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Abstract

Presence of heavy metal in crops is an indicator of environmental pollution. The

heavy metals found in the plant indicate that the specific metal exists in the terres-

trial environment. These metals affect leaves’ spectral characteristics and interfere

with plants’ biochemical features, such as chlorophyll concentration and photo-

synthesis. Accurate detection of heavy metals in plants is necessary for agricul-

tural management and to preserve ecological balance. Field spectroscopy tech-

niques are used to measure the spectral changes triggered due to contamination

with heavy metals. The advantage of these remote sensing approaches to assess

heavy metal contamination is that they can frequently collect data across a wide

geographic area.

The study mainly focuses on detecting different levels of heavy metal pollu-

tion from airborne hyperspectral data using reference data from in situ controlled

pot experiments. We constructed a training set spectrum from a controlled ex-

periment on cotton and tobacco for two important heavy metals, Lead (Pb) and

Cadmium (Cd). Cotton and tobacco crops were grown in pots after artificially

contaminating the soil with four Pb and Cd heavy metal treatments. The hyper-

spectral and biochemical data generated spectra of heavy metal concentrations at

different crop growth stages. Standard reflectance spectra at different contamina-

tion levels do not show significant changes at different wavelengths due to the

presence of heavy metal. These spectra were further decomposed using wavelet

transform at different levels to capture the subtle changes in spectra using the

detailed component of wavelets. The reconstructed detailed wavelet reflectance

at the third level of decomposition was found to be significant with heavy metal

stress. The correlation analysis established that the wavelength range of 651-742

vii



nano meter (nm) in cotton was sensitive to Pb stress, and 631-802 nm was sen-

sitive to Cd stress in tobacco. The reconstructed detail reflectance at a particular

wavelength was then further used as reference spectra with different heavy metal

levels to map heavy metal pollution.

The AVIRIS-NG data obtained for the study area was first classified to identify

the tobacco crop in the Anand region and the cotton crop in the Surendranagar

region using a combination of Autoencoder (AE) for feature extraction followed

by an artificial neural network for classification. The training data obtained from

the pot experiment were utilized to map Pb and Cd pollution from classified air-

borne hyperspectral data from Airborne Visible InfraRed Imaging Spectrometer

- Next Generation (AVIRIS-NG) using a spectral matching algorithm known as

Dynamic Spectral Warping (DSW). The results confirm the efficiency of the de-

veloped algorithm in estimating Cd content in tobacco and Pb content in cotton

crops. The model was validated by collecting the exact field points and heavy

metal concentration, which shows a promising result for this algorithm.

Diverse soil minerals may be easily identified through modern hyperspectral

technology for remote sensing. The aerial hyperspectral sensor’s enhanced spatial

and spectral resolution can identify the abundance of several clay minerals, such

as Kaolinite, Montmorillonite, and Illite. This study maps the clay mineral distri-

bution in the Udaipur area of Rajasthan and the Ambaji region of Gujarat using

hyperspectral data acquired by the AVIRIS-NG sensor on an airborne platform.

The representative soil sampling sites were selected from hyperspectral data

using the Spectral Feature Fitting (SFF) algorithm. X-ray Diffraction (XRD) anal-

ysis was carried out to find different clay minerals in the samples. Then the re-

gression analysis was carried out to find the relation between Absorption Peak

Depth (APD) extracted from hyperspectral data corresponding to the actual loca-

tion of sampling sites and the corresponding clay percentage obtained from XRD

analysis. Regression analysis between absorption peak depth values estimated

from hyperspectral data at 2205 nm – 2214 nm spectral region of soil sampling

sites and corresponding clay content value showed a significant relationship. The

regression line obtained for the known pixel is used to prepare the mineral abun-
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dance map over the study area. The study over the Udaipur region shows the

dominance of montmorillonite clay minerals, and the Ambaji region showed an

abundance of kaolinite.
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CHAPTER 1

Introduction and Literature Survey

1.1 Presence of heavy metal in vegetation

The recent era of modernization has increased the risk of heavy metal pollution

due to the upscaling of developmental activities like mining, smelting, manu-

facturing, and processing industries. Anthropogenic activities and weathering of

parent material result in the release of heavy metals in soils [3]. As per the reports,

industrial, agricultural, and automobiles are various sources accounting for heavy

metals in the environment [4][5]. The indiscriminate use of these heavy metals in

industries, agriculture, and day-to-day applications has made them significant

contaminants of the environment [6].

Heavy metals are naturally occurring elements in trace quantities throughout

the earth’s crust with a specific density greater than 5 g.cm−3, for example, Lead

(Pb) , Cadmium (Cd), Chromium (Cr), Mercury (Hg), Zinc (Zn), Manganese (Mn),

Cobalt (Co), Nickel (Ni),Copper (Cu) and Tin (Sn) among others [7]. Some heavy

metals are considered essential, like Cu, Mn, Fe, Zn, and Ni due to their require-

ment for the growth of plants and animals. At the same time, some heavy metals

like Pb, Cd, and Hg are classified as non-essential due to their lack of a prominent

role in the growth and metabolic processes of organisms. These non-essential

heavy metals are harmful as they are highly toxic, easily absorbed by plants, and

not biodegradable [8][9].

In the past few years, there has been an increase in public awareness related to

ecological safety and human health due to heavy metal pollution. Furthermore,

heavy metal contamination has become a topic of primary environmental con-
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cern due to its impact on agricultural soil and the plant produce, affecting food

quality and safety. Agriculture soil is more frequently exposed to heavy metals

because of innovations in farming techniques and the existence of heavy metals

in pesticides, fertilizers, and manures. The agricultural land adjacent to various

industries is more susceptible to heavy metal pollution due to industrial effluent’s

movement through water and soil. However, a few heavy metals like Cu, Zn, Co,

and Mn are helpful for plant growth when applied in trace amounts, as they are

constituents of several vital enzymes for their metabolic activities. The excessive

accumulation of toxic and non-essential heavy metals, such as Pb, Hg, Cr, and Cd,

in agricultural soils not only results in environmental contamination but also ele-

vates heavy metal uptake by crops and increases its concentration in plant tissues

causing a significant reduction in plant growth [10].

Among the various non-essential heavy metals, Pb and Cd are the most com-

mon heavy metal in the environment, which are considered highly toxic to plant

and human health. Pb is the leading environmental pollutant released from car

exhaust and fertilizers containing heavy metal contaminants [11]. It accumulates

in various parts of plants, such as roots, stems, and leaves, from contaminated

soil, and accumulation increases with increasing Pb contamination [12] [13]. It

affects plant growth due to its effect on photosynthesis and other enzymatic ac-

tivities [10]. Excessive Pb exposure results in mental retardation and behavioral

disorders in humans [14]. Similarly, cadmium is a heavy metal of significant en-

vironmental concern, particularly for crops, due to its high toxicity, relative mo-

bility, and high-water solubility. The primary source of Cd in the earth’s crust

is rock phosphate, which contains about 15 mg.kg−1 Cd [15]. Agricultural soils

are contaminated with Cd through the indiscriminate use of phosphate fertilizers

[16]. The plants absorb heavy metals through contaminated soil, adversely affect-

ing plant growth and animals and humans consuming such plants. It enters the

food chain and threatens human and animal life due to various health risks [17].

Heavy metals directly affect crops by altering the plant’s metabolic, physio-

logical, and biochemical processes. The response of plants differs due to differ-

ent heavy metal concentrations depending on factors such as soil, type of heavy
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metal, and plant growth conditions. The excessive buildup of heavy metals in

plants may adversely affect their development by interfering with cellular func-

tion and deteriorating photosynthetic pigments, resulting in a reduction of chloro-

phyll pigment and other enzymatic activities [18] [12] [19].

Heavy metals and plants interact in a specific manner. Plants exhibit the ability

to absorb heavy metals from the soil, accumulate in different parts, and serve as a

critical indicator of heavy metal pollution in a particular region. Therefore, vege-

tation plays a vital role in studying the presence of these heavy metals in the envi-

ronment and their interaction with plants and animals. Few plants can survive in

the presence of heavy metals without early signs of degradation, making them an

effective tool for monitoring heavy metal pollution before further damage occurs

in the contaminated area. Effective prevention measures can reduce heavy metal

contamination in suspected areas and early recovery in the areas where accumu-

lation has already occurred [20]. Presently, the field-based analytical method is

used for detecting the presence of heavy metals in plants by sample collection

and chemical analysis. The process is relatively costly and time-consuming so it

can be utilized on a small scale [21].

1.2 Relevance of remote sensing for detection of heavy

metal pollution in vegetation

Traditional field sampling and laboratory analysis methods are expensive and in-

efficient for the investigation of large areas [22]. Besides, it cannot be used for

early detection and is concentrated over mining or industrial area where there is

a possibility of heavy metal contamination but not in general fields, which also

get polluted by heavy metal due to excessive use of fertilizers or accidental con-

tact with industrial effluents. In comparison, remote sensing can be effectively

used for wide-scale and rapid monitoring of heavy metal contamination. Remote

sensing is defined as the science of obtaining information about any object or area

by remotely capturing electromagnetic radiation reflected from the target [23].

Remote sensors provide timely coverage of large areas, which is helpful in sur-
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veying natural resources and monitoring the environment. In recent years, it has

become an increasingly important science with an improved understanding of

environmental processes, conditions, and changes affecting both human and eco-

logical health [24]. In recent years, advanced remote sensing techniques such as

hyperspectral technology have been used for assessing crop biophysical and bio-

chemical properties [25], crop health [26], water content [27] as well as detecting

heavy metal pollution [28] [29].

Remote sensing is being widely used for mapping heavy metal contamination

of plants. The presence of heavy metal may not be so high to trigger a direct

effect on vegetation, so these studies rely on hyperspectral remote sensing with

advanced technology and high resolution. Hyperspectral images provide contin-

uous spectral information over a wide range of electromagnetic spectra, which

provide more detailed changes in spectral properties of the plant under heavy

metal stress and can be used for mapping and monitoring heavy metal contam-

ination. Hyperspectral indices and derivatives enhance the signal of the target

metals by optimizing the noise. The most used wavebands lie within the visible-

near infrared portion of the spectrum. In comparison, mid- and far-infrared wave-

lengths are used far less frequently [30]. Depending on the material’s spectral re-

sponse, reflectance spectroscopy is also relatively less expensive and faster than

traditional wet chemical measurements.

1.2.1 Effect of heavy metal on vegetation spectral signatures

Every material on the earth has a unique way of reflecting electromagnetic radia-

tion called its spectral signature. The spectral signature of vegetation is mainly a

function of pigment, cellular structure, tissue’s optical properties, water present,

and viewing geometry and illumination angle and provides essential informa-

tion about the biophysical and biochemical properties of plants [31]. The study of

spectral reflectance by the researcher can give an insight into plant condition and

health as well as any stress on plants [32]. Figure 1.1 shows the spectral signature

of vegetation in detail.

The spectral signature of a healthy leaf follows a bimodal reflectance pat-
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Figure 1.1: Spectral signature of vegetation[1]

tern across the electromagnetic spectrum, falling in the visible, near-infrared, and

shortwave infrared regions [1]. The significant factors affecting vegetation re-

flectance are photosynthetic pigments, mainly chlorophyll, cellular structure, leaf

water, and the presence of other biochemicals such as lignin and cellulose [33]. In

the visible region, strong absorption occurs due to photosynthetic pigments like

chlorophyll a and b in blue (450nm) and red (680nm) bands, followed by strong

reflectance in the Near Infrared (NIR) region due to scattering of light by leaf mes-

ophyll tissues and absorption features due to leaf water in Short wave Infrared

(SWIR) region (at about 1400 and 1900nm) of the electromagnetic spectrum [1].

During leaf stress, as chlorophyll decreases, the spectral response of leaves shows

a reduction in the absorption in the red region as well as the shift in absorption

peak in the red region (red edge position) toward shorter wavelengths, known

as blue shift [34]. The response of vegetation under heavy metal exposure has

been examined to understand the importance of spectral reflectance in detecting

plant stress. The presence of heavy metals causes changes in the internal struc-

ture of the leaf, directly and indirectly, influencing the reflectance. Elevated levels

of heavy metals affect plant metabolisms and photosynthetic processes, causing

a reduction in chlorophyll content by inhibition of chlorophyll biosynthesis. In

some cases, the substitution of the central Mg ion occurs with the absorbed metal

ion in chlorophyll molecules, resulting in a breakdown of photosynthesis which
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ultimately affects plant growth [30][35].

Plants exposed to heavy metals have subtle differences in the spectra com-

pared to healthy plants. These differences mainly occur in the visible and near-

infrared regions of the electromagnetic spectrum[27]. Most of the studies the

heavy metal concentration in leaves is concerned with various vegetation indices

(ratios or linear combinations of two or more spectral wavelengths[35]and red

edge position (a sharp transition between red and NIR wavelengths; positively

related to chlorophyll concentration to study the stress [36]. Little research was

carried out to find the effect of heavy metal pollution on the leaf reflectance by

identifying optimal wavelengths to monitor a particular heavy metal. Heavy

metal concentrations in plant leaves are not so much high as to cause significant

changes in reflectance spectra under normal field conditions, and it is essential

to diagnose metal-induced vegetation stress before any stress-related damage oc-

curs [37] [38]. In this context, an integrated approach using in-field spectroscopy

data from control experiments and hyperspectral data to detect heavy metal pol-

lution has yet to be carried out. The proximal sensing for two primary heavy

metals, Cd and Pb, was done to study their effect on leaf spectra of cotton and

tobacco crops in a control pot experiment for generating reference spectra. These

training sets obtained from controlled experiment was used for heavy metal de-

tection in tobacco crop and cotton crop from airborne hyperspectral data over the

Surendranagar and Anand region of Gujarat, respectively. This research utilizes a

combined biochemical and spectral characteristics approach to evaluate crop per-

formance under different heavy metal stress after artificial contamination with

metal under study by integrating the in-field spectroscopy data with airborne hy-

perspectral data. Such a study can provide a theoretical basis for remote sensing

of heavy metal-contaminated areas.

1.3 Literature survey

Given the impact of heavy metal, many researchers have conducted trials on vari-

ous crops to test heavy metal stress on various biophysical and biochemical prop-
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erties of plants.

1.3.1 Review of the effect of Pb and Cd on crop

Pb and Cd are non-essential hazardous elements for plants but can accumulate

in different plant parts and hamper the growth and physiological processes [39].

Various studies revealed the harmful effects of high concentrations of heavy met-

als on the germination, growth, and physiological processes of plants [40] [41].

Among all the metabolic processes, photosynthesis is one of the most significant

physiological traits of plants reported to be negatively impacted by heavy metals

[42]. Photosynthetic inhibition during heavy metals stress is one of the prominent

actions in plants because the presence of toxic element influences the biosynthesis

of photosynthetic pigments like chlorophyll and carotenoids and affect different

photosynthetic apparatus and their functions [43]. Various studies have examined

the harmful effect of Pb and Cd on plant growth parameters in pot studies and

greenhouse experiments by artificially contaminating the soil with various heavy

metals.

Pb has been reported to be phytotoxic due to its harmful effects on different

plant growth parameters and photosynthesis [44][45][46]. In a laboratory-scale

experiment conducted to determine the toxic effects of different concentrations of

Pb (2, 4, and 6 mg.l−1) on the total chlorophyll (a + b) content of aquatic plant tis-

sues Ceratophyllum demersum., it was found that the content of total chlorophyll

decreased noticeably, with increasing initial concentrations of Pb compared to

control plants [47]. In a field experiment conducted on the effect of Pb stress on

cotton plants, it was established that Pb toxicity caused a sharp decline in pho-

tosynthetic pigments such as chlorophyll a, chlorophyll b, total chlorophyll, and

carotenoids values at both levels of Pb (50 and 100 µM)) [48]. A greenhouse study

to determine Pb’s phytotoxic effect on Helianthus revealed that various growth

parameters were affected due to the accumulation of different levels of Pb in the

soil compared to the control [49]. Similar studies on the phytotoxic effect of Pb

on various species, including Triticum aestivum and Spinacia oleracea [50], Solanum

Melongena [51], Helianthus annuus [52], Brassica juncea [53] [54], Nicotiana tabacum
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[55], has also reported a decrease in chlorophyll content as well as growth due

to presence of Pb. A pot experiment established that Pb metal has an adverse ef-

fect on chlorophyll content and photosynthetic efficiency of two cotton genotypes

(Desi cotton and Bt cotton)[56]. Pb metal ions can accumulate in plants when their

content increases in soil and have a very high transfer rate from soil to plants [57].

Various studies have been carried out to study the mechanism of accumulation of

Pb in different plant species. Angelova et al. investigated the pollution level and

how heavy metals enter the fiber crops by taking soil and plant samples from the

heavy metal-polluted regions and a distinct pattern in the accumulation of heavy

metals in the vegetative and reproductive organs of flax, hemp, and cotton was

revealed. The distribution of heavy metals like Pb, Zn, Cu and Cd showed a se-

lective preference in the plant parts, with more accumulation in the cotton leaves

than in other parts [58]. Wang et al., in a study, found that Cotton cultivars can

survive Pb concentration up to 200mg/l with little effect on growth [59]. The ac-

cumulation of Pb in plants from soil varies in different species and increases or

decreases with the amount of Pb in soil [60] [61].

Among toxic heavy metals, Cd is the most persistent in soil and harmful to

plants when absorbed by plants. Cd toxicity severely inhibits crop yield and qual-

ity by affecting critical physiological and biochemical processes, such as inhibition

of photosynthesis, cell wall biosynthesis, and remodeling. Various studies have

observed the effect of heavy metals on physiological and biochemical parameters

[62][63]. The presence of Cd affects photosynthesis as it interferes with enzymatic

activities and the synthesis of photosynthetic pigments like chlorophyll. Cd toxic-

ity in plants can decrease chlorophyll synthesis, resulting in yellowing leaves [64]

[65]. Various studies and experiments have been conducted to study the harmful

effect of Cd. The presence of Cd caused a decrease in chlorophyll concentration in

different plants. The deleterious effect of Cd on chlorophyll has been observed in

lady’s finger [66], [67], Chinese mustard [68], [69], maize [70], seagrass [71], and

Brassica campestris [72]. The uptake and accumulation of Cd in plants from the

contaminated soil mainly depend on the type of plant and its ability to accumu-

late Cd present in the soil [73] [74].
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Various research has established a distinct ability of tobacco plants to absorb

Cd and act as an efficient accumulator of Cd among various heavy metals. Typi-

cally, heavy metals accumulate in roots due to their less mobility, but in the case

of the tobacco plant, Cd Concentration is higher in leaves. Tobacco can accu-

mulate more Cd in leaves even under low exposure conditions than other plants

[75] [76]. Cd concentration in tobacco leaves is affected by soil conditions, climatic

conditions, and tobacco varieties [77][78]. A pot experiment conducted in a green-

house demonstrates that Cd concentrations in tobacco leaves increased by 48.89%

(P < 0.05) in tobacco grown in soil severely contaminated with Cd (30mg/kg)

[79]. Halil et al. reported that higher doses of Cd concentration in soil harm to-

bacco growth. The study revealed that among various Cd levels ( 0, 0.25, 2.5, and

10mg/kg), even a lower dose of Cd up to 0.25mg/kg significantly affects the to-

bacco plant [80]. A study conducted at Anand showed that the tobacco plant has

higher heavy metal extraction efficiency than other field crops like sunflower and

castor [81].

1.3.2 Review of hyperspectral remote sensing techniques for heavy

metal detection

Heavy metal pollution is increasing worldwide, having an adverse effect on plants

as well as human health. This problem can be efficiently addressed and man-

aged by properly mapping the heavy metal-contaminated areas. Plants are essen-

tial for monitoring heavy metal’s presence due to their ability to grow in heavy

metal-polluted soils. Field-based methods for effectively mapping heavy metal

contamination are costly, labor-intensive, and feasible for a small area. Remote

sensing provides a good alternative for fast and effective real-time mapping over

large areas. Remote sensing studies are vital in assessing vegetation’s biotic and

abiotic stress [82]. Various researchers reported that specific changes in spectral

patterns, like the shift in red edge (680 nm to 730 nm) and other vegetation in-

dices, are related to plant health and stress and can be used to study the quality of

vegetation growth and health [83]. The presence of heavy metals like Pb and Cd

causes physiological changes in leaves, which can lead to variations in the spectral
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properties of leaves. These changes usually occur in the visible and near-infrared

regions of the electromagnetic spectrum and cannot be captured by a multispec-

tral sensor. Hyperspectral or imaging spectroscopy has recently emerged as a

promising tool for heavy metal detection in a relatively wide area. Many spectral

bands at minimum spectral intervals give an excellent spectral continuity with

lots of spectral information and make it easy to measure slight differences in fea-

tures of plants like disease detection [84], water content [85], heavy metal stress

[86][87] and biophysical and biochemical properties [88][89]. Advanced hyper-

spectral technology has shown high potential in the early monitoring of heavy

metal stress in vegetation due to its high spectral resolution and increased spec-

tral sensitivity [90]. Several studies have also focused on in-field spectroscopy for

rapid and non-destructive mapping of the heavy metal status of the crop based on

in situ and high-efficiency monitoring of the spectral changes due to heavy metals.

These studies have been used in controlled laboratory conditions or specific field

environments for monitoring crops under heavy metal stress [91] [92][92]. Rosso

et al. studied the effect of Cd stress on the reflectance of Salicornia virginica and

showed a strong relationship between spectral response and heavy metal stress

[93]. Various study shows researchers are using these techniques for early de-

tection of heavy metal-induced stress to monitor overall vegetation health. In a

controlled experiment, Ren et al. found that the spectral response due to changes

in chlorophyll content and photosynthesis can be used to monitor heavy metal

stress in paddy plants grown in contaminated soil [94]. Yang and Li conducted

a series of pot experiments to study the effects of Cd. The findings show the

chlorophyll concentration decreases with increasing Cd levels and higher toler-

ance of Brassica Juncea to increased concentration of Cd level in soil [95]. Rathod

et al., in their controlled experiment with artificially contaminated soil, studied

the changes in leaf reflectance spectra (350nm – 2500 nm) in barley plants grown

in metal-spiked soils (3 levels of Cd, Pb, As and their metal-mixture treatments).

The result shows heavy metal’s adverse effect on barley growth [96].

Several researchers have also used vegetation spectral indices to characterize

the variation in vegetation response to heavy metal stress. The spectral indices
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such as normalized difference vegetation index, Modified Chlorophyll Absorp-

tion Ratio Index (MCARI), red-edge chlorophyll index, Red Edge Position (REP),

and Normalized Difference Red Edge Index (NDRE) are effective in heavy metal

assessment owing to their correlation with various metals [94] [97]. Ren et al.

derived normalized vegetation indices for the detection of Pb, As, Zn, and Cu

using different wavelengths [94]. Gu et al. predicted the Cd content in leaves of

Brassica rapa chinesis growing on soils treated with Cd of different concentrations

by incorporating the ratio of different wavebands, which reflects the changes in

photosynthetic pigment and cell structure [98]. Wu et al. used REP to study the

presence of Cd in rice [99]. Various spectral derivatives, and vegetation indices,

such as absorption depth and distance of red edge position, showed a relation-

ship with leaf heavy metal concentration [96][97]. In a previous study, Liu et

al. proposed a hyperspectral index to monitor the subtle changes in the canopy

chlorophyll content of rice due to arsenic stress. The proposed index performed

better than the random forest model and other indices [100]. Also, many a time,

the vegetation indices fail to distinguish heavy metal stress due to very minute

changes in spectral signal [101].

To overcome these problems, various researchers have used methods to en-

hance the spectral signals, such as spectral absorption depth [96], the first and

second derivative of spectra [102], and principal components [103] to extract use-

ful spectral information from stressed vegetation. Only some studies focused on

regression analysis, such as step-wise linear regression and partial least square

regression, to build empirical models that quantify the relationship between spec-

tral variables and biochemical and biophysical vegetation parameters under heavy

metal stress [104][105]. Regression and correlation analysis using various spectral

parameters has been used to determine the heavy metal content in plant leaves.

Nowadays, researchers use sophisticated machine learning techniques such as

Neural Networks (NN) in heavy metal studies [106] [107]. Liu et al. used a

back-propagation neural-network model to quantify the relationship between the

chlorophyll content of rice and Cd content [108].

Heavy metal concentrations in plant leaves are not high enough to cause sig-
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nificant changes in reflectance spectra under normal field conditions. So vari-

ous researchers have employed different methods like derivative or continuum-

removed reflectance that can enhance the potential subtle spectral changes. Wavelet

transform has been used in several studies to overcome such problems. It can

preserve the peaks and valleys among spectral signatures to magnify subtle spec-

tral features by decomposing a signal into a set of shifted and scaled versions of

the original signal producing approximation (low-pass filter) coefficients and de-

tail (high-pass filter) coefficients at various decomposition levels [109][110]. WT

finds its use in spectral dimension reduction and denoising research [111] and is

also successfully utilized in many fields of remote sensings for quantification of

biochemical parameters in plant leaves, such as chlorophyll concentration [112],

water content [113], and heavy metal concentrations [114]. Liu et al. used spec-

tral parameters derived from wavelet analysis of leaf reflectance to estimate the

concentration of Cd and Cu in rice leaves [114]. Wang et al. developed a wavelet-

based area parameter in the wavelength region 605-720 nm sensitive to Cu stress.

They used it for estimating the Cu concentration in Carex leaves using hyperspec-

tral data [115]. In a recent study, Wavelet Transform (WT) was used to decompose

the visible-near infrared (400 nm – 1000 nm) to extract features for prediction of

heavy metals content by deep learning in lettuce leaves [116]. Findings of vari-

ous research show that WT performs well in extracting weak spectral signals by

suppressing spectral noises and can perform well in selecting characteristic wave-

lengths associated with heavy metal stress. The wavelet coefficients of hyperspec-

tral reflectance are less sensitive to external environments, instrument noise inter-

ference, and leaf structures, thus enhancing their correlation with biochemical and

biophysical vegetation parameters [116]. Conversely, research utilizing sensitive

spectral features and determining effective characteristic wavelengths for heavy

metal stress is still being determined.

The main challenge in heavy metal detection over a wide area is upscaling

non-imaging in-field spectroscopy data to classify airborne hyperspectral data.

The use of classification techniques like SVM (support vector machine) and Neu-

ral networks has limitations like a large amount of training data and computa-
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tional cost. In this regard, the wavelet decomposition method can help determine

the optimal wavelength region affected by heavy metal stress. The spectral match-

ing of the training spectra with those obtained from airborne hyperspectral can

provide insight into the level of heavy metal in the vegetation. This study pro-

poses a new approach to trace the changes in reflectance patterns using dynamic

spectral warping (DSW) based on conventional dynamic time warping (DTW) to

overcome the challenges in heavy metal detection. In the past, DTW has been

utilized for speech and biomedical signal recognition [117][118]. Also, several re-

searchers have used DTW in the field of remote sensing. Maus et al. [119] used

this algorithm for land use and land cover mapping, and Petitjean [120] used the

DTW method for time series analysis using satellite data. Moola et al. used DTW

to map vegetables from time series of Sentinel 1a images [121]. The researchers

are yet to try mapping heavy metal presence by spectral pattern matching using

wavelength intervals instead of the time interval.

1.4 Soil clay mineralogy

Soil is a dynamic and vital element of the natural ecosystem. It supports a diverse

spectrum of species and is essential for plant development, breakdown, and the

recycling of microbial biomass. Knowledge of different constituents of soil plays a

vital role in various activities like agricultural planning and urban development.

Clay minerals, with less than two µm sized particles, are one of the critical con-

stituents of the soil. They are formed due to hydrothermal alteration and weath-

ering of the rocks [122]. Clay minerals influence different chemical and physi-

cal properties of soil, like the availability of nutrients, water retention capacity,

and soil permeability [123]. These are secondary minerals defined as alumino-

silicate or aluminum phyllosilicate with SiO4 tetrahedra sheet as basic structural

units [124]. The major groups of clay minerals present in the soil environment

include layer and chain silicates based on the number of tetrahedral and octahe-

dral sheets and their arrangements. Kaolinite, illite, and montmorillonite are the

principal clay minerals influencing soil properties. They are layer silicates with

20



1 : 1 arrangement in kaolinite and 2 : 1 in montmorillonite and illite. Among

them, montmorillonite is expanding clay belonging to the smectite group of clay

minerals, and illite is non-expanding clay. The expanding clays have some promi-

nent characteristics like high cation exchange capacity, swelling, and shrinkage

capacity, which improves the soil structure and fertility, thus increasing crop pro-

ductivity. The illite has a cation exchange capacity lower than montmorillonite

but higher than kaolinite [122]. The study of the relative distribution of clay min-

erals in agricultural soil is of utmost importance for agricultural policy-making

and land use planning. It is also crucial for ecological conservation as the soil is

under tremendous strain from pollution, and soil deterioration makes it vulnera-

ble to erosion [125].

Practical methods are required for mapping different clay minerals and their

characterization. Traditional field and laboratory analyses are costly, tedious, and

time-consuming and are usually limited to a few samples and fields, and lack in-

formation on the spatial variability of soil [126]. Remote sensing techniques are

fast and cost-effective for retrieving soil properties for better soil interpretations.

Remote sensing data facilitates soil mapping over large areas, even with rugged

terrain otherwise inaccessible through field surveys. Researchers have used re-

mote sensing techniques for soil studies in recent decades due to broader cover-

age of inaccessible areas and less cost [127]. The advancement to hyperspectral

remote sensing or imaging spectroscopy has widened the scope of remote sens-

ing in mapping earth surface features due to its improved spectral and spatial

resolution [127][128]. A hyperspectral sensor that provides detailed information

about the surface features at various wavelengths helps to map soil mineralogical

features [126] like clay minerals [129][130]. Various soil scientists and researchers

have tried to quantify the information about clay minerals from reflectance spec-

tra using different methods.

1.4.1 Review of the work done in clay mineralogy

Remote sensing is an effective tool for monitoring soil and its constituents over

a large area at a timely interval [131]. Continuous reflectance data with a small
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spectral interval from hyperspectral sensors contains information about different

soil properties [131]. The specific absorption features at a particular wavelength

determine the characteristics of the soil [132] [133]. Various researcher has utilized

these advanced remote sensing techniques to quantitatively estimate soil proper-

ties such as soil calcium carbonate [134], soil organic matter [135], exchangeable

potassium [136], soil organic carbon [137] and soil clay minerals [138][139]. Gilles

et al. analyzed the abundance of different soil clay minerals. They compared

XRD measurements with estimations from spectroscopy to estimate the potential

of field spectroscopy for geotechnical applications [140]. The most critical spec-

tral features for identifying and mapping clay minerals occur at the wavelengths

1200nm, 1400nm and 2200nm due to the metal-OH bonds [136][141] [142]. The

spectral features 1400 nm and 1900nm are influenced by water, making it difficult

to use [142]. To relate the observed spectra to clay mineral abundances, it is also

critical to understand the relationship between absorption strength and volume or

weight abundance of the clay minerals in the observed pixel [130]. The complexity

of reference spectra makes it challenging to quantify the information present, so

various statistical approaches are required [130][143]. Linear regression models

help to produce more accurate and updated soil property maps through large-

scale studies to relate field-measured variables such as clay content to surface

reflectance [143][144]. Mulder et al. tried to find the mineral abundances through

regression tree analysis using a range of 2100-2300 nm [145]. Garfangoli et al. uti-

lized high-resolution imagery from data from SIM-GA sensors to produce a high-

quality clay map [143]. These strategies, however, fall short in terms of providing

quantitative data. Moreover, difficult terrain, vegetation, and moisture variations

complicate this process over large areas. Therefore, integrated efforts to overcome

these challenges by combining airborne data with exact ground data from the lab-

oratory are a requisite for clay mineral abundance mapping for specific regions.
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1.5 Motivation of the work

Heavy metal pollution, especially in agriculture, has attracted considerable atten-

tion for sustainable development [10]. Heavy metals being non-degradable, mi-

grate and accumulate in agricultural soils and get transferred into the food chain

through crops grown on such soil. Heavy metal’s presence in food chains endan-

gers food safety and public health [20]. Furthermore, some contaminants accu-

mulate in leaf tissues, bringing stress and interrupting photosynthetic processes

in plants [82]. Due to the dynamic nature of these effects, early monitoring of

contaminants can allow suppressive interventions before severe and irreversible

vegetation and soil damage happens. In addition, vegetation spectral properties

are functions of plant bio parameters, and plants reveal sensitivity to these proper-

ties in different spectral ranges (VIS, NIR, and SWIR). By linking this relationship,

variation in the spectra of stressed vegetation can be remotely distinguished from

healthy vegetation using different methods. Remote sensing allows plant–metal

interaction studies and detects stress early, thus avoiding inevitable soil and plant

damage. It is necessary to detect and monitor the types of heavy metal pollutants

in a timely and effective manner for better crop management and environmen-

tal protection. Traditionally, heavy metal stress was assessed through soil testing,

crop tissue analysis, and long-term field trials, sequentially increasing the cost.

Remote sensing technology provides an efficient and economical means for heavy

metal detection over large areas [146] [147].

Many studies have shown that remote sensing monitors crops in controlled

laboratory conditions or specific field environments under heavy metal stress [28]

[29]. The spectral response of vegetation under heavy metal stress highlights the

importance of remote sensing in managing heavy metal-contaminated soils and

plants [30] [32]. These responses may be less prominent, but the spectrally sensi-

tive bands can be established through various analytical methods, including step-

wise multi-linear regression, partial least squares regression, and wavelet analy-

sis [83][96]. In-situ measured spectral reflectance forms the basis of hyperspectral

sensing of heavy metals. The close correlation between reflectance features and
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stress highlights the potential of using remote sensing to assess the type and de-

gree of damage. There has been significant progress in detecting heavy metals in

vegetation. However, findings acknowledge that more sensitive spectral param-

eters are needed to identify the precise level of heavy metal pollution in plants.

Most studies in this crucial regime have widely used ground-based hyperspec-

tral reflectance data for plant heavy metal detection through control experiments.

These data are used to develop spectral indices sensitive to heavy metal stress

in vegetation. However, most field-based experiments are confined to the local

ecosystem. Conversely, hyperspectral imaging sensors can provide broad spa-

tial and spectral information for large-scale vegetation monitoring across a re-

gion. Literature shows that spectral information about vegetation biochemical

and biophysical parameters under heavy metal pollution obtained from labora-

tory or controlled experiments are more accurate and sensitive [94][95][96]. These

field-scale approaches need more universality for stress monitoring over a vast

geographical area. None of the researchers have tried to integrate the higher ac-

curacy of field-level data with broad coverage of air-borne or space-borne sen-

sors in detecting the level of pollutants in "real-world" ecosystems. The questions

about using these field-scale approaches for monitoring heavy metal pollution in

vegetation still need to be explored. Most remote sensing methods can estimate

relatively severe plant stress, and field-based studies have limited scope, mak-

ing it difficult to develop general prediction mechanisms. Integrating field-based

studies with the airborne hyperspectral imaging technique can accurately assess

the heavy metal pollution in vegetation over a large spatial extent. This study

tries to develop an integrated method for detecting heavy metal pollution from

the field and hyperspectral data.

Soil consists of various chemically active components that affect the spectral

response pattern in different wavelengths. One of the vital constituents of soil is

clay minerals such as kaolinite, illite, and montmorillonite. The distribution and

dominance of various clay minerals affect soil’s chemical and physical properties,

like plasticity and cation exchange capacity, thereby affecting its overall quality

[148]. Hyperspectral remote sensing from airborne or space-borne platforms uti-
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lizing better spatial and spectral resolution can provide abundant clay minerals

over a geographical region [149]. Clay minerals exhibit specific absorption pat-

terns around 2210 nm, utilized for specific absorption studies [145]. The study

establishes that the depth of absorption peaks is related to the dominance of dif-

ferent clay minerals [134][142]. These absorption features are resistant to different

observation conditions and scales and provide a reasonable estimate of soil clay

minerals. Integrating hyperspectral datasets with lab-based data allows a quan-

titative approach to map the abundance of different clay minerals. Most of the

research in this field has tried to quantify total clay minerals in the soil, not con-

centrating on the distribution of different types of clay minerals. So, this study

explores the possibility of mapping the distribution of dominant clay minerals in

soil using high-resolution hyperspectral imagery obtained from the AVIRIS-NG

sensor. The main objective of the current research is to map the distribution of

dominant clay minerals present in the agricultural soils in the Udaipur region in

the Rajasthan and Ambaji region of Gujarat using airborne hyperspectral data.

1.6 Research objectives

The two primary research objectives defined for the thesis are:

1. Heavy metal mapping in cotton and tobacco crops using biochemical and

spectral information derived from hyperspectral data.

2. Clay mineral abundance mapping using a combination of hyperspectral data

and X-Ray Diffraction (XRD) analysis data.

1.7 Scope and accomplishments of the thesis

In this thesis, we have defined two primary objectives. Our first objective is mon-

itoring heavy metal pollution in vegetation, accomplished in three steps. The first

step is to study the biochemical and spectral behavior in cotton and tobacco con-

taminated with Pb and Cd heavy metals through the control experiment. This

study will provide the basis for further heavy metal mapping using satellite data.
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The second goal is to classify the hyperspectral data for the crops under study

using the airborne hyperspectral data for the Anand and Surendranagar district

of Gujarat. Based on the dominance of specific crops for the particular study area,

tobacco, and cotton were classified for Anand and Surendranagar, respectively,

using an autoencoder and artificial neural network. The third objective is to map

Cd pollution in tobacco in the Anand region and Pb pollution in cotton in the

Surendranagar region using airborne AVIRIS-NG data. Heavy metal pollution

mapping was done using the dynamic spectral warping technique. The training

set with different heavy metal levels from the pot experiment was compared with

unknown crop pixels from the study area. The second objective is clay mineral

abundance mapping which is completed in three different steps—the first step is

the identification of dominant clay mineral zones from AVIRIS -NG data for se-

lecting soil sampling sites: the second step is ground truth collection and XRD

of collected soil samples to identify the proportion of dominant minerals. The

third step includes statistical analysis that relates the absorption peak depth with

the dominance of various clay minerals from airborne hyperspectral data to pre-

pare a mineral abundance map for the study area. The findings are discussed in

subsequent chpaters in this thesis.

1.8 Organization of thesis chapters

The thesis is structured in nine chapters, as represented in Figure 1.2.

Chapter 1

This includes the introduction of the thesis, primary research objectives, and mo-

tivation of the work, with a detailed literature survey on heavy metal detection in

vegetation and soil clay mineral mapping using hyperspectral data.
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Figure 1.2: Organization of thesis chapter

Chapter 2

This covers the study area and datasets used for different objectives. It also covers

the methodology of both research objectives.

Chapter 3

This presents the control pot experiment and results from different biochemical

and spectral analyses and their correlation.

Chapter 4

This focuses on the classification of airborne hyperspectral data for the crops un-

der investigation using the AE - Artificial Neural Network (ANN) approach and

the classification results.
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Chapter 5

This covers heavy metal pollution mapping using airborne hyperspectral data.

DSW algorithm is used in this chapter to map the Pb pollution in cotton at Suren-

dranagar and Cd pollution in tobacco at Anand.

Chapter 6

This describes the sampling site selection for soil clay mineral mapping using

hyperspectral data.

Chapter 7

This covers the preliminary laboratory analysis and XRD of soil clay minerals in

the selected samples.

Chapter 8

This discusses Mineral abundance mapping for Udaipur and Ambaji regions.

Chapter 9

This includes the conclusion, general remarks and future scope of work.
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CHAPTER 2

Study area and dataset used

This research has two different objectives. The study area was selected consider-

ing the goals of different objectives and the availability of hyperspectral data. For

the first objective, Pb is selected as the target heavy metal in the cotton crop at

Surendranagar and Cd for contamination in tobacco crops to study heavy metal

contamination. Figure 2.1 represents the Anand and Surendranagar study areas

for heavy metal pollution detection in tobacco and cotton, respectively. Similarly,

for the second objective, montmorillonite, kaolinite, and illite were selected as tar-

get clay minerals in Ambaji and Udaipur areas, as shown in Figure 2.2. Table 2.1

summarizes different study areas and data used for different objectives.

2.1 Study area

2.1.1 Anand

The study area for Cd pollution in tobacco is Anand district, between 22° 30’ 43”

N to 72° 56’ 56” E and 22° 33’ 14” N to 72° 59’ 22” E, in Gujarat, popularly known

as the milk capital of India. It is also known for its industrial belt, with different

industries contributing to heavy metal pollution. The region has a semi-arid to

arid climate with tobacco as a major crop and is well known for exporting prod-

ucts with the finest quality of tobacco.
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Table 2.1: Study areas and Data used for different research objectives

Study area Target Heavy Metals/
Clay minerals

Data

Anand Heavy metal contam-
ination in Tobacco
plants

Pb and Cd AVIRIS-NG
Data and Bio-
chemical Data

Surendranagar Heavy metal con-
tamination in cotton
plants

Pb and Cd AVIRIS-NG
Data and Bio-
chemical Data

Ambaji Clay mineralogy Montmorillonite,
Kaolinite, Illite

AVIRIS-NG
Data and XRD
Data

Udaipur Clay mineralogy Montmorillonite,
Kaolinite, Illite

AVIRIS-NG
Data and XRD
Data

2.1.2 Surendranagar

The study area selected for detecting heavy metal pollution in cotton crops is part

of the Surendranagar district, situated in the very center of Gujarat state of India,

between 22° 32’ 51” N to 71° 35’ 16” E and 22° 43’ 42” N to 71° 38’ 16” E. It is an

agricultural district with a subtropical climate, and cotton is the major cash crop

grown here.

Figure 2.1: Study area for heavy metal detection in crops of Surendranagar and
Anand district of Gujarat
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Figure 2.2: Study area for clay mineral abundance mapping at Ambaji in Ba-
naskantha district of Gujarat and Udaipur district in Rajasthan

2.1.3 Udaipur

The study area is a part of Udaipur District, Rajasthan, India, between 23° 58’ 71”

N to 73° 31’ 45” E and 24° 1’ 47” N to 73° 38’ 26” E. Geologically, the study area is a

part of the Aravalli Supergroup [150]with an abundance of minerals like talc, iron,

and clay minerals. It has a semi-arid climate with a dominant land use category

consisting of agricultural (crops and orchards) and fallow land (uncultivated and

wastelands).

2.1.4 Ambaji

The study area for mineral mapping is a part of the Ambaji region, between 24°

13’ 22" N to 72° 30’ 12" E and 24° 17’ 10" N to 72° 36’ 52" E, falling under the

Banaskantha district in north Gujarat, India. It belongs to Delhi supergroups and

is well known for the occurrence of base metals Pb, zinc, and copper [151][150].

Mineralization occurs in metamorphosed magnesian and calc-magnesian rocks.

It has a semi-arid climate supporting different crops like maize, bajra, and castor.
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Table 2.2: Specifications of AVIRIS-NG

Parameter Value
Wavelength 380-2510 nm
Spectral resolution 5 nm
Spatial Resolution 8 m
Swath 6 km
Altitude of flight 6-7 Km

2.2 Dataset

2.2.1 Hyperspectral data

This study uses hyperspectral data from AVIRIS-NG sensor on an airborne plat-

form acquired between 4-10 February 2016 over different study areas [152]. AVIRIS-

NG can be considered the most advanced dataset free from keystone and smile

error distortions (Jet propulsion Laboratory (JPL), NASA, 2015) due to its better

specifications described in Table 2.2. The dataset contains 425 spectral bands in

the wavelength range of 380-2500 nm with 5 nm spectral resolution. We have used

the radiometrically and geometrically corrected level-2 AVIRIS-NG data to fulfill

different research objectives of this thesis.

2.2.2 Biochemical and X-ray diffraction data

The Pb and Cd content of leaves and soil was measured in the laboratory us-

ing Inductively coupled plasma-atomic emission spectroscopy (ICP-AES). X-ray

diffraction analysis of soil samples for clay minerals was done in the laboratory

using an x-ray diffractometer after processing of samples according to the labora-

tory manual from US geological survey [153].

2.3 Methodology

We have adopted two different approaches for both the objectives of this thesis.
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2.3.1 First objective

Figure 2.3 summarizes the methodology of the first objective, i.e., to detect heavy

metal in crops. It was done in three steps. The first step was to generate reference

data from pot experiments for the target heavy metals in crops under study. The

second step was pre-processing and classifying cotton and tobacco crops from

hyperspectral data over the study area. The third and final step was to use the

DSW algorithm for spectral matching of pixels from airborne hyperspectral data

with reference spectra generated from the pot experiment. The details of each step

are provided in different chapters of the thesis.

Figure 2.3: Methodology for heavy metal detection in vegetation

2.3.2 Second objective

For clay mineral abundance mapping using hyperspectral data, the adopted method-

ology is divided into three main parts:

• Identifying clay mineral dominant area from AVIRIS-NG data
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• Establishing a relation using ground points

• Mineral abundance mapping

These are discussed in detail in subsequent chapters.

Figure 2.4: Methodology for clay mineral abundance mapping using AVIRIS-NG
hyperspectral data

Figure 2.4 depicts the methodology adopted for mineral abundance mapping

in various steps. First, sites were selected for soil sample collection correspond-

ing to three dominant clay minerals from AVIRIS-NG data using SFF analysis.

Then X-ray diffraction analysis of soil samples was carried out. Furthermore, clay

mineral abundance maps are prepared for the study areas using regression analy-

sis between absorption peak depth value and clay mineral content obtained from

XRD.
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CHAPTER 3

Controlled Pot Experiment
1

3.1 Problem statement

Cd and Pb heavy metals are non-essential for the growth and metabolism of living

organisms. Plants are an essential indicator of heavy metal pollution in a specific

region as they absorb and accumulate them. Timely assessment of heavy metals

can provide information on plant behavior, which can help to protect the envi-

ronment. Field-based methods of assessing heavy metal contamination are costly

and labor-intensive and can be helpful on a small scale. However, remote sens-

ing methods help real-time heavy metal detection over large areas. Selection of

the spectral bands most sensitive to heavy metal content is a prerequisite for the

success of heavy metal retrieval from remotely sensed imagery. The most influen-

tial bands selected governs the accuracy of predicting and mapping heavy metal

concentration. This selection is critical with hyperspectral data as there is a high

degree of data redundancy among hundreds of available bands.

Several studies have incorporated pot experiments to study the response of

leaf reflectance on the field level [92][154]. Mapping of heavy metal concentration

over a large area using this field-level approach is yet to be attempted. Under-

standing the overall spectral and biochemical response of plants due to the pres-

ence of heavy metals is crucial for successful mapping using satellite data. As

field level spectra with different levels of heavy metal in tobacco and cotton are

1Parts of this chapter is published in the following paper:
Priya, S. and Ghosh, R., "Monitoring effects of heavy metal stress on biochemical and spectral
parameters of cotton using hyperspectral reflectance", Environmental Monitoring and Assessment,
195(1), p.112, 2023.
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not sufficiently available, we conducted this control experiment to generate train-

ing sets with different levels of Pb and Cd. The cotton and tobacco crops were

selected due to their presence in Surendranagar and Anand districts. The effects

of Pb and Cd in cotton and tobacco were established by the crop’s biochemical

and spectral response after artificially contaminating the soil with different levels

of Pb and Cd. The spectral details are further used to detect the level of heavy

metal pollution from airborne hyperspectral data.

This experiment aims to determine the sensitivity of cotton and tobacco plant

to different levels of Cd and Pb and compare their spectral differences with healthy

leaf samples through a combined approach utilizing field-based data and spectral

analysis. Altogether, the main aim of this research is to determine (1) the prefer-

ential absorption pattern of cotton and tobacco for Pb and Cd, (2) the crop growth

stage most sensitive to heavy metal (3) the wavelength region most affected due to

heavy metal stress and (4) generating training features for mapping heavy metal

pollution.

3.2 Material and methods

A controlled pot experiment using a Completely Randomized Design (CRD) has

been conducted at the Sardarkrushinagar-Dantiwada Agricultural University (SDAU),

Palanpur to study the effects of Pb and Cd on cotton crops and tobacco crops.

Experiments were conducted outdoors in a net house. Cement pots with a soil

capacity of 17 kg, which is adequate for crop growth, were selected for this ex-

periment. Pots were filled with well-pulverized and fine-textured soil free from

pebbles, leaves, or stones. The soil was artificially contaminated with Analytical

Reagent (AR) grade chemicals CdSO4 for Cd and Pb(NO3)2 for Pb with 0, 5, 10,

and 15 ppm of Pb and Cd. The heavy metal levels were decided through soil

conditions and literature studies [58][96]. The treatment details are given below:

• T1: Control

• T2: 5 ppm Pb
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• T3: 10 ppm Pb

• T4:15 ppm Pb

• T5: 5 ppm Cd

• T6:10 ppm Cd

• T7: 15 ppm Cd

The heavy metals were distributed uniformly through the soil after mixing,

and the soil was kept undisturbed for 15 days for stabilization. The sterilized

and cleaned cotton seeds are sown in the pots. Small tobacco seeds were first

grown in the nursery, and 30 days old, seedlings were used for transplanting.

Each treatment was replicated three times. Figure 3.1 shows a schematic of the

applied treatments and replications. After the germination of the crops, only two

plants were kept in the pots, and others were weeded out. All other agricultural

applications, such as watering, fertilization, and pest control, were kept uniform

for each treatment to capture the heavy metal effects. These pots were kept in

a net house with proper sunlight for better growth, as shown in Figure 3.2a and

Figure 3.2b.

Various observations were recorded at the vegetative stage 35 Days After Sow-

ing (DAS), the flowering stage 65 DAS and the harvest stage 95 DAS in cotton

and early vegetative stage, 30 Days After Transplanting (DAT), and the maximum

growth stage 75 DAT, maturity stage 120 DAT in tobacco.

3.3 Biochemical measurements

3.3.1 Chlorophyll content

The middle portion of the fresh leaves was taken to the laboratory, and chloro-

phyll was estimated as per the procedure given by Moran [155]. 0.1 g of leaves

were weighed with the help of electronic balance and crushed in a mortar and

pestle using 80 % acetone. It was filtered with Whatman no 4-filter paper, and the
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Figure 3.1: Schematic design of the treatment for each crop in a pot experiment

(a) Pot experiment for cotton
crop

(b) Pot experiment for to-
bacco crop

(c) ASD readings taken dur-
ing pot experiment

Figure 3.2: Pot experiment for cotton and tobacco crop
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volume was made to 10 ml using 80% acetone. Spectrophotometer was used, and

chlorophyll a (chl a), chlorophyll b (chl b), and total chlorophyll (chl a+b)content

were measured using the following formula:

chl(a) = [12.7 ∗ Ab(663)− 2.69 ∗ Ab(645)]
V

1000 ∗ W
(3.1)

chl(b) = [22.9 ∗ Ab(645)− 4.68 ∗ Ab(663)]
V

1000 ∗ W
(3.2)

chl(a + b) = [20.2 ∗ Ab(645) + 8.02 ∗ Ab(663)]
V

1000 ∗ W
(3.3)

Where,
Ab(645) = absorbance at 645 nm

Ab(663) = absorbance at 663 nm

V=Volume made up (ml) W=weight of sample taken (g)

The final volume is expressed in mg.g−1 fresh weight of leaves.

3.3.2 Heavy metal content

Two sets of leaf samples were taken, one for chlorophyll estimation and the other

for heavy metal analysis twice during the complete growth cycle. After wash-

ing with distilled water, chlorophyll estimation of the fresh leaves was done in

the lab. The oven-dried and ground leaf samples were analyzed for Pb and Cd

heavy metals in the laboratory using Inductively Coupled Plasma/Atomic Emis-

sion Spectroscopy (ICP/AES) methods. All results are expressed in mg.kg−1 of

heavy metals of dried samples. After the digestion of dried soil samples, soil

samples were also analyzed for Cd and Pb.

3.3.3 Transfer Factor (TF)

The Transfer Factor (TF) is calculated to estimate Pb and Cd uptake in leaves of

tobacco and cotton. It is defined as the ratio of heavy metal present in plants to
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heavy metal present in soil [156].

TF =
Heavy metal concentration in plant(mg.kg−1)

Heavy metal concentration in soil(mg.kg−1)
(3.4)

A higher value of TF indicates more absorption of that heavy metal in plants.

3.4 Spectral measurements

Spectral reflectance measurements were done using ASD (Analytical Spectral De-

vices, Inc., Boulder, CO, USA), as shown in Figure 3.2c. with a 25º Field of View

(FOV) through a permanent fiber optic probe. It is sensitive to the wavelength

range of 350–2500 nm, having a sampling interval of 1.4 nm between 350 –1000 nm

and 2 nm between 1000 –2500 nm and a spectral resolution of 3 nm (@ 350–1000

nm), 8.5 nm (@ 1000–1900 nm), and 6.5 nm (@ 1900–2500 nm). An average of 20

spectra was taken from each pot to study the effects of Pb and Cd on spectral re-

flectance. After each spectral measurement, those leaves were used for the lab’s

chlorophyll and heavy metal analysis. The spectral range was limited to 400-1000

nm because the plant responds to stress in this range [157]. Spectral observations

were recorded at the vegetative stage 35 DAS, the flowering stage 65 DAS, and

the maturity stage 95 DAS. All spectral measurements were taken by placing the

pistol above the leaves in the net house between 1000 to 1100 hrs on clear sunny

days. All the reflectance spectra were calibrated against a white spectralon panel.

3.4.1 First derivative analysis

The first derivative can strengthen the changes caused by heavy metal stress and

minimize the background noise. The first derivative of spectra was calculated as

the rate of change for reflectance to change in wavelength [158].

3.4.2 Wavelet analysis

The wavelet transform was used to decompose reflectance spectra to amplify the

heavy metal stress. The high pass filter provides detailed coefficients, and the
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low pass filter gives approximation coefficients at different levels. Noise is sepa-

rated from beneficial structural changes carrying viable information by increasing

the decomposition levels [115]. Detailed wavelet coefficients can capture minute

changes in the spectra to diagnose stress caused by heavy metals. The detail re-

flectance is reconstructed by upsampling and filtering detail coefficient vectors as

per the process described by Misiti et al [159]. The reconstructed detail reflectance

having similar dimensions as the original reflectance is used for further efficient

spectral analysis.

(ϕ(a, b)(t) =
1√
a

ϕ(
t − b

a
) (3.5)

Where wavelet ϕ(t) is called the mother wavelet, a is the scaling parame-

ter, and b is the shifting parameter. Based on previous research findings, the

Daubechies wavelet (db5, 5 is the order) was found to be the most appropriate

for reflectance signal analysis [114][115].

3.5 Statistical analysis

The three replications were used for statistical analysis. Biochemical parameters

were statistically tested for significance through analysis of variance (ANOVA) in

Microsoft Excel. Tukey’s HSD test is used for post hoc analysis. Pearson’s Corre-

lation coefficient (r) was computed for each treatment between spectral variables

(reflectance spectra, its first derivative, and reconstructed detailed wavelet coef-

ficients and leaf-metal concentration to find the sensitive wavelength range due

to heavy metal stress [96]. The spectral analysis, like wavelet transforms and first

derivative analysis, was done using MATLAB.

3.6 Results and discussion

3.6.1 Chlorophyll content

Chlorophyll pigment plays a vital role in photosynthesis. Chlorophyll a and b are

the two major pigments found in higher plants. During the complete lifecycle of a
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healthy plant, chlorophyll concentrations are lower at the beginning of the plant’s

growth cycle, rise during the plant’s maximum growth, then fall at maturity due

to the yellowing of leaves. Analysis of the chlorophyll concentration in the two

crops at different stages of development revealed the same consistent pattern, as

illustrated in Figure 3.3 and Figure 3.4, respectively. The pot experiment results re-

vealed that chlorophyll content increased with the plant’s growth but significantly

decreased in response to rising levels of Cd and Pb. The assessment of cotton and

tobacco crops for the impact of Pb and Cd treatments on various chlorophyll pig-

ments at different growth stages yields some distinct results, which are compiled

here.

Chlorophyll content in cotton

Chlorophyll content decreased during different stages of cotton growth due to the

varying levels of Pb and Cd compared to the control depicted in Figure 3.3. Table

3.1 shows the impact of different Pb and Cd treatments on various chlorophyll

pigments in cotton plants at various stages of development.

Table 3.1: Effect of various concentrations of Pb and Cd treatment on Chlorophyll
content (mg.g−1 of fresh weight) of cotton at different growth stages 1 2

Treatments
(ppm)

Vegetative Flowering
and Boll for-
mation

Harvest

Chl a Chl b Chl
(a+b)

Chl a Chl b Chl
(a+b)

Chl a Chl b Chl
(a+b)

Control 0 1.95a 0.86a 2.81a 2.45a 0.94a 3.38a 1.63a 0.66a 2.30a

Pb
5 1.74c 0.79bc 2.53c 2.07c 0.87b 2.94c 1.54c 0.60bc 2.14c

10 1.43e 0.67d 2.10e 1.98d 0.82c 2.79d 1.46e 0.57cd 2.04d

15 1.28 f 0.59e 1.95 f 1.73e 0.74d 2.47e 1.32g 0.53e 1.85e

Cd
5 1.81b 0.83ab 2.64b 2.26b 0.87b 3.13b 1.57b 0.62b 2.20b

10 1.78bc 0.77c 2.55c 2.17b 0.77cd 2.94c 1.48d 0.58c 2.07d

15 1.60d 0.65d 2.25d 2.06cd 0.73d 2.79d 1.35 f 0.54de 1.90e

1 Mean of three replicates are shown
2 Significance at p < 0.05 is indicated by different letters in the same column using

Tukey Honestly Significance Difference (HSD) test

The findings demonstrate that Pb treatments had a more pronounced impact

on cotton’s chlorophyll content than Cd treatments. The total chlorophyll concen-
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tration at the vegetative stage showed a reduction of 10-30% due to Pb (5 ppm) to

Pb (15 ppm) treatments but only 6-20% due to Cd (5 ppm) to Cd (15 ppm) treat-

ments. Even low-concentration Pb treatments had caused a significant decrease in

the chlorophyll (chlorophyll a, chlorophyll b, total chlorophyll) content, and the

effects intensified as the level of heavy metals increased. Among the two chloro-

phyll components, the adverse effect of Pb is more significant on chlorophyll a,

which serves as the primary pigment in photosynthesis, playing an essential role

in electron transport [160].

The lowest chlorophyll a was recorded at the highest Pb level of 15 ppm (34%

of control) at the vegetative stage, severely damaging the photosynthetic appara-

tus. Several studies have reported that the presence of Pb slows down the rate

of photosynthesis in plants by modifying the chloroplast’s ultrastructure, inhibit-

ing chlorophyll’s production, impeding electron transport, and obstructing the

Calvin cycle enzymes [161][162]. One of the studies revealed a decrease in chloro-

phyll concentration due to higher Pb - 800 Micromolar (µM) treatment compared

to control in Citrus aurantium treated with different levels of Pb [39]. A pot culture

with 75, 150, and 300 mg.l−1 Pb applications, with three replications, showed a

negative effect of Pb on the chlorophyll concentration of eggplant seedlings [51].

Heavy metal-induced reduction of chlorophyll concentration is observed in

many plant species [50][52]. Heavy metal’s presence reduces chlorophyll biosyn-

thesis by reducing the uptake of essential elements such as magnesium and iron

[163]. Several studies showed that stress caused by Pb and Cd could destroy the

structure of chlorophyll by substituting the central Mg ion and causing a break-

down of photosynthesis [164][165][166]. A study by Lal et al. revealed the toxic

effects of Cd and Pb treatments on two cotton genotypes (Desi cotton and Bt

cotton)[167]. Malar et al. reported more than 50 % reduction in chlorophyll a

and b in 1000 mg.l−1 Pb treated water hyacinth plant compared to the control

[168]. A laboratory scale experiment conducted on the aquatic plant Ceratophyl-

lum demersum L. with different Pb concentrations (2, 4, and 6 mg.l−1 ) showed a

noticeable decrease in the chlorophyll with increasing Pb concentration initially

[47]. The change in chlorophyll concentration was also analyzed across different
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Figure 3.3: Chlorophyll concentration in cotton with different levels of Pb and Cd
at different growth stages

plant growth stages.

A diminishing impact of Pb treatment was noticed in chlorophyll concentra-

tion from the vegetative to the harvest stage. The reduction in chlorophyll a, b,

a+b was higher due to Pb 15 ppm treatment at the vegetative stage compared to

the harvesting stage. This reduction was highest in chlorophyll a concentration

across the growth stages. This implies that in early growth stages, more Pb is

absorbed by leaves than in later stages. Over successive growth stages, as the

buildup of Pb in the leaves subsequently diminished, the Pb treatment’s impact

on the chlorophyll a concentration also dropped significantly [169][170]. The poor

solubility of Pb-compounds, which results in less Pb translocation in leaves as

crop height rises, is reported to be the cause of the higher initial presence of Pb

[171].

Chlorophyll content of tobacco

The chlorophyll concentration in tobacco showed a concentration-dependent re-

sponse to different levels of Pb and Cd at different growth stages depicted in Fig-

ure 3.4. The chlorophyll a, b, and (a+b) content in tobacco leaves decreased under

various Pb and Cd treatments, as represented in Table 3.2.
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Table 3.2: Effect of various concentrations of Pb and Cd treatment on Chlorophyll
content (mg.g−1 of fresh weight) of fresh weight) of tobacco at different growth
stages 1 2

Treatments
(ppm)

Early Vegeta-
tive

Maximum
growth

Maturity

Chl a Chl b Chl
(a+b)

Chl a Chl b Chl
(a+b)

Chl a Chl b Chl
(a+b)

Control 0 1.21a 0.72a 1.93a 1.17a 1.20a 2.37a 0.47a 0.58a 1.05a

Pb
5 1.14ab 0.63b 1.77b 1.07b 1.08b 2.15b 0.45ab 0.48b 0.92b

10 1.03c 0.46c 1.49c 1.03bc 1.04b 2.07c 0.38bc 0.44bc 0.83c

15 0.92d 0.37d 1.29d 0.86d 0.83d 1.69e 0.33c 0.35d 0.68e

Cd
5 1.05bc 0.49c 1.55c 0.98c 0.95c 1.93d 0.36c 0.40cd 0.76d

10 0.88d 0.34d 1.22d 0.77e 0.70e 1.47 f 0.24d 0.22e 0.46 f

15 0.73e 0.20e 0.93e 0.65 f 0.52 f 1.16g 0.14e 0.10 f 0.24g

1 Mean of three replicates are shown
2 Significance at p < 0.05 is indicated by different letters in the same column using

Tukey HSD test

The response of tobacco plants to changes in chlorophyll concentration with

different heavy metal treatments differed remarkably from cotton plants. A re-

duction was attributable to heavy metal application in chlorophyll a and chloro-

phyll b. The Cd treatments were more toxic and resulted in a higher reduction in

chlorophyll content. There was nearly 24, 35 and 41% decrease in chlorophyll a,

chlorophyll b, and Chlorophyll (a+b) with Pb (15 ppm) treatment and a 48, 51 and

72 % decrease in chlorophyll a, chlorophyll b, and chlorophyll (a+b) with Cd (15

ppm) treatment from control pot during the early growth stage. The presence of

Cd decreased chlorophyll b concentration by 82 % during the harvesting phase.

Various studies have reported the deleterious effects of Cd on chlorophyll content

due to the inhibition of enzymes involved in chlorophyll biosynthesis [172][173].

Moreover, when Cd was applied, chlorophyll b concentrations significantly

decreased. These findings supported past research that Cd impeded chlorophyll

production resulting in senescence [174]. Our findings concur with those of Wa-

heed et al., who confirmed that at 1.5, 3, 6, and 30 mol.l−1 of Cd application,

the chlorophyll concentration decreased by 25, 27, 35, and 52 %, respectively. In

contrast, the Chlorophyll b concentration decreased by 18, 42, 45, and 63 %, re-

spectively, in E. sativa plants treated with different levels of Cd [175]. The ad-
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Figure 3.4: Chlorophyll concentration in tobacco with different levels of Pb and
Cd at different growth stages

verse effect of Cd on chlorophyll pigments was high during the maturity stage

of tobacco compared to the vegetative and maximum growth stage, especially in

chlorophyll b, which decreased 83 % from control due to more buildup of Cd in

leaves of tobacco during the maturity stage. Photosynthesis is a vital metabolic

process negatively impacted by various heavy metals [176][177].

Photosynthetic inhibition during Cd stress is one of the primary actions in

plants because they invariably affect photosynthetic apparatus and its functions,

diminishing chlorophyll synthesis and inhibiting activities of the Calvin cycle ei-

ther directly or indirectly, by inhibiting both light and dark reactions of photosyn-

thesis [177]. Various plant species show different patterns of heavy metal uptake,

which may influence the biosynthesis of chlorophyll pigment. The heavy metals

build up in plants causes damage to photosynthetic machinery and may result in

photo-oxidative damage [178]. Therefore, chlorophyll pigments seem to be one of

the main reasons for heavy-metal injury in plants. The extent of injury depends on

the type and concentration of heavy metal as well as the developmental growth

stage of the plant.
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3.6.2 Heavy metal accumulation and transfer factor (TF)

The presence of heavy metal above a specific threshold in a plant can be toxic,

affecting the plant’s growth. Accumulation of heavy metals in plants depends on

factors such as the presence of heavy metals in the soil, their availability to plants,

and the plant species grown [179]. Plant’s uptake of heavy metals is an effective

way of responding to their toxic effects [180].

Heavy Metal Accumulation in Cotton

As shown in Table 3.3, exposure to increasing Pb and Cd levels enhanced their

accumulation in the cotton leaves.

Table 3.3: Accumulation of various concentrations of Pb and Cd (mg.kg−1 of
dry weight) in cotton crop and TF 1 2

Treatments
(ppm)

Pb in
soil

Pb in
plant

TF
for
Pb

Treatments
and lev-
els

Cd in
soil

Cd in
plant

TF

Control 0 19.87d 12.52d 0.58c Control 0 0.60d 0.17d 0.28a

Pb
5 26.38c 17.94c 0.67bc

Cd
5 5.43c 1.56c 0.29a

10 31.20b 22.00b 0.70b 10 11.20b 2.55b 0.23b

15 38.12a 37.18a 0.97a 15 14.90a 3.14a 0.21b

1 Mean of three replicates are shown
2 Significance at p < 0.05 is indicated by different letters in the same column using

Tukey HSD test

Figure 3.5 and Figure 3.6 shows the accumulation of Pb and Cd at different

growth stages in cotton leaves. The Pb accumulation was significantly higher at

Pb 15 ppm than the control, while the Cd accumulation was not so affected by

a higher level of Cd application clearly indicated in Figure 3.5 and Figure 3.6.

Such findings suggest a greater affinity of cotton to absorb higher levels of Pb,

also reported by Ramana et al.’s research on cotton plants with various levels of

Pb [180]. Various researchers have also reported that the cotton plant has an in-

creased ability to absorb Pb, Cd, and Zn [58][181]. The accumulation of Pb in the

cotton plant was highest during the vegetative stage compared to the harvesting

stage. The higher accumulation of Pb in the initial growth stages is related to Pb’s

immobile nature and constraints in Pb’s internal movement from roots to shoots
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and green leaves. This immobility of Pb is attributed to its strong ability to bind to

the carboxyl groups of galacturonic and glucuronic acids in the cell wall, limiting

the transport of this metal [182]. The lesser translocation of Pb to leaves due to in-

creased plant height at advanced growth stages can be related to the adaptability

of cotton to higher levels of Pb [172][183]. The results demonstrate that Pb absorp-

tion is high at the initial growth stage. A similar finding was reported by Rathod

et al. showing an increased Pb content at the initial growth stages of barley plants

[96].

The TF indicates metals’ transmission from soil to plant tissues. The TF was

0.97 for Pb 15 ppm for cotton and significantly differed from control and other

Pb treatments. The TF for Cd was very low and did not increase with increasing

concentration of Cd in soil, as shown in 3.3. The TF at various Pb levels differed

significantly from the control showing a higher uptake of Pb in cotton. At the

same time, the TF for Cd was not significant, indicating negligible absorption

of Cd in cotton plants. A higher TF value represents a higher metal absorption

from the soil by plants and its suitability for bio-monitoring and phytoextraction.

The lower values of TF indicate poor metal absorption from the soil [184]. The

heavy metals availability in plants is guided by the need for micronutrients and

the capacity to eliminate and absorb toxic elements. Different plant species and

their adaptation to different environmental conditions also affect the transmission

of heavy metals in plants [183] [185]. Cotton plants can be used as a dominant

species for studying Pb intake [58][181]; their use in phytoremediation can also be

further explored.

Heavy metal accumulation in tobacco

The pot experiment results on tobacco crops revealed a more significant accumu-

lation of Cd than Pb when both heavy metals were applied. Figure 3.7 and Figure

3.8 show the accumulation of Cd and Pb in tobacco leaves. As per Table 3.4, the

accumulation of Cd in tobacco leaves increased to 15.97 mg.kg−1 with increasing

concentration of metal in soil which is not the case with Pb.

In an experiment conducted in Anand by Mistri et al. with different crops,
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Figure 3.5: Pb accumulation at different growth stages of cotton

Figure 3.6: Cd accumulation at different growth stages of cotton
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Table 3.4: Accumulation of various concentrations of Pb and Cd (mg.kg−1 of
dry weight) in tobacco crop and TF 1 2

Treatments
and lev-
els

Pb in
soil

Pb in
plant

TF
for
Pb

Treatments
and lev-
els

Cd in
soil

Cd in
plant

TF

Control 0 6.22d 1.29d 0.20a Control 0 1.23d 0.67d 0.54c

Pb
5 11.23c 2.47c 0.22a

Cd
5 7.36c 6.06c 0.83b

10 16.72b 4.33b 0.25a 10 11.67b 10.77b 0.92ab

15 20.86a 7.73a 0.30a 15 16.28a 15.97a 0.98a

1 Mean of three replicates are shown
2 Significance at p < 0.05 is indicated by different letters in the same column using

Tukey HSD test

sunflower, cotton, tobacco, and castor, the extraction of heavy metals from soil

was highest in tobacco crops compared to other crops [186]. A study conducted

by Yang showed similar results in pot and field experiments on tobacco crops

with different Cd applications. Results reveal that Cd concentration was higher

in tobacco leaves compared to roots and stalks varying from 8.24 mg.kg−1 to 15.56

mg.kg−1 in tobacco leaves [187]. Various studies revealed that tobacco accumu-

lates higher levels of Cd and is relatively tolerant to this metal [188][189]. A study

by Rosen et al. revealed that tobacco leaves could accumulate more than 50% total

plant uptake of Cd [190]. Researchers established that migration of Cd from soil

to the leaves could be a permanent accumulation mechanism of tobacco plants,

describing the role of specific genes in higher accumulation and tolerance of Cd

in tobacco irrespective of varieties [75][191]. However, the plant’s mechanism of

accumulating Cd needs more study [192]. Due to the high accumulation of Cd,

the transfer factor of the tobacco plant was found to be significant compared to

the control. Its value increased significantly from 0.54 in the control to 0.98 in

the highest Cd treatment, as given in Table 3.4. The TF for Pb in tobacco is non-

significant as there was no increase in the Pb content of tobacco leaves with an in-

crease in Pb content in the soil. Such high TF of tobacco for Cd has been reported

by various researchers [189][190] [193]. Plants with very high TF are considered

hyperaccumulators and can play a role in the phytoremediation of soil [187].
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Figure 3.7: Cd accumulation at different growth stages of tobacco

Figure 3.8: Pb accumulation at different growth stages of tobacco
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3.6.3 Spectral analysis of cotton and tobacco

Plants acts as an excellent indicator for detecting heavy metal ions present in the

soil. Uptake of heavy metal by plants results in some biochemical changes, such as

changes in chlorophyll content and in the leaf internal structure, inducing changes

in the spectral properties in heavy metal-contaminated plants [194]. The spectral

reflectance over a continuous wavelength region provides relevant spectral fea-

tures to assess changes occurring in vegetation due to heavy metal contamination.

Spectral readings were taken for each treatment of cotton and tobacco plants. The

readings from the three replication with different levels of Pb and Cd were used

for further spectral as well as correlation analysis.The results from the pot exper-

iment revealed more accumulation of Pb in leaves of cotton and Cd in tobacco.

In contrast, the accumulation of Cd in cotton and Pb in tobacco was negligible.

This result forms the basis for further spectral evaluation of the presence of Pb in

cotton and Cd in tobacco.

The pot experiment shows that with increase in levels of Pb and Cd their con-

centration increases in plant leaves. The chlorophyll content of the leaves de-

creases accordingly, indicating the effect of Pb and Cd . Such changes affects

the reflectance of plant at wavelength regions related to chlorophyll and water

content. The findings of previous research shows that the wavelength region in

red edge ( around 700nm ) and NIR (750-1000 nm) shows correlation with the

presence of heavy metal [24] [20]. The reflectance spectra collected from each Pb

treatment at different growth stages of cotton were indistinguishable. It indicates

that the presence of Pb could not induce changes in reflectance spectra at differ-

ent growth stages of cotton due to lower Pb absorption and higher growth rate at

later stages. Owing to the higher accumulation of Pb during the vegetative stage,

the cotton spectral observation only at the initial growth stage, i.e., the vegeta-

tive stage, was used for further spectral analysis to study Pb contamination. With

initial spectral observation at the vegetative stage in cotton, it was evident that

the reflectance spectra obtained at different levels of Pb could not capture signif-

icant changes due to Pb stress, as depicted in Figure 3.9. The correlation analysis

was performed to evaluate the impact of metal concentration on leaf reflectance.
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Based on the previous scientific findings strength of correlation was set as weak

( |r| < 0.39), moderate (0.40<|r|<0.59), and strong (|r|> 0.60) [195] [196]. The

correlation analysis between reflectance spectra at the early vegetative stage of

cotton and Pb indicated a non-significant correlation, presented in Figure 3.10.

Pot experiment results for tobacco revealed a higher accumulation of Cd at the

maturity stage. So, the maturity stage of tobacco is used for further spectral anal-

ysis to study the effect of Cd on spectral properties. The damage due to high Cd

levels in tobacco by studying the spectral properties in detail provides an insight

into the accurate wavelength region affected by heavy metal. The initial investi-

gation revealed that reflectance spectra do not show any distinct change due to

different Cd levels, as visualized in Figure 3.11. The correlation analysis between

reflectance spectra and Cd was not significant, as depicted in Figure 3.12.

Reflectance spectra of cotton contaminated with Pb and tobacco contaminated

with Cd do not show any distinct changes to assess the effective wavelength of

the electromagnetic spectrum affected due to Pb and Cd. Indistinct changes in

reflectance can be due to NO3 salt spiking, which favors chlorophyll biosynthesis

resulting in indistinguishable spectra from non-treated plants [96] or relatively

lower heavy metal accumulation to produce evident changes in the spectra [115].

Further analysis of spectra was needed to extract meaningful information.

The first derivative of the spectra was used for further spectral analysis to

enhance the subtle information about the effect of the heavy metals on spectral

properties. Studies have established that changes in peak and the magnitude of

first derivative spectra are due to the light scattering by leaf tissues due to chloro-

phyll absorption [197]. A shift in the red edge position towards a shorter wave-

length (blue shift) can indicate heavy metal stress. The first derivative spectra of

Pb in cotton and Cd in tobacco, as depicted in Figure 3.13 and Figure 3.15, do not

show any changes in peaks obtained between 700 nm and 715 nm. The corre-

lation analysis of the first derivative spectra with heavy metals also showed no

significant changes, as represented in Figure 3.14 and Figure 3.16. However, a

few researchers have reported that the blue shift might not exist in each case. The

absence of this shift can be due to the plant’s ability to grow even with heavy
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Figure 3.9: Reflectance spectra of cotton at various levels of Pb stress

Figure 3.10: Correlation analysis of reflectance with Pb concentration in cotton
leaves
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Figure 3.11: Reflectance spectra of tobacco at various levels of Cd stress

Figure 3.12: Correlation analysis of reflectance with Cd concentration in tobacco
leaves
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Figure 3.13: The first derivative showing the red edge position of cotton at various
levels of Pb

metal stress [198]. No distinct spectral changes were observed in standard re-

flectance spectra and the first derivative, indicating heavy metal stress in cotton

and tobacco. So further spectral analysis by wavelet decomposition of spectra was

carried out to estimate the wavelength region sensitive to Pb and Cd in cotton and

tobacco, respectively.

3.6.4 Wavelet analysis of spectra

Further wavelet decomposition of the spectra can extract and quantify the heavy

metal stress not so evident from the standard reflectance and its first derivative.

The wavelet decomposition provides detail and approximation coefficients. De-

tail wavelet coefficients can capture minute changes present in the reflectance sig-

nal. Therefore, the reconstructed detail reflectance obtained from upsampling of

detail coefficients having the same dimension as the original spectra were utilized

for further spectral analysis [100]. The reconstructed detail reflectance strengthens

the spectral variations at the third decomposition level (d3) [115].

The higher decomposition level resulted in a coarser spectral resolution and

increased loss of spectral information, while the lower decomposition level might
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Figure 3.14: Correlation analysis of the first derivative of cotton at various levels
of Pb

Figure 3.15: The first derivative showing the red edge position of tobacco at vari-
ous levels of Cd
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Figure 3.16: Correlation analysis of the first derivative of tobacco at various levels
of Cd

have more background noise. Figure 3.17 and Figure 3.19 represent the relation-

ship between Pb concentration in cotton and Cd concentration in tobacco at the

third decomposition level. The reconstructed detail reflectance shows a clear pat-

tern in amplitude change due to Pb levels in cotton and Cd levels in tobacco. The

large amplitudes of the detail reflectance in the control plant and small amplitude

with less discontinuity indicate variations associated with the different levels of

Pb in cotton and Cd in tobacco. The correlation analysis at a significance level

(alpha = 0.05), further quantifies the relation between the amplitudes of the detail

reflectance to find out the optimum wavelength region affected by the presence of

Pb in cotton and the presence of Cd in tobacco. The correlation sensitivity analysis

shows a significant correlation above -0.70 (r> -0.70, p<0.05) between 651-742 nm

due to Pb stress in cotton, given in Figure 3.18. Similarly, in tobacco, a significant

correlation above -0.85 (r> -0.85, p<0.05) was obtained in the wavelength region

between 631 -802 nm showing its sensitivity to Cd, represented in Figure3.20. The

correlation analysis revealed that subtle changes in the spectra due to heavy metal

not being visible in the original spectra or the first derivative could be quantified

by wavelet decomposition.

The spectral analysis establishes the exact wavelength region sensitive to Pb
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Figure 3.17: Reconstructed detail wavelet coefficients of cotton reflectance spectra
at various levels of Pb

Figure 3.18: Correlation analysis of wavelet coefficient with Pb concentration in
cotton leaves
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Figure 3.19: Reconstructed detail wavelet coefficients of tobacco reflectance spec-
tra at various levels of Cd

Figure 3.20: Correlation analysis of wavelet coefficient with Cd concentration in
tobacco leaves
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stress in cotton (651-742) nm and Cd stress in tobacco (631-802 nm). This region

belongs to the visible and infrared regions of the electromagnetic spectrum and is

associated with a decrease in chlorophyll concentration with an increase in heavy

metal levels resulting in changes in leaf spectral characteristics. The reduction in

chlorophyll biosynthesis due to the presence of heavy metals can result in these

spectral changes. The studies by different researchers have also established that

different heavy metals have their spectral peculiarity at various wavelengths in

different species [197][199].

A similar wavelet-based study was conducted by Wang et al., indicating that

the wavelength region 605-720 nm is sensitive to Cu stress in Carex leaves at the

fourth level of the wavelet decomposition [115]. Gu et al. found that a higher

concentration of Cd is associated with a decrease in spectral response at the NIR

wavelength region in Brassica [200]. Higher heavy metal concentration in differ-

ent plant species is affected the spectral reflectance in visible and NIR regions

[201]. These changes may not be so high to trigger changes in original reflectance,

but they can be made prominent through further spectral analysis. Several re-

searchers have regarded the spectra in the range of red and near-infrared regions

as an indicator of heavy metal stress as the sensitivity in this wavelength range

is due to chlorophyll absorption, indicating a strong influence on photosynthesis

[201][202].Toxicology study of Pb and Cd on leaves of metal induced plant shows

the spectra in the range of red and NIR regions related to chlorophyll absorption

as an indicator of heavy metal toxicity, indicating a strong influence on photosyn-

thesis. The significant correlation ranging from -0.58 to -0.72 was noted by Rathod

et al. reflectance ranging from 691-721 nm and Pb concentration in leaves of bar-

ley durig ealy growyh stage [96]. Exposure to Cd affected the spectral reflectance

in the range of 550nm - 680 nm and 750nm - 1050 nm in Cd stressed castor bean

[203].
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CHAPTER 4

Hyperspectral Data Classification

4.1 Problem statement

In Chapter 3, the pot experiment was discussed. The experiment was undertaken

to characterize the reflectance spectra of crops as affected by different levels of

Pb and Cd. The effective wavelength region showing the presence of Pb in cot-

ton and Cd in tobacco was established by wavelet decomposition and correlation

analysis, which can be further used to quantify the presence of heavy metals in

plants. Pot experiment has a limited scope but is very useful for developing train-

ing data under controlled conditions. Such field-level spectral data collected from

experimental pots must be transferred to the vast geographical region using air

or space-borne data for effective and prompt surveillance of heavy metal pollu-

tion. The presence of heavy metal in plants can be characterized using specific

responses in the visible, near-infrared, and shortwave infrared spectral domains,

making it possible to map heavy metal contamination with remotely sensed data.

Recent development in hyperspectral technology has made it possible to differ-

entiate even mild level of heavy metal before the actual damage occurs. The crop

classification from hyperspectral data is essential for mapping heavy metal in a

particular crop over the study area. So, the primary objective of this chapter is

to classify tobacco and cotton crops in the Anand and Surendranagar regions of

Gujarat, respectively, using airborne hyperspectral data from AVIRIS-NG.

Hyperspectral data provide detailed and continuous information within the

full range of 350–2500 nm wavelengths to systematically determine the small

changes in spectral properties of leaves, and studies can be carried out to relate
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such changes in leaf spectral signature with heavy metal contamination. Hyper-

spectral data’s spectral and spatial richness makes it better in performance than

multispectral datasets for classification [204]. While working with hyperspectral

data, a major setback is the high dimensions of this data, making it challenging to

handle. So, retaining only necessary information and removing redundant infor-

mation through different feature extraction methods are required for better crop

classification performance. Implementation of linear feature extraction methods

like Independent Component Analysis (ICA) [205] and Linear Local Embedding

(LLE) [206] cannot model nonlinear properties present in hyperspectral data, and

better discrimination cannot be achieved in classification. Using an autoencoder

with a nonlinear activation function has good scope in extracting highly infor-

mative features [207]. In recent years, the neural network model has been used

to classify hyperspectral data[208]. Neural networks can learn the nonlinear fea-

tures present due to various activation functions. We have utilized a combination

of autoencoders for feature extraction followed by the artificial neural network

to classify hyperspectral data. Classification of crops is an intermediate step to

detect heavy metal over larger areas. The classified tobacco crop in the Anand

region and cotton in the Surendranagar region will be used for heavy metal map-

ping based on the training data from the control pot experiment.

4.2 Methodology

Since hyperspectral data consist of a large number of narrow bands. Most of

these continuous spectral bands contain redundant information causing a reduc-

tion in classification accuracy and increased computational complexity. Hence,

feature extraction is vital in hyperspectral data classification, resulting in more

accurate classification. Most feature extraction methods are linear and do not

capture the non-linearity in hyperspectral data. However, the autoencoder (AE)

neural network also considers the non-linearity present in data. AE network is a

feed-forward neural network in which the unsupervised training of the network

is done [209]. AE consists of the first input layer, which contains the input data,
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Figure 4.1: An overview of the proposed model

the middle hidden layer, which contains encoded features; and a decoding layer

which gives the reconstructed output. The middle layer of the AE network, hav-

ing encoded features, has been used as input for supervised classification using

ANN. The features extracted from the autoencoder network contain maximum

information with reduced noise, improving classification accuracy. The ANN for

classification consists of an input layer of encoded features, a middle layer con-

taining the ReLu activation function, and the last classification layer using Soft-

Max to obtain a multiclass classification. The complete overview of the combined

model is shown in Figure 4.1.

The training of the network is done by combining two steps:

• Unsupervised feature extraction using Autoencoder (AE) and

• Supervised Artificial Neural Network (ANN)

Layer-wise, training of the AE network is done to learn the critical encoded

features. These encoded features are used as inputs for supervised classification

using different class labels. This model allows beneficial features to be extracted

and used for classification simultaneously.

4.3 Model architecture

4.3.1 Autoencoder (AE) for feature extraction

AE is considered an unsupervised feed-forward neural network that contains

three layers: input layer, hidden layer or encoding layer, and output or decod-

ing layer. The first input layer contains the input satellite data X then the middle

hidden layer contains encoded features represented by G then a decoding layer
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Figure 4.2: The architecture of AE-ANN model

which gives the reconstructed output represented by G|. The number of units in

the input layer equals the number of bands in the input data X. Figure 4.2 illus-

trates AE’s architecture showing the input, encoding, and reconstruction layers.

The input layer is encoded into the hidden layer by encoding the input layer

using the sigmoid activation function as illustrated in equation 4.1.

G = fa(wX + b) (4.1)

Where G denotes the hidden or encoded feature layer, w is the encoded weights,

fais the activation function and, b denotes the bias. The sigmoid activation func-

tion given in equation 4.2 has been used to accommodate nonlinear features present

in the data.

fa =
1

1 + e−x (4.2)

The sigmoid activation function varies from 0 to 1. These encoded features are

then used to reconstruct the original image using a demapping function presented

in the equation 4.3.

G| = fa(w|G + b) (4.3)

where G| is the reconstruction of original data X and w| is considered as decoding
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weights. The output decoding layer has the same number of nodes as the input

layer.

4.3.2 ANN for classification

Artificial Neural Networks (ANN) with backpropagation are nowadays popu-

larly used to classify hyperspectral data [210] [208]. ANN framework consists of

the input, hidden, and output layers, linked to each other through weights ob-

tained from different activation functions depending on the purpose of its appli-

cation. In this research, we are using the features extracted from AE as the input

layer of the ANN model, not utilizing the reconstructed output of the decoding

layer of AE, as depicted in Figure 4.2. Labelled class data is used for fine-tuning of

the model. The ReLu activation function is used in the hidden layer as illustrated

in equation 4.4.

f (x) = max(0, x) (4.4)

In the output layer of the network, classification is done using SoftMax to obtain a

multiclass crop classification. It determines the maximum probability of the input

for being in particular class represented in equation 4.5.

σ(x)k =
exk

∑
j
j=1 ekj

(4.5)

(k = 1......j), k is the number of classes.

It gives us the probability of finding out the classes to which the input belongs.

It is well suited for multiclass classification problems.

4.4 Dataset

Crop classification using the proposed model was done using the hyperspec-

tral dataset collected by AVIRIS- NG sensor over Anand and Surendranagar, in

Gujarat, collected during February 2016 [204]. The dataset contains 425 spectral

bands in the wavelength range of 380-2500 nm with 5nm spectral resolution. The
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(a) Surendranagar region (b) Anand region

Figure 4.3: FCC of AVIRIS-NG showing polygons of the labeled crop

radiometrically and geometrically corrected L2 data with 368 bands after remov-

ing the water absorption and noise-containing bands was used for further clas-

sification study. Figure 4.3 represents the False Color Composite (FCC) of the

hyperspectral dataset for the Surendranagar and Anand region by taking the in-

frared band in the red channel, the red region in the green channel, and the green

region in the blue channel.

The labelled data was obtained during field study at the time of AVIRIS-NG

flight. The polygons were drawn to different classes of labelled data. Various

steps performed while testing the model over the given hyperspectral dataset is

given below:

• hyperspectral dataset is normalized and used as input for the autoencoder

network
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(a) Model loss for Anand (b) Model Loss for Surendranagar

Figure 4.4: Model loss

(a) Model accuracy for Anand (b) Model accuracy for Surendranagar

Figure 4.5: Model accuracy

• random splitting of the dataset into training and testing set

• the autoencoder training is done using the sigmoid activation function

• the features are encoded in encoding layers

• these encoded features are used as input for classification using ANN

• labelled dataset is used for fine-tuning the model.

• the output classified image after applying ReLu and SoftMax function

The loss function used in ANN is binary cross entropy. The model’s perfor-

mance was evaluated in terms of model loss and model accuracy.
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Figure 4.4a and Figure 4.5a indicate the training and validation loss and the

training and testing accuracy of the proposed model while training the model for

classification in 1000 epochs for Anand region. Figure 4.4b and Figure 4.5b indi-

cate the training and testing accuracy of the proposed model while training the

model for classification in 1000 epochs for Surendranagar regions. The proposed

model gives an accuracy of up to 87% when used for classification in the Suren-

dranagar region and up to 89% for the Anand region.

4.5 Results and discussion

A neural network combining unsupervised and supervised training is proposed

for hyperspectral feature extraction and classification. AE trains the network in

an unsupervised manner and performs classification in a supervised manner. The

features learned by AE are used for further supervised classification to achieve

better discriminations of classes by achieving sparsity in features.

The classification model performed best when 20 encoded AE features were

used as input for ANN classification. After that, increasing the encoded features

did not improve its accuracy. The classification results of the proposed model

using 20 encoded features as an input for ANN in Surendranagar and Anand,

respectively, are depicted in Figure 4.6a and Figure 4.6b. Figure 4.6a shows the

overall classification of the Surendranagar region with different crops, and Figure

4.7a represents only cotton pixels in Surendranagar after masking all other crops.

Similarly, Figure 4.6b shows the classification of the Anand region with different

crops, and Figure 4.7b represents only tobacco pixels in Anand. After classifica-

tion, we need to judge the quality of the classification results and evaluate the

performance to show the feasibility of the proposed algorithm and further im-

provements based on their shortcomings. Commonly used evaluation indicators

are the confusion matrix, Kappa coefficient, and overall classification accuracy

[211].

The classification report regarding the overall accuracy and kappa coefficient

for Anand and Surendranagar area is given in Table 4.1. Figure 4.8a and 4.8b
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(a) Classified image at Surendranagar (b) Classified image at Anand

Figure 4.6: Classified image showing different classes of crops

(a) Classified image showing cotton pixels
at Surendranagar

(b) Classified image showing tobacco pix-
els at Anand

Figure 4.7: Classified image showing cotton and tobacco pixels
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Table 4.1: Overall Accuracy and Kappa coefficient for different regions

Study region Overall accuracy
(%)

Kappa coefficient

Anand Region 89.68 0.86
Surendranagar Region 86.87 0.83

(a) Confusion matrix for Anand (b) Confusion matrix for Surendranagar

Figure 4.8: Confusion matrix for crop classification

depict the confusion matrix for Anand and Surendranagar, respectively.

The proposed model of a combination of AE and ANN provides good crop

discrimination in classification. It has been observed that only 20 spectral features

are sufficient for classifying hyperspectral data instead of all 368 spectral bands.

The accuracy decreased when 10 encoded features were used for classification,

and beyond 20, no substantial improvement was achieved [212][213]. Further,

these classified tobacco pixels in Anand and cotton pixels in Surendranagar were

utilized for mapping heavy metal pollution.
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CHAPTER 5

Detection of Heavy Metal

5.1 Problem statement

The traditional strategy of measuring the leave’s heavy metal concentration through

laboratory-based chemical procedures is time-consuming and expensive [214].

Considering this limitation, remote sensing techniques can be considered alterna-

tive methods with a strong scientific and practical background in measuring envi-

ronmental parameters [215]. The heavy metal mapping through remote sensing is

complicated due to the less heavy metal in leaves and the lack of reference data for

the response of a particular heavy metal in a particular crop. Field experiments

determining the spectral wavelengths sensitive to the presence of heavy metal

in vegetation can provide reference spectra for heavy metal monitoring from air-

borne hyperspectral data. Under field conditions, the amount of heavy metal may

not be enough to trigger spectral responses, so wavelet decomposition of spectral

signals can enhance the spectral changes due to heavy metal. The heavy metal

levels in field crops are significantly lower, making it challenging to capture the

differences. In the pot experiment explained in Chapter 3, some distinct finding

of the affinity of heavy metal towards crops was observed. Pb has more affin-

ity towards cotton, while tobacco showed affinity towards Cd. This relationship

is further analyzed for mapping heavy metal pollution through remote sensing

data. In this chapter, we present a noble algorithm of spectral matching for heavy

metal pollution mapping from the AVIRIS-NG dataset using DSW, based on the

Dynamic Time Warping (DTW) algorithm. DTW algorithm has been widely used

in speech recognition, anomaly detection, and clustering [216][217].
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In this study, we have used detailed reconstructed reflectance generated from

the pot experiment as reference spectra. The spectral patterns of each target crop

pixel with unknown heavy metal levels were matched with a reference spec-

trum with known heavy metal concentration using the Dynamic Spectral Warp-

ing (DSW) model. This study employs in-field spectroscopy in estimating heavy

metal contents in plants and using this model over airborne hyperspectral data.

The DSW model is used for classifying tobacco and cotton pixels in Anand and

Surendranagar region with unknown heavy metal concentrations using reference

data obtained from the control pot experiment to detect Cd in tobacco crop and

Pb in cotton crop. Altogether, this chapter is designed with the following goals:

(i) the development of a pure profile based on the most appropriate wavelength

range to detect heavy metal pollution and (ii) the evaluation of the performance

of DSW algorithms in modeling the relationships between the foliar spectral re-

sponse and heavy metal concentrations.

5.2 Methodology

5.2.1 Generation of reference spectra

The reference spectra with different levels of heavy metal concentration needs to

be generated to perform the spectral matching using DSW algorithm. The selected

detailed wavelet coefficients for Pb and Cd in cotton and tobacco were further

used for mapping heavy metals from hyperspectral data. The available samples

were first classified into different pollution levels based on the actual heavy metal

concentration. The Pb and Cd concentration were classified into three groups

based on the research findings: safe level, medium level and high level [218][219].

The findings of several researcher suggest that the presence of Cd above 3 ppm

in plant tissue can generate toxicity symptoms [220]. The presence of Pb upto

12 ppm can be considered under the safe level in plants [221] [222]. The detailed

wavelet coefficients for Pb and Cd in cotton and tobacco falling in different groups

were averaged according to the different levels of heavy metal contamination and

were further used for mapping heavy metals from hyperspectral data. The differ-
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Figure 5.1: Reconstructed detail reflectance of tobacco at different levels of Cd
pollution

ent groups based on the amount of heavy metal are given below for both metals.

Cd in Tobacco

• Safe level = 0 ppm to 3 ppm

• Medium level = 3 ppm and seven ppm

• High level = 7 ppm and above

Pb in Cotton

• Safe level = 0 ppm to 12 ppm

• Medium level = 12 ppm and 15 ppm

• High level = 15 ppm and above

The mean reconstructed detail reflectance at the third decomposition level was

calculated for Pb in cotton and Cd in tobacco at different levels of heavy metal

concentration depicted in Figure 5.1 and Figure 5.2, which served as reference

data for mapping heavy metal concentration from hyperspectral data.
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Figure 5.2: Reconstructed detail reflectance of cotton at different levels of Pb pol-
lution

DSW

The correlation analysis of the spectra has revealed that reconstructed detailed

wavelet coefficients at the third level of decomposition showed a good correlation

with Cd concentration in tobacco leaves and Pb concentration in cotton leaves

compared to normal spectra. So, reconstructed detail wavelet coefficients were

used to generate reference spectra at three pollution levels. The spectra are cat-

egorized into safe, medium, and heavy based on the concentration, divided into

three categories, and then averaged. The reference spectra for all three groups

were generated from the reconstructed detailed spectra of the control pot experi-

ment.

DSW algorithm determines the extent of Cd in tobacco crops and Pb in cotton

crops. It classifies crops with different levels of heavy metal contamination based

on the similarity matching with the reference spectra. For this, the reflectance

spectra of classified tobacco and cotton pixels from hyperspectral data were also

decomposed using wavelet decomposition, and reconstructed detail reflectance

was used for matching with reference spectra having known levels of heavy metal

pollution. It divides the two series into equal points, and the Euclidean distance
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between the first point in the first series and every point in the second series is

calculated. The minimum distance is stored through the spectral warp stage for

all the data points. All the minimum distances give the measure of similarities

between the two series.

DSW is based on DTW to measure the difference between two sequences [223].

Assume we have two spectra; the DSW algorithm is used to compute the similar-

ity between two spectra X(x1, x2, x3, .., xj....xn) and Y(y1, y2, y3, ..., yj, ..., yn), with

lengths m and n, respectively.

The distance matrix (d), i.e., m × n, matrix of the squared distance, (i, j) =√
(xi − yz)2(i = 1, ..., m, j = 1, ..., n), also known as the “local cost matrix” is

calculated to compare the spectra with the equidistant spectral interval [224].

The cumulative cost matrix (D) stores the lowest cumulative cost to reach any

element in the m × n matrix and indicates the direction of search calculated using

the given in equation 5.1 [225][226]

D(i, j) = d(i, j) +min(D(i− 1, j− 1), D(i− 1, j), D(i, j− 1)); i = 1, ..., m; j = 1, ..., n

(5.1)

The warping path with the lowest cumulative cost with minimum distance

between the two sequences is determined to find the similarity between series

X and Y. The warping path (W) is determined from (m,n) pointing to the least

cumulative cost between adjacent cells showing the direction of alignment and

extent of match between X and Y is represented by equation 5.2,

W = ⟨w1, w2, w3..., ⟩max (m,n) ≤ K ≤ (m + n)− 1 (5.2)

where wk = (i, j) indicates the alignment between X and Y [227].

The illustration of the warping path from DSW and the corresponding align-

ment is presented in Figure 5.3 [228]. If the two sequences are similar, the warp-

ing path appears diagonal; otherwise, it diverges from the diagonal [228]. The

DSW determines the shortest and quickest path through the cumulative cost ma-

trix showing the best alignment between sequences. If the target pixel matches

the reference spectra with different levels of heavy metal pollution, then the pixel
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Figure 5.3: Illustration of the warping path of two series

is classified in the same category. However, if the difference between a reference

and the target pixel is greater than the standard deviation, the target pixel remains

unclassified.

5.3 Results and discussions

The DSW algorithm performed spectral matching for each unknown pixel to iden-

tify varying amounts of heavy metal contamination at distinct research locations.

the DSW algorithm to detect various levels of heavy metal pollution at different

study sites. Medium to low levels of Cd in tobacco was predicted by the DSW

model in the Anand region. Figure 5.4 describes the extent of Cd contamination

in tobacco crops in the Anand region. Few tobacco pixels show a medium Cd

contamination level due to the increased level of Cd in the soils. The presence

of a higher amount of Cd in the soils of Anand as a result of increased industri-

alization has been reported by Jha et al. in their study [229]. In a study, Nirmal

Kumar et al. found higher amounts of Cd heavy metal in vegetables in Anand

[230]. Such a study gives an insight into the presence of Cd in soils of Anand
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Figure 5.4: Different levels of Cd pollution in tobacco using DSW in Anand

which gets accumulated in tobacco plants due to the high sensitivity towards Cd.

However, a high level of Cd contamination is not observed at any sites. The pres-

ence of moderate levels of Cd can be reduced using soil amendments and proper

planning.

The degree of Pb contamination in cotton in the Surendranagar region can be

observed in Figure 5.5. The safe and medium level was observed with none of the

sites with high pollution levels. The current study demonstrates the presence of

Pb in Surendranagar soils, which may be demonstrated by enhanced Pb absorp-

tion in cotton leaves. Various studies have shown an increased Pb metal in the

soils of Gujarat and around the Surendranagar region [231][232].

The confusion matrix shows the predictive performance of the proposed algo-

rithm. The points with known level of heavy metal content was compared with

predicted values of heavy metal obtained from the DSW algorithm. The valida-

tion set was prepared using exact field points from the hyperspectral data. Twenty

random field points were taken at Anand and Surendranagar, corresponding to

different levels of heavy metal pollution for both the study area. The actual Cd

concentration in tobacco leaves and Pb concentration in cotton leaves from the
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Figure 5.5: Different levels of Pb pollution in cotton using DSW in Surendranagar

(a) Matrix for validation of Cd pollution in
tobacco crop at Anand

(b) Matrix for validation of Pb pollution in
the cotton crop at Surendranagar

Figure 5.6: Confusion matrix for heavy metal pollution
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field points were calculated in the lab and compared with the level of heavy

metal pollution obtained using the DSW algorithm. The results of field points

corresponded well with that obtained with this novel algorithm as shown by the

confusion matrix in Figure 5.6, representing the model’s predicted value for the

validation point and the actual value of heavy metal content. The validation from

field survey points with known heavy metal concentrations of Pb and Cd pol-

lution levels using 20 data set points showed 80 % accuracy for Cd pollution in

tobacco and 85% accuracy for Pb pollution in cotton. The validation results for

Cd pollution in tobacco at Anand are shown in Figure 5.6a and for Pb pollution

in cotton at Surendranagar in Figure 5.6b.

Khalili et al. also used a combination of biochemical and remote sensing data

using standard spectral reflectance for Eucalyptus plants [233]. The wavelet de-

composition of standard reflectance provided information through reconstructed

detail reflectance about the presence of heavy metal and the wavelength affected

by it. The wavelet coefficients are less sensitive to external environments, noise,

and leaf structures, thus enhancing their correlation with biochemical and bio-

physical parameters[116]. Combining control experiments with hyperspectral

data using the DSW model for reconstructed detail reflectance showed satisfac-

tory performance in differentiating levels of heavy metal.
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CHAPTER 6

Soil Sampling Site Selection
1

6.1 Problem statement

Clay minerals in the soil are crucial for stability, erodibility, and other soil char-

acteristics. It is vital to map the distribution of clay minerals to conserve and

manage soil. Due to challenging topography, increasing lab analysis costs, and

being labor-intensive, field sampling in specific locations is not viable. Compared

to field-based and lab-based methods, these remote sensing techniques have the

distinct advantage of covering vast, unexplored regions for a relatively low cost.

Remote sensing works on the principle that everything on Earth reflects or ab-

sorbs electromagnetic radiation [234]. The most effective application of remote

sensing in geology is identifying and mapping different clay mineral types [235].

Imaging spectroscopy and hyperspectral data from satellite or air-borne plat-

forms have increased importance in mapping features like mineral identification

and geological mapping [236]. Hyperspectral data’s high spectral and spatial res-

olution helps to identify and map the soil clay minerals such as kaolinite, mont-

morillonite, and illite more accurately based on the distinct absorption features in

the range of 0.4–2.5 µm. A vast amount of spectral data and noise in these data

make it challenging to utilize for various analyses. Therefore, pre-processing and

noise removal are required to extract useful information from the hyperspectral

data.

In addition, spectral analysis techniques, such as Principle Component Anal-

1Parts of this chapter is published in the following paper:
Priya, S. and Ghosh, R., "Soil clay minerals abundance mapping using AVIRIS-NG data". Advances
in Space Research, 2022.
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ysis (PCA) and Mixture Tuned Matched Filtering (MTMF), are used to identify

the mineralized zones related to clay minerals more precisely from hyperspectral

data [237][236]. It is very difficult to conduct time-consuming field surveys and

expensive lab analyses using XRD at all locations to prepare clay mineral abun-

dance maps. So, a few representative sites are selected from hyperspectral data to

identify the presence of zones related to different clay minerals and know about

their distribution.

The primary goal of this chapter is to use hyperspectral data to determine

sampling sites for various clay minerals, which can then be utilized for further re-

gression analysis for mineral abundance mapping in the Ambaji region of Gujarat

and the Udaipur region of Rajasthan. Air-borne Visible/Infrared Imaging Spec-

trometer Next Generation (AVIRIS-NG) data is used to select representative soil

sampling sites after Spectral Feature Fitting (SFF) algorithm. The pure pixels of

minerals extracted from hyperspectral data were utilized for SFF analysis to have

a preliminary idea about the presence of clay minerals in the study area [238].

Various sampling sites for three dominant soil clay minerals, e.g., kaolinite,

illite, and montmorillonite, were identified from AVIRIS- NG images at the study

sites. Out of them, thirty sites were shortlisted at both the study area using pur-

posive sampling and considering the accessibility of these sites.

6.2 Methodology

The specifications of AVIRIS-NG denote the presence of 425 contiguous bands,

which also contain much redundant information. Data preprocessing and several

other steps are required for further analysis. All the process was completed in

ENVI software. The adopted methodology and processing steps are depicted in

Figure 2.2.

6.2.1 Preprocessing of hyperspectral image

Radiometrically and geometrically corrected Level 2 dataset of AVIRIS-NG ac-

quired over Ambaji and Udaipur is used for site selection. The initial step is
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(a) AVIRIS-NG spectra
with bad bands

(b) AVIRIS-NG spectra
after removal of bad bands

Figure 6.1: AVIRIS-NG spectra with bad bands and after removal of bad bands

preprocessing data by removing the bad bands, i.e., bands containing the noise

due to spectral overlap of the sensor and water vapor absorption band. It reduces

computation time and avoids image degradation due to such bands. The water

vapor absorption bands in the SWIR region 1363 -1403 nm and 1811-1968 nm are

removed. After the preprocessing, 363 out of 425 bands are used for further anal-

ysis. Figure 6.1a and 6.1b show the reflectance spectra with bad bands and after

removal of bad bands.

6.2.2 Minimum Noise Fraction (MNF)

Processing hyperspectral images with such a considerable amount of data in-

creases computational complexity and makes handling difficult. Dimensionality

reduction removes redundant information and noise in the data to make further

processing faster and more accurate. The Minimum Noise Fraction (MNF) ap-

proach given by Green et al. reduces the data’s dimensionality without any infor-

mation loss [239]. MNF transformation divides the data space into two subspaces:

(a) components having large eigenvalues (signal subspace) and (b) components

having eigenvalues approximately one, containing noise (noise subspace).

The noise is segregated based on noise statistics computed using the nearest

neighbor to segregate noise and images are arranged with increasing quality and

decreasing noise [240] [241]. The dimensionality reduction of the AVIRIS-NG im-

83



Figure 6.2: MNF eigen value graph

age at both the study area was carried out using the MNF approach before map-

ping minerals. Figure 6.2 represents the MNF eigenvalue graph showing that the

first 20 component contains the most valuable information and are used for fur-

ther analysis.

6.2.3 Pixel purity Index (PPI)

PPI (pixel purity index) is a statistical technique to identify pure pixels from hy-

perspectral images. It is performed on MNF components to identify the highly

pure spectra of minerals that can be used as a reference for mapping. These pix-

els have spectrally unique signatures characterizing ground features such as soil

minerals in a hyperspectral image can be estimated according to the brightness

of the pixels in the PPI image [242][243]. Mostly such spectrally pure pixels oc-

cur near the boundaries of the data cloud. They are extracted using numerous,

repeated projections of n-d scatter plots (n-D) in an n-D visualizer from the spec-

tral mixing space where n is the number of bands [243]. Relatively pure pixels are

separated into different classes. The average spectra of the pure pixel’s classes col-

lected are then matched using United States Geological Survey (USGS) mineral

spectral library matching to find the mineral spectra for SFF[244][245].

84



6.2.4 Spectral Feature Fitting (SFF)

After resampling using the USGS mineral library, the pixels extracted using PPI

are further utilized for identifying dominant clay minerals. Dominant clay min-

erals were classified using the SFF technique by comparing the spectra of the un-

known pixel with the known spectrum in terms of shape and position of absorp-

tion features [241]. Before applying SFF, the spectra are normalized to quantify

the absorption features present by a technique known as continuum removal to

identify the individual absorption features [242]. The SFF algorithm compares

the continuum-removed image spectra with the selected reference using the least-

squares technique [246]. The selection of the best fit is based on spectral features,

or a group of features is done by least squares fitting [247].

The endmembers extracted using PPI is after resampling using USGS mineral

library is further utilized for the identification of dominant clay minerals is done

by comparing the spectra of unknown pixel with known spectrum in terms of

shape and position of absorption features for different clay minerals [241]. Classi-

fication of dominant clay minerals was done using the SFF technique. The contin-

uum removal is done before applying SFF to quantify absorption features. Con-

tinuum removal is a technique to normalize the spectra to identify the individual

absorption features [242]. The original spectrum is divided by a continuum curve

obtained by fitting a straight line that joins the local maxima of spectra. The con-

tinuum removed spectra are further utilized for SFF. This technique compares the

image spectra with the selected reference spectra from US geological survey min-

eral spectral library using the least-squares technique [246]. The selection of the

best fitting material on the basis of spectral features or group of features is done by

comparing the correlation coefficient of fits [247]. Figure 6.3 depicts the procedure

of the SFF algorithm[2].

The abundance of spectral features represented by scale factor by calculation

of band to band through the computation of the least-square fit process. The SFF

gives scale and RMSE images where the scale image indicates the presence of ab-

sorption features related to different clay minerals, and the RMSE (Root Mean

Square Error) image indicates the RMSE value for each reference mineral spec-
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Figure 6.3: Working principle of SFF algorithm [2]

tra. A higher scale value and low RMSE value represent a strong matching with

reference spectra of minerals indicating absorption in the mineral’s spectral band

related to mineral abundance [247] [248]. The fit images are generated by making

a ratio between the scale image and the RMS error image to measure the similar-

ities (match) between the unknown spectrum and reference spectrum on a pixel-

by-pixel basis [249][240].

6.3 Results and discussions

Soil sample sites were selected using the SFF algorithm for three dominant min-

erals on the hyperspectral image of the study area. A combined approach of

MNF, PPI and n-d visualization followed by SFF algorithm mineral zones can be

mapped, providing a precursor knowledge about the presence of different min-

erals like quartz, talc, goethite, and dolomite and soil clay minerals helpful in

selecting sampling sites for laboratory analysis [250][240]. The identified mineral

zones for clay minerals like kaolinite, montmorillonite, and illite obtained from

SFF are converted into polygons. The polygons are then laid on Google Earth to
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(a) AVIRIS-NG
Image

(b) SFF polygons for Mont-
morillonite, Kaolinite and
Illite

(c) Google Earth image
showing markers for se-
lected sites

Figure 6.4: Soil sampling sites for Udaipur region, Rajasthan

(a) AVIRIS-NG
Image

(b) SFF polygons for Mont-
morillonite, Kaolinite and
Illite

(c) Google Earth image
showing markers for se-
lected sites

Figure 6.5: Soil sampling sites for Ambaji region, Gujarat

select representative soil sampling sites corresponding to different soil clay min-

erals for lab analysis. Figure 6.4a and Figure 6.5a represent FCC of AVIRIS-NG

images at Udaipur and Ambaji region. The polygons for different clay minerals

obtained after SFF algorithm are shown in Figure 6.4b and Figure 6.5b for both

the study area. Figure 6.4c and Figure 6.5c depict the selected soil sampling site

as markers on Google Earth in Udaipur and Ambaji regions, respectively. Fur-

ther validation through XRD analysis of samples is required to know the relative

distribution of different clay minerals.

Representative soil sampling sites were selected based on the study of SFF

polygons laid on google earth. Purposive sampling was carried out based on the

requirement for clay abundance mapping and ease of collection. Mostly barren
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(a) Collection of soil samples using Auger

(b) Soil sampled collected

Figure 6.6: Soil sampling and collection
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fields with road connectivity to reach there were selected as sampling sites from

Google Earth, represented in Figure 6.4 and Figure 6.5. After selecting sampling

sites from hyperspectral data, the field survey was done at Udaipur and Ambaji

study area to collect soil samples for analysis shown in Figure 6.6a and Figure

6.6b. Around 500 g of soil was collected after removing the dirt and pebbles from

the surface at a depth of 0-15 cm for further analysis. Soil analysis and x-ray

diffraction were carried out on the sample collected from different sites to study

the relationship between the depth of absorption features and different clay min-

erals.
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CHAPTER 7

Soil sample analysis using XRD
1

7.1 Problem statement

XRD is widely used for characterizing different materials based on atomic posi-

tions, size, and the shape of the unit cell. The XRD analysis provides the intensity

and position of peaks at different d spacing, which is unique for different crys-

talline materials and determines the relative percentage of different materials in

the sample. The intensity of diffraction peaks obtained from the XRD analysis

enables the identification of different minerals in the selected sample.

Several researchers consider XRD a reliable technique for the characteristics

and distribution of various minerals and have used it for clay mineral quantifi-

cation. It is used in remote sensing to validate the presence of minerals obtained

through the analysis of satellite images. The dominance of different minerals in

the identified samples can be related to absorption features in hyperspectral im-

agery and quantified over large areas through statistical methods. Satellite data

and laboratory-based XRD data can be used to create mineral abundance maps at

different geographic locations.

Extraction of clay minerals from a soil sample is required before XRD analysis.

This chapter deals with soil sample preparation after different soil treatments and

XRD analysis of the samples. The mineralogical analysis provided information

about the percentage dominance of different clay minerals, which can be utilized

to carry out further analysis to prepare soil mineral maps for the study area.

1Parts of this chapter is published in the following paper:
Priya, S. and Ghosh, R., "Soil clay minerals abundance mapping using AVIRIS-NG data". Advances
in Space Research, 2022.
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7.2 Methodology

Collected soil samples contain many impurities and cannot be used directly for

XRD. Sample preparation is considered necessary for reliable XRD analysis. The

procedure mentioned in the laboratory manual for X-ray diffraction by U. S. Geo-

logical Survey was followed to extract and identify clay minerals [251].

7.2.1 Soil treatment

Soil samples are chemically treated to remove dirt and other impurities. Remov-

ing carbonates from the soil is required for better identification of clay minerals.

Dilute acetic acid was used to remove carbonates from soil samples without af-

fecting the crystallinity of clay. Similarly, soil organic matter interferes with clay

minerals’ diffraction pattern. So, removing organic matter from soil samples is

a prerequisite for the XRD of clay minerals. Organic matter from the soil was

removed using laboratory-grade (3%) hydrogen peroxide.

7.2.2 Extraction of clay fraction

After soil treatment, the coarse particles from the soil are removed using a sieve.

Silt and clay fractions need to be separated from the soil sample, and clay fractions

are used for XRD analysis. The centrifugation method separates clay fraction from

clay and silt suspension. The clay portion separated from the suspension is oven

dried at 60º Celsius overnight. The samples were treated with ethylene glycol

before x-ray diffraction to identify swelling clay montmorillonite from other non-

swelling clays. Figure 7.1 shows the laboratory analyses to extract clay fraction

from soil samples for the different study areas at Central Instrumentation Labora-

tory at SDAU, Dantiwada.

7.2.3 XRD analysis of samples

The dried samples are finely powdered and randomly oriented for carrying out

X-ray diffraction. The random orientation of the sample helps in determining the
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Figure 7.1: Laboratory analysis for separation of clay fraction from soil sample
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Table 7.1: D spacing (Å) of Different clay minerals

Clay Minerals D spacing (Å)
Kaolinite 12.3, 24.8, 37.7, 51.0, 65.1
Illite 8.84, 17.7, 26.7, 35.8, 45.3, 55.0, 65.2
Montmorillonite 4.9, 9.82, 14.7, 19.7, 24.7, 29.7, 34.8, 40.04, 45. 3, 50.6

mineralogy of the samples more accurately [153] . The dominant clay minerals

present are estimated based on the d spacing. The sample is x rayed between

angles of 2◦ and 70◦ 2θ using copper K alpha radiation at a scanning rate of 2◦

per minute. The 2θ angle at which the XRD peak is observed is converted into

interplanar spacing using Bragg’s Equation 7.1as given below:

D =
γ0

2 sin(0.5x2θxR)
(7.1)

where d = Inter lattice spacing in angstroms; γ0 = X-ray wavelength θ = in-

cidence angle of X-ray; R= conversion factor 0.0174532925199433 to change the

degree to radian;

Each mineral has a unique XRD pattern showing interplanar spacing and rel-

ative intensities, used for their identification from unknown samples [252] . XRD

provides peak position with corresponding interplanar spacing (d spacing) calcu-

lated using Bragg’s law [253]. The minerals were identified based on the location

of XRD peaks and corresponding d spacing. Table 7.1 represents the d spacing for

XRD peaks for kaolinite, illite, and montmorillonite clay minerals.

XRD analysis after preparation of clay samples was done using the XRD in-

strument facility at Indian Institute of Technology (IIT), Gandhinagar, shown in

Figure 7.2.

After XRD analysis, the constituent minerals are identified by matching the

peak intensity from the stored database. The International Centre for Diffrac-

tion Data (ICDD) software was used to identify minerals present in the collected

sample [254]. The mineral has different peaks, which can be matched with the

reference spectra. Figure 7.3 illustrates the working of peak matching software

ICDD for the prepared soil sample with montmorillonite. The blue line shows the

sample, and the green line is the reference clay minerals. According to scientific
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Figure 7.2: XRD instrument used for analysis at IIT Gandhinagar
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Figure 7.3: Matching of XRD pattern of samples with reference spectra

Table 7.2: Mineralogical analysis of soil samples of Udaipur Region (weight per-
centage)

Parameter Montmorillonite Illite Kaolinite
Mean 50.9 33.9 15.2
Std. Dev 6.2 6.5 6.6
Maximum 62.0 42.0 36.0
Minimum 39.0 16.0 6.0

studies, XRD analysis is used to know the proportion of minerals in a mixture

through the intensity of peaks and interplanar spacings. The quantification of

different clay minerals was established by the Rietveld method [255].

7.3 Results and discussions

The mineralogy of the soil samples for both the study area has been assessed

through XRD analysis of the soil samples [256]. The dominant clay minerals were

identified, and the percentage composition of dominant clay minerals in the soil

samples was estimated through the Rietveld refinement [257]. The soil samples

were subsequently grouped based on dominant minerals in the soil. The results

of the mineralogical analysis for Udaipur and Ambaji are shown in Table 7.2 and

Table 7.3.

X-ray diffraction is a powerful technique for providing valuable qualitative,

quantitative, and structural information about different minerals. The prelimi-

nary analysis shows the dominance of montmorillonite compared to illite and

kaolinite in the soil samples collected from the Udaipur region and the dominance
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Table 7.3: Mineralogical analysis of soil samples of Ambaji Region (weight per-
centage))

Parameter Montmorillonite Illite Kaolinite
Mean 17.0 31.9 47.8
Std. Dev 4.2 4.3 4.3
Maximum 23.0 39.0 55.6
Minimum 10 21.0 41.1

of kaolinite in the Ambaji region.
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CHAPTER 8

Mineral Abundance Mapping
1

8.1 Problem statement

Soil clay minerals significantly influence ground stability due to their swelling

properties affecting the soil quality and productivity [256]. The study of soil clay

mineralogy helps policy-making for effective agricultural management and sus-

tainable land use planning [258]. Conventional laboratory methods for explor-

ing clay properties involve XRD, Scanning Electron Microscopy (SEM) and var-

ious chemical analysis methods. Mapping clay minerals through these methods

is costly and time-consuming, consisting of laborious field surveys and sophis-

ticated laboratory analysis [259]. Remote sensing techniques, with the advent

of the hyperspectral sensor having higher spectral and spatial resolution, play a

significant role in soil survey and clay mineral mapping and offers efficient alter-

natives to conventional methods [260]. For effective soil planning, area-specific

high-resolution maps highlighting the prevalence of different soil clay minerals

are essential.

A clay mineral abundance map is prepared in three main steps—first, identify

dominant clay mineral zones from AVIRIS -NG data: second, ground truth col-

lection and XRD of collected soil samples to identify the proportion of dominant

minerals. Third, the statistical analysis relates the absorption peak depth with the

dominance of various clay minerals from airborne hyperspectral data. The first

two steps are covered in previous chapters. The XRD analysis of the soil samples

1Parts of this chapter is published in the following paper:
Priya, S. and Ghosh, R., "Soil clay minerals abundance mapping using AVIRIS-NG data". Advances
in Space Research, 2022.
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depicting the dominance of different clay minerals from selected sampling sites is

discussed in Chapter 7.

In this chapter, the airborne AVIRIS-NG dataset was used to calculate the

depth of absorption feature around 2200 nm through the APD technique. Linear

regression was used to find the relation between the proportion of different clay

minerals in XRD samples and the APD corresponding to the soil samples. This

technique is based on the fact that the depth of an absorption feature at a spe-

cific wavelength is strongly related to the abundance of the absorbing material

[261]. The relationship between clay content and APD was further used to predict

mineral abundance from AVIRIS-NG data at unknown places. The mineral abun-

dance map representing the distribution of montmorillonite, kaolinite, and illite

was prepared for Udaipur and Ambaji region from airborne hyperspectral data

for soil monitoring.

8.2 Methodology

8.2.1 Absorption Peak Depth (APD)

Clay minerals show some characteristic absorption features at different wave-

lengths related to their distribution in the soil samples. At a specific wavelength,

the depth of an absorption feature is strongly related to the abundance of the

absorbing minerals. Calculating the depth of absorption peak at different wave-

lengths indicates a correlation between the spectral features and content of ab-

sorbing clay minerals. Therefore, this study used the AVIRIS-NG dataset to cal-

culate APD. Before calculating APD, normalization was achieved through the

“convex-hull quotients” technique [143], according to equation 8.1

R′(λ) =
Rb(λ)

Rc(λ)
(8.1)

where Rb is the reflectance of a specific peak at the wavelength λ, and Rc is the

reflectance of the continuum at the same wavelength.

After normalization, the absorption peak depth can be calculated through the
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equation 8.2 :

APD(λ) = 1 − R′(λ) (8.2)

The presence of clay minerals influences the SWIR portion of the spectrum

(1300nm − 2500nm), with the regions 1400nm, 1900nm, and2200nm showing the

absorption features characteristic of clay minerals [129]. Soil clay content and

mineralogy are related to the depth of the clay absorption peak around 2210nm,

corresponding to the absorption of OH in the clay lattice, a component of clay

minerals. Moreover, absorption features at approximately 1400nm and 1900nm

are generally present but are not so important due to water absorption bands.

8.2.2 Regression analysis

Linear regression was used to relate the clay content to the corresponding APD.

The relationship between the APD derived from airborne hyperspectral data and

the clay content values obtained from XRD analysis was established. The rela-

tionship was then inversed to prepare mineral abundance maps. The complete

procedure is organized in the following steps:

• The APD values were extracted corresponding to each sampling point.

• Calculation of the correlation between the APD values at 2205nm − 2214nm

and corresponding clay minerals content.

• Linear regression analysis between the APD values calculated from the AVIRIS-

NG for each training site and the corresponding clay content value from

XRD analysis of clay samples.

• Inversion of APD value map into a predicted clay content map, using the

regression lines for clay minerals.

8.3 Results and discussions

The linear regression analysis relates the clay mineral content to corresponding

APD values obtained from AVIRIS-NG data at different study areas. At the Udaipur
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Figure 8.1: Regression lines of montmorillonite and APD for the Udaipur region

region, for all three minerals, the determination coefficient was more than 0.55

showing a good relationship with different minerals. A clear relationship was

visible between montmorillonite content (R2 = 0.79, n = 30) and illite content

(R2 = 0.79, n = 30), as represented in Figure 8.1, Figure 8.2. At the same time, de-

termination coefficients were less for kaolinite content (R2 = 0.63, n = 30), shown

in Figure 8.3 in the Udaipur study area.

As observed in Figure 8.6, Figure 8.4 and Figure 8.5, the soil samples from

the Ambaji region demonstrate a favorable relationship between kaolinite (R2 =

0.73, n = 30) and montmorillonite (R2 = 0.67, n = 30) with APD compared to

illite (R2 = 0.62, n = 30).

The statistical analysis shows that the depth of absorption peak around 2205nm−

2214nm is mainly due to different clay minerals, which can be quantified to pre-

dict the clay content [134] [262]. The studies conducted by various researchers

on different hyperspectral datasets support this research’s findings. R2 values of

0.68 and 0.60 were observed by Curcio et al. and Garfagnoli et al. using airborne

hyperspectral data in Italy, respectively, for predicting soil clay content using the

absorption-based approach [142][143]. Gomez et al. (2008) reported R2 values of

0.58 for soil clay content in France using HYMAP hyperspectral data [263]. The
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Figure 8.2: Regression lines of illite and APD for the Udaipur region

Figure 8.3: Regression lines of kaolinite and APD for the Udaipur region
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Figure 8.4: Regression lines of montmorillonite and APD for Ambaji region

Figure 8.5: Regression lines of illite and APD for Ambaji region

102



Figure 8.6: Regression lines of kaolinite and APD for Ambaji region

tedious and costly lab analysis and hostile terrain resulted in a small number of

samples. For cross-validation, the leave-one-out technique has been utilized in

this study by taking all thirty samples, which is more appropriate for a smaller

number of samples [264]. Lagacherie et al. also utilized this method for cross-

validation, as data collection is challenging in hostile geological terrain [134]. In

this process, one sample was used for prediction, all other samples were used to

build a regression model, and the Root Mean Square Error (RMSE) was calculated.

The process was repeated for all the n samples, and the average of all the RMSE

was calculated as Root Mean Square Error of Prediction (RMSEP) was calculated.

The descriptive statistics showing the performance of the regression model are

provided in Table 8.1 and Table 8.2 for Udaipur and Ambaji regions, respectively.

The RMSEP for the three clay minerals, montmorillonite, illite, and kaolinite, at

different study areas, are represented in Table 8.1 and Table 8.2.

Based on the model’s performance, we calculated the regression line between

the APD values obtained from AVIRIS-NG data and the corresponding clay con-

tent at each sampling site. The inverse regression line predicts clay mineral con-

tent (x) for unknown pixels using the respective APD values (y) for Udaipur and

Ambaji study areas respectively as represented in Table 8.3 and Table 8.4 for each
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Table 8.1: Descriptive statistics for the regression model for Udaipur1

Covariate Coefficients Standard
Error

t-statistic P-value R2 RMSEP

Montmorillonite
Intercept 5.249485 4.47187 1.173891 0.250327∗ 0.79 6.20APD 73.2753 7.12612 10.28264 5.18E− 11∗

Illite
Intercept -16.9837 5.46664 -3.10678 0.004306∗ 0.73 8.05APD 74.90893 8.51964 8.792499 1.52E− 09∗

Kaolinite
Intercept -12.4535 3.868403 -3.21928 0.003243∗ 0.63 12.08APD 41.23527 5.977978 6.897863 1.7E − 07∗

1 *Statistically significant p-value p < 0.05

Table 8.2: Descriptive statistics for the regression model for Ambaji 1

Covariate Coefficients Standard
Error

t-statistic P-value R2 RMSEP

Montmorillonite
Intercept -7.0395 3.2645 -2.1564 0.0398∗ 0.67 6.18APD 64.6008 8.4791 7.6188 2.67E− 08∗

Illite
Intercept -10.9913 3.8926 -2.8235 0.0088∗ 0.60 7.40APD 64.275 10.0295 6.4085 7.26E− 07∗

Kaolinite
Intercept 1.9695 4.04825 -0.4864 0.6304∗ 0.73 9.50APD 92.74465 10.51477 8.8204 1.42E− 09∗

1 *Statistically significant p-value p < 0.05

soil clay mineral.

The clay mineral maps resulting from this procedure for all three clay minerals

in the Udaipur region are presented in Figures 8.7a 8.7b 8.7c. Red represents the

higher percentage, and blue shows a lower percentage. The maps of illite and

montmorillonite minerals show a similar trend and are in agreement with the

XRD analysis data of the samples indicated in Figure 8.7. A comparison among

the maps shows that the low presence of kaolinite is related to the low kaolinite

concentrations in the sampled soil from Udaipur. The RMSEP for kaolinite is

also higher at the Udaipur region than montmorillonite and illite, indicating more

variations in the model.

The clay content map of the Ambaji region shows the dominance of kaolin-
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Table 8.3: Regression lines for target mineral in Udaipur

Target mineral Regression line
Montmorillonite x = 73.28y + 5.25
Illite x = 74.90y − 16.98
Kaolinite x = 41.23y − 12.45

Table 8.4: Regression lines for target mineral in Ambaji region

Target Mineral Regression Line
Montmorillonite x = 64.601y − 7.0396
Illite x = 63.327 − 10.601
Kaolinite x = 92.745y − 1.969

(a) (b) (c)

Figure 8.7: Soil clay mineral abundance map for (a) montmorillonite (b) illite and
(c) kaolinite at Udaipur region

(a) (b) (c)

Figure 8.8: Soil clay mineral abundance map for (a) kaolinite (b) montmorillonite
and (c) illite at Ambaji region
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ite and montmorillonite compared to illite, as indicated in Figure 8.8. The re-

sults are in agreement with XRD-based mineralogical analysis. The findings of

this research indicate that regression analysis using APD at 2205nm − 2214nm can

be a potential technique for mapping the abundance of different soil clay miner-

als. The mineral abundance map obtained using a regression line shows a strik-

ing similarity with the results of the XRD analysis of samples. The abundance

of montmorillonite in the Udaipur region has also been reported by Govil et al.

[261]. The presence of minerals like kaolinite, as well as halloysite, was reported

in preliminary hyperspectral studies of the Ambaji region[265].

The results show that AVIRIS-NG data can be used to prepare reliable clay

mineral abundance maps for cultivated soil. This method can be more robust by

increasing the number of soil sampling sites from the agricultural and wasteland.

Regardless of these limitations, the regression models developed show promis-

ing potential in mapping the distribution of clay minerals. However, the perfor-

mance of this method could further be compared with other machine learning

techniques, such as artificial neural networks, random forests, and deep learning,

using the AVIRIS-NG dataset.
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CHAPTER 9

Conclusion and Future Scope

9.1 First objective

The effects of heavy metal on food chains, human health, and the long-term health

of ecosystems make it crucial to focus on them. Pb and Cd in plants induce

changes in biochemical parameters, especially chlorophyll resulting in changes

in the spectral reflectance pattern in the visible region. Hyperspectral data can

effectively detect such changes in the reflectance and correlate with heavy metal

content to find the spectral region sensitive to heavy metal.

This thesis integrated biochemical and hyperspectral approaches to indicate

the spatial distribution of heavy metal, specifying the extent of contamination at

the research site for the target crops. In this regard, biochemical analysis reveals

the most sensitive growth stage of the crop, which can be further utilized for spec-

tral analysis for estimation of heavy metal pollution in plants. The obtained re-

sults confirm a significant effect of heavy metals on the different biochemical and

spectral behavior of cotton and tobacco crops.

Biochemical measurements like chlorophyll estimation and accumulation of

heavy metals combined with spectral measurement provide helpful information

about plant behavior during stress due to heavy metals like Pb and Cd in crops.

The research findings clearly show a distinguished affinity in the accumulation

of Pb and Cd in cotton and tobacco. Cotton showed more affinity toward Pb,

resulting in a higher accumulation of Pb than Cd, and tobacco crops showed a

preferential accumulation of Cd over Pb. The vegetative stage of the cotton tends

to accumulate a higher level of Pb, making it the suitable growth stage for study-

107



ing Pb stress.

In contrast, tobacco accumulates more Cd at later stages of growth. The higher

TF represents a higher concentration of Pb and Cd in the soil resulting in an

increased presence of heavy metals in plants., The biochemical analysis reveals

the decreased level of chlorophyll content with increased levels of heavy metal

contamination in both crops. The spectral analysis demonstrates that the recon-

structed detailed reflectance obtained using wavelet decomposition is more ef-

fective in detection of Pb and Cd pollution than the original reflectance spec-

tra and first derivative. The correlation study reveals that the spectral region

651nm − 742nm is sensitive to the presence of Pb in cotton and 631nm − 802nm

is sensitive to Cd in tobacco. Thus, it can be concluded that cotton and tobacco

crops indicate Pb and Cd pollution in a given agricultural ecosystem.

Results of the present study demonstrate that wavelet decomposition of spec-

tral reflectance has the potential for assessing the presence of heavy metal in

leaves and determining the wavelength region sensitive to heavy metal stress.

The spectral analysis using ground-based sensing in a control experiment with

known levels of heavy metal applied is used to generate reference spectra of

heavy metal under study (Pb and Cd). The DSW spectral matching approach

was utilized to know the level of Pb contamination in cotton and Cd contamina-

tion in tobacco from the airborne hyperspectral data. The DSW algorithm showed

a good performance in mapping Cd in tobacco in the Anand region and Pb in cot-

ton in the Surendranagar region. DSW approach shows potential for mapping

heavy metal contamination for different heavy metals in different crops. Com-

bined field-based studies of hyperspectral data allow accurate and fast detection

of heavy metal concentrations in crops over large areas can be achieved. There-

fore, developing a method for effectively integrating spectral and environmental

parameters is of great future interest and provides a reference for assessing extent

of heavy metal contamination in farmland environments. However, this type of

estimation is still exploratory and requires more investigation and testing with

other heavy metals and plant species.

The study shows potential in detecting heavy metal but has some limitations.
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In controlled experiments, however, various factors play essential roles that must

be considered. There is a need to develop reference spectra every time, as the in-

teraction of plants varies with the type of heavy metal, environmental conditions,

and soil type that can influence the spectral characteristics. A control experiment

considering two cycles of plant growth is required to capture all the biochemi-

cal and spectral changes due to the presence of heavy metals. The differentia-

tion of heavy metal stress from other stress like environmental factors, pests, and

disease is complicated and needs further discussion. However, such factors are

time-specific and short-term. Therefore, a long time series of remote sensing data

with higher spectral and temporal information can be used to determine the level

of heavy metal. More controlled strict experiments can improve the detection of

heavy metal pollution in plants.

There is excellent potential to analyze and evaluate the level of different heavy

metals using a combination of wavelet and DSW approach to generate an early

warning system for different heavy metals. Despite the benefits of such an inte-

grated approach, more studies are required to see if they can be used to estimate

the concentrations of heavy metals in other plant species under various biologi-

cal and environmental situations. In the future, the interaction effect due to the

presence of different heavy metals and its effect on spectral properties also need

to be considered. Remote sensing with more advanced equipment will eventu-

ally grow into a single window system, encouraging farmers and policymakers to

quickly comprehend the condition of heavy metal-contaminated plants over large

areas without extensive sampling and chemical tests.

9.2 Second objective

Hyperspectral remote sensing has emerged as one of the most promising and ad-

vanced tools for detecting and identifying minerals. It provides absorption fea-

tures at adequate spectral resolution related to clay mineral abundance. Analyz-

ing the exact position, strength, and depth of such absorption features provides
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insight into the weight or proportion of minerals in the target study area. Present

research reveals the potential of hyperspectral data to predict one of the vital soils’

properties; soil clay minerals. After reducing spectral and spatial dimensions,

the SFF analysis of hyperspectral data gives a rough estimate of soil clay miner-

als zones, which can be utilized to select sites for XRD analysis. Mineral abun-

dance mapping is further done by relating the proportion of soil clay minerals

from XRD analysis with a corresponding depth of absorption feature (APD) be-

tween 2205nm − 2214nm. The research findings represent an excellent agreement

between APD, calculated from AVIRIS-NG data, and the percentage of different

soil clay mineral content, calculated from XRD analysis.

The abundance of various soil minerals at unknown pixels can be established

using the relation between APD and soil clay minerals. An integrated approach

using hyperspectral and XRD analysis give a much better result than in the min-

eral abundance mapping. It can be used to prepare mineral abundance maps for

different clay minerals that can be prepared from hyperspectral data for agricul-

tural lands of other areas. Such maps showing the distribution of various clay

minerals in cultivable soil can be critical in agricultural planning and soil fertil-

ity management. This study can be a basis for quantifying various clay minerals

in agricultural land using hyperspectral data and demonstrates its suitability for

large-scale mineral mapping using absorption features.

The proposed method was used to assess the dominant soil minerals. In the fu-

ture, it can be widely used to rapidly predict other soil minerals from complex soil

mineral mixtures using the information from hyperspectral data and XRD analy-

sis. The given technique, evaluated for clay minerals, can be extended for many

soil properties like organic carbon and calcium carbonate, which influence soil re-

flectance spectra. Digital mapping of various soil properties and their evaluation

can be a future work area with less dependency on lab analysis. The perspec-

tive of using soil spectroscopy to study mineral abundance explores the future

possibilities of using unmanned aerial vehicles (UAV) and hyperspectral cameras

in short-wave infrared regions for more accurate and less expansive soil mapping.
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The research showed encouraging and reliable results for mapping clay miner-

als through regression. Machine learning methods like neural networks, random

forests, and regression trees can be applied to produce more accurate and less ex-

pansive clay minerals maps of a geographical area. However, some limitations

affecting the reflectance characteristics, like the presence of vegetation, variable

moisture regime, mixed nature of minerals, and uneven solar radiation influence

the spectral reflectance need to be focussed on in the future work.
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Appendix-1: Location of soil sampling sites along with their mineral content at
Ambaji

Sr.
No.

Latitude Longitude Kaolinite
(%)

Montmorillonite
(%)

Illite (%)

1 24.26677 72.54754 44 39 11
2 24.26854 72.55293 47 34 10
3 24.26852 72.56026 49 33 8
4 24.2676 72.56829 51 25 12
5 24.26116 72.54683 43 35 15
6 24.25931 72.54454 48 32 17
7 24.25154 72.5456 44 36 13
8 24.24746 72.54533 46 31 18
9 24.24489 72.54558 56 26 7
10 24.24269 72.54616 44 34 9
11 24.25673 72.55515 45 31 13
12 24.249 72.55135 54 24 11
13 24.24477 72.55107 52 25 8
14 24.24298 72.55541 41 31 18
15 24.24338 72.56036 46 25 15
16 24.24715 72.56779 49 30 10
17 24.25435 72.56608 44 35 13
18 24.24733 72.56334 54 21 8
19 24.25228 72.57009 43 37 12
20 24.26 72.57445 44 38 14
21 24.25909 72.55729 41 32 10
22 24.26082 72.55487 46 30 11
23 24.25408 72.55906 51 29 10
24 24.24544 72.57516 53 27 8
25 24.25309 72.55465 48 35 18
26 24.26214 72.55474 50 39 7
27 24.2448 72.56534 44 32 17
28 24.26416 72.57449 52 27 11
29 24.25783 72.55813 53 21 12
30 24.24764 72.55633 43 36 9
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Appendix-2: Location of soil sampling sites along with their mineral content at
Udaipur

Sr.
No.

Latitude Longitude Kaolinite
(%)

Montmorillonite
(%)

Illite (%)

1 23.9877074 73.583408 26 39 12
2 24.0005536 73.642836 24 41 9
3 24.3828904 73.6393864 18 41 10
4 23.9572788 73.5784604 21 44 8
5 23.9885623 73.5840264 20 44 7
6 24.0849241 73.6788449 25 44 10
7 24.3837254 73.6381672 27 46 9
8 24.383517 73.6384874 24 46 14
9 24.2949081 73.6768453 21 48 12
10 23.911679 73.5559789 24 49 12
11 24.294986 73.6770684 35 51 11
12 24.02456 73.630265 36 51 10
13 23.9886511 73.5895836 31 52 14
14 23.9875073 73.5842359 30 53 13
15 23.9843413 73.5683784 30 54 15
16 24.2708276 73.574945 35 54 16
17 24.2710347 73.6752921 28 54 17
18 24.2871284 73.672907 29 55 17
19 22.2284256 73.6893145 32 55 12
20 24.2886017 73.6733503 33 57 15
21 23.9121094 73.5548898 35 57 19
22 24.2290319 73.688483 40 58 18
23 24.229335 73.6888483 31 59 22
24 24.2714899 73.6750288 39 59 20
25 24.3837694 73.6379441 43 62 22
26 24.2876344 73.6732772 42 44 11
27 24.3844076 73.6378992 39 47 15
28 24.294736 73.6769926 33 52 19
29 24.0099684 73.6559765 40 61 19
30 24.0853857 73.679396 31 50 13
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