28 x 35 -
Conv4b 3x3/1x1 64 x 28 x 35 36928
MFM4b - 32 x 28 x 35 -
MaxPool4 2x2/2x2 32 x 14 x 17 -
Conv5a 1x1/1x1 64 x 14 x 17 2112
MFM5a - 32 x 14 x 17 -
Conv5b 3x3/1x1 32 x 14 x 17 9248
MFM5b - 16 x 14 x 17 -
MaxPool5 2x2/2x2 16 x 7 x 9 -
FC6 - 1 x 128 24704
MFM6 - 1 x 64 -
FC7 - 1 x 4 260

and presented the “macro average" results. We analyzed the performance of both
systems in terms of different speech duration, i.e., maximum [(number of chunks)
× (200 ms)] seconds. From Figure 6.16-(a) and Figure 6.16-(b), we can clearly see
that the proposed ResNet-based approach outperforms the baseline CNN. In par-
ticular, we got, on average, 21.35 % and 22.48 % of improvement compared with
the baseline CNN in terms of classification accuracy and F1-score, respectively.
For further comparisons, GMM and LCNN classifiers were also considered.

It can be observed that GMM performed relatively poor compared with the
other systems, indicating its unsuitability for classifying severity-level of dysarthria
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Figure 6.16: Baseline CNN vs. ResNet, for Different Speech Duration Based on
(a) Classification Accuracy Score, and (b) F1-Score. Additionally, LNCC and
GMM were also Considered for Comparisons, however, Since GMM Exhibit a
Poor Accuracy, Its F1-Scores were Not Even Computed. After [24].

from short-duration speech. Moreover, GMM is based on the first two moments
only, i.e., mean and variance, which may not be adequate to represent nonlin-
earities in speech production mechanism, and more so, for dysarthric speech, as
discussed in Section 3. In addition, estimating higher-order moments with the
same statistical confidence, as that of first two moments, requires a large amount
of training data, which is not feasible in this problem due to the serious difficulty
of getting long-duration dysarthric speech data. Contrary to this, deep learning
architectures, in particular the proposed ResNet, is able to capture such nonlin-
earities from short-duration speech segments.

6.4.5.4 Analysis of Results

In this sub-Section, we analyze how effective the proposed methodology is in
two different aspects: (i) learning performance, and (ii) amount of training data.
Since CNN and ResNet performed relatively better than the LCNN and GMM,
as discussed in the previous sub-Section, we assess hereafter just the behavior of
CNN and ResNet-based systems w.r.t. learning performance and the amount of
training data.

To analyze the learning performance, we observed the output of the last layer
just before the softmax activation from both of our architectures, i.e., CNN and
ResNet. To analyze efficiently, we converted the image into binary format, where
the white colour part shows the pattern learned by the architecture, as illustrated
in Figure 6.17. For that analysis, we used Guided Backpropagation Saliency method
in order to extract the region learned by any trained CNN-based classifier [350].
In guided backpropagation, forward pass was performed till the target layer on
input features is performed. Then, the disadvantageous neurons were kept to
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Figure 6.17: Learning of Proposed ResNet vs. Baseline CNN. For Both Pan-
els, We Have: [First Column]: Input Spectrogram of Chunk (Horizontal-Axis:
Time, Vertical-Axis: Frequency); [Second Column]: Visualization of Learning
of ResNet; [Third Column]: Visualization of Learning of CNN; [Forth Column]:
Visualization of Learning of LCNN. Here, Visualization Images Are in the Form
of Pixels. After [24].

zero and back propagation was applied till the input features. More formally, the
entire process can be explained as: [351]:

activation: f l+1
i = relu( f l

i ) = max( f l
i , 0)

backpropagation: Rl
i = ( f l

i > 0) · Rl+1
i , where Rl+1

i = ∂ f out

∂ f l+1
i

backward ‘deconvnet’: Rl
i = (Rl+1

i > 0) · Rl+1
i

guided backpropagation: Rl
i = ( f l

i > 0) · (Rl+1
i > 0) · Rl+1

i .

From Figure 6.17, it can be observed that the advantage of ResNet over CNN
for the dysarthric severity-level-based classification, and we can see that ResNet
can learn various characteristics of dysarthric speech, which are different from
natural speech signal. To understand the advantage of ResNet in our problem,
we explored the energy parameter. The energy in dysarthric speech is more dis-
tributed, i.e., energy fluctuations are more frequent, compared with the natural
speech signal [352,353]. Moreover, it is observed that as the severity-level changes,
the energy of dysarthric speech shows significant changes [354]. Hence, capturing
these energy fluctuations from the spectrogram is an essential task. In the other
words, detecting patterns from low and high frequency regions from the spectro-
gram can achieve this task and help the model to distinguish between different
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Figure 6.18: Evaluation of Baseline CNN vs. ResNet for Different Number of
Chunks (i.e., Amount of Training Data) Based on (a) Classification Accuracy
Score, and (b) F1-Score. As Previously Presented, GMM and LCNN were Con-
sidered for Comparisons, However, Since GMM Exhibit a Poor Accuracy, Its
F1-scores Were Not Even Computed. After [24].

Table 6.10: Evaluation of Baseline CNN vs. ResNet When Entire Speech Utter-
ance is Available for Training. After [24].

Systems Accuracy (%) F1-Score
ResNet 98.90 0.98
CNN 91.76 0.91

severity-levels. Consequently, our short-duration speech segments include both
the patterns (i.e., high and low energy regions), as shown in Figure 6.15. From
Panels I and ll, it can be observed that ResNet is capturing both the regions effi-
ciently and hence, performing better compared to the CNN. In Figure 6.17, CNN
captures only high energy regions, however, fails to capture low energy regions
and hence, performing poor compared to the ResNet.

Here, we analyze the performance of both the systems w.r.t. the amount of
training data. To do so, we increased the number of chunks one-by-one, i.e., in-
creasing a speech duration by a maximum of 200 ms, as shown in Figure 6.18.
Observably, for five chunks, ResNet performance is high in terms of classification
accuracy and F1-score. This analysis empirically supports our hypothesis that
one second-long speech segments are sufficient for an efficient classification task.
With a maximum of one second-long speech segment, we got 86.63 % classifica-
tion accuracy and 0.86 F1-score for ResNet. Contrary to this, we obtained 64.35 %
classification accuracy and 0.64 F1-score for CNN, respectively.

In complement, as the goal of this work is to detect dysarthria severity-level by
using short-segments of speech, we also analyzed both ResNet and CNN struc-
tures, when the entire speech utterance is available for training and testing. As
shown in Table 6.10, ResNet exhibits superior performance for this task. Hence,
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ResNet outperforms baseline CNN for both the classification scenarios, i.e., us-
ing short-duration speech segments and using the entire speech utterances. This
definitively proves ResNet is superior for the intended classification task.

6.4.5.5 Complementary Comments

Additionally, it can be observed that LCNN could capture both high and low fre-
quency regions, however, the capture ratio is significantly lower compared to the
ResNet and CNN, as also shown in Figure 6.17. In contrast, ResNet is efficiently
capturing both the regions. Therefore, our ResNet structure not only outperforms
the baseline CNN, but also LCNN and GMM. Observably, GMM was the worst
classifier in terms of accuracy for this problem.

In addition to the mentioned comparison methods, we have also investigated
the other variants of the ResNet architecture, in particular, ResNeSt, which uses
a Split Attention layer between the two convolutional layers in the ResNet block.
However, results obtained were poorer than the original ResNeSt architecture.
Therefore, it has not been included in this chapter.

6.5 Classification of Normal vs. Pathological Infant

Cry

Infant cry analysis and classification is highly interdisciplinary in nature involv-
ing physiological, neurological, pediatrics, engineering, developmental linguist,
and psychology [355]. Around three million infants die within the first month af-
ter the birth, which may be due to vaccine preventable diseases, other pathologies,
and malnutrition. In this context, recently fingerprint-based biometrics are devel-
oped for infants [356], in addition to cry-based recognition of infants [357]. With
respect to various diseases, birth asphyxia and other breathing-related conditions,
such as Sudden Infant Death Syndrome (SIDS) are the leading cause of death for
newborns [358]. Clinical diagnosis of asphyxia requires analysis of an arterial
blood sample of newborns to measure blood gasses, pH, oxygen saturation, and
electrolytes, which requires a blood gas - a routine procedure in developed coun-
tries, however, in many developing countries it is not, as this procedure is costly
and logistics heavy. Hence, asphyxia is generally detected only from emergency
and visual symptoms, such as pale and bluish limbs, however, by then severe neu-
rological damage would have already been occurred to the newborns [358, 359].
Similarly, acoustic characteristics of deaf infants depends on hearing loss, type
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and period of rehabilitation, and the age of pathology identification [360]. Thus,
there is a need to develop a cost effective and non-invasive cry diagnostic tool to
assist pediatrics to detect early warning signs of such pathologies. To that effect,
this study proposes signal processing-based approaches for infant cry classifica-
tion task, where asphyxia and deaf cry samples are considered as pathological
samples.

The earlier investigations on infant cry analysis can be studied from [355, 361,
362]. The state-of-the-art MFCC feature set along with GMM as a classifier was
employed in [363, 364]. In this study, we propose two efficient feature represen-
tations for infant cry analysis, namely, CQCC [26] and subband Teager Energy
representations [27]. These approaches are explained in subsequent sub-sections.

6.5.1 Form-Invariance Property of CQT

The details of the CQT can be studied from earlier Chapter 5, section 5.2.3.1. For
the sake of simplicity, we consider continous-time version of FT, STFT, and CQT.
If x(t) and X(ω) are Fourier transform-pair, where t and ω represents the time
and frequency index, respectively, then time-scaling property of CTFT implies
[42, 365]:

F{x(αt)} =
1
|α|X

(ω

α

)
, (6.29)

and thus, a linear time-scaling corresponds to a frequency scaling by an inverse
factor of 1

α and vice-versa, indicating the form of spectrogram is unaffected and
hence, the name form invariance. However, this property does not hold for the
traditional STFT, where analysis window function is dependent only on time pa-
rameter. In particular, Schroeder and Atal defined the STFT through a practically
realizable bandpass filters [250]. In particular,

F(t, ω) =
∫ t

−∞
f (τ)w(t − τ)e−jωτdτ, (6.30)

where w(t, τ) represents the analysis window. For form-invariance of STFT, we
must have

F(t, ω) = γF(αt, βω), (6.31)

where α and β are scaling factor for time and frequency, respectively. However,
it is shown in the literature that realization of eq. (6.31) yields the necessary and
sufficient condition on weighting (i.e., window) function, which belongs to the
class of single-term power functions, i.e., w(t) = a · tb, t > 0, and as per stability
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condition for LTI filter, this filter is unstable and hence, practically not realizable
[366]. However, it is interesting to note that if the window function is made to be
frequency-dependent, i.e., w(t) ≡ ω(t, ω) (as in the case of CQT). In particular,
eq. (6.30) becomes

F(t, ω) =
∫ t

−∞
f (τ)w(t − τ, ω)e−jωτdτ, (6.32)

the form-invariance property, i.e, eq. (6.32) is satisfied by eq. (6.33) for the window
function, i.e.,

w(t, ω) = v(t, ω)tb, t > 0, k > 0, ω > 0, (6.33)

where v(t, ω) is an arbitrary real function of (t, ω), and b is real constant and func-
tion w(t, ω) also satisfy Bounded Input Bounded Output (BIBO) stability condi-
tion for LTI filter, i.e.,

∫ ∞

−∞
|w(t, ω)|dt < ∞. (6.34)

Furthermore, eq. (6.33) also holds for window function considered in most prac-
tical model and short-time analysis performed by the peripheral auditory system.
For example, the original model developed by Flanagan [367] represents the win-
dow function for the mechanical spectral analysis due to the movements of BM
in the cochlea of human ear [365]. In particular, w(t, ω) = (tω)2e

−tω
2 , which is

similar to eq. (6.33).

6.5.2 Subband Teager Energy Representations

For detection of the pathology using infant cry, TEO-based features are also ex-
plored. The details of the TEO can be studied from Chapter 4, Section 4.3. As
discussed earlier, TEO is originally derived to estimate the energy for a mono-
tone signal. However, speech signal consists of the frequency range varying from
low frequency band to Nyquist frequencies. Hence, in order to obtain the mono-
tone approximation of the signal, speech signal is allowed to pass through the
filterbank, which consists of several subband filters with appropriate center fre-
quency and bandwidth. The subband filtered signals are narrowband signals,
which are supposed to approximate the monotone signals and hence, TEO can
be applied on these subband filtered signals. In this work, Gabor filterbank with
linearly-spaced subband filters, is utilized for subband filtering. TEO is applied
on each subband filtered signal to accurately estimate the signal‘s energy. Further-
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Figure 6.19: Functional Block Diagram of the Proposed Subband TEO Represen-
tation and TECC Feature Set. (SF: Subband Filtered Signal, TE: Teager Energies,
AE: Averaged Energies over Frames). After [40, 41].

Table 6.11: Statistics of the Baby Chillanto dataset. After [25].

Class Category # Samples

Healthy
Normal 507
Hunger 350

Pain 192

Pathology
Asphyxia 340

Deaf 879

more, these narrowband energies are segmented into the frames of 20 ms duration
with overlapping of 10 ms. Then, temporal average for each frame is estimated
to produce N-dimensional (D) subband Teager energy representations (subband-TE).
Discrete Cosine Transform (DCT) is performed on subband Teager energy representa-
tions to obtain the TECC. The functional block diagram representation of the pro-
posed subband-TE and TECC feature set is shown in Figure 6.19. In this study,
we analyzed the relative performance of the subband-TE vs. TECC feature set.

6.5.3 Experimental Setup

Standard and statistically meaningful, Baby Chillanto database is used in this
work. It was developed by the recordings conducted by medical doctors, which
is a property of NIAOE-CONACYT, Mexico [25]. Each cry signal was segmented
into one second duration (which represent one sample) and are grouped into five
categories. Two groups were formed for binary classification of healthy vs. pathol-
ogy. Healthy cry signals include three categories, namely, normal, hungry, and
pain resulting in 1049 cry samples. Pathology cry signals include two categories,
namely, asphyxia and deaf resulting in 1219 cry samples. Table 6.11 shows the
statistics of Baby Chillanto database. Experiments are performed using 10-fold
cross-validation.

Proposed CQCC feature set is employed with 90-dimensions (90-D), which
includes static, ∆, and ∆∆ features. For fair comparison, we also extracted the
90-D feature sets from STFT, named as cepstrals. Furthermore, we used the state-
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of-the-art MFCC feature set, extracted from the magnitude spectrum along with
Mel filterbank that uses Mel-scaled bandpass filters [368]. In LFCC, Mel-scaled
bandpass filters are replaced by linearly-spaced bandpass filters. For, LFCC and
MFCC, we preserved initial 13-dimensions (13-D), and then ∆ and ∆∆ coefficients
are appended to it, which makes 39-D feature sets. The proposed subband-TE
and TECC feature sets are also extracted using 40 number of subband filters in
the filterbank. Furthermore, subband-TE being a spectral representation, its per-
formance is compared against the Mel Filterbank coefficients (MelFB), Linear Fil-
terbank Coefficients (LinFB), and STFT. MelFB and LinFB are extracted using 40
number of subband filters.

For infant cry classification task, we use two state-of-art classifiers, GMM and
SVM, which are commonly used for infant cry classification task [355, 363]. The
SVM was utilized in [8] and hence, we employed it as a classifier for another
baseline architecture. The details of GMM and SVM can be studied in [174]. Fur-
thermore, performance of various systems is evaluated using two performance
metrics, namely, % classification accuracy and % EER [179].

6.5.4 Experimental Results using CQCC

6.5.4.1 Spectrographic Analysis

Panel-I and Panel-II shows the waterfall plots and corresponding top view of
STFT and CQT for healthy vs. pathology cry signal, respectively. Figure 6.20(a)
and Figure 6.20(b) shows the waterfall plot of STFT and its top view, where it
can be observed that F0 of the normal signal occurs above 300 Hz. Whereas, for
pathological cry signal, the anomaly in the cry signal, which appears like F0, is
estimated in the lower frequency regions. From Figure 6.20(c) and Figure 6.20(d),
it can be observed that CQT emphasizes this anomaly in a much better way due
to its high frequency resolution for lower frequencies.

6.5.4.2 Results using Evaluation Metrics

Table 6.12: Results in % Classification Accuracy (Acc) for Various fmin (Hz) of
using GMM. After [26].

fmin Acc. fmin Acc. fmin Acc. fmin Acc.
5 98.7 10 99.4 20 98.2 50 99.1

100 99.8 150 98.8 200 98.6 250 98.9
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Figure 6.20: Panel-I and Panel-II Depicts the Spectrographic Analysis for
Healthy (Normal) and Pathology (Asphyxia) Infant Cry Signal: (a) the Water-
fall Plot for STFT, (b) the Top View of the STFT Waterfall Plot, (c) Waterfall Plot
for CQT, and (d) the Top View of the CQT Waterfall Plot. After [24].

All the experiments in this work are performed using 10-fold cross-validation.
Initially, we performed the experiments by varying the fmin in eq. (5.22) with hann
window in CQT and keeping the 512 number of Gaussian mixtures. It can be ob-
served from Table 6.12 that best possible results are obtained with fmin = 100 Hz.
This might be due to the fact that infant cry generally consists of F0 above 250 Hz
and hence, fmin = 100 Hz would be the optimum choice to capture the anomaly in
the infant cry signal. Furthermore, experiments are performed w.r.t. various anal-
ysis window by keeping the 512 number of Gaussian mixtures in GMM as shown
in Table 6.13. It can be observed that relatively better results are obtained using
hann window. Furthermore, we also analyzed the performance w.r.t. number of
Gaussian mixtures in GMM, and it is observed from Table 6.14 that 512 Gaussian
mixtures are more suitable to estimate distribution of this data.
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Table 6.13: Results (in % Classification Accuracy) for Various Window Functions
using GMM. After [26].

Window Acc. Window Acc.
Hann 99.82 Hamming 99.60

Gaussian 98.81 Rectangular 97.75

The experimental results obtained (in % classification accuracy and % EER)
using combination of the various feature sets along with the GMM and SVM clas-
sifiers are reported in Table 6.15. It can be observed that relatively better per-
formance is obtained for the proposed CQCC feature set using both GMM and
SVM classifiers. Furthermore, it can be observed that CQCC and MFCC performs
better than the cepstrals and LFCC, respectively. Here, MFCC and CQCC feature
sets are designed w.r.t. perception of sounds in human auditory systems, which
uses non-linear (in particular, logarithmic) scale along frequency-axis. Hence, we
can conclude that the human auditory system-based features performing better
as compared to the linear-scale features for the pathology cry detection. The sim-

Table 6.14: Results (in % Classification Accuracy) w.r.t. Number of Mixtures.
After [26].

Mixtures 64 128 256 512 1024
Accuracy 97.53 99.43 98.94 99.82 98.67

ilar trends in results, as that of in Table 6.15, are observed in DET curves (having
discontinuities due to less number of trials because of insufficient data) shown
in Figure 6.21. Furthermore, the performance of the proposed feature set is also
validated by performing the standard statistical testing. To that effect, we have
performed the 10-fold cross-validation experiment for 50 times for each feature
set, and it was observed that the mean and median values of % classification ac-
curacy for CQCC feature set are better than MFCC and LFCC feature sets, indicat-
ing statistical significance of proposed CQCC feature set. On the whole, proposed
CQCC feature set performs better than the existing features for various evaluation
factors, may be due to presentation of form-invariance property and CQT so that
CQCC as feature descriptors is able to represent discriminative features of normal
vs. pathological infant cry.
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Table 6.15: Results in (% Classification Accuracy and % EER) for Various Feature
Sets using GMM as a Classifier. After [26].

MFCC LFCC Cepstrals CQCC

GMM
Acc. 98.55 98.28 98.68 99.82
EER 1.23 0.50 0.47 0.44

SVM
Acc. 88.11 80.18 80.62 91.19
EER 12.72 18.78 17.73 6.38

Figure 6.21: DET Curves Obtained for Various Features using GMM and SVM
Classifiers. After [26].

6.5.5 Experimental Results using Subband-TE Features

6.5.5.1 Spectrographic Analysis

In Figure 6.22, Panel-I and Panel-II represents the spectrographic analysis for ran-
domly sampled normal and asphyxia cry signals, respectively. Figure 6.22(a), Fig-
ure 6.22(b), and Figure 6.22(c) represents the STFT, MelFB, and subband-TE rep-
resentations, respectively. It can be observed from Figure 6.22(a) that there is a
difference in the pattern formed by F0 and its harmonics for normal vs. asphyxia
cry signals. These differences in the pattern are also visible for MelFB represen-
tation as shown in Figure 6.22(b). However, these differences are more vivid for
subband-TE representations as shown in Figure 6.22(c). It might be because of the
fact that TEO can accurately estimate the energy of the signal considering non-
linear aspects of the speech production mechanism and also properties of airflow
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Figure 6.22: Panel-I and Panel-II Represents the Spectrographic Analysis for
Normal vs. Asphyxia Cry Samples, Respectively. Figure 6.22(a), Figure 6.22(b),
and Figure 6.22(c) Represents the STFT, MelFB, and Subband-TE Representa-
tions, Respectively. After [27].

pattern in the vocal tract system [42,366]. Furthermore, the results obtained using
10-fold cross-validation also validates that the proposed TECC and subband-TE
representations performs better over the other feature sets in this study.

Table 6.16: Results in (% Classification Accuracy and % EER) using Various
Cepstral Feature Sets using GMM and SVM as Classifiers. After [27].

MFCC LFCC STCC TECC

GMM
Acc. 98.55 98.28 98.99 99.12
EER 1.23 0.50 0.26 0.61

SVM
Acc. 88.11 80.18 87.84 86.56
EER 12.72 18.78 13.84 12.57

Table 6.17: Results in (% Classification Accuracy and % EER) for Various Spectral
Feature Sets using GMM and SVM as Classifiers. After [27].

MelFB LinFB STFT Subband-TE

GMM
Acc. 98.99 98.77 98.59 99.47
EER 1.5 0.70 1.6 0.3678

SVM
Acc. 88.15 87.80 78.06 90.35
EER 10.49 10.40 19.41 8.23
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Figure 6.23: DET Plots for Various Feature Sets using GMM and SVM as Classi-
fiers. After [27].

6.5.5.2 Results using Evaluation Metrics

Cepstral representations are being common in speech signal processing appli-
cations, we performed the experiments using four cepstral feature sets, namely,
MFCC, LFCC, STCC, and TECC. As the size of the dataset is relatively small, ex-
periments are performed using 10-fold cross-validation. The dataset consists of
the healthy and pathology class cry samples recorded with sampling rate of 22
kHz and 11 kHz, respectively. The experiments are performed using features ex-
tracted from the cry samples resampled to 16 kHz and results are reported in Table
6.16. It can be observed that the proposed TECC feature set outperforms the other
feature sets for both SVM and GMM classifiers. We utilized 512 Gaussian mix-
tures in the GMMs. Furthermore, experiments are extended with spectral feature
sets, namely, subband-TE, MelFB, LinFB, and STFT. We utilized the spectral fea-
ture representations as it has low-dimensional representations than the cepstral
features. It can be observed from Table 6.17 that the proposed subband-TE fea-
ture set outperforms the other feature sets for both SVM and GMM classifiers.
Furthermore, all the spectral representations performs equally well as compared
to their corresponding cepstral representations. However, subband-TE performs
slightly better than its cepstral counterpart, i.e., TECC. Hence, it would be better
to choose the spectral representations for this application.

Furthermore, DET curves are plotted for various spectral features as shown
in Figure 6.23. It can be observed that the proposed subband-TE representation
performs better than all the other spectral representations for both the classifiers.
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The experiments are extended for varying number of Gaussian mixtures in GMM
and results are obtained as shown in Table 6.18. It can be observed that the per-
formance is improving as we increase the number of Gaussian mixtures in GMM
from 64 to 512 and then it saturates, possibly due to the fact that a large number
of 1024 mixtures is not required to model relatively lesser duration of infant cry
samples. Hence, we utilized 512 Gaussian mixtures in GMM for the remaining ex-
periments. Furthermore, performance is also validated w.r.t. number of subband
filters in the Gabor filterbank to extract the subband-TE representations, and the
results are reported in Table 6.19. It can be observed that the performance is al-
most constant w.r.t. number of subband filters in the filterbank and hence, we
chose 40 subband filters in the filterbank as an optimal choice.

Table 6.18: Results (in % Classification Accuracy) w.r.t. Number of Mixtures.
After [27].

# Mixtures 64 128 256 512 1024
Accuracy 98.72 98.94 99.16 99.47 99.47

Table 6.19: Results in % Classification Accuracy (Acc) for Various Number of
Filters using GMM. After [27].

# Filters Acc. # Filters Acc. # Filters Acc. # Filters Acc.
40 99.47 60 99.21 80 99.47 100 99.38
120 99.47 140 99.38 160 99.38 180 99.47

Based on the experimental results, we investigated the suitability of the spec-
tral representations over cepstrals for infant cry analysis and classification. Be-
cause of the high pitch-source harmonics, spectral representations are more suit-
able for the normal vs. pathological infant cry classification. This theoretical as-
sumption is validated using the experimental results. Furthermore, we exploited
the capability of the TEO for accurately estimating the energies (especially ap-
proximated for the lower frequency regions). TEO being capable of better approx-
imating the energies in low frequency regions, it is the suitable choice to extract
information for pitch-source harmonics of infant cry, which is present at low as
well as higher frequency regions of the spectrogram.

6.6 Chapter Summary

In this chapter, speech applications other than the feature development for anti-
spoofing, are discussed. It includes the investigation on significance of CMVN
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for replay SSD task, significance of the DAS vs. MVDR beamformer techniques
for replay SSD task on VAs, suitability of ResNets for severity-level classification
of the dysarthric speech, and feature sets (CQCC and subband-TE) for infant cry
classification.

In the study of CMVN technique, we presented analysis on ASVSpoof-2017
and -2019 challenge datasets. The contradictory behavior is observed for the ap-
plication of CMVN on these two datasets. For ASVSpoof 2019 dataset, it is ob-
served that the pd f s of the individual replay configurations are lying on the one of
the side than that of bonafide pd f for without CMVN case. Furthermore, the pd f s
of the replay configurations are separated apart from the pd f of the bonafide data,
as the replay configuration characteristics are intensified. By applying CMVN,
these replay characteristics are suppressed and bringing the pd f s of bonafide and
spoof data closer to each other, which loses the classification capability to a certain
extent. This might be because of the generation of the replayed speech samples
by simulating the acoustic and replay configurations, rather real replay environ-
ments. However, in ASVSpoof 2017 challenge dataset for without CMVN case,
pd f s of the individual replay environments are lying on both the sides of the
pd f of the bonafide data. Hence, the cumulative effect of all the replay environ-
ments might create difficulty for the classification of bonafide vs. spoof speech.
However, the results are similar for the application of CMVN in environment-
dependent cases for both the datasets. Finally, we observe that the applicability
of the CMVN on cepstral features for the classification task depends upon the
intended dataset, which can be analyzed using the pd f s of the sample data.

In beamforming analysis study, significance of DAS beamformer over MVDR
for replay SSD task on VAs is analyzed. This crucial observation found in this
work is contradictory w.r.t. suitability of state-of-the-art MVDR beamformer for
DSR, indicating straightforward generalization of beamforming method from DSR
to replay SSD in VAs is not recommended even though DSR is very much integral
part of VAs. In addition, due to linear phase characteristics of DAS beamformer,
the acoustical characteristics of reverberation in replay spoof are presented and
hence, TECC is employed to capture these reverberation characteristics. Perfor-
mance comparison with the existing CQCC and LFCC indicates better perfor-
mance offered by TECC. Our future work will be directed to extend this work
on the other beamforming techniques, with the aim of capturing reverberation.

In the third component of this chapter, a novel technique to detect dysarthria
severity-levels was proposed. In particular, we presented time-domain and frequency-
domain analysis of dysarthric speech to justify spectrogram as feature represen-
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tation particularly capable of capturing unstructured spectral energy density dis-
tributions. Our results indicate that GMM perform poorer than the other sys-
tems, suggesting deep learning-based architectures and, in particular, the pro-
posed ResNet. Based on short-duration speech segments and ResNets, our strat-
egy differs from current state-of-the-art methods, in which long-duration speech
segments are feed to a CNN. Our relevant experiments show that the former clas-
sifier outperforms the latter in terms of accuracy and F1-score, not only for short-
speech segments but also for long ones. We observed, however, that only ResNet
succeed in using short speech tags to detect severity-levels of dysarthric speech.

The fourth component of this chapter consists of the analysis of the CQCC
and TEO-based features for infant cry classification task. Experiments are per-
formed with various cepstral features, such as MFCC, LFCC, STFT-based cep-
strals, CQCC, and TECC feature sets. Furthermore, experiments are also per-
formed with spectral-based features, such as MelFB, LinFB, STFT, and subband-
TE. Among these feature sets, CQCC and subband-TE performs relatively better
over the other feature sets. We believe that CQCC feature set preserve the form-
invariance property thereby making feature descriptors invariant w.r.t. linear scal-
ing and hence, preserve discriminative features of normal vs. pathological infant
cries. TEO being capable of better approximating the energies in low frequency
regions, it is also the suitable choice to extract information for pitch-source har-
monics of infant cry, which is present at low as well as high frequency regions of
the spectrogram.
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CHAPTER 7

Summary and Conclusions

This chapter describes the summary of the entire thesis work along with the lim-
itations of the current work, potential future research directions, and a few open
research problems.

7.1 Summary of the Thesis

This thesis work is briefly introduced in Chapter 1. The literature survey is pre-
sented in Chapter 2. In Chapter 3, various components of experimental setup that
are extensively used in different experiments, are discussed.

In this thesis, various CM approaches for ASV and VAs are developed against
three major spoofing attacks, namely, replay, SS, and VC. Furthermore, the pres-
ence of the pop noise in the live speaker is also considered for replay SSD task.
In particular, the development of the handcrafted features for anti-spoofing is the
key contribution of this thesis work. To that effect, various subband filtering-
based and spectral-based feature sets are developed. The proposed subband filtering-
based feature sets exploit the energies derived from TEO-based frameworks. It
includes ETECC, CTECCmax, and CFCCIF-ESA feature sets, which are studied in
Chapter 4. Whereas, spectral-based feature sets includes the development of CQT
for VLD and SRCC for replay SSD task. These spectral representation-based fea-
ture sets are studied in Chapter 5. Furthermore, in Chapter 6, these feature sets are
explored for the other speech technology applications, namely, severity-level clas-
sification of dysarthric speech and infant cry analysis and classification. Chapter
6 also includes other related work on anti-spoofing, namely, analysis of CMVN
and beamforming approaches for replay SSD task.

ETECC feature set is developed using the concept of ETEO, which uses the
concept of signal mass to get a more precise estimate of signal energy as compared
to the traditional TEO. In particular, the TEO-related approximation sin(ω) ≈
ω holds true only for lower frequencies and hence, it is not suitable for higher
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frequency contents of signals. The concept of signal mass in ETEO compensates
the energy in the high frequency regions to provide a more precise estimate of
signal‘s energy. Subband filtering was performed using Gabor filterbank with
linearly-spaced frequency responses. Subband filtering helps to approximate the
subband filtered signal to a monocomponent signal, which helps for the accurate
estimation of the energies. Furthermore, PFE analysis on ASVSpoof 2017 dataset
is also performed for the feature sets in this study. The PFE analysis quantifies
the inter-class dissimilarity and intra-class similarity for the various feature sets
in the study and gives the confidence for implementing the CM systems. The
extensive set of experiments are performed for parameter tuning of the proposed
ETECC feature set. Furthermore, the experiments are extended to compare the
performance of the state-of-the-art feature sets. The relatively better performance
is observed on ASVSpoof 2017 and ReMASC datasets over the other feature sets.

In CTECCmax feature set, the multi-channel (and spatial diversity) informa-
tion in microphone array is exploited for the replay SSD in VAs. To that effect, we
provide the mathematical analysis for choosing the appropriate subband channel
information (in particular, maximum noise distortion including acoustic reverber-
ation due to replay attack) among the multiple subband channels obtained from
the microphone array. The appropriate subband channel information is based on
maximum cross-Teager energy (an opposed to minimum cross-Teager energy as
in the speech recognition literature) estimation among the subband channels, to
derive the proposed CTECCmax feature set. The experiments are performed us-
ing ReMASC dataset. In replay SSD, it is necessary to emphasize the acoustic
effects and hence, we chose maximum cross-Teager energy to extract these acous-
tic effects. The proposed CTECCmax feature set outperforms the results reported
in recently proposed complex deep learning-based architecture and other state-
of-the-art feature sets commonly used in the anti-spoofing literature. One of the
limitations of ReMASC dataset is absence of well known data partition that is uni-
versally accepted (for example, we followed data partition w.r.t study reported
in [12]) and then, there is need to address this in the near future.

The performance of the CFCCIF-ESA feature set is evaluated on ASVSpoof
2015 dataset, which considers the SS- and VC-based spoofing attacks for ASV sys-
tem. The discriminative acoustic cue for SS- and VC-based attacks lies in the pres-
ence of the artifacts in synthesized and voice-converted speech signals, wherein
the speech signal is generated using only magnitude information of the spectrum,
neglecting the phase component during signal reconstruction. Thus, phase infor-
mation in those speech signals is not as natural as in genuine speech signals. This
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fact is analyzed by visualizing the IFs from genuine and synthetic spoof speech
signals. The proposed CFCCIF-ESA feature set combines the implicit informa-
tion from magnitude envelopes and IFs estimated using ESA, from the subband
filtered signals. The cochlear filterbank is utilized in the subband filtering. In
this work, IFs are estimated using ESA, which have relatively low computational
complexity, high time resolution, and instantaneously adapting nature, as com-
pared to the Hilbert transformed-based approach that has poor time resolution,
and requires computationally complex task of phase unwrapping. The capabil-
ity of the ESA is reflected into better performance for SSD task. Furthermore, it
can be observed that, our proposed CFCCIF-ESA feature set shows significantly
better performance for S10-attack, which is known to be most difficult attack to
detect for the other feature sets reported in the anti-spoofing literature [2].

Furthermore, CQT-based algorithm is employed to detect the liveness in the
genuine speaker by using the pop noise as a discriminative acoustic cue. The
experiments are performed on recently released POCO dataset during INTER-
SPEECH 2020. The results of the proposed approach are compared against the
baseline, where feature sets are derived from the traditional STFT. The VLD sys-
tems for the proposed CQT-based algorithm vs. STFT-based baseline are devel-
oped using various classifiers, namely, SVM, GMM, CNN, LCNN, and ResNet.
The relatively best performance is obtained by CQT-based algorithm along with
LCNN architecture among all the VLD systems considered in this study. Fur-
thermore, the SRCC feature set is employed for replay SSD task. We investigated
physics of replay attack and spectral root cepstrum, where logarithmic nonlin-
earity in state-of-the-art MFCC is replaced by power-law nonlinearity for replay
SSD in the context of VAs. For power-law nonlinearity, dynamic behavior of the
output does not depend critically on the input amplitude. A proper choice of γ in
SRCC feature extraction plays a vital role in deconvolving the input signal. The se-
lected γ value also pointed out that this system possess more zeros than the poles.
The experiments are performed on ASVSpoof 2017 and ReMASC datasets using
MSRCC and PSRCC feature sets. For ASVSpoof 2017 dataset, MSRCC and PSRCC
feature sets extract complementary information and hence, their score-level fusion
produce significant improvement in results. However, ReMASC dataset shows
the better performance with MSRCC feature set alone.

Chapter 6 begins with analysis of CMVN technique for replay SSD task. To
that effect, analysis on ASVSpoof-2017 and -2019 challenge datasets is presented.
The contradictory behaviour is observed for the application of CMVN on these
two datasets. It suggests that CMVN acts as double-edged sword, which should
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be carefully utilized by analyzing the intended task and dataset used. In addi-
tion, significance of DAS beamformer over MVDR for replay SSD task on VAs is
analyzed. The crucial observation found in this work is contradictory w.r.t. suit-
ability of state-of-the-art MVDR beamformer for DSR, indicating straightforward
generalization of beamforming method from DSR to replay SSD in VAs is not rec-
ommended even through DSR is very much integral part of VAs. Furthermore,
a novel technique to detect severity-levels of dysarthria was proposed. In par-
ticular, we presented time-domain and frequency-domain analysis of dysarthric
speech to justify spectrogram as feature representation particularly capable of
capturing unstructured spectral energy density distributions. ResNet architecture
is employed as a classifier, which shows the relative performance improvement
over GMM, CNN, and LCNN classifiers. For infant cry classification, CQCC and
TEO-based features are analyzed using GMM and SVM classifiers. Experimental
results suggest that CQCC and subband-TE representations are more suitable for
this task over the MFCC, LFCC, STFT-based cepstrals, MelFB, LinFB, and STFT
feature sets.

7.2 Limitations and Future Research Directions

Limitations and future scope of the work presented in this thesis or in the anti-
spoofing literature are as follows:

• For ASV, MFCC feature set continues to be the state-of-the-art feature set,
whereas it is not the case for CM for SS, VC, and replay. Thus, we cannot
use the same feature set that is used in ASV system to detect spoofed speech;
indicating a genuine need of a separate SSD system in tandem with ASV
system. Thus, it is necessary to create a joint protocol for evaluation of SSD
system in tandem with ASV similar to the performance measure of t-DCF
[369].

• The replay spoof detection in this thesis or most of the anti-spoofing stud-
ies considers the reverberation effect due to replay spoof mechanism as the
main acoustic signature (or cue). However, this is not the case if replay at-
tack is built in outdoor environment. The similar issue was observed during
the experiments performed on environment-independent scenario for vehi-
cle environment on ReMASC dataset. It was observed that the SSD system
trained on indoor environment fails to identify the spoofing attacks built
in vehicle (outdoor) environment. This issue is being practically significant
and needs to be analyzed via development of the suitable CM in the future.
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• The replay spoof detection in VAs will be the major concern as the utility of
VAs is exponentially increasing. VAs utilizes the microphone array and rela-
tively lesser work is reported for SSD task in VAs. In this thesis, we exploited
the microphone array for replay SSD task by developing the multi-channel-
based CTECCmax feature set. The analysis on conventional beamforming
techniques for replay SSD task is also provided in this thesis. However, there
is still a scope for further improvement. Hence, more efficient feature devel-
opment and beamforming strategies, especially for replay SSD task can be
investigated in the future.

• This thesis also proposed the approach of VLD for anti-spoofing, where
proposed CQT-based feature set performs better over previously proposed
STFT-based feature set. However, there is still a scope for further improve-
ment by utilizing more efficient pop noise detection methods (improved
signal processing or probabilistic approaches) and sophisticated deep learn-
ing architectures, in particular, by exploiting various loss functions in CNN,
LCNN, and ResNet. Furthermore, the proposed approach do not address
the issue of artificially added pop noise in the spoof speech signal, which
can be easily added by the attacker at the arbitrary locations in the utter-
ance. Thus, the VLD system can be further modified to detect the pop noise
at pop noise-specific phonemes and improve the security for the ASV sys-
tem, which to the best of author‘s knowledge is an open research problem.

• The proposed SRCC feature set is independently extended for magnitude
and phase components to develop MSRCC and PSRCC, respectively. The
score-level fusion of the MSRCC and PSRCC could successfully capture the
complementary information in magnitude and phase components of the
spectrum for ASVSpoof 2017 dataset. However, PSRCC failed to capture
complementary information on the ReMASC dataset. Hence, the appropri-
ate signal processing method for phase component can be developed to let it
capture the complementary information. Furthermore, in SRCC feature set,
γ value is chosen empirically. The suitable strategy for automatic selection
of γ value in SRCC framework can be developed in the future.

• The recent study in [370] demonstrate the decomposition of the CQT spec-
trum into an energy-normalized pitch component and a pitch-normalized
spectral component, from which a number of harmonic coefficients are ex-
tracted. It results in Constant-Q Harmonic Coefficients (CQHC), which pro-
vide a compact and interpretable feature for characterizing the timbre of a

229



musical instrument. The CQCC, derived from CQT, is state-of-the-art fea-
ture set to alleviate various spoofing attacks. However, application of the
CQHC for the SSD task is nil and hence, it can be the potential future re-
search direction.

• In the literature and correspondingly in this thesis, linear kernel is utilized
for the VLD task, and it gives reasonably good performance. The similar
observation is noticed for the classification of the normal vs. pathological
infant cries. Exploring different kernel functions for SSD or infant cry clas-
sification would be a potential future research direction.

• Recently, wavelet signal processing-based features are utilized for VLD [371].
It can be extended in future for SSD in ASV and VAs by fine-tuning the
wavelet-based feature set.

• In this thesis, the proposed CFCCIF-ESA feature set combines the magni-
tude and phase information by multiplication of magnitude with IFs. This
idea is motivated by the study reported in [232]. However, other fusion
techniques, such as concatenation of the magnitude and phase-based repre-
sentations or decision-level fusion of these counterparts can be analyzed for
the SSD task. However, such combination of magnitude and phase infor-
mation can be employed for the other successful feature sets (which utilizes
only magnitude or phase information) in the literature.

• Furthermore, improved approaches of IF estimation can be utilized to fur-
ther enhance the performance of the proposed CFCCIF-ESA feature set. For
example, IFs can be estimated using fractional Hilbert transform and eigen-
vector theory as proposed in [372]. This approach defines smooth IF by
removing the jump discontinuities caused by unwrapping of the instanta-
neous phase.

• If anti-spoofing will be implemented for banking applications, then trans-
mission of the speech signal is transmitted over the long distance using the
wired or wireless transmission line. It utilizes the speech coding and other
signal transformations during this process. If SSD system is implemented
after this transmission process, then the coding mechanism and transforma-
tions should be analyzed for the anti-spoofing task. The statistically mean-
ingful dataset can be developed in this regard.

• For the experiments on environment-dependent scenario, each environment
was partitioned into two disjoint and speaker-independent sets of roughly
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the same size. The environment-wise statistics of the ReMASC dataset are
shown in Table 3.14. The results obtained using CQCC, TECC, and ETECC
feature sets with GMM classifier are reported in Table 4.18. Particularly for
this scenario, we reported the results with the application of the CMVN for
each utterance, as it has shown significant improvement. The analysis for
the application of the CMN/CMVN techniques on environment-dependent
vs. -independent scenario is discussed in Chapter 6 (Section 6.2). This needs
further investigation and remains an open research problem. Notably, TECC
performs better than the ETECC feature set for all the environments.

7.3 Open Research Problems

• It can be observed that even though the formal research in the anti-spoofing
field started quarter-to-one decade before, however, still today there is no
known statistically meaningful corpora for identical twins or professional
impersonation; indicating the challenge associated with development of speech
corpora for these two spoofs. Hence, the risk associated w.r.t. these two
spoofing attacks for ASV system is unknown and hence, it continues to be
a serious limitation in the anti-spoofing research field. This issue can be
alleviated in future by developing the statistically meaningful corpora for
identical twins or professional impersonation.

• It can be also observed that TECC feature set performs better than the ETECC
feature set in Environment-D for environment-independent case. It might
be due to noise suppression capability of the TEO especially for the vehicle
noise (as originally reported for noise robust speech recognition in car [213]),
whereas establishing noise suppression capability of ETEO remains an open
research question for the future study.

• In this thesis, various feature sets are developed for individual spoofing at-
tacks. CQCC and various variants of the CQT-based feature sets are proved
to perform good for various spoofing attacks. However, various other fea-
ture sets performs better than CQCC features for various spoofing attacks.
The development of a feature set that can perform better for all the spoofing
attacks still remains an open research problem.

• It is also observed that TECC feature set performs better than ETECC fea-
ture set for ReMASC dataset in Env-D for environment-independent case. It
might be due to noise suppression capability of the TEO especially for the
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vehicle noise (as originally reported for noise robust speech recognition in
car [213]), whereas noise suppression capability of ETEO remains an open
research question for the future study.

• The replayed version of the genuine speech signal includes additional com-
ponents which are impulse responses of playback device, playback environ-
ment, recording device, and recording environment [72]. Individual con-
tribution of these additional components in the replay mechanism can be
analyzed. It may help to develop the feature set based on the contribution
of the individual components.

• For speech technology applications, perceptually-motivated feature repre-
sentations are utilized, where the frequency bins are logarithmically or ge-
ometrically separated. However, in SSD task, it is observed that the feature
sets (e.g., LFCC) which are linearly separated are giving relatively better
performance. The analysis of this fact remains an open research question for
the future study.

• The addition of the pop noise in the spoof speech utterance can be easily per-
formed. However, the proposed approach did not address the issue of arti-
ficially added pop noise in spoof speech signal, which can be easily added
at the arbitrary locations in the utterance. Thus, the VLD system can be fur-
ther modified to detect the pop noise at pop noise-specific phonemes and
improve the security for the ASV system, which remains an open research
problem.

• The concept of the TEO is derived by estimating the total energy at a instant
in SHM due to spring-mass system. The concept of CTEO can be derived
using analogy from physical system.
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Appendix A. Heisenberg’s Uncertainty Principle in Sig-

nal Processing Framework

Theorem (Heisenberg’s Uncertainty Principle): The temporal variance, σ2
t and

the frequency variance, σ2
ω of a window f (t) ∈ L2(R) and having unit norm and

fast decay satisfy,

σ2
t · σ2

ω ≥ 1
4

. (A.1)

This inequality becomes equality if and only if f (t) is a Gaussian window function.

Proof: This proof assumes fast decay of the window function f (t) ∈ L2(R) [373],
however, this theorem is valid for any f (t), t · f (t), and f ′(t) ∈ L2(R) [200]. Let us
consider the integral I as,

I =
∫

t∈R
(t · f (t))( f ′(t))dt = ⟨t f (t), f ′(t)⟩. (A.2)

Using Cauchy-Schwartz inequality for vectors a and b, we have,

|⟨a, b⟩| ≤ ||a|| · ||b||. (A.3)

Hence,
|⟨t f (t), f ′(t)⟩| ≤ ||t f (t)|| · || f ′(t)||, (A.4)∣∣∣ ∫

t∈R
t f (t) f ′(t)dt

∣∣∣ ≤ [ ∫ +∞

−∞
|t f (t)|2dt

] 1
2 ×

[ ∫ +∞

−∞
| f ′(t)|2dt

] 1
2
. (A.5)

Since window f (t) has unit norm, i.e., || f (t)|| = 1, we have,

∫ +∞

−∞
t2| f (t)|2dt = σ2

t . (A.6)

Using Plancherel’s theorem,

∫ +∞

−∞
| f (t)|2dt =

1
2π

∫ +∞

−∞
|F ( f (t))|2dω, (A.7)
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where F ( f (t)) represents the Fourier transform of f (t). Hence,

∫ +∞

−∞
| f ′(t)|2dt =

1
2π

∫ +∞

−∞
|F ( f ′(t))|2dω =

1
2π

∫ +∞

−∞
ω2|F(ω)|2dω. (A.8)

Using the definition of σ2
ω in eq. (A.8), eq. (A.5) becomes,

|I|2 ≤ σ2
t · σ2

ω. (A.9)

Using integration by parts on eq. (A.2), we get,

I =
[( t

2
) ∫ d

dt
f 2(t)dt

]+∞

−∞
−

∫ +∞

−∞

( d
dt
( t

2
)
·
∫ d

dt
f 2(t)dt

)
dt} =

−1
2

. (A.10)

Hence, eq. (A.9) becomes,

σ2
t · σ2

ω ≥ 1
4

. (A.11)

Cauchy-Schwartz’s inequality becomes equality for collinear vectors, i.e., b =

−ka.
∴ f ′(t) = −kt f (t), (A.12)

where k is a scalar such that k > 0.

f ′(t)
f (t)

= −kt. (A.13)

Solving the differential in eq. (A.13), we obtain,

∫ d f (t)
dt

=
∫

−ktdt, (A.14)

loge f (t) = −kt2, (A.15)

f (t) = e−kt2
. (A.16)

It can be observed that eq. (A.16) represents the Gaussian function. Thus, this
result proves that the lower bound on Heisenberg’s box (i.e., σ2

t · σ2
ω) is achieved

for Gaussian window function. In particular, optimal localization is achieved by
the family of Gabor atoms.
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Appendix B. IF Estimation using Hilbert Transform

The analytic signal representation of the real signal xi(t) is given by:

xai(t) = xi(t) + jxhi(t), (B.1)

where,

xhi(t) = p.v.
∫ τ=+∞

τ=−∞
xi(τ)

[ 1
π(t − τ)

]
dτ. (B.2)

when τ crosses t, the integrand in Eq. (B.2) becomes infinity and hence, the inte-
gral diverges. Such integrals are called as singular integrals in the mathematical
literature [257]. To address this issue, we work in Fourier-domain by invoking the
convolution theorem and duality property of CTFT, i.e.,

F
[

xhi(t)
]
= F

[
xi(t)

]
· F

[ 1
πt

]
, (B.3)

Xhi(ω) =

{
+jXi(ω), f or ω < 0,

−jXi(ω), f or ω > 0.
(B.4)

Thus, we need to use Fourier transform (and its inverse) to generate an analytic
signal. In particular,

Xi(ω) = F
[

xi(t)
]
=

∫ +∞

−∞
xi(t)e−jωtdt, (B.5)

Eq. (B.5) represents a global average of signal xi(t) with infinite duration sinu-
soidal waves, i.e., {ejωt}t∈R. Thus, by using Heisenberg’s uncertainty principle
in signal processing framework [200], if we try to improve time resolution of x(t)
for IF estimation (say by multiplying x(t) with a short- time window), we loose
frequency resolution and vice-versa.

The instantaneous amplitude and instantaneous phase of the analytic signal
xai(t) is given by:

|xai(t)| =
√

x2
i (t) + x2

hi, (B.6)
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ϕi(t) = tan−1
(xhi(t)

xi(t)

)
. (B.7)

IF is nothing but the derivative of the unwrapped instantaneous phase, ϕi(t),
and it is expressed as:

IF =
d
dt
(ϕi(t)). (B.8)

Due to the periodicity property of arc-tangent function, phase given by eq. (B.7)
gets unwrapped to −π to +π or 0 to 2π interval and thus, creates discontinuity
in the phase function, which makes it difficult for computation of derivative to
get IF and thus, computationally complex task of phase unwrapping is required
[374, 375].
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Appendix C. IF Estimation using ESA

In [31], three Discrete-time Energy Separation Algorithm (DESA) algorithms are
mentioned, namely, DESA-1a, DESA-1, and DESA-2. In DESA-1a, ‘1’ implies to
derivative approximation in TEO with single sample difference, and a implies to
the asymmetric difference. In DESA-1, the derivative operation is supposed to
symmetrized by averaging the two opposite asymmetric derivatives, namely, for-
ward and backward differences. However, DESA-2 utilizes the symmetric 2-point
sample difference to approximate the derivative operation. In this thesis, DESA-
1a is utilized for energy separation [31, 183].

Let us consider a discrete-time AM-FM signal y(n) = a(n) cos (ϕ(n)), whose
instantaneous frequency signal ωi(n) is a finite sum of cosines. It’s backward
difference is given as:

s(n) = y(n)− y(n − 1),

= a(n)c(n) + [a(n)− a(n − 1)] cos (ϕ(n − 1)),

= D(n) + E(n),

(C.1)

where,

D(n) = a(n)c(n), (C.2)

E(n) = a(n)c(n) + [a(n)− a(n − 1)] cos (ϕ(n − 1)). (C.3)

Furthermore,

c(n) = cos (ϕ(n))− cos (ϕ(n − 1)),

= 2 sin
(ϕ(n) + ϕ(n − 1)

2

)
· sin

(ϕ(n − 1)− ϕ(n)
2

)
.

(C.4)

Using general approximations results for ϕ(n):

ϕ(k) + ϕ(m) ≈ 2ϕ
(k + m

2

)
if ω f |k − m| << 2. (C.5)
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ϕ(k)− ϕ(m) ≈ (k − m)ωi
k + m

2
if ω f |k − m| << 2. (C.6)

If ω f << 1, we obtain from eq. (C.4):

c(n) ≈ −2 sin (ωi(n − 0.5)/2) sin (ϕ(n − 0.5)). (C.7)

Furthermore, according to Lemma 2 in [31], the order of magnitude of E and
D in eq. (C.1) are:

Dmax ≈ 2 sin (ωi/2)maxamax,

Emax ≈ 2 sin (ωa/2)amax.
(C.8)

If a(n) in bandlimited, then the order of magnitude of D is much larger than
that of E. Thus, ignoring E:

y(n) ≈ −2a(n) sin (ωi(n − 0.5)/2) sin (ϕ(n − 0.5)). (C.9)

Considering the first order approximation for standard series expansions for
sin (·) and cos (·) on bandlimited signal:

ψ(s(n)) ≈ 4a2(n) sin2 (ωi(n − 0.5)/2) sin2 (ωi(n − 0.5)). (C.10)

Ignoring the half-sample shift and applying concept of TEO to discrete time
signal, i.e., ψ(y(n)) ≈ a2(n)ω2

i (n), we obtain:

|a(n)| ≈

√√√√ 2ψ{y(n)}
1 − (1 − ψ{y(n)−y(n−1)}

2·ψ{y(n)} )
, (C.11)

ωi f (n) = arccos
[

1 − ψ{y(n)− y(n − 1)}
2ψ{y(n)}

]
. (C.12)
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Appendix D. Cauchy-Schwarz Inequality for Multichan-

nel Noise Power

In this Appendix, we follow the original work reported in [186] for more de-
tailed and elaborate discussion here w.r.t. proposed CTECCmax framework for
replay SSD on VAs. For simplicity of analysis, we make a basic assumption that
the speech signal s(t) is well approximated by an AM-FM signal, i.e., s(t) =

a(t) cos (ϕ(t)) with both time-varying amplitude a(t) and time-varying instanta-
neous frequency ωi(t) = dϕ(t)/dt. Such an assumption is valid because existence
of AM-FM in speech resonance and also the place theory of hearing coupled with
mathematical modelling of cochlea [376]. To that effect, Teager energy of s(t) will
be given by ψ{s(t)} ≈ a2(t)ω2

i (t). Under this assumption and using the eq (4.52),
the subband (bandpass) signal (in Gabor filterbank of CTECC) can be approxi-
mated as the output of jth LTI filter as [186, 233]:

ŝj(t) = a(t)|Gj(ωi(t))| cos (ϕ(t) +∡Gj(ωi(t))), (D.1)

where Gj(ω) = |Gj(ω(t))|∡Gj(ω(t)) is a frequency response of jth Gabor filter in
the filterbank. In particular, |Gj(ω)| and ∡Gj(ωi(t)) are called as gain and phase
shift of LTI filter, gi(t) [366]. Thus, the TEO of jth subband filtered signal sj(t) will
be equal to

ψ{sj(t)} = (a(t)|Gj(ωi(t))|)2ω2
i (t), (D.2)

∴ ψ{sj(t)} = a2(t)|Gj(ωi(t))|2ω2
i (t). (D.3)

Here, we focus on second term of eq. (4.55), i.e., E{Ψcr[npj(t), nqj(t)]}. The noise
processes npj(t) and nqj(t) have cross-power spectral density Φ(ωpq) = F{Rpq(τ)},
where F{.} denotes Fourier transform operator. Thus, the jth subband noise pro-
cess will have cross-power spectral density [228],

Φ(pq) j(ω) = |Gj(ω)|2 · Φpq(ω). (D.4)
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Further, because np(t) and nq(t) are Wide Sense Stationary (WSS) Gaussian, their
derivatives, i.e., the processes ṅp(t) and ṅq(t) are also WSS Gaussian, and their
product ṅp(t) · ṅq(t) is statistically-independent of both npj(t) and n̈qj(t) [228].
Hence, CTEO between npj(t) and nqj(t) is given by:

Ψcr{npj(t), nqj(t)} = ṅpj(t)ṅqj(t)− npj(t)n̈qj(t), (D.5)

and it is the sum of two independent random processes. To estimate the mean of
this, we need to estimate the following:

E[ṅpj(t)ṅqj(t)] = −R(pq)
(2)
j (0), (D.6)

E[npj(t)n̈qj(t)] = R(pq)
(2)
j (0). (D.7)

Using Wiener-Khinchin theorem [377], we have the autocorrelation function R(p)(τ)

given by,

Rp(τ) = F−1{Φp(ω)} =
1

2π

∫ +∞

−∞
Φp(ω) · ejωτdω. (D.8)

Similarly,

Rq(τ) = F−1{Φq(ω)} =
1

2π

∫ +∞

−∞
Φq(ω) · ejωτdω. (D.9)

Hence, cross-correlation function R(pq)j
(τ) corresponding to the jth subband is

given as,

R(pq)j
(τ) = F−1{Φ(pq)j

(ω)} =
1

2π

∫ +∞

−∞
Φ(pq)j

(ω) · ejωτdω. (D.10)

Differentiating eq. (D.10) w.r.t. τ two times under integral sign, we get,

R(2)
(pq)j

(τ) =
1

2π

∫ +∞

−∞
Φ(pq)j

(ω) · d2(ejωτ)

dτ2 dω, (D.11)

R(2)
(pq)j

(τ) =
1

2π

∫ +∞

−∞
(jω)2Φ(pq)j

(ω) · ejωτdω. (D.12)

At zeroth lag, τ = 0, we have,

R(2)
(pq)j

(0) =
1

2π

∫ +∞

−∞
(jω)2Φ(pq)j

(ω)dω. (D.13)
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Using eq. (D.4) in eq. (D.13), we get

R(2)
(pq)j

(0) =
1

2π

∫ +∞

−∞
(jω)2|Gj(ω)|2Φ(pq)(ω)dω, (D.14)

which can be approximated as [233]:

R(2k)
(pq)j

(0) = R̂(2k)
(pq)j

(ωi(t)), (D.15)

where
R̂(2k)
(pq)j

(ωi(t)) = (−1)kω2k
i (t)|Gj(ωi(t))|2Γ(pq)j

, (D.16)

with

Γ(pq)j
=

1
2π

∫ +∞

−∞

|Gj(ω)|2

|Gj(ωc)|2
Φ(pq)(ω)dω, (D.17)

representing concentration of noise power within the passband of jth subband
filter gi(t), and we represented center frequency of jth filter. Using eq. (4.55), eq.
(D.3), eq. (D.5), eq. (D.6), eq. (D.7), eq. (D.16), we get the mean of Ψcr{xpj(t), xqj(t)}
as:

E{Ψcr[xpj(t), xqj(t)]} = E{Ψcr[sj(t)]}+ 2ω2
i (t)|Gj(ωi(t))|2τ(pq)j

(D.18)

The second term of RHS of eq. (D.18) corresponds to error term. Using Cauchy-
Schwartz inequality as in [228]:

∣∣∣ ∫ +∞

−∞
Φ(pq)j

(ω)dω
∣∣∣2 ≤ [

∫ +∞

−∞
Φpj(ω)dω][

∫ +∞

−∞
Φqj(ω)dω], (D.19)

which gives,

∣∣∣ 1
2π

∫ +∞

−∞

|Gj(ω)|2

|Gj(ωc)|2
Φ(pq)j

(ω)dω
∣∣∣2 ≤

[ 1
2π

∫ +∞

−∞

|Gj(ω)|2

|Gj(ωc)|2
Φpj(ω)dω

]
·

[ 1
2π

∫ +∞

−∞

|Gj(ω)|2

|Gj(ωc)|2
Φqj(ω)dω

]
, (D.20)

∣∣∣R(pq)j
(τ)

∣∣∣2
τ=0

≤ Rpj(τ)
∣∣∣
τ=0

.Rqj(τ)
∣∣∣
τ=0

, (D.21)

∣∣∣R(pq)j
(0)

∣∣∣2 ≤ Rpj(0).Rqj(0), (D.22)
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which leads to the following inequality to analyze noise power in jth subband
using eq. (4.57),

|Γ(pq)j
|2 ≤ Γpj Γqj . (D.23)

The inequality (D.23) is useful to analyze the efficiency of proposed CTECC fea-
ture extraction framework for replay SSD task on VAs. In particular, it can be
observed from inequality (D.23) that proposed idea of maximum energy distor-
tions in CTECCmax framework is indeed the optimal solution w.r.t. concentration
of the noise power in jth subband via CTEO framework than its individual channel
(i.e., Γpj or Γqj) counterpart.
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