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Abstract

Microwave-plasma interaction and High power microwave (HPM)

breakdown involving plasma formation have been studied theoretically

as well as experimentally since the 1950s for a wide variety of applications.

Microwave plasma interaction can be classified into two broad categories,

firstly involving low power non-ionizing waves and secondly high power

ionizing waves leading to HPM breakdown. Early studies on HPM breakdown

primarily focused on the determination of the breakdown field as a function

of pressure, frequency and pulse duration. However, only recently, detailed

experimental investigations of the plasma dynamics during breakdown

have been possible with the use of sophisticated high-speed ICCD cameras.

Particularly, in the past few years, several experiments and numerical

simulations using millimeter and sub-millimeter wave irradiation ( 100 GHz)

at high pressures (ten to hundreds of Torr) have been carried out. The renewed

interest in this area is primarily because of two reasons. Firstly, the potential

applications of such discharges to aerodynamic flow control, combustion

ignition, flame stabilization and to propulsion have been investigated very

recently. Secondly, the dynamics of high frequency wave breakdown at high

pressures leading to formation of complex plasma structures (spatio-temporal

propagation of plasma) such as self-organized plasma arrays is a subject of

great interest from scientific point of view.

To completely understand the physics and properties of different types of

discharges associated with microwave breakdown, it is crucial to further

improve our current understanding of the microwave-plasma interaction

and plasma formation at high pressures. To fully utilize the potential of this

promising area of research, it is crucial to understand microwave-plasma

interactions, both in the context of low-power non-ionizing microwaves and
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when the power is sufficient to ionize the gaseous species and form plasma.

Modeling and simulation of the strong coupling between the high frequency

EM waves and the plasma is still a challenging research problem due to

the different time and space scales involved in the process. Particularly

accurate 2D/3D simulations are computationally very expensive and we

require new efficient computational approaches to investigate this problem

for real life applications. Most of the computational studies reported in the

literature till now (particularly recent 2D simulations) have focused only on

the wave scattering by the plasma and ionization-diffusion mechanism for

plasma evolution (time scale of 100s of nanoseconds) due to computational

constraints. Researchers have primarily studied this problem using a

simple model wherein Maxwell’s equations have been coupled with plasma

continuity equations and these models have been used to investigate the

plasma dynamics in nanosecond timescales.

As a first step, we have developed a comprehensive computational model

for investigating microwave-plasma interaction and different kinds of

millimeter wave breakdown at high pressures. An in-house 2D simulator

has been implemented in C language and the validity of the code has been

established by directly comparing the simulation results with the experimental

observations available in the literature. The computational tool consist of

three computational solvers (EM wave solver, Plasma solver and Fluid solver)

coupled with each other. The inputs to this computational tool are the field

strength of the EM wave, frequency of the wave, pressure and gas details. The

important output required for investigating the physics of plasma dynamics

are: plasma density, electric field distribution, electron temperature, gas

density distribution etc.

As a second step, to address the computational challenges associated with

such simulations, a self-aware mesh refinement algorithm has been presented

that uses a coarse mesh and a fine mesh that dynamically expands based on the

plasma profile topology to resolve the sharp gradients in E-fields and plasma

density in the breakdown region. The dynamic mesh refinement (DMR)

technique is explained in detail, and its performance has been evaluated

using two metrics, the accuracy and efficiency, on a standard benchmark

microwave breakdown problem. Different 2-D simulations are performed to
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capture the front velocity and the filamentary pattern formation, and, results

are compared for DMR (different refinement factors (r = 2, 4)) with the results

obtained from uniform fine mesh. From the efficiency analysis, we observe

a speedup of 8 (of the order of O(r3), when the refinement factor (r) is 2)

compared to a traditional single uniform fine mesh-based simulation. The

technique is scalable and performs better when the problem size increases.

Two applications related to HPM breakdown have been explored using

our in-house 2D simulator, one associated with the protection of electronic

components and the second on HPM swtching. Breakdown thresholds, the

field strength and the initial plasma density that determines breakdown

time for such applications are reported. The dependence of cutoff time on

initial plasma as well as strength of microwave E-field are investigated. The

transmission and rejection capability of plasma for certain frequencies are

investigated. Additionally, effect of gas heating on the HPM breakdown

induced plasma and the cutoff time is studied for switching and limiter action.

We propose a completely new machine learning based data driven approach

for investigation of microwave-plasma interaction. Complete deep learning

(DL) based pipeline to train, validate and evaluate the model has been

discussed in this thesis. A convolutional neural network (CNN)-based deep

learning model, inspired from UNet with series of encoder and decoder units

with skip connections, for the simulation of microwave-plasma interaction

has been discussed. The microwave propagation characteristics in complex

plasma medium pertaining to transmission, absorption and reflection

primarily depends on the ratio of electromagnetic (EM) wave frequency and

electron plasma frequency, and the plasma density profile. The scattering of

a plane EM wave with fixed frequency (1 GHz) and amplitude incident on

a plasma medium with different Gaussian density profiles (in the range of

1 × 1017 − 1 × 1022m−3) have been considered. The training data associated

with microwave-plasma interaction has been generated using 2D-FDTD

(Finite Difference Time Domain) based simulations. The trained deep learning

model is then used to reproduce the scattered electric field values for the

1GHz incident microwave on different plasma profiles with error margin of

less than 2%. We compare the results of the network, using various metrics

like SSIM index, average percent error and mean square error, with the
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physical data obtained from well-established FDTD based EM solvers. The

proposed deep learning technique is significantly fast as compared to the

existing computational techniques, and can be used as a new, prospective

and alternative computational approach for investigating microwave-plasma

interaction in a real time scenario.

Most of the plasma applications and research in the area of low-temperature

plasmas (LTPs) is based on accurate estimation of plasma density and plasma

temperature. The conventional methods for electron density measurements

have major disadvantages of operational range (not very wide), cumbersome

instrumentation, and complicated data analysis procedures. To address such

practical concerns, the thesis further proposes a novel machine learning

(ML) assisted microwave-plasma interaction based strategy which is capable

enough to determine the electron density profile within the plasma. The

electric field pattern due to microwave scattering is measured to estimate the

density profile. The proof of concept is tested for a simulated training data set

comprising a low-temperature, unmagnetized, collisional plasma. Different

types of Gaussian-shaped density profiles, in the range 1016 − 1019m−3,

addressing a range of experimental configurations have been considered in

our study. The results obtained show promising performance in estimating

the 2D radial profile of the density for the given linear plasma device.

The performance of the proposed deep learning based approach has been

evaluated using three metrics- SSIM, RMSLE and MAPE. The favourable

performance affirms the potential of the proposed ML based approach in

plasma diagnostics and in future to replace existing plasma diagnostics.

In conclusion, the thesis presents new approaches for investigation of

microwave-plasma interaction and HPM breakdown, which are significantly

efficient compared to existing simulation techniques. To the best of our

knowledge, this is the first effort towards exploring a data-driven DL based

approach for the simulation of complex microwave plasma interaction. The

simulations presented in the thesis provide a better understanding of both

ionizing and non-ionizing applications of microwave-plasma interaction.

They contribute to the study of complex plasma dynamics associated with

high-frequency HPM breakdown-induced plasma, with potential applications

such as switching/limiters, and plasma diagnostics.

xii



List of Principal Symbols and Acronyms

Principal Symbols

Plasma parameter

m mass of particle me and mi electron and ion mass

n plasma density ne and ni electron & ion plasma density

Ng neutral or gas density λD Debye Length

kB Boltzmann constant ▽n density gradient

e electron charge ρl local net charge

Te & Ti electron and ion

temperature

Tg gas temperature

L Length of plasma q charge of particle

νm electron-neutral collision

frequency

ωp plasma frequency

De & Di electron and ion diffusion

coefficient

Da ambipolar diffusion coefficient

µe & µi electron and ion mobility De f f effective diffusion coefficient

νi ionization frequency νa attachment frequency

rei electron-ion

recombination rate

νe f f effective ionization frequency

γ ionization coefficient Γe&Γi flux of electron and ion

ve&vi electron and ion velocity Z charge number

v f ront front veocity J⃗ current density

EM parameter

E⃗&H⃗ electric and magnetic field E0 electric field amplitude
Ee f f

p reduced effective field ω or f EM wave frequency

Erms rms E-field k wave propagation vector

ϵr relative permittivity c speed of light

Simulation parameter

Nc,x&Nc,y coarse grid points in X and Y N f ,x&N f ,y fine grid points in X and Y

∆Sc & ∆S f coarse and fine grid size r refinement factor

∆EM&∆d grid size of EM and plasma ∆tEM&∆td time step of EM and plasma

Lx Length of domain along X Ly Length of domain along Y

xiii



Acronyms

AI Artificial Intelligence

CFL Courant-Friedrichs-Lewy

CNN Convolutional Neural Network

CPU Central Processing Unit

DGTD Discontinuous Galerkin Time Domain

DL Deep Learning

DMR Dynamic Mesh Refinement

DNN Deep Neural Network

EM Electromagnetic

FDTD Finite Difference Time Domain

FD Finite Difference

FETD Finite Element Time Domain

FVTD Finite Volume Time Domain

FLOPS Floating point operations per second

GPU Graphics Processing Unit

GW Gigawatt

HF High Frequency

HPM High Power Microwave

LEFA Local Electric Field Approximation

LTP Low Temperature Plasma

MAPE Mean Absolute Percentage Error

ML Machine Learning

MSE Mean Squared Error

PDE Partial Differential Equations

PDF Probability Distribution Function

PIC Particle In Cell

PINN Physics Informed Neural Networks

Relu Rectified Linear Unit

RMSLE Root Mean Squared Logarithmic Error

SSIM Structural Similarity Index Measure

TF/SF Total Field/ Scattered Field

TR Transmit-Receive

xiv



List of Tables

2.1 Approximate simulation time for different problem sizes. . . . 41

5.1 EM-Wave scattering predicted data comparison with the actual

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Impact of varying the number of encoder-decoder units . . . . . 97

5.3 Impact of varying the skip connections . . . . . . . . . . . . . . . 97

5.4 Impact of using various up-sampling methods . . . . . . . . . . 99

6.1 RMSLE and MAPE-based comparison of predicted plasma

density with the actual density data for different types of dense

data samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Performance evaluation for computational experiments

performed with dense data samples (DD) in the limited range

having n0 : 1e18 − 1e19 m−3 . . . . . . . . . . . . . . . . . . . . . 114

6.3 RMSLE and MAPE-based comparison of predicted plasma

density with the actual density data for different sparse data sets 115

7.1 Performance metrics evaluation for scattered Erms obtained

from different computational experiments on asymmetric dense

plasma density profile data. The peak plasma density is n0. . . 133

7.2 Performance evaluation for computational experiments

performed with Erms data both (dense and sparse) corresponds

to plasma density profile having partial and full asymmetry.

The peak density range having n0 : 1e18 − 1e19 m−3 . . . . . . . 137

7.3 Performance evaluation for computational experiments

performed with dense Erms data corresponds to plasma density

profile having asymmetry. The peak density range having

n0 : 1e18 − 1e19 m−3 . . . . . . . . . . . . . . . . . . . . . . . . . 138

xv



List of Figures

1.1 (a) Time integrated breakdown plasma image in E-plane,

Hidaka et al. (2008,2009) [1, 2]. (b) Streamer discharges in air

at 760 torr, Barashenkov et al. (2000) [3]. (c) Air breakdown

induced plasma filamentary structures formed for high pressure

(760 torr), Cook et al.(2010) [4] (d) Volumetric discharge,

Khodataev et al. (2008) [5]. (e) Side view (combed shaped)

of plasma formed by air breakdown under non-focussed HPM

beam, Y.Oda et al (2020) [6]. (f) HPM breakdown images for

circular and linear polarized Microwave, Cook et al.(2011) [7].

All the experimental results correspond to 100’s of GHz of

Microwave (in millimeter band) . . . . . . . . . . . . . . . . . . 4

1.2 The 1-D distribution of kr and ki in the ωp/ω for different νm/ω

ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Plane EM wave propagation into a partially ionized cold

collisional unmagnetized plasma. Two axes are presented along

x-axis. The time-axis (t) represented in blue. The length-axis

(xcentral) represented in brown color. Using both, the time and

length axes, the damping of EM wave oscillations with time for

various locations inside the plasma is shown. . . . . . . . . . . . 13

1.4 The complete fluid-based model of the HPM breakdown

phenomenon. The different solvers correspond to the coupled

physical processes. The time steps (∆t) are different for the three

solvers (ranges from 10−15 to 10−9 s). The solvers requiring

frequent updates can be accelerated by implementing dynamic

mesh refinement (DMR). . . . . . . . . . . . . . . . . . . . . . . 14

xvi



1.5 Two different formulations for 2-D simulation of microwave

interaction with plasma based on the location of the E-field.

Multiple plasma structures formation when (a) E-field parallel

to the simulation plane (XY) [8] and (b) E-field perpendicular to

the simulation plane [9]. . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Organization of the thesis chapters. . . . . . . . . . . . . . . . . . 24

2.1 Computational implementation of multi-physics and

multi-scale 2-D plasma fluid model. . . . . . . . . . . . . . . . . 32

2.2 (a) Schematic of the Computational domain. {(ckx, cky) ∈ Q+},

and, x0 and y0 are fractions in [0, 1] of Lx and Ly respectively.

The MUR outer radiation boundary condition has been used

for scattered field formulation. (b) A partial 2-D Cartesian grid

representation of Lx × Ly domain for FDTD (E and H-field) and

plasma fluid model: plasma velocity (ve) and current density (J)

solver. Grid-spacing for EM and plasma solver, ∆EM and ∆d,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 The choice of initial density (n0i, where i= 1,2,3 and 4) in m−3 for

initiating the HPM breakdown-induced filamentation process. 36

2.4 (i-iv) plasma density (m−3) distribution in the filaments at

four-time instances. . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 (i-iv) The evolution of the plasma density (m−3), rms E-field

(V/m), the effective diffusion coefficient (m2/s), and the rate of

ionization (s−1) along the xcentral of the computational domain.

(v-viii) the evolution of the same quantities along the ycentral

passing through the center of the rightmost filament (in a dotted

circle). Here, L: Left and R: Right, Lx = Ly = 1λ. . . . . . . . . 37

3.1 (a) Schematic of the Computational domain. {(ckx, cky) ∈ Q+},

and, x0 and y0 are fractions in [0, 1] of Lx and Ly respectively.

The MUR outer radiation boundary condition has been used

for scattered field formulation. (b) Formation of self-organized

plasma filaments during HPM breakdown (snapshot at t = 45

ns, E0 = 5.5 MV/m, freq = 110 GHz). The maximum density

(max) is 6 × 1021 m−3 and (min) is 0. . . . . . . . . . . . . . . . . 45

xvii



3.2 The self-aware expansion of fine mesh in DMR to capture the

2D distribution of plasma density as the filamentary pattern

evolves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 (a) The spatial variation of ϵr and σ for a 1D plasma density

(ne) distribution. (b) Convergence study for different threshold

densities (m−3) to arrive at the threshold density criteria for

mesh initiation. The EM wave of frequency 110 GHz is

considered here. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 The 1D distribution of (a) plasma density and (b) rms E-field

and their corresponding gradient scale lengths lden and lErms

respectively, along the upper half of central y-axis (ycentral)

through the initial plasma density. The initial plasma density

is located at {x0, y0} = {0.85Lx, 0.5Ly} = {1.2λ, 0.75λ},

Lx = Ly = 1.5λ. The λ ≈ 0.0027 m corresponds to frequency

( f ) = 110 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 The 1D distribution of (a) plasma density and (b) rms E-field

and their corresponding gradient scale lengths lden and lErms

respectively, along the central x-axis (xcentral) through the initial

plasma density. The initial plasma density is located at

{x0, y0} = {0.85Lx, 0.5Ly} = {1.2λ, 0.75λ}, Lx = Ly = 1.5λ.

The λ ≈ 0.0027 m corresponds to frequency ( f ) = 110 GHz. . . 49

3.6 (a) The mesh refined (the dashed region with refinement

factor 2) discretized computational grid showing locations for

computation of EM fields and density. (b) The expanded

view of overlapped coarse and fine mesh. The different data

transfer of updated E-field, H-field and the plasma density from

coarse mesh to its corresponding fine mesh locations on both

coarse-fine boundary (c f b) as well as the fine boundary ( f b) are

shown. (c) Schematic representation of interpolation techniques

for r=2. Here, I : E-field (and velocity), II : H-field, and III :

plasma density represent different interpolations for the coarse

mesh data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xviii



3.7 (a) Schematic representations of the DMR technique, mesh

initiation, and expansion. Initial Gaussian plasma density is

located at (x0,y0). bx and by are the dimensions of the fine mesh.

XFi, XBi, Yuj, and Yl j (or Ydj) denote the forward, backward,

upper, and lower thresholds, respectively. The initial fine

mesh is labeled a-b-c-d, while the fixed coarse mesh is labeled

A-B-C-D. (b) Flowchart representation of computational steps:

Subroutines A, B, C, E, F, and G update the EM and plasma

solvers for both meshes, with interpolation (D) between them.

Den represents plasma density. The time updates for coarse (c)

and fine (f) meshes are ∆t and ∆t/r, respectively, where r is the

refinement factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Schematic representation of the dynamic mesh generation

process with an initial fine mesh, a11-b11-c11-d11, centered

around the initial plasma density located at x0 and y0, which

expands along x and y based on threshold criteria. The

coarse mesh is present in the complete computational domain,

A-B-C-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 The 2D distribution of (a) plasma density (m−3) at time t =

140 ns and (b) corresponding rms E-field, for a problem size

of 7.5λ × 1.5λ. The maximum density is 8.7 × 1021 m−3 and

maximum E-field strength is 6.97 × 106 V/m as represented on

the color scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 (a) The 2D distribution of plasma density (m−3) at time t = 90 ns

has been obtained using a single uniform mesh (Uni) and DMR

(r=2 and r=4). (b) The comparison between the plasma front

propagation using temporal evolution of the plasma density

(m−3) along xcentral for a uniform mesh (Uni) and dynamic mesh

(DMR) with different refinement factors (r), here r = 2 , 4. The

color-bar represents plasma density distribution, max : 7 × 1021

m−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xix



3.11 For different simulation times in seconds using different

techniques, Uni and DMR, the plots of (a) the subroutine-wise

execution time to simulate P1, and (b) the total execution time

taken to simulate P1. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.12 For different simulation times in seconds using different

techniques, Uni and DMR, the plots of (a) the overall speedup

and (b) the growth of total cells with time for different problem

sizes, P1 to P3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Schematic representation of the HPM breakdown application in

protection and switching. . . . . . . . . . . . . . . . . . . . . . . 67

4.2 (a) Schematic of computational domain with Emax and n0. 2D

profile (b). ne and (c) Erms at 60 ns. . . . . . . . . . . . . . . . . . 69

4.3 Spatial distribution of 1D plasma along x-axis passing through

the center of the computation domain for different time instants

(40 to 100 ns) with (a) effective diffusion (De f f ) coefficient, (b)

ambipolar diffusion (Da) coefficient respectively. . . . . . . . . 69

4.4 Plot of tcuto f f distribution for (a) varying E0 at fixed n0 and (b)

varying n0 at fixed E0. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Behaviour of 1D plasma density profile (ne) obtained from 2D

simulations with cut-off density (ncuto f f ), either blocking or

allowing frequency range (1 to 200 GHz). . . . . . . . . . . . . . 71

4.6 Plot of the relative permittivity (ϵr) and conductivity (σ)

correspond to 1D plasma density (ne) profile at two-time

instants 40 ns and 70 ns. σ in (S/m). x-axis: plasma density

profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 (a) Computational domain schematic with enhanced MW

E-field (2E0, E0 = 2.72 kV/cm) and initial seed electrons.

2D plasma profile (streamer) at 250 ns (b1) without (b2) with

gas heating and spatio-temporal density evolution along the

streamer axis, indicating time to reach ncritical and shape

changes at t = 2.5 × 10−7 s,(c1) Without and (c2) with gas

heating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xx



4.8 2-D Plots representing the effect of (a) without and (b) with

gas-heating on ne, as well as the effect of gas heating on (c) Ng

and (d).Tg, for a given time instant, t= 250 ns. For without gas

heating, the max ne values is 5.25 × 1019 m−3, with gas heating,

max ne value is 1.53 × 1020 m−3. For with gas heating, the max

value is fixed, N0 = 2.25 × 1024 at p = 70 torr, and min values

is 0.53 × 1024 m−3. For with gas heating, max Tg value is 1266.5

K and min is T0 = 300 K. For without gas heating Ng = N0 and

Tg = T0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 The 1D distribution of ne, νeff, Deff and Eeff/Ng for (a-d) without

and (e-h) with gas heating, respectively, for five different time

instants along the vertical streamer axis, ycentral line. . . . . . . 76

4.10 The effect of (a) without and (b) with gas heating, on the growth

of the peak plasma density (1D) at the center of streamer core

(at (xc, yc)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 The effect of (a) without and (b) with gas heating, on the

behavior of spatial plasma density profile along xcentral (passing

through the center of streamer core, (xc, yc)). To block or

allow certain microwave frequency based on the peak plasma

density at the streamer core at 200 ns (∼ 1 × 1020 m−3). For

the simulation, discrete frequencies have been chosen from

the 1 to 150 GHz range, and a normalized rms E-field ratio

(ET,rms/Ei,rms) is used to observe the blocking/transmitting

nature of the profile. ET,rms: Total E-field (ET,rms= Ei,rms +

Escattered,rms), Ei,rms: rms incident E-field (2E0/
√

2 = 3.84 kV/cm

or 3.84 × 105 V/m). . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 The effect of (a) without and (c) with gas heating on the

cut-off time (tcuto f f ) and (tcritical). The lower breakdown time

is indicated by the (d) drop (2.7 times) (b) drop (1.7 times)

in the signal transmission (ET,insta) through the plasma at the

corresponding tcuto f f , shifted from 200 ns (without gas heating)

to 120 ns (with gas heating). ET,insta: instantaneous Total E-field,

max ET,insta = 5.4 × 105 V/m (before breakdown) . . . . . . . . 80

xxi



5.1 Flowchart for training the proposed data-driven ML model . . . 85

5.2 The proposed architecture having encoder, decoder, and

skip connections for EM-wave scattered by plasma density

prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 (a) The schematic representation of the square computational

domain, {(ckx, cky) ∈ Q+}; length of the domain Lx and Ly are

taken in terms of the wavelength of the incident EM wave. The

location x0, y0 is 0.5Lx and 0.5Ly, respectively, and, {ckx, cky} =

{1.5, 1.5}, where λ corresponds to freq = 1 GHz. The parameter

space can be varied by changing two parameters of the 2D

Gaussian profile - width and peak density. (b) plasma profile

along the central x-axis (xcentral) for different widths of Gaussian

(S1:0.05λ (highest) to S10:0.02λ (lowest)) for a fixed peak plasma

density,n0 = 1022 m−3 (c) different peak plasma densities for a

fixed width of Gaussian. The den1S1: n0 = 1022 m−3 to den6S1:

n0 = 1021 m−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 (a-f) Generated dataset of Plasma Density and corresponding

scattered Erms for varying peak density. The color-bar represents

the maxima and minima corresponding to plasma density and

the Erms. The maxima for plasma density is indicated by n0 and

the minima is 0. For Erms, maxima are 7.07, 7.15, 7.74, 9.37, 10.36,

and 10.47 V/m, respectively, and minima is 0. The skin depth of

microwave into plasma profile reduces as n0 increases indicated

by visibility of exact scatterer dimension (2D Gaussian profile)

from Erms plot (a) to (f). . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Mean squared error loss in training the model . . . . . . . . . . 93

5.6 Comparative study and results of example cases; Row 1

(a1-a5): 2D profile of input plasma density (for increasing n0,

6e18, 6e19, 4e20, 6e21 and 8e21 m−3 from left to the right); Row

2 (b1-b5): 2D Scattering (Erms) pattern obtained from FDTD

solver; Row 3 (c1-c5): 2D Output Erms image from the proposed

deep learning based architecture; Row 4 (d1-d5): Comparison

of 1D Erms along the central x-axis (xcentral) of the computational

domain predicted from our work and FDTD based solver. . . . 96

xxii



5.7 Row 1: Feature maps of the output of the six encoder units; Row

2: Feature maps of the output of the six decoder units. (a) is

the final output Erms image of the network; The corresponding

(a)-(f) pairs of the encoder-decoder pairs give the feature output

in the same spatial dimensions. Only four feature maps for a

convolution unit are shown for representational purposes. The

total number of feature maps for a unit is equal to the number

of filters used in the convolution or transposed convolution layer.) 98

6.1 Schematic representation of the forward and inverse problem

for EM-plasma interaction is shown. The 2-D representation

of plasma density and corresponding Erms obtained through

the Maxwell-plasma fluid model (solution to forward problem)

exists, but no direct inverse mapping exists. . . . . . . . . . . . . 102

6.2 (a) A typical linear LTP device schematic. (b) The

schematic representation of the square computational domain,

{(mx, my) ∈ Q+}; the length of the domain Lx and Ly is

expressed in terms of the wavelength of the incident EM

wave. The location coordinates x0, y0 is 0.5Lx and 0.5Ly,

respectively, and, the coefficients, {mx, my} = {1.0, 1.0},

where λ corresponds to the freq = 500 MHz. The parameter

space can be varied by changing two parameters of the 2D

Gaussian profile - width (σx = σy) and peak density (n0).

σx={0.01λ, 0.02λ, ..., 0.05λ} for a fixed peak plasma density,n0 =

{1016, 1017, ..., 1019} m−3 . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 (a1-a5) Generated data-set of reflected Erms from, (b1-b5)

different plasma density profile having varying peak density

(n0). The maxima for plasma density is indicated by n0, and

the minima is 0. For Erms, maxima are 8.29, 9.34, 10.31, 10.36,

and 10.37 V/m, respectively, and minima is 0. The skin depth of

the microwave into the plasma profile reduces as n0 increases. . 105

xxiii



6.4 Dense Erms data generation for ML training: (a) by removing the

central part of the data and retaining the remaining, (b) addition

of noise to the generated dense data, followed by removing the

central part and retaining the remaining. (c1-c3) represents the

2-D as well as 1-D density profile, Furthermore, corresponding,

dense Erms data has been collected with and without noise (left

to right). The color-bar maxima and minima correspond to Erms.

DI : Initial data, MD: Mask for dense data, N: Noise data . . . . 106

6.5 Sparse Erms data generation for ML training: (a) by removing

the central part of the data and retaining the sparse data

using a concentric ring-based mask, (b) addition of noise to

the generated dense data, followed by removing the central

part and retaining the remaining. (c1-c3) represents the 2-D as

well as 1-D density profile, and corresponding, dense Erms data

collected for both with and without noise (left to right). The

color-bar maxima and minima correspond to Erms. DI : Initial

data, MS: Mask for sparse data, N: Noise data . . . . . . . . . . 107

6.6 Complete workflow used in this study for prediction of plasma

density via DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 The model architecture uses encoder, decoder, and skip

connections to predict the plasma density profile from masked

EM-wave scattered pattern data-sets . . . . . . . . . . . . . . . . 110

6.8 Comparative study and results for dense data-set (DD); Row 1

(a1-a5) masked 2-D Erms dense data obtained from simulations

for given input density profile; Row 2 (b1-b5) The actual input

plasma 2-D density profile; Row 3 (c1-c5) The predicted 2-D

profile of plasma density from the proposed deep learning

based architecture; Row 4, Comparison of the accuracy between

the magnitude of the actual and predicted 1-D plasma density

along the central X-axis (xcentral) of the computational domain. 116

xxiv



6.9 Comparative study and results for dense data-set with noise

(DN,D); Row 1 (a1-a5) 2-D Erms (the increasing maxima in V/m

from left to right) dense data with Gaussian noise obtained

from plasma density profile using FDTD; Row 2 (b1-b5) The

actual plasma 2-D density profile; Row 3 (c1-c5) The predicted

2-D profile of plasma density from the proposed deep learning

based architecture; Row 4, Comparison of the accuracy between

the magnitude of the actual and predicted 1-D plasma density

along the central X-axis (xcentral) of the computational domain in

the presence of noise. . . . . . . . . . . . . . . . . . . . . . . . . 117

6.10 Comparative study and results for sparse data-set (DS); Row

1 (a1-a5) 2-D Erms (the increasing maxima in V/m from left to

right) sparse data obtained from plasma density profile using

FDTD; Row 2 (b1-b5) The actual plasma 2-D density profile;

Row 3 (c1-c5) The predicted 2-D profile of plasma density

from the proposed deep learning based architecture; Row 4,

Comparison of the accuracy between the magnitude of the

actual and predicted 1-D plasma density along the central X-axis

(xcentral) of the computational domain. . . . . . . . . . . . . . . . 119

6.11 Comparative study and results for sparse data-set with noise

(DN,S); Row 1 (a1-a5) 2-D Erms (the increasing maxima in V/m

from left to right) sparse data with Gaussian noise obtained

from plasma density profile using FDTD; Row 2 (b1-b5) The

actual plasma 2-D density profile; Row 3 (c1-c5) The predicted

2-D profile of plasma density from the proposed deep learning

based architecture; Row 4, Comparison of the accuracy between

the magnitude of the actual and predicted 1-D plasma density

along the central X-axis (xcentral) of the computational domain in

the presence of noise. . . . . . . . . . . . . . . . . . . . . . . . . 120

xxv



7.1 Mathematical function-based partial/ fully asymmetric plasma

density, (a1-a3) 2-D distribution and (b1-b3) 1-D distribution

along x-line. Fluid simulation based fully asymmetric plasma

density, (c1-c3) 2-D distribution, and (d1-d3) 1-D distribution

along x-line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 Schematic representation of the computational domain to

simulate the microwave interaction with various asymmetric

plasma profiles. Domain length along x and y, Lx and Ly, is

expressed in terms of EM wavelength (λ). . . . . . . . . . . . . 127

7.3 Mathematical formulation of Partial/Full asymmetric profile

(Gaussian multiple plasmoids, Non-Gaussian (multiple

plasmoids and Ellipsoid)) data-set, plasma density (a1-a3) 2-D

distribution, and (b1-b3) 1-D distribution along x-line. (c1-c3)

The corresponding scattered Erms 2-D pattern. . . . . . . . . . . 128

7.4 Fluid simulation based filamentary profile data-set, plasma

density (a1-a3) 2-D distribution and (b1-b3) 1-D distribution

along x-line. (c1-c3) The corresponding scattered Erms 2-D

pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 Mean squared error loss in training (learning sample)/testing

(unseen data-sample) the model for (a) Non-Gaussian and (b)

filament plasma profile. . . . . . . . . . . . . . . . . . . . . . . . 131

7.6 The 2-D, 1-D qualitative and quantitative comparison of actual

and predicted scattered Erms from Non-Gaussian (a1-a5) and

(b1-b5) filamentary plasma profile, respectively. . . . . . . . . . 132

7.7 Feature maps correspond to the output of each of the encoder

and decoder units of the DL model. A single feature map from

each convolutional unit is shown for representation. The model

input and the final output of the DL-network are the plasma

density profile and its corresponding Erms image. . . . . . . . . 133

7.8 Comparison of results for dense (DD) and sparse (DS) data

samples without and with noise (for partially asymmetric),

having two Gaussian plasma profiles with peaks not located at

the center of the simulation domain (x0, y0). . . . . . . . . . . . 135

xxvi



7.9 Comparison of results for completely asymmetric density

profile for dense Erms data, DD. (a1-a4) the masked Erms, (b1-b4)

the ground truth, (c1-c4) the predicted plasma density profile

for DD, and (d1-d4) the residual (difference between actual and

predicted) to indicate the degree of mismatch. . . . . . . . . . . 136

7.10 Comparison of results for completely asymmetric density

profile for sparse Erms data, DS. (a1-a4) the masked Erms, (b1-b4)

the ground truth, (c1-c4) the predicted plasma density profile for

DS and (d1-d4) the residual to indicate the degree of mismatch

between actual and predicted asymmetric profiles. . . . . . . . 136

7.11 Comparative study and results for dense data (DD), considering

two Gaussian plasma profiles not symmetric about the

computation domain center, with different relative noise

amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.12 Feature maps correspond to the output of each of the encoder

and decoder units of the DL model. The model input and output

are the Erms image and the image of the plasma density profile. 139

xxvii



CHAPTER 1

Introduction and Literature survey

The study of the interaction between electromagnetic (EM) waves and

plasma has been an important area of research that has been explored

for several decades due to its numerous applications [10, 11]. Various

experimental, theoretical, and computational studies have been carried out

to understand the EM wave propagation characteristics such as transmission,

reflection, scattering, and absorption in the plasma. Initial studies were

primarily motivated to understand/ mitigate the communication blackout

problems associated with satellite or supersonic re-entry vehicles into earth’s

ionosphere plasma [12], determination of breakdown voltages for discharges

[10], ECR heating of thermal plasmas [13], plasma antennas [14], plasma

stealth technology [15, 16] and many more. The advancement of the

microwave (frequency- 3 GHz to 30 GHz, wavelength- 10 cm to 1 cm)

and millimeter wave (frequency-30 GHz to 300 GHz, wavelength- 10mm to

1mm) technology [17], such as development of various microwave sources

ranging from low to high power and their easy availability, opened up many

new areas of research involving microwave-plasma interaction [18]. The

microwave-plasma interaction studies have been generally categorized under

two broad classes, the non-ionizing and the ionizing, based on the strength

of the microwave E-field (non-ionizing if E-field < breakdown field ). When

a low-power, high-frequency microwave interacts with stray electrons in

the gas, the electrons immediately respond to the wave and suffer multiple

collisions with the neutrals in every wave cycle due to their lower mass.

The electrons acquire drift velocity from the wave E-field and subsequently

gain instantaneous momentum. However, the high collisions with neutrals
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interrupt the electron motion, and the electron loses the entire momentum

at each collision. The energy exchange between the electrons and neutrals

is of the order of ((me/mneutral)KE0), where KE0 is electron kinetic energy

before collision. Since me << mneutral, energy remains conserved before

and after the collision. Thus, only momentum transfer through collisions

dominates. Since the microwave has low power, it cannot impart sufficient

energy to the electrons (KE < the ionization potential of the neutrals) to sustain

breakdown. Thus, non-ionizing its effect on plasma discharge dynamics is

negligible. However, high-power microwaves have sufficient EM energy to

impart high KE to the stray electrons in gases (such as air).

The non-ionizing microwave-plasma interaction, where the wave cannot

ionize the existing plasma, has different applications such as reflectors

and absorbers [15], plasma antennas [14], plasma stealth technology [16],

plasma meta-materials [19], plasma diagnostics [12, 20]. Microwave-plasma

interaction in the context of gas breakdown in a High Power Microwave

(HPM) field (ionizing case) has also been extensively studied due to its

numerous applications in areas such as aerospace applications, plasma

propulsion, flow control, combustion initiation, plasma-based limiters, HPM

switching, electromagnetic warfare etc. [5, 21–30]. Additionally, recent

technological advancements in high-speed cameras [1,6,7,31,32] have allowed

for more detailed experimental investigations of plasma dynamics during

HPM breakdown at high pressures. Several experiments have been conducted

using millimeter and sub-millimeter wave irradiation at high pressures, which

have resulted in the observation of various types of gas discharges such as

streamer, overcritical, subcritical, volumetric, and attached to an initiator [5,33,

34]. To completely understand the properties of each type of discharge and the

associated plasma dynamics, it is crucial to improve our understanding of the

electromagnetic wave-plasma interaction, plasma formation, and subsequent

energy exchange between wave and plasma, as well as between gas and

plasma. Recent experiments with high-frequency waves (100’s of GHz) [1, 2,

5–7,31,32,34] have revealed the formation of self-organized plasma structures,

such as fish-bone-like filaments and comb-shaped branching, during air

breakdown from high-frequency microwave under atmospheric pressure.

Some of those experimental results are shown in Fig.1.1. These plasma
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structures propagate toward the microwave source, and the high-density

plasma filaments enhance the scattered EM field at the anti-node of standing

waves, resulting in sustained self-organized plasma pattern formation [35,36].

Several researchers have used this problem as a benchmark to investigate

or validate computational techniques [8]. In this thesis, we have also

considered this our benchmark problem and mainly focus on partially ionized,

unmagnetized, collisional plasmas. The HPM breakdown phenomenon is

a multi-physics, multi-scale problem and involves non-linear dependencies

on various parameters (pressure, E-field strength, and more) that control the

various physical processes (such as diffusion, ionization, attachment, and

recombination), resulting in a breakdown. Consequently, such a complex

problem is experimentally, analytically, and computationally challenging. The

requirement of high-power microwave sources operating at high frequency

over a wide range of pressures (low, intermediate, and high) makes it

difficult as an experimental problem. The analytical modeling becomes

too simplistic compared to the real phenomenon. However, the advanced

numerical techniques, which are powerful (realistic compared to analytical

model) to replicate actual HPM breakdown experimental observations, still

face a challenge for simulating such a problem in a computational resource

constraint environment.

This chapter provides a brief overview of the type of plasma we have

considered in our study, along with the various mathematical equations

describing the charge transport in the plasma. Then, we discuss the

electromagnetic wave propagation in such types of plasmas. Subsequently,

we highlight the multi-scale and multi-physics nature of the HPM breakdown

problem. Next, we discuss the conventional methods available to

computationally model the HPM breakdown problem along with the

associated challenges. Further, we discuss the necessity of exploring

data-driven approaches in the context of microwave-plasma interaction.

We also briefly introduce the three important applications based on

microwave-plasma interaction physics investigated in this thesis: plasma

dynamics associated with HPM breakdown, HPM-based switching and

protection, and microwave-assisted plasma diagnostics.
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Figure 1.1: (a) Time integrated breakdown plasma image in E-plane, Hidaka
et al. (2008,2009) [1, 2]. (b) Streamer discharges in air at 760 torr, Barashenkov
et al. (2000) [3]. (c) Air breakdown induced plasma filamentary structures
formed for high pressure (760 torr), Cook et al.(2010) [4] (d) Volumetric
discharge, Khodataev et al. (2008) [5]. (e) Side view (combed shaped) of
plasma formed by air breakdown under non-focussed HPM beam, Y.Oda et
al (2020) [6]. (f) HPM breakdown images for circular and linear polarized
Microwave, Cook et al.(2011) [7]. All the experimental results correspond to
100’s of GHz of Microwave (in millimeter band)

1.1 Partially ionized unmagnetized cold collisional

plasma

Plasma is considered the fourth state of matter alongside the solids, liquids,

and gases [37]. When sufficient energy is delivered to a molecular gas that

dissociates into atomic gas (through a collisional process between high KE

particles), then a fraction of atoms possess KE to overcome the binding energy

of outermost electrons, resulting in an ionized gas. The ionized gas consists

of different charged and neutral species, which follow quasi-neutrality and

collective behavior.

Quasi-Neutrality: In gaseous plasma, within a volume, the number of

positively charged ions is roughly equal to the number of free electrons,

resulting in the overall charge densities canceling each other maintaining the

electrical neutrality on macroscopic scales. If the number densities of electron

and ion (with charge number Z) are, ne and ni. Then, under quasi-neutral

conditions, they are locally balanced, ne = Z ni. The quasi-neutrality is not

just an ideal equilibrium but the plasma always tries to achieve the most

desirable state by re-adjusting the local charge distribution as a response to any

perturbation. The potential (Φl) as a result of such disturbance (results charge

accumulation Q within a local volume), after solving Poisson’s equation can
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be expressed by,

Φl =
Q
r

exp(−r/λD) (1.1)

where, Φl, screens as r > λD, also called Debye screening. The characteristic

length λD is known as Debye length, within which the quasi-neutrality exists.

The Debye length can be expressed as ,

λD =

√
ϵ0 kB Te

e2 ne
(1.2)

where kB is Boltzmann constant, and Te is electron temperature (based on the

thermal KE of electrons). For an ideal plasma, more charge particles must exist

within a Debye sphere, given by,
(

ne
4π
3 λ3

D >> 1
)

. This quasi-neutrality

allows plasmas to exhibit collective behaviors and respond to electric and

magnetic fields as a whole, unlike ionized gases, which do not exhibit such

behavior.

Collective Behavior: Gaseous plasmas can collectively respond to external

forces, propagating waves, and self-organize into structures such as filaments

and sheaths due to the interactions between charged particles. The collective

behavior arises due to the long-range nature of the 1/r Coulomb potential,

which indicates that the effect of local disturbances can be experienced at

remote locations within the plasma. As a consequence, the local perturbations

are short-lived compared to the dominating macroscopic fields. Assuming,

local net charge imbalance, ρl = e (Z ni − ne), resulting an electrostatic field

according to Gauss’s law,

∇ · E⃗ = ρl/ϵ0 (1.3)

The same charge cloud, consisting of electrons and ions, moving with velocity

ve and vi, will give rise to a current density J⃗l = e (Z niv⃗i − nev⃗e). From

Ampere’s Law, we can express the resulting magnetic field,

∇× H⃗ = J⃗ (1.4)

Such internally driven E⃗ and H⃗ fields determine plasma dynamics. Plasma

also responds to externally applied fields, such as microwave interaction with

plasma.
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For plasma to exist, the following criteria must satisfy λD << L, where L is

the length of the plasma. The other criteria is based on the plasma relaxation

time, such that the rate of collisions (mainly between charge particles and

neutrals in a partially ionized plasma) must be less compared to the plasma

frequency (the rate at which plasma re-adjusts charge imbalance due to any

local perturbation).

Plasma can be classified based on the degree of ionization, the temperature of

the charge species, and whether magnetized or unmagnetized. Based on the

degree of ionization, the following types of plasma can exist:

Fully Ionized Plasma: In these plasmas, almost all of the gas particles (Ng ∼

1025) are ionized, resulting in a high density of free electrons and ions (if

ni = ne = n ∼ 1022, then the degree of ionization = n/Ng ≥ 10−3).

The collisions with neutral molecules become negligible, hence the smooth

trajectory of charges (high KE particles). Such plasma experiences long-range

coulombic interaction with surrounding electrons and ions. Due to larger λD,

bigger debye spheres (sparsely populated charges), the resulting plasma can

be considered weakly coupled plasmas.

Partially Ionized Plasma: In this type of plasma, only a fraction of the gas

particles are ionized, and the rest remain in neutral form. For such plasmas,

n/Ng < 10−3. More collisions with neutral molecules result in randomized

motion. In the absence of an external field, the KE of particles is lower.

Due to smaller λD, a smaller debye sphere (less dense) results in strongly

coupled plasma (more local interaction) and less long-range interaction. The

work presented in this thesis primarily focused on partially ionized or weakly

ionized plasmas.

Based on their temperature, plasmas can also be classified into two primary

categories:

• High-Temperature (or thermal) Plasma: These plasmas have extremely

high temperatures (due to high KE, fully ionized, ne = ni = n, the

ion and electron temperatures are comparable, Ti ∼ Te and heats the

background gas species (Tg ∼ Ti)), often in the millions or billions of

degrees Kelvin. Mostly, such plasmas have thermal equilibrium between

the charge species and neutral gas molecules. The typical temperatures,
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10 − 100 eV (≥ 105K).

• Low-Temperature (non-thermal) Plasma: Low-temperature plasmas

have temperatures ranging from a few hundred to tens of thousands

of degrees Kelvin. The typical temperature range for such plasmas is

1 − 10 eV. Mostly, such plasmas have a non-thermal equilibrium that

exists between the lighter charge species (electrons) and heavier charge

(ions) and neutral gas molecules ( the electrons have high KE having high

temperatures compared to less KE ions and neutrals). Here, Te can reach

10,000 K whereas Ti ∼ Tg = 300 K.

For a collisional plasma (partially ionized), the plasma can be treated as

unmagnetized, provided the mean free path of the charged species (mainly

the lighter high KE electrons) is less than its gyroradius in the presence of

an induced magnetic field. Thus, the influence of the magnetic field on the

charged species transport in the plasma bulk depends on the length and

time-scale we consider in the study.

Based on the above discussions comprising a brief overview of plasma and its

various classifications, we finally discuss the cold collisional unmagnetized

plasmas, which has been considered in this thesis’s due to potential

research significance. These plasmas are a subset of LTPs characterized by

low temperatures, typically within a few thousand degrees Kelvin. The

collisions between charged and neutral particles dominate in deciding unique

properties, such as EM-plasma interactions. They have low KE and are

densely populated (within a small debye sphere), and are strongly coupled

and non-thermal (Te >> Ti ∼ Tg). Research on LTP focuses on

understanding the dynamics of particle collisions, energy transport, and

the development of novel technologies that harness the properties of cold

collisional unmagnetized plasmas for various purposes, including fusion

energy research and astrophysical simulations.

When an external EM wave having E-field (E⃗) is applied on a collisional

plasma, based on the fluid model the two equations that generally describe

the plasma transport, the drift velocity(v) and evolution of the density of the

particles(n) are: the Equation of Motion and the Equation of Continuity [38].

The Equation of Motion: Applying Newton’s 2nd Law of Motion, “The rate
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of change of momentum equals the applied force or the force experienced by

particles (such as charged species electrons or ions), where

m
dv⃗
dt

= F⃗ (1.5)

where dv⃗/dt = (∂v⃗/∂t + v⃗ ·∇v⃗), for a flow under uniform field with no

convective acceleration (⃗v ·∇v⃗ = 0). F⃗ has a contribution from the electric

field, magnetic field, collisional drag (or momentum loss), and due to pressure

gradient (∇(nT)/n), T can be Te or Ti, which can be mathematically expressed

as,

F⃗ = qE⃗ + q(⃗v × B⃗)− m νmv⃗ − 1
n
∇(nT) (1.6)

where νm is collision frequency, m is the particle’s mass, v⃗ is the velocity

field corresponding to the average velocity of the plasma element (assuming

the whole plasma is divided into a large number of volume elements). The

modified equation of motion for an unmagnetized (B⃗0 = 0) collisional plasma,

m
∂v⃗
dt

= qE⃗ − mνmv⃗ − 1
n
∇(nT) (1.7)

For high-frequency EM waves, the average velocity equation of the particle can

be obtained using a valid assumption. We assume that the distance traveled

over one E-field period is small (drift) compared to the length scale of the

E-field and pressure variation (due to density gradient), neglecting diffusion.

The equation is given by,
∂v⃗
dt

=
q
m

E⃗ − νmv⃗ (1.8)

For a longer time scale (under steady state, ∂v⃗
dt ≈ 0), to describe charge

transport averaged over one cycle of the EM wave considering the effect of

diffusion. On rearranging the equation (1.7), we obtain the velocity equation,

v⃗ =
qE⃗

mνm
− T

mνm

∇n
n

(1.9)

Where, for electron, Te, can be replaced by kBTe in (eV), similarly for ions Ti =

kBTi. The mobility of charge carrier,(µ ≡ |q|
mνm

). Diffusion coefficient (D = kBT
m ν ),

for electrons, De =
(

µe kB Te
e

)
, and, for ions, Di =

(
µi kB Ti

e

)
.

For a collisional plasma, the charge transport is governed by the drift-diffusion
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equation. The flux (Γ) of particles (both electrons and ions) across a boundary

can be expressed by multiplying n to equation (1.10),

|Γ| = nv = |µ|nE⃗ − D∇n (1.10)

where, |Γi| = µiniE⃗ − Di∇ni and |Γe| = µeneE⃗ − De∇ne, are electron and ion

fluxes, respectively.

The Equation of continuity

The continuity equation describes the partial rate of change of density with

time. Under source-free condition, it is expressed as,

∂n
∂t

+∇ · (nv⃗) = 0 (1.11)

where n v⃗ is the flux of particles reduced per volume. The continuity equation

balances the creation and loss mechanisms that sustain the charge particle flow

within a plasma medium, where charged particles like electrons and ions move

through a given volume.

For the plasma evolution under the influence of a microwave and a slowly

varying DC space charge field (due to perturbation from external microwave

field), the continuity equation can be re-written in a drift-diffusion form

combining equation (1.10 and 1.11) described by,

∂n
∂t

+∇ ·
(
|µ|nE⃗ − D∇n

)
= S (1.12)

The S is the net particle number density created per unit time per unit

volume, which consists of contribution from collision-assisted processes

such as ionization, attachment, and recombination. Under quasi-neutrality,

assuming Γi = Γe = Γ, the plasma bulk ambipolar transport in a space charge

field (Esp) given by,

Esp =

(
Di − De
µi + µe

)
∇n

n
(1.13)

We obtain the ambipolar flux Γ = −Da ∇n, where Da =

(
µi De+µe Di

µe+µi

)
is the

ambipolar diffusion coefficient, we obtain the modified equation (1.12),

∂n
∂t

−∇ · (Da∇n) = S (1.14)
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The diffusion occurs over the characteristic length of plasma, L = ||∇n/n||−1

, the debye length (λD < L) for quasi-neutral behaviour.

1.2 EM wave propagation in plasma

The EM wave propagation characteristics in a collisional unmagnetized

plasma are described through different physical phenomena, transmission,

scattering, reflection, and absorption. The processes depend on both EM

wave properties, decided by the frequency (ω) and the wave strength (E0),

and the plasma properties, decided by density (ne) or plasma frequency (ωp),

collision frequency (ν ≡ νm). The νm or ν interchangeably used in the text

determines the damping of the waves due to collisions between charged

and neutral particles, which affects wave attenuation and absorption. The

ωp plays a significant role in determining the dispersion properties of the

plasma. Various methods exist to study the EM wave propagation in a plasma.

These methods include the coupling of Maxwell’s equations to the Boltzmann

equation to obtain the electron-velocity distribution function [39], fully kinetic

particle simulations [40], magnetohydrodynamics, and hybrid particle-fluid

methods [41] and magnetoionic theory based dispersion relation [42, 43]. For

a cold, collisional, unmagnetized plasma, the response to EM waves can be

fully specified by a dispersion relation based on magnetoionic theory [43]. The

dispersion relation provides a frequency-dependent propagation in plasma

[12, 43]. This relation (Eq.1.15) interconnects the wave properties with the

plasma properties using the complex propagation constant, where, ωp =

(nee2/meϵ0)
1/2 is the plasma frequency, ω is the wave angular frequency and

ne is the spatial local electron density. Moreover, the dispersion relation can be

used to obtain the medium’s refractive index and permittivity.

ω2
p =

(
ω2 − k2c2)(1 + i

νm

ω

)
(1.15)

1.2.1 Complex propagation constant of plasma

The dispersive nature of plasma can be explained through the propagation

constant (k). The propagation constant in the plasma can be expressed by,
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k = kr + iki. Where the Re{k} = kr decides the wave propagation through

the medium, also termed as phase shift constant, and Im{k} = ki decides

the attenuation of the wave as it propagates through the plasma medium also

termed as the attenuation coefficient. The kr and ki can be expressed in terms

of the real and imaginary parts as,

kr =

(
ω

c

)√√√√√1
2

(
1 −

ω2
p

ω2 + ν2
m

)
+

1
2

√√√√(1 −
ω2

p

ω2 + ν2
m

)2

+

((
ω2

p

ω2 + ν2
m

)(νm

ω

))2

(1.16)

ki =

(
ω

c

)√√√√√−1
2

(
1 −

ω2
p

ω2 + ν2
m

)
+

1
2

√√√√(1 −
ω2

p

ω2 + ν2
m

)2

+

((
ω2

pe

ω2 + ν2
m

)(νm

ω

))2

(1.17)

The complex dispersion relation for EM propagation in the plasma has been

Figure 1.2: The 1-D distribution of kr and ki in the ωp/ω for different νm/ω
ratios.

shown in Fig. 1.2. We can classify our observation under three regions based

on the ratio of νm/ω,

• νm/ω << 0.1 : full wave propagation (kr ∼ 1.0) for ωp/ω < 1.0 and no

propagation (kr ∼ 0) otherwise (sharp cutoff at ωp/ω = 1.0). Similarly,

minimum absorption ωp/ω < 1.0 (ki << 0.25) and high absorption

otherwise.
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• νm/ω ∼ [ 0.1 − 0.5): sharp cutoff condition fails (kr > 0.5) ωp/ω =

1.0 and wave can propagate ωp/ω > 1.0 as well as there is associated

absorption ωp/ω < 1.0 (ki ∼ 0.25).

• νm/ω ≥ 1.0: No sharp cutoff condition exists for ωp/ω = 1.0 and wave

propagates through a lossy medium (ki >> 1).

The complex relative permittivity (ϵ(ω)) can be obtained from the dispersion

relation using the following relation (k = (ω/c)
√

ϵ(ω)), where c is the speed

of light in free-space. For a collisional plasma ϵ(ω) is defined as [28, 35],

ϵ(ω) =

(
1 −

ω2
p

ω2 + ν2
m

)
− i

(
ω2

p

ω2 + ν2
m

)(νm

ω

)
(1.18)

where Re{ϵ(ω)} is the propagation constant, whereas the conductivity of the

plasma depends on Im{ϵ(ω)}. The cutoff density (ncutoff), in the context of EM

propagation in plasma, is given by ncutoff = ncritical (νm/ω), where ncritical =

(mϵ0/e2)ω2. At critical density (ncritical =
(
m ϵ0 ω2

p)/e2), when the ωp ≈ ω,

the microwave wave starts getting reflected. When plasma density crosses

the cutoff density, plasma almost reflects a large percentage of the EM wave

power with minimal transmission. Thus, at cutoff, the plasma almost shields

the incoming microwave [44].

The complex wave propagation vector describes the microwave propagation

in the plasma. By assuming a Y-directed and X-propagating wave, the wave

propagation in the plasma can be written as,

E(x, t) = Re
{

E0,y exp
(

j(ωt − k. x)
)}

(1.19a)

E(x, t) = Re
{

E0,y exp
(
−
∫

ki(x) dx
)

exp
(

j(ωt − kr. x)
)}

(1.19b)

k stores the information of the plasma medium in the amplitude and the phase

of the wave, based on the ϵ(ω) value. EM-wave propagation is shown in

Fig.1.3, by assuming the plasma density to have an Epstein profile, which is

given by,

ne(x) =
n0

1 + exp(−x/S)
(1.20)
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Figure 1.3: Plane EM wave propagation into a partially ionized cold collisional
unmagnetized plasma. Two axes are presented along x-axis. The time-axis
(t) represented in blue. The length-axis (xcentral) represented in brown color.
Using both, the time and length axes, the damping of EM wave oscillations
with time for various locations inside the plasma is shown.

where S = 10L, L is the gradient length for the given plasma density profile,

x ∈ [−0.15, 0.15].

1.3 High Power Microwave breakdown - a

multi-physics and multi-scale problem

Since HPM breakdown at high pressure and high frequency is a multi-scale

and multi-physics phenomenon, it must provide accurate results within the

desired run-time for a given simulation technique to be useful and acceptable

for parametric investigations. For desired accuracy, the various physical

processes at different time-scales, such as EM wave-plasma interaction, plasma

formation, the subsequent energy exchange between wave and plasma, and

afterward between the gas and the plasma, must be captured properly.

This can be achieved using three different solvers as shown in Fig.1.4 - the

Electromagnetic (EM) solver, Plasma solver, and Fluid solver. However,

different time-scales are associated with these three solvers and the overall
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Figure 1.4: The complete fluid-based model of the HPM breakdown
phenomenon. The different solvers correspond to the coupled physical
processes. The time steps (∆t) are different for the three solvers (ranges from
10−15 to 10−9 s). The solvers requiring frequent updates can be accelerated by
implementing dynamic mesh refinement (DMR).
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run-time (efficiency) is determined by the time-steps associated with the

EM-Plasma solvers. For example, in applications discussed in Fig.1.1

involving 100s of GHz, the time scale associated with EM solver is of the

order of 10−12 s. The time-scale associated with the Plasma solver is 10−9

s. The Fluid solver that solves the gas dynamic equations is associated with

100’s of nanoseconds time scale. The presence of sharp gradients both in the

plasma density and E-field during the HPM breakdown needs to be accurately

resolved using a very fine mesh during simulation. Due to this, most of

the existing techniques require significant computational time to simulate the

high-frequency breakdown problem.

As shown in Fig.1.4, since the solvers are coupled with each other, unless

the Electromagnetic and Plasma solvers get accelerated, the higher time

scale phenomenon, such as gas heating that is simulated through the Fluid

solver will be difficult to realize. Also, based on the time scale of events,

the Fluid solver is less frequently updated than the other two solvers.

Computational modeling and simulation of microwave–plasma interaction

is still a challenging task and remains one of the researched domains.

Developing efficient computational techniques can help researchers accelerate

the most frequent solvers (EM and plasma) while investigating the physics of

EM-plasma interaction.

1.4 Conventional methods to computationally

model the HPM breakdown

FDTD-based Maxwell-plasma fluid model is the most widely used approach

for the simulation of HPM breakdown physics [35]. FDTD technique uses

a domain discretization and evaluation of the quantities (fields) at every

point on the Cartesian grids in a time-marching fashion. Similarly, the finite

difference technique solves the plasma continuity equation to capture the

plasma evolution phenomenon. The limitations associated with the finite

difference time domain (FDTD) based fluid model [9, 35, 45] arise from

restrictions on stringent grid spacing for accuracy and time spacing for

stability of evaluated fields and density. To overcome these issues, the works
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of Yan et. al. [46, 47] discuss the application of the discontinuous Galerkin

time-domain (DGTD) method to realize the plasma filamentation under HPM

breakdown in air. The DGTD algorithm is an interplay between the finite

element time domain (FETD) technique, whereby the local unstructured

tetrahedral basis is used to realize the fields and the plasma evolution, and

the finite volume time domain (FVTD) technique, where the continuity

is weakly associated with each nodal volumes that are related using the

fluxes. The DGTD technique inherently supports the trade-off balance

between accuracy and computation cost. However, the advantages associated

with the DGTD technique come at the cost of the complex mathematical

formulation, requirement of the proper choice of higher order basis function,

and modification in the existing computational setup for the HPM breakdown

model. In terms of mathematical formulation, the FDTD technique is much

simpler, and using structured grids to evaluate field quantities conserves the

quantities across the grid interfaces. Besides the Maxwell equations solved by

the FDTD method and the electron fluid equation solved by using the finite

difference scheme, the Maxwell equations and Newton-Lorentz equation

have also been used to simulate the HPM breakdown problems such as in the

study of vacuum-insulator interface discharge that limits the power handling

capacity of pulsed power system [48] [49]. The FDTD method is used to solve

the Maxwell equations, and the particle-in-cell (PIC) method [50] is applied to

solve the Newton-Lorentz equation.

PIC is particularly good at capturing different non-local particle kinetics and

is generally used for investigating weakly collisional or collisionless plasmas.

For high-pressure plasmas (highly collisional process), as considered in our

study, the non-local effects are less important than the total effect, considering

the particles as a continuum (fluids) with the particles following a specific

velocity distribution based on the local electric field approximation. In such

cases, the fluid models are better suited due to their simplicity in describing

the plasma via macroscopic quantities. In highly collisional plasmas, the mean

free path is much smaller than the plasma size.
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1.5 Data-driven approaches for investigating

EM-plasma interactions

In the last decade, there have been vast improvements in the development

of large and powerful deep neural networks (DNNs), which have been

applied to solve complex problems in computer vision and image processing.

Physics-informed neural networks, a DNN framework, can also be used as

a black box to approximate a physical system [51], and recent results have

shown that DNNs with many layers perform a surprisingly good job in

modeling partial differential equation-based complicated physics problems

in terms of both speed and accuracy [52]. Of late, machine learning (ML)/

deep learning (DL) has also been used to successfully address different

complex problems in plasma physics and computational electromagnetics.

Deep reinforcement learning has been applied for tokamak magnetic controller

design to produce new plasma configurations [53], the potential of AI/ML

in predicting disruptive instabilities in controlled fusion plasmas has been

established in several studies [54, 55], the feasibility of applying ML models

for modeling, diagnostics, and control of non-equilibrium plasmas has been

discussed in [56] and deep learning has also been used for extracting electron

scattering cross sections from plasma swarm Data [57].

A Convolutional Neural Net (CNN) based architecture is learned to solve

full-wave inverse scattering problems [58]. The visualizations generated

from the problems can be used to train and get the results from the neural

network, which can potentially help solve and accelerate the traditional

equation-based solvers [59]. Deep Learning (DL) applied to electromagnetics,

antenna, and EM wave propagation has been well reviewed in [60].

EM-Net [61] is a modified end-to-end CNN architecture with residual blocks

and skip-connections inspired by the UNet [62], a robust network with

encoder-decoder like structure which generates an image as an output, is

widely used in image segmentation problems. The authors of EM-Net

predict the electromagnetic field scattered by the complex geometries [61].

An unsupervised deep learning model is used for solving time-domain

electromagnetic simulations, encoding the initial and boundary conditions and
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Maxwell’s equations when training the network [63]. CNNs have also been

explored for plasma tomography and disruption prediction from Bolometer

data [64]. Cheng et al. [65] compares various CNN-based architectures

like UNet and MSNet to solve the 2D Poisson equation for electric field

computation in Plasma simulations.

The UNet architecture provides good, acceptable results, and its capabilities

are discussed in the existing literature [62, 66]. UNet has several advantages

over similar networks, such as FCN [67] and SegNet [68], as it is relatively

simple, fast, and works with smaller training data than other networks.

Hence, UNet is suitable to analyze the given problem. To this end, we

explored the feasibility of using UNet to accelerate the accurate simulation

of microwave-plasma interaction, as will be discussed in detail in the later

chapters.

1.6 Applications of microwave-plasma interaction

In this thesis, various numerical investigations of microwave interaction with

collisional, unmagnetized, and low-temperature plasma have been performed,

considering the following three applications as discussed in this section.

1.6.1 High frequency microwave breakdown induced

discharge

Microwave discharges occur when a high power EM field (> Ebreakdown , 10’s

to 100’s kV/cm) of a microwave accelerates free electrons, creating a plasma

by colliding with neutral gas molecules. The breakdown phenomenon is

governed by several factors, including drift-diffusion, ionization rate constant,

multiplication of electrons, self-sustained secondary emission, and Paschen’s

law. These discharges can exist in diffuse or streamer forms based on their

electric field strength and pressure in the (E, p) plane.

The most widely studied discharges are streamer generation, which occurs

when intense microwaves (in 100’s of GHz) interact with air/gas (pressure

of 100’s torr), leading to breakdown. The numerical modeling of the HPM

breakdown problem uses a well-established fluid model (highly collisional
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system), which involves the coupling of Maxwell’s equations and the plasma

continuity equation [8], generally used to perform accurate 2D simulations

of HPM breakdown experiments. However, the complex multi-physics

multi-scale model(as discussed in section1.3,) requires accurate resolution of

different space and time scales [9]. The finite difference time domain (FDTD)

technique is one of the most preferred numerical methods that have been

used to investigate the Maxwell-plasma fluid model. The method helps to

reproduce experimental observations well but is computationally expensive.

Due to the strict constraints on grid spacing and time steps [35,36,45,69], most

past 2D numerical investigations using the fluid model have been carried

out only for hundreds of nanoseconds. The high computational cost makes

it challenging to simulate large problem sizes over longer time-scales (tens

of microseconds). Hence, it is difficult to efficiently realize higher time-scale

phenomena such as gas heating [36]. The simulation of this complex

phenomenon at longer time-scales can help to understand underlying physics

for various applications in microwave rockets, aerospace research, high-speed

combustion, and safe operation of HPM devices [8] and HPM switching.

1.6.2 HPM switching and protection

The microwave breakdown causes problems in HPM transmission in

microwave radar waveguides, antenna systems, and in space communication

through the ionosphere [70]. Initially, the studies focused on understanding

the challenges associated with high-power microwave (HPM) transmission

and mitigating the breakdown phenomenon. However, recent studies

show the breakdown proves to be beneficial for HPM protection to

electronic components behind slots [71] as well as designing the microwave

transmit-receive (TR) switches that act as receiver protection devices [70].

The protection mechanism lies in the high power breakdown induced

plasma (center of slot) that reflects the incident pulse in the on state and

transmits when in the off state. The induced breakdown is important in

protecting sensitive receivers from jamming in electronic warfare [71]. Another

application of intentional microwave breakdown includes the design of a
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tunable miniaturized high power high frequency (HF) switch for the GHz

band [72]. The breakdown results from avalanche ionization under a powerful

microwave electric field in all the above applications. The resulting plasma

density must be sufficient to perturb the EM propagation [7], and plasma

must be formed within a desired time-scale. The breakdown experiments

for HPM protection experiments, using air, around 10 torr pressure at 10

GHz, for a typical pulse length of 1 to 3 µs, the rms breakdown field is

required to be greater than 1 kV/cm [4]. The cutoff time typically ranges in

nanoseconds (ns) for incident power density in kW/cm2 [70, 71]. The plasma

formation/sustainment time is comparable to pulse length in µs [7]. The use of

keep-alive contact currents in TR switches [11] for seeding electrons to initiate

and sustain the plasma after breakdown has been studied analytically and

experimentally with numerical validation.

1.6.3 Microwave assisted plasma diagnostics

The accurate diagnostics of low-temperature plasmas [73] is of eminence

significance due to its wide array of applications, especially in

microelectronics, medicine, surface engineering, packaging, biomedical

research, material synthesis, pollutant degradation, chemical conversion,

propulsions systems, electronic switching devices, automotive, luminous

systems, and many more [74–81]. Low-temperature plasmas can be created at

various pressures, with typical ionization degrees of 10−6˘10−4, characteristic

electron energies of a few eV to 10 eV and electron density typically from

1014˘1023 m−3 [77–79]. Several physical parameters characterize any plasma;

however, the electron density (ne) and electron temperature (Te) are the

two fundamental parameters often employed, as the plasma properties are

majorly influenced by the electron dynamics [82–84]. These two parameters

are important as they directly impact the plasma stability and physical

or chemical properties. Plasma temperature gives a realization of the

average energy carried by the plasma. In contrast, the electron density

gives information about the number of particles with such average energy

within the given plasma volume [82, 83, 85]. Accurate diagnosis and precise

understanding of the spatial distribution of (ne) and (Te) is a prerequisite for
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any experimental investigation or application development [86]. The spatial

distribution or profile can change temporally. Some of the well-established

approaches carry out plasma electron density determination. Comprehensive

reviews on different plasma diagnostics techniques can be found in the

existing literature [73, 87, 88].

Langmuir probe, an invasive technique, is widely used to investigate

electron characteristics in plasma; however, the mathematical theory of

the density obtained from the Langmuir probe data (current density vs.

applied potential) is quite cumbersome. The lack of a general analytic theory

for any arbitrary values of density, difficulty in interpretation due to the

presence of RF fields, and other issues limit the application of the Langmuir

probe in plasma diagnostics. Microwave interferometry and the CO2-laser

heterodyne interferometry are extensively employed in diagnostics for ne

estimation [89, 90]. This method has an advantage over the line-broadening

method, which applies to densities lower than 1013 cm−3. Notably, the thermal

effect influences the phase shift detection, and the measurements are line

integrated; therefore, it constrains the ne profile measurement. Microwave

reflectometry is also an interesting method for estimating ne [12], where the

experimental data are fitted to the results of a numerical calculation code

derived from a refined electromagnetic model. Microwave reflectometry uses

the principle of reflection of electromagnetic waves from the target, such

as gaseous plasma. Previously used in ionospheric plasma study [91], it

uses group delay of the reflected microwave to correlate it with the plasma

density determination. Later, the technique has been used extensively in the

diagnosis of Tokamak plasmas [91]. The method requires sophisticated data

processing and fitting. The requirement of real-time measurements of the

plasma electron density and the profile information is critical to high-pressure

plasma applications.
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Figure 1.5: Two different formulations for 2-D simulation of microwave
interaction with plasma based on the location of the E-field. Multiple plasma
structures formation when (a) E-field parallel to the simulation plane (XY) [8]
and (b) E-field perpendicular to the simulation plane [9].

1.7 Microwave propagation in plasma as a 2-D

problem

Most of the research work in the current literature [9, 35, 92, 93] suggests

that the majority of the physics and 3-D effects of such a multi-scale and

multi-physics nature of the problem can be realized in 1-D or 2-D, either

using transverse electric (TE) or transverse magnetic (TM) based formulation.

In the TE formulation, microwave E-field in the plane of simulation, with

non-zero components of Ey,Ex, and Hz (refer Fig.1.5 (a)). For TM formulation,

microwave E-field is perpendicular to the plane of simulation, with non-zero

components of Hx,Hy, and Ez (refer Fig.1.5 (b)). Our problem uses TE mode

formulation in 2D.
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1.8 Contribution of the Thesis

Microwave-plasma interaction is a complex phenomenon, and particularly,

simulation of plasma dynamics during HPM breakdown is a computationally

challenging problem due to its multi-scale and multi-physics nature. A

better understanding of this complex phenomenon and the development

of new computational approaches will help evaluate and establish the

potential applications associated with microwave-plasma interaction. A

primary requirement to address this issue is to develop novel approaches

and algorithms for investigating high-frequency EM wave-plasma interaction,

which forms the primary motivation of this research work. The thesis is

focused on the following main lines:

• Investigation of microwave-plasma interaction and understanding the

multi-scale/multi-physics nature of the HPM breakdown.

• Plasma Fluid model-based code development for 2D simulation of HPM

breakdown starting from wave-plasma interaction (nanoseconds) to the

gas heating stage (microseconds) and comparison with experimental

results.

• Development of self-aware mesh refinement algorithm to efficiently

simulate and accurately capture the plasma dynamics during HPM

breakdown.

• To investigate the effect of gas heating on HPM switching and protection

application using the DMR-based plasma simulation technique.

• Explore and evaluate the possibility of data-driven machine

learning-based approaches for studying microwave-plasma interaction.

• Feasibility of plasma density estimation using the physics of

microwave-plasma interaction and deep learning. Perform different

case studies with experimental viewpoints to provide useful feedback

for realizing the proposed ML-based plasma diagnostics.

• We examined the viability of a data-driven approach for studying

microwave-plasma interactions in real experiments, particularly in
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scenarios involving asymmetric plasma profiles and challenging noisy,

sparse data. We emphasized building a diverse data set with various

asymmetric profiles and conducted multiple case studies to evaluate the

predictive power of the deep learning technique on this enriched data.

1.9 Organization of the thesis

Figure 1.6: Organization of the thesis chapters.

The thesis is planned to be structured in seven chapters, as shown in Fig.

(1.6). Chapter 1 contains the introduction of the thesis along with a detailed

literature survey on EM wave propagation in a collisional unmagnetized

plasma, computational modeling of high-frequency HPM breakdown at high

pressures, and the requirement of new computational tools for efficient

investigations of such phenomena and their applications. Chapter 2 discusses

the plasma fluid model for HPM breakdown and the associated computational

challenges. Using a spatio-temporal investigation, we have included the

results from 2D benchmark simulations replicating an actual experiment.

Chapter 3 focuses on developing an efficient dynamic mesh refinement

technique for computationally expensive 2D simulations and its performance

evaluation. Chapter 4 investigates the HPM switching application based on

microwave breakdown physics using the DMR-based plasma fluid model.

In Chapter 5, a new data-driven machine learning-based approach for
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investigating EM-plasma interaction has been proposed, and its comparison

with the traditional FDTD-based approach has been provided. In Chapter 6,

a Deep Learning microwave-plasma interaction-based technique for plasma

density estimation, along with several case studies, have been included.

Chapter 7 discusses the performance evaluation of the Deep Learning model to

simulate the microwave interaction with various asymmetric plasma density

profiles. The model developed in the previous two chapters has been used to

efficiently reconstruct scattered E-field patterns and for the asymmetric plasma

density profile estimation. Conclusion, general remarks, and future scope are

included in the final chapter.
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CHAPTER 2

2-D simulation of plasma dynamics

during HPM breakdown - spatio-temporal

investigation

2.1 Introduction

The microwave breakdown in air/ gases at high pressure (> 100′s torr) leading

to complex plasma dynamics is a highly collisional and nonlinear process

[27, 28, 32, 35, 36, 45, 92–95]. To completely understand the properties of such a

type of discharge, improving our current understanding of the electromagnetic

(EM) wave-plasma interaction, plasma formation, the subsequent energy

exchange between wave and plasma, and afterward between the gas and

the plasma is crucial. Different semi-analytical models and computational

techniques have been used to study this problem. [9,27,35,36,45,47–49,69,94–

101]. Fluid [35, 36, 45, 69, 99, 100] and kinetic [48, 49] models are generally used

for investigating such problems. However, computationally expensive kinetic

simulations are required for weakly collisional and collisionless plasmas,

whereas fluid models are generally used to capture the physics of collisional

plasmas accurately. In the case of high-pressure plasmas, which are highly

collisional, the mean free path is much smaller than the size of the plasma,

and the plasma can be treated as a continuum (fluid). To reproduce the

experimental observations [1, 2, 7], several researchers [27, 28, 35, 36, 47, 69,

94, 95, 97, 100] have used the well-established EM-plasma fluid model. The

nonlinear dependence of the plasma species transport in the presence of

the intense microwave and various complex physio-chemical interactions
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necessitates a comprehensive exploration of the given problem. Previous

studies have focussed on understanding parametric dependence on EM wave

power, pressure, ionization-attachment rate coefficients, and diffusion rate on

high-power microwave (HPM) induced plasma dynamics. Very few attempts

have been made to understand the detailed spatio-temporal evolution

of such quantities during HPM breakdown. Also, more explanation is

needed regarding the computational complexity associated with the numerical

simulation of such a multi-scale and multi-physics discharge problem. The

modeling requires stringent mesh discretization (grid size and time-step

selection) to capture sharp gradients in the scattered field resulting from the

asymmetric and non-homogeneous plasma structures. In this chapter, we

discuss the fluid-based approach for the simulation of HPM breakdown along

with its algorithmic implementation and associated computational challenges

to address the multi-physics and multi-scale nature of the problem. Simulation

results using real physical parameters from a benchmark problem involving

filamentary plasma pattern formation in high-frequency HPM breakdown

in the air have been explained by performing a detailed spatio-temporal

investigation.

Organization of chapter

In section 2.2, we introduce the physical model of HPM breakdown, which

includes a brief discussion on the governing physics, a self-consistent 2-D

EM-plasma fluid-based model describing the constituent equations to describe

the plasma dynamics. Section 2.3, discusses the computational model and

its numerical implementation. In section 2.4, we introduce the simulation

setup of the benchmark problem. This problem has been used to discuss the

physics of complex plasma dynamics using a novel Spatio-temporal analysis,

as provided in section 2.5. The computational challenges associated with the

2-D simulation have been provided in section 2.6, followed by conclusions in

section 2.7.

2.2 Physical model of HPM breakdown

HPM breakdown is an example of electrodeless free-space discharge [102],

which results when a very intense microwave (with electric field strength
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higher than the breakdown field of the background air/gas) is focussed on

air/gas. To describe the coupling of the EM-energy to the induced gaseous

plasma and the associated plasma dynamics such as the filamentation process,

a well-established EM-plasma fluid model is generally used [35,36,46,97]. The

plasma fluid model follows a Maxwell-Boltzmann Probability Distribution

Function (PDF) to define the plasma species, and various macroscopic

quantities such as particle number density, mean velocity, and mean energy are

obtained by integrating the PDF over the momentum space of the Boltzmann

equation [46]. The model primarily comprises Maxwell’s equations and

plasma continuity equation [27, 35, 36, 46]. Maxwell’s equation describes the

microwave interaction with the plasma through the electron current density,

while the ion contribution to the current density is neglected. The coupled sets

of the equation consists of the two Maxwell’s equation as given by,

∂E⃗
∂t

=
1
ϵ0
(∇× H⃗) − 1

ϵ0
(⃗J) (2.1)

∂H⃗
∂t

= − 1
µ0

(∇× E⃗) (2.2)

where the transverse EM wave vectors, electric field (E⃗) and magnetic field (H⃗)

intensity, µ0 and ϵ0 stands for magnetic permeability and electrical permittivity

of vacuum, respectively, J⃗ is the plasma current density
(

J⃗ = −e ne v⃗e

)
in

(A m−2), ne is the plasma density (here electron density) in (m−3). The

simplified momentum conservation equation (assuming that there is no

external magnetic field and the collisions take place on much shorter time

and length scales than the macroscopic pressure and cyclotron motions [103])

is used to obtain the velocity of electrons in a collisional air plasma (at high

pressure),
∂v⃗e

∂t
= − e E⃗

me
− νm v⃗e (2.3)

ve is the electron velocity in (m/s), me is the mass of electron in (kg) and e

is electron charge in Coulomb (C), νm (or ν) is the electron-neutral collision

frequency in (s−1) (for air, νm = 5.3 × 109 p, where p is the ambient

pressure in (torr) [35]). The electron current density (⃗J) couples both sets

of equations (Maxwell’s and Plasma) [35]. The rate coefficients, such as
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the rate of ionization (νi), attachment (νa), and recombination (rei ) and

the effective diffusion rate (De f f ) decide the plasma charge transport under

external microwave E-field. Under the quasi-neutral assumption of plasma,

and taking into account the above processes such as ionization, attachment,

and recombination effects, the diffusion-assisted plasma continuity equation

can be expressed as,

∂ne

∂t
−∇.(De f f∇ne) = ne(νi − νa)− rein2

e (2.4)

The fluid continuity equation governs the temporal evolution of the plasma

density averaged over one period of the EM wave. The time scale for the

plasma density to evolve is much longer than the EM wave period, which

validates the approximation [45]. Under the local electric field, or effective

E-field (Ee f f ) approximation (LEFA), the losses due to collisions balance the

gain of energy and momentum from the electric field. The equilibrium

results in the local electric field to govern the ionization and attachment

processes. Also, the diffusion mechanism dominates over drift for the plasma

propagation in the high-frequency regime. Therefore, only the diffusive term

appears in the flux divergence term in the continuity equation [45]. The

effective diffusion coefficient transitions between the bulk ambipolar diffusion

to free-electron diffusion in the plasma front [27,35,46]. The effective diffusion

coefficient (De f f ) in (m2/s) is given by,

(
De f f =

(
αDe + Da

1 + α

))
(2.5)

where, De = µe (kBTe/e) and Da ≈ (µi/µe) De = µi (kBTe/e), µe = e/ (meνm)

and µi = µe/200 in (m2/V s) where, µe and µi are electron and ion mobilities

respectively, De and Da are free and ambipolar diffusion coefficient. De and

Da require the calculation of the electron temperature in terms of the reduced

field Ee f f /p, in (V/cm.torr) is given by,

Ee f f =

√
E2

rms
1 + (ω/νm)2 (2.6)
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where E2
rms, is the time-averaged high-frequency E-field over one EM wave

period, ω is the angular frequency of the wave [27, 28, 35]. The electron

temperature (Te) in eV can be obtained using the following relation,

(
kBTe

e

)
=

[
2.1 × 10−3 (Ee f f /p

) (
91.0 +

(
Ee f f /p

))]1/3

(2.7)

The remaining quantities that are part of the effective diffusion coefficient

expression are discussed below. α = νiτm = λ2
D/L2 is a unitless factor that

controls the transition between the free and ambipolar diffusion. τm in (s)

stands for dielectric (or Maxwell’s) relaxation time τm = ϵ0/[ene(µe + µi)] [27].

λD =
(
ϵ0kBTe/e2ne

)1/2 in (m), is local Debye length, kB/e = 8.61733 × 10−5 in

(eV/K), L=∥ ∇n
n ∥−1 = (De/νi)

1/2 in (m), is the characteristic diffusion length

of the propagating plasma filament front.

The effective ionization, νi − νa = γvd, in (s−1), the electron drift velocity

vd = µeE in (m/s). The ionization coefficient (γ) in (m−1) defines the number

of ionization events an electron undergoes per unit length along the E-field.

In the HPM breakdown problem, the ionization corresponds to air whose all

rate coefficients (A, B) values have been referred from [35, 46]. The ionization

coefficient can be expressed using two equations based on the Ee f f /p terms.

For Ee f f /p < 50 (V/cm.torr),

γ = A0p
[

exp
(
−B0

(
− p/Ee f f − p/Ecritical

))
− 1
]

(2.8)

where A0 = 0.005 (cm−1 torr−1), B0 = 200 (V/cm.torr), Ecritical/p=31.25

(V/cm.torr), the critical field intensity that decides the breakdown criteria in

air, beyond which the ionization dominates over the attachment process. If

Ee f f /p ≥ 50 (V/cm.torr),

γ = Ap
[

exp
(
−Bp/Ee f f

)]
(2.9)

Where, if 50 ≤ Ee f f /p ≤ 200 (V/cm.torr) A = 8.805 (cm−1 torr−1), B = 258.45

(V/cm.torr), and if 100 ≤ Ee f f /p ≤ 800 (V/cm.torr) A = 15 (cm−1 torr−1),

B = 265 (V/cm.torr). The recombination coefficient (rei) in (m−3s−1) is given

by, rei = β × 10−13(300/Te)1/2, β varies between 0 and 2.
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For proper modeling of the HPM breakdown process, it is important to

determine the parameter space (microwave E-field, frequency, and gas

pressure) within which the local E-field approximation (LEFA) holds. The

LEFA holds when the variation in the electron energy lies within 10% of

the mean electron energy but breaks if it is greater than 50% or more. The

LEFA to be valid at different pressures, the following frequency and reduced

field conditions must be satisfied. For high pressure, the incident EM wave

frequency ( f ) must satisfy f > 100 GHz; for lower pressure, f > 2 GHz.

The reduced field, (Ee f f /p) measured in Townsend (Td), should be within 200

Td [104].

2.3 Computational modelling of HPM breakdown

The complete 2-D fluid-based computational modeling of the HPM

breakdown requires three different types of solvers. Electromagnetic (EM),

Plasma, and Fluid solver (or gas solver) are the three solvers. Each of

these solvers represents the different time-scales of events, including EM

wave-plasma interaction, plasma formation, the subsequent energy exchange

between wave and plasma, and afterward between the gas and the plasma.

The useful physics can be safely captured for the time scale below 100’s of

ns, considering only the EM and the plasma solvers. Figure 2.1 gives an

overview of the computational tool to implement a 2-D plasma fluid-model

to simulate HPM breakdown. The flow diagram indicates the inputs to the

tool, such as microwave E-field strength (E0), frequency ( f ) of the wave, the

gas species (in this case, air) to decide reaction rate coefficients, gas pressure

(p), and the initial plasma density (n0). The important outputs collected during

the simulation are Erms, ne, diffusion and ionization rate coefficients. Block-I

represents- the 2-D Cartesian grid initialization and simulation setup, Block-II

represents- the complete EM solver, and Block-III represents- the Plasma

solver. The important mathematical equations (partial differential equations

(PDEs)) in different solvers and their coupling are also shown in the block

diagram. Moreover, the different time steps indicate the iterative solution of

the overall simulation. The EM-solver uses the finite difference time domain

(FDTD) technique to solve the two Maxwell’s equations ((2.1) and (2.2)) along
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with the plasma momentum transfer equation (2.3) which are coupled using

the current density term J⃗. The plasma solver uses a finite difference (FD)

scheme to solve the plasma continuity equation (2.4). The plasma solver

requires the diffusion (De f f ) and growth (νi) or decay-associated (νa) terms

that use the Ee f f provided by the EM-solver. FDTD is an explicit second-order

accurate time-domain method using centered finite differences on a uniform

Cartesian grid, yielding the spatio-temporal variation of the E and H fields has

been applied to various EM scattering problems [105]. The direct integration

scheme discretizes the velocity equation. The plasma continuity equation uses

a simple explicit scheme for continuity equation. The plasma density and EM

fields are evaluated at specific locations on the overlapped Cartesian grids, as

shown in Fig. 2.2 (b).

Figure 2.1: Computational implementation of multi-physics and multi-scale
2-D plasma fluid model.
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2.3.1 Numerical implementation of solvers

The 2-D fluid simulation considered in our study consists of a parallel E-field

and perpendicular H-field within the simulation domain, as shown in Fig. 2.2

(a). The 2D Cartesian grid on which the discretized form of the system of

Maxwell’s-plasma equations needs to be updated is shown in Fig. 2.2 (b). The

non-zero components of the E and H fields (Ex, Ey, Hz) are considered. The

Yee’s approximation is used on the square 2-D Cartesian grid, with E-fields

located on the edges and H-fields on the faces of the grid. v⃗e is calculated on

the edges in the direction of the E-field, and ne and J⃗e are calculated on the grid

corners as shown in Fig. 2.2 (b). The discretized equations corresponding to

the two Maxwell’s equation, the electron velocity equation (from momentum

conservation equation) and the plasma continuity equation are as follows:

En+1
x,i,j − En

x,i,j

∆tEM
=

1
ϵ0

{(
Hn−1/2

z,i,j − Hn−1/2
z,i,j−1

∆EM

)
−
(

Jn+1
x,i,j + Jn

x,i,j

2

)}
(2.10a)

En+1
y,i,j − En

y,i,j

∆tEM
=

1
ϵ0

{(
Hn−1/2

z,i−1,j − Hn−1/2
z,i,j

∆EM

)
−
(

Jn+1
y,i,j + Jn

y,i,j

2

)}
(2.10b)

Hn+1/2
z,i,j − Hn−1/2

z,i,j

∆tEM
=

1
µ0

{(
En

x,i,j − En
x,i,j+1

∆EM

)
−
(

En
y,i+1,j − En

y,i,j

∆EM

)}
(2.10c)

vn+1
ex,i,j

− vn
ex,i,j

∆tEM
=

{
e

me

(
En+1

totalx,i,j
+ En

totalx,i,j

2

)
− νm

(
vn+1

ex,i,j
+ vn

ex,i,j

2

)}
(2.10d)

vn+1
ey,i,j

− vn
ey,i,j

∆tEM
=

{
e

me

(
En+1

totaly,i,j
+ En

totaly,i,j

2

)
− νm

(
vn+1

ey,i,j
+ vn

ey,i,j

2

)}
(2.10e)

nn+1
e(k,l) =

 1

1 + ∆td

(
νa + reinn

e(k,l)

)
×

{
nn

e(k,l)
[
1 + ∆tdνi

]

+

(
De f f ∆td

∆2
d

)
×
[

nn
e(k+1,l)

+ nn
e(k−1,l) + nn

e(k,l+1) + nn
e(k,l−1) − 4nn

e(k,l)

]}

(2.10f)
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The total-field/scattered-field (TF/SF) formulation has been used, where it

is assumed total E-field, Etotal = Escattered + Eincident [105, 106]. The TF/SF

formulation applies to plane-wave sources (such as the HPM considered here).

The formulation assumes the Eincident is present throughout the computational

domain at each time step and similar to fields in vacuum (absence of plasma),

whereas the Escattered (interaction of incident microwave with plasma medium)

are initially unknown and iteratively calculated as the simulation proceeds.

We have used MUR outer radiation boundary condition for FDTD-based

scattered field formulation to prevent discontinuity in E-field updates at the

grid boundaries [35, 107].

The grid spacing (∆EM or ∆d) and time stepping (∆tEM or ∆td) for the EM

and plasma solvers are determined based on specific criteria. For the EM

solver using FDTD, the grid spacing (∆EM) captures a minimum of either 1/10

or 1/20 of the incident wavelength or the smallest EM feature (e.g., wave

skin-depth) or the gradients in the E-field. Existing literature suggests that

a grid spacing of 1/500 of the incident EM wavelength is required to resolve

the sharp gradients observed in such HPM breakdown [45]. The time step for

EM solver (∆tEM) is set to 0.5∆EM/c, under the CFL condition [105]. For the

plasma solver, the grid spacing (∆d) is determined by the gradient scale length

of the plasma, and the fluid time step (∆td) must satisfy the CFL condition

∆td < (∆d)
2/(2Dmax), where Dmax corresponds to the maximum De f f . The

numerical simulation process involves two events of different time-scales: the

fast-evolving EM wave that requires frequent E and H-field updates with

smaller time steps (∆tEM) and the slow-evolving plasma density that requires

less frequent updates with bigger time steps (∆td) [108].

2.4 Simulation of a benchmark problem

We consider the HPM breakdown-induced filamentary plasma propagation

problem as reported in [27, 35, 45]. Figure 2.2 (a) shows a schematic of our

computational domain where, {ckx, cky} = {1.0, 1.0}. A linearly polarized

plane EM wave with the electric field, E0 = 5.0 MV/m ( > the breakdown field

≈ 3.53 MV/m) having frequency, 110 GHz, is incident on the domain from the

left side. The E-field is Y-directed and the wave propagation vector is along
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Figure 2.2: (a) Schematic of the Computational domain. {(ckx, cky) ∈ Q+},
and, x0 and y0 are fractions in [0, 1] of Lx and Ly respectively. The MUR outer
radiation boundary condition has been used for scattered field formulation.
(b) A partial 2-D Cartesian grid representation of Lx × Ly domain for FDTD (E
and H-field) and plasma fluid model: plasma velocity (ve) and current density
(J) solver. Grid-spacing for EM and plasma solver, ∆EM and ∆d, respectively.

X. For the given problem, both the grid spacing for the solution of Maxwell’s

and the plasma continuity equation are chosen to be the same (mesh size ∆EM

=∆d=0.5 ×10−6 m) due to the comparable scale lengths of the electric field and

density [8, 9]. The corresponding time steps for both the solvers are ∆tEM =

8.85 × 10−15 s and ∆td = 1.56 × 10−12 s. The initial plasma density (with

n0 = 1.6 × 1016 m−3 located at 0.75 Lx and 0.5 Ly) is modeled as a Gaussian

profile at a small region centered at (x0,y0), which evolves into a self-organized

plasma filamentary structure and propagates towards the HPM source as

the simulation progresses [2, 27, 35, 45]. Notably, the filamentary process

depends on the high-power microwave interaction with the plasma through

microwave transmission, absorption, and reflection phenomenon. However,

reflection starts only after the plasma density in the filament reaches ncritical

as the simulation proceeds. Further, the incoming microwave gets shielded as

ne = ncuto f f . Most simulation time is consumed as the initial plasma density

grows from n0 to ncritical. Based on a simulation-based convergence study as

shown in Fig. 2.3, we can observe that the typical time to reach ncritical and

ncuto f f depends on the choice of n0. Therefore, the choice of initial plasma

density (n0) enables the acceleration of the HPM breakdown phenomenon

leading to the filamentation process.

The powerful millimeter-wave with a strong E-field (E0 = 5.0 MV/m)
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Figure 2.3: The choice of initial density (n0i, where i= 1,2,3 and 4) in m−3 for
initiating the HPM breakdown-induced filamentation process.

interacts with the air (or gas) at high pressure (760 torr), delivers sufficient

energy to the free electrons that accelerate and causes continuous ionization of

the air/gas and leads to an avalanche breakdown (when ionization overcomes

the attachment, diffusion, and recombination). The process results in the

plasmoid formation. We can observe the plasmoid formation in Fig. 2.4(i), its

growth into consecutive first, second, and third filaments, and the propagation

of the plasma filamentary structure from right to left with time in Fig. 2.4

(ii-iv) respectively. This complex and nonlinear plasma filamentary structure

evolution occurs over hundreds of nanoseconds. A detailed analysis of this

complex plasma dynamics is provided in the next section.

Figure 2.4: (i-iv) plasma density (m−3) distribution in the filaments at four-time
instances.

2.5 Physics of complex plasma dynamics during

HPM breakdown: spatio-temporal analysis

The simulation results in Fig. 2.5 (i-iv) show the temporal evolution of plasma

density, rms E-field, diffusion coefficient, and rate of ionization along the

central x-axis of the computational domain, whereas Fig. 2.5 (v-viii) represents
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the same quantities along the y direction (y-axis passing through the center of

the rightmost filament). Figure 2.5 helps us to capture the plasmoid’s complete

spatio-temporal evolution into filaments and its propagation during the first

100 ns. This detailed scientific visualization further aids in understanding the

complex plasma dynamics.

The initial plasmoid is located at 0.75λ from the leftmost boundary, as shown

Figure 2.5: (i-iv) The evolution of the plasma density (m−3), rms E-field
(V/m), the effective diffusion coefficient (m2/s), and the rate of ionization (s−1)
along the xcentral of the computational domain. (v-viii) the evolution of the
same quantities along the ycentral passing through the center of the rightmost
filament (in a dotted circle). Here, L: Left and R: Right, Lx = Ly = 1λ.

in Fig. 2.4(i), which is captured at 20 ns. It remains Gaussian until the
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plasma density is small and cannot perturb the incoming microwave E-field as

observed in Fig. 2.5 (ii) [28]. The plasma density growth over time (Fig. 2.5(i))

can be attributed to the high incident rms E-field (Erms = 3.5 MV/m)> Ecr,

where critical (or breakdown) field Ecr ≈ 2.5 MV/m rms [35]. From Fig.

2.5 (ii), the changes in the E-field distribution along the central x-axis during

the time duration of 20 to 50 ns can be observed, and during the same time

interval, from Fig. 2.5 (iv), we can observe the increase in the rate of ionization

from 0.18 × 109 s−1 to 1.3 × 109 s−1 along the X-direction. From Fig. 2.5 (ii)

and (iv), we can see the strong correlation between the E-field peaks and the

increased rate of ionization in space and time. The high ambient pressure

results in multiple collisions between the electrons and neutral gas species.

The ionization is a collision-assisted process governed by the local E-field or

Eeff. In our study at f = 110 GHz, the wave angular frequency (ω) is 2π f ≈

6 × 1011s−1, νm ≈ 4 × 1012s−1 , when Erms ≥ 3.5 MV/m, then the Eeff ≈ 3.46

MV/m ≥ Ecr, also satisfies the breakdown criteria. Thus, high collisions

result in much more ionization, increasing the plasma density. The increase

in ionization rate causes an increase in the density of the plasma bulk, and the

plasma starts modifying the total field like a dielectric. It is also important to

consider the growth of the filament along the vertical (y) axis (as shown in Fig.

2.5 (v-viii)). From Fig. 2.5 (i and v) between t = 20 to 50 ns duration, we can

see that the plasma density starts growing, and the filament stretches along

the vertical cross-section. The filament growth along the vertical direction

can be attributed to the very large polar field that increases from 2.7 MV/m

to a maximum ≈ 5.42 MV/m (Fig. 2.5 (vi)), that results from Electrostatic

polarization [28]. The E-field in the center and at the tip of the filaments starts

oscillating as the filament length approaches half wavelength. As discussed in

[28], a resonance-like behavior may result in the streamer acting as a half-wave

dipole and reflecting the incoming microwave E-field. The polar fields can be

observed in Fig. 2.5(vi). The field enhancement results in intense ionization

(≈ 2 times the ionization along the x-direction), as can be seen in Fig. 2.5

(iv and viii). The high polar fields stretch the plasma filaments along the

vertical direction (vertical polarization of incident microwave E-field ) due

to higher ionization, and the free electrons in the filament tips start diffusing

with diffusion coefficient (De). The filament growth is related to the plasma
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tip elongation rate given by vstreamer = 2
√

Deνi. The ionization frequency, νi,

strongly depends on the polar rms E-fields. Therefore, the streamer tip velocity

is also enhanced due to the high E-field. In our study, we obtain the streamer

(or filament) elongation velocity-vstreamer ≈ 30 km/s, which is ≈ 15 km/s

along each tip of the filament. The filaments achieve high vstreamer ≈ 30 km/s,

in the time duration of 20 to 60 ns.

At t> 40 ns, the plasma density, ne ≈ 2 × 1021 reaches well above the

cutoff density. When plasma density crosses the cutoff density, (here ncutoff ≈

9 × 1020 m−3), plasma starts reflecting the EM wave [35]. We can observe from

Fig. 2.5 (i) and also in the Fig. (v), at t > 40 ns, the ne > ncutoff, thus the

plasma filament/streamer transits from a dielectric behavior to a conductor.

The scattered and incident E-field of the EM wave interferes and forms nodes

and antinodes of the standing wave ahead of the first filament. The E-field

has its node (minima) at the streamer center and the antinode (maxima) at

≈ 0.25λ from the initial plasmoid center ( 0.75λ from the left boundary), and

it corresponds to the location where the new plasmoid starts to form. We can

validate from Fig. 2.5 (ii) that the E-field strength is of the order of ≥ 4 MV/m

at the antinodes. The high field results in very intense ionization at the edge

of the plasma filament. Therefore, the electrons at the filament edges start to

diffuse out with an effective diffusion coefficient- Deff ≈ 0.087 m/s2 as can

be seen in Fig. 2.5 (ii-iv). Interestingly, the filament edge with low plasma

density always diffuses quickly and forms a narrow diffusion channel called

the plasma front. The plasma front propagates along the X-direction (right to

left of computation domain) with a theoretical front velocity, vfront = 2
√

Deνi,

here, vfront ≈ 20 km/s. We can observe that the streamer elongation is faster

than the front propagation due to a higher E-field in the tip of plasma filaments

compared to the E-field at the antinode of the standing wave ahead of the

filament. Both the plasma front and the streamer diffuse with similar diffusion

coefficients- Deff ≈ De, but the filament tip has a higher density in comparison

to the front, and the growth of the streamer tip gets modulated with the polar

fields of the streamer.

For t> 50 ns, the second plasmoid follows a similar physics to elongate

into a streamer. It starts perturbing the incoming E-field by obstructing it

from reaching the initial (first) filament. The less penetration of the incoming

39



microwave can be attributed to the high density in the second filament, which

results in high plasma conductivity. Also, the width of the streamer almost

nears the skin depth in plasma [28,35]. Therefore, microwave shielding occurs

by the second filament on the first filament towards the right of the simulation

domain. The shielding can be observed in Fig. 2.5 (v, vi, and viii). The

shielding effect obstructs the filament from stretching in the vertical direction.

Subsequently, the ionization along the filament tips gets saturated and stops

the streamer elongation. The newly formed filament acts as the reflector of the

incoming microwave. The standing wave formation and enhancement of the

front E-field follow, resulting in continuous ionization and diffusion-assisted

front propagation. Further, it continues till the end of the simulation (around

95 ns), and we observe a self-organized fish-bone-like plasma filamentary

structure exactly similar to experimental observations [2, 32].

2.6 Associated challenges with 2-D simulation of

HPM breakdown

The HPM breakdown in air/gas leads to sharp gradients in plasma density

and the corresponding scattered electric field (E-field) along both the X and Y-

-directions throughout the evolution of the self-sustained plasma structures.

For accurate simulations, ne and EM fields need to be calculated on a very

fine mesh, which can resolve such sharp gradients in ne and E [28, 45]. The

recommended minimum number of grid points per wavelength (Nλ) of the

electromagnetic (EM) wave is around 500, i.e., Nλ = λ/∆ > 500, for E-field

in simulation plane as considered in our study. Here, ∆ is the grid size. The

requirement of very fine grids significantly increases the computational cost

(in terms of the number of grid points in the simulation domain and a very

small time step) for high-frequency problems such as 100’s of GHz (λ ≈ 2

mm). The simulation follows an iterative algorithm. The Total_Computations

(FLOPs) required during the simulation = Total Number of grid points ×

Number of FLOP per iteration × Number of iterations = (ckNλ)
2 × FL × M,

where, problem size: ckλ × ckλ, ck ∈ Q+, FL - FLOPs per iteration, M- Total

iterations (physical time/∆t). Typical values of FL ≈ 100, ∆t = 10−15s, typical
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Table 2.1: Approximate simulation time for different problem sizes.

Problem Size Grid Size(Nλ × Nλ) Total_Computations(FLOP) approximate Run_Time

1λ × 1λ
≈ 2 mm × 2 mm

512 × 512 ≈ N2
λ FL M 5 days (from simulation)

2λ × 2λ
≈ 4 mm × 4 mm

1024 × 1024 ≈ c2
k N2

λ FL M (ck = 2) ≈ 22 × 5 days

10λ × 10λ
≈ 20 mm × 20 mm

5120 × 5120 ≈ k2 N2
λ FL M (ck = 10) ≈ c2

k × 5 days ≈ 500 days

physical simulation time: 100 ns. Table 2.1 shows a generalized expression

that scales the Total_Computation as well as the approximate simulation time

for different problem sizes based on a factor (ck) that indicates the amount of

increment of the problem size (w.r.t to a 1λ × 1λ problem). We can observe

that the total simulation time increases with the increase in problem size and

decrease in time step. The major challenge lies in simulating a bigger problem

such as 10λ × 10λ ≈ 20 mm × 20 mm, that will take around 500 days, i.e.,

almost two years using a serial code on a standard desktop. Researchers can

adopt either of the two approaches to tackle such computational challenges :

• Use massive parallelization on the uniform fine grids throughout the

computational domain by utilizing supercomputing facilities [45].

• Use Mesh refinement-based technique to capture the steep gradients in

evaluated quantities in the regions of interest.

2.7 Conclusions

In this chapter, we revisit the interaction of the HPM with air/gas while

providing a general overview of the multi-scale multi-physics problem and the

mathematical model describing all the physical phenomena (EM and evolving

plasma physics) associated with this problem. A proper 2-D computational

flow diagram representing all the solvers and their numerical implementation

has been discussed. Using a benchmark problem representing the HPM

breakdown in a 1λ × 1λ, 2-D computational space, we have performed

a detailed 2-D spatio-temporal analysis to provide a visual representation

of the microwave breakdown induced plasma generation and its evolution
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in both space and time as the simulation proceeds. For the first time,

using the 2-D spatio-temporal plots, we have visually explained the results

indicating the interplay of various plasma transport processes, such as

ionization, attachment, recombination, and diffusion as a function of reduced

effective field (Ee f f /p), during the plasma filamentation growth. This

novel spatio-temporal visual analysis comprehensively explains the intricate

physics governing high-power, high-frequency microwave breakdown and

the self-organized filamentation process. Our computational complexity

analysis reveals the necessity to develop efficient computational techniques to

perform accelerated simulations of HPM breakdown in a resource-constrained

environment. This knowledge is a valuable foundation for future advanced

research and applications in this field.

42



CHAPTER 3

Efficient dynamic mesh refinement

technique for simulation of HPM

breakdown

3.1 Introduction

Accurate 2D simulations of HPM breakdown experiments mentioned in

the previous chapter have been performed using a well-established fluid

model involving the coupling of Maxwell’s equations and plasma continuity

equation [35, 36, 45, 94, 109]. It is a complex multi-physics multi-scale model

due to different space and time-scales [45, 47], which needs to be resolved

accurately. Most of the previous works [9, 26, 28, 35, 36, 45, 69, 93, 95, 98,

100, 108, 109] used finite difference time domain (FDTD) method in the

Maxwell-plasma fluid model based simulations. The simulations reproduce

the experimental observations quite well but at a high computation cost (which

grows exponentially with problem size). Therefore, most past 2D numerical

investigations using the fluid model have been carried out to hundreds of

nanoseconds. The high computational cost is due to stringent restrictions on

the grid spacing and time steps [35, 36, 45, 69]. Therefore, it is challenging to

simulate large problem sizes over longer time scales (tens of microseconds)

using a homogeneous mesh with the finest grid size resolution to capture the

gradients in plasma density and the secondary E-field that originates from

it. Different time steps (femto to nanoseconds) are required by the solvers

[108] that are coupled with each other to simulate the Maxwell-plasma fluid

model. Unless the solver that requires frequent updates gets speedup, the
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higher time scale phenomenon such as gas heating [36] cannot be realized

efficiently. Simulation of this complex phenomenon at longer time-scales will

further help to understand the underlying physics for various applications in

microwave rockets [23, 93, 110], aerospace research [5, 34, 45, 111], high-speed

combustion [112], safe operation of HPM devices [94] and more.

Recently, advanced parallelization strategies for emerging many-core

architectures have been proposed, significantly reducing the simulation time,

but this requires sophisticated computing facilities [45]. To address the

computational challenges associated with the 2D FDTD-based EM-plasma

fluid model, alternative numerical techniques have been developed for

structured meshes [36] and unstructured meshes [47]. However, the

techniques can balance the trade-off between accuracy and computational cost

but require complex mathematical formulation, proper choice of higher-order

basis functions, and modification of the existing model. Recently, a static

mesh refinement (MR) technique for the well-established FDTD-based fluid

model has been presented for studying evolving plasma dynamics [108].

Although the static MR-based technique is accurate and relatively fast

compared to single uniform fine mesh, overall performance is restricted by

the size of the fixed preset refined mesh that restricts bigger and longer

simulations. Therefore, a self-aware dynamic mesh refinement (DMR)

technique that generates fine mesh on demand, based on the plasma evolution,

is proposed in this chapter. The DMR technique will particularly aid in

carrying out comprehensive parametric studies to investigate the influence

of different parameters such as the microwave E-field strength, the frequency

of the microwave, the pressure, and different gas species on HPM-induced

plasma evolution at a significantly lower computational cost. This chapter

presents the Development and implementation of the DMR technique for

the Maxwell-Plasma fluid model for investigating complex plasma dynamics

during HPM breakdown on regular 2D-cartesian grids using the fluid model

as discussed in chapter 2. Validation and performance analysis of the proposed

DMR technique have been performed against published results.

Organization of the chapter

In section 3.2, we discuss the theory and implementation of the DMR

technique, which covers the criteria for initiating and expanding the fine
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mesh, quantity (E, H-fields, and plasma density) updates on both meshes,

the algorithm and flowchart representation of DMR technique, and, the

calculation of computational complexity associated with DMR. In Section 3.3,

we report the accuracy and efficiency of the proposed technique, followed by

conclusions in section 3.4.

Figure 3.1: (a) Schematic of the Computational domain. {(ckx, cky) ∈ Q+},
and, x0 and y0 are fractions in [0, 1] of Lx and Ly respectively. The MUR outer
radiation boundary condition has been used for scattered field formulation.
(b) Formation of self-organized plasma filaments during HPM breakdown
(snapshot at t = 45 ns, E0 = 5.5 MV/m, freq = 110 GHz). The maximum
density (max) is 6 × 1021 m−3 and (min) is 0.

3.2 Self aware DMR technique and it’s

implementation

The proposed DMR technique is a self-aware mesh refinement technique

developed from the static Mesh Refinement (MR) framework, which

hierarchically decomposes the computational domain into coarse and fine

meshes. The mesh grids are overlapped and logically connected to maintain

the continuity between the evaluated quantities, [108, 113–115]. Unlike static

MR, the DMR technique considers a fixed coarse mesh and an expanding

fine mesh based on the evolving plasma profile during HPM breakdown.

This approach avoids unnecessarily large computations due to a large preset

refinement region. To explain the proposed DMR technique, we consider a

similar simulation setup as shown in Fig. 3.1 (a). Figure 3.2 illustrates the

initial fine mesh expansion over time, denoted by R(t).
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Figure 3.2: The self-aware expansion of fine mesh in DMR to capture the 2D
distribution of plasma density as the filamentary pattern evolves.

3.2.1 Initiation of fine mesh expansion

Fine mesh expansion initiation requires detecting sharp variations in evaluated

quantities (E and H-fields, plasma density, and velocity) on discretized grids

and using a suitable mesh to capture them. Threshold criteria based on overall

and instantaneous energy gradients [115] are commonly used to determine

the grid size for EM-scattering problems. However, for HPM breakdown,

with continuously evolving medium properties, alternative criteria are used

to decide on mesh expansion initiation and grid size. The decision to initiate

fine mesh expansion depends on a fixed plasma density (threshold density)

that is well-validated based on EM propagation characteristics in plasma [43].

The optimal threshold density is determined through a convergence

study, where the occurrence of minimum variation in permittivity (ϵ) and

conductivity (σ) for a given plasma density profile and incident EM wave

frequency as observed in Fig. 3.3 (a) and absence of spikes as shown in Fig.

3.3 (b). The chosen density, ne < 1018 m−3 ≈ 1016 − 1017 m−3, satisfies lower

scattered E-field, avoids sharp gradients in E-field or energy due to minimum

variation in ϵ and σ, and ensures that the fine mesh resolves the minimum

gradient scale lengths along the y and x-axis. Finally, arriving at the amount

of mesh expansion, refer to Fig. 3.4 (a-b) and 3.5 (a-b). For coarse and fine

mesh grid sizing, an inverse approach is taken where the finest grid size is

pre-decided based on valid assumptions, and the coarse grid size is decided

based on the mesh refinement factor. The cell size remains fixed for both

meshes during simulation.
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(a)

(b)

Figure 3.3: (a) The spatial variation of ϵr and σ for a 1D plasma density (ne)
distribution. (b) Convergence study for different threshold densities (m−3) to
arrive at the threshold density criteria for mesh initiation. The EM wave of
frequency 110 GHz is considered here.
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3.2.2 Amount of fine mesh expansion

The presence of sharp gradients in the plasma density during HPM breakdown

is an important parameter in deciding the amount of fine mesh expansion

[8]. We have considered two gradient length scales corresponding to

plasma density and rms E-field (scattered field from plasma), lden and lErms ,

respectively. Mathematically, the gradient lengths can be expressed as,

lden = ne/|∇ne| (3.1)

and

lErms = Erms/|∇Erms| (3.2)

where |∇ne| and |∇Erms| are magnitudes of the gradient in density and

rms E-field, respectively. For the expansion of the fine mesh, the growth of

filaments and the associated density gradients along ycentral and xcentral as

shown in Fig. 3.1 (a-b) have been considered. Due to the symmetric nature

of the plasma propagation, the region above xcentral starting at y0 is only

considered for analysis. In Fig. 3.4 (a-b) and 3.5 (a-b), the length of initial fine

mesh and the amount of fine mesh expansion along y and x are represented

by, mly and mlx, and, mey and mex, respectively. Figure 3.4 (a-b) shows the

distribution of plasma density, rms E-field, and the corresponding gradient

length scales along the y-direction. The lden has a sharp transition from a

high value, lden >> λ (∇ne → 0), to a low value, lden < (1/100)λ. There

is a high gradient in rms E-field that exists from 0.75λ to 0.85λ as shown in

Fig. 3.4 (b), and as a result the gradient length scale (lErms) transits from low

(lErms < λ ∼ (1/5)λ) to high (lErms >> λ, when (∇Erms → 0)). The initial fine

mesh centered around initial density can capture the sharp gradients in both

density and rms E-field along ycentral provided, mly is large enough to cover the

occurrence of smallest, lden as well as lErms , and the fine mesh grid size satisfy,

∆S ∼ min {lden, lErms}. Next, for the fine mesh expansion along ycentral, the

amount of expansion, mey, must be able to capture the occurrence of smallest,

lden as well as lErms , as specified above.

Similarly, Fig. 3.5 (a-b) presents the distribution of plasma density and rms

E-field and their corresponding gradient length scales in the x-direction (along
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xcentral; the plasma front propagation direction). The presence of gradient

length scales determines the amount of mesh expansion. By referring Fig. 3.4

(a-b) and 3.5 (a-b), it can be observed that min{lden} < min{lErms}. Thus, lden,

instead of lErms , decides fine mesh grid size. Based on the gradients shown in

Fig.3.4 (a-b) and 3.5 (a-b), we found that mex > mey. Therefore, a different

amount of mesh expansion is required in the X and Y-directions.

3.2.3 Quantity Updates on Mesh and Synchronization

The schematic in Fig. 3.6 (a) represents the mesh refinement region (in dashed).

Here, we have used a single level of refinement as shown Fig. 3.6 (a). Both

the coarse and fine meshes overlap with each other, having a grid refinement

factor (r) of two, such that the coarse-to-fine grid size ratio is 2 : 1. As depicted

in Fig. 3.6 (b), two meshes are overlapped, the coarse and embedded fine. E, H,

density, and velocity (synchronized with E), as shown in Fig. 3.6, are updated

as discussed in [45]. The fields and density are updated simultaneously on

the coarse and fine mesh, maintaining the proper sequence of frequent FDTD

and less frequent (on each period of EM wave) update of plasma continuity

equation [45]. The different time steps are based on respective CFL conditions.

The time step associated with EM wave solver is much smaller compared to

plasma solver [35, 45].

The updated quantities on both meshes must be synchronized in space and

time to maintain continuity. Let the grid size, time step, total cells, and

total iterations for the benchmark case (uniform fine mesh) be represented

by ∆S f , ∆t f , N f and I f , respectively. In the case of DMR, the coarse mesh

cell size and time-step are represented by ∆Sc and ∆tc, and for fine mesh, it

is represented by ∆S f and ∆t f . ∆tc and ∆t f are associated with Maxwell’s

updates (which primarily determines the total execution time). The subscripts

c and f correspond to coarse and fine meshes. Here, ∆S f = λ/Nλ and

∆Sc = r∆S f . Similarly, ∆tc=r∆t f . In one coarse mesh update, ∆tc, the fine

mesh performs r updates with ∆t f . Similar steps follow for all the quantities.

The total fine mesh cells depend on the amount of refinement region (R(t)).

R(t) is a fraction of the total computation domain, and R(t) ∈ [0, 1].

The MR algorithm transfers the evaluated quantities (fields, velocity, and
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plasma density) from the coarse mesh to both the coarse-fine boundary (c f b)

and the fine boundary ( f b) for subsequent fine mesh updates. This transfer

of evaluated quantities supports the nearest neighborhood dependence of

FDTD and FD-based fields and density updates, respectively [35]. Finally, the

fine mesh updated quantities are transferred back to the coarse mesh. Both

the data transfer process must occur within the coarse mesh update interval.

The process avoids discontinuity in the obtained results due to a mismatch

between coarse and fine mesh values. The two boundaries ( f b and c f b) and

the sub-grids are shown in Fig. 3.6 (b).

The data transfer uses a direct copy or interpolation process, depending on

the location (coinciding or non-coinciding) of the quantities on the overlapped

grids. The interpolation is either a linear interpolation on c f b or a bi-linear

interpolation on f b as indicated by the direction of arrows in Fig. 3.6 (b).

Quantities, Ωi, i=1 to 4, shown in Fig. 3.6 (c), represent either E-field (and

velocity), H-field, or plasma density on the coarse mesh. The dotted square

represents the interpolation domain. The vertices represent the coarse data,

and the desired fine data, either on edge (1D) or inside the bounded area (2D

plane), can be obtained using the equation as follows:

BL fnew = (1 − f rac)(Ω1old A3 + Ω2old A4

+ Ω3old A1 + Ω4old A2)

+ ( f rac)(Ω1new A3 + Ω2new A4

+ Ω3new A1 + Ω4new A2)

(3.3a)

L fnew = (1 − f rac)(Ω1old(1 − xp) + Ω2old(xp))

+ ( f rac)(Ω1new(1 − xp) + Ω2new(xp))
(3.3b)

Where suffixes old and new denote the previous and updated quantities on

coarse (c) mesh that requires interpolation on fine ( f ) mesh. Ai, i=1,2,3 and 4,

represents the area inside the interpolation domain (dotted square) calculated

in terms of xp and yp represented in terms of r. From Fig. 3.6 (c), the locations,

{xp, yp} are as follows: for, I : {1/2r, 1/r}, II : {1/2r, 1/r} and III : {1/r, 1/r},

where r =2 or 4 based on the type of refinement. The f rac and (1− f rac) are the

ratios in which the old and the updated coarse mesh data values must be taken
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to obtain a smoothed interpolated quantity on the fine mesh. BL fnew and L fnew

represent the bi-linear and linear interpolated fine mesh data, respectively,

from coarse mesh data (E or H-field or velocity or plasma density).

3.2.4 Implementation of DMR algorithm

Figure 3.7 (a) shows a coarse mesh: A-B-C-D and an initial fine mesh: a-b-c-d.

The flowchart of the DMR technique is shown in Fig. 3.7 (b). For each iteration,

the threshold condition on the plasma density (nth) is checked on both the X

and Y threshold lines, (XFi/XBi and Yuj/Yl j), refer Fig. 3.7 (a) .

Based on the satisfied criteria, the fine mesh expands. The extent to which the

fine mesh expands depends on the plasma topology (gradient length scales

for density and its scattered E-field) [8]. The algorithm uses 2D arrays since

it stores the data in a specific memory pattern, making it easier to manipulate

than other data structures. The updates for electric field, magnetic field, and

electron density on both the coarse and fine mesh remain the same but based

on the refinement factor (r) the subroutines E, F and G will be updated r times

for a single update on the coarse mesh for A, B and C. The interpolation is

also done r times to provide the coarse data to the coarse-fine boundary(c f b)

and fine boundary ( f b). The spatio-temporal evolution of the plasma in the

computational domain determines the fine mesh boundary. The iterative

algorithm will stop when the plasma filaments reach the fine mesh boundary.

The details can be found in [8].

3.2.4.1 Step-wise implementation of DMR

• First, an initial fine mesh region, a11-b11-c11-d11, shown in Fig. 3.8, is

considered as indicated by the black solid lines. It is located inside

a coarse mesh region that covers the overall computational domain,

A-B-C-D. The initial fine mesh contains the initial plasma density profile

at x0 and y0. As discussed in the previous section, the E-field, H-field, ve,

and ne are updated in both the coarse and the initial fine mesh.

• Next, the fine mesh generation proceeds with two steps: the self-aware

initiation and the initial fine mesh expansion. Different threshold lines

parallel to xcentral and ycentral, indicated by forward threshold (XFi),
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backward threshold (XBi), upper threshold (Yuj) and lower threshold

(Ydj), where i=1,2...n and j=1,2,...,m, {(n, m) ∈ N}, are considered as

shown by dotted lines. The threshold lines coincide with the fine mesh’s

respective x and y boundaries (the c f b). Before the fine mesh expansion

initiates, it is checked whether ne is greater than the threshold density

on either XFi and XBi, or Yuj and Ydj. Based on whichever threshold

line meets the threshold density criteria, the fine mesh is expanded along

xcentral or ycentral resulting in a y-expanded: a1j-b1j-c1j-d1j or x-expanded:

aij-bij-cij-dij fine mesh region, as shown in Fig. 3.8. During fine mesh

expansion, first, the E-, H-field ve and ne data on the entire initial fine

mesh are transferred to similar locations on the expanded fine mesh to

maintain the continuity from the initial mesh.

• Finally, for the remaining regions in the expanded fine mesh, the

overlapped coarse data are interpolated on the fine mesh.

The mesh expansion continues as and when required in a self-aware manner

based on the spatio-temporal evolution of plasma.

Figure 3.8: Schematic representation of the dynamic mesh generation process
with an initial fine mesh, a11-b11-c11-d11, centered around the initial plasma
density located at x0 and y0, which expands along x and y based on threshold
criteria. The coarse mesh is present in the complete computational domain,
A-B-C-D.
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3.2.5 DMR Computational Complexity

For the DMR, the following quantities remain fixed throughout the simulation:

Number of cells per λ on coarse mesh (Nλ,c), refinement factor (r), and physical

length of coarse mesh (Lx and Ly). The number of cells in coarse mesh along

x (Nc,x) and y (Nc,y) direction can be written as LxNλ,c and LyNλ,c respectively.

The total cells at t = 0 can be expressed as,

Total = Nc,xNc,y + bxbyNc,xNc,yr2 (3.4)

The parameters bx and by represent the initial fraction of fine mesh in the X

and Y-direction, respectively. Values of bx and by lie in range {0, 1}.

Let the computational domain be of size 1λ × 1λ, with r = 2 and Nλ,c = 256.

Since there are M computations per iteration required for one grid cell in the

coarse mesh, then the total computations per iteration for a coarse mesh will

be,

Tcoarse = Nc,xNc,yM (3.5)

By considering the fine mesh as a fraction, bx and by, of the coarse mesh

dimension, the total grid cells in the fine mesh is bxbyNc,xNc,yr2. Hence, the

total computations (T) performed during a single iteration can be expressed

as,

T = Tcoarse + Tf ine × r

= Nc,xNc,yM + MbxbyNc,xNc,yr3

= Nc,xNc,yM(1 + bxbyr3)

(3.6a)

Note : bx and by have been considered constant in (3.4). For a Dynamic mesh,

bx and by will vary with time.

Suppose the fraction of fine mesh along the X and Y-direction at any given time

t is given by bt
x and bt

y respectively. Therefore the area covered by the fine mesh

at time t is given by,

R(t) = bt
xbt

y (3.7)

Here, the number of computations will depend on the size of the fine mesh at
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time t, and hence the new equation is modeled as,

Tdynamic = Nc,xNc,yM + Nc,xNc,yMR(t)r3

= Nc,xNc,yM(1 + R(t)r3)
(3.8a)

Therefore, as the simulation proceeds in time, the computational cost of fine

mesh increases. Thus, for a bigger computational domain, the extent to

which the fine mesh can expand increases, and consequently, the performance

of DMR saturates to the maximum achievable limit. However, the overall

performance of a DMR is much higher than that of an MR with a fixed

fine-mesh area.

3.3 DMR Performance Analysis

We have considered two metrics for the performance analysis of the DMR

algorithm: the accuracy and the speedup. For performance analysis, we

consider the same computational setup as described in Fig. 2.2 (a), where the

size of the computational domain is represented by Lx = ckxλ and Ly = ckyλ.

We have taken different ckx and cky for different computational experiments.

Initial 2D Gaussian plasma density is ne(x, y) = n0exp(−({x − x0}2/σ2
x + {y−

y0}2/σ2
y )), where x0 and y0 is the location of n0 and, σx and σy, controls plasma

width along x and y, respectively. We consider, n0 = 1016 m−3, the Incident

E-field, E0 = 5.5 MV/m and frequency ( f ) =110 GHz. All the computations

are carried out on a computer with an Intel Xeon CPU E5-2640 processor with

32 GB RAM.

DMR Accuracy

To evaluate the accuracy of the DMR method, the consistency of shape and size

of plasma filaments and plasma front velocity are compared with the uniform

fine-mesh implementation. We consider, {ckx, cky} = {7.5, 1.5} to investigate

the size and shape of filaments. Initial Gaussian peak plasma density (n0) is

located at x0 and y0, which is given by 0.85 Lx and 0.5 Ly respectively. Figure

3.9 (a,b), represents the distribution of plasma density and the corresponding

scattered rms E-field at time t = 140 ns, obtained using the DMR technique
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Figure 3.9: The 2D distribution of (a) plasma density (m−3) at time t = 140
ns and (b) corresponding rms E-field, for a problem size of 7.5λ × 1.5λ. The
maximum density is 8.7× 1021 m−3 and maximum E-field strength is 6.97× 106

V/m as represented on the color scale.

Figure 3.10: (a) The 2D distribution of plasma density (m−3) at time t = 90 ns
has been obtained using a single uniform mesh (Uni) and DMR (r=2 and r=4).
(b) The comparison between the plasma front propagation using temporal
evolution of the plasma density (m−3) along xcentral for a uniform mesh (Uni)
and dynamic mesh (DMR) with different refinement factors (r), here r = 2 , 4.
The color-bar represents plasma density distribution, max : 7 × 1021 m−3.
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with refinement factor (r = 2). The observed results are in good agreement

with the published results from [2,35,45]. The dynamic mesh could capture the

non-uniform gradients in density and scattered E-field by utilizing an optimal

fine mesh region shown by dotted lines in Fig. 3.9 (a-b). To validate the plasma

front velocity, {ckx, cky} = {1.5, 1.5} is considered for the simulation setup.

Fig. 3.10, represents the temporal evolution of the plasma density along the

central x-axis (xcentral) in the computational domain for a uniform mesh (Uni)

and DMR (r = 2 , 4). The front velocity along xcentral can be calculated by

tracking the propagation of a specific plasma density level at the front (we have

used ≈ 1 × 1019 m−3) with time. The calculated plasma front velocity (vfront)

is ≈ 30 km/s for both uniform mesh and DMR with r = 2. We found that the

variation in front velocity and filament length lies within 1− 2% of the uniform

fine mesh case (Uni). We observe that the velocities and lengths are consistent

with previously published experimental and simulated results [1,2,9,28,35,45].

3.3.1 Speedup and Efficiency of DMR

For efficiency, subroutine-wise and overall execution time are compared

between DMR and uniform fine mesh case (Uni) for a fixed problem size.

Further, performance is evaluated for different problem sizes (P1, P2, and P3)

to check the scalability of the proposed approach. From Fig. 3.11 (a), it can

be observed that the time required to execute the three constituent subroutines

the E-field (E), H-field (H), and plasma density (Den) is higher for the uniform

fine mesh (Uni) in comparison to dynamic mesh refinement (DMR) for a fixed

problem size (P1), P1: 1.5λ × 1.5λ. The highest execution time is taken by E,

followed by H and Den. DMR significantly reduces the overall execution time

as compared to Uni, as observed in Fig. 3.11 (b).

Figure 3.11 (a-b) shows that the DMR reduces the execution time compared

to the standard uniform mesh technique by a dynamic factor. This factor

decreases as the simulation proceeds, and the fine mesh expands. Figure

3.12 (a) provides a better understanding of the contribution of DMR to the

overall speedup and scalability for different problem sizes. For a fixed problem

size, let P1: 1.5λ × 1.5λ, the initial speedup is of the order of 8 and drops

to around 2 as the simulation proceeds. The result agrees with Fig. 3.11(b).
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Figure 3.11: For different simulation times in seconds using different
techniques, Uni and DMR, the plots of (a) the subroutine-wise execution time
to simulate P1, and (b) the total execution time taken to simulate P1.
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For different problem sizes P2: 3.5λ × 1.5λ and P3: 7.5λ × 1.5λ, the speedup

transits from high to low and performs better as the problem size increases. For

different problem sizes P1 to P3, the overall speedup ≈ 5, 7 and 8, respectively.

The higher performance for bigger problem sizes is due to the small value

of R(t) initially, which grows gradually as the plasma pattern spreads. For

uniform fine mesh (Uni) implementation, the total cells ≈ 105 − 106 and total

computations per iteration are always fixed (Fig. 3.12 (b)). For DMR, the

total number of cells and computations grows as the refinement region grows

with simulation time, R(t). For uniform mesh, the total computational cost

Figure 3.12: For different simulation times in seconds using different
techniques, Uni and DMR, the plots of (a) the overall speedup and (b) the
growth of total cells with time for different problem sizes, P1 to P3.

is proportional to N f I f (total cells x total iterations). Whereas for DMR, the
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total computational cost is proportional to the sum of coarse and fine mesh

contributions. Coarse mesh has a fixed number of cells (N f /r2), and updates

are less frequent (by a factor of r) compared to fine mesh. Therefore total

cost for coarse mesh is
(
1/r3)N f I f (Total coarse cells × Coarse Iterations).

For fine mesh, the computational cost is dynamic and is proportional to

R(t) N f I f (Total fine cells × Fine Iterations). Therefore, for DMR, we

obtain that computational cost is proportional to N f I f

(
1/r3 + R(t)

)
, and

primarily depends on refinement factor and refinement region. The higher

the refinement factor and the smaller the refinement region, the better the

speedup. Due to the smaller number of cells in the case of DMR (Fig. 3.12

(b)), the size of the data structure is initially small, and the memory access

performance is better compared to uniform fine mesh. Initially, the refinement

region is very small, and the fine mesh data structure easily fits into cache

memory, leading to higher cache hits. We observe a speedup better than the

theoretical speedup of r3 (Fig. 3.12 (a)).

3.4 Conclusions

This chapter proposes a dynamic mesh refinement (DMR) technique to solve

the computationally challenging Maxwell-plasma fluid model for simulating

HPM breakdown-induced plasma pattern formation and associated dynamics.

The DMR technique leads to generating two meshes: a coarse mesh, which

is present throughout the computational domain, and a fine mesh, which

evolves with time in a self-aware fashion depending on plasma and electric

field gradients. The implementation of the DMR technique has been described

in detail. Further, the technique has been evaluated regarding accuracy

and speedup by applying it to simulate and reproduce the experimental

observations under similar conditions. The technique could accurately

reproduce the complex plasma dynamics and structures for different problem

sizes and refinement factors. For a refinement factor of 2, we obtain an overall

speedup of 5 to 8 times for different case studies. The bigger problem sizes,

involving the physical duration of t > 100 ns, which typically take months

using a uniform fine mesh, can be handled in a few days using the proposed

DMR technique. The proposed DMR-based technique will be beneficial for
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investigating longer time-scale phenomena in HPM breakdown (in the order

of micro to milliseconds), such as gas heating, which is sparsely reported in

the existing literature. The DMR technique for self-aware mesh generation

can be applied for any fluid-based plasma simulation (primarily involving

spatio-temporal evolution of plasma topology) where fine resolution (using

fine mesh) is required for accurate results. DMR-aided simulations, at a much

lower computational cost, will also help to efficiently investigate and better

understand the formation of different plasma structures (involving sharp

gradients) observed in experiments.
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CHAPTER 4

DMR assisted computational investigation

of HPM switching and protection

4.1 Introduction

The progress in high-power microwave (HPM) technology has enabled the

building of HPM sources that can handle gigawatt (GW) power over high

frequency. Accordingly, innovative applications ranging from aerospace,

combustion, HPM propagation experiments, and propulsions [5, 70, 93, 116]

are feasible. With the availability of better sources, high-strength HPM

pulses are realizable and pose threats to damaging communication devices

such as low-noise amplifiers (LNAs), sensors, radars, power supplies,

and communication receivers [117]. For wireless communication systems

having the same transmitter and receiver antenna, it is important to isolate

transmitter leakage into the receiver [118]. Power limiters are required to

protect vulnerable electronic components from powerful microwaves. The

proposed technology uses intentional HPM breakdown-inducing plasma,

which proves to be beneficial for protecting electronic components behind

slots [71] and designing microwave transmit-receive (TR) switches for receiver

protection in wireless communication. Other application includes the design

of a tunable miniaturized high power high frequency (HF) switch for the

GHz band [44, 72]. The induced plasma in such applications must form

within the desired time scale with sufficient density to perturb the microwave

propagation [44]. The plasma generation time delays if the seeding electrons

are unavailable and the exponentiation time (growth of initial plasma into
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cut-off density) is longer [44]. The local enhancement of the breakdown field

and keep-alive contact currents controls the plasma generation time [44].

The keep-alive contacts are prone to wearing and limit the microwave (MW)

breakdown. Alternatively, creating an intentional or unintentional local

region of intense ionization can modify the HPM breakdown threshold. The

modified HPM breakdown threshold can overcome the requirement of a very

high MW E-field and availability of initial seed electrons to initiate a faster

HPM breakdown.

As discussed in [119], microwave E-field below the breakdown threshold at

room temperature can initiate a local breakdown through local gas heating.

Gas heating can be intentional or unintentional under the presence of different

materials, like materials of low conductivity inside the microwave system.

The presence of dirt on the device surface, a thin film of oil, and even debris of

different forms such as plastic, rubber, and dust [119] can locally enhance the

MW electric field, resulting in a lower breakdown threshold. In the presence

of low-conductivity materials inside the MW system, the surrounding gas

heating occurs due to low thermal losses from the material surface. The

localized HPM discharges are fast MW energy deposition [116], involving

microwave-plasma interaction, plasma formation, and energy exchanges

between the plasma and the microwave and later between the plasma and the

background gas.

We incorporate an ideal gas-heating solver with the widely used fluid-based

model to numerically investigate the effect of local gas heating on the HPM

breakdown-induced plasma formation in air and its application in the context

of switching and power limiter [36,45]. As discussed in previous chapters, the

fluid model uses two solvers, EM, and plasma solver, which supports local

electric field approximation (LEFA) over a wide range of pressure (from low

to high) [44] through a proper scaling in the effective field and the pressure.

The gas (air) heating model refers to the work of [22,116]. The multi-scale and

multi-physics nature of the HPM breakdown problem makes it challenging to

incorporate the gas-heat solver with the EM and Plasma solvers. Proper care

must be taken to couple the various physics associated with the breakdown

process in the presence of gas-heating through proper synchronization in

space and time stepping to obtain a stable numerical solution.
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Organization of this chapter

This chapter discusses HPM-induced breakdown applications for switching

and protection, which is divided into two parts. The first part which begins

in section 4.2, we discuss two objectives: exploring breakdown conditions

to reduce plasma formation time and studying EM plasma interactions

using a realistic plasma profile. The plasma profile considers the effective

diffusion coefficient (De f f ) to model the charge transport leading to the

streamer formation. The first part does not consider the effect of gas-heating

in the HPM breakdown model. The second part begins in Section 4.3;

we propose a simplistic gas-heating model and compare the effect of gas

heating on HPM breakdown initiation and plasma generation time for HPM

switching/protection applications.

4.2 HPM switching and protection

Figure 4.1: Schematic representation of the HPM breakdown application in
protection and switching.

High-power microwave (HPM) breakdown benefits HPM shielding and

designing miniaturized tunable high-power electrical switches. Previous

studies show that HPM breakdown occurs between sharp contacts in a

slot-gap, enhancing the microwave E-field and leading to plasma formation

[11, 70, 71]. Keep-alive contact currents can expedite breakdown initiation,

which is important for RADAR applications [11, 70]. In Figure 4.1, we
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illustrate HPM limiter action and switching. Sharp contacts induce plasma

in the limiter, isolating HPM from low-power electronics. Whereas, in

switching, the high conductivity of plasma acts as a switch for wide-band

high-power transmission. We have designed a 2-D computational setup based

on Anderson et al.’s [11] experiments to investigate the effect of seed electrons

(initial electrons to initiate breakdown) and E-field strength on breakdown

time and plasma generation. Numerical investigations will help determine

the parameters for required plasma generation within desirable time-scales.

Our first objective is to understand the effect of important parameters on

plasma formation time without considering gas heating. We simulate HPM

breakdown with Gaussian-distributed plasma exposed to a continuous plane

wave for 1 µs. The initial Gaussian plasmoid elongates into a streamer

during the breakdown and plasma formation process. Streamer formation and

interaction with microwaves will help to optimize the design of HPM switches

and limiters. We compare limiter action based on analytically calculated

cut-off density for frequencies 1 to 200 GHz frequencies. For switching,

we analyze plasma permittivity and conductivity variations. Our results

and discussions are divided into two sections. The first section discusses

breakdown initiation and plasma generation. The second section discusses

EM-plasma interaction in HPM switching and protection applications. This

study uses air at a pressure of 10 torr and EM wave with frequency 10 GHz,

similar to Anderson et al.’s work [11].

4.2.1 Breakdown process initiation and plasma generation

A localized breakdown in the center of a rectangular domain is modeled

using two EM waves (E0 = 1 × 105 V/m) of opposite propagation vectors,

which interfere at the center of the domain to generate a standing wave. The

simulation setup is shown in Fig. 4.2 (a). The breakdown is initiated with an

initial density of n0 = 1016 m−3. We use the DMR technique, as discussed

in the previous chapter, to accelerate the simulation of the HPM breakdown.

A single level of mesh refinement with a grid refinement factor (r = 2) of

two and overlapped coarse (c) and fine ( f ) mesh has been used here [8]. The

grid sizes for coarse and fine mesh and associated time steps follow a similar
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Figure 4.2: (a) Schematic of computational domain with Emax and n0. 2D
profile (b). ne and (c) Erms at 60 ns.

relation as discussed in the previous chapter. The breakdown region has a

fine grid size of ∆s f = ∆sc/r and a time step of ∆t f = ∆tc/r, where r = 2.

While, the coarse grid has a grid size of ∆sc = 1.17 × 10−4m and a time step of

∆tc = 1.95 × 10−13s [8].

The 2D plasma density and rms E-field distribution at 60 ns are shown in

Figure 4.3: Spatial distribution of 1D plasma along x-axis passing through the
center of the computation domain for different time instants (40 to 100 ns) with
(a) effective diffusion (De f f ) coefficient, (b) ambipolar diffusion (Da) coefficient
respectively.

Fig. 4.2 (b-c). Plasma has a significantly high density in the center where the

initial seed electrons have been considered in the simulation. Figure 4.3 shows

the growth of the plasma density along the x-axis passing through the center

of the computation domain ( dashed line in Fig. 4.2 (a)) at different times.

We have performed two different simulations with the same initial conditions.

69



However, two different diffusion coefficients (ambipolar and effective) have

been used to study the importance of the right choice of diffusion coefficient

in the fluid model. Fig. 4.3 (a) shows the results with De f f and Fig. 4.3 (b)

with Da. It is important to note that the plasma width (spread) is different

at different times, with center density (highest density) growing to critical

density (ncritical order of 1018 m−3) at around 50 ns. Further, it grows and

saturates for t ≥ 70 ns. The choice of the correct diffusion coefficient is

important as it controls the transition from bulk to the plasma edges (tail of

profile) where the density drops (plasma quasi-neutrality breaks), for both Fig.

4.3 (a), Fig. 4.3 (b).

Figure 4.4, illustrates the cut-off time dependence on E-field and n0. Lower

Figure 4.4: Plot of tcuto f f distribution for (a) varying E0 at fixed n0 and (b)
varying n0 at fixed E0.

E-field results in significantly higher cut-off time due to nonlinear ionization,

and the choice of n0 also affects this time. Our study shows that proper

selection of n0 and E0 in real-life applications can ensure the required plasma

formation time (tb) is within 0.01 to 0.04 µs. Once the desired plasma is formed

within the required time limit, it is important to analyze how effectively this

plasma can be used for switching and protection applications.

4.2.2 EM-plasma interaction assisted HPM switching/

protection

Figure 4.5 displays the evolving plasma density response for frequencies

ranging from 1 to 200 GHz. The obtained plasma selectively permits certain

frequencies to propagate based on the cut-off density (ncuto f f ) or blocks the
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Figure 4.5: Behaviour of 1D plasma density profile (ne) obtained from
2D simulations with cut-off density (ncuto f f ), either blocking or allowing
frequency range (1 to 200 GHz).

entire frequency range. Figure 4.5 shows that frequencies are allowed or

blocked based on whether the plasma density profile (ne) is below or above the

cutoff density (ncuto f f ), respectively. Below ncuto f f , all frequencies are allowed.

At 45 ns, ne = 1018 m−3, corresponding to ncuto f f of 1 GHz, which blocks

frequencies from 1 to below 44 GHz. Above 60 ns, the density saturates to

≈ 2.8 × 1019 m−3, and blocks all frequencies below 44 GHz but allows those

above it. The reduction in transmitted E-field can be attributed to complex

permittivity and conductivity changes, affecting the refractive index, which

shields the incoming microwave E-field into the plasma. The E-field reduction

is significant at lower frequencies based on the dispersion relation discussed

in Chapter 1.

Next, we numerically investigate the variation in plasma electrical

parameters, ϵr and σ, with changes in plasma density (ne). In Fig. 4.6

(a) and (b), we compared these parameters at two time instants, 40 and 70

ns. At 70 ns, the value of ϵr drops 12-fold from its value at 40 ns, while

σ increases by 15 times. By manipulating ϵr and σ via ne, we can design a

wide-band re-configurable HPM switch. Furthermore, investigating the effects

of gas-heating, relevant at time-scales > 100 ns, on breakdown initiation and

plasma profile generation is crucial.
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Figure 4.6: Plot of the relative permittivity (ϵr) and conductivity (σ) correspond
to 1D plasma density (ne) profile at two-time instants 40 ns and 70 ns. σ in
(S/m). x-axis: plasma density profile

4.3 Local gas-heating during HPM breakdown

During HPM breakdown initiation, high-energy electrons can transfer their

energy to background gas molecules (neutrals) through different modes.

Those modes include the collisional effect (Scoll = 3/2kBTeδνmne), where (δ)

is the electron-to-heavy species (ions and neutrals) ratio mass ratio, or Joule’s

heating (Sjoule = ηeneµeE2
eff), which involves transferring a fraction (η = 0.3) of

absorbed electrical energy to excite the gas species and quickly release it into

the gas. Additionally, there is associated heat loss due to thermal diffusion

(Sthermal = ∇.
(
κ∇Tg

)
) in air, where κ is the thermal conductivity of air in

W m−1 K−1. To accurately model gas heating, it is important to consider

the coupling between the electrons and neutral transport using 2D inviscid

Euler equations. However, in our gas heating model for air, we concentrate

on mechanisms that increase only the gas temperature (Tg), and, calculate gas

density (Ng) analytically using obtained Tg at each grid point. Mathematically,

the gas heating at constant pressure (p0) in J m−3 s−1 [22,116] can be expressed,

NgkBcp,m
∂Tg

∂t
= Scoll + Sjoule + Sthermal (4.1a)

p = NgkBTg (4.1b)

Ng = N0

(
T0

Tg

)
(4.1c)
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where, cp,m = Cp/moles is molar specific heat in J mol−1 K−1. The molar

mass of air used 28.966 g mol −1, Cp = 1.005 J kg−1 K−1 at 300 K. 1mole =

Ng/NA, NA is 6.02214076 × 1023 mol−1. For air cp,m ∼ 29.11 J mol−1 K−1,

cp,m ∼ 3.5 R, where R is the universal gas constant, 8.314 J mol−1 K−1. kB

is 1.380649 × 10−23 J K−1, kB = R/NA. The Gas-heating solver uses a finite

difference scheme to iteratively solve for Tg and use it to obtain Ng as given

by Eq. 4.2, which couples with the plasma solver through νeff and Deff terms.

These terms depend on the updated values of Eeff/p, due to changes in local

gas density(p=(Ng/N0)p0, p0 = 70 torr is fixed), and νm, which gets updated

and depends on Ng.

Tn+1
g(k,l) = Tn

g(k,l) +

(
∆tg

Ng(k,l) kB cp,m

)
×
{

3
2

kBTeδνm(k,l)ne(k,l)

+

(
κ

∆2
g

)
× [Tn

g(k+1,l) + Tn
g(k−1,l) + Tn

g(k,l+1)

+ Tn
g(k,l−1) − 4Tn

g(k,l)] + [ηene(k,l)µeE2
eff]

}
(4.2)

2-D simulations are carried out to provide a one-to-one map between variation

in plasma density (ne) distribution with corresponding variation in gas

(neutral atoms and molecules) density (Ng) and gas temperature (Tg). Further,

1D analysis validates the effect of a reduced breakdown threshold on the

rate of ionization and diffusion, which is a function of Eeff/Ng, with gas

heating. The detailed analyses help to determine the role of gas heating on the

plasma generation time for applications in HPM limiters and switching. The

simulation results and discussions are broadly divided into two sub-sections,

as discussed below.

4.3.1 HPM plasma generation with and without gas heating

The simulation considers local breakdown-induced plasma generation under

over-critical microwave E-field (E > breakdown field) [8, 36, 45] to replicate

plasma generation in HPM limiters and switches. Plasma structures elongate

parallel to the direction of the microwave E-field, called streamers. Two

linear polarized EM waves with opposite propagation vectors (k) interfere to
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Figure 4.7: (a) Computational domain schematic with enhanced MW E-field
(2E0, E0 = 2.72 kV/cm) and initial seed electrons. 2D plasma profile (streamer)
at 250 ns (b1) without (b2) with gas heating and spatio-temporal density
evolution along the streamer axis, indicating time to reach ncritical and shape
changes at t = 2.5 × 10−7 s,(c1) Without and (c2) with gas heating.

generate a standing wave with amplitude 2E0 and rms intensity greater than

2 kV/cm [4]. The breakdown initiates in a 1.0λ by 1.5λ rectangular domain as

shown in Fig. 4.7 (a), where plasma remains confined within a narrow spatial

location. The simulation uses air at a pressure of 70 torr and a 10 GHz EM wave

with an initial density, n0 = 1016 m−3. The model uses different time scales for

the EM and Plasma solvers, with ∆tEM = 1.95 × 10−13 s and ∆td = 0.1 ns. Gas

heating couples every ten periods of the MW E-field, with a gas solver update

time of ∆tg = 1 ns. To observe the same phenomenon at a lower time scale of

150 − 250 ns, an acceleration factor (Accel_fac) of 20 is chosen [120].

The 2D plasma density distribution inside the streamer at 250 ns for without

and with gas heating is shown in Fig. 4.7 (b1) and 4.7 (b2), respectively,

while Fig. 4.7 (c1) and Fig. 4.7 (c2) show the spatio-temporal evolution of

ne along the streamer axis (ycentral) without and with gas heating, respectively.
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As t ≥ 2.0 × 10−7 s, the shift in ne from the core towards the streamer tips is

significant without gas heating, while with gas heating, the shift is minor and

mainly concentrated surrounding the core. The high plasma density exists in

the bulk of the plasma, and the next set of simulations discusses the impact of

gas heating on the overall streamer formation process.

Figure 4.8(a-d) shows 2-D plots of ne, Tg, and Ng for a streamer at t = 250 ns,

Figure 4.8: 2-D Plots representing the effect of (a) without and (b) with
gas-heating on ne, as well as the effect of gas heating on (c) Ng and (d).Tg,
for a given time instant, t= 250 ns. For without gas heating, the max ne values
is 5.25 × 1019 m−3, with gas heating, max ne value is 1.53 × 1020 m−3. For with
gas heating, the max value is fixed, N0 = 2.25 × 1024 at p = 70 torr, and min
values is 0.53 × 1024 m−3. For with gas heating, max Tg value is 1266.5 K and
min is T0 = 300 K. For without gas heating Ng = N0 and Tg = T0.

with and without gas heating. With gas heating, the local temperature Tg at

the core is higher than at the edges, and Ng has a lower value in the core. The

reduction in Ng causes stronger ionization of the plasma bulk and changes the

shape of the streamer pattern. The streamer head becomes wider than without

gas-heating, and the plasma concentration at the tips decreases, lowering

the scattered MW E-field and subsequent streamer growth. Gas heating can

play an important role in deciding the streamer geometry compared to the

polarization effect when there is no gas heating [36].

A 1D analysis for distribution of ne, νeff, Deff and reduced E-field (Eeff/Ng) for

different times along the streamer axis, ycentral has been performed. To better

understand the effect of gas heating on the ionization and diffusion mechanism

compared to without gas heating. From Fig. 4.9 (a,e), under no gas heating,
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the ne in bulk is ∼ 3 times less than ne with gas heating for t = 250 ns. Figure

4.9 (a) shows the plasma density stretches towards tips as opposed to higher

concentration in bulk; refer Fig. 4.9 (e). In Fig. 4.9 (b) without gas heating,

distribution of νeff lowers in the plasma bulk region (< 106 s−1) due to higher

Ng as compared to Fig. 4.9 (f) with gas heating. The higher Ng may lead to

higher attachment losses (negative ions formation when electron attaches with

gases such as oxygen in the air) [119]. As a result, the ne saturates without gas

heating, whereas it increases in bulk (∼ 107) with gas heating, refer Fig. 4.9

(a,e). Whereas, at the tip of the streamer, the νeff goes down for Fig. 4.9 (f) due

to the broadening of streamer head and remains higher for Fig. 4.9 (b). Figure

4.9 (c) shows the Deff flattens in the streamer bulk (inset) without gas heating,

as Deff follows inverse relation with Ng. Whereas, Fig. 4.9 (g) with gas heating

the Deff increases (inset) as Ng reduces. Therefore, the plasma diffuses from

bulk along ycentral. As a result, the streamer stretches. The higher ionization

at the core sustains the bulk plasma density and widens the streamer head. In

Fig. 4.9 (d) without gas heating the Eeff/Ng at streamer tips, rises (260 Td) at

t = 120 ns and gradually modulates (lowers) with streamer elongation [45],

same follows even in Fig. 4.9 (h) with gas heating. On comparing Fig. 4.9 (d)

and 4.9 (h), the Eeff/Ng at t = 120 ns is higher (280 Td) under gas heating due

to high polar fields at tips and higher streamer density. However, the Eeff/Ng

value remains within (∼ 130 Td) with gas heating, whereas without heating,

it reaches a lower value (100 Td). The variation in Eeff/Ng suggests that the

streamer growth depends more on bulk ionization than on polar E-fields at

streamer tips when gas heating is present, according to the 1D analysis.

4.3.2 Effect of microwave-induced local gas heating on HPM

switching and protection

We have observed that gas heating can control the HPM-induced plasma

streamer generation process. Both HPM switching and protection require

a faster generation of high-density breakdown-induced collisional plasma

(where, ne = ncuto f f , decides the switching and HPM limiter action) is required

as shown in Fig. 4.5. The breakdown plasma can transmit, reflect, or absorb

high-power microwaves depending on the incident microwave frequency due
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Figure 4.10: The effect of (a) without and (b) with gas heating, on the growth
of the peak plasma density (1D) at the center of streamer core (at (xc, yc)).

to the dispersive nature of plasma. The dispersive nature controls tunable

plasma dielectric properties that range from insulator to conductor, as shown

in Fig. 4.6. Through numerical experiments, we studied the effect of with and

without gas heating on the bulk plasma density distribution and its effect on

the limiter action for different input microwave frequencies and finally on the

tcuto f f , where the plasma shields the incoming microwave from penetrating

the plasma profile.

Figure 4.10 (a) and 4.10 (b) shows at the streamer center (xc, yc), the growth

of peak plasma density with and without gas heating, respectively. The

peak plasma density, for without gas heating saturates (∼ 0.5 × 1020 m−3) at

t = 200 ns whereas, with gas heating it reaches ∼ 1 × 1020 m−3 at t = 200

ns and saturates at higher density value at t = 250 ns. In Fig. 4.11, we

observe the importance of higher bulk plasma density in HPM limiter action.

Figure 4.11 (a) and 4.11 (b) shows the plasma density profile (along xcentral

chosen corresponds to high peak density for without and with gas heating

at t = 200 ns (refer Fig. 4.10 (a) and 4.10 (b)). From Fig. 4.11 (a) and

4.11 (b), the peak density of the chosen plasma profile has minimum skin

depth for 1 GHz (the normalized rms E-field ratio (<< 1)) and increases as

frequency > 1 GHz. The skin depth is highest (wave transmits unhindered,
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Figure 4.11: The effect of (a) without and (b) with gas heating, on the behavior
of spatial plasma density profile along xcentral (passing through the center of
streamer core, (xc, yc)). To block or allow certain microwave frequency based
on the peak plasma density at the streamer core at 200 ns (∼ 1× 1020 m−3). For
the simulation, discrete frequencies have been chosen from the 1 to 150 GHz
range, and a normalized rms E-field ratio (ET,rms/Ei,rms) is used to observe the
blocking/transmitting nature of the profile. ET,rms: Total E-field (ET,rms= Ei,rms
+ Escattered,rms), Ei,rms: rms incident E-field (2E0/

√
2 = 3.84 kV/cm or 3.84× 105

V/m).
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Figure 4.12: The effect of (a) without and (c) with gas heating on the cut-off
time (tcuto f f ) and (tcritical). The lower breakdown time is indicated by the
(d) drop (2.7 times) (b) drop (1.7 times) in the signal transmission (ET,insta)
through the plasma at the corresponding tcuto f f , shifted from 200 ns (without
gas heating) to 120 ns (with gas heating). ET,insta: instantaneous Total E-field,
max ET,insta = 5.4 × 105 V/m (before breakdown)

ω >> ωp, ne < ncritical = 1.24 × 1020 m−3) for frequency ≥ 100 GHz.

The microwave and plasma (electrons) and the plasma with the neutrals (for

attenuation of MW E-field) cannot interact for those frequencies. For proper

wave plasma interaction ne ∼ ncritical, for attenuation (ne ≥ ncuto f f ). Gas

heating results in lower Ng that results νm to drop, this has a significance in

lowering ncuto f f ∝ ((νm/ω))2 for a given ω and ncritical. Thus, comparing

ET,rms/Ei,rms ratio from Fig. 4.11 (b) with (a), it can be observed that the range

of frequencies over which the limiter can work has increased (∼1 to 40 GHz,

corresponding ncuto f f , 4.33 × 1019 − 6.32 × 1019 m−3). The gas heating has

increased the peak plasma density from ∼ 4.4 × 1019 m−3 to 1 × 1020 m−3).

Figure 4.12 (c,d) and 4.12 (a,b) show gas heating can lower cut-off time

almost 1.66 times (200 to 120 ns). The decrease in cut-off time is indicated

by a drop in the signal transmission (ET,insta) through the plasma at the

corresponding tcuto f f , almost 2.7 times as compared to 1.7 times without gas

heating. The growth in bulk plasma density (ne) proves beneficial in lowering

the breakdown time.
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4.4 Conclusions

In this chapter, we have conducted a computational investigation of two

applications (HPM switching and protection) based on the physics of HPM

breakdown. We identified the key parameters which play an important

role in the optimal design of such applications. The key parameters are

required plasma density and breakdown time, which are influenced by the

E-field strength and the presence of seed electrons. The breakdown process

leads to the creating of a plasma with the desired density. Furthermore,

we investigate the electrical properties of the generated plasma and their

correlation with plasma density, which govern the applications mentioned

above. Additionally, we explored the effect of local gas heating on the accurate

switching time calculation and achievable maximum plasma density required

for HPM applications. The gas-heating phenomenon becomes prominent

for a time greater than 100’s nanoseconds. We have discussed how to

integrate gas-heating with the existing fluid model. It is important to note

that to simulate a higher time-scale gas-heating phenomenon, the lower

time-scale physics (involving EM-plasma interaction) must be accelerated.

DMR technique, as discussed in the previous chapter, has proved handy in

such accelerated simulation.

The results reveal that gas heating influences plasma shape by inducing

intense ionization in the plasma bulk and raising plasma density. In the

absence of gas heating, high polar E-fields facilitate ionization at the plasma

streamer’s tip, controlling plasma shape differently. Higher plasma density in

bulk can function as an HPM limiter, reducing the cut-off density for various

incoming microwave frequencies and expanding the range of frequencies it

can block. Gas heating lowers the breakdown threshold, enabling rapid

growth in bulk plasma density and reduced cut-off time. In summary, our

analysis highlights the necessity of incorporating gas heating effects into

the HPM breakdown model for accurate calculations of switching time and

achievable maximum plasma density. We find that most computational

time is spent on the EM-plasma Maxwell solver to analyze multi-physics

multi-scale applications involving EM-plasma interaction. Although the
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overall numerical investigations could be effectively performed within a

feasible time by utilizing the DMR technique, it is necessary to explore other

alternative techniques to accelerate the computation.
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CHAPTER 5

Machine learning based approach for

2-D simulation of microwave-plasma

interaction

Our discussions from previous chapters indicate that the numerical

investigation of microwave-plasma interaction is a computationally

challenging problem to simulate within a feasible time. The study

becomes challenging due to the inhomogeneous nature of plasma having

complicated density profiles such as Gaussian plasma. More challenge lies

in the HPM breakdown case due to the steep gradients in the scattered

microwave E-field originating from the evolving plasma profile. The

FDTD-based computational electromagnetics (CEM) technique has remained

one of the most preferred methods to model and accurately simulate the

microwave-plasma interactions [9, 43, 121, 122]. Most traditional CEM

approaches, whether iterative or direct, are computationally challenging

due to stringent numerical criteria that lead to high memory usage and

longer simulation time as the problem size increases [108]. Different

approaches are mostly employed to overcome such challenges inherent

to traditional EM solvers. Those either use advanced parallelization or

dynamic mesh refinement techniques to reduce long simulation time without

loss in accuracy of results [8, 45]. The high computational cost associated

with CEM techniques becomes prohibitive, where the real-time analysis of

the EM-plasma interaction is of utmost importance. Therefore, exploring

alternative approaches that can address the problem of high computational

cost associated with traditional EM solvers is extremely valuable.
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Two sets of data (plasma density profile and scattered EM wave pattern) are

primarily associated with microwave-plasma interaction problems. The neural

networks can be potentially used to learn the non-linear mappings between

these two sets of data, and once the network is trained, it can give the outputs

in roughly O(1). In the last decade, there have been vast improvements in

the development of large and powerful deep neural networks (DNNs), which

have been applied to solve complex problems in computer vision and image

processing. Physics-informed neural networks, a DNN framework, can also be

used as a black box to approximate a physical system [51], and recent results

have shown that DNNs with many layers perform a surprisingly good job in

modeling partial differential equation-based complicated physics problems in

terms of both speed and accuracy [52]. Of late, machine learning (ML)/ deep

learning (DL) has also been used to successfully address different complex

problems in plasma physics and computational electromagnetics. Deep

reinforcement learning has been applied for tokamak magnetic controller

design to produce new plasma configurations [53], the potential of AI/ML

in predicting disruptive instabilities in controlled fusion plasmas has been

established in several studies [54, 55], the feasibility of applying ML models

for modeling, diagnostics, and control of non-equilibrium plasmas has been

discussed in [56]. Deep learning has also been used for extracting electron

scattering cross sections from plasma swarm Data [57].

This chapter discusses a data-driven approach and a novel DL architecture

to study the 2-D EM-plasma interaction from modeling to prediction and

validation of the predicted results. Results presented in Chapter 3 show

the limitations of the traditional differential equation-based fluid approach

and highlight that the achievable speedup is limited by the discretization

techniques even after the application of DMR. Hence, the requirement to

make the EM-plasma interaction studies feasible in real time has motivated us

to adopt data-driven AI/ML-based techniques. As simulations can generate

many data, which can be utilized to train the AI/ML-based model to predict

the EM-plasma interaction.

Organization of this chapter

In section 5.1, the proposed deep learning methodology has been discussed.

Section 5.2, discusses the data-set generation methodology. Section 5.3,
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provides the DL model training details, including the criteria for parameter

selection, the loss function calculation, and the optimization of the model for

better prediction. In section 5.4, we discuss the various metrics to evaluate the

performance of the proposed DL architecture. Subsequently, in section 5.5, we

report the DL-based computational experiments and their simulated results,

which are used to enhance the effectiveness of the proposed technique based

on comparison with the existing results. Section 5.6 provides an ablation

study to explore the effects of changing model parameters on the predicted

result. Next, we provide the way DL-model learns important features using

network visualization, as discussed in section 5.7. Finally, the conclusion is

provided in section 5.8.

Figure 5.1: Flowchart for training the proposed data-driven ML model

5.1 Proposed deep-learning architecture

This section proposes a deep learning-based architecture for solving the

microwave-plasma scattering problem given the plasma density and an EM
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wave of fixed frequency. A general flowchart followed for carrying out the

experiments in the next section is shown in Fig. 5.1, which is explained as

follows: Deep learning models are trained on image data-sets, therefore the

data obtained from the FDTD solver needs to be converted into images. To

generate the data and to train the deep learning model, the plasma density

and Erms data from the 2D FDTD-based simulations is normalized between

0-1 using the maximum value of the plasma density and Erms obtained from

the complete data-set respectively. Both of these maximum values for plasma

density (in m−3) and Erms (in V/m) are saved and used for scaling up the

normalized output generated by the trained neural network. The normalized

data-set is scaled in the range (0-255), and gray-scale images are generated to

train the proposed deep learning network.

The generated pair of plasma density (X) and Erms (Y) images are then used

to train the proposed deep learning model. The model is then evaluated on

the testing data. Plasma density image X is given as input to the trained

network, which outputs the predicted Erms image (denoted by F(X; θ), where

F represents the deep learning model and θ is the trained model weight

matrix. The predicted Erms image is converted to the physical Erms values (in

V/m) by scaling the normalized output by the global maximum of the data-set

as discussed earlier. The deep learning model’s predicted Erms values are then

compared with the actual Erms values from the 2D FDTD-based computational

solver.

5.1.1 CNN-based UNet deep learning architecture

The proposed architecture is a CNN-based UNet [62] where the input to

the network is the single-channeled, gray-scaled, normalized image of

plasma density X and the output to the network is the corresponding

single-channeled, gray-scaled, normalized image of the Erms data. The

architecture of the network is shown in Fig. 5.2. It can be seen that the

gray-scale plasma density image is given as an input to the network. The

model consists of an encoder and decoder-like structures. The encoder

consists of a series of convolutional and max pooling layers, which learn the
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features from the image and reduce the dimensions in each layer. The feature

extraction allows the network to learn training weights, and the reduction

in image dimension decreases the complexity of the model. There are six

encoder units, each with a convolutional layer with n filters where n is twice

the number of filters than the previous unit with 3 × 3 kernel size. The ReLU

activation function follows the output of each layer.

Correspondingly, there are six decoder units, each with the transposed

convolution operation layer with a kernel size of 2 × 2 followed by the

ReLU activation function. The decoder layer will upsample the features to

construct the output image of the network. The input to the decoder layer is

connected directly to the encoder output. Each decoder layer is connected to

the corresponding encoder unit’s output using a skip connection, as shown in

Fig. 5.2. The skip connections are implemented by concatenating the output

of one layer to the other layer to which it is connected. The output of the final

decoder unit is the predicted Erms image from the proposed architecture.

5.1.2 Mathematical representation of encoder-decoder in CNN

We discuss the mathematical formulation to describe the symmetric

configuration of the encoder-decoder (having the same number of layers, l)

block in CNN architecture. We consider a similar analysis from [123], a

simplified model where the signal (for a given problem, the signal is plasma

density image) is given as input (X, where x ∈ X ⊂ Rd0) to the network

shown in the Fig. 5.2. The encoder maps each x to a feature space , g ∈

G ⊂ Rdp . The feature map is used as input by the decoder to produce the

output (y ∈ Y ⊂ Rd0). For any kth layer, the input and output dimensions

for the encoder layer Ek and the decoder layer Dk are symmetric, which can be

expressed as,

Ek : Rdk−1 → Rdk , Dk : Rdk → Rdk−1 (5.1)

Where k ∈ [l]. The dimension of input and output is the same, d0. For any

kth layer, the total dimension dk = cknk, where dimension of each channel is ck

and number of channels is nk. The input signal to kth layer of encoder arrives
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from the nk−1 input channels of k − 1th layer can be expressed as,

Ek−1 =
[

Ek−1 T
1 , ... , Ek−1 T

n

]T
(5.2)

The nk channel output of kth layer encoder can be expressed as,

Ek
j = re

(
Φk T

nk−1

∑
i=1

Ek−1
i ⊛ Ψk

j,i

)
(5.3)

Where, j ∈ [nk], Ek
j is the jth channel encoder output after convolutional

filtering with Ψk
j,i filters and max pooling operation with Φk T. The

non-linearity is introduced to the given encoder output by passing the

convolution filter and max-pooling through the rectified linear unit (ReLU) re,

used as an activation function. Similarly, the decoding is as followed, where

kth layer input signal for the decoder layer comes (encoding in reverse) from

nk channel inputs,

Dk =
[

Dk T
1 , ... , Dk T

n

]T
(5.4)

The decoder layer convolution output is given by,

Dk−1
j = re

( nk

∑
i=1

ΦkDk
i ⊛ Ψk

j,i

)
(5.5)

In the case of the decoder, the reverse of the pooling operation with Φk T is

performed before the convolution (the order is different in the encoder) to

maintain the symmetry in the network. The nonlinearity is introduced to the

given decoder output by passing through the rectified linear unit (ReLU) re,

used as an activation function.

5.2 Data-set generation methodology

As discussed in Sec. 5.1, deep learning architectures require training data.

Therefore, in this section, a discussion about how the data-set is generated

is carried out. Figure 5.3 (a) provides a phenomenological picture of the 2D

problem we are trying to simulate. Let us consider a linearly polarized plane

EM wave propagating in air plasma in the X-direction. The simulation plane
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Figure 5.3: (a) The schematic representation of the square computational
domain, {(ckx, cky) ∈ Q+}; length of the domain Lx and Ly are taken in terms
of the wavelength of the incident EM wave. The location x0, y0 is 0.5Lx and
0.5Ly, respectively, and, {ckx, cky} = {1.5, 1.5}, where λ corresponds to freq
= 1 GHz. The parameter space can be varied by changing two parameters of
the 2D Gaussian profile - width and peak density. (b) plasma profile along the
central x-axis (xcentral) for different widths of Gaussian (S1:0.05λ (highest) to
S10:0.02λ (lowest)) for a fixed peak plasma density,n0 = 1022 m−3 (c) different
peak plasma densities for a fixed width of Gaussian. The den1S1: n0 = 1022

m−3 to den6S1: n0 = 1021 m−3
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XY contains an electric field E and the wave vector k parallel to the X-direction.

The magnetic field H is in the YZ plane perpendicular to the X- direction.

The simulation setup is equivalent to a Y-polarized (E-field), X-directed EM

wave. A 2D Gaussian plasma density has been considered given by ne(x, y) =

n0exp(−({x − x0}2/σ2
x + {y − y0}2/σ2

y )), where x0 and y0 are the center of

the plasma peak density (n0), and the spread of the plasma is controlled by

the plasma width σx and σy, here σx = σy = S. Different Gaussian plasma

profiles can be defined by tuning the two important parameters, the width of

the Gaussian, S, and the peak plasma density, n0. Some representative plasma

profiles for generating the data-set (pair of plasma density and Erms field) to

study the EM-plasma interaction are shown in Fig. 5.3 (b-c). The data-set

to train the network is prepared by keeping the incident wave frequency

fixed, and the shape of the 2D Gaussian plasma profile is varied. The size

of the computational domain is 1.5λ × 1.5λ as per the setup shown in Fig.

5.3. For each instance of the profile, the data file for the plasma density and

the corresponding 2-D scattered EM wave data (Erms) is generated via our

in-house developed FDTD computational solver [108]. The generated data is

a 2-D grid visualized in Fig. 5.4 for varying peak density. It can be observed

that the EM wave transmits through in the case of lower peak densities while

it gets reflected in the case of higher peak densities.

5.3 Training details

The proposed deep learning network is trained on the pair of the generated

gray-scale images of the data-set. The plasma density image X is given as input

to the network, and the network learns its parameters by minimizing the loss

between the actual Erms image denoted as Y and the output of the network

which is the predicted Erms image denoted as F(X; θ). The loss function for

training the architecture is given as follows:

L(θ) =
1
M

M

∑
i=1

∥F(X; θ)− Y∥2
2 + λ

l

∑
j=1

∥Wj∥1 (5.6)
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Figure 5.4: (a-f) Generated dataset of Plasma Density and corresponding
scattered Erms for varying peak density. The color-bar represents the maxima
and minima corresponding to plasma density and the Erms. The maxima for
plasma density is indicated by n0 and the minima is 0. For Erms, maxima are
7.07, 7.15, 7.74, 9.37, 10.36, and 10.47 V/m, respectively, and minima is 0. The
skin depth of microwave into plasma profile reduces as n0 increases indicated
by visibility of exact scatterer dimension (2D Gaussian profile) from Erms plot
(a) to (f).

where M is the total number of training images, θ is the network weight

parameter matrix, l is the total number of kernels used and Wj is the weight

of the jth kernel. The loss is minimized using the Adam optimizer [124]

with learning rate η = 1e − 3, β1 = 0.9 (the exponential decay rate for

first-order moment estimates), β1 = 0.999 (the exponential decay rate for

second-order moment estimates) and ϵ = 1e − 7. The kernel weights matrix

for the convolution and transposed convolution layers are initialized with

Glorot-uniform, which draws samples from a uniform distribution. Here, L1

regularization is used to overcome the problem of overfitting with λ = 1e − 7.

There are 611,833 trainable parameters in the proposed deep learning model

with 6 convolutional encoders, 6 convolutional transposed decoders, and five

skip connections. The network is trained on NVIDIA Tesla K40c GPU using

Keras API with TensorFlow running in the backend. While training the model

for 300 epochs, the loss is shown in Fig. 5.5. It can be observed that training

and testing losses decrease with each epoch, indicating that our network is

learning.
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Figure 5.5: Mean squared error loss in training the model

5.4 Performance Comparison Metrics

To evaluate the performance of the proposed architecture in terms of

predicting the image and the actual physical values of the Erms data (in V/m),

we have used existing metrics discussed in this section. In order to compare

the quality of image reconstruction by the deep learning model with respect to

the actual Erms image, we use Structural Similarity Index Metric (SSIM) [125],

where the image degradation is perceived change in structural information.

For two images x and y of size N × N, the similarity measure is given by:

SSIM =
(2µxµy + (k1L)2)(2σxy + (k2L)2)

(µ2
x + µ2

y + (k1L)2)(σ2
x + σ2

y + (k2L)2)
(5.7)

where µ denotes the mean, σ2 denotes the variance, L is the dynamic range of

pixel values. As suggested by [126], in the work of [125], the two parameters

(K1 and K2) are set to K1 = 0.01 and K2 = 0.03, to avoid the calculated SSIM to

become unstable under the universal image quality index criteria as proposed

in [127]. Values of the SSIM index are from 0 to 1. The closer the value of the

SSIM metric to 1, the better the image reconstruction quality.

We use two metrics to evaluate the model’s performance in predicting the Erms

values (in V/m) compared to the values obtained from the 2D FDTD-based

solver. The first metric is the average of the percentage error over all the Erms

values on the 2D grid. Let Aij and Bij denote the Erms values obtained from the

2D FDTD solver and DL-based approach at (i, j)th point on a N × N 2D grid
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respectively. The average percentage error is given by

Avg. percent error =
1

Nimages
∑

Nimages

 1
N2

N

∑
i=1

N

∑
j=1

∣∣∣∣∣Bij − Aij

Aij

∣∣∣∣∣
 (5.8)

The second metric is the mean squared error (MSE), which is defined as

MSE =
1

Nimages
∑

Nimages

 1
N2

N

∑
i=1

N

∑
j=1

(Bij − Aij)
2

 (5.9)

5.5 Computational experiment Results and

discussion

In the microwave-plasma interaction study, the 2D FDTD-based method

discretizes the 2D computational domain of size 1.5λ × 1.5λ, where λ

corresponds to free space wavelength, using Yee approximation [128]. The

data provided to the proposed DL-based model is such that the number of grid

points per wavelength (λ) of the EM wave is 128, resulting in 192 × 192 grid

points in XY plane to accurately resolve the gradients in the E-field and the

plasma density. In the simulation, the plane EM wave having the amplitude of

10 V/m is incident from the left-hand side of the domain as shown in Fig. 5.3.

The frequency of the EM wave is 1 GHz.

Table 5.1: EM-Wave scattering predicted data comparison with the actual data

Dataset
Range(in density m−3)

Avg. SSIM
(image)

Avg. percent error
(physical)

Avg. MSE
(physical)

1e21 - 1e22 0.9894 1.8751% 0.00857
1e20 - 1e22 0..9932 1.1017% 0.00467
1e19 - 1e22 0.9935 1.3389% 0.00722
1e18 - 1e22 0.9946 1.0172% 0.00613
1e17 - 1e22 0.9955 0.9036% 0.00564

The data used in training the network is varied by changing the peak plasma

density from n0 = 1e21 m−3 → 1e22 m−3 to n0 = 1e17 m−3 → 1e22 m−3

gradually. Table 5.1 shows the test cases’ results with varying data-set sizes

in training. It can be observed that the average SSIM index increases with

the increase of the data-set range. The average percent error is observed to
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be less than 2%. The FDTD-based solver and DL-based approach results for

different plasma densities have been compared in Fig. 5.6. The first row in Fig.

5.6 represents density profiles changing from underdense (leftmost) plasma

to overdense plasma (rightmost). The second row represents the scattered EM

wave pattern obtained using the conventional FDTD-based solution. The third

row shows the generated images from our proposed architecture, and it can be

observed that the scattering patterns closely match that of the FDTD-based

solver data shown in the second row. The fourth row shows the quantitative

comparison of the scattered EM wave values shown in the second and third

rows. It can be observed that the intensity values obtained by taking a

1-D profile across the central x-axis closely match each other (FDTD vs our

proposed approach).

The aforementioned microwave-plasma interaction study in a 1.5λ × 1.5λ

computational domain using the FDTD-based technique with 128 cells per λ

takes approximately 18 seconds on Intel Xeon CPU E5-2640 V3 @ 2.60 GHz

with x86_64 architecture for a physical time duration of 15 wave periods.

The stable scattering pattern is obtained after the EM wave has attained a

steady state condition. It takes 0.0576 seconds on average per test case for

the DL-based approach executed on the Intel(R) Xeon(R) CPU @ 2.20GHz with

x86_64 architecture.

For the 1.5λ × 1.5λ problem size, we observe a speedup of around 350

times using the DL-based approach compared to the FDTD-based technique.

However, the computational time complexity of a 2-D FDTD-based solver is

O(n3). If the problem size changes from 1.5λ × 1.5λ to 3λ × 3λ and finally

to 6λ × 6λ, the execution time is around 93 and 744 seconds, respectively.

However, in the case of DL based approach, it will be much smaller.

5.6 Ablation Study

In order to explore the effect of changing the model parameters on the

predicted Erms values given the plasma density, the ablation studies on the

effects of skip connections, number of encoder-decoder units, and method

of upsampling are discussed below. In these experiments, all the models
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are trained (on the data-set having range 1e17 m−3 − 1e22 m−3) on the same

training and testing images.

5.6.1 Effect of encoder-decoder units

In the proposed architecture, there are six encoder and decoder units. In this

study, we perform additional experiments with four and five encoder-decoder

units in the proposed architecture. The results are shown in Table 5.2 where

it can be observed that adding more units will improve the results. For six

unit pairs, we obtain an average SSIM value of more than 0.99 which is a good

indicator for image reconstruction by the network. A similar observation is

seen for average percentage and mean square error (MSE) metrics. Further,

adding more encoder-decoder units will increase the computational cost.

Table 5.2: Impact of varying the number of encoder-decoder units

No. of encoder-
decoder units Avg. SSIM Avg. Percent error Avg. MSE

4 units 0.95881 4.919% 0.29512
5 units 0.97629 3.164% 0.09468
6 units 0.99574 0.897% 0.00628

5.6.2 Effect of skip connections

In the proposed model, five skip connections connect the output of the first

five encoder and decoder units. For a second case, all the skip connections are

removed. In the third case, two skip connections exist between the output of

the second and fourth encoder and decoder units. We found the best results in

the third case when there are two alternate skip connections, as shown in Table

5.3, although the difference is much less.

Table 5.3: Impact of varying the skip connections

No. of
skip connections(SC) Avg. SSIM Avg. Percent error Avg. MSE

All five SC 0.99574 0.897% 0.00628
Without SC 0.99533 0.955% 0.00805
With two alternate SC 0.99601 0.857% 0.00600
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5.6.3 Effect of up-sampling method

The proposed architecture uses the transposed convolution operation in the

decoder units. The transposed convolution operation can be replaced by a

structure consisting of an up-sampling unit followed by a convolution unit.

Unlike the transpose convolution, which is trainable, the up-sampling layers

follow an interpolation scheme that increases the dimension of the input.

Combining up-sampling with convolution is considered equivalent to the

transposed convolution [129]. In this study, we use the bilinear and nearest

neighbor and observe that using the up-sampling with nearest neighborhood

interpolation followed by convolution layers gives the best results, as shown

in Table 5.4.

Table 5.4: Impact of using various up-sampling methods

Up-sampling
Methods Avg. SSIM Avg. Percent error Avg. MSE

Transposed
Convolution 0.99574 0.897% 0.00628

Bilinear
interpolation 0.99568 0.960% 0.00749

Nearest neighbour
interpolation 0.99637 0.857% 0.00579

5.7 Network visualization using feature maps

Figure 5.7 shows the feature maps (outputs of the convolution units) for an

example case, which helps us visualize how the network learns the features.

It can be observed that the encoder section of the network (shown in row

1 in Fig. 5.7) learns the high-level features initially, followed by learning

low-level features (edges in the image) later. The decoder of the network

(shown in row 2 in Fig. 5.7) learns the low-level features first, followed by

the high-level features. The encoder down-samples the image from (a) to (f),

while the decoder up-samples the image from (f) to (a). It can be observed

that the decoder learns the scattering pattern, unlike the encoder, which learns

the structural features and down-samples the image resolution to give the

structural information of the plasma density profile.
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5.8 Conclusions

This work presents a CNN-based deep learning model inspired by UNet

with a series of encoder and decoder units with skip connections to

simulate microwave plasma interaction. The scattering of a plane EM

wave, with fixed frequency and amplitude, incident on a plasma medium

with different Gaussian density profiles has been considered. The training

data associated with microwave-plasma interaction have been generated

using 2D-FDTD-based simulations. The trained deep learning model then

reproduces the scattered EM wave from the plasma with an average percent

error margin of less than 2%. The results obtained from the network have

been evaluated using various metrics such as SSIM and MSE. Ablation studies

and network visualization using feature maps have also been discussed. The

deep learning technique proposed in this work is significantly faster than the

existing FDTD-based computational techniques.

We observe when the DL model is trained using a data-set containing a

wide range of plasma density (1e17 − 1e22 m−3) and the testing samples

are taken from higher density regions (1e21 − 1e22 m−3) where scattering is

significant, there is a minor mismatch between FDTD and DL based 1D results

of Erms along central x-axis (Fig. 5.6). The DL-based model can be improved

further to address such issues by either modifying the loss function of our

current DL model or by using a PINN [130] based additional loss function

to consider the physics associated with microwave plasma interaction. This

is the first effort toward exploring a DL-based approach to simulate complex

microwave–plasma interaction. The DL technique proposed in this work is

significantly faster when compared to the existing computational techniques

and can be used as a new, prospective, and alternative computational

approach for investigating microwave–plasma interaction-based applications

in a real-time scenario.
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CHAPTER 6

Deep learning assisted microwave-plasma

interaction based technique for plasma

density estimation

6.1 Introduction

The study of EM wave propagation through plasma is mathematically a

well-posed problem with a unique solution. The problem can be solved

computationally by numerical simulations through several techniques, such

as FDTD-based iterative solutions of Maxwell-plasma fluid model [8, 43,

131–135]. This is referred to as a forward approach (or forward problem)

using model-driven solutions (using numerical solutions to partial differential

equations) as discussed in the chapter 2. On the other hand, the plasma

characterization via wave interaction is mathematically an ill-posed problem,

i.e., given a Erms scattered pattern signature from a plasma density (ne)

profile, it is difficult to provide information regarding the plasma density

profile that has resulted in such pattern. Thus, no unique solution is

possible. Such an ill-posed problem to map the plasma density profile for

a given electromagnetic field pattern is not directly possible. Figure 6.1

illustrates both types of problems through a schematic representation. The

chapter proposes an efficient method for the estimation of plasma density (ne)

via microwave-plasma interaction-based technique by utilizing the collected

scattered electric field pattern measured experimentally and fed to a deep

learning-enabled model for the realization of the ne profile. We utilize the

similar DL-architecture framework as discussed in the previous chapter, which
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has been used to determine the scattered E-field pattern from symmetric

plasma profile for a forward problem [136], to investigate the DL-model

prediction capability for the inverse problem.

Organization of this chapter

Figure 6.1: Schematic representation of the forward and inverse problem for
EM-plasma interaction is shown. The 2-D representation of plasma density
and corresponding Erms obtained through the Maxwell-plasma fluid model
(solution to forward problem) exists, but no direct inverse mapping exists.

A brief overview of microwave-plasma interaction based data-set generation

via 2D electromagnetic fluid simulation is presented in section 6.2.

The section also touches upon different aspects of synthetic data-set

preparation for training the DL model. This is followed by a detailed

account of the proposed machine learning (ML) assisted microwave-plasma

interaction-based approach for estimation of plasma electron density as given

in section 6.3. The section also discusses the employed deep learning

architecture and machine learning aspects. The major finding of this work

is presented in the results and discussion, section 6.4. A summary has been

provided in section 6.5.

6.2 Data-set generation methodology

Sufficient and good quality data in the form of plasma density and the

associated scattered electric field when an EM wave is incident on the

plasma is required for robust application of the proposed deep learning-based

technique. The required data has been generated using an in-house finite
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difference time domain (FDTD) based fluid model, which can capture the EM

plasma-interaction in the case of a weakly-ionized, collisional, unmagnetized

plasma [8]. The interaction involves the EM wave transmission, reflection, and

absorption through the plasma. A brief overview of the FDTD (a time-domain

technique that numerically solves Maxwell’s equation using Yee’s algorithm

[128]) based computational model to replicate a real microwave-plasma

interaction experiment, which uses the following equations, is provided below.

∂E⃗
∂t

=
1
ϵ0
(∇× H⃗) − 1

ϵ0
(⃗J) (6.1)

∂H⃗
∂t

= − 1
µ0

(∇× E⃗) (6.2)

∂v⃗e

∂t
= − e E⃗

me
− νm v⃗e (6.3)

The model primarily comprises Maxwell’s and momentum conservation

equations to obtain the electron’s velocity. Where, E⃗ and H⃗, are electric and

magnetic field respectively, µ0 and ϵ0 represents permeability and electrical

permittivity of vacuum respectively, e is the electron charge, ne is the electron

density in (m−3), v⃗e is the electron velocity in (m/s), me is mass of electron

in (kg), νm is the electron-neutral collision frequency in (s−1). The electron

current density term (⃗J = ne e v⃗e in (A m−2)) couples the two sets of equations.

The details of the model and its computational implementation are already

provided in previous chapters.

Figure 6.2(b) provides a schematic representation of the 2-D simulation

domain used for data generation, where a linearly polarized plane EM wave

interacts with a plasma having a Gaussian density profile centered at (x0, y0).

The simulation plane (XY-plane) contains an electric field (E) and the wave

vector k parallel to the X direction. The magnetic field (H) is Z-directed,

perpendicular to the simulation domain. The simulation setup is equivalent

to a Y-polarized, X-directed wave.

The inputs to the simulation model are the 2-D plasma density profile and the

characteristics of the incident EM wave. The output is the 2-D scattered Erms

pattern. The plasma density profile is assumed to follow a 2D Gaussian profile

given by ne(x, y) = n0exp(−({x − x0}2/σ2
x + {y − y0}2/σ2

y )), where x0 and
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Figure 6.2: (a) A typical linear LTP device schematic. (b) The schematic
representation of the square computational domain, {(mx, my) ∈ Q+}; the
length of the domain Lx and Ly is expressed in terms of the wavelength of
the incident EM wave. The location coordinates x0, y0 is 0.5Lx and 0.5Ly,
respectively, and, the coefficients, {mx, my} = {1.0, 1.0}, where λ corresponds
to the freq = 500 MHz. The parameter space can be varied by changing
two parameters of the 2D Gaussian profile - width (σx = σy) and peak
density (n0). σx={0.01λ, 0.02λ, ..., 0.05λ} for a fixed peak plasma density,n0 =
{1016, 1017, ..., 1019} m−3

y0 are the center of the plasma peak density (n0). The spread of the plasma is

controlled by the plasma width σx and σy, here σx = σy. Different Gaussian

plasma profiles can be defined by tuning the two parameters, the width of the

Gaussian (σx) and the peak plasma density, n0.

In the simulation, we have considered a plane EM wave with an amplitude

of 10 V/m and frequency 500 MHz incident from the left-hand side of the

domain as shown in Fig. 6.2. We have considered an air plasma at a pressure

of 2 torr having a collision frequency of around 10 GHz (for air plasma

considered here, νm = 5.3 × 109 p, where p is the ambient pressure in (torr))

[12]. Yee-approximation [128] has been used to discretize the computational

domain of size 1λ × 1λ, where the λ corresponds to the EM-wave free-space

wavelength. The number of grid points per wavelength of the EM wave is

256 to accurately resolve the gradients in the E-field and the plasma density

[8]. The resulting total number of grid points in the XY plane is 256 × 256,

which is also the size of the data-set provided to the DL-based model for

training/testing. The stable scattering pattern is obtained after the EM wave

has attained a steady state condition.

The data-set to train the network is prepared by keeping the frequency of the

incident wave fixed and the shape of the 2D Gaussian plasma profile is varied.
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For each 2D plasma density profile, the corresponding 2-D scattered EM wave

data, Erms, is generated. The root mean square (RMS) of the E-field is the

time-averaged E-field over one EM wave period, Erms =
(

1
N ∑N

i=1 E2
total

)1/2
,

where i is the number of iteration going upto N, corresponds to 1 EM wave

period. The generated 2D data is shown in Fig. 6.3 for different peak plasma

densities. It can be observed that the EM wave transmits through plasma

in the case of lower densities (cases a1 and a2), while there is a significant

reflection in the case of higher densities, (a3-a5). The FDTD-based simulated

results can be explained based on the physics of EM-plasma interaction. The

plasma density profile controls the different electrical properties of the plasma,

ranging from dielectric to a conductor. Depending on the relations ω > ωp,

ω ≈ ωp or ω < ωp, we can classify the different plasma density regimes as

sub-critical, intermediate and over-critical, respectively. Each of those regimes

corresponds to transmission, absorption, reflection, and minimum penetration

into the plasma, also called skin depth (the distance over which the E-field

of the wave decays 1/e of its initial strength). Thus, we can get the total

information regarding the wave propagation in the medium by capturing the

root mean square (RMS) value of the scattered microwave E-field.

Figure 6.3: (a1-a5) Generated data-set of reflected Erms from, (b1-b5) different
plasma density profile having varying peak density (n0). The maxima for
plasma density is indicated by n0, and the minima is 0. For Erms, maxima
are 8.29, 9.34, 10.31, 10.36, and 10.37 V/m, respectively, and minima is 0. The
skin depth of the microwave into the plasma profile reduces as n0 increases.

6.2.1 Synthetic data-set preparation for training DL-model

Different real-life experimental considerations must be considered while

preparing the training data-set for the feasible application of the DL-based
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approach. We have considered the following three possibilities:

• The unavailability of the scattered electromagnetic field data within the

chamber that confines the plasma.

• The collection of either dense or sparse Erms data around the plasma

by experimental techniques cite [137–139] based on scope of sensor

deployment.

• The Presence of noise in the collected Erms data is critical when some

E-field is present due to plasma particle movement.

Figure 6.4: Dense Erms data generation for ML training: (a) by removing the
central part of the data and retaining the remaining, (b) addition of noise to
the generated dense data, followed by removing the central part and retaining
the remaining. (c1-c3) represents the 2-D as well as 1-D density profile,
Furthermore, corresponding, dense Erms data has been collected with and
without noise (left to right). The color-bar maxima and minima correspond
to Erms. DI : Initial data, MD: Mask for dense data, N: Noise data

The unavailability of the data has been considered by masking the central

region in the Erms data where we wish to predict the plasma density. The

dense or sparse data can be obtained by two different types of masks, as

shown in Fig. 6.4 (a) and in Fig. 6.5 (a). The masking leads to either

masked dense data, DD, or masked sparse data, DS. A mask is equivalent

to a non-invasive diagnostic system that records the Erms data outside the
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Figure 6.5: Sparse Erms data generation for ML training: (a) by removing
the central part of the data and retaining the sparse data using a concentric
ring-based mask, (b) addition of noise to the generated dense data, followed
by removing the central part and retaining the remaining. (c1-c3) represents
the 2-D as well as 1-D density profile, and corresponding, dense Erms data
collected for both with and without noise (left to right). The color-bar maxima
and minima correspond to Erms. DI : Initial data, MS: Mask for sparse data, N:
Noise data
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plasma confinement. Here, we have considered the white Gaussian noise

model [140] to mimic various random processes that add from the natural

environment to the experimentally collected data, which is Erms data. The

noise model uses a random function to generate numbers between 0 and 1,

which follow a Gaussian distribution. For each of the Erms data samples, the

noise magnitude has been restricted to 1 − 10% of that sample’s highest Erms

amplitude. Thus, it ensures the Erms data and the added noise lie within 20% of

actual Erms magnitude for each data sample. Subsequently, a mask is applied

to the noisy Erms data to generate either dense or sparse noisy data. Thus, we

have obtained four different kinds of Erms data measurements corresponding

to a particular density profile, considering the different possibilities in a real

experimental setup. This will lead to the following four different data-sets

where information in the central part is absent due to masking:

• DD: dense Erms data-set without noise for different plasma density

profiles. Refer to Fig. 6.4 (a).

• DN,D: dense Erms data-set with noise for different plasma density

profiles. Refer Fig. 6.4 (b).

• DS: sparse Erms data-set without noise for different plasma density

profiles. Refer Fig. 6.5 (a).

• DN,S: sparse Erms data-set with noise for different plasma density

profiles. Refer Fig. 6.5 (b).

6.3 Deep learning based methodology

The important steps involved in this study (using the proposed data-driven

deep-learning (DL) methodology) for the prediction of plasma density from

scattered field data obtained outside a plasma chamber are shown in Fig.

6.6. The first step involves the generation of a 2-D scattered Erms field

from different plasma profiles when exposed to an EM wave having a fixed

frequency. The scattered Erms is achieved using the FDTD-based solver (shown

in Fig. 6.6 - block A). Next, the data processing step is followed (Fig. 6.6 -

block B), which will lead to one of the masked Erms data pattern (DD,DS,DN,D,
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Figure 6.6: Complete workflow used in this study for prediction of plasma
density via DL

DN,S). The computational steps involved in blocks A and B are explained

in the previous section, and we assume that they can also be replicated in a

real-experimental diagnostics setup. Training/ testing data consists of a pair of

plasma density profiles (Y) and the corresponding masked scattered Erms (X).

Figure 6.6 - block C shows the suitable DL model (CNN-based UNet described

in the next section) followed by training and evaluation. The DL model

requires to be trained on an image data-set. Therefore, first, the generated

data pair, the masked Erms (Y), and its corresponding plasma density (X) are

normalized between 0 and 1 using the already obtained maximum value from

the entire training/testing data-set. Both the maximum plasma density (in

m−3) and Erms (in V/m) values are saved to reconstruct the actual magnitude

of the quantity, which the trained neural network will generate, through the

re-scaling process. For training the proposed DL network, the normalized

data-set is scaled in the range of (0-255), and gray-scale images are generated,

which are stored as 4-D image arrays with each of the indices representing

the number of images, their dimension, and channel (gray-scale) information.

The proposed DL model is trained using the generated pair of image-array

data-set of masked Erms (X) and plasma density (Y). Since the gray-scale

images are generated by scaling the pixel intensity corresponding to the actual

normalized value of the data-set pair, proper care must be taken to avoid

losing the value due to rounding-off errors. Hence, the image array is fed to
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the model to avoid errors instead of directly providing the gray-scale image.

The model is then tested using the remaining data sample (testing) from the

train/test data-set. The trained network receives masked Erms image X as

input and generates the predicted plasma density image (denoted by F(X; θ),

where F represents the DL model and θ is the trained model weight matrix).

As previously discussed, the predicted plasma density image is converted

to physical density values (in m−3) by re-scaling the predicted normalized

output using the saved global maximum obtained from the entire data-set.

The DL model’s predicted plasma density values are then compared to the

2-D computational solver’s actual plasma density values for evaluation.

6.3.1 Deep learning architecture

The DL- architecture uses a CNN-based UNet [62] as depicted in Fig. 6.7.

Figure 6.7: The model architecture uses encoder, decoder, and skip connections
to predict the plasma density profile from masked EM-wave scattered pattern
data-sets

The network consists of two parts: encoders and decoders. The encoder has

six convolution layers and six max pool layers. Each convolutional and max

pooling layer decreases the input dimension in the encoder to extract finer

information at each level. Each of the six encoder units has a convolutional

layer with a different number of filters, where the number of filters doubles

from the 3 × 3 kernel size of the preceding unit. The ReLU activation function

follows the output of each layer. There are six decoder units, each with a
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transposed convolution operation layer with a 2 × 2 kernel size and a ReLU

activation function. The decoder layer will upsample the features to create the

network output. The output of the encoder is directly coupled to the input

of the decoder. The proposed architecture also implements skip connections

by connecting the output of each encoder layer to its matching decoder layer,

as shown in Fig. 6.7. It helps to solve the vanishing gradient problem by

instantly passing the information through the network and propagating it from

the shallower layers to the deeper ones. The final decoder unit produces the

predicted density profile data based on the masked ERMS data provided as an

input.

6.3.2 Performance metrics

Performance evaluation of the DL-based approach has been carried out in two

steps. Firstly, the images (actual and predicted) of the plasma density (ne) are

compared using the Structural Similarity Index Metric (SSIM). The SSIM [125]

is an important metric used to compare the quality of the reconstructed images,

where the image degradation is recognized as a change in the structural

information. For two images x and y of size N × N pixels, the similarity

measure is given by:

SSIM =
(2µxµy + (k1L)2)(2σxy + (k2L)2)

(µ2
x + µ2

y + (k1L)2)(σ2
x + σ2

y + (k2L)2)
(6.4)

where µ denotes the mean, σ2 denotes the variance, L is the dynamic range

of pixel values and k1 = 0.01 and k2 = 0.03. The values of the SSIM index

lie between 0 and 1. SSIM metric close to 1 suggests good quality of image

reconstruction.

To evaluate the performance of the model in predicting the values of ne

(in m−3) compared to the actual values considered for 2-D FDTD-based

fluid-solver, we use two metrics - the MAPE and RMSLE errors metric. The

first metric is the average of the absolute percentage error over all the ne

values on the 2-D grid. Let Aij and Bij denote the ne values used in the

FDTD-based computational solver and ne obtained from DL based approach at

(i, j)th point on a N × N 2D grid, respectively. For the given problem, we have
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considered only those grid points within a circular cross-section of the plasma

confinement (which corresponds to the central region). The mean absolute

percentage error (MAPE) is given by

MAPE =
1

Nimages
∑

Nimages

 1
N2

N

∑
i=1

N

∑
j=1

∣∣∣∣∣Bij − Aij

Aij

∣∣∣∣∣
 (6.5)

The second metric is the root mean squared logarithmic error (RMSLE) [141].

The RMSLE is defined as

RMSLE =

√√√√√ 1
Nimages

∑
Nimages

 1
N2

N

∑
i=1

N

∑
j=1

(ln(Bij + 1)− ln(Aij + 1))2

 (6.6)

The quantity RMSLE is a better performance metric than the root-mean-square

error (RMSE) for the studied problem for two reasons. Firstly, high magnitude

density data, in both the actual and predicted values, results in a very large

RMSE. Secondly, RMSE cannot handle exploding error terms due to outliers

that RMSLE can easily scale down and nullify the effects of the prediction error.

6.4 Results and discussion

The study and performance evaluation of the proposed model has been carried

out in two phases. First, using the dense data (DD, DN,D) and then using

the sparse data (DS, DN,S). In the following subsections, we first discuss the

training details and explain the computational experiments and results for

each of the two phases.

6.4.1 Training details

The deep learning network is separately trained on different data-sets (DD,

DS, DN,D and DN,S). The network takes a pair of normalized data matrices,

the masked Erms, which is given as input to the network (or X) and the

corresponding plasma density (Y). The network learns its parameters by

minimizing the loss between the actual plasma density (Y) and the output of
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Table 6.1: RMSLE and MAPE-based comparison of predicted plasma density
with the actual density data for different types of dense data samples

Types of
Data sample

Peak plasma density (n0) (m−3) SSIM
1e16-1e19
(m−3)

1e16-1e17 1e17-1e18 1e18-1e19
sub-critical
ω > ωp

intermediate
ω ≈ ωp

over-critical
ω < ωp

RMSLE MAPE RMSLE MAPE RMSLE MAPE
DD 0.142 0.12 0.031 0.024 0.025 0.016 0.9998
DN,D 0.166 0.153 0.057 0.048 0.043 0.038 0.9995

the network, the predicted plasma density denoted by F(X; θ) in Fig. 6.6. The

loss function for the training of the architecture is given as follows:

L(θ) =
1
M

M

∑
i=1

||F(X; θ)− Y||22 + λ

l

∑
j=1

||Wj||1 (6.7)

where M is the total number of training samples, θ represents the network

weight parameter matrix, l is the total number of kernels used and Wj is the

weight of the jth kernel. The optimizer used for the training is Adam optimizer

[124] with a learning rate of α = 0.001 and ϵ = 10−7 for numerical stability. The

exponential decay for the first moment has been taken as β1 = 0.9, and the

exponential decay for the second moment is β2 = 0.999. L1 regularization

is used to counter the problem of overfitting with λ = 10−6. Uniform

Xavier initialization [142] is used as the kernel initializer. The normalized

initialization of the Weights of each layer can be heuristically expressed as,

W ∼ U

[
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

]
(6.8)

where, U is the uniform distribution and nj is the number of nodes in jth layer.

The proposed deep learning model, consisting of six convolutional layers, six

Transpose convolution layers, and five skip connections, has 611,833 trainable

parameters. The network is trained on NVIDIA Tesla K40c GPU using Keras

API with TensorFlow running in the backend.
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Table 6.2: Performance evaluation for computational experiments performed
with dense data samples (DD) in the limited range having n0 : 1e18− 1e19 m−3

Number of
Data samples

n0 : 1e18 − 1e19 (m−3)
RMSLE MAPE SSIM

200 0.042 0.032 0.9978
500 0.041 0.030 0.9987
750 0.034 0.029 0.9992
1000 0.021 0.025 0.9994
1500 0.0156 0.021 0.9996

6.4.2 Experiments with dense data (DD and DN,D)

We generated the dense dataset without noise (DD) by changing the Gaussian

plasma density profiles with n0 ranging from 1e16 to 1e19 m−3. The data-set

comprised 8000 sample pairs (density profile and masked scattered Erms).

Subsequently, a dense-dataset with noise (DN,D) is prepared as described in

section 6.2.1. DL model has been trained separately with DD and DN,D.

Both the data-sets were divided in the ratio of 80 to 20 data-samples for

training and testing, and the test data-set is further divided with a similar

ratio for cross-validation. The MAPE and RMSLE metrics have been separately

reported (in Table 6.1) for different ranges of n0 to understand the prediction

capability of the proposed approach in different density ranges. The SSIM

metric is reported for the overall range of plasma densities (1e16 − 1e19 m−3),

and we observe that the overall SSIM is very high ( 0.999). RMSLE and MAPE

is < 0.1 for n0 > 1e17 m−3 for both DD as well as DN,D, but > 0.1 for density

range 1e16 − 1e17 m−3. The better prediction for higher density values can

be attributed to the high reflection component in the scattered Erms pattern,

which gets more appropriately captured as features by the DL model. We

observe improvement in both MAPE and RMSLE (Table 6.2) when the model

is trained with samples in the overcritical density range (1e18 − 1e19 m−3).

We also observe that an acceptable prediction can be obtained even using a

surprisingly small Data-set size (less than 1000 measurements).

MAPE, RMSLE, and SSIM provide a single number summary about the

predictive capability of the proposed approach; however, to obtain a complete

qualitative as well as a quantitative understanding of the predicted values of

plasma density, we have performed a 2D data analysis as shown in Fig. 6.8
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Table 6.3: RMSLE and MAPE-based comparison of predicted plasma density
with the actual density data for different sparse data sets

Types of
Data sample

n0 (m−3) SSIM
1e18-1e19
(m−3)

1e16-1e17 1e17-1e18 1e18-1e19
RMSLE MAPE RMSLE MAPE RMSLE MAPE

DS 0.054 0.038 0.031 0.023 0.012 0.010 0.9999
DN,S 0.188 0.11 0.051 0.041 0.035 0.027 0.9996

(for DD) and Fig. 6.9 (for DN,D). The first row (a1-a5) in both the figures (Fig.

6.8 and Fig. 6.9), indicates the masked scattered Erms pattern, the input to

the model. The second row (b1-b5) shows the corresponding actual density

profile based on which the FDTD-based computational solver has generated

the scattered Erms pattern. From both the figures (refer Fig. 6.8 and Fig. 6.9),

we observe plasma density varies from low to high values (b1-b5). Based on

the plasma density profile, the Erms pattern varies, indicating transmission,

reflection, and absorption of the propagating microwave. The predicted 2-D

profile of plasma density (ne) from the DL network is shown in row 3 (c1-c5).

We observe a good qualitative match with the actual density profile in row 2

(b1-b5). In row 4 (Fig. 6.8 and Fig. 6.9), 1-D comparison between the actual

and the predicted ne profile along the central X-axis (xcentral) shows a good

quantitative match between the two. We observe better predictions for dense

plasma with peak density (n0), > 1e17 m−3. Thus, it validates the observed

trend of low MAPE and RMSLE in Table 6.1 and Table 6.2. We have conducted

another set of experiments with samples in the density range 1e18 − 1e19 m−3

to understand whether training the model with a narrow range of density

values leads to better predictive ability. The experiment also aims to determine

the minimum number of measurements required for DL-based prediction with

desirable accuracy.

6.4.3 Experiments with sparse data (DS and DN,S)

A similar study is repeated with the sparse Erms data-set, for both without (DS)

and with noise (DN,S). The data-sets comprised 7000 samples each for without

and with noise, with plasma peak density (n0) varying in the range 1e16− 1e19

m−3. Based on training with the masked sparse Erms - ne data pairs, the trained

DL-model has been used to predict the unknown ne for a masked sparse Erms
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test sample. The error metrics RMSLE and MAPE has been separately reported

for different range of n0 in Table 6.3. In addition, the SSIM metric is reported

for the overall n0 range, which is very high ( 0.999). Even with sparse data

where a significant amount of scattered E-field information is absent, based on

the metrics’ results in Table 6.3, we can infer that the proposed approach can

determine the plasma density within an acceptable range.

A comparison between the actual and the predicted 2D plasma profiles for

five test samples with different peak density values (under-dense (leftmost)

to over-dense plasma (rightmost)) have been shown in Fig. 6.10 (for DS)

and Fig. 6.11 (for DN,S). We observe a good qualitative match in both cases

with better results for a higher range of density values (for the intermediate

and overcritical plasma density regime). 1-D comparison between the actual

and the predicted ne profile along the central X-axis (row 4 in Fig. 6.10

and Fig. 6.11) shows a good quantitative match. Our study shows that

the proposed methodology can also be employed with good confidence with

sparse measurements of scattered E-field signals outside the plasma with a

non-invasive approach.

6.5 Conclusions

A novel deep learning-based plasma diagnostics approach is presented for the

first time. The combination of microwave-plasma interaction physics, existing

plasma diagnostics techniques, and deep learning to train neural networks

for plasma density prediction with high accuracy and minimal effort are

proposed. The approach is based on computational experiments involving

the scattering of microwaves by considering an unmagnetized, collisional,

partially ionized low temperature plasma. Experimentally, the Erms generated

from the scattering of the microwave are processed for the estimation of

ne. The approach is applied to different experimental conditions, a range of

noises, symmetric density profiles, and sparseness of the Erms collection and

their combinations. Every condition has experimental significance, addressing

the experimental limitations. The SSIM for a different combination of the

experimental conditions for the density estimation remains near ≈ 0.99,

which suggests convincing evidence of accurate ne estimations. The DL model

118



Fi
gu

re
6.

10
:

C
om

pa
ra

ti
ve

st
ud

y
an

d
re

su
lt

s
fo

r
sp

ar
se

da
ta

-s
et

(D
S
);

R
ow

1
(a

1-
a5

)
2-

D
E r

m
s

(t
he

in
cr

ea
si

ng
m

ax
im

a
in

V
/m

fr
om

le
ft

to
ri

gh
t)

sp
ar

se
da

ta
ob

ta
in

ed
fr

om
pl

as
m

a
de

ns
it

y
pr

ofi
le

us
in

g
FD

TD
;R

ow
2

(b
1-

b5
)T

he
ac

tu
al

pl
as

m
a

2-
D

de
ns

it
y

pr
ofi

le
;R

ow
3

(c
1-

c5
)T

he
pr

ed
ic

te
d

2-
D

pr
ofi

le
of

pl
as

m
a

de
ns

it
y

fr
om

th
e

pr
op

os
ed

de
ep

le
ar

ni
ng

ba
se

d
ar

ch
it

ec
tu

re
;R

ow
4,

C
om

pa
ri

so
n

of
th

e
ac

cu
ra

cy
be

tw
ee

n
th

e
m

ag
ni

tu
de

of
th

e
ac

tu
al

an
d

pr
ed

ic
te

d
1-

D
pl

as
m

a
de

ns
it

y
al

on
g

th
e

ce
nt

ra
lX

-a
xi

s
(x

ce
nt

ra
l)

of
th

e
co

m
pu

ta
ti

on
al

do
m

ai
n.

119



Fi
gu

re
6.

11
:

C
om

pa
ra

ti
ve

st
ud

y
an

d
re

su
lt

s
fo

r
sp

ar
se

da
ta

-s
et

w
it

h
no

is
e

(D
N

,S
);

R
ow

1
(a

1-
a5

)
2-

D
E r

m
s

(t
he

in
cr

ea
si

ng
m

ax
im

a
in

V
/m

fr
om

le
ft

to
ri

gh
t)

sp
ar

se
da

ta
w

it
h

G
au

ss
ia

n
no

is
e

ob
ta

in
ed

fr
om

pl
as

m
a

de
ns

it
y

pr
ofi

le
us

in
g

FD
TD

;R
ow

2
(b

1-
b5

)
T

he
ac

tu
al

pl
as

m
a

2-
D

de
ns

it
y

pr
ofi

le
;R

ow
3

(c
1-

c5
)T

he
pr

ed
ic

te
d

2-
D

pr
ofi

le
of

pl
as

m
a

de
ns

it
y

fr
om

th
e

pr
op

os
ed

de
ep

le
ar

ni
ng

ba
se

d
ar

ch
it

ec
tu

re
;R

ow
4,

C
om

pa
ri

so
n

of
th

e
ac

cu
ra

cy
be

tw
ee

n
th

e
m

ag
ni

tu
de

of
th

e
ac

tu
al

an
d

pr
ed

ic
te

d
1-

D
pl

as
m

a
de

ns
it

y
al

on
g

th
e

ce
nt

ra
lX

-a
xi

s
(x

ce
nt

ra
l)

of
th

e
co

m
pu

ta
ti

on
al

do
m

ai
n

in
th

e
pr

es
en

ce
of

no
is

e.

120



performed well in reproducing the plasma density profile under the different

possible experimental conditions. The predicted results are within acceptable

ranges. The percentage error (MAPE and RMSLE) in predictions lies within 1

to 10%. The network performs well even for noisy Erms data. The percentage

error lies within the similar range of 1 to 10%. Our study also demonstrates

that it is possible to obtain desirable results in the proposed approach even

with very few measurements compared to the general belief of large input

data requirements for DL training. These results are significant as they are

addressed to the real experimental considerations. However, an important

real-life issue related to the plasma density profile remains to be addressed:

whether this approach will work efficiently in the presence of asymmetry in

plasma density profile.
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CHAPTER 7

Data-driven approaches for investigation

of microwave interaction with asymmetric

plasma profiles

7.1 Introduction

In previous chapters 5 and 6, we discussed two classes of problems to

study the microwave-plasma interaction, forward and inverse problems.

The 2-D scattered Erms pattern is predicted from a given plasma density

profile in the forward problem. Whereas for an inverse problem, using

the 2-D scattered Erms pattern, the plasma density profile is predicted,

leading to such a pattern. However, for both classes of problems, the

numerical experiments are limited to the symmetric Gaussian profiles, which

are idealistic compared to any real plasmas. The complexity arises in

natural and laboratory-generated plasma profiles due to asymmetric and

non-homogeneous plasma density distributions, as asymmetry profiles are

inherent in any real or laboratory-generated plasma. As discussed earlier,

free-space plasma discharges generated during HPM breakdown results in

asymmetric plasma profiles [1, 2, 8, 35].

As most of the real plasmas possess asymmetries such as multiple plasma

density peaks, random location of the peaks, or width of the profile,

these features must be considered while evaluating the proposed DL-based

methodology, as discussed in the previous chapter. Such plasma density

profiles have sharp gradients, which may result in complex microwave E-field

patterns compared to symmetric plasma (Gaussian). The challenge lies in
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obtaining sufficient and good quality asymmetric data, which is a prerequisite

for any data-driven deep-learning approach.

In this chapter, we present our work in two parts, which are carried

out in two phases. Phase-1 is associated with a forward-problem, using

DL-model to reconstruct the scattered microwave E-field from the asymmetric

plasma profile, and, in Phase-2, an inverse-problem, the model reconstructs

the asymmetric profile from a given scattered E-field pattern. The key

contributions lie in consideration of a wide range of 2-D asymmetric plasma

density profiles inspired by real experiments as a rich set of data for

training/testing the deep learning model.

Organization of this chapter

We provide the synthetic data-set generation methodology in section 7.2.

Section 7.3 provides an overview of the data-driven deep learning approach,

including a flow diagram, data generation, and model architecture for both

experiments, Phase-1 and Phase-2. Section 7.4 discusses results, model

validation and evaluation, and feature-map-based insights. The conclusion

is provided in Section 7.5.

7.2 Synthetic data-set generation methodology

The synthetic data generation for Phase-1 and Phase-2 experiments requires

a 2-D scattered Erms field obtained from asymmetric plasma profiles using an

FDTD-based simulation of microwave-plasma interaction. The plasma density

profile can be generated using either of the two methods: mathematical

functions to represent the asymmetric plasma density profile or fluid-based

numerical simulations. Phase-1 experiments have been performed using

data (fully asymmetric plasma density profiles) generated by mathematical

functions and numerical simulations. In contrast, Phase-2 experiments

have been performed on mathematical functions based on partial and fully

asymmetric (non-Gaussian) profiles. This section discusses the techniques for

generating data for Phase-1 and Phase-2 experiments.
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7.2.1 Phase-1 plasma-profile generation technique

Phase-1 experiments consist of fully asymmetric data such as non-Gaussian

and filamentary types. The two approaches for asymmetric profile generation

have been discussed below.

7.2.1.1 Mathematical function based density profiles

The most commonly used 2-D plasma profile for numerical simulation

of low-temperature plasmas is a single Gaussian plasma density profile

or a combination of multiple such Gaussians [9, 35, 36], which allows

accurate replication of experimental results. The density profiles can also be

Non-Gaussian, as shown in Fig. 7.1. A representative mathematical formula

describing such diverse profiles is provided below,

ne(x, y) =

PN

∑
i=1

n0, i exp

(
−
[
(x − xlocation, i)

2

2σ2
x, i

+
(y − ylocation, i)

2

2σ2
y, i

])
(7.1)

where, the number of plasmoids varies as i goes from 1 to PN number of

plasma peaks, xlocation, i and ylocation, i are the center of the ith plasma peak

density (n0, i) and the spread of the ith plasmoid is controlled by the plasma

width σx, i and σy, i. Based on the different combination of the parameters, n0,

xlocation or ylocation, and, σx or σy, the non-Gaussian plasma density profiles can

be obtained. For Phase-1, we mainly consider the fully asymmetric plasma

represented by the Non-Gaussian profile,

• Multiple Non-Gaussian plasmoid profiles, have been generated by

varying n0, i, i ∈ [1, ..., PN = 5], from density range {1e18 − 1e19},

as well as vary the location of the peaks which satisfy,

{
(x, y)

∣∣∣∣r ∈

[0, W/4), r =
√(

x − xlocation, i
)2

+
(
y − ylocation, i

)2
}

, corresponding

to different i associated with different number of plasmoids. The

xlocation, i = x0 + rl cos θi and ylocation, i = y0 + +rl sin θi, rl ∈

(0, W/16] and θi ∈ [0, 2π]. The spread of the plasma σx, i = σy, i remains

fixed for each i.
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• To obtain a Non-Gaussian profile such as Ellipsoid shaped, we keep

number of peaks (PN = 1), such that {n0, i = n0,1 = n0} and location

of a single peak (xlocation, i = x0 and ylocation, i = y0) fixed, only vary

σx, i ̸= σy, i, either σx, i > σy, i or σx, i < σy, i.

Where x0 and y0 define the center of the computational domain, shown in Fig.

7.2, W is the width of the confinement (assumed the plasma exists within the

confinement) in terms of EM wavelength (λ), r is the radial distance from the

domain center to W/2. Where the constraint lies on the spread of the plasma

σx, i = σy, i, such that {σx, i = σy, i} ∈ (W/16, W/8) to avoid sharp gradients in

plasma profile. The profiles are primarily over-dense and correspond to the

cutoff condition (high reflection and minimum penetration) for the incoming

non-ionizing microwave, which results in a high-quality scattering Erms

pattern for DL-model training, as shown in Fig. 7.3 (c1-c3). For Phase-1, the

data-set consists of 1200 pairs of fully asymmetric or Non-Gaussian (multiple

plasmoids as well as Ellipsoid shaped) plasma density profiles (refer Fig. 7.1

(a2-a3) and Fig. 7.1 (b2-b3)) and corresponding Erms.

7.2.1.2 Fluid simulation based plasma density profiles

The asymmetric plasma profiles can also be generated through numerical

simulation of dynamic evolving plasma, such as streamers or filaments,

when plasma profiles are exposed to high-power microwaves, resulting in

breakdown-induced plasma [8]. The plasma profiles may possess different

asymmetry in shape (Gaussian, Ellipsoid, fish-bone, diffused, or streamer),

size, occurrence of multiple peaks, and filaments. As discussed in section

2.2, we use the solution of coupled Maxwell’s and electron momentum

conservation equation (2.1-2.3) along with the fluid continuity equation (2.4)

that governs the spatio-temporal evolution of the plasma density averaged

over one period of the EM wave during the gas breakdown. The scattered

Erms captured from different numbers of filaments can be observed in Fig. 7.4

(c1-c3), with typical peak plasma density in the range 1e18 − 1e22 m−3. We

have generated almost 8000 data-set pairs consisting of filamentary patterns, a

few shown in Fig. 7.1 (c1-c3) and Fig. 7.1 (d1-d3), and corresponding Erms for
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training/testing the DL model.

Figure 7.1: Mathematical function-based partial/ fully asymmetric plasma
density, (a1-a3) 2-D distribution and (b1-b3) 1-D distribution along x-line.
Fluid simulation based fully asymmetric plasma density, (c1-c3) 2-D
distribution, and (d1-d3) 1-D distribution along x-line.

7.2.2 Phase-2 plasma profile generation technique

For Phase-2 we consider both partial asymmetric and fully asymmetric plasma

profiles, which can be obtained using mathematical function-based density

profiles. We have already described fully asymmetric profiles in subsection

7.2.1. The partial asymmetry can be obtained by Gaussian profiles that are

not centered at the simulation domain’s midpoint but instead distributed

randomly (e.g., left, right, top, or bottom relative to x0 and y0), as well as

profiles composed of Gaussian plasma profiles with more than one peak.

• We have generated multiple Gaussian plasmoids, keeping peak density,

n0, i = n0, fixed for i ∈ [1, PN = 2], restricted four plasmoids within

W. Vary the location of Gaussian peaks such that xlocation, i = x0 +

(−1)iW/8 or W/4 and ylocation, i = y0 + (−1)iW/8. The spread of the

plasma σx, i = σy, i remains fixed for each i.

• To obtain double Gaussian, we keep n0, i = n0 for i ∈ [1, PN = 2] as

well as σx, i = σy, i fixed, vary the location of Gaussian peak, xlocation, i =
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x0 + (−1)iW/8 or W/4 and ylocation = y0.

where the constraint lies on the spread of the plasma σx, i = σy, i, such that

{σx, i = σy, i} ∈ (W/16, W/8) to avoid sharp gradients in plasma profile.

Next, we discuss the data preparation associated with Phase-2 to obtain the

masked Erms data required for density estimation.

7.2.2.1 Data-set preparation

The data processing step is important for the Phase-2 experiment, which

mimics the real experimental conditions while obtaining scattered Erms

data required for the plasma density estimations. The outcome of data

pre-processing leads to one of the masked Erms data patterns (DD, DS, DN,D,

DN,S) as discussed in section 6.2.1. The difference lies in the plasma density

profile, which is asymmetric here. Additionally, we have considered highly

sparse data (for DS and DN,S) equivalent to sparse sensor deployment, as well

as higher noise in the input data for both dense and sparse (DN,D as well as

DN,S).

For Phase-2, the data-set consists of 9000 pairs from partial asymmetry profile

(double and multiple Gaussian (with random peak density locations)) as well

as 1200 pairs of fully asymmetric or Non-Gaussian (multiple plasmoids as well

as Ellipsoid shapes), and corresponding Erms. The plasma profiles are shown

in Fig. 7.1 (a1-a3) and Fig. 7.1 (b1-b3).

Figure 7.2: Schematic representation of the computational domain to simulate
the microwave interaction with various asymmetric plasma profiles. Domain
length along x and y, Lx and Ly, is expressed in terms of EM wavelength (λ).
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7.2.3 FDTD-based synthetic training data-set generation

In subsection 7.2.1 and 7.2.2, we discussed the generation of plasma density

profiles corresponding to Phase-1 and Phase-2 investigations. The profiles

include fully and partially asymmetric types such as Non-Gaussian Ellipsoids,

multiple (Gaussian and Non-Gaussian) plasmoids, and plasma filaments. For

training, we need the corresponding scattered Erms when an EM wave is

incident on this asymmetric profile. For this purpose, we performed FDTD

simulations using a discretized 2-D computational domain as depicted in

Fig. 7.2, with dimensions of 1λ × 1λ. Here, λ represents the free space

wavelength. The grid resolution uses 256 grid points per wavelength (λ) for

the multiple plasmoids and 512 grid points for filaments, for better accuracy

[8]. In Phase-1 experiments, the plasma profiles are exposed to EM waves with

Figure 7.3: Mathematical formulation of Partial/Full asymmetric profile
(Gaussian multiple plasmoids, Non-Gaussian (multiple plasmoids and
Ellipsoid)) data-set, plasma density (a1-a3) 2-D distribution, and (b1-b3) 1-D
distribution along x-line. (c1-c3) The corresponding scattered Erms 2-D pattern.

different amplitudes and frequencies. For Non-Gaussian (multiple plasmoids

and Ellipsoids), the microwave E-field amplitude of 10 V/m and a frequency

of 1 GHz. In the case of plasma filaments, E-field amplitude of 5 MV/m and

a frequency of 110 GHz. For Phase-2 experiments, partial and full asymmetry

plasmoids are exposed to a plane EM wave with an amplitude of 10 V/m and a

128



frequency of 500 MHz. These waves are incident from the left-hand side of the

computational domain, as illustrated in Fig. 7.2. For the Phase-1, air plasma

is considered at 2 and 760 torr pressures. For the air plasma in this study, the

collision frequency νm is calculated using νm = 5.3 × 109 p, where p represents

the ambient pressure in torr. In contrast, Phase-2 experiments only utilize air

plasma at 2 torr. The FDTD simulated scattered Erms pattern originating from

Non-Gaussian (Fig. 7.3 (a1-a3)) and filamentary (Fig. 7.4 (a1-a2)) profiles are

shown in Fig. 7.3 (c1-c3) and Fig. 7.4 (c1-c3), respectively.

Figure 7.4: Fluid simulation based filamentary profile data-set, plasma density
(a1-a3) 2-D distribution and (b1-b3) 1-D distribution along x-line. (c1-c3) The
corresponding scattered Erms 2-D pattern.

7.3 Data-driven deep learning based approach

We provide a brief overview of the data-driven deep-learning based approach

to study the interaction of microwaves with asymmetric plasma density profile

for both Phase-1 and Phase-2 experiments.

7.3.1 Deep-learning methodology

The proposed DL methodology for the two experiments resembles the earlier

methods. Specifically, for Phase-1, we refer to the methodology outlined in
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section 5.1, while for Phase-2, the methodology is detailed in section 6.3. The

DL model training and testing data-sets for Phase-1 comprise pairs of scattered

Erms (Y) corresponding to plasma density profiles (X), generated in subsection

7.2.1. For Phase-2, the data-set consists of pairs of plasma density profiles

(Y), generated in subsection 7.2.2, and the corresponding masked scattered

Erms data (X, from the set (DD, DS, DN,D, DN,S)). All the data (the plasma

density profile and corresponding FDTD simulated Erms pattern obtained from

the discretized computational domain) are converted into gray-scale images

obtained by normalization (using the global maximum of the data-set) and

scaling to the 0-255 range. The remaining steps are similar as in section 5.1 and

6.3, for Phase-1 and Phase-2, respectively.

7.3.2 Deep-learning architecture

The proposed architecture for training/testing the Deep learning model uses

the similar CNN-based UNet architecture discussed in chapters 5 and 6. All

the architecture details remain the same, except the input-output data-pairs

must be interchanged as per the requirement of both experiment phases.

7.3.3 Training details

During training, the DL-network adapts its parameters to minimize the

discrepancy between the predicted image data, labeled as F(X; θ), and the

actual image, denoted as Y. Here Y is Erms for Phase-1 and plasma density

profile for Phase-2. This optimization is achieved by using a loss function

(Ł(θ)), as discussed in previous chapters. The training details remain the same

as discussed in Chapters 5 and 6. Training takes place on an NVIDIA Tesla

K40c GPU, utilizing Keras with the TensorFlow backend, spanning 300 epochs.

The loss values observed during training serve as an indicator of effective

learning of the DL model. As an example, we show in Figure 7.5 (a) and (b), the

trends in the training and testing loss values over 300 epochs corresponding to

Non-Gaussian and filament plasma profiles. The lower loss magnitude for the

Non-Gaussian profile compared to filaments is likely attributed to the former

having a less asymmetric density distribution, resulting in smoother variations

in the Erms data.
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Figure 7.5: Mean squared error loss in training (learning sample)/testing
(unseen data-sample) the model for (a) Non-Gaussian and (b) filament plasma
profile.

7.4 Results and discussion

In this section, we provide separate discussion for each, Phase-1 and

Phase-2, which comprises different computational experiments for DL model

training-testing, followed by data-driven DL-model performance evaluation

on the corresponding generated data-set, using 2-D/1-D based comparative

results and discussion, and, finally, DL-network’s feature-map based learning

for each data-set.

7.4.1 Phase-1: Experiments with Non-Gaussian profile and

filaments for forward-problem

7.4.1.1 Dl-model training/testing simulated results

While training the network, we used separate data-sets containing

Non-Gaussian (multiple plasmoids and Ellipsoids) profiles and filaments

(single, double, three, and more). For training the DL-model with both types

of data-set, we gradually changed the peak plasma density from n0 = 1e18

m−3 → 1e22 m−3. The FDTD-based solver and DL-based approach results

for two different plasma density profiles have been compared in Fig. 7.6.

The first row in Fig. 7.6 represents the 2-D and 1-D comparison between

the ground truth (FDTD generated) and predicted Erms pattern resulting from

Non-Gaussian profile, which is overdense (n0-1e18 − 1e19 m−3). The second

row represents the 2-D and 1-D scattered EM wave pattern obtained using the
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conventional FDTD-based solution and predicted Erms pattern resulting from

filamentary profiles which are overdense (n0-1e18− 1e22 m−3). We can observe

that both the scattering patterns closely match when observed as the near zero

residual plot in 2-D and as a quantitative (magnitude-wise) 1-D plot obtained

by taking a 1-D profile across the x-line.

For the 1λ × 1λ problem size, we observe a speedup of around 300-500 times

using the DL-based approach compared to the traditional technique, such as

FDTD, for simulations performed on an Intel(R) Xeon(R) CPU @ 2.20GHz with

x86_64 architecture.

Figure 7.6: The 2-D, 1-D qualitative and quantitative comparison of actual and
predicted scattered Erms from Non-Gaussian (a1-a5) and (b1-b5) filamentary
plasma profile, respectively.

7.4.1.2 Model performance evaluation using different metrics

We assessed the performance of the DL-model using different performance

metrics, such as SSIM and RMSLE or RMSE, as discussed in previous chapters.

We compared the real (ground-truth) and predicted images of scattered Erms

pattern obtained from the asymmetric plasma profile ( such as Non-Gaussian

plasmoids and filaments (denoted as ne )) using the Structural Similarity

Index Metric (SSIM). The SSIM produced a score between 0 and 1. A score

nearing 1 indicates high-quality image reconstruction. Additionally, we use

RMSLE or RMSE to determine accuracy between the model predicted Erms
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Table 7.1: Performance metrics evaluation for scattered Erms obtained from
different computational experiments on asymmetric dense plasma density
profile data. The peak plasma density is n0.

Data-set n0 : 1e18 − 1e22 (m−3)
RMSLE/RMSE SSIM

Non-Gaussian 0.44 (RMSE) 0.982

Filaments 0.66 (RMSLE) 0.987

values (expressed in V/m) against the ground truth Erms data obtained from

simulating a 2-D FDTD-based fluid-solver. The results on the test cases for

varying data-set profiles and density range in training are shown in Table 7.1.

We can observe that the average SSIM index is similar for both the profiles

≈ 0.98, a score nearing 1. The mean squared error (RMSLE/RMSE) is observed

to be within one order. Both indicate the high fidelity of the DL technique in

terms of reconstruction and accuracy of the Erms pattern.

Figure 7.7: Feature maps correspond to the output of each of the encoder and
decoder units of the DL model. A single feature map from each convolutional
unit is shown for representation. The model input and the final output of the
DL-network are the plasma density profile and its corresponding Erms image.
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7.4.1.3 Model feature-map based learning from asymmetric filamentary

plasma

We discuss here the CNN-Unet feature-map based learning methodology.

Figure 7.7, shows the encoding and the decoding unit. The encoding

and decoding unit uses the convolution and the transposed convolution

layers, whose outputs are the important features, as shown in the figure.

The features conserve the spatial locality in the image and allow better

reconstruction of the output. The numbers over each image denote the total

number of filters in the convolution/transpose-convolution unit. The process

involves down-sampling the actual image into more refined features, and

encoders learn to detect the edges or boundaries (finest features), followed

by up-sampling that allows the decoder to learn a mapping between the

finest features with the required prediction. Here, we can observe that the

model extracts the important features from the original filamentary plasma

density data. Mostly, the patches of pixels that have useful plasma density

variation (as intensity in gray-scale images) to predict the scattering Erms

pattern information as reconstructed image data.

7.4.2 Phase-2 : Experiments with asymmetric plasma profiles

for inverse-problem

Phase-2 experiments with asymmetric profiles have been performed in the

density range (1e18 − 1e19 m−3). We have considered various real-life

situations during the plasma density estimation in designing our numerical

experiments. Those include the sensor (capturing scattered Erms pattern)

deployment strategy, which may result in highly sparse data and additional

background noise to the sensor data. For the asymmetry profiles, we

have considered Gaussian profiles with centers located at random locations

(top, bottom, left, or right relative to x0, y0 ), two Gaussian profiles, and

Non-Gaussian profiles with multiple peaks. The Gaussian data-sets have

been referred to as partially asymmetric, while the Non-Gaussian data-set as

a fully asymmetric data-set. Both dense (DD) and sparse (DS) data-sets have
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been considered similar as in chapter 6. The simulated results are presented

based on the training and testing of the DL-model performed on the different

data-sets (dense (DD) and highly sparse data (DS)) as well as the effect of noisy

input (masked Erms dense data(DD)) are presented here.

7.4.2.1 1D/2D comparison of DL-model simulated results and performance

evaluation

Figure 7.8: Comparison of results for dense (DD) and sparse (DS) data samples
without and with noise (for partially asymmetric), having two Gaussian
plasma profiles with peaks not located at the center of the simulation domain
(x0, y0).

Comparison between the actual and the predicted 2-D plasma profiles for

four test samples (two each for dense and very sparse masked Erms data) for

different locations of the peak density values in the case of partial asymmetric

data-set has been shown in Fig. 7.8. We observe a good qualitative match

for both dense and very sparse data. 1-D comparison between the actual and

the predicted ne profile along the X-axis (row 4 in Fig. 7.8) shows a good

quantitative match.

We use 2-D plots of the actual and model-predicted plasma profile along with

the residual to evaluate the results for fully asymmetric data (Non-Gaussian

shapes with multiple peaks) as shown in Fig. 7.9 and 7.10 (for input Erms, data
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Figure 7.9: Comparison of results for completely asymmetric density profile
for dense Erms data, DD. (a1-a4) the masked Erms, (b1-b4) the ground truth,
(c1-c4) the predicted plasma density profile for DD, and (d1-d4) the residual
(difference between actual and predicted) to indicate the degree of mismatch.

Figure 7.10: Comparison of results for completely asymmetric density profile
for sparse Erms data, DS. (a1-a4) the masked Erms, (b1-b4) the ground truth,
(c1-c4) the predicted plasma density profile for DS and (d1-d4) the residual
to indicate the degree of mismatch between actual and predicted asymmetric
profiles.
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Table 7.2: Performance evaluation for computational experiments performed
with Erms data both (dense and sparse) corresponds to plasma density profile
having partial and full asymmetry. The peak density range having n0 : 1e18 −
1e19 m−3

Types of density profiles
and Data samples n0 : 1e18 − 1e19 (m−3)

RMSLE MAPE SSIM
DD 0.03 0.024 0.9998

Partial asymmetry
DS 0.0425 0.035 0.9998
DD 0.3 0.28 0.9963

Fully asymmetry
DS 0.24 0.18 0.9964

DD and highly sparse DS, respectively). We can observe that the DL model

can capture asymmetry (either multiple peaks with different peak densities

that are merged together, locations of the different peaks, or the shape of the

profile, such as Ellipsoid, and more) in the plasma profile within acceptable

accuracy. It is interesting to observe that the model-predicted plasma density

profile has a good spatial resolution that matches the actual plasma profile,

and we obtain an average SSIM of more than .99 for different samples refer to

Table 7.2. Also, we can observe that the DL model can preserve the order

of the plasma peak densities within a desirable accuracy. The decrease in

accuracy compared to predictions of symmetric Gaussian profiles (in chapter

6) can be attributed to multiple factors, particularly high-density gradients,

and asymmetry, leading to complex scattering patterns. The results (shown

in Fig. 7.9, Fig. 7.10 and Table 7.2) indicate that the DL-based approach can

predict the profile shape, the location of plasma peaks, and the peak plasma

density with desirable accuracy, the primary diagnostic requirement for any

real laboratory experiment.

7.4.2.2 Effect of noisy input data on the DL-model performance

We performed noise effects (by changing the amplitude/relative amplitude

of noises to the measured Erms signal, i.e., SNR analysis) on the DL-model

prediction performance. Based on [143], we found choosing relative noise

amplitudes, 10% to 25% results in an SNR reduction from 10 to 4 dB, which

makes noise levels nearly indistinguishable from the desired Erms signal. Our
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Figure 7.11: Comparative study and results for dense data (DD), considering
two Gaussian plasma profiles not symmetric about the computation domain
center, with different relative noise amplitudes.

Table 7.3: Performance evaluation for computational experiments performed
with dense Erms data corresponds to plasma density profile having asymmetry.
The peak density range having n0 : 1e18 − 1e19 m−3

Density profile Test data-sample n0 : 1e18 − 1e19 (m−3)
RMSLE MAPE SSIM

DD 0.03 0.024 0.9998
Partial asymmetry DN,D (10%) 0.056 0.046 0.9997

DN,D (25%) 0.055 0.042 0.9996
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numerical experiment tried to predict the plasma profile, with two Gaussian

peaks whose center does not coincide with the domain center (a spatial

asymmetry), from the Erms dense data-set. We varied the added noise level

(10 to 25%), the results can be observed in Fig. 7.11.

From Table 7.3, we can observe that different relative amplitudes of added

noise to the signal can vary the predicted plasma density peak value (increase

in MAPE and RMSLE values compared to a no-noise case). However,

shape-wise (spatial distribution) remains unchanged (similar SSIM). Further

increase of noise amplitude (10-25%) has a negligible effect on the overall

model performance.

7.4.2.3 Feature-map based learning for inverse-problem

For the Phase-2 experiments similar to Phase-1, we present the DL-model

feature-map based learning strategy. Figure 7.12, shows outputs of the

Figure 7.12: Feature maps correspond to the output of each of the encoder and
decoder units of the DL model. The model input and output are the Erms image
and the image of the plasma density profile.

the encoding and the decoding unit, representing the important features.

The features conserve the spatial locality in the image and allow better

reconstruction of the output. The down-sampling of the actual image into

refined features helps the encoder to detect the edges or boundaries (finest

features), followed by up-sampling, which allows the decoder to learn a
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mapping between the finest features with the required prediction. We can

observe that from the original masked Erms pattern, the model extracts the

important features, mainly the patches of pixels that have useful scattering

information (as variation in gray-scale intensity), and uses them to reconstruct

the plasma profile.

7.5 Conclusion

This chapter discusses a data-driven deep learning-assisted

microwave-plasma interaction-based study on asymmetric plasma density

profiles categorized under Phase-1 and Phase-2, both motivated by realistic

experiments. The deep-learning model designed on CNN-Unet architecture

has been trained and evaluated on image data-sets obtained from diverse data.

Those data pairs include multiple non-homogeneous plasmoids (Gaussian

as well as Non-Gaussian) and highly asymmetric bands of plasma known

as filaments) and their corresponding scattered Erms pattern. Different

metrics, such as SSIM, RMSLE, and RMSE, have been used to evaluate the

results obtained from the model. For both experiments, the SSIM score for

the predicted quantities is ≈ 0.98, which nearly equals 1. The high SSIM

convinces high similarity of reconstructed, Erms pattern (for Phase-1) or

plasma density profile (for Phase-2) with the ground truth data. We observe

that the magnitude of error (RMSE or RMSLE) in reproducing two different

outputs (Erms or plasma profile) corresponding to Phase-1 and Phase-2 is well

within an acceptable range. The increase in error may be attributed to sharp

gradients in the fully asymmetric filaments compared to partial asymmetric

profiles. The network performs well even for noisy (10-25% increase in noise

amplitude) Erms data and can predict partially asymmetric plasma profiles

both in the presence and absence of noise. The percentage error lies within

the similar range of 1 to 10%. Using a larger training data-set or proper noise

filtering techniques may allow smoothing out the predicted profile, lowering

the percentage error for asymmetric profile prediction. Further, the network’s

learning of important features has been highlighted using feature-map-based

visualization.
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CHAPTER 8

Conclusion and future scope

8.1 Introduction

The thesis presents two efficient computational techniques (dynamic mesh

refinement and data-driven deep learning-based model) for accelerating the

computational investigations of microwave plasma interaction-based diverse

applications. Most of the applications are multi-scale and multi-physics

in nature, where microwave-plasma interaction physics is associated with

the smallest time-scale and controls the overall computational time. Our

results reveal that these techniques can play a crucial role in accelerating the

simulation of the microwave plasma interaction, which controls the discharge

physics and plays a significant role in the overall breakdown-induced

plasma generation process. The proposed techniques can also be applied

to investigate longer time-scale phenomena, such as gas-heating effects, and

efficiently understand the formation of different plasma structures observed

in experiments. Additionally, the applicability of the two techniques has been

shown and evaluated by studying important applications related to HPM

breakdown-assisted plasma dynamics, plasma switching and protection, and

plasma diagnostics.

DL-based approach provides a significantly faster alternative to existing

FDTD-based computational techniques. It can accurately predict the scattered

EM wave from a plasma medium with different plasma density profiles

(Gaussian and Non-Gaussian types). A novel deep learning-based plasma

diagnostics approach is presented, combining microwave-plasma interaction

physics, existing plasma diagnostics techniques, and deep learning to train
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neural networks for plasma density prediction with high accuracy and

minimal effort.

8.2 Summary of main results and accomplishments

of the thesis

• C-language based implementation and validation of a 2-D

Maxwell-Plasma fluid model to simulate HPM breakdown. Analysis

of associated computational challenges to address such multi-physics

and multi-scale nature of the problem. Through a novel spatio-temporal

investigation, we have explained the evolution of plasma filamentary

structures during HPM breakdown experiments using different physical

parameters.

• Development and implementation of the DMR (Dynamic Mesh

Refinement) technique for accelerating the Maxwell-Plasma fluid

model-based 2-D simulations on Cartesian grids. The technique is

validated and analyzed for performance against published results to

ensure reliability and accuracy. The DMR technique generates a

self-aware fine mesh that evolves with time depending on plasma and

electric field topology. Applying the DMR technique leads to accurately

reproducing complex plasma dynamics and structures at significantly

lower computational costs.

• EM-plasma interaction has also been investigated using dispersion

relation to properly understand the EM wave reflection, transmission,

and absorption in this work’s parameter space of interest. Additionally,

the complex dielectric and refractive index are computationally analyzed

from the application point of view. The parametric study helped

identify the different parameters that control the plasma formation time,

required plasma profiles for manipulating the wave propagation, and

how different applications can be developed based on the physics of

microwave-plasma interaction.

• A simple gas heating model for air has been developed and coupled
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with a Maxwell-plasma fluid solver, considering proper chemistry

corresponding to the pressure and effective field used in the study. It

has been used to perform 2-D simulations to understand the effect of

gas heating on the growth and shape of plasma. Application related to

switching and HPM limiter action for a wide frequency range has been

investigated.

• For the first time, we propose a data-driven deep learning-based

approach to investigate microwave-plasma interaction. An end-to-end

UNet architecture accelerates the solution of Maxwell’s equations with

plasma current density. Training data has been generated using

FDTD-based simulations with symmetric Gaussian plasma profiles and

asymmetric plasma profiles such as non-Gaussian and filamentary.

Extensive experiments are conducted to demonstrate the effectiveness

and accuracy of the approach while comparing the results with

conventional FDTD-based solutions. The results obtained from the DL

network have been evaluated using various metrics such as MSE and

MAPE. The reconstructed results are found to lie within an error margin

of less than 1%. The proposed technique achieves a speedup of around

100-350 times compared to the existing FDTD-based computational

techniques.

• A novel Deep learning-assisted microwave-plasma interaction-based

technique for plasma density estimation has been proposed. The

technique is based on microwave-plasma interaction physics. It uses

a data-driven approach to realize the plasma density (ne) profile from

measured scattered electric field patterns when such plasma is exposed

to a microwave. The proof of concept has been established on

synthetically generated data considering several important experimental

scenarios, such as noise in the experimentally measured scattered signals

and the amount of experimentally measured data (dense vs sparse). The

DL-based technique can determine the electron density profile within the

plasma. The performance of the proposed deep learning-based approach

has been evaluated using the structural similarity index (SSIM). The

obtained results show promising performance in estimating the 2D radial
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profile of the density for the given linear plasma device and affirm the

potential of the proposed ML-based approach in plasma diagnostics.

• Using a data-driven approach, we numerically investigated

microwave-plasma interactions under realistic experimental conditions

by considering diverse synthetically generated training data-sets.

Several plasma profiles have been considered, such as symmetric

Gaussian profiles, asymmetric density profiles with multiple Gaussians

and non-Gaussians, ellipsoids, filamentary plasma profiles, and more.

Different peak densities have been considered for each of these profiles to

capture different aspects of microwave-plasma interaction. The enriched

data-set proved beneficial to train the DL model like real experimental

data. Our results on this diverse data-set prove the feasibility of the

proposed data-driven approach for deployment and use in real-practical

scenarios.

8.3 Future scope

• Extension to a 3-D DMR and its parallelization: The 2-D fluid model for

HPM breakdown cannot completely capture EM-plasma interactions in

detail, particularly the 3D effects, as observed in real HPM breakdown

experiments. A 3-D DMR-based model will be valuable to capture

these intricacies, and parallelization of the DMR technique on emerging

computing architectures will be a prerequisite for such investigations.

• More accurate Gas-heating model: The HPM breakdown model

discussed in the thesis applies to overcritical breakdown conditions

(applied electric field greater than breakdown field) with approximate

air chemistry. A more accurate gas heating model is needed to

investigate branching processes and replicate experimental observations

for intermediate to sub-critical pressures and metallic initiator-based

breakdown conditions. This model should have accurate plasma

chemistry and consider evolving electron energy distribution functions.

• A PINN based model: The DL model in the thesis uses standard loss

functions instead of physics-based loss-function calculation, resulting in
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a slight mismatch between the FDTD and predicted results for Erms. A

customized loss function can be used to improve the DL model further

and address this issue, or a PINN [130] based approach with the physics

of microwave plasma interaction can be explored.

• A DL-based hybrid model: A DL-based hybrid HPM model can be

a better alternative than the time-consuming iterative solvers. In the

hybrid approach, the data-driven AI/ML models can accelerate the

Maxwell solver. In contrast, a traditional differential equation-based

approach can be used for the spatio-temporal evolution of the plasma

using a continuity equation.
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