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Abstract

In this work we generalize the computational geometric curve reconstruction approach to curves

embedded in Riemannian manifolds. We prove that the minimum spanning tree, given a sufficiently

dense sample, correctly reconstructs smooth arcs which can be used to reconstruct simple closed

curves in Riemannian manifolds. The proof is based on the behavior of a curve segment inside a

tubular neighborhood of the curve. To take care of the local topological structure of the underlying

manifold, a tubular neighborhood is constructed using the injectivity radius of the underlying Rie-

mannian manifold. We also present examples of successfully reconstructed curves and apply curve

reconstruction to ordering motion frames.

To give a specific example, think of a graphic game designer designing a game. To design a

path of an object and the way the object moves along that path he must first create a sequence of

orientations and displacements in the space. A typical method of animation is to begin with the

first frame and the last frame. The graphic designer will create in between frames iteratively. For

the movements along the path, he may create intermediate frames in an order which best suits his

imagination. Now he provides these frames to an interpolator. At this stage he is also required to

provide an ordering of the frames to the interpolator.

Results presented in this work provide a way to automate the process of ordering the frames

created by a graphic designer. In this work we present a uniform sampling criterion, an ordering

algorithm and an interpolation scheme that reconstructs an approximation to the original motion.

In addition an attempt has been made here to generalize the computational geometric curve recon-
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struction approach to curved spaces (Riemannian Manifolds). This problem is at the junction of

Computational Geometry and Differential Geometry.
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Synopsis

Connect the dots is a classic puzzle, wherein for a given set of dots (sample points) in a plane we

are supposed to connect the dots using a proximity criterion, to form a closed figure. The curve

reconstruction problem can be thought of as that of connecting the dots. Reconstructing a curve

from an arbitrary set of sample points is a non-trivial problem, since there may be a variety of ways

to connect the points. A brief review of the work carried out in the area of curve reconstruction

is presented in [14]. It discusses the reconstruction of curves embedded in Rn (endowed with the

standard metric). The curve reconstruction problem falls in a subclass of the more general problem

of manifold reconstruction. The focus in this field has been on the reconstruction of manifolds

embedded in Rn. Reconstruction of manifolds of co-dimension one is dealt with in [20].

For curves in a plane, in [13], the Euclidean Minimal Spanning Tree (EMST) is proposed for

reconstruction. The approach is based on the combinatorial characterization of minimal spanning

paths. The behavior of arcs inside the tubular neighborhood is a key ingredient of the approach. A

limitation of EMST-based reconstruction is that it relies on a dense uniform sample. This limitation

of uniform sampling has been overcome by a more intuitive sampling strategy based on the medial

axis. In [4], the problem of reconstruction has been solved for curves in a plane with a non-uniform

sampling criterion. It recommends more samples to be taken where the details are more, i.e. the

sampling is based on the local feature size of the curve, measured as the least distance from the

curve point to the medial axis of the curve. Reconstruction of curves in Rn is solved in [15].

The above mentioned approaches using non-uniform samples are based on the characterization of
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Synopsis Curve Reconstruction in Riemannian Manifolds

Voronoi construction and in particular on the empty circle property [14]. They are combinatorial in

nature. All the combinatorial curve reconstruction approaches based on the Voronoi construction

have been unified and presented in [18]. They have been shown to be instances of what are known

as restricted Delaunay complexes and differ only in the way the restriction is put on the simplicial

complex.

In this work we extend the computational geometric curve reconstruction approach to curves

embedded in curved spaces. As an example, take an object in space undergoing a rigid body

motion. Suppose we have captured some frames of this motion, but these frames are jumbled up

(the ordering is lost). We want to reconstruct the original motion from this sample set (of frames).

If this motion is represented by a curve in the special euclidean group then the problem is of

reconstructing a curve in a Riemannian manifold. We pose the problem of curve reconstruction in

the Riemannian manifolds as follows. Let C be a smooth, closed and simple curve in a Riemannian

manifoldM . Given a finite sample, S ⊂ C, reconstruct C. The first step towards the solution of

the problem of curve reconstruction requires to define a criterion for an appropriate sample S. Next

it demands to suggest an algorithm to introduce an order on the sample. And the final step involves

suggesting a suitable interpolation scheme for the ordered sample set.

To the best of our knowledge, no results have so far been reported in this direction, where the

curve to be reconstructed is embedded in a curved space. John Nash proved in [31] that every

Riemannian manifold can be isometrically embedded into some Euclidean space. So one might

get tempted to think that if we are able to reconstruct curves in Rn we must also be able to recon-

struct curves in Riemannian manifolds. But it is difficult to construct such an isometric embedding.

This inadequacy of knowledge of the isometric embedding has prompted researchers to work in

Riemannian manifolds intrinsically. And for that we refer to the intrinsic geometrical ideas in

differential geometry [22]. That brings us to the junction of the computational geometry and differ-

ential geometry. We use the well developed theory of differential geometry and extend the results

of curve reconstruction in Rn to Riemannian manifolds. The motivation is the growing applications
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Synopsis Curve Reconstruction in Riemannian Manifolds

of manifold methods in robotics, graphics and computer vision.

Since our work focuses on curves in Riemannian manifolds we begin by defining a distance

metric on manifolds useful in applications. We use variational as well as geodesic curvature based

approaches for computing geodesics. Both the formulations lead to the same system of non-linear

ordinary differential equations as shown in [22]. The geodesics are computed numerically in prac-

tice.

A Riemannian manifoldM is defined as a differentiable manifold with the Riemannian metric

defined at every point of the manifold in [17]. This Riemannian metric defines an inner product in

the tangent space at every point on the manifold. The inner product in turn equips the connected

Riemannian manifoldM with a distance metric. The distance between two points onM is defined

as the distance of the shortest geodesic path connecting them. As an example, consider the distance

between two points in Rn, with the standard inner product defined on Rn. It is computed as the

length of the straight line segment connecting them. Geodesics on a manifold are similar to straight

line segments in euclidean space. In this way, we can construct the distance metric for every

connected Riemannian manifold.

We compute geodesics on the sphere and a few surfaces. Since surfaces are isometrically em-

bedded in the R3, it is relatively straight forward to work with surfaces. The standard inner product

on R3 can be used to find lengths of the curve on surfaces. But for many useful manifolds such

isometric embeddings are not known, for example SE(3), the special euclidean group acting on

objects in R3. Along with being a smooth manifold, SE(3) is also a group. Such groups are called

Lie groups. In general, the group of rigid body motions in Rn is the semi-direct product of the

special orthogonal group SO(n) and Rn. There does not exist any bi-invariant Riemannian metric

on SE(3). In [33], a physically meaningful left-invariant Riemannian metric is defined on SE(3).

The physical implication of the left invariance is the freedom of choice of the inertial frame. More-

over, with a particular choice of Riemannian metric on SE(3), closed form expressions for exp

and log maps are derived in [52]. The formulation can be easily generalized to any n. We compute
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Synopsis Curve Reconstruction in Riemannian Manifolds

geodesic path between two configurations of SE(3) and compute the distance between them using

the exp map, a map which maps a Lie algebra diffeomorphically to its Lie group, and the log map.

With the distance metric defined,M becomes a metric space. Since C is a compact submanifold

ofM, there exists a finite subcover of C for every open cover, [17]. This indicates a possibility of

sampling the curve at finite locations. The concept of ε net, defined in [50], captures the idea of

such a sampling very well.

The medial axis M of a curve C ⊂ M, is the closure of the set of points inM that have at least

two closest points in C. We present a few observations related to the medial axis for a curve on a

surface embedded in R3. The curve in space and the curve in surface are two different entities. For

some cases, it is possible to define surfaces so that the curve when lying on the surface requires

coarser sampling than the same curve lying in R3. But this demands knowledge of the underlying

surface.

With the help of an example of a curve on a surface we show that medial axis based sampling

becomes meaningless on arbitrary manifolds. And we point out that the reason for the breakdown

is the gaussian curvature of the surface at the points in the region enclosed by the closed curve.

The injectivity radius of the underlying manifold is key in understanding this difficulty in sampling

a curve. Our sampling criterion is based on the tubular neighborhood of the curve which is well

within the injectivity radius of the manifold. It can be shown that if q ∈ M − Cm(p) then there

exists a unique minimizing geodesic joining p and q, where Cm(p) is the cut locus of the point p

inM. In [17], i(M) = infp∈M d(p, Cm(p)) is defined as the injectivity radius ofM. In [42] the

tubular neighborhood for a curve is constructed by taking the union of all the normal geodesics to

the curve, assuring the injectivity of the exp map along these normal directions. Instead, as shown

in [40], we propose to work inside the injectivity radius to deal with the problem in sampling.

We give an alternate proof for curve reconstruction by EMST in R2. We present a result giving

relationship between the sampling density and the curvature of the curve. The claim about the

flatness of the sample inside a tubular neighborhood was proved in [13]. The argument rests on what
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happens outside the tubular disc. In our argument we do not use the curvature center explicitly. And

with the help of the orthogonality of the boundary of the geodesic ball centered at a point and the

geodesics passing through this point, we extend this proof to arbitrary Riemannian manifolds. The

crucial argument in the proof is Gauss’s lemma [17]. It defines the local geodesic polar coordinates

at a point on the Riemannian manifold. Once the flatness of a sample is assured, the proof for

re-ordering by EMST is essentially the same as in [13].

Once we have introduced an order on the sample we propose to use the de Castelaju algorithm

prescribed in [1], for interpolating the ordered points in M. For illustrating the algorithm, we

interpolate ordered points in Rn, on a sphere, and surfaces. We interpolate between two config-

urations in SE(3) and compare the results with different initial conditions. We also introduce a

partial geodesic interpolation scheme for interpolation in SE(3), where geodesic interpolation is

used to interpolate between rotations and spline segments are used to interpolate between positions

for smoothness.

For experimentation we have taken up examples of curves on a sphere and a few other surfaces.

We compute the distances between sample points of a curve on these surfaces numerically and

reconstruct the curve with MST. We show a potential application of curve reconstruction in SE(2)

for ordering the video frames. Here we take the clue from an object in a video which is undergo-

ing a rigid motion, and re-order the frames by re-ordering the sample points in SE(2). Next we

experiment with curves in SE(3) and show successfully reconstructed curves with applications to

graphics and robot path planning. We consider a manifold which has elements of similar kind to

SE(2). The difference is that it also includes scaling with respect to the center of mass of the ob-

ject. We present an example of a successfully reconstructed curve in this manifold. This manifold

is useful for applications which involve object tracking, for example the study of cell growth.

In conclusion, this work shows that the MST gives the correct geodesic polygonal approxima-

tion to smooth, closed and simple curves in Riemannian manifolds, assuming the sample is dense

enough and we work inside the injectivity radius. We have worked out a conservative bound for
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uniform sampling of a curve in a Riemannian manifold. The effect of the local topological behav-

ior of the underlying manifold is clearly identified and resolved by working inside the injectivity

radius. In general the scheme works for smooth arcs with endpoints also. If we work inside the

injectivity radius of the underlying manifold we have taken care of the topological changes but to

take care of geometric changes we need to work inside the convexity radius as well, as discussed in

[27]. We believe that, with careful modifications, results of non-uniform sampling for curves in Rn

are transferable to curves in a Riemannian manifold. As an extension to this work, we would like

to work out the necessary proofs and carry out simulations in this direction to support our claim.
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Chapter 1

Introduction

1.1 Introduction

With the advent of digital scanning technologies and digital processing media, people are trying to

come up with sampling strategies that will preserve the information content of signals even after

sampling. Take for example a document scanner. Let’s say a lot of handwritten documents are

required to be preserved by converting them into digital form. Since documents have different

features in terms of hand writing, font sizes, languages in which the documents are written etc., the

decision regarding the minimum resolution of the scanner becomes important. This in some sense

is similar to Nyquist’s sampling criterion for band limited signals in signal processing.

To motivate the problem of curve reconstruction from sample points, let us consider the game

of connecting the dots. Connect the dots is a classic puzzle, see Figure 1.1(a), wherein for a given

set of dots we are supposed to connect the dots based on the proximity criterion to form a closed

figure as shown in Figure 1.1(b).

The curve reconstruction problem can be thought of as one of connecting the dots. The idea is

quite similar to reconstruction theorem for band limited signals in signal processing. The difference

is in terms of ordering of the sample points. When we talk about signals being sampled we have
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(a) Given dots (b) After connecting the dots

Figure 1.1: Connect the dots

a predefined ordering available on the sample. And by reconstruction we mean an interpolation

scheme that approximates the original digitized signal. On the other hand in case of reconstruction

of curves, the samples are required to be ordered based on the proximity criterion, and then a

suitable interpolation scheme is used to approximate the original curve.

Thus the problem of curve reconstruction can be divided into three parts:

1. Establish a proper sampling criterion for the curve.

2. Suggest a provable ordering algorithm based on the sampling criterion.

3. Interpolate the ordered sample and approximate the original curve.

Curve reconstruction falls in the class of geometrical modeling problems. It is an instance of the

more general manifold learning problem, where the objects to be reconstructed are not only curves

but surfaces, volumes, and higher dimensional geometrical entities. The problem of reconstruction

starts with a point cloud (sample) of an object and the expectation is to come up with a parametric

model for the object. This model is then used for computational purposes.

A curve C is a function C : [0, 1] →M, where [0, 1] ⊂ R andM is a differentiable manifold.

To start with, let us assume that the curve is lying in an n- dimensional Euclidean space so thatM

is Rn for some n > 0. In general, reconstructing the curve from given sample points is a non-trivial
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problem, since there may be a variety of ways to connect the points. In practice the curves we

examine are mostly differentiable. The class of curves that are smooth (infinitely differentiable),

closed (C(0) = C(1)) and simple (no self intersections) is of vital importance in pattern recognition,

graphics, image processing and computer vision∗. For example the objects in images are identified

by closed contours representing their shapes.

To begin with, it is essential to see whether it is in fact possible at all to sample the curve at

finite locations without losing the details of the curve. In this context we may recall that for a

compact set, every open cover has a finite sub-cover. To appreciate the possibility that a compact

set provides us with, let us look at a definition of an ε-net. If ε > 0 is given, a subset S of C is

called an ε-net if S is finite and C ⊂ ∪s∈SBε(s), where Bε(s) is an open ball inM with radius ε.

In other words, if S is finite and its points are scattered through C in such a way that the distance

of each point of C is less than ε from at least one point of S. This shows a possibility of a finite

representative sample set of C. The concept of ε-net captures the idea of sampling very well. We

see in the literature that the bounds on ε for uniform sampling and the ways in which non-uniform

sampling criteria are suggested try to essentially capture the very notion of ε-net.

The definition of a curve in a differentiable manifold is suggestive of the fact that the curves we

are interested in are lying in more general spaces than Euclidean. We do have an isometric embed-

ding theorem by Nash which says that every compact Riemannian manifold can be embedded into

a Euclidean space Rn for sufficiently large n. However, it is difficult to construct such an isometric

embedding. So we work in the domain of curved spaces and develop results about reconstructing

curves on Riemannian manifolds. This work is at the junction of two disciplines of mathematics

namely, differential geometry and computational geometry. During the course of this work, we

have created a wide range of examples and simulations. These will help us understand concepts

from both the domains.
∗Each of the terms smooth, closed, simple will be discussed in detail in Chapter 3.
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1.2 Problem Statement

We pose the problem of curve reconstruction in Riemannian manifolds as follows.

Let C be a smooth, simple, and closed curve in a Riemannian manifoldM . Given

a finite sample, S ⊂ C, reconstruct C.

The first step towards a solution of the problem of curve reconstruction requires us to define a

criterion for obtaining an appropriate sample S. Next, it requires us to suggest a provable algorithm

to introduce an order on the sample. The final step involves suggesting a suitable interpolation

scheme for the ordered sample set.

For example take an object in space undergoing a rigid body motion. Suppose we have captured

some frames of this motion, but these frames are jumbled up (the ordering is lost). We want to

reconstruct the original motion from this sample set (a set of motion frames). If this motion is

represented by a curve in the special euclidean group then the problem is of reconstructing the

curve in a Riemannian manifold.

Think of a graphic game designer designing a game. To design a path of an object and the way

the object moves along that path he must first create a sequence of orientations and displacements

in the space. A typical approach to animation is to begin with the first frame and end with the

last frame. The graphic designer will create in between frames iteratively For the movement along

the path, he may create intermediate frames in an order which best suits his imagination. Now he

provides these frames to an interpolator. At this stage he is also required to provide an ordering of

the frames to the interpolator.

Results presented in this work provide a way to automate the process of ordering the frames

created by a graphic designer. In this work we present a sampling criterion, an ordering algorithm

and an interpolation scheme that reconstructs an approximation to the original motion. We have

made an attempt to extend the computational geometric curve reconstruction approach to curved

spaces (Riemannian Manifolds). Instances of applications of curve reconstruction in curved spaces
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are sparsely present in literature, see for example, edge grouping in [9], and DT-MRI tractography

in [8]. In [9], voronoi diagram construction is used for perceptual grouping of points on a curved

surface.

To the best of our knowledge, no results have so far been reported in this direction, where the

curve to be reconstructed is embedded in a curved space. John Nash proved in [31] that every

Riemannian manifold can be isometrically embedded into some Euclidean space. So one might get

tempted to think that if we are able to reconstruct curves in Rn we must also be able to reconstruct

curves in Riemannian manifolds. But it is difficult to construct such an isometric embedding. This

inadequacy of knowledge of the isometric embedding has prompted researchers to work in Rie-

mannian manifolds intrinsically. For that we refer to the intrinsic geometrical ideas in differential

geometry [22]. That brings us to the junction of computational geometry and differential geometry.

We use the well-developed theory of differential geometry and extend the results on curve recon-

struction in Rn to Riemannian manifolds. The motivation is the growing application of manifold

methods in robotics, graphics and computer vision.

The Riemannian manifold we are interested in, i.e. the euclidean motions SE(3), SE(2), are

endowed with an additional structure of a group and thereby give us Lie groups to work on. SE(3)

is well-studied in physics and mathematics. SE(2) is used to model the set of configurations of an

object under euclidean motion and is explored in the domain of image processing for segmentation

as well as in object tracking where one is interested in the constrained evolution of a curve under

the action of SE(2), [29]. SE(3) is used extensively in robotics for path planning and motion

planning of robots. It is also useful in computer vision and graphics. No bi-invariant metric ex-

ists on SE(3). With the Riemannian metric defined on it, the exponential map and further a left

invariant distance metric on SE(3) is expressed in a closed form. We give examples of success-

fully reconstructed curves in SE(2) and SE(3). We show an application of curve reconstruction in

SE(2) for ordering video frames. We show that for densely sampled curves, the minimal spanning

tree (MST) gives a correct polygonal reconstruction of curves in Riemannian manifolds. It can be
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shown that the problem of curve reconstruction is equivalent to that of traveling salesman problem.

In [2], the authors show that in the context of curve reconstruction, the traveling salesman tour can

be constructed in polynomial time. After ordering, we interpolate the ordered point set by a partial

geodesic interpolation scheme. To ensure smoothness at the sample points, we also propose to in-

terpolate samples using de Casteljau algorithm assuming that the boundary conditions are known.

It is possible to tackle a noisy sample both in combinatorial and variational curve reconstruction

approaches, see for example [13] and [49]. However, in this work, we do not discuss issues related

to noisy samples.

1.3 Literature Survey

There exist a variety of approaches for reconstructing a curve embedded in Rn from its sample

points. In a broad sense, we can be divide them into two categories: algebraic and combinatorial.

In an algebraic approach the set of sample points is used for arriving at an estimate of the curve

in terms of a parametric or an implicit form. This leads to a variational formulation as prescribed

in [49]. The well developed theory of deformable models, presented in [48], is the driving force

behind this development.

(a) Discontinuity in the curves

(b) Contours latched on to the discontinuous curves

Figure 1.2: An application of deformable models (active contours) to detect a connected boundary
of an object from given disconnected edges
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In Figure 1.2, active contours are used to provide connected boundaries for the disconnected

edges of various shapes. To latch on to the disconnected object boundaries we have used gradient

vector flow based active contours. More on gradient vector flow force field can be found in [51].

This example is taken from the work carried out by Pratik Shah and Asim Banerjee in [39].

The intersection of two surface patches is, usually a non-planar curve. This observation is ex-

plored in [45] to implicitly describe a curve which best fits the given sample points. This approach

tries to minimize the approximate mean square distances between the curve and the sample points.

To illustrate this approach we provide here a simple example of a circle. Let us consider that a

sample of points of this circle is given. In Figure 1.3, we show an estimate of the curve as an

Figure 1.3: Intersection of two surfaces as a least square fit to noisy sample points of a circle

intersection of two surfaces, a plane and a parabolic surface. The work carried out in the field of

algebraic curve and surface fitting can be followed in [46], [47]. In [7] the authors present least

squares fitting for surface data.
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The other approach, which is based on voronoi diagrams and computational morphology based

sampling conditions is, known in the literature as combinatorial curve reconstruction. The literature

in this field has grown rapidly. Since we will be following this approach, we prefer to discuss it in

detailed fashion. We begin with a quick review of curve reconstruction in the plane, keeping the

notations and definitions as general as possible. A curve, for our purpose, is a function C : [0, 1]→

M. More specifically looking at the application at hand, we restrict M to be a differentiable

manifold. We will use the symbol C interchangeably for this function and its image. A subclass

of curves, that are smooth and simple is of vital importance in pattern recognition, graphics, image

processing and computer vision. Since it is an image of a compact interval, C is a one dimensional

compact manifold.

IfM is R2 then the problem is of reconstructing curves in a plane and C is planar. R2 along

with the standard Euclidean distance metric becomes a metric space. Naturally the question arises

that, is it always possible to have a finite sample set S ⊂ C which captures everything about C? As

discussed earlier the concept of an ε-net captures the idea of sampling criterion very well. Since

the domain of C is compact every cover of it will have a finite subcover, this shows a possibility

of a finite representative sample set of C. In other words if S is finite and its points are scattered

through C in such a way that each point of C is distant by less than ε from at least one point of S.

In [13], based on a uniform sampling criterion, an Euclidean MST is suggested for the recon-

struction. In the initial phase of the development, use of a uniform sampling criterion was the

bottleneck. The first breakthrough came with the non-uniform sampling criterion suggested based

on local feature size by [4]. Unlike uniform sampling, it samples the curve more where the details

are more. Non-uniform sampling is based on the medial axis of the curve. The medial axis of a

curve C is closure of the set of points inM which have two or more closest points in C. A simple

closed curve in a plane divides the plane into two disjoint regions. Medial axis can be thought of as

the union of disjoint skeletons of the regions formed by the curve. The local feature size, f(p), of

a point p ∈ C is defined as the Euclidean distance from p to the closest point m on the medial axis.
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C is ε-sampled by a set of sample points S if every p ∈ C is within distance ε · f(p) of a sample

point s ∈ S. The algorithm suggested in [4] is based on voronoi and its dual delaunay triangulation.

All delaunay based approaches can be put under a single formalism, the restricted delaunay com-

plex, as shown in [18]. Every approach is similar in construction and differs only in how it restricts

the delaunay complex. The crust [4], and further the NN-CRUST, an improvement suggested in

[14], can handle smooth curves. In some cases, it is possible to tackle curves with boundaries and

also curves in Rd, [14]. euclidean space. The CRUST and NN-CRUST assume that the sample

S is derived from a smooth curve C. The question of reconstructing non-smooth cuves has also

been studied. Extensive experimentation with various curve reconstruction algorithms is carried

out in [3]. In [15] an extension of NN-CRUST to Rd is presented, which opens up possibilities of

extending the existing delaunay based reconstruction algorithms to higher dimensional euclidean

spaces. We show an example of a curve in SE(2) reconstructed by NN-CRUST.

Looking at the importance of the results and the amount of work carried out in this field, in

the next chapter we give a systematic development of results in the domain of combinatorial curve

reconstruction. This will help us to understand the current status of the problem. It will also

provide us with the machinery required to understand the curve reconstruction problem in more

detailed fashion.

1.4 Contributions

To the best of our knowledge no efforts are reported in the domain of curve reconstruction for

reconstructing curves in a curved space. We pose the problem of curve reconstruction for curves

embedded in Riemannian manifolds for the first time. Take for example a curve in SE(3) with its

sample points as shown in Figure 1.4. This work utilizes the concepts from the intrinsic geometrical

approach taken by differential geometry to handle curved space. In this thesis, we extend the

computational geometry based approach for curve reconstruction to higher dimensional curved

9
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Figure 1.4: A sample S of a curve C ⊂ SE(3)

spaces. First we present a few observations and a counter-example for the sampling criterion based

on medial axis. We show that the necessary condition on ε, to form a tubular neighborhood of a

simple closed curve, is explicitly given by;

ε <
1

k
(1.1)

where k = maxp∈C k(p), refer to Proposition. 5.4. Further we give a revised sampling criterion for

curves in the Riemannian manifold as

ε < min {inf
p∈C

f(p), i(M)} (1.2)

where, i(M) is the injectivity radius of the manifold M, refer to Proposition 5.8 . In this work

we provide an alternate proof of the flatness of a curve inside a tubular neighborhood for curves in

the plane. Next the proof of flatness of curve segment inside a tubular neighborhood is extended
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to the general Riemannian manifold. We show that it is possible to re-order the samples by Mini-

mal Spanning Tree (MST). For the ordered sample points in Riemannian manifold, we present an

interpolation scheme based on the de Casteljau algorithm, refer to Chapter 6. Finally to validate

our proposed scheme we provide a few examples of curve reconstruction for curves on Riemannian

manifolds. We have selected underlying Riemannian manifolds that are widely used in engineering

applications (sphere, surfaces, SE(3) and SE(2) with scaling). See for example, a point sample

and the reconstructed curve in SE(3) in Figure 1.5.

Figure 1.5: Reconstructed curve in SE(3)

1.5 Thesis Organization

This section briefly describes the organization of the thesis.

The thesis is divided into eight chapters. The first chapter provides an introduction to the

problem and motivation for the study. It also provides a basic literature survey which is then

extended with the help of suitable examples in Chapter 2. Chapter 2 is an extended literature survey,

11
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where we discuss and present the important results on curve reconstruction in Rn from the literature

on combinatorial curve reconstruction. We also show a few instances of curves reconstructed in Rn

using results in the literature available. We have implemented these algorithms and have created a

set of examples of curve reconstruction which are presented in Chapter 2. To show that the NN-

CRUST takes care of disjoint components of a curve, we have experimented with curves in R3 and

we exhibit an example at the end of Chapter 2.

In this thesis, as clearly stated in the introduction, we pose the problem of curve reconstruction

in higher dimensional curved spaces. To deal with samples on curved spaces, we first examine the

notion of distance on surfaces and then we move on to define distances on more general manifolds.

In Chapter 3 we give a short review of the definitions and concepts required to work on Riemannian

manifolds.

The Riemannian manifolds we are interested in and which will be used in simulations are

explicitly presented in Chapter 4. In this chapter we show that how a particular metric is actually

defined on the Riemannian manifolds from the Riemannian metric (inner product). This chapter

contains examples of Riemannian manifolds starting from Rn to the curved spaces like surfaces

and the Euclidean motion group SE(3). We also take up an example of an implicitly defined

Riemannian manifold and describe a way to compute geodesics on it. Geodesics on each of the

Riemannian manifolds discussed in this chapter are computed using MATLAB.

Once we have a distance metric defined on Riemannian manifolds, in Chapter 5 we define the

tubular neighborhood of a given smooth curve in a Riemannian manifold. We propose a bound

on ε for construction of a tubular neighborhood of a curve based on the radius of curvature at

each point of the curve in plane. With the help of two example curves on surfaces, we present

observations to show how the underlying manifold affects the sampling density. We give a counter

example to the local feature size based sampling process and also show that the cause of the failure

- the gaussian curvature of the underlying manifold which is associated with the cut-locus. In this

chapter, we give a proof of flatness of the curve segment connecting two consecutive sample points

12
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of the dense sample of the curve.

In Chapter 6, we prove that the Minimum Spanning Tree (MST) correctly re-orders the dense

sample. Here we will model the point sample on the curve as vertices of a graph and form a com-

plete graph with edge weights equal to the distances between two points on the underlying Rie-

mannian manifold. In this chapter we also propose a Bezier interpolation scheme for interpolating

the sample to approximate the original curve.

The simulations and examples of the reconstructed curves are presented in Chapter 7 of the

thesis. Here we consider curves on a sphere (S2), and on special Euclidean groups (SE(2), SE(3))

and on SE(2) with scaling. We present successfully reconstructed curves in all the above men-

tioned Riemannian manifolds. We also show an application of curve reconstruction for ordering

motion frames.

Finally we conclude in Chapter 8 with comments on noise in the sampling process. We also

discuss possible future direction for work on the curve reconstruction problem.

13



Chapter 2

Curve Reconstruction in Rn

The curve reconstruction problem has its roots in edge-detection in images and in applications such

as shape analysis in pattern recognition and classification. The idea behind curve reconstruction is

to build a parametric model of a point cloud (sample) which is representative of the original object

from which the point cloud was derived. In 1980s, a few graph based algorithms were suggested

to tackle this problem in R2. Examples of these graph theory based approaches are the β-skeleton

of Kirkpatrick and Radke [26]; the α shapes of Edelsbrunner, Kirkpatrick and Seidel [19] and the

influence graph of Toussaint [6]. With the advent of scanning technologies, one started looking at

efficient sampling mechanisms for objects with various shapes and sizes. This was the motivation

for most of the work done on shape modeling with the help of finite sample points. This includes

algorithms that guarantee reconstruction of the shape from these finite sample points, up to some

topological correctness. Usually, we would like to have a homeomorphism between the shape and

the approximation reconstructed from the finite sample of that shape. The shape of an object in

plane is represented by the boundary curve of that object. In this chapter, we will discuss the

methods for reconstructing curves in the plane and Rn. In other words we assume that the curve is

in Rn.

We present here a systematic development of the concepts and algorithms in the field of combi-
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natorial curve reconstruction. We have implemented and experimented with various algorithms for

curve reconstruction that are available in literature. All the example curves and figures presented

in this chapter are results of simulations that we have carried out in MATLAB.

2.1 A Curve in the Plane

Given an arbitrary set of sample points of a curve, it is not possible to reconstruct the curve based on

the proximity criterion, since, there are varieties of ways in which we can connect the sample points.

Let us first look at the difficulty involved in the reconstruction process based on the proximity

criterion. To illustrate the point let S ⊂ C be a finite sample of the curve C ∈ R2 with points

Figure 2.1: Confusion due to lack of samples at the corners or the high curvature region of the
curve

{s1, s2, . . . , sk, sk+1, . . . , sj, . . . , sN−1}. As shown in Figure 2.1, if we try to connect the sample

points based on the nearest neighbor criterion or if we try to re-order the sample via Minimal

Spanning Tree as suggested in [13], the confusion at sk is clearly visible. The reason is proximity

based decision : d(sk, sk+1) > d(sk, sj), where d( ) is the standard Euclidean distance metric

defined on R2. Similar examples can be found in [4]. In a word, it is not possible to re-order

an arbitrary sample of the curve. The above argument indicates that we must take care and avoid

the possibility of confusion in the high curvature region of the curve by taking a sufficiently large

sample. The problem is not resolved fully, since there might be a situation where even though the
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curvature of the curve is not high, the re-ordering is still difficult. This is shown in Figure 2.2

below. In this example, sample points on opposite sides sk and sm are taken as neighbors.

Figure 2.2: Confusion at a region of low curvature

In conclusion, these issues motivated a sampling criterion based on the medial axis. The medial

axis M of a curve C is defined as the closure of the set of points in the plane which have two or

more closest points in C. The voronoi diagram of the finite sample S of C tries to approximate the

medial axis of C. In fact, in practice the medial axis (skeleton) of any shape is approximated by the

voronoi vertices of the voronoi diagram, see for example [16]. The concept of least feature size has

emerged in the search for a uniform sampling criterion for a given curve, based on its medial axis.

In Figure 2.3, the feature size function is evaluated at point sk+1 ∈ C denoted by f(sk+1), which is

Figure 2.3: Medial axis and the feature size function

the distance of point sk+1 to the medial axis M of C. Least feature size (LFS(C)) is defined as the

least distance from C to the medial axis M .
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To begin with, a tubular neighborhood based criterion for curve reconstruction was suggested

in [13]. The authors suggested to sample the curve with the least feature size (LFS) ε. A tubular

neighborhood for a curve C is defined as a set T containing C such that every point of T belongs

to exactly one line segment totally contained in T and normal to C. They define a dense sample

as a sample S ⊂ C, such that for some ε > 0, no two consecutive sample points are more than ε

apart, and the closed disks of radius ε centered at the sample points, form a tubular neighborhood

of C. Such an ε > 0 always exists for smooth simple curves and smooth non-intersecting arcs, see

[42]. It is proved in [13] that given a dense sample of a curve C, it is possible to reorder the sample

and reconstruct the curve with a polygonal approximation. It is not difficult to show that, for ε less

than the least feature size the generated sample will always be dense. In fact, we will prove this in

Proposition in Chapter . Furthermore, de Figueiredo and de Miranda Gomes in [13] also provide

a simple heuristic and suggest a graph theoretical approach to deal with noisy samples of a curve.

Moreover, they also show that EMST can reconstruct curves with boundaries from a sufficiently

dense uniform sample.

But, this requires a high uniform sampling of the curve. A sample S of a curve C is called

δ-uniform if each point x ∈ C has a sample point withing a fixed distance δ. In [4], the authors

show a way to reduce the sampling density. This was the first breakthrough in reconstructing

curves from a given non-uniform sample. The CRUST and β-skeleton proposed by Amenta, Bern

and Eppstein in [4] provided a way to relax the sampling density criterion from uniform to non-

uniform samples. The required sampling density varies with the local feature size on the curve. The

suggested thumb rule is, sample the curve more frequently where the details are more, similarly

the regions of less details are sampled less densely. By details we mean curvature at points on

that curve. The motivation for the CRUST, defined in [4], is based on the voronoi construction. It

essentially considers the fact that voronoi vertices in the voronoi diagram of a finite point set S,

approximate the medial axis of S. If S is a finite set of points in the plane, and V is the set of

vertices of the Voronoi diagram of S, then an edge between s1, s2 ∈ S belongs to the CRUST of
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S if there is a disk, empty of points in S ∪ V , touching s1 and s2. For an alternate characterization

of CRUST refer to [4].

The condition for sampling a smooth curve in [4] is based on a local feature size function, which

reveals the local level details of the curve at a given point. The local feature size, f(p), p ∈ C is

defined as the Euclidean distance from p to the closest point m on the medial axis. It can be seen

that it is an extension to the global feature of the curve defined by least feature size. In fact, it

is easy to see that the least feature size LFS(C) = min{f(p), p ∈ C}. A curve C is said to be

r-sampled by a set of sample points S if every p ∈ C is within r.LFS(p) distance of a sample point

s ∈ S.

With the help of empty circle property of voronoi diagram and profound geometrical arguments,

the authors in [4] prove a theorem which states that the CRUST of an r-sampled smooth curve does

not contain any edge between nonadjacent vertices, for r < 0.252. This result is considered to be

the first breakthrough in reconstructing curves from nonuniform samples. In Figure 2.4, using the

CRUST algorithm, a curve is reconstructed from a finite sample.

The essence of the CRUST algorithm is captured in the above example of a reconstructed curve,

Figure 2.4. To begin with we assume that we have S ⊂ C, an r-sample of a smooth curve C ⊂

R2. Using voronoi construction find out V , the set of voronoi vertices. Now perform delaunay

triangulation on the set G := S ∪ V . The final stage of the algorithm involves removal of edges

that do not have end points in S. Another example of a reconstructed curve is shown in Figure 2.5.

For the detailed analysis of the CRUST algorithm refer to [4].

Some of the effective approaches namely r-regular shapes, A-shapes, α-shapes are recorded

in [5], [30], [19] respectively. A delaunay based method is also suggested in [10]. The use of

voronoi vertices as the approximate medial axis (skeleton) of a shape is the essence for defining

the sampling criteria. More discussions on voronoi diagrams and the continuous skeleton (medial

axis) can be found in [25] and [10].

In [18], a comprehensive survey of these methods is presented. Although there are various
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(a) Sample points S (b) Delaunay triangulation of G =
{S, V }

(c) After removing unwanted edges

Figure 2.4: A curve reconstructed by CRUST

instances of curve reconstruction algorithms present in the literature, we will see that Edelsbrunner

identifies the common thread and gives a unified view of algorithmic solutions proposed in the

computer science literature based on the delaunay approach.

2.2 A Curve in the Space

On the basis of the work carried out by Amenta, Bern and Eppstein, in [4], a provable reconstruction

algorithm, nearest neighbor CRUST (NN-CRUST), is suggested by T Dey and P Kumar in [15].

Their proposed algorithm is easily adaptable to higher dimensional curve reconstruction problems.

It also improves the sampling density from r < 0.252, as obtained in [4], to r < 1/3. The definition

of medial axis is still meaningful in case of higher dimensional euclidean spaces Rn. The medial

axis M of a smooth curve C ⊂ Rn is defined as the closure of all points that have two or more
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2. Curve Reconstruction in Rn 2.2. A Curve in the Space

(a) (b) (c)

Figure 2.5: As long as the curve is simple and closed, CRUST gives a correct polygonal recon-
struction to the original curve

closest points in C. The local feature size f(p) at a point p ∈ C is the least euclidean distance of p

from M . Other definitions related to sampling also apply.

The algorithm begins with an r-sample, S ⊂ C, of a smooth curve S ⊂ Rn. It is known from [4]

that the desired polygonal reconstruction is contained in the delaunay triangulation T of S. What

is left is to develop a the polygonal reconstruction. The authors, in [15], provide simple restrictions

on T in terms of the nearest neighbor and an angle criterion for curve reconstruction. The first step

in the algorithm connects nearest neighbors in S via edges. Next, points that are incident with only

one edge are identified. Suppose sk is such a point with a single edge e. The second step computes

the shortest edge incident with sk amongst all the edges that make an angle more than π
2

with e.

The third step includes all such shortest edges in the nearest neighbor edge set. For the proof of

correctness of this algorithm refer to [15].

An example of a sample S ⊂ C and the reconstructed polygonal approximation to the helical

curve in R3 is shown in the Figure 2.6. This reconstruction is done using NN-CRUST algorithm. In

the first step, the nearest neighbor is searched for each sample point in the delaunay triangulation of

the sample. Next a half neighbor, as proposed in [14], is identified for points with single neighbor.

These two steps include all the edges required in a polygonal approximation of the original curve

C from which the sample S is derived.

It is not difficult to see that NN-CRUST also works for smooth curves with more than one
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(a) Sample of helical curve in R3 (b) Reconstructed curve

Figure 2.6: A helical curve reconstructed using NNCRUST

component, since the algorithm prescribed above implicitly allows for only two neighbors for any

sample point. To show the behavior of the algorithm on multiple component curves we present an

example in Figure 2.7.

Both the examples presented above are of curves in R3. In general the NN-CRUST can be

used to reconstruct smooth curves in Rn. For the development of ideas and extensive proofs of the

claims made in [15], one may refer to the book by Tamal K Dey [14]. It presents a comprehensive

study in the domain of shape reconstruction. It includes curve as well as surface reconstruction

strategies.

Before we begin to explore Riemannian manifolds, consider the situation presented below.

Suppose we are given a set of video frames. Assume that the ordering of this video sequence

is lost, in other words the frames are jumbled up. We need to re-order the video frames. Suppose

we also know that in this video there is an object undergoing rigid motion. Let us try to exploit this

information and see if we can re-order the video frames. A set of video frames with the segmented

object under motion is shown in Figure 7.2.

We compute the translation Tij , and rotation θij between object locations and orientations for

frames i and j. The Euclidean motions in R2 form a group SE(2). A typical element of SE(2)
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(a) S ⊂ C (b) Reconstructed curve

Figure 2.7: Two connected components reconstructed correctly

is represented using (Tij, θij). We will discuss SE(2) in more detail in Chapter 4. So the prob-

lem of ordering video frames is translated into the problem of reconstructing a curve in SE(2) (a

Riemannian manifold). Considering the distance metric on SE(2) as given in (4.5), if we scale the

three axis properly, the problem of curve reconstruction in SE(2) reduces to the problem of curve

reconstruction in R3 and we may use voronoi diagram based reconstruction algorithms assuming

dense sampling condition. In other words, in this case it is possible to embed each video frame

into R3 with the help of rotations and translations. To illustrate the point, we use the NN-CRUST

algorithm to reconstruct the curve above in the motion sequence and we get the correct ordering

as expected. Figure 7.4 shows the correct ordering of the euclidean motions and hence the video

frames. In general it may not be possible to identify an embedding from given curved spaces to Rn.

Although this example looks like a fabricated one, it suffices to provide a useful insight for further

developments.

In next chapter, we present basic definitions and concepts from differential geometry. The

objective of the next two chapters is to equip the given Riemannian manifold with a distance metric.

A list of useful examples is presented throughout these chapters.
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Chapter 3

Riemannian Manifolds - I

The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

embedded in Riemannian manifolds. A Riemannian manifold is an abstraction of a curved space in

which it is possible to measure geometric quantities such as length of a curve segment, the area of

an enclosed region, angle between two curves at a point, etc. Our interest is to equip the manifold

with the metric structure, which involves the idea of geodesics and the shortest distance between

two point on the given manifold. Riemannian manifolds arise in variety of engineering applications.

For example, meteorological studies involve the surface of earth which is a surface like a sphere,

it is indeed a Riemannian manifold. The euclidean motion group used in graphics applications is

also an example of a Riemannian manifold. In this chapter, we will define a few basic terms and

state some of the results from Riemannian geometry which will serve as the building blocks for

the development of the ideas ahead. At the end we will present examples of Riemannian manifolds

relevant to the problem we will deal with. The focus will be on the sphere - S2 and surface patches,

euclidean motion group - SE(3), and SE(2) with scaling.
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3. Riemannian Manifolds - I 3.1. Differentiable Manifolds

3.1 Differentiable Manifolds

A manifold M can be considered as a topological space which locally resembles a Euclidean

space. A differentiable manifold allows partial differentiation and consequently all the features of

differential calculus onM. We will briefly present the essentials of manifold theory to the extent

that is required for our work. The vector space Rn is a topological space, and the vector operations

are continuous with respect to the topology. In addition we have the notion of differentiability for

real valued functions on Rn, i.e. f : Rn → R is differentiable if the partial derivatives

∂i1+...+irf

∂ui11 . . . ∂u
ir
r

of all order exist and are continuous. Such functions are called C∞ functions.

The natural coordinate functions of Rn are mappings ui : Rn → R defined by

ui(x1, . . . , xn) = xi

for i = 1, 2, . . . , n. A function φ : Rm → Rn is differentiable, continuous or linear if and only if

each ui · φ is differentiable, continuous or linear, respectively.

Definition 3.1. A patch (or chart) on a topological apaceM is a pair (x,U), where U is an open

subset of Rn and

x : U → x(U) ⊂M

is a homeomorphism of U onto an open set x(U) ofM. Let

xi = ui ◦ x−1 : x(U)→ R

for i = 1, . . . , n. Then (x1, . . . , xn) is called a system of local coordinates forM.
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3. Riemannian Manifolds - I 3.1. Differentiable Manifolds

Figure 3.1: A coordinate patch x : Rn →M, with x(q) = p.

Definition 3.2. An atlas A on a topological spaceM is a collection of patches (xα,Uα) such that

xα : Uα ⊂ Rn →M and ∪αxα(Uα) =M. A topological spaceM equipped with an atlas is called

a topological manifold.

Figure 3.2: Change of coordinates y−1◦x. If it is differentiable for every pair of intersecting patches
onM then the manifoldM is called a differentiable manifold.

Let A be an atlas on a topological spaceM. If (x,U) and (y,V) are any two patches in A such

that x(U) ∩ y(V) =W is a nonempty subset ofM, then the map

y−1 ◦ x : x−1(W)→ y−1(W) (3.1)
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is a homeomorphism between open subsets of Rn. We call y−1 ◦ x a change of coordinates.

Definition 3.3. A differentiable manifold is a topological spaceM equipped with an atlas A such

that the change of coordinates (3.1) is differentiable (that is, of class C∞) in the ordinary Euclidean

sense∗. The dimension of the manifoldM (denoted by dimM) is n.

Example 3.1. The Euclidean space Rn is a differentiable manifold. The identity map 1 : Rn → Rn

(u1, . . . , un) : Rn → Rn

constitutes an atlas A := {(1,Rn)} for Rn by itself.

Example 3.2. A regular surfaceM in Rn is a differentiable manifold.

1. A Monge patch is a patch x : U → R3 of the form

x(u, v) = (u, v, h(u, v)),

where U is an open set in R2 and h is a differentiable function. Paraboloid defined as

h(u, v) := (u, v, au2 + bv2), where a, b 6= 0, and monkey saddle defined as h(u, v) :=

(u, v, u3 − 3uv2) are examples of regular surfaces each parametrized by a single patch.

2. A sphere is an example of a regular surface which needs an atlas with at least two patches to

cover it. Refer to section 4.3 for more details.

3.2 Tangent Vectors and Tangent Space

The tangent space to a differentiable manifoldM at a point p ∈ M can be thought of as the best

linear approximation toM at p. For surfaces in R3, a tangent vector at a point p of the surface is
∗In order to ensure uniqueness of convergence and avoid pathological situations, we will always take M to be a

connected, Hausdroff topological space.
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defined as the velocity in R3 of a curve in the surface passing through p. But one of the main aims

of modern differential geometry is to present ideas in a way that is intrinsic to the manifold itself,

in particular, is not dependent on an embedding in some higher dimensional vector space. For

example, the definition of a differentiable manifold itself made no reference to such an embedding,

and neither should the definition of a tangent space. In the following, we define the tangent vector

as an equivalence class of curves on the manifold.

Definition 3.4. LetM be a differentiable manifold. A differentiable function α : (−ε, ε) → M

is called a differentiable curve in M. Suppose that α(0) = p ∈ M, and let D be the set of

functions onM that are differentiable at p. The tangent vector to the curve α at t = 0 is a function

α′(0) : D → R given by

α′(0)f =
d(f ◦ α)

dt

∣∣∣∣
t=0

, f ∈ D.

A tangent vector at p is the tangent vector at t = 0 of some curve α with α(0) = p. The set of all

tangent vectors toM at p will be indicated by TpM.

If we choose a parametrization x : U →M at p = x(0), we can express the function f and the

curve α in this parametrization by

f ◦ x(q) = f(x1, . . . , xn), q = (x1, . . . , xn) ∈ U

and

x−1 ◦ α(t) = (x1(t), . . . , xn(t)),

respectively. Therefore, restricting f to α, we obtain

α′(0)f =
d

dt
(f ◦ α)

∣∣∣∣
t=0

=
d

dt
f(x1(t), . . . , xn(t))

∣∣∣∣
t=0

=
n∑
i=1

x′i(0)

(
∂f

∂xi

)
=

(
n∑
i=1

x′i(0)

(
∂

∂xi

)
0

)
f.
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So the vector α′(0) can be expressed in the parametrization x by

α′(0) =
∑
i

x′i(0)

(
∂

∂xi

)
0

. (3.2)

where
(

∂
∂xi

)
0

is the tangent vector at p of the coordinate curve xi → x(0, . . . , 0, xi, 0, . . . , 0).

The expression 3.2 shows that the tangent vector to the curve α at p depends only on the deriva-

tive of α in a coordinate system. It follows from 3.2 that the set TpM, with the usual operations of

functions, forms a vector space of dimension n, and that the choice of parametrization x : U →M

determines an associated basis
{(

∂
∂x1

)
0
, . . . ,

(
∂
∂xn

)
0

}
in TpM. The linear structure in TpM de-

fined above does not depend on the parametrization. The vector space TpM is called the tangent

space ofM at p.

Example 3.3. Tangent space at a point on a 2-sphere is the tangent plane at a point. Depending

upon the parametrization of a 2-sphere we can find orthogonal vectors spanning the tangent space

at a given point. See section 4.3 for a particular parametrization of 2-sphere and the corresponding

tangent space at a point on a 2-sphere.

We state the definition of differential of a differentiable mapping without proof. It will be used

when we will discuss issues related to isometric embedding.

Definition 3.5. LetM and N be differentiable manifolds and let φ :M→ N be a differentiable

mapping. For every p ∈M and for each v ∈ TpM, choose a differentiable curve α : (−ε, ε)→M

with α(0) = p, α′(0) = v. Take β = φ ◦ α. The mapping dφp : TpM → Tφ(p)N given by

dφp(v) = β′(0) is a linear mapping that does not depend on the choice of α. The linear mapping

dφp is called the differential of φ at p. Some times φ∗p is also used iin place of dφp to denote the

differential.

In addition it can be shown that if m and n are the dimensions ofM and N respectively,

β′(0) = dφp(v) =

(
∂yi
∂xj

)
(x′j(0)),
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where i = 1, . . . ,m and j = 1, . . . , n and
(
∂yi
∂xj

)
denotes an m × n matrix and x′j(0) denotes a

column matrix with n elements obtained from the parametrizations x and y.

Figure 3.3: Differential of map φ :M→N and representation of φ in local coordinates.

Definition 3.6. Let M and N be differentiable manifolds. A mapping φ : M → N is called a

diffeomorphism if it is differentiable, bijective and its inverse is also differentiable. The concept of

a diffeomorphism is the natural idea of equivalence between differentiable manifolds.

Definition 3.7. LetM be an n dimensional differentiable manifold and let TM = {(p, v); p ∈

M, v ∈ TpM}. TM is called the tangent bundle ofM.

Definition 3.8. A vector fieldX on a differentiable manifoldM is a correspondence that associates

to each point p ∈ M a vector X(p) ∈ TpM. In terms of mappings, X is a mapping ofM into the

tangent bundle TM. The field is differentiable if the mapping X :M→ TM is differentiable.
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Considering a parametrization x : U ⊂ Rn →M we can write

X(p) =
n∑
i=1

ai(p)
∂

∂xi
, (3.3)

where each ai : U → R is a function on U and
{

∂
∂xi

}
i=1,...,n

is the basis associated to x. It is clear

that x is differentiable if and only if the functions ai are differentiable for some parametrization.

A vector field can also be thought of as a mapping X : D(M) → D(M). D(M) := C∞(M)

denotes the ring of smooth functions onM.

3.3 Riemannian Manifolds

Definition 3.9. A Riemannian metric (or Riemannian structure) on a differentiable manifold M

is a correspondence which associates to each point p ∈ M an inner product 〈, 〉p, a symmetric,

bilinear, positive-definite form on the tangent space TpM, which varies differentiably in the sense

that if x : U ⊂ Rn →M is a system of coordinates around p, with x(x1, . . . , xn) = q ∈ x(U) and

∂
∂xi

(q) = dxq(0, . . . , 1, . . . , 0), then 〈 ∂
∂xi

(q), ∂
∂xj

(q)〉q = gij(x1, . . . , xn) is a differentiable function

on U .

Whenever there is no possibility of confusion the index p in the function 〈, 〉p is discarded. The

function gij = gji is called the local representation of the Riemannian metric in the coordinate

system x : U ⊂ Rn → M. A differentiable manifold with a given Riemannian metric will be

called a Riemannian manifold.

LetM andN be Riemannian manifolds. A diffeomorphism f :M→N is called an isometry

if:

〈u, v〉p = 〈dfp(u), dfp(v)〉f(p), (3.4)

for all p ∈M and u, v ∈ TpM.

Example 3.4. R2 with the usual inner product defined as the vector dot product is a Riemannian
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manifold. Suppose R2 is equipped with a different inner product, say gij =

2 1

1 1

. It is certainly

a valid Riemannian metric since it is symmetric and positive definite.

Now since gij is constant at all points on R2, we can find a linear isometry f : (R2, 〈, 〉gij) →

(R2, 〈, 〉), given by, f(x, y) = (x, x+ y).

The differential, i.e. the Jacobian of f , of the isometry is f∗ = df =

1 0

1 1

.

Moreover it can be shown that every differentiable manifold M (Hausdorff with countable

basis) has a Riemannian metric. Now by using the Riemannian inner product we will proceed to

calculate the lengths of curves in Riemannian manifolds.

Definition 3.10. A differentiable mapping c : I → M of I := [0, 1] ⊂ R into a differentiable

manifoldM is called a curve.

A parametrized curve can admit self-intersection as well as corners. To avoid difficulties at

singularities we assume that the curve under study is always a smooth (infinitely differentiable)

curve.

Definition 3.11. A vector field V along a curve c : I → M is a differentiable mapping that

associates to every t ∈ I a tangent vector V (t) ∈ Tc(t)M. To say that V is differentiable means

that for any differentiable function f onM, the function t→ V (t)f is a differentiable function on

I .

The vector field dc( d
dt

), denoted by dc
dt

, is called the velocity field of c. The restriction of a curve

c to a closed interval [a, b] ⊂ I is called a segment. IfM is a Riemannian manifold, we define the

length of the segment by

`ba(c) =

∫ b

a

〈
dc

dt
,
dc

dt

〉1/2

dt. (3.5)
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3.4 Covariant Derivative, Parallel Transport and Geodesics

Let S ⊂ R3 be a surface and let c : I → S be a curve in S, with X : I → R3 a vector field

along c tangent to S. The vector dX
dt

(t), t ∈ I does not in general belong to Tc(t)S. To make sure

that the differentiation is an intrinsic geometric notion on S, instead of usual derivative dX
dt

(t), the

orthogonal projection of dX
dt

(t) on Tc(t)S is considered. This is called the covariant derivative and

is denoted by DX
dt

(t). Still it is interesting to note that this process of taking the derivative is valid

only by making use of the ambient space in which the manifold is embedded. To overcome the

orthogonal projection, we need to define a so called Levi-Civita connection, denoted as ∇, on a

Riemannian manifold. In fact it can be shown that ∇ is uniquely determined from a given metric

〈, 〉.

It is occasionally helpful to visualize covariant derivative as the intrinsic directional derivative,

where we take the definition of directional derivative and replace the vector difference by vector

difference of parallel translated vector. For more on the above notions, the reader may refer to [17].

Definition 3.12. On a differential manifoldM, an affine connection∇ is defined as a mapping

∇ : V(M)× V(M)→ V(M) (3.6)

where V(M) is the set of all vector fields of class C∞ onM. It is denoted by (X, Y )→ ∇XY and

satisfies the following properties:

1. ∇fX+gYZ = f∇XZ + g∇YZ.

2. ∇X(Y + Z) = ∇XY +∇XZ.

3. ∇X(fY ) = f∇XY +X(f)Y ,

where X, Y, Z ∈ V(M) and f, g ∈ D(M).
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Let M be a differentiable manifold with an affine connection ∇. There exists a unique cor-

respondence which associates to a vector field X along the differentiable curve c : I → M an

another vector field DX
dt

along c, called the covariant derivative of X along c, such that

1. D
dt

(X + Y ) = DX
dt

+ DY
dt

.

2. D
dt

(fX) = df
dt
X + f DX

dt
, where Y is a vector field along c and f ∈ D(M).

3. If X is induced by a vector field V ∈ X(M), i.e., X(t) = V (c(t)), then DX
dt

= ∇dc/dtV .

Let x : U ⊂ Rn →M be a system of coordinates with c(I)∩x(U) 6= ∅ and let (x1(t), . . . , xn(t))

be the local expression of c(t), t ∈ I . Let Xi = ∂
∂xi

. then we can express the field X locally as

X =
∑

j x
jXj, j = 1, . . . , n, where xj = xj(t) and Xj = Xj(c(t)).

DX

dt
=
∑
j

dxj

dt
Xj +

∑
i,j

dxi
dt
xj∇Xi

Xj. (3.7)

The correspondence expressed in (3.7) satisfies the above three conditions. The above expres-

sion is the expression of covariant derivative in terms of a connection.

Definition 3.13. LetM be a differentiable manifold with an affine connection ∇. A vector field

X along curve c : I →M is called parallel if DX
dt

= 0.

Suppose there exists such a parallel field X in x(U) along c with X(t0) = X0. Then X =∑
j x

jXj satisfies

0 =
DX

dt
=
∑
j

dxj

dt
Xj +

∑
i,j

dxi
dt
xj∇Xi

Xj.

Putting∇Xi
Xj =

∑
k Γkij , called the Christoffel symbols, and replacing j wit k in the first sum, we

obtain
DX

dt
=
∑
k

{
dxk

dt
+
∑
i,j

xj
dxi
dt

Γkij

}
Xk = 0.
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The system of n differential equations in xk(t),

dxk

dt
+
∑
i,j

xj
dxi
dt

Γkij = 0, k = 1, . . . , n, (3.8)

posses a unique solution satisfying the initial condition. Moreover, since the system is linear, any

solution is defined for all t ∈ I . As an example, we present parallel transport of a vector on a sphere

in Appendix C.

Theorem 3.14. (Levi-Civita). Given a Riemannian manifoldM, there exists a unique affine con-

nection ∇ onM satisfying the conditions;

1. ∇ is symmetric, i.e. ∇XY −∇YX = [X, Y ] for all X, Y ∈ X((M)). [X, Y ] = XY − Y X

is called the bracket.

2. ∇ is compatible with the Riemannian metric.

We will encourage reader to follow the definition of compatibility from [17]. A connection is

defined in terms of the Christoffel symbols. Observe that for Euclidean space Rn the Γkij = 0.

Observer also that the covariant derivative (3.7) differs from the usual derivative in Rn by terms

which involve the Christoffel symbols.

Definition 3.15. A parametrized curve γ : I → M is a geodesic at to ∈ I if D
dt

(
dγ
dt

)
= 0 at the

point t0; if γ is geodesic ∀t ∈ I , we say γ is a geodesic.

This definition describes the geodesic as a curve with zero acceleration. In other words the

magnitude of the velocity vector is constant. We will see that a geodesic minimizes the arc length

for points which are close enough. Geodesics are local length minimizers.
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3.5 Riemannian Manifold as a Metric Space

Suppose in a system of coordinates (x,U) about γ(t0), γ is a geodesic. From the definition above

the curve γ(t) = (x1(t), . . . , xn(t)) is a geodesic iff,

D

dt

(
dγ

dt

)
=
∑
k

(
d2xk

dt2
+
∑
i,j

dxi
dt

dxj
dt

Γkij

)
∂

∂xk
= 0.

So we get a second order system of nonlinear ordinary differential equations,

d2xk

dt2
+
∑
i,j

dxi
dt

dxj
dt

Γkij = 0, k = 1, . . . , n. (3.9)

Existence of solution for a given initial value problem is guaranteed locally. One may refer to the

results on existence in [17]. Geodesic starting from a point q in the direction v ∈ TqMwithin small

interval (−δ, δ) will be denoted by γ(t, q, v). In regard to this the exponential map is defined next.

Let p ∈M and let U ⊂ TM be a suitable open set. Then the map exp : U →M given by

exp(q, v) = γ(1, q, v), (q, v) ∈ U

is called the exponential map on U . It is a differentiable map. If we restrict it to tangent space

TqM, we get

expq : Bε(0) ⊂ TqM→M

denoted by expq(v) = exp(q, v), where Bε(0) is an open ball with center at the origin 0 of TqM.

On manifoldM, expq(v) is a point obtained by traveling the length equal to |v|, starting from

q, along a geodesic which passes through q with velocity v
|v| . We state the following result which

will play a crucial role in development of tubular neighborhood for a curve on manifold without

proof.

Proposition 3.16. Given p ∈ M, there exists an ε > 0 such that expp : Bε ⊂ TpM → M is a
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diffeomorphism of Bε(0) onto an open subset ofM.

For Lie groups the exponential map plays an important role. The elements of lie algebra (tan-

gent space at the group identity) are mapped to group elements via exp.

Definition 3.17. A Riemannian manifoldM is geodesically complete if for all p ∈M, the expp is

defined for all v ∈ TpM, i.e. geodesic γ(t) starting from p is defined for all values of t ∈ R.

Now we define distance function on a Riemannian manifoldM. Given two points p, q ∈ M,

consider all the piecewise differentiable curves joining p and q. Such curves exist since M is

connected.

Definition 3.18. The distace d(p, q) is defined by d(p, q) = infimum of the lengths of all curves

cp,q, where cp,q is a piecewise differentiable curve joining p and q. With the distance d, M is a

metric space, i.e.,

1. d(p, r) ≤ d(p, q) + d(q, r),

2. d(p, q) = d(q, p),

3. d(p, q) ≥ 0, and d(p, q) = 0 iff p = q.

If there exists a minimizing geodesic γ joining p to q then d(p, q) = length of γ. To be in

a position to work with manifolds as metric spaces we need the Hopf-Rinow-de Rham Theorem

which is stated here without proof:

Theorem 3.19. LetM be a Riemannian manifold and let p ∈M. The following are equivalent:

1. expp is defined on all of TpM.

2. M is complete as a metric space.

3. M is geodesically complete.
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4. For any q ∈M there exists a geodesic γ joining p to q with `(γ) = d(p, q).

The Riemannian manifolds we are concerned with, which arise in engineering applications, are

complete in the above sense. Having equipped Riemannian manifolds with a metric structure, we

will turn our attention to suitable examples in the next chapter.
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Chapter 4

Riemannian Manifolds - II : Examples

4.1 Rn

The Euclidean space, Rn can be thought of as a Riemannian manifold with the usual vector inner

product as the Riemannian metric. The tangent space at a point of Rn is also an n-dimensional

vector space. With the help of the vector inner product the length of the curve x : [0, 1] → Rn is

defined as: L(x) =
∫ 1

0

√
〈x′(t), x′(t)〉dt. It turns out that the minimum length curve between two

points in the Euclidean space is a straight line segment connecting them. So the distance between

two points in Rn is given by d(x, y) =
√∑n

i=1(xi − yi)2. With this as a metric (Rn, d) is a metric

space.

Example 4.1 (Curvature Flow). For example consider R2. Let a curve in R2 connect two points

P (0, 0) andQ(1, 1). Now if it is not a straight line it will have non zero curvature function. Suppose

we evolve this curve such that at each point on the curve under evolution the curvature reduces.

There will be a moment when the curve will have zero curvature everywhere, see Figure 4.1.

Curvature flow of a parametric curve C(t = 0, s), where C : [0, a)×[0, 1]→ R2 with C(t, 0) =

P and C(t, 1) = Q is given by
∂C(t, s)

∂t
= κN̂. (4.1)
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κ is the curvature of the curve and N̂ is the unit normal to the curve. As discussed earlier the

curvature measures the amount by which a curve curves away from the straight line segment. As

evolution progresses the C(t, p) converges to a straight line segment in R2. Now the distance

between points, d(P,Q), is computed as the length of this straight line segment which matches with

the definition of metric on R2.

Figure 4.1: Curvature flow : ∂
∂t
C(t, p) = κN̂

4.2 Monge Patch

Now let us look at a two dimensional surface S embedded in R3. Two dimensions here indicate

that each point p ∈ S has a neighborhood diffeomrophic to a subset of R2. In other words, if we

associate with each point p ∈ S a tangent space TpS then the dimension of TpS is two , i.e. two

linearly independent vectors are required to span TpS. It is now this tangent space and the basis
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vectors of this space which decide the Riemannian metric for a given surface. Let us consider

a surface patch x(u, v) ⊂ R3 parametrized by (u, v) ∈ U ⊂ R2. In this case x(u, v) is our

Riemannian manifold S. Riemannian metric is defined as:

gij =

 E = 〈xu, xu〉 F = 〈xu, xv〉

F = 〈xv, xu〉 G = 〈xv, xv〉

 (4.2)

where xu and xv are partial derivatives of x(u, v) w.r.t. u and v respectively. Any vector in TpS can

be expressed in terms of these basis vectors xu and xv. The inner product for vectors v1, v2 ∈ TpS

is given by 〈v1, v2〉g = vT1 gijv2, where v1 and v2 are column vectors. Given a curve γ(t) ∈ S , the

length of the curve segment, for t ∈ [a, b], is defined as :

`ba(γ) =

∫ b

a

√
〈γ′(t), γ′(t)〉gdt (4.3)

Given p, q ∈ S, let γ be a curve lying in S with p = γ(a), q = γ(b) as end points. Then

d(p, q) = inf `ba(γ) (4.4)

is a valid metric on S. A γ∗ for which the distance between two points is minimized is called

a geodesic curve on the surface S. As we will see in the following example, even for a simple

looking parametrized surface finding a closed form expression for the geodesic curve is difficult.

In practice, γ∗ is obtained by numerical approximations.

Example 4.2. Let x(u, v) = (u, v, u·v) which leads to xu = (1, 0, v), xv = (0, 1, u) andE = 1+v2,

F = u · v and G = 1 + u2. A curve in x(u, v) is, γ(t) = x(u(t), v(t)) = (u(t), v(t), u(t) · v(t)).
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In this example, the system of differential equations corresponding to (3.9) is:

d2u

dt2
+ 2

v

1 + u2 + v2
du

dt

dv

dt
= 0 (4.5)

d2v

dt2
+ 2

u

1 + u2 + v2
du

dt

dv

dt
= 0 (4.6)

When we try to minimize the length functional by Euler-Lagrange minimization (Appendix. B),

we get for each of the co-ordinates the same system of second order ordinary non-linear differential

equations.

The length of the curve γ(t), t ∈ [t0, t1] is
∫ t1
t0

√
Eu′2 + 2 · F · u′ · v′ +Gv′2dt, where u′ and v′

are du/dt and dv/dt respectively.

Let the boundary points, i.e. the points between which we are trying to find the geodesic dis-

tance, be (1, 1, 1) and (−1,−1, 1). We solve the BVP for the above system of equations with

MATLAB boundary value solver. The resultant geodesic and the initial guess are shown in the

Figure.4.2(a).

(a) (b)

Figure 4.2: Monge patches and geodesic connecting two points on them.

Example 4.3. Let x(x, y) = (x, y, sin(x) · cos(y)) be a surface patch. The Figure.4.2(b) shows

an initial guess and the stabilized geodesic on the surface. The solution is found with MATLAB
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boundary value solver with boundary points (x1, y1) = (−3,−3) and (x2, y2) = (3, 3).

4.2.1 Level Set Front Propagation

In the literature, alternate formulations are available for finding the shortest paths on meshed sur-

faces. We give here an example based on level set front propagation approach suggested in [24].

We take a surface patch as shown in Figure 4.3. In the next Figure 4.4, we show intermediate iter-

ations of the front propagation, front starting from a point P1. Finally in Figure 4.5(a) two shortest

paths connecting points P1 and P2 are computed from the distance maps as suggested in [24].

Figure 4.3: Points P1 and P2 on the surface.
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Figure 4.4: Intermediate iterations of front propagation ∂
∂t
C(t, p) = N̂

4.3 The Unit Sphere S2 ⊂ R3

A unit sphere embedded in R3 is an example of a closed surface which can not be patched up with

a single patch. It needs at least two patches to be covered up. One such parametrization is the

stereographic projection from the poles to the plane cutting the equator, if we consider the sphere

to be an approximation to the earth’s surface.

For this example, it will be sufficient to work with a single patch given by the parametrization

x : U ⊂ R2 → R3, as

x(u, v) = (sinu cos v, sinu sin v, cosu), u ∈ (0, π), v ∈ (0, 2π). (4.7)

The Figure 4.6 shows the sphere with parameters u and v; u equal to constant are arcs of great

circles, the longitudes and v equal to constant are latitudes.
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Figure 4.5: Calculated distance maps on surfaces using level set front propagation ∂
∂t
C(t, p) = N̂

Let us express the Riemannian metric in terms of this system of local coordinates. A point on

the sphere is expressed in terms of two coordinates u, v by (4.7), see Figure 4.6. The coordinate

curves are given by

c1(t) = x(t, v) and c2(t) = x(u, t).

The basis of the tangent space at point p is expressed by using the velocity vectors of theses curves:

d

dt
c1(t)t=u =

∂

∂t
x(t, v)t=u = xu(u, v) = (cosu cos v, cosu sin v,− sin v),

d

dt
c2(t)t=v =

∂

∂t
x(u, t)t=v = xv(u, v) = (− sinu sin v, sinu cos v, 0).

The Riemannian metric in terms of these local coordinates, since the sphere is embedded in

R3, is computed g11(u, v) = 〈xu, xu〉 = 1, g12(u, v) = g21(u, v) = 〈xu, xv〉 = 0 and g22(u, v) =
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Figure 4.6: A parametric unit sphere with longitude and latitudes.

Figure 4.7: Local coordinates and the tangent vectors to coordinate curve on the unit sphere.
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〈xv, xv〉 = sin2 u. Thus the matrix of the Riemannian metric is:

gij =

 1 0

0 sin2 u

 (4.8)

Let us now compute the length of the latitude curve c(t) = x(u(t), v(t)), u(t) = π
4
, v(t) =

2πt, t ∈ [0, 1]. Since it is evident that everywhere on the curve c(t) the tangent vector c′(t) is

expressed as c′(t) = 0 · xu + 2π · xv.

Length of this curve is calculated from (3.5) as:

`10(c(t)) =

∫ 1

0

2π sin π/4 dt = 2π sin π/4

since, 〈c′(t), c′(t)〉gij =

(
0 2π

)1 0

0 sin2 u(t)


 0

2π

 = (2π sinπ/4)2. It is easy to derive that

the geodesics on a sphere are the arcs of the great circles. So in case given two points on a sphere

the distance between them is calculated as the length of the shortest arc of the great circle passing

through these two points. Great circle is found by intersection of a plane passing through given

two points and the center of the sphere with the sphere. The image of the expp map as described in

section 3.5 is computed for a given point p ∈ S2 as a unit distance point q ∈ S2 from p traveled on

the great circle in the direction suggested by the tangent vector at p.

With the help of Riemannian metric defined it is possible to compute the area of a region en-

closed by a curve on the sphere. The closely connected idea of curvature of the surface and parallel

transport along with area is presented in Appendix C. It is supported by a simulated example. It is

seen to be an instance of the Gauss-Bonnet theorem.
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4.4 Implicitly Defined Manifold

Example 4.4. Consider the function F : R4 → R defined by,

F (x1, x2, y1, y2) = (x1 − y1)2 + (x2 − y2)2 − 1.

The level setM := F−1(0) is a manifold. It is the set of end points of all unit line segments in a

plane.

For this manifold the normal space basis vector at a given point can be identified with the

maximum change direction, i.e. the gradient vector,

∇F = [2(x1 − y1) 2(x2 − y2) − 2(x1 − y1) − 2(x2 − y2)]T .

The tangent space vector can be identified with the vectors which are orthogonal to the gradient at

a given point. For example at the point P := (0, 0, 1/
√

2, 1/
√

2) the gradient is ∇F = [−
√

2 −
√

2
√

2
√

2]T and the basis for tangent space vectors are given by

∇F⊥ =





1

0

1

0


,



0

1

0

1


,



1

−1

−1

1




. (4.9)

The first two vectors in the tangent space corresponds to the geodesic translation and the third

vector corresponds to the rotation of the line segment in the plane. So between two points onM

the distance metric is computed based on the geodesic curve segment connecting these two points.

It turns out that in this case the geodesic curves are just made up of translations and rotations.

We can in fact show an isomorphism between the basis of se(2) denoted by {Tx, Ty, R} and∇F⊥,

where Tx, Ty represents operators corresponding to the translation in R2 andR is the rotation matrix
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operating on the objects of R2.

Here we have followed the formulation given in [44] for computing the expp map. It is formed

in terms of an Initial Value Problem. The Figures 4.8,4.9 and 4.10 show the geodesics emanating

from different tangent vectors.

Figure 4.8: expp map in the direction of [1 0 1 0]T
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Figure 4.9: expp map in the direction of [0 1 0 1]T

4.5 Euclidean Motion Groups

Consider an object in plane undergoing a rigid body euclidean motion. This motion can be de-

composed into a rotation with respect to the center of mass of the object and a translation of the

center of mass of the object. All possible configurations of an object in plane can be represented

by (θ, u, v) (i.e. orientation of the principle axis and the co-ordinates of the center of mass of the

object), where 0 ≤ θ ≤ 2π and (u, v) ∈ R2. Let all such configurations form a set S. It is rather in-

tuitive to define a metric on S so as to compare two configurations of an object. If A1 = (θ1, u1, v1)

and A2 = (θ2, u2, v2) be two configurations in S then it is easy to verify that

d(A1, A2) :=
√
a(θ1 − θ2)2 + b(u1 − u2)2 + b(v1 − v2)2 (4.10)
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Figure 4.10: expp map in the direction of [1 − 1 − 1 1]T

is a valid metric on S corresponding to the Riemannian inner product 〈A1, A2〉R = AT1RA2, and

R =

 a 0

0 bI2

 a positive definite matrix. Moreover for given A1, A2, left composition with

A ∈ S, i.e A(A1) = (θ + θ1, u + u1, v + v1), the above defined metric leads to d(A1, A2) =

d(A(A1), A(A2)). Hence we have a left invariant metric defined on S. Physical interpretation of

the left invariance is the freedom in choice of the inertial reference frame. The matrix representation

of S, the euclidean motion group, is denoted by SE(2). A typical element of SE(2) is made up of

a rotation matrix and a translational vector. Correspondence between S and SE(2) is given by

(θ, u, v)⇔


cos θ sin θ u

− sin θ cos θ v

0 0 1


A typical curve between two configurations in SE(2) and the geodesic segment from A1 to A2 are

show in Fig.4.11.
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Figure 4.11: Comparison of a curve and a geodesic in SE(2) between two configurations A1 and
A2.

SE(2) is exploited in the domain of image processing for segmentation in object tracking where

one is interested in constrained evolution of the curve under the action of SE(2), a Lie group.

In general the group of rigid body motions in Rn is the semi-direct product [38] of the special

orthogonal group with Rn itself.

SE(n) = SO(n) nRn

Unlike R2, rotations in R3 are not commutative, and that reflects in the group composition of

SO(3),R1R2 6= R2R1,R1, R2 ∈ SO(3). The product of two rigid body motions (R1, d1), (R2, d2) ∈

SE(3) is given by (R2, d2)(R1, d1) = (R2R1, R2d1 + d2). Elements of SE(3) are represented in

matrix form as:

SE(3) = {A|A =

 R d

0 1

 , R ∈ SO(3), d ∈ R3} (4.11)

The tangent space at the group identity in SO(3) and SE(3) are the Lie algebras so(3) and
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se(3) respectively.

so(3) = {[ω]|[ω] ∈ R3×3, [ω]T = −[ω]}, (4.12)

se(3) = {S =

 [ω] v

0 0

 , [ω] ∈ so(3), v ∈ R3} (4.13)

In the above [ω] is a skew symmetric matrix [22] corresponding to the vector ω = [ωx, ωy, ωz] ∈ R3.

The ||ω||2 gives the amount of rotation with respect to the unit vector along ω. The exponential map

is a diffeomorphism [52] connecting the lie algebra to the lie group. The exp : se(3) → SE(3) is

given by the usual matrix exponential as exp(S) =
∑∞

n=0
Sn

n!
.

Consider a rigid body moving in free space. We fix any inertial reference frame {B} at o and

a frame {E} to the body at some point o′ of the body as shown in Fig.4.12. At each instance the

configuration of the rigid body is described via a transformation matrix,A ∈ SE(3), corresponding

to the displacement from frame {B} to frame {E}.

Figure 4.12: Inertial frame {B} and body fixed frames {E}

So a rigid body motion becomes a curve in SE(3), let A(t) be such a curve given by A(t) :

[−c, c]→ SE(3), A(t) =

 R(t) d(t)

0 1

. The Lie algebra element S(t) ∈ se(3) can be identified
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with the tangent vector A′(t) at an arbitrary t by:

S(t) = A−1(t)A′(t) =

 [ω](t) v(t)

0 0

 (4.14)

The ω physically corresponds to the angular velocity of the body, while v is the linear velocity of

the origin O′. Let us assign a Riemannian metric g =

 αI3 0

0 βI3

 over SE(3) as prescribed in

[33]. And so for V = (ω, v) ∈ se(3), 〈V, V 〉g = αωTω + βvTV . It was proved in [52] that the

analytic expression for the geodesic between two configurations A1 and A2 in SE(3), with g as

Riemannian metric, is given by;

R(t) = R1 exp([ω0]t) (4.15)

d(t) = (d2 − d1)t+ d1 (4.16)

where [ω0] = log(RT
1R2) and t ∈ [0, 1]. The path is unique for Trace(RT

1R2) 6= −1. The distance

between two configuration in SE(3) is given by

d(A1, A2) =
√
α‖ log(R−11 R2)‖2 + β‖d2 − d1‖2. (4.17)

All the formulas required for computing exp and log maps are given in the Appendix C for com-

pleteness.

Example 4.5. Consider two configurations A1 and A2, as shown in Fig.4.13, given by vectors

(ω1, v1) and (ω2, v2) respectively, where ω1 = π
4

[
1 0 0

]
, v1 =

[
−6 0 0

]
, ω2 = π

2

[
1 1 0

]
and v2 =

[
0 6 2

]
.

SE(3) is used extensively in robotics for path planning and motion planning of robots. It is

also useful in computer vision and graphics.
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Figure 4.13: A geodesic between A1, A2 ∈ SE(3).

4.6 SE(2) with Scaling

Suppose for a planar object in motion, we include scaling with respect to the center of mass along

with rotation and translation. The resultant element will be of the following form

A =

 eλR d

0 1

 . (4.18)

This element operates individually on each point of the object in plane. It scales (by the factor eλ)

and rotates (R ∈ SO(3)) the object with respect to its center of mass and then translates (by vector

d ∈ R3) the center of mass. With each such element we can associate a vector [λ, θ, dx, dy]. The

elements of the form given by (4.18) with standard matrix multiplication form a Lie group. We

can extend the notions of tangent space and exponential map to this Lie group. This group is a

semi-direct product of elements of scaled rotations and translations. The tangent space elements at
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identity, Lie algebra elements, for scaled rotations are given by

[a] = λ

 1 0

0 1

+ θ

 0 −1

1 0

 (4.19)

The usual matrix exponentiation gives

exp [a] = eλ

 cos θ − sin θ

sin θ cos θ

 . (4.20)

(a) (b) (c)

(d)

Figure 4.14: Various instances of a curve in SE(2) with scaling.

We can construct a left-invariant Riemannian metric on this group. It can be shown that for two

elements A1, A2 in this group

d(A1, A2) =
√
α((λ1 − λ2)2 + (θ1 − θ2)2) + β ‖ d1 − d2 ‖ (4.21)

is a valid distance metric. In Figure 4.14, a circular object under the action of this group is shown

for various time steps.
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Once the Riemannian metric is identified we can construct a distance metric on the manifold.

With the distance metric d(·, ·) (corresponding to the geodesic path) defined on the Riemannian

manifold we are now ready to talk about the medial axis and the sampling criterion for a curve on

the manifold.
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Chapter 5

Medial Axis, Dense Sample and Flatness

5.1 Medial Axis Based Sampling

We commence by revisiting the definition of the medial axis stated previously. LetM be a Rie-

mannian manifold and d(·, ·) :M×M→ R be the corresponding distance metric.

Definition 5.1. The medial axis M of a curve C ⊂ M, is the closure of the set of points inM that

have at least two closest points in C.

(a) (b)

Figure 5.1: Medial axis of a circle in plane and in R3

In Figure 5.1, medial axis (M ) of a circle (C) is presented here as an example. In general the

medial axis depends upon the curve as well as the space in which the curve is embedded. Further
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in Figure 5.2 we show examples of medial axis of closed curves on a half cylinder and in a plane.

Figure 5.2: Medial axis of a curve on a surface and a curve in a plane

It should be noted that the medial axis, as defined above, is a subset of the underlying manifold

in which the curve lies. Note that a curve embedded in a Riemannian manifold in R3 will have

a different medial axis from its medial axis in R3. The open disc (ball) of radius ε > 0 in M

with s ∈ M as a center is defined as Sε(s) = {x ∈ M|d(s, x) < ε}. In the same manner

Bε(s) = {x ∈ M|d(s, x) ≤ ε} is a closed disc (ball) inM with radius ε and the center s. The set

∂Bε(s) = {x ∈M|d(x, s) = ε} is the boundary of Bε(s).

Definition 5.2. At a point p on the curve C the local feature size f(p) = d(p,M), where d(p,M) =

inf{d(p,m),∀m ∈M}.

The local feature size at a point on the curve captures the behavior of the curve in the neighbor-

hood of that point. In practice it is difficult to identify the medial axis for arbitrary curves. Looking

at the construction of the voronoi diagram [32] for a given sample of points on a curve, the voronoi

vertices do capture the behavior of the medial axis of the sampled curve. So for a densely sampled

curve the voronoi vertices of such a sample are taken to be an approximation for the medial axis of
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the given curve. It is computationally challenging to construct voronoi diagrams on curved spaces

[27].

5.2 Tubular Neighbourhood

A tubular neighborhood of a curve in a plane is defined as a subset of the plane such that every point

of the subset belongs to exactly one line segment totally contained in the subset and normal to the

curve. A disk centered on the curve contained in a tubular neighborhood of the curve is called a

tubular disk. Let us generalize this definition to curves in manifolds. We will also define the notion

of a dense sample of a curve in a manifold using the concept of tubular neighborhood.

Definition 5.3. Let C ⊂ M be a smooth curve. Consider segments of geodesics that are normal to

C and start from points on C. If C is compact, then there exists an ε > 0 such that no two segments

of length ε and starting at different points of C intersect [42]. The union of all such segments of

length ε is an open neighborhood T of C, and is called a tubular neighborhood of C.

We denote the open segment with center p ∈ C and radius ε in the normal geodesic segment

of C at p by Nε(p). Revisiting the definition of the tubular neighbourhood: the union Nε(C) =

∪p∈CNε(p) is called a tubular neighbourhood of radius ε if it is open as a subset ofM and the map

F : C × (−ε, ε) → Nε(C) is a diffeomorphism. Let C ⊂ R2, be a simple closed smooth curve.

Existence of the tubular neighbourhood is evident from the compactness of the curve in R2. We

show something more about the value of ε in next proposition.

Proposition 5.4. If Nε(C) is a tubular neighbourhood of C, then ε < 1
k
, where k = max{k(p), p ∈

C} and k(p) is the curvature of the curve at point p.

Proof. Let us define a curve α(s) in R2 by

α(s) = F (C(s), t) = C(s) + tN(C(s)),
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for a fixed t ∈ (−ε, ε) such that α(0) = p. N(p) is the unit normal to the curve C at p. This new

curve belongs to the open set Nε(C) and

α(0) = p+ tN(p) (5.1)

α′(0) = C ′(0) + tN ′(0) (5.2)

α′(0) = (1− tk(p))C ′(0) = (dF )(p,t)(C ′(0)) (5.3)

Since F : C × (−ε, ε) → R2 is a diffeomorphism when restricted to C × (−ε, ε), we have that

(dF )(p,t)(C ′(0)) is a non-null vector, i.e. 1−tk(p) 6= 0. Since (−ε, ε) is connected and 1−tk(p) > 0

for t = 0, so 1− tk(p) > 0 on C × (−ε, ε). Now if k = max k(p), p ∈ C then 1− tk > 0. And we

have ε = t < 1
k
.

Definition 5.5. A finite sample set S ⊂ C is called a uniform ε−sample if for a given ε > 0 any

two consecutive sample points r, s ∈ S, r ∈ Bε(s).

Definition 5.6. A uniform ε-sample S of a curve C ⊂ M is dense if there is a real number ε > 0

such that ∪s∈SBε(s),i.e. the union of the open disks of radius ε centered at the sample points s ∈ S,

forms a tubular neighborhood of C.

Proposition 5.7. For plane curves if ε < minp∈C f(p) then a uniform ε-sample S of curve C is a

dense sample.

Proof. By the definition of f(p), p ∈ C, for a smooth curve C, f(.) attains maximum value at

the points where the curvature of C is maximum. For ε < minp∈C f(p), let the uniform ε- sample

be S ⊂ C. From proposition 5.4, we see that ∪s∈SBε(s) covers the curve C and is a tubular

neighborhood of C. So, S is dense.

Before we proceed to the main theorem, we will make a few observations in the next section.

We show by an example how the medial axis based sampling fails due to the curvature of the
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underlying Riemannian manifold. We also show how to work within the injectivity radius of the

manifold to avoid such a problem.

5.3 Observations and a Counter Example

The first two observations presented in this section are encouraging. With a counter example to the

Least Feature Size based sampling we prescribe in this section a conservative sampling condition.

We know that to form a dense sample of a curve in Rn it is required to sample with an ε1 <

minp∈C f(p). The curve and corresponding ε1 are shown in Figure 5.3(a). However, if the same

(a) (b)

Figure 5.3: (a) A curve C ∈ R3 and the part of medial axis near p ∈ C. ε1 is the distance of the
point p ∈ C from the medial axis of the curve in space. (b) The same curve C on a surfaceM and
the medial axis distance ε2 from the point p ∈ C to the medial axis of the curve on the surface.

curve is embedded in a surface, as shown in Figure 5.3(b), the required ε2 needs to be evaluated

on the surface. In this case it turns out that ε2 < ε1. Let us look at another example. A circle in

the xy-plane in R3 can be thought of as some latitude on a sphere of radius r ≥ L
2π

, where L is the

length of the circle. For these two cases, i.e. the circle on a plane and the circle on a sphere, the

sampling required for correct reconstruction is different. On the sphere we need a less dense sample

set as compared to on the plane. In fact, as we increase the radius r we need denser and denser

sample set for correct reconstruction and the limiting case, r → ∞, is the plane. In R3, the usual

euclidean metric is carried over to the points of the circle. In the case of the sphere, the shortest

path between two points is always along the great circle passing through these two points and the
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(a) (b) (c)

Figure 5.4: (a) Circle with radius R is lying in space (b) Circle resting on a sphere of radius r = R
sin θ

(c) Circle is the great circle the sphere of radius R

length of the shorter of the two segment which is the distance between two points on the sphere.

With this distance metric defined, the sphere becomes a metric space, distance between any two

points of the circle on the sphere are obtained via this metric. The points of this circle on a sphere

are more structured then the points of the same circle in space. The additional knowledge of the

underlying surface strengthens the ordering relation between points of the circle. Since we know

the surface we know the tangent space and that reduces the efforts required to order the sample

points. Interestingly, when generalized to curves on manifolds, the sampling criterion based only

on the medial axis becomes meaningless. As an example let us look at a unit circle on the surface

shown in Figure 5.5. The medial axis of the circle on the given surface is the point M = (0, 0, 0).

For any point on the circle, the distance from the medial axis turns out to be larger than the length

of the circle itself. In the limiting case of this surface, i.e. a cylinder, the medial axis is empty.

The above phenomenon can be understood more clearly if we look at the cut locus of the point

p ∈ M. The following can be considered as the defining property of the cut locus of a point

on the manifold. If γ(t0) is the cut point of p = γ(0) along the geodesic arc γ then either γ(t0)

is the first conjugate point of γ(0) or there exists a geodesic σ = γ from p to γ(t0) such that

l(σ) = l(γ)(lengths of σ and γ are equal).
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Figure 5.5: A circle C and the normal geodesic from a point (1, 0, 1.0629) to M

For example, ifM is a sphere S2 and p ∈ S2 then the cut locus of p is its antipodal point. If

we consider the sphere of radius R the distance of point p from its cut locus is πR, whereas the

distance of the point p on the circle in Figure 5.4(c) to the medial axis M is πR
2

. Now coming back

to the counter example Figure 5.5, we observe that the distance from p to its cut locus, d(p, Cm(p)),

is less then the distance to the medial axis M of the circle, where Cm(p) is the cut locus of p ∈M.

It can be shown that if q ∈ M− Cm(p), there exists a unique minimizing geodesic joining p

and q. In [17]

i(M) = inf
p∈M

d(p, Cm(p)) (5.4)

is called the injectivity radius ofM. So if ε < i(M) then expp is injective on the open ball Sε(p).

A tubular neighborhood for a curve is constructed by taking only the normal geodesics to the

curve at a point and assuring the injectivity of the expp map along these normal directions. We now

propose to work inside the injectivity radius to straighten out the problem with sampling.

Proposition 5.8. Let C ∈ M be a smooth, simple and closed curve. If S is a uniform ε- sample of

C, then S is dense for ε < min{infp∈C f(p), i(M)}.

Proof. Let S be a uniform ε- sample of C with ε < min{infp∈C f(p), i(M)}. From the definitions
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of the injectivity radius and the feature size we know that for the above mentioned ε, expp is

injective on Sε(p). So, ∪s∈SBε(s) forms a tubular neighborhood of C, and hence S is dense.

5.4 Uniform Sampling

5.4.1 Flatness of a Curve Segment Inside a Tubular Neighbourhood

If the underlying manifold is a plane and a curve is sampled densely then based on the tubular

neighborhood, it is proven, in [13], that the Euclidean minimal spanning tree reconstructs the sam-

pled arc. The crucial ingredient in the proof is the denseness of the sample. It comes from the

observation that an arc does not wander too much inside a tubular disk, thus avoiding the possibil-

ity of connecting non-consecutive sample points in S (such connections are called short chords).

We now give an alternate proof of flatness∗ of the curve segment inside a tubular neighborhood

in plane. And after that we extend the proof to curves in the Riemannian manifold.

Theorem 5.9. Let p and q be two points on an arc C ⊂ R2 such that q is inside the tubular disk

Bε(p) centered at p. Then the sub arc pq of C is completely insideBpq/2(c), where c is the mid-point

of diameter pq.

Proof. Since q ∈ Bε(p), pq = d(p, q) ≤ ε. Now pq being a segment of an arc C there are three

possible ways, as shown in Figure 5.6, in which it intersects with Bpq/2(c).

For the possibility shown in Figure 5.6(a), it is evident that center c lies on two normals passing

through p and q, i.e. c ∈ pq, since Bpq/2(c) and C share common tangents at p and q. This can not

happen since Bpq/2(c) ⊂ Bε(p), a subset of a tubular neighborhood.

Let us consider the case in Figure 5.6(b), arc C touchesBpq/2(c) at p and intersects the boundary

of Bpq/2(c) at q and q′. We can find out a point q′′ on the segment qq′ which is nearest to c. At q′′

∗The word flatness here indicates that the geodesic curvature at points of the curve segment inside a tubular neigh-
borhood is bounded above and is certainly very small.
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(a) (b) (c)

Figure 5.6: (a) The arc touchesBpq/2(c) (b) The arc touchesBpq/2(c) at p and intersects its boundary
at q′ while passing through q (c) The arc intersects boundary of Bpq/2(c) at p′ and q′ while passing
through p and q respectively

Figure 5.7: Tangent space of a point p ∈M where ||v|| < ε and the corresponding geodesic N .

the circle with center c and radius d(c, q′′) shares a common tangent with C. Hence c lies on the

two normals pc and q′′c. This can not happen inside a tubular neighborhood.

Finally we consider the Figure 5.6(c). On segments pp′ and qq′ we find p′′ and q′′ nearest to c.

In this case c lies on p′′c and q′′c. Since c is inside tubular neighborhood this can not happen.

So the only possibility we are left with is that the segment pq of curve C lies entirely inside

Bpq/2(c).

Theorem 5.10. Let p and q be two points on an arc C ⊂ M, whereM is any Riemannian manifold,

such that q is inside the tubular disk Bε(p) centered at p. Then the sub arc pq of C is completely
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inside Bpq/2(c), where c is the mid-point of diameter pq.

Proof. ForM := Rn we know that cp, p ∈ Sn−1, is orthogonal to TpSn−1.

Since we are working inside a tubular neighborhood of the curve C, with ε as prescribed in

Proposition 5.8, exp : TpM→M is a diffeomorphism.

Gauss’s lemma, in [17], asserts that the image of a sphere of sufficiently small radius(< ε) TpM

under the exponential map is perpendicular to all geodesics originating at p Figure 5.7.

The rest of the proof follows from arguments of the Theorem 5.9.

66



Chapter 6

Curve Reconstruction in Riemannian

Manifolds

6.1 MST Reorders the Dense Sample Set

A sample S of a curve is represented as a set of vertices (vertex set V ) of a graph and the edges (edge

set E) indicate an order in which the vertices are to be connected. Since, there are varieties of ways

in which vertices can be connected it is appropriate to consider the initial graph as a complete graph.

If further we put the distance between two sample points as the edge cost, it becomes a weighted

graph. A minimal spanning tree for a weighted graph is a spanning tree for which the sum of edge

weights is minimal. To keep the notations consistent, we define the geodesic polygonal path on a

Riemannian manifold as the path along which every vertex (sample point) pair is connected by a

geodesic segment.

Computing the minimal spanning tree utilizes the following fundamental property: let X ∪ Y

be a partition of the set of vertices of a connected weighted graph G. Then any shortest edge in G

connecting a vertex of X and a vertex of Y is an edge of a minimal spanning tree. If we use MST

to model an arc, we must ensure that there are no short chords in the MST; this was proved in [13].
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As before, we focus on closed, simple, smooth curves. In that case, the MST must have every

vertex with degree two. In other words every sample point has exactly two neighbors (sample

points) on the curve.

Theorem 6.1. If S is a dense sample of C ⊂ M then MST gives a correct re-ordering on S and

hence a correct geodesic polygonal reconstruction of C, where C is a smooth, closed and simple

curve.

Proof. We show that the geodesic polygonal path has no short chords. The argument is similar to

the proof provided for the planar case in [13]. For the sake of completeness, we restate the argument

here. Suppose that MST does not give a correct geodesic polygonal reconstruction of S. It implies

that there are two points in MST which are not consecutive. Let these points be p, q ∈ S . Since

pq is a short chord there has to be at least one edge in the sub arc pq which has length greater than

that of pq. But since the sample S is dense, the arc pq must be contained in the disc with diameter

pq, refer to Theorem 5.10. Inside the disc there is no arc with length greater than the length of the

diameter. So we have a contradiction.

In the following section we discuss minimum spanning tree algorithm for its complexity and

also look at the nearest-neighbor search.

6.1.1 Minimum Spanning Tree

Let G = (V,E) be an undirected graph with edge weights ωe. A tree T = (V,E ′), with E ′ ⊂ E

that minimizes

ω(T ) =
∑
e∈E′

ωe (6.1)

is called a minimum spanning tree. Minimum spanning tree is a classic example of a greedy

algorithm. For basic terminologies and details we refer readers to [12]. The intermediate MST is
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grown by adding an edge at a time. This is done keeping in mind the following property. First we

need some definitions. A cut (S, V − S) of an undirected graph G is a partition of V . We say that

an edge e ∈ E crosses the cut if one of its endpoints is in S and the other is in V − S. We say that

a cut respects a set A of edges if no edge in A crosses the cut. An edge is a light edge crossing a

cut if its weight is the minimum of any edge crossing the cut.

[Cut Property] Let A be a subset of E that is included in some minimum spanning tree for G, let

(S, V − S) be any cut of G that respects A, and let e be a light edge crossing (S, V − S). Then,

edge e ∈ E can be added to A to grow the MST.

Prim’s algorithm operates much like Dijkstra’s algorithm for finding shortest paths in a graph.

Prim’s algorithm has the property that the edges in the set A always form a single tree. The tree

starts from an arbitrary vertex and grows until the tree spans all the vertices in V . At each step,

a light edge is added to the tree A that connects A to an isolate vertex of GA = (V,A). This

rule adds edges that are safe for A. Considering the cases where curve can have more than one

connected components, algorithm must provide a forest (a collection of trees). Kruskal’s algorithm

is a greedy algorithm and gives us (a forest) MST. Both the algorithms have the same computational

complexity, i.e O(|E| log |V |). For details on calculation of complexities and pseudocodes refer to

[11].

For arcs (open curve segments), a nearest neighbor search algorithm that is similar to Prim’s

algorithm is used to find the correct ordering. In this case we provide the starting vertex as one of

the end points as input to the Prim’s algorithm. We have used this approach to order samples of

smooth arcs.

6.2 Interpolation in Riemannian Manifolds

Once we have ordered the given set of points of the curve on a curved manifold the next step is

to interpolate this point set to the desirable granularity. The easiest way to interpolate the points
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is to connect the points via straight line segments, a linear interpolation. In general for a manifold

like SE(3), the geodesics are the exp segments. But this scheme will not produce a differentiable

curve which might be necessary for some applications. Based on the need and application one may

chose the interpolation scheme. In [41] and [23] a quaternion based approach is suggested, which is

very useful in computer graphics and animation. Since we have represented SE(3) using matrices,

we prefer a matrix based approach. Motivated by motion planning purposes various interpolation

schemes based on variational minimization techniques have been proposed and some of them turn

out to be quite easily implementable. For a broad overview, see [34] and [28]. For completing

the reconstruction process, we have used the de Casteljau construction as prescribed in [1]. It is a

generalization of the multi linear interpolation on SE(3), where a piecewise C2 curve is used to

connect two frames with given velocities. The advantage is that we have a closed form expression

with exponential and log maps.

Figure 6.1: Comparison of Exponential map and C2 smooth interpolation in SE(3) between g0 =
[0, 0, 0] n [−5, 0, 0] and g1 = [π/2, 0, 0] n [5, 0, 0], with tangents v10 = [0, 0, 0, 3, 1, 1] and v12 =
[π/2, 0, 0,−1,−3,−1].

Suppose we do not know the velocities at the node points. For such a case we have used a
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partial geodesic scheme to interpolate between two elements of SE(3), where the rotational part is

interpolated by the exp map and the translational component is interpolated with spline segments.

In the next section we give the details of the interpolation scheme that we have used.

6.2.1 Cubic Spline Interpolation

To begin with, we describe the cubic spline interpolation algorithm used to interpolate between

points in Rn. In general, the data or control points determine a parametric curve segment P (t), t ∈

[0, 1], and curvature, tangent vectors and continuity constraints etc. are used to join the parametric

curve segments to generate a complete parametric curve.

In practice, a complete curve is made up of segments. There are two types of curve continuities:

geometric and parametric. If two consecutive segments meet at a point, the total curve is said to

have G0 geometric continuity. If, in addition, the directions of tangent vectors of the two segments

are the same at the point, the curve has G1 geometric continuity at the point. In general, a curve has

geometric continuity Gn at a join point if every pair of the first n derivatives of the two segments

have the same direction at the point. If the same derivatives also have identical magnitudes at the

point, then the curve is said to have Cn parametric continuity at the point.

The cubic spline method constructs a smooth curve passing through n data points. This curve

consists of n−1 individual Hermite segments that are smoothly connected at the interior data points,

i.e. segments meeting at an interior point must have their tangent vectors and second derivatives

same.

The parametric form of the Hermite segment is determined from two points P1 and P2 and two

tangent vectors P t
1 and P t

2 . It is a curve segment that starts at P1, going in direction P t
1 and ends at

P2 moving in direction P t
2 . Hermite segment is easy to derive. It is a parametric curve, a degree-3

polynomial in t, with four coefficients that depend on the two points and two segments.

P (t) = at3 + bt2 + ct+ d = [t3 t2 t 1][a b c d]T = T (t)A (6.2)
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This is an algebraic representation of the curve, in which the four coefficients can be expressed

in terms of known geometric quantities (points and vectors). Let us find these unknowns from

the known. The tangent vector to a curve P (t) is the derivative dP (t)/dt, denoted by P t(t). The

tangent vector is therefore

P t(t) = 3at2 + 2bt+ c (6.3)

Using the above two expressions and known geometric quantities we can easily derive the follow-

ing:

P (t) = (2t3 − 3t2 + 1)P1 + (−2t3 + 3t2)P2 + (t3 − 2t2 + t)P t
1 + (t3 − t2)P t

2 (6.4)

= F1(t)P1 + F2(t)P2 + F3(t)P
t
1 + F4(t)P

t
2

= F (t)B

where

F1(t) = (2t3 − 3t2 + 1), F2(t) = (−2t3 + 3t2), F3(t) = (t3 − 2t2 + t), F4(t) = (t3 − t2),

(6.5)

B is the column [P1 P2 P
t
1 P

t
2]T , and F (t) is the row [F1(t) F2(t) F3(t) F4(t)]. Functions Fi(t) are

the Hermite blending functions. In matrix notation this becomes

F (t) = [t3 t2 t 1]



2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0


= T (t)H. (6.6)
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Figure 6.2: A parametric Hermite interpolated curve segment

The curve can now be written as

P (t) = T (t)HP = [t3 t2 t 1]



2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0





P1

P2

P t
1

P t
2


. (6.7)

Matrix H in (6.7) is called the Hermite basis matrix. An example at this stage will help understand

the role of tangent vectors at the points.

Example 6.1. Let the two three dimensional points P1 = (0, 0, 0) and P2 = (1, 1, 1) and the two

tangent vectors P t
1 = (1, 1, 0) and P t

2 = (0, 0, 1) be given. The curve segment turns out to be a

cubic polynomial

P (t) = (−t3 + t2 + t, − t3 + t2 + t, t). (6.8)

as shown in the Figure 6.2.

Now, coming back to spline interpolation, let P1, P2, . . . , Pn be given n points. We have n− 1
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parametric cubics (Hermite segments) P1(t), P2(t), . . . , Pn−1(t), where Pk(t) is the polynomial

segment from point Pk to Pk+1. These parametric curves are required to be smoothly connected

at the n − 2 interior points P2, P3, . . . , Pn−1; this implies that their first derivatives must match

at every interior point. Moreover, the definition of a spline requires that their second derivatives

match too. So in essence if the user provides the tangent vectors at P1 and Pn we get a system

of equations which we can solve and derive the spline interpolation in terms of Hermite segments

P1(t), P2(t), . . . , Pn−1(t).

The unknown tangent vectors at the interior points are found from the following system of n−2

equations:



1 4 1 0 . . . 0

0 1 4 1 . . . 0

. . . . . . ...

0 . . . . . . 1 4 1


(n−2)×n



P t
1

P t
2

...

P t
n


n×1

=



3(P3 − P1)

3(P4 − P2)

...

3(Pn − Pn−2)


(n−2)×1

. (6.9)

An advantage is that the user can vary the shape of the curve by entering new values for P t
1 and P t

n

and recalculating. This approach is called the clamped end conditions. It is possible to let the user

specify any two tangent vectors, not just the two extreme ones. However, it is more natural to edit

and reshape the curve by varying the two extreme tangent vectors in practical situations. We refer

the reader to [37] for more details and examples on various end point conditions for cubic splines.

6.2.2 Closed Cubic Splines

Condition that the tangent vectors (P t
1 , P t

n) and the second derivatives (curvatures) at the two end-

points are equal, i.e. P t
1 = P t

n and P tt
1 = P tt

n , is called a cyclic end condition. Cyclic end condition

is ideal for a closed cubic spline. A closed cubic spline has an extra curve segment from Pn to P1

that closes the curve. Expression (6.9) with this additional constraint becomes
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1 4 1 0 . . . 0

0 1 4 1 . . . 0

. . . . . . . . . ...

0 . . . . . . 1 4 1

1 . . . . . . . . . 1 4

4 1 0 . . . 0 1


n×n



P t
1

P t
2

...

P t
n−1

P t
n


n×1

=



3(P3 − P1)

3(P4 − P2)

...

3(P1 − Pn−1)

3(P2 − Pn)


n×1

. (6.10)

In Figure 6.3, an example interpolating the points in R2 lying on a closed curve using the above

closed cubic spline formulation is shown. The points in the order of connectivity are

P :=

 x

y

 =

 2 3 4 3 2 2 3 4 2 1 1

0 0 1 2 1.5 2 2.5 4 4 2 1

 . (6.11)

We have used (6.10) for interpolating the translation part in the examples of curves on SE(3),

see Figure 7.6 and Figure 7.7. It is interesting to note that there are ways to generalize spline

interpolation to curves on surfaces and Riemannian manifolds, see for example [36, 35].

6.2.3 de Casteljau Construction

In this section we will extend a multi-linear interpolation scheme developed by de Casteljau for

interpolation on Riemannian Manifolds. The essential part of the algorithm is the concept of a

geodesic. On Riemannian manifolds this interpolation scheme will begin with geodesics which are

similar to straight line segments in Rn. We begin with explaining the algorithm in Rn and then

show its extension to Riemannian manifolds.

In previous sections we saw interpolation schemes where the interpolating curve passes through

given points. Let us look at an interpolation scheme where the interpolating curve do not pass

through given data points but it considers a few points as control points and controls the tangents
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Figure 6.3: Example of a closed cubic spline interpolation

at the intermediate points on the curve.

In Figure 6.4, the interpolating curve P (t) (the envelope) passes through two data points P1 and

P3 and the tangents at points P1 and P3 are controlled by the point P2. Curve P (t) is constructed

using a multi-linear interpolation scheme. Construction of P (t) involves straight line segments

connecting points on the line segments P12(t) and P23(t). Let us look at the construction in detail:

P12(t) = (1− t)P1 + tP2 (6.12)

P23(t) = (1− t)P2 + tP3

P (t) = (1− t)P12(t) + tP23(t)

= (1− t)2P1 + 2t(1− t)P2 + t2P3
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Figure 6.4: Multi-linear interpolation with de Casteljau construction in R2

Similarly a multi linear interpolating curve between points Q1 and Q4 with Q2 and Q3 as control

points results in a cubic curve

P (t) =
3∑
i=0

(
3

i

)
ti(1− t)3−iQi+1. (6.13)

This expression involves Bernstein’s polynomials and is called a Bezier interpolating curve, see

[37]. The construction shown in Figure 6.5 is an instance of de Castaljau interpolation algorithm

in which straight line segments are used to interpolate between points and gives exactly the same

expression as (6.13). We can rewrite (6.13) in matrix notations as,
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Figure 6.5: Cubic interpolation with de Casteljau construction in R2

P (t) = T (t)BQ = [t3 t2 t 1]



−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0





Q1

Q2

Q3

Q4


. (6.14)

By equating (6.7) and (6.14) we arrive at an interesting relationship between the set of control points

(Q := {Q1, . . . , Q4}) and the set of points and tangents at end points (P := {P1, P2, P
t
1, P

t
2}). The

matrix C relating the geometric quantities P and Q, i.e. P = CQ, is given by

C =



1 0 0 0

0 0 0 1

−3 3 0 0

0 0 −3 3


. (6.15)
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With the help of (6.15) it is possible to convert the boundary condition given in the form of tangent

vectors to a set of control points. This approach works for a point set in Rn. For further details

refer to [37]. If the straight line segments are replaced by the geodesics (corresponding to the

underlying Riemannian manifold) in the above construction, this algorithm extends to a point set in

a Riemannian manifold. For example, in [1] a similar approach is used to interpolate between two

points in SE(3). It is easy to connect multiple segments with appropriate boundary conditions in

form of a C2 curve as done in case of open (6.9) and closed (6.10) spline interpolations. In Figure

6.1, we show an example of C2 interpolating curve using de Casteljau algorithm. Since in SE(3)

we have closed form expressions for the exponential and log maps, it is easy to construct geodesics

between two points in SE(3).

6.3 Summary of Reconstruction Algorithm

We begin with a set S := {s0, s1, . . . , sn−1} of sample points of the curve C ⊂ M. We assume

that S is a dense sample. Using the Riemannian metric defined on M we calculate distances,

d(si, sj), i 6= j, between sample points for i, j = 1, 2, . . . , n − 1. Using the minimum spanning

tree algorithm we reorder the set of sample points. Suppose Sσ = {sσ(0), sσ(1), . . . , sσ(n−1)} is the

reordered set where σ is a permutation on the set of n symbols. We interpolate Sσ using the de

Casteljau interpolation scheme and produce a C2 continuous curve.
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Chapter 7

Examples of Curves Reconstructed in

Riemannian Manifolds

7.1 Curves on a Sphere

We begin our simulations with examples of curves on a unit sphere. We show two curves with

different densities required by the MST for correct reordering of the samples.

The curves after reordering the sample points are shown in Figure 7.1(a) and Figure 7.1(b).

7.2 Curves in SE(2) : Application to Video Frame Sequencing

As an application of the curve reconstruction we take up a task of ordering the frames {Fi}i=1,...,N

of a video sequence. In Figure 7.2 there are sixteen frames of a video sequence. We use the rigid

euclidean motion of an object in the frames as a clue for re-ordering the frames. Let us assume that

the object under observation is masked by a rectangle and it is segmented out of the frames. We also

assume that the motion of the object is the rigid body euclidean motion in R2. Further let the video

frames from the sequence form a dense sample set of the motion curve. As discussed in section 4.5
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7. Examples of Curves Reconstructed in Riemannian Manifolds7.2. Curves in SE(2) : Application to Video Frame Sequencing

(a) (b)

Figure 7.1: Example curves on a unit sphere.

we calculate the distances between frames as the distance between elements of SE(2). Although

we do not focus on how to estimate the rotations we give a very primitive looking argument below

to estimate the distances between two frames. It turns out that the estimates are good enough in

this case to reconstruct the curve. But in general we use [θ, x, y] as the elements of SE(2) and we

assume that we have an oracle to give these frame coordinates to the algorithm.

The euclidean distance between the means found out from the relative positions of the rectangle

is the first part of the distance metric. Next, we estimate the rotation angle of the object with

respect to a fixed inertial frame. For this purpose, we first register the objects with their means. It

is observed that if we overlap the registered rectangles, the area of the overlapping region provides

a good estimate of the rotation angle. In fact, for θ > arctan( b
a
), the overlapped area is a2

sin θ
, where

a is the shorter side of the rectangle, which clearly indicates as θ increase the overlapping area

decreases up to θ = π/2. For calculating the area we count the number of lattice points (pixels)

inside the overlapping regions. Finally, the estimate for θ combined with the euclidean distance

between means gives the d∗(F1, F2). Using sequential search with known initial frame we re-order
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7. Examples of Curves Reconstructed in Riemannian Manifolds 7.3. Curves in SE(3)

Figure 7.2: Unordered video frames

the frames see Figure 7.4. Even if we do not know the initial frame, MST computes the correct

connections of the frames and gives a correct ordering up to end points.

Let us reconsider the distance metric on SE(2) given in (4.5). If we scale the three axes prop-

erly, the problem of curve reconstruction in SE(2) reduces to the problem of curve reconstruction

in R3 and we may use all the non-uniform sampling schemes and voronoi diagram based recon-

struction algorithms. As an example we have used NN-CRUST to reconstruct the curve above in

the motion sequence and we get the correct ordering as expected.

7.3 Curves in SE(3)

In Figure 7.5 an unordered set of frames in SE(3) is shown. We assume that the sample shown is

dense.

By the distance metric defined in (4.17), we compute distances between all the frames. Finally

we compute the MST for the complete weighted graph of frames with the computed distances as

the edge weights.

Once the ordering is done we interpolate the sample with partial geodesic scheme. Results of

82



7. Examples of Curves Reconstructed in Riemannian Manifolds 7.4. Another Useful Manifold

Figure 7.3: Mean cancellation and rotation estimation

interpolation with two different granularities is presented in Figure 7.6 and Figure 7.7.

7.4 Another Useful Manifold

Suppose for a planar object in motion, we include scaling with respect to the center of mass along

with the rotation and translation. The resultant element will be of the following form

A =

 eλR d

0 1

 . (7.1)

This element operates on the point of the object in plane. It scales(eλ) and rotates(R) the object with

respect to its center of mass and then translates(d) the center of mass. With each such element we

can associate a vector [λ, θ, dx, dy]. The elements of the form given by (7.1), with standard matrix

multiplication forms a Lie group. We can extend the notions of tangent space and exponential

map to this lie group. As discussed previously in section 4.6 this group is a semi-direct product of

elements of scaled rotations and translations. The tangent space elements at identity, Lie algebra
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7. Examples of Curves Reconstructed in Riemannian Manifolds 7.4. Another Useful Manifold

Figure 7.4: Ordered video frames

elements, for scaled rotations are given by

[a] = λ

 1 0

0 1

+ θ

 0 −1

1 0

 (7.2)

And the usual matrix exponentiation gives

exp [a] = eλ

 cos θ − sin θ

sin θ cos θ

 . (7.3)

We can construct a left-invariant riemannian metric on this group. It can be shown that for two

elements A1, A2 in this group

d(A1, A2) =
√
α((λ1 − λ2)2 + (θ1 − θ2)2) + β ‖ d1 − d2 ‖ (7.4)

is a valid distance metric. In Figure 7.8, a circular object under the action of this group is shown

for various time steps. Assuming the curve is sampled densely, along with the distance measured

by (7.4) we reconstruct the curve using MST. The successfully reconstructed curve, with the values
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7. Examples of Curves Reconstructed in Riemannian Manifolds 7.4. Another Useful Manifold

Figure 7.5: A sample S of a curve C ⊂ SE(3)

α = 10 and β = 1, is shown in Figure 7.9. Important fact to note here is that the curve presented

here is not a closed curve. The algorithm is modified in this case to take care of the end points. In

fact a simple nearest neighbor search will also do the job of reconstruction once we give the initial

point.
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7. Examples of Curves Reconstructed in Riemannian Manifolds 7.4. Another Useful Manifold

Figure 7.6: Reconstructed curve in SE(3)

Figure 7.7: Reconstructed curve in SE(3) with finer interpolation
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7. Examples of Curves Reconstructed in Riemannian Manifolds 7.4. Another Useful Manifold

(a) (b)

(c) (d)

Figure 7.8: Various instances of a curve in SE(2) with scaling.
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7. Examples of Curves Reconstructed in Riemannian Manifolds 7.4. Another Useful Manifold

(a) (b)

(c)

Figure 7.9: Instances of the reconstructed curve in SE(3) with scaling.
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Chapter 8

Conclusion

In this thesis, we have extended the computational geometry based approach for curve reconstruc-

tion to curved spaces. This work can also be looked upon as a systematic study of the problem of

curve reconstruction in Riemannian manifolds.

Some of the key steps involved in this extension process are as follows:

1. An example is identified in section 5.3 that shows the need of revising the Least Feature Size

based sampling criterion while working on a Riemannian manifold.

2. With the help of a few observations made in section 5.3 we were able to show the effect of

curvature of the underlying manifold on the sampling density for a given curve.

3. We gave an alternate proof of flatness of a curve segment inside the tubular neighborhood

for curves in Rn, which was further extended to curves in Riemannian manifolds in section

5.4.1.

4. We proved that the MST gives the correct re-ordering for a dense sample of a curve and

worked out a conservative bound for the uniform sampling of the curve based on the in-

jectivity radius of the manifold. In essence, the effect of local topological behavior of the
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8. Conclusion

underlying manifold was clearly identified and resolved by working inside the injectivity

radius (see Chapter 5 and Chapter 6).

5. We have presented a concise version of the above, including proofs and simulation results of

successfully reconstructed curves in SE(2) and SE(3) in [40].

The following major results are believed to be original:

• In the following result for a plane curve we give a conservative bound on the value of ε for

which Nε(C) becomes a tubular neighborhood.

Proposition 5.4 IfNε(C) is a tubular neighborhood of C, then ε < 1
k
, where k = max{k(p), p ∈

C} and k(p) is the curvature of the curve at point p.

• Based on the definition of tubular neighborhood and the medial axis we were able to demon-

strate the denseness of a sample with sampling density ε.

Proposition 5.7 For plane curves if ε < minp∈C f(p) then a uniform ε-sample S of curve C

is a dense sample.

• The curvature of the underlying Riemannian manifold plays a crucial role in defining the

sampling density of a curve. We propose to work within the injectivity radius of the manifold

to avoid cases similar to the example presented in section 5.3.

Proposition 5.8 Let C ∈ M be a smooth, simple and closed curve. If S is a uniform ε-

sample of C, then S is dense for ε < min{infp∈C f(p), i(M)}.

• We give an alternate proof of the following theorem for curves in the plane which is then

extended to Riemannian manifolds.

Theorem 5.9 Let p and q be two points on an arc C ⊂ R2 such that q is inside the tubular

disk Bε(p) centered at p. Then the sub arc pq of C is completely inside Bpq/2(c), where c is

the mid-point of diameter pq.
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8. Conclusion

• Using the Gauss lemma, we extend the proof of the previous result and show that the curve

segment inside a tubular disc does not wiggle too much in a Riemannian manifold.

Theorem 5.10 Let p and q be two points on an arc C ⊂ M, whereM is any Riemannian

manifold, such that q is inside the tubular disk Bε(p) centered at p. Then the sub arc pq of C

is completely inside Bpq/2(c), where c is the mid-point of diameter pq.

• Putting pieces together we finally show that the MST correctly re-orders the dense sample of

a curve in a Riemannian manifold.

Theorem 6.1 If S is a dense sample of C ⊂ M, then the MST gives a correct re-ordering on

S and hence a correct geodesic polygonal reconstruction of C, where C is a smooth, closed

and simple curve.

In section 6.2, we describe an interpolation scheme based on the de Castaljau algorithm to inter-

polate between ordered sample points in a Riemannian manifold. Finally, we validate our proposed

scheme with the help of few examples of curves in Riemannian manifolds. We have selected Rie-

mannian manifolds which are widely used in engineering applications (a sphere, surfaces, SE(3)

and SE(2) with scaling). We have also shown applications of combinatorial curve reconstruction

for ordering motion frames in graphics and robotics.

John Nash proved in [31] that every Riemannian manifold can be isometrically embedded into

some Euclidean space. Due to this result one might be tempted to think that reconstruction of

curves in Rn directly implies reconstruction of curves in Riemannian manifolds. But, it is diffi-

cult to construct such an isometric embedding. This inadequacy of knowledge of the isometric

embedding has prompted researchers to work in Riemannian manifolds intrinsically. To the best

of our knowledge, no results have so far been reported in the direction, where the curve to be re-

constructed is embedded in a curved space. Our work is an initial contribution in this direction.

The motivation to work in this field is the growing applications of manifold methods in robotics,

graphics and computer vision.

We believe that the results of non-uniform sampling for curves in Rn are transferable to the
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8. Conclusion

curves in Riemannian manifolds with appropriate modifications. As an extension to this work we

would like to work out necessary proofs and carry out simulations to support our belief. The effect

of noise on the sampling density and the reconstruction algorithm, in the case of curved spaces,

will be a challenging question. In future, we wish to work on the problem of curve reconstruction

from a noisy sample on curved spaces.
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Appendix A

Immersions and Embeddings

Definition A.1. LetM andN be differentiable manifolds. A differentiable mapping φ :M→N

is said to be an immersion if dφp : TpM → Tφ(p)N is injective for all p ∈ M . If, moreover φ is

injective or φ is a homeomorphism onto φ(M) ⊂ N we say that φ is an embedding.

Definition A.2. Let (M, g) and (N , h) be Riemannian manifolds. An isometric embedding is a

smooth embedding φ : M → N which preserves the metric in the sense that g is equal to the

pullback of h by φ, i.e. g = φ∗h. Explicitly, for any two tangent vectors v, w ∈ Tp(M) we have

g(v, w) = h(dφ(v), dφ(w))

.

Theorem A.3. [31] Every compact n-dimensional Riemannian manifold M of class Ck (3 ≤

k ≤ ∞ can be Ck isometrically embedded in any small portion of a Euclidean space RN where

N = n
2
(3n+ 11).

Every non-compact n-dimensional Riemannian manifoldM of class Ck(3 ≤ k <∞ can be Ck

isometrically embedded in any small portion of a Euclidean space RN where N = n
2
(n+ 1)(3n+

11).
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Appendix B

Euler-Lagrange Minimization

min I(y)y∈C(0,1) =

∫ 1

0

F (y, y′, x)dx (B.1)

Given a functional I : C1(0, 1) → R, where C1(0, 1) is the space of all real functions defined

on (0, 1) with a continuous first derivative, to find a stationary point of this functional we must

ensure that dI(ỹ)
dα
|α=0 vanishes for all variations η(x) with boundary conditions η(0) = η(1) = 0

where ỹ(x) = y(x) + αη(x).

dI(ỹ)

dα
=

∫ 1

0

dF

dỹ

dỹ

dα
+
dF

dỹ′
dỹ′

dα
dx

=

∫ 1

0

[
dF

dỹ
η(x) +

dF

dỹ′
η′(x)

]
dx

=

∫ 1

0

dF

dỹ
η(x)dx+

[
dF

dỹ′
η(x)

]1
0

−
∫ 1

0

d

dx
(
dF

dỹ′
)η(x)dx (B.2)

The second term in the equation vanishes since the variation η(x) vanishes at the end points.

Now substituting α = 0 in the Equation B.2 and rearranging the terms we get,

dI(y)

dα
|α=0 =

∫ 1

0

[
dF

dy
− d

dx

(
dF

dy′

)]
η(x)dx = 0 (B.3)
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We know from the result [21] that if f(x) is continuous in [0, 1], and if

∫ 1

0

f(x)η(x)dx = 0

for every function η(x) ∈ C(0, 1) such that C(0) = C(1) = 0, then f(x) = 0 for all x ∈ [0, 1].

Hence, we get the Euler-Lagrange equation,

dF

dy
− d

dx

(
dF

dy′

)
= 0 (B.4)
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Appendix C

Parallel transport and the area of a region

enclosed by a curve on S2 ⊂ R3

In this appendix, we will discuss the role of covariant derivative in differential geometry. Differen-

tial geometry studies the properties of spaces (differentiable manifolds) from an intrinsic point of

view. In general it is not possible to have a global notion of direction from which we are able to

determine when a direction (tangent vector) at a point is the same as a direction at another point.

However we say that they have the same direction with respect to geodesic if they are parallel trans-

ports of each other. The notion of parallel transport can be extended to arbitrary curves. With this

it is possible to talk about how a particular vector quantity changes along a curve intrinsically.

Let M be a differentiable manifold and c : [0, 1] → M be a smooth curve. A vector field

V along the curve c(t) in M is said to be parallel if the derivative DV
dt

= 0, i.e. the derivative

c′(t = tp)(V )|p∈M ⊥ TpM, where D
dt

is the covariant derivative along curve c(t).

In a plane, since Gaussian curvature at every point is zero, if we transport a vector keeping its

angle with the tangent along a closed curve constant, then at the return to the starting point, the

transported vector is same as the initial vector. However this is not true on curved surfaces.

Let S2 ⊂ R3 be parametrized by x(u, v) : [0, π] × [0, 2π] → R3, as shown in (4.7). Let a
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curve c(t) = x(u(t), v(t)) be defined by u(t) = π
4

and v(t) = t, t ∈ [0, 2π] is a closed curve,

c(0) = c(2π). We see that c′(t) = [0 1]T in this case. Let V = v1xu + v2xv be a parallel vector

field along c(t). And the initial vector to be transported is V |t=0 = [1 0]T . Since,

DV

dt
= 0, along c(t)

we have,
dv1

dt
xu + v1∇xvxu +

dv2

dt
xv + v2∇xvxv = 0

Figure C.1: Parallel transport of vector [−1 0]T along curve c(t) = x(u(t), v(t)) where u(t) =
π/4, v(t) = t, t ∈ [0, 2π], a latitude.

We have the Riemannian metric gij defined for S2 as described in 4.8. Hence there exists a

compatible, symmetric connection∇ on S2 for which it can be shown that along c(t)

∇xvxu = xv and∇xvxv =
1

2
xu
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Another way to compute covariant derivatives is to remove the normal component of the deriva-

tive from the directional derivatives.

∇xvxu = xvxu − 〈xvxu, n̂〉n̂

which obviously agrees with the expressions derived from the defintion of connection. Now as xu

and xv are independent vectors we have a system of first order ODE’s as:

 dv1

dt

dv2

dt

 =

 0 1
2

−1 0


 v1

v2

 (C.1)

The solution to (C.1) gives the associated v1 and v2. Figure C shows the parallel transport of

[1 0]T along c(t) and corresponding V is a parallel vector field.

As predicted, the vector on returning to its starting point has picked up an angle (2 −
√

2)π,

which not surprisingly equals to the area of the region enclosed by the curve c(t). This is in

agreement with the Gauss-Bonnet theorem, see [22].
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Appendix D

The exp and log map on SE(3)

A 1. Given [ω] ∈ so(3),

exp[ω] = I +
sin ‖ω‖
‖ω‖

· [ω] +
1− cos ‖ω‖
‖ω‖2

· [ω]2 (D.1)

A 2. Let (ω, v) ∈ se(3). Then

exp

 [ω] v

0 0

 =

 exp[ω] Av

0 1

 (D.2)

where

A = I +
1− cos ‖ω‖
‖ω‖2

· [ω] +
‖ω‖ − sin ‖ω‖
‖ω‖3

· [ω]2

A 3. Given θ ∈ SO(3) such that Tr(θ) 6= −1. Then

log(θ) =
φ

2 sinφ
(θ − θT ) (D.3)

where φ satisfies 1 + 2 cosφ = Tr(θ), |φ| < π. Further more, ‖ log θ‖2 = φ2.
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A 4. Suppose θ ∈ SO(3) such that Tr(θ) 6= −1, and let b ∈ R3. Then

log

 θ b

0 1

 =

 [ω] A−1b

0 0

 (D.4)

where [ω] = log θ, and

A−1 = I − 1

2
· [ω] +

2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)
2‖ω‖2 sin ‖ω‖

· [ω]2

A 5. Let θ1, θ2 ∈ SO(3). Then the distance L = d(θ1, θ2) induced by the standard bi-invariant

metric on SO(3) is

d(θ1, θ2) = ‖ log(θ−11 θ2)‖ (D.5)

where ‖ · ‖ denotes the standard Euclidean norm.

A 6. LetX1 = (θ1, b1) andX2 = (θ2, b2) be two points in SE(3). Then the distance L = d(X1, X2)

induced by the scale dependent left-invariant metric on SE(3) is

d(X1, X2) =
√
c‖ log(θ−11 θ2)‖2 + d‖b2 − b1‖2 (D.6)

where ‖ · ‖ denotes the Euclidean norm.
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Appendix E

Singular Value Decomposition(SVD)

Any linear transformation Am×n : Rn → Rm can be decomposed into A = UΣV ∗ form where

Um×m and Vn×n are orthogonal matrices, UU∗ = Im×m and V V ∗ = In×n, and Σm×n is the singular

value matrix with Σii = σi, where σi’s are the singular values. The decomposition of the above

form displays a suitable orthonormal basis for all the subspaces related to the matrix A [43].

If A is of rank r then we have the decomposition as follows:

Am×n =


| | | | | |

u1 . . . ur ur+1 . . . um

| | | | | |





σ1 0

. . . 0r×m−r

0 σr

0m−r×r 0m−r×m−r





− v1 −

− ... −

− vr −

− vr+1 −

− ... −

− vn −


(E.1)

The geometric interpretation of this decomposition of a square matrix A is easy to visualize.

Consider a square matrix An×n. A maps the unit sphere Sn−1 = {x ∈ Rn :‖ x ‖2= 1} to an

ellipsoid with half-axes σiui.
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E.1. Pseudo Inverse

Figure E.1: Four subspaces related to a Matrix A : Rn → Rm of rank r and hunt for orthogonal
basis {v1, v2, . . . , vn} and {u1, u2, . . . , um}.

E.1 Pseudo Inverse

The SVD can be used for computing the pseudo inverse of a matrix. The pseudo inverse of a matrix

A with decomposition UΣV ∗ is given by

A† = V ∗Σ†U, (E.2)

where Σ† is formed by replacing every non zero diagonal entry of Σ by its reciprocal and transpos-

ing the resultant matrix. Pseudo inverse is one way to solve the least squares problem Ax = b.
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E.2. Approximation of matrix A3×3 by a Rotation Matrix

E.2 Approximation of matrix A3×3 by a Rotation Matrix

Let an object be rotated, under the action of rotation matrix R, in R3. Suppose from the known

correspondence of points between the point sets before and after rotation we estimate the trans-

formation matrix A using least squares. It may happen that due to discrete grid constraint we end

up with a matrix which is not exactly the rotation matrix. Now we want to find out the rotation

matrix which is closest to the estimated transformation matrix in some sense. Formally we want

to minimize the Frobenius norm of the difference matrix (R − A). The problem can be stated as

follows:

min
R
‖ R− A ‖2F subject to RTR = I. (E.3)

‖ R− A ‖2F = Trace((R− A)T (R− A))

= 3 + Trace(ATA)− 2Trace(RTA) (E.4)

The minimization in (E.3) is reduced to minimizing the Trace(RTA) in (E.4). Substituting the

SVD of A = UΣV T in Trace(RTA),

Trace(RTA) = Trace(RTUΣV T )

= Trace(V TRTUΣ) = Trace(EΣ)

=
3∑
i=1

eiiσi ≤
3∑
i=1

σi (E.5)

This can be achieved if we set R = UV T which leads to E = I3×3.
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