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Abstract

Next generation mobile systems will use multiple antennas at the transmitter and receiver to
achieve higher capacity and diversity gain at high speeds. By transmitting through multiple trans-
mitting and receiving antennas, multiple wireless data pipes are created. A transmitted signal while
propagating through the wireless channel, undergoes multipath fading effect accompanied by noise
and interference. Mitigation of these effects and increase in throughput is only possible if the chan-
nel is accurately estimated at the receiver in order to perform coherent detection. Existing literature
mentions both coherent and noncoherent detection. However, here the work focus on coherent de-
tection due to its advantages of low power transmission and less complex transmitting and receiving
methods compared to noncoherent detection. Coherent detection consists of two steps; the first one
being channel estimation and the second is data detection.

As a first step of Coherent Detection in MIMO systems, different channel estimation methods
are investigated. Literature describes pilot assisted as well as blind methods in terms of perfor-
mance, spectral efficiency, convergence speed and complexity. Depending on slow/fast channel
fading conditions, several authors suggested adaptive MMSE, LS, LMMSE, RLS based pilot chan-
nel estimators, which either require statistical information of the channel or are not efficient enough
in terms of performance or computations.

In order to overcome the above effects, the work focuses on the QR-RLS based channel estima-
tion method for MIMO-OFDM systems. The proposed estimator uses preamble for time domain
channel tracking, thus avoiding error spreading over the whole band as in its frequency domain
conterpart. Use of RLS avoids the need for channel statistical information like MMSE, LMMSE
estimators while the use of QR decomposition also avoids matrix inversion as in RLS estimators.
For low and moderate channel fading condition, the proposed estimator is used in DDCE(Decision
Directed Channel Estimator) mode. In this, the first order markov model is used in conjucion
with the proposed estimator to estimate channel variations, symbol by symbol. For improving per-
formance in a fast fading environment, the work is advanced for QR-LS based joint coarse-fine
channel estimation. In the proposed work, QR-RLS estimated coarse channel component is used
jointly with scattered frequncy domain pilots for fine symbol by symbol channel estimation. The
proposed method gives better performance compared to pilot interpolation based estimators.

Moving to the second step of Coherent Detection, spatial multiplexing (SM) is a technique
to increase throughput by allowing multiple spatial streams in MIMO systems. At the receiver,
MIMO streams are separated using linear or VBLAST/OSIC detectors. Literature compares linear
as well as OSIC detectors in terms of performance and complexity. Many authors have suggested
optimal QR based OSIC detectors which achieve hard ML(Maximum Likelihood) performance but
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suffer from Empty Vector Set(EVS) problem while achieving soft ML performance. EVS problem
is more severe in terms of performance when the modulation order is low. Several remedies have
been described by many authors to mitigate EVS. However, they fall short in terms of performance
or complexity while achieving Soft ML performance.

To mitigate Empty Vector Set(EVS) problem effectively, two solutions are proposed here. In
the first one, an enlargement of candidate vector set of QRLRL(QR - Least Reliable Layer) based
MIMO detector for efficient soft output generation is proposed. The overall enlarged candidate
vector set consists of vectors with every constellation point tried at each layer. The proposed de-
tector thus effectively removes EVS problem and achieves soft ML performance while keeping
the computation complexity low at low modulation order. QR-LRL based IDD(Iterative Detection
and Decoding) is another solution, which exchanges the extrinsic information between detector
and decoder. Based on feedback knowledge from the decoder, a decision is made to update can-
didate vector set for soft output generation. Simulation results show that significant performance
improvement is achieved while keeping the receiver design simple.

Thesis contribution:

1. A novel method for OFDM-MIMO channel estimation using QR-RLS(Square Root-Recursive
Least Square) estimator is presented.

2. QR-RLS based MIMO(Multiple input Multiple output) channel estimation is combined with
scattered pilots for coarse-fine channel estimation in Mobile Wimax 802.16m system.

3. MIMO OSIC detectors suffer from EVS(Empty Vector Set) problem while generating soft
output. Two solutions are proposed to mitigate EVS.

(a) Candidate Vector set of QR-LRL MIMO detector is effectively enlarged to mitigate
empty vector set problem and achieve soft ML performance.

(b) QR-LRL based SM-MIMO detector is iteratively used with TURBO decoder to achieve
soft ML performance without adding any extra computational complexity to the re-
ceiver.
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Chapter 1

Introduction

1.1 MIMO OFDM Systems

In recent years, Internet usage has increased in leaps and bounds and has billions of users.
Internet usages like VOD-Video On Demand, E-Mail, Browsing, Contacts etc...demand high speed
Internet that leads to a need for broadband adoption. At the same time, cellular systems have
made it possible for people to stay connected with the world from almost anywhere, resulting
in a concept while OnTheMove. With the increase in users and their demands, the broadband
market continues to grow, which in turn leads to development of new technologies like Wimax
[1], LTE, LTE-advanced for broadband wireless. These technologies provide usage flexibility, high
throughput and more coverage.

Wireless channel[42] is the main barrier for these new technologies. It causes impairments
like noise addition, interference, multipath fading effects etc. in the transmitted signal. This de-
mands very complex algorithms in the wireless receiver to overcome these impairments. Previous
technologies like GSM[45] use FDM(Frequency Division Multiplexing), while CDMA uses or-
thogonal codes and spread spectrum to overcome channel impairments. These systems have their
own limitations. For example, FDM requires guard band for separation to overcome interference
between two consecutive users. Similarly, CDMA[45] needs to generate orthogonal sequences
with zero correlation which is difficult to achieve if the number of users increases indefinitely. This
leads to OFDM[31][66] (Orthogonal Frequency Division Multiplexing). The concept is equivalent
to dividing the channel frequency response into smaller orthogonal subbands. Since each adjacent
frequency is orthogonal to each other, it eliminates the need of guard band for separation. Simulta-
neously, OFDM divides high data rate signal into multiple small data rate signals. Moreover, it can
be implemented by simple FFT/IFFT techniques, leading to ease in implementation.
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OFDM systems generally use CP(cyclic prefix) between two consecutive OFDM symbols
to prevent ISI(Inter Symbol Interference). However, use of CP reduces spectrum efficiency. In
existing literature, various methods like front end TEQ (Time domain Equalization) and channel
shortening methods are proposed to reduce CP size. However, such TEQ suffers from noise am-
plification problem and gives poor performance in highly correlated channel environments. An
alternative method to mitigate channel effects is providing sufficient CP and 1 tap FEQ(Frequency
domain Equalization). In this method, the channel is estimated using preamble/pilot symbols. The
estimated channel is then used in FEQ to eliminate or partially mitigate channel effects.

Fading can also be overcome by using diversity techniques like space, time, frequency and
transmit diversity. Multiple versions of data are transmitted by using any of these parameters.
The receiver receives multiple versions of the same data under different fading conditions. At
the receiver, different combining methods like MRC(Maximal Ratio Combining), SC(Selection
Combining) etc. are used to overcome narrowband fading with the help of array and/or diversity
gain. Especially space diversity can be used to achieve high throughput/diversity gain by using
a multiple transceiver antenna system, which creates multiple data pipes in the wireless channel.
This results in multiple of Shannon capacity under favorable conditions. Such systems are called
MIMO systems.

The two systems mentioned above, merged to a single system and gave robust performance
and high throughput under wireless fading environment resulting in MIMO-OFDM systems[4].
Generally, MIMO-OFDM systems use CP of sufficient length to avoid ISI. For reliable demod-
ulation of the transmitted data, a receiver mitigates channel impairments like signal attenuation
and phase distortion. Such a reception strategy encourages reception methods called coherent de-
modulation [41]. There are some other methods also available for data demodulation even without
compensating the channel distortions by suitably adapting the transmission modulation. Such a
reception scheme called non-coherent demodulation[41][56], is inferior compared to coherent de-
modulation in terms of the bit error rate (BER) achieved for a given amount of transmit power [57].
For this reason, coherent reception is preferred in mostvof the modern communication systems.

1.2 Coherent Detection Requirement 1: Channel Estimation

Coherent demodulation acquires channel knowledge at the receiver to compensate for the chan-
nel induced distortions. The process of acquiring the channel knowledge is called channel esti-
mation which is an integral part of most of the communication receivers nowadays. Apart from
the knowledge of channel statistics, the channel estimator also requires knowledge of the instanta-
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neous channel values to track the channel fading and compensate it. Available literature generally
describes two types of channel estimation methods. One is based on pilot based estimation and
the other is blind estimation[58][68]. Blind channel estimation methods avoid the use of pilots and
have higher spectral efficiency. However they suffer from high computational complexity and low
convergence speed required to derive statistical information from received data. On the other hand,
pilot based estimation uses pilots in block/distributed manner, depending on channel slow/fast fad-
ing conditions. The transmitter transmits multiplexed pilot symbols along with data symbols to
acquire channel knowledge at the receiver. Such a channel estimation scheme is called Pilot Sym-
bol Aided Modulation (PSAM). The estimator then uses sophisticated signal processing algorithms
like LSE and MMSE to acquire the channel knowledge using pilot symbols.

Several authors have proposed channel estimation in frequency domain[63][35][8] for OFDM
systems using MMSE and LSE methods. However MMSE methods require prior knowledge of
channel statistics. Such information is not generally known which leads to modified LMMSE based
method. Still this method requires higher computations.On the other hand, LSE based method re-
quires just a scalar division to estimate the channel in frequency domain, but it leads to high channel
estimation MSE error since the estimation error gets spread over the whole frequency band. This
leads to time domain channel estimation which is more robust as it tracks down the inherent fre-
quency correlation among the taps.

Literature also addresses[51][20][13][55][27] time domain channel tracking methods like
MMSE, LMS, RLS adaptive estimators for OFDM systems. These methods use training symbols
for estimator coefficient updating. The author[14] suggested different methods according to their
convergence time and estimation error. As mentioned earlier, MMSE requires prior knowledge,
while LMS method only use currently received value for filter coefficient updating, resulting in slow
convergence. Filter updating based on a block of received data is more accurate, fast converging
and also averages out the noise effect. Such methods are called RLS based channel tracking. Still
RLS based updating suffers from high computation due to matrix inversion and singularity under
highly correlated channel conditions. This leads to proposed QR-RLS based channel estimation for
MIMO OFDM systems, which use preamble symbols for initial channel estimation. Literature[27]
shows use of DDCE method where first order Markov model is used for symbol by symbol channel
tracking after initial estimate. The above method produces better results in low and moderate
channel fading environments.

Under fast fading channel conditions, performance improvement is achieved by using time
domain QR-RLS channel estimator in-conjunction with scattered pilots in frequency domain. Lit-
erature [21] shows cases of only pilot based estimation where either Block, COMB, scattered
pilots are transmitted. Generally under fast fading conditions for doubly selective channels, pi-
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lots are scattered with period of coherence bandwidth and coherence time. Various interpolation
techniques[7] like linear, spline, 2D wiener based methods are then used for channel estimation
using scattered pilots. Since pilot based estimation is merely a frequency domain estimation, per-
formance is improved by combining QR-RLS based coarse channel estimation with pilot based fine
estimation.

1.3 Coherent Detection Requirement 2 : MIMO Data Detection

Once the channel is estimated, the next step in coherent MIMO system is to detect the correct
symbols. Use of multiple antennas for transmission leads to various gains like array gain, diver-
sity gain,etc.[40]. While array gain and diversity gain provide system reliability and increase the
coverage area or decrease the required transmit power, SM (Spatial Multiplexing) increases the
achievable data rate and hence the system capacity. Unfortunately, the Spatial De-multiplexing at
the receiver is a challenging task.

Maximum Likelihood (ML) decoding achieves good error performance. However, its com-
putational complexity increases exponentially with regard to the number of transmit antennas or
spatial streams. On the other hand, linear filtering approaches such as Zero Forcing (ZF) or Min-
imum Mean Squared Error (MMSE) detection require low complexities. But their error perfor-
mance is poor due to noise enhancement in the filtering process. VBLAST(Vertical Bell labs),
an OSIC(Ordered Successive Interference Cancellation) method is an optimal solution in terms of
complexity and performance. A lot of research has been done in OSIC based detection method.
Since the conventional OSIC detectors detect symbols successively, it suffers from error propaga-
tion if the correct symbol is not found at the first layer. However, QR-LRL based OSIC guarantees
minimum error propagation among all the OSIC detectors and achieves hard ML performance. But
it suffers from Empty Vector Set problem while achieving soft ML performance.

Several remedies are addressed in the literature [54][26][16]. These include (i) deriving
threshold value from non-suffering EVS layer, (ii)deriving log likelihood function from the remain-
ing candidate vectors for non-existing bits and (iii) use of multiple QR decomposition structure for
trying every constellation point at each layer. However, they all fall short in terms of complexity or
performance, which leads to two proposed solutions to mitigate EVS.

1.4 Thesis Organization

This thesis is organized as follows: Previous work and proposed time domain QR-RLS chan-
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nel estimator are described in detail in chapter two. Since all simulation parameters use Wimax
(802.16m) standard phy. layer, an overview of Wimax system block diagram and down link frame
format is given in chapter three. The fourth chapter describes joint coarse-fine QR-LS channel
estimator for fast fading channel environment. Soft output generation and EVS (Empty Vector Set)
problem for SM-MIMO data detection is defined in the fifth chapter. The sixth chapter provides
two different solutions to mitigate EVS problem and produce soft output. The thesis is concluded
in chapter seven.
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Chapter 2

QR-RLS based MIMO-OFDM Channel
Estimator

2.1 Channel Estimation in OFDM Systems

Generally, in OFDM system (for ex. Fig.(3.1)), the transmitter modulates the message bit se-
quence into PSK/QAM symbols, performs IFFT on the symbols to convert them into time domain
signals and sends them out through a channel. The received signal undergoes multi-path and addi-
tive noise effect while propagating through wireless medium. The channel effect is estimated and
compensated in the receiver to recover original transmitted bits sequence. When the received sig-
nal is free from ICI[66], orthogonality between subcarriers is maintained. This in turn allows each
subcarrier component of the received signal to be expressed as the product of the transmitted signal
and channel frequency response at the subcarrier. Thus, the transmitted signal can be recovered by
estimating the channel response just at each subcarrier.

In general, the channel can be estimated by using a preamble or pilot symbols known to both
transmitter and receiver, which employ various interpolation techniques to estimate the channel
response of the subcarriers between pilot tones. In several techniques[51][20][13], channel is esti-
mated in time domain using inherent correlations of received signal by adaptive methods and then
transformed to frequency domain as channel response of the subcarriers. In order to choose the
channel estimation technique for the OFDM system under consideration, many different aspects of
implementation, including the required performance, computational complexity and time-variation
of the channel must be taken into account.
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2.2 Time Domain Channel Estimation

2.2.1 Previous Work

As discussed earlier, depending on the requirement various channel estimation methods are con-
sidered by literature. Author[31] proposed that OFDM, a wireless access method is much more ro-
bust for multipath channel impairments compared to FDMA, TDMA. Generally it uses orthogonal
tones for data transmission and thus prevents any guard band requirements between two consecu-
tive tones. In[11], the author exploits (MIMO) multiple antenna technology by processing spatial
dimension to gain more capacity as well as diversity compared to single antenna systems. Com-
bining the two technologies mentioned above, results in MIMO-OFDM[44] system, which in turn
results in a very promising system with capacity increase and robustness to channel impairments.

Author[63][35] proposed the use of DPSK modulation scheme to successfully decode the
received signal without channel knowledge. Author[63] mentioned the need for channel estimation
to use multi amplitude modulation scheme for coherent detection. He mentioned MMSE, LSE es-
timator. However, MMSE estimator being computationally complex also requires prior knowledge
of channel statistics. He simplified MMSE estimator by truncating the low energy values of auto-
correlation matrix to zero which results in modified MMSE estimator. He also mentioned the use
of just a scalar division which results in LS estimation in frequency domain. Author[8] proposes
the use of SVD decomposition for LMMSE estimator which results in low rank estimator while
preserving the performance.

Author[35] suggested robust MMSE channel estimator which overcomes pre-requirement of
channel statistics by fully utilizing time and frequency correlations of the frequency response of
time varying dispersive fading channels. Author[2] [36] suggested optimal training sequence based
simplified channel estimator for MIMO-OFDM system. In this method, training sequence is de-
signed by carefully selecting the relative phase of training sequences between different transmitting
antennas. In [18] the author proposed two one-dimensional separable wiener filters for frequency
selective channels. Here he assumes the worst channel parameter statistics like maximum Doppler
spread and maximum Delay spread to approximate autocorrelation matrix.

Using above idea author[55] proposes adaptive wiener filter for time varying channels which
do not require prior knowledge of channel statistics. However, he uses NLMS and RLS algorithm
to update wiener filter coefficients. In[20], the author proposed adaptive RLS based channel es-
timator for OFDM systems, which eliminates the need for channel correlations. Author[27] has
shown the use of Decision Directed Channel Estimation(DDCE) joint channel tracking and data
estimation for MIMO block fading channels. In such a case, channel tracking is done during train-
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ing period and then the data is detected using channel knowledge. In[51], the author shows that
time domain method exploits the inherent frequency correlation among the taps. Hence it is more
robust compared to frequency domain estimation[63] where the estimation error will get spread
over the whole frequency band. In[52], the author suggested adaptive RLS channel estimator for
MIMO extended WLAN. Generally, RLS based estimators involve matrix inversion which leads
to high computational complexity and produces round-off error. In [39], the author showed the
effect of round-off error and also[9][14] suggested use of square root(QR) estimators to mitigate
round-off error.

In continuation to the work referred to above, here, preamble based QR-RLS adaptive[48]
channel estimator for MIMO-OFDM systems is derived. The proposed algorithm is a linear exten-
sion of its SISO version given in [47]. The proposed estimator uses QR factorization of correlation
matrix[38] and thus simply avoids complexity and round-off error. Here, the major focus has been
on complexity reduction fromO(N3) toO(N2) and ease of updating QR estimator for time varying
channels. Estimated channel at preamble symbol is then used for data detection with two different
modes. For flat fade channel, first order Markov process is applied for estimating channel fad-
ing parameter. This in turn uses DD(Decision Direct) mode for data detection for the rest of the
frame. However, for fast fading channels, further performance improvement can be achieved by
joint preamble-pilot based channel estimation and is described in a later chapter.

2.3 MIMO System Model

A general MIMO system model with Nt transmit, Nr receive antennas is shown in Fig.(2.1).
X1, X2, X3....XNt represents respective input signals to Nt input antennas, where

Xp = [x(p,n), x(p,n+1), ...x(p,n+Ns−1)]

at time n, with Ns data symbols. For making analysis simple consider Nt = Nr.
The Multipath time variant channel between pth transmit and qth receive antenna with L resolv-

able paths is given by

hpq(τ, t) =
L−1∑
n=0

βpq(l) · δ(τ − Tl) (2.1)

where
βpq(l) = αpq(l) · ej(θl+2πf(D,l)t) (2.2)

where αl, θl and f(D,l) denote the amplitude, phase and the Doppler shift of the lth path, respectively.
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Figure 2.1: MIMO OFDM System Model

Assuming isotropic scattering, the autocorrelation of the path gains as shown in[64] is

rl(τ) = E[β∗l (t)βl(t+ τ)] = σ2
l J0(2πfDmaxτ) (2.3)

where σ2
l is the power of the lth path gain, J0(x) is the Bessel function of the first kind of order 0,

and fDmax is the maximum Doppler frequency which is related to the velocity v of movement and
the wavelength λ of the carrier frequency fDmax = v/λ.

The received signal Y at time n, in square matrix form having dimension [(Nt · L)× (Nt · L)]

can be expressed as
Y (n) = (U(n) ·H(n)) + V (n) (2.4)

where matrix U(n) is prewindowed matrix[38] of [(Nt ·L)× (Nt ·L)] having Nt ·L data symbols
from each Tx. antenna at time instant n, For ex. at time instant n = 0, U(0) is given by,

x1,0 0 . 0 . xNt,0 0 . 0

x1,1 x1,0 . 0 . xNt,1 xNt,0 . 0

. . . . . . . . .

x1,L−1 x1,L−2 . x1,0 . xNt,L−1 . . xNt,0

. . . . . . . . .

x1,2L−1 . . x1,L . xNt,2L−1 . . xNt,L

. . . . . . . . .

. . . . . . . . .

x1,Nt·L−1 . . . . . . . xNt,L



where rows of matrix U represents prewindowed data, like prewindowed data at time n is

Xpre(n) = [x1,n, x1,n−1, ..x1,n−L+1, x2,n, x2,n−1..., xNt,n...]
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Y (n) is [(Nt · L)× (Nt · L)]

Y (n) = [Y1(n), Y2(n), Y3(n)...YNr(n)]

where Yq(n) is

Yq(n) = [y(q,n), y(q,n+1)...y(q,n+(Nr·L)−1)]
T

and
H(n) = [H1(n), H2(n), ...HNr(n)]

where Hq(n) is
Hq(n) = [H(1,q)(n), H(2,q)(n)...H(Nt,q)(n)]T

and H(p,q)(n) is
H(p,q)(n) = [hpq(n, 0), hpq(n, 1), .....hpq(n, L− 1)]T

V is [(Nt·L)×(Nt·L)]with complex elements that are independent and identically distributed(i.i.d.)
Gaussian random variable with zero mean and variance σ2

v .

2.4 Proposed QR-RLS based Coarse Channel Estimation using
Preamble

Each transmitter transmits Preamble as first OFDM symbol. Channel is estimated during this
training period, where estimated channel is H̄ .

Consider the received signal at qth receive antenna represented in matrix form as

Yq(n) = (U(n) ·Hq(n)) + Vq(n) (2.5)

The posteriori error is given by the difference between the received preamble symbol and it’s
corresponding estimate at time n on qth receiving antenna

e(q, n) = y(q, n)− ȳ(q, n) (2.6)

e(q, n) = y(q, n)−Xpre(n).H̄q (2.7)
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Where H̄ has the same dimensionality as H . The Weighted Least square error at time n is given by

ζ(n) =
n∑
i=0

λn−i|e(q, i)|2, (2.8)

where λ is forgetting factor, whose value lies between (0,1) depending on channel fading condi-
tions. Solution of the above equation gives the optimum value for the estimated channel coefficients
H at time n. The optimum solution of Eq.(2.8) is given by[14][37]

H̄q(n) = R−1
X (n) ·RYqX(n) (2.9)

where RX = (UTU) = XT
preXpre is the autocorrelation matrix of the preamble signal, and RYqX is

the cross correlation matrix between received signal and the preamble signal at time n.
Using simplicity, by rewriting above Eq.(2.9)

H̄q(n) = (XT
pre(n)Xpre(n))

−1
XT
preYq(n) (2.10)

Initialization: Decomposition of matrix U is given by

U(Nt·L)×(Nt·L) = Q(Nt·L)×(Nt·L)R(Nt·L)×(Nt·L)

Where Q is orthogonal matrix and R is upper triangle matrix. substituting this into Eq.(2.10) results
in

H̄q(n) = R−1(n)QTYq(n) (2.11)

Each antenna has it’s own preamble sequence.
Updating: QR decomposition of compound matrix U at time n is

[U(n)|Yq(n)](Nt·L)×((Nt·L)+1) = S(n).T (n) (2.12)

where
S(n) = [Q(n)|q(n)]Nt·L)×(Nt·L)+1)

and
T (n) =

[R(n)|Z(n)

0|ξ(n)

]
(Nt·L)+1)×(Nt·L)+1)
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where Z(n) = RYqX(n) = QTd(n) from Eq.(2.12). Then at time (n+ 1)

[U(n+ 1)|D(n+ 1)](Nt·L)+1)×(Nt·L)+1) = S(n+ 1).T (n+ 1) (2.13)

T (n+ 1) = [Q(n+ 1)|q(n+ 1)](Nt·L)+1)×(Nt·L)+1)

S(n+ 1) = [
R(n+ 1)|Z(n+ 1)

0|ξ(n+ 1)
](Nt·L)+1)×(Nt·L)+1)

where updated matrix using Eq.(2.12) and Eq.(2.13) is

[U(n+ 1)|D(n+ 1)] =
[ U(n)|D(n)

X(n+ 1)|d(n+ 1)

]
(2.14)

combining Eq.(2.12)(2.13) and(2.14) and keeping the fact that last row of R is 0, the new matrix
for QR factorization at time (n+ 1) is

[U(n+ 1)|D(n+ 1)] =
[ R(n)|Z(n)

X(n+ 1)|d(n+ 1)

]
(2.15)

by QR factorizing above Eq.(2.15) updated vector

H̄q(n+ 1) = R−1
x (n+ 1)Z(n+ 1) (2.16)

is computed.

2.5 DD Mode for Data Detection

As shown above, let Hq(n) is channel estimated at time n. Assuming that the CIR taps are
slowly varying and fade at the same Doppler rate, then it may be possible to statistically describe
such variations according to the first order Markov process as follows [13]

Hq(n+ 1) = A ·Hq(n) + Vq(n) (2.17)

where A = aI

and a = J0(2π · fDmax · Ts)
The above term is a parameter very close to unity and it indicates that channel variation is minor
from time n to n+1. Channel is estimated using this assumption for the rest of the frame (symbols
other than preamble). However, in fast fading channel the above mentioned Markov model based
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Figure 2.2: Convergence of Various Methods

estimation is not very useful. In such case, scattered pilots provide the additional information
regarding channel variation which helps in performance improvement as shown in a later chapter.

2.6 Simulation Results

SISO System Parameters Simulation parameters:
Frame size : 2 subframes
OFDM symbols per subframe : 5
First Symbol of each frame is Preamble symbol
Preamble length : 160 samples
FFT size: 64
CP size : 16
Fs = 11.2 MHz
Ts = 112 µsec
Channel profile: Flat fade channel with channel length L = 6, 29
Doppler Frequency FDmax ≤ 5
No. of Tx and Rx. antenna = 1
Forgetting factor λ for RLS, QR-RLS = (0.995→ 1)

The above Fig.(2.2) shows the convergence results for various channel estimators at two differ-
ent SNR values. The channel considered here is flat fade channel with channel length L = 6. The
graph shows that proposed estimator only uses ≤ 10 percent of training data and at the same time
results in faster convergence to optimum solution compared to other methods. Result also shows
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Figure 2.3: Channel Estimation Error and BER performance for Various Estimators

that RLS estimator and proposed QR-RLS estimator provides similar performance for forgetting
factor 1, except less computational complexity for the propsed one.

The simulation result in Fig.(2.3) compress various channel estimation and TEQ methods to
overcome channel fading effects. Comparision is provided for flat fade channels with different
channel lengths. The performance is evaluated in terms of MSE error of channel estimate, which
is defined as e(n) = E ‖ H(n) − H̄(n) ‖2. Comparison is between MMSE[63][35], LMS based
TEQ[29], RLS, QR-RLS based TEQ[47], RLS[20],QR-RLS based Channel estimation, Frequency
domain LS[63] estimation. For flat fade channel, forgetting factor is kept 1, which results in overlap
of RLS, QR-RLS estimator MSE, BER curves and can be seen in Fig.(2.3). Also, Fig.(2.3),(2.4)
clearly indicates that for flat fading channels with (CIR ≤ CP) almost every estimator works well.
MMSE gives superior performance while frequency domain LS gives quite inferior performance
at the advantage of lowest complexity. LMS, RLS based inverse ZF TEQ results in inferior perfo-
mance due to noise amplification and it get worsen for CIR>CP. Fig.(2.4) shows BER performance
results for the case ( CIR ≥ CP ), In such case, estimator with lower filter taps doesn’t reach the
near optimum performance. However, increasing the number of taps according to channel rank(≈
channel length L), near optimum performance results can be gained.

MIMO System Parameters
Simulation parameters:

Frame size : 2 subframes
OFDM symbols per subframe : 5
First Symbol of each subframe is Preamble symbol
FFT size: 1024/2048
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Figure 2.4: BER Performance for Estimator with 14 taps and 29 taps
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Figure 2.5: Comaprision of Chanel Estimation Error For 2x2 MIMO system

Fs = 11.2/22.4 MHz
Ts = 103.5 µsec
Channel profile: PED-A (3-30 km/hr), Veh-A (30-120 km/hr)
Doppler Frequency FDmax = 8-300
No. of Tx and Rx. antenna = 2
Forgetting factor λ for RLS, QR-RLS = (0.99→ 1)

Here the number of subcarriers is increased from 64 to 1024/2048, which helps in dividing
the channel bandwidth into more parts and makes frequency selectivity to almost flat one. The
number of antennas is also increased in spatial direction to achieve more throuhput. However it
comes with additional channel estimation requirements (for the considered case, 4 channel should
be estimated) compared to SISO case. Fig(2.5) compares MSE error for all channel estimators for
2x2 MIMO systems. Since channel is realized for 1000 realizations with diffrent vehicular speeds
varying from 3km/hr to 120 km/hr, the forgetting factor ranges from (0.99)→ 1. Simulation result
of Fig. (2.5) almost follows the SISO channel estimation results. Fig.(2.6) shows convergence
results of propesed estimator for MIMO-OFDM system with different SNR values. Fig.(2.7),(2.8)
compare MSE error and BER performances of the proposed estimator with various estimators for
2x2 MIMO systems. As discussed earlier, orthogonal preamble sequence is used for two antenna
system. BER performance can be found by DDCE method. For Ped-A channel, channel variations
are slow which results in fading parameter almost equal to 1 and can be well approximated by the
method used. However, for Veh-A channel the MSE, BER gap increases between ideal channel
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Figure 2.6: QR-RLS Estimator Convergence for Different SNR

Figure 2.7: MSE Error and BER performance for PED-A channel With Different speeds
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Figure 2.8: MSE Error and BER performance for VEH-A channel

Table 2.1: Complexity of All Adaptive Time Tracking Methods[47]
Method Complexity in Complex multiplications (channel length P)
LMS 2P
RLS 3(P 2 + 2P + 2)

QR−RLS(Gram− schmidt) 3(P − 1)2 + 2p2

QR−RLS(GivensRotation) P 2 + 5p

known and proposed estimator. The increase in error gap for BER peformane is due to the assump-
tion of fading rate according to Markov model. This shows that performance results get worse for
fast fading channel.
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Chapter 3

Wimax Overview

Wimax Phy. Layer is based on orthogonal frequency division multiplexing(OFDM). OFDM is
the transmission scheme of choice to enable high-speed data, video and multimedia communica-
tions and is used by a variety of commercial broadband systems, including DSL, Wi-Fi, Digital
Video Broadcast-Hand held (DVB-H) and WiMAX. Also, OFDM is an efficient scheme for high
data rate transmission in a non-line-of-sight(NLOS) or multipath radio environment.

3.1 Wimax: An Example of MIMO-OFDM System

3.1.1 Transmitter

Block Diagram in Fig.(3.1) shows various functional stages of a Wimax Phy. Layer. As a spe-
cific case DownLink Transceiver of 802.16m is considered here. It consists of a Channel Encoder,
QAM Mapper, MIMO Mapper, Resource allocation, Carrier mapping by IFFT and (Cyclic Prefix)
CP addition block (to prevent ISI). A brief description of each block is given below.

Channel Coding

Channel coding stage consists of the following steps: (1) data randomization, (2) channel cod-
ing, (3) rate matching, (4) HARQ, if used and (5) interleaving.
Data randomization is performed in the uplink and the downlink, using the output of a maximum
length shift-register sequence that is initialized at the beginning of every FEC block. The purpose
of the randomization stage is to provide layer 1 encryption and to prevent a rogue receiver from
decoding the data. Channel coding is performed on each FEC block which adds redundancy in the
code. By means of rate matching, any arbitrary code rate can be achieved from a fixed-rate mother
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Figure 3.1: Block Diagram DL Tx 80216m

code. Any code rate (r) can be obtained from the initial 1/3 code via a process of bit puncturing
for (r ≥ (1/3)) or repetition (r ≤ (1/3)). Interleaving helps to provide maximum decorrelation
between two Turbo encoded data sequences. This helps during channel fades as both sequences
cannot be similarly affected. Generally, Turbo codes are used for channel encoder due to their
better convergence, greater minimum distances between generated codewords, less sensitivity to
puncturing patterns and robustness of the decoder[59][56].

QAM-Mapper

The sequence of binary bits is converted to a sequence of complex valued symbols. The constel-
lations are QPSK and 16 QAM, 64 QAM constellation. Each modulation constellation is scaled by
a number c, such that the average transmitted power is unity. The value of c is

√
1/2,

√
1/10 and√

1/42 for the QPSK, 16 QAM, and 64 QAM modulations, respectively.

MIMO Mapper

There are various MIMO open loop and close loop modes with transmit and receive diversity
as explained earlier. Here, the work consider only SM case in particular with SU-MIMO (Single
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User-MIMO) case to achieve high throughput.
MIMO Mapper is made of MIMO encoder and MIMO precoder. MIMO encoder maps input MIMO
layers to MIMO streams. MIMO layer is an information path fed to the MIMO encoder as an input.
For example, in SFBC encoding, the input data s = [s1, s2, s3....] to MIMO encoder is divided in
pairs of consecutive 2× 1 sample pairs (MIMO layer). The first pair is(

s1

s2

)

MIMO encoder encodes (
s1 −s∗2
s∗1 s2

)

Since here SM case with 4× 4 antenna is considered, MIMO stream mapping (Vertical encoding)
is 

s1

s2

s3

s4



MIMO precoder uses a set of codebooks to map MIMO stream to antenna. The output of the
MIMO encoder is multiplied by a precoder weight matrix W. The Matrix from the codebook is
chosen according to some fixed statistics in open loop and channel feedback knowledge in closed
loop. Precoder is much more useful for directional beamforming when multiuser MIMO is used. It
helps to nullify or minimize interference for a selected user due to other users’ data transmission.

Resource Mapper

According to channel conditions, the data is allocated to available resource subchannels. A
subchannel is a group of subcarriers (orthogonal frequencies in this case). Under good channel
conditions, large band of adjacent subcarriers are assigned. However, under worst conditions,
adjacent data is assigned to permuted subcarriers, so that the resultant signal doesn’t experience a
continuous deep fade. Pilots are added in the resultant block signal while fulfilling the delay spread
and coherence time spacing in time-frequency subframe grid to carry out channel estimation at the
receiver.

IFFT

It assigns orthogonal frequencies (OFDM as explained earlier) to MIMO data streams from
MIMO Mapper block.
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Wireless Channels

Data is transmitted by multiple antennas and propagates through multipath fading channel with
additive noise as explained earlier.

3.1.2 Receiver

Channel Estimation

This block is responsible for tracking the channel multipath effect and time variation and is
described in detail in a later chapter. The first block in the receiver is the channel estimator. The
need for channel estimation has been explained earlier. Previous work for SISO/MIMO channel
estimation, Block/Comb pilot interpolation based Slow-Fast fading channel estimation, Wimax
channel estimation requirements and proposed joint Coarse-Fine channel estimation methods is
detailed in other chapters.

MIMO Hard/Soft Detection

Once the channel is estimated, then MIMO data streams are detected using various MIMO
linear and OSIC detectors. Soft QR-OSIC based detectors are optimal in terms of performance and
complexity, but they suffer from EVS (Empty Vector Set) problem. The appropriate solution while
achieving soft ML capacity is described in detail in a later chapter.

CTC Decoder

The decoder is iterative Turbo decoder and uses Max log Map, BCJR algorithm[3][56]. The
decoder uses 3-4 internal iterations and exchanges soft information between two internal decoders
back and forth to achieve extrinsic gain. Usefulness of extrinsic gain in achieving soft ML capacity
is explained in a later chapter. The other blocks like MIMO demapper, QAM demapper are dual of
transmitter blocks.

3.2 Wimax Frame Format

As shown in Table 775 of [23], various OFDMA parameters are considered for different chan-
nel bandwidths. Here the work concentrate on one particular case with parameters as shown in
Fig.(3.2).
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Figure 3.2: OFDMA parameters for Considered Case

Figure 3.3: WiMax Basic Frame Structure

The advanced air interface basic frame structure is illustrated in Fig (3.3). Each 20 ms
superframe is divided into four equally-sized 5 ms radio frames. When using the same OFDMA
parameters with the channel bandwidth of 20 MHz, each 5 ms radio frame further consists of eight
AAI subframes for G = 1/8. An AAI subframe shall be assigned for either DL (Down Link) or UL
(Up Link) transmission. Two types of AAI subframes are considered:
1) The type-1 AAI subframe which consists of six OFDMA symbols,
2) The type-3 AAI subframe which consists of five OFDMA symbols.
The basic frame structure is TDD duplexing. The number of switching points in each radio frame
is two, where a switching point is defined as a change of directionality, i.e., from DL to UL or from
UL to DL.
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3.2.1 TDD Frame Structure

In a TDD frame with DL to UL ratio of D:U (Down Link to Up Link), the first contiguous D AAI
subframes and the remaining U AAI subframes are assigned for DL and UL respectively, where
D + U = 8 for 20 MHz channel bandwidths. TTG (Transmit Transition Gap) and RTG (Receive
Transition Gap) are 105.714 µs and 60 µs, respectively.

Downlink Physical Structure [23]

Each down link AAI subframe is divided into 4 or fewer frequency partitions. Each partition
consists of a set of physical resource units across the total number of OFDMA symbols available
in the AAI subframe. Each frequency partition can include contiguous (localized) and/or non-
contiguous (distributed) physical resource units.

Physical and Logical Resource Unit

A PRU (Physical Resource Unit) is the basic physical unit for resource allocation that comprises
Nsc consecutive subcarriers by Nsym consecutive OFDMA symbols. Nsc is 18 subcarriers and
Nsym is 6 and 5 OFDMA symbols for type-1 and type-3 AAI subframes respectively. A LRU
(Logical Resource Unit) is the basic logical unit for distributed and localized resource allocations.
An LRU is Nsc·Nsym subcarriers for type-1 AAI subframes, type-3 AAI subframes. The effective
number of subcarriers in an LRU depends on the number of allocated pilots. Fig. (3.4) describes
various resorce units.

Distributed Logical Resource Unit

The DLRU (Distributed Logical Resource Unit) consists of a group of subcarriers that are spread
across the distributed resource allocations within a frequency partition. The size of the DLRU
equals the size of PRU, i.e., Nsc subcarriers by Nsym OFDMA symbols. The minimum unit for
forming the DLRU is equal to a pair of subcarriers called a tone-pair. The DLRUs are obtained by
subcarrier permutation of the DRUs (Distributed Resource Units).

Contiguous Logical Resource Unit

The localized logical resource unit, also known as CLRU (Contiguous Logical Resource Unit)
contains a group of subcarriers that are contiguous across the localized resource allocations. The
size of the CLRU equals the size of the PRU, i.e., Nsc subcarriers by Nsym OFDMA symbols. The
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Figure 3.4: Resource Unit

CLRUs are obtained from direct mapping of Contiguous Resource Units (CRUs). Two types of
CLRUs, Subband LRU (SLRU) and Miniband LRU (NLRU), are supported respectively. Here the
work concentrate on Subband CRUs only.

Subband vs. Miniband

The PRUs are first subdivided into subbands and minibands. A subband comprises of N1 adja-
cent PRUs and a miniband comprises of N2 adjacent PRUs, where N1 = 4 and N2 = 1. Subbands
are suitable for frequency selective allocations as they provide a contiguous allocation of PRUs in
frequency. Minibands are suitable for frequency diverse allocation and are permuted in frequency.

Pilot Structure

The transmission of pilot subcarriers in the down link is necessary for enabling channel estima-
tion, measurement of channel quality indicators such as the SINR, frequency offset estimation, etc.
The pilot patterns on stream 0 - stream 3 for four pilot streams are shown in Fig. (3.5).

Advanced Preamble

There are two types of Advanced Preamble (A-Preamble): Primary Advanced Preamble (PA-
Preamble) and Secondary Advanced Preamble (SA-Preamble). One PA-Preamble symbol and three
SA-Preamble symbols exist within the superframe. The location of the A-Preamble symbol is
specified as the first symbol of the frame. SA-Preamble for 2048 FFT, 4 antenna case is shown in
Fig. (3.6), which shows that generated preamble sequence for four antennas are orthogonal and do
not contribute interference to each other. Here, the work utilizes SA-Preamble to estimate channel
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Figure 3.5: Pilot Pattern for 4 data streams

Figure 3.6: SA-Preamble

in time domain using QR-RLS estimator.

As seen in the frame format, preamble is followed by subframe zero. It consists of SFH
(Super Frame Header), A-MAP and data burst. SFH contains control data information like, fre-
quency offset, OFDM symbol number for data burst start and end, number of users, number of
CRUs/DRUs allocated etc. Subframe 1 and 2 follow subframe 0, which consists of data bursts
allocated in different frequency partitions. MIMO midamble then follows which is used for Chan-
nel Quality Information (CQI) during MIMO close loop configuration. CQI estimated at mobile
station using MIMO midamble is then fed back for codebook selection when used in MU-MIMO
environment. Subframe 4 and 5 contain data burst which is follwed by TTG and UL data.
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Chapter 4

QR-LS Based Coarse-Fine Channel
Estimator

4.1 Pilot Based Estimation

4.1.1 Previous Work

Generally OFDM system performance is greatly influenced by channel estimation. Pilot sym-
bol assisted channel estimation is one of the promising methods due to its simple implementation
and robust performance. Author [63] suggested block pilot (training data) based MMSE, LSE es-
timator for OFDM systems. Author [19] derived 2D optimum wiener filter for pilot based channel
estimator. The author in [34] proposed pilot assisted robust channel MMSE estimator for OFDM
systems which doesn’t require prior knowledge of channel statistics. Author [62] proposed a novel
pilot based estimation (with different pilot patterns) depending on channel statistics that leads to
better BER performance or reduced number of pilots. Author [67] represented a transform domain
DFT-IDFT technique using pilots for channel estimation.

In [21][6] the author suggested Block, COMB pilot arrangement [4] for channel estimation
in OFDM systems. He has shown that in block type, OFDM symbols with pilots at all subcarriers
(carriers in frequency direction of Time-Freq. grid) are transmitted periodically for channel estima-
tion. A pilot at each subcarrier leads to better channel estimation for frequency selective channels.
At the same time, periodic transmission with period of coherence time will keep good track of
time-varying channel characteristics. Similarly COMB type pilot arrangement is good for fast fad-
ing channel. In [4] [19] the author used scattered pilot arrangement for channel estimation. In this
method, pilots are scattered with period of coherence time and coherence bandwidth in time and
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Figure 4.1: Preamble-Pilot based Coarse-Fine Vs. COMB Pilot Based Linear Estimation

frequency direction of Time-Freq. grid respectively. Such an arrangement leads to better channel
tracking for frequency selective as well as fast fading channel environment.

Generally, various interpolation methods MMSE [34][7][67][61] are used along with scat-
tered pilots to estimate channel at every point. Author [7] represented a report on linear interpola-
tion based pilot assisted channel estimator. However, all the work mentioned above use pilots in
frequency domain for channel estimation which itself is inferior to its time domain counterpart for
OFDM systems [51]. In the presented work, performance improvement over pilot based estimator
is gained using time-frequency joint channel estimator as discussed below.

4.2 Proposed QR-LS Coarse-Fine Channel Estimation for WiMax

4.2.1 Background

As discussed earlier, DDCE based channel estimator is limited in performance for low and
moderate vehicular speeds. Here the work is extended for QR-LS based joint coarse-fine channel
estimator [49]. As mentioned earlier, the proposed QR-RLS based MIMO time domain channel
estimator better tracks the coarse component of the channel in time domain. Once the coarse
component is estimated, fine component of the channel is found out in frequency domain using
scattered pilots as shown in Fig. (4.1). This leads to better channel tracking compared to only pilot
based linear estimation in fast fading channels.
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4.2.2 Pilot Based Fine Estimation

As mentioned previously, PRU is the smallest resource allocation unit in a subframe, which
contains data as well as pilot subcarriers. Let the number of data burst transmitted in a subframe be
Nd. Within a subframe, Nd data burst is allocated in Np PRUs. Therefore, pilots per subframe per
stream are Nd·Np. For simplicity Nt = Nr = 4 is considered, and number of data stream is also 4.
Pilots per PRU per data stream is 4 as shown in Figs. (4.1) and (3.5) [23]. Since the frame preamble
symbol is referenced at time n, then OFDM symbols will occur at time n + 1, n + 2, n + 3.... Let
theXpqk(n+1) and Y pqk(n+1) denote the transmitted and received pilot subcarriers at time n+1

at qth antenna and kth subcarrier. Then the channel at time n+ 1 is given by

Ĥpqk(n+ 1) = Y pqk(n+ 1)/Xpqk(n+ 1) (4.1)

Also Eq. (2.16) provides preamble based time domain channel component H̄q. Taking FFT pro-
vides FFT (Ĥq) = Ĥpreq(n) where Ĥpreq(n) denotes the estimated channel at the qth antenna
at preamble symbol at time n. Now at the initial stage, let (Ĥpqk(n)) = Ĥpreq(n) (since the first
symbol of frame is preamble symbol). Then by using Eq. (4.1) with (Ĥpqk(n)), fading parameter
Dopa at time n+ 1 for ith subband is derived as shown in Fig. (4.1) given by

Dopa(n+ 1, i) =
1

(N1)
·
N1∑
k=0

Ĥpqk(n+ 1)/Ĥpqk(n), (4.2)

Using the above Eq. (4.2), where N1 = 2 or 4 depepnds on channel fast/slow fading. Channel at
every subcarrier at time n+ 1 is calculated as follows:

Ĥpq(n+ 1) = Dopa(n+ 1) · Ĥpq(n) (4.3)

For channel estimation at next OFDM symbol, (Ĥpqk(n + 1)) becomes (Ĥpqk(n)) and the above
three equations Eq. (4.1),(4.2) and (4.3) are repeated with time n. As seen in Fig. (3.5), pilots
are not transmitted for every 3rd symbol. In such a case, Dopa is derived from the next symbol
and channel is estimated. Channel coefficients for 3rd symbol is then derived by averaging the two
nearest symbols, i.e. 2nd and 4th symbol in this case.

4.2.3 Simulation Results

Simulations are provided here for various pilot interpolation based channel estimators. It pro-
vides comparison of various interpolation methods in terms of performance and complexity. This
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is used as a refrence to select the best complexity and performance trade off method to be used for
comparision with the proposed estimator.

Pilot Interpolation Based Estimation for Flat Fade Channel

Nominal Channel B.W. = 10 MHz
Fs = 11.2 MHz
T = 1/Fs = 89.2 ns
FFT Size = 1024
∆F = 10.9375 kHz
Pilot Boost = 16/9
Ts ≈ (1 / ∆F) = 92e-6
Channel: Flat Fading channel, 3 km/hr, Veh-A, Ped-B
Flat Fading channel PDP:
delays = [0 60 110 170 240 290 340 390 ] nsec;
powers = [0 -5.2 -4.7 -9.9 -13.7 -18.0 -22.4 -26.7];
Veh-A PDP:
delays = [0 310 710 1090 1730 2510];
powers = [0.0 -1.0 -9.0 -10.0 -15.0 -20.0];
Ped-B PDP:
delays = [0 200 800 1200 2300 3700];
powers = [0.0 -0.9 -4.9 -8.0 -7.8 -23.9];

Tmax = 390e-9 (Flat Fade),2510e-9(Veh-A), 3700e-9(Ped-B)
Modulation : BPSK, 64-QAM
Pilot Spacing : less than DT, DF ( Throughout simulation considered 4, reason given below[19])
DT (Spacing in time Direction between two pilots) = 1/( Doppler-spread · Ts)
DF (Spacing in freq. Direction between two pilots) = 1/( Tmax · ∆F)
Doppler-spread : 25.2, 252 (for operating freq. 9.1 GHz, speed 3, 30)
For 25.2, 252, cases , DT < 10 . Tmax = 3700ns, ∆F = 10.9375khz, DF ≤ 6.

Here simulation results of various interpolation methods like MMSE [34], linear [7], in-
terp (interp matlab function) and DFT-IDFT [67] are shown for refrence. The MMSE interpolation
method used here for comparision is based on preassumption of maximum delay spread and doppler
spread as given in [19][34]. Time-Freq. grid with period of coherence time and coherence band-
widh is considered. All the simulation results shown here are only for frequency direction, taking
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Figure 4.2: Various Pilot Interpolation Methods For Flat fade(PED-A) channel

Figure 4.3: Various pilot interpolation for VEh-A
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Figure 4.4: Various pilot interpolation for PED-B

care of frequency selectivity of channel. Since pilots are also spaced with spacing of coherence
time, results can be extended similarly for time direction to track fast fading channels. The results
in Fig. (4.2)-(4.4) show that various pilot interpolations almost give similar performance when
pilots are spaced with consideration of delay spread and doppler spread. For channels with small
delay spread (i.e. 390 ns Fig. (4.2)) MMSE and linear estimator provide better performance com-
pared to other estimators. However, as delay spread of the channel increases (i.e. Figs. (4.3) and
(4.4)), it can be seen from results that second order spline and cubic spline interpolations better fit
the curvature of channel frequency response and thus are better for frequency selective channels.
The overall result shows that all interpolation methods used give 10−3 channel estimation error for
≤ 30 dB.
Complexity Compaision of Interpolation Methods

Let’s assume, Nsc = 1024 is the number of useful subcarriers and Np= 256 is the number of
pilot subcarriers. Then the number of computations for various interpolation methods are given as
in Table 4.1.
Nearest Neighbor : zero multiplication and additions.

let Nsc subcarriers are divided into Nc clusters. Cluster size = 16, No of clusters = 64,
Then following MMSE estimator given in [7][34], number of complex multiplications and addition
per cluster is
For Autocorr Mtx. inv of size 4x4 = 64 (since 4 pilots per cluster, so Autocorr mtx size is 4x4)
For Crosscorr Mtx. of size 4*(16) = 64
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Table 4.1: Complexity of All Pilot interpolation Methods for given simulation parameters
Method Complexity in MAC units

NearestNeighbor 0
Linear 1024

CubicSpline 4× 1024
IFFT/FFT 2((256)log2(256))
MMSE 4480

For finding Complex Weights = 256
To find the estimates = 64
TOTAL = 64+64+256+(64*64) = 4480 complex multiplications and additions

From BER performance and complexity viewpoint, linear interpolation is considered for com-
parison with the proposed estimator due to its lowest computational complexity among all inter-
poation methods (except nearest neighbourhood method) while meeting almost near optimum per-
formance as in Fig. (4.2)-(4.4).

Preamble-Pilot based Joint QR-LS Estimation

Frame size : 8 subframe
OFDM symbols per subframe : 5
First Symbol of each frame is SA-Preamble symbol
FFT size : 2048
Fs : 22.4 MHz
fc : 2.5849 Ghz
Channel profile :
Ped-A 5-30 Km/Hr, Veh-A 30-120 Km/Hr
Modulation Type : QPSK,16-QAM

Here also pilot spacing considers Delay spread and Doppler spread.
For ex. suppose maximum vehicular speed is 320 km/hr,
Fdmax = V·Fc/C = 765.896
Coherence time ≈ 1/Fdmax = 1/756.896 = 1.3 msec
Ts = 103 µsec
Pilot scattering in time direction can be DT = 1300/103 ≈ 12 OFDM symbols without any loss.
However here separation is only 5/6 OFDM symbols[23] ≈ 515 µsec.
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Figure 4.5: Pilot Interpolation for Slow/Fast fading Channels

Similarly, Considering Maximum Delay Spread for PED-B is 3700 nsec.
Tmax = 3700 nsec
Coherence BW ≈ 1/(3700e-9) = 270 KHz
Fs = 22.4 Mhz
Carrier-Spacing δF = 22.4e+6/2048 = 10.93 KHz
so pilots can be transmitted 270 khz apart in freq. direction in Time-Freq. grid, However here
separation is ≈ 180KHz[23]. This fulfills the required criteria.
Simulation results for channel estimation error and BER performances are shown in Fig. (4.6)-
(4.8). BER performances for QR-LS coarse-fine estimator is compared with only scattered pilot
based linear estimation as in Fig. (4.5). Results in Figs. (4.7) and (4.8) are under similar channel
environment, but the pilot interpolation criteria is changed from slow to fast fade as shown in Fig.
(4.5).

In Fig. (4.6) BER performance is given for Ped-A channel. Since it is slow fading channel,
pilots within the smallest data unit (PRU) of size Nsc ·Nsym (here 18 ·5) are averaged. This value
is assigned as channel estimated value for the whole block. The result shows that the proposed
estimator gives slightly better performance compared to pilot averaging method. In Figs. (4.7)-(4.8)
BER performance is given for Veh-A channel. Veh-A channel being a fast fading channel, pilot
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Figure 4.6: PED-A Channel

Figure 4.7: VEH-A Channel
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Figure 4.8: VEH-A with Different pilot interpolation configuration

averaging based estimator cannot follow the channel variations effectively, so pilots are interpolated
as shown in Fig. (4.5). Results show that the proposed estimator leads to better result than both
pilot interpolation configuration in slow as well as fast fading channel conditions. Fig. (4.8) shows
the performance comparison with QR-RLS DDCE method for reference. It clearly shows that the
proposed method better tracks the fast variations of channel compared to QR-RLS DDCE method.
However, this additional gain of proposed method over pilot interpolation method/QR-RLS DDCE
method comes with some additional complexity. This additional complexity can be directly seen
by comparing Table 2.1 with Table 4.1.
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Chapter 5

SM-MIMO Detection and EVS Problem

5.1 Coherent Detection Requirement II : SM-MIMO DATA De-
tection

5.1.1 Background and Previous Methods

The next generation communication systems demand for transmission speed from 100Mbps (in
vehicular) to 1Gbps (in pedestrian) to meet the future communication needs. Since many investiga-
tions in the past few years have shown that multiple antenna systems provide an enormous increase
in capacity compared to Single Input Single Output (SISO) systems [59], a Multiple Input Multiple
Output (MIMO) system is considered as one of the possible techniques. A MIMO technique is
classified into two categories: Spatial Diversity (SD) and Spatial Multiplexing (SM). Using MIMO
systems [60],[17] enables us to achieve high data rates or reduce the effective error rate on a rich
scattering wireless channel. In general, SD technique is simple at the receiver. However, it sig-
nificantly reduces capacity [53],[12]. In order to meet the requirement of the high data rate, SM
method which transmits the independent data streams at each transmit antennas is more appropriate
than the SD technique.

In this thesis, the work focus on the SM MIMO systems. In SM MIMO system, since inde-
pendent data streams are transmitted at each transmit antennas without increasing transmit power
and spectral bandwidth, it is considered as one of the possible ways to achieve the high data rate.
However, spatial de-multiplexing at the receiver is a challenging task. There are many detection
methods which have been actively developed. Among these, exhaustive full search of ML method
is considered as the optimum detection method [10]. However, its computational complexity in-
creases exponentially with the number of transmitted antenna and constellation points. The linear
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detection methods such as Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) meth-
ods have low complexity. However, they undergo a severe performance degradation due to noise
enhancement. The OSIC [11],[43] which is known as V-BLAST offers a good trade-off between
performance and complexity. Many OSIC-series detectors attempted to reach ML performance
with feasible complexity. The OSIC-series detectors such as detectors in [30],[15],[24],[54] are
good examples.

The performance improvement in the conventional OSIC is limited due to error propagation,
so a successful detection of the first layer is crucial. In an effort to reduce the error propagation,
a number of spatial streams are jointly detected in the ML-DFE detection method [5] and then
the remaining streams are decoded as in OSIC method. This method mitigates the error propaga-
tion. However, the computational complexity due to joint detection is quite high and performance
improvement is quite limited. In [25], by assigning all the constellation points to the Most Re-
liable Layer (MRL), a performance improvement was observed over the conventional OSIC. A
sub-optimum QRM-MLD detection method is proposed in [30],[15], where the channel matrix is
decomposed into a unitary matrix Q and an upper triangular matrix R, and the M-best nodes are se-
lected at each layer or spatial stream. At the last stage, the ML metrics for the M candidate vectors
are compared to decide the best estimate of the transmitted vector.

In [54], the authors asserted that the selection of the Least Reliable Layer (LRL) is a more
effective way to mitigate the error propagation, when all the constellation points are assigned to the
first layer symbol. The hard-output performance of QR-LRL approaches the ML performance with
simple hardware complexity. They also provided soft-output solution for channel decoder [16][54].
However, their solution for soft-output generation is not good enough to deal with empty vector set
problem, especially if the modulation order is low. Since as the modulation order increases, the
probability of a candidate vector set having all constellation point at each layer increases, which
in turn lessen/soothe EVS[26]. Several remedies [16][65][54] are used to find out soft values
in the presence of empty vector set, but are not very performance effective. In [26] the author
provided a solution to remove empty vector set problem by taking multiple QR decomposition
of ordered channel matrix and trying every constellation point at each layer. However, such a
solution comes with increased complexity. In [28] the author provided a solution to mitigate empty
vector set problem by assigning every constellation point at each layer, where he uses QR matrix
transformation while avoiding computation of multiple QR decomposition.
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Figure 5.1: MIMO MODEL

5.1.2 MIMO System

In this section, the MIMO system is described. After that various SM-MIMO detectors, EVS
problem and it’s remedies are described.

MIMO System Description

A MIMO system with m transmit antennas and n receive antennas is considered. The conventional
MIMO system is showed in Fig.(5.1), and received signal y can be expressed as follows:

y = Hx + z (5.1)
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where, xi, i = 1, 2, ....m is the transmitted signal from the ith transmit antenna,
yj , j = 1, 2, ...n is the received signal at the jth receive antenna,
zj <= CN(0, σ2), j = 1, 2,...n is the circularly symmetric white Gaussian noise,
hji, j = 1, 2, ...n, i = 1, 2, ...m is the uncorrelated channel coefficient between the jth receive
antenna and the ith transmit antenna. In this thesis, transmitted symbols are the QAM modulated
symbols.
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Figure 5.2: QRLRL-ORDER

5.2 QR-LRL Based SM-MIMO Detector

Hard-Output QR-LRL Method [54]

In an effort to exactly detect the first layer symbol compared to conventional QR-OSIC [Ap-
pendix 2], the author suggested QRMRL [25]. In QR-MRL, all constellation points are assigned to
the first layer symbol instead of deciding it. Also, the channel matrix is ordered by selecting MRL
as the first detection layer. However, when all the constellation points are considered for first layer
symbol, selection of the MRL in ordering is not an effective way to mitigate the error propagation.
In QR-LRL [54], by assigning the LRL to the first layer, the error propagation is more reduced
than the QR-MRL. Moreover, QR-LRL detection method can achieve near ML performance. The
ordering to find the LRL is important in QR-LRL, so that the post-detection SNR ζ is used for the
layer ordering. The detailed ordering process in QR-LRL is summarized in Fig. (5.2).

y = Hordered · xordered + z (5.2)

Hordered = [h(m−1)thRL; .....h3ndRL;h2ndRL;hMRL;hLRL]

xordered = [x(m−1)thRL; .....x3rdRL;x2ndRL;xMRL;xLRL]

After obtaining the system equation and applying every constellation point at each layer, the
Euclidean metric is calculated and minimum distance vector is chosen as the optimum detected
vector to achieve hard ML performance. The detection process in QR-LRL is equal to QR-MRL
[Appendix 2][25] except detection layer ordering. The LRL is chosen based on post detection
SNR, which is ‖ gi ‖2, i = 1.2.3...m as in [54], where G = ((HTH)(−1)HT ). The whole method
is described in Table (5.1).
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Table 5.1: Psuedo code for QR-LRL .

QRLRL− SMMIMO −Detector
function[V ] = QR− LRL(y,Hordered)
[Q,R] = qr(Hordered)
for i = 1 : |C|
x(4) = C(i)

x(3) = Q(
ȳ3−r34x(4)

r33
)

x(2) = Q(
ȳ2−r23x(3)−r24x(4)

r22
)

x(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

V (:, i) = [x(1), x(2), x(3), x(4)]
T

Dist(:, i) = ||y− Hordered · (V (:, i))||.2
end

5.3 Empty Vector Set Problem and Previous Remedies

5.3.1 Soft-output Generation

It is well known that Bit-Interleaved Coded Modulation (BICM) can achieve the open loop ca-
pacity when proper soft-output values can be provided to the channel decoder at the receiver. Con-
sequently, the capability of soft-output generation is very important for good overall system perfor-
mance. BICM allows a different Maximum A Posteriori (MAP) based decoding scheme in which
the received QAM signals are first demodulated by a soft-output demapper and de-interleaved, and
then passed to a standard binary soft-input soft-output viterbi or turbo decoder. The idea is to
demap the received signal into soft bits, which has the same sign as provided by a hard detector
and whose absolute value indicates the reliability of the decision.

5.3.2 Empty Vector Set

In SM MIMO systems, Log Likelihood Ratio (LLR) or soft output values generally achieve
open loop capacity. Generally LLR for the kth bit in ith symbol of received vector y is given by

L(bk,l|y) = ln
Pr[bi,k = 1|y]

Pr[bi,k = 0|y]
(5.3)

Where Pr[bi,k = 1|y] is the probability for kth (k ranging 0 → log2|C|) bit in ith (i ranging
1→ NT ) symbol. Since it is very cumbersome to calculate Eq. (5.3), the LLR value for the kth bit
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in lth symbol, k = 1, 2...log2|(C)|, l = 1, 2, ...m can be approximated as

L(bk,l|y) ≈ min
x∈S(k,l)−⊂V

D(x)− min
x∈S(k,l)+⊂V

D(x) (5.4)

Where S(k, l)− is the candidate vector set corresponding to bk,l = −1, S(k, l)+ is the candidate
vector set corresponding to bk,l = +1, C denotes constellation point set and |C| is it’s size. The
distance metric is given by

D(x) =
1

σ2
· ‖ y−Hx ‖2

V is the candidate vector set obtained after all layer symbol detection. It is possible that either
S(k, l)− or S(k, l)+ is an empty set as shown in Fig. (5.3), which causes hindrance in generating
LLR.

5.3.3 Previous Remedies

Threshold in QRM-MLD Detector [16]

QRM-MLD [30][Appendix2] signal detection method performs the generation of LLRs in the
last stage, so it always suffers from the empty vector set problem. Therefore, in [16], the authors
proposed the likelihood function generation method for non-existing bit, which can mitigate the
empty vector set problem. In the proposed scheme, LLR generation method is described in the
following process:

• The symbol replica candidates among the remaining symbol replica candidates in the last
stage, which bit ’1’ or ’-1’ remains, are selected independently.

• For the symbol replica candidates selected for each bit ’1’ and ’-1’, the likelihood function of
each bit for each symbol replica is obtained using the Euclidean distance for selected symbol
replicas.

• For each bit in the data symbols, the likelihood function of bit ’1’ is derived as the minimum
Euclidean distance among candidates of the Euclidean distance obtained in the second step.
The likelihood function for bit ’-1’ is obtained in the same manner.

• For a bit, which has both bits ’1’ and ’-1’ in the remaining symbol replica candidates in the
last stage (let NB be the number of bits which has both bits ’1’ and ’-1’ in the remaining
symbol replica candidates in the last stage), the larger likelihood function of two bits, ’1’ or
’-1’, is selected.
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Figure 5.3: Empty-Vector-Set-Problem

• Among the bits, which have both bits ’1’ and ’-1’ in the remaining symbol replica candidates
in the last stage, the selected larger likelihood function of each bit in the data symbols are
summed (note there are NB bits) and its summation is normalized by NB.

• Finally, the likelihood function calculated in the previous step is multiplied by a factor of
’X’. This value is used for the symbol candidates suffering from Empty Vector Set problem.
Author [16] uses value of ′X = 1.5′ based on simulation environment.

Threshold in QR-LRL Detector [54]

Since each constellation point is tried at LRL, S(k, l)− and S(k, l)+ will not be an empty set at
LRL. Using this property threshold value Th is derived at LRL[54], which is used for calculating
LLR for the bits suffering from EVS at higher layers. At first, LLR at LRL corresponding to x(m)

(where m varies from 1, 2...|C|) is calculated as

LD(bk,(m)|y) ≈ min
x∈S(k,(m))−

D(x)− min
x∈S(k,(m))+

D(x) (5.5)

T+(k) = min
x∈S+

(k,(m))

D(x), 1<k ≤ log2|C| (5.6)

T−(k) = min
x∈S+

(k,(m))

D(x), 1<k ≤ log2|C| (5.7)

T (k) = max(T+(k), T−(k)), 1<k ≤ log2|C| (5.8)
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From above Eq. Threshold value ′Th′ is derived as

Th =
1

log2|C|

log2|C|∑
k=1

T (k) (5.9)

This threshold is used for calculating LLR for the bits suffering from EVS at higher layers.

Enlarged QR-DD Detector [26]

In QR-DD method, every constellation point is tried at each layer and LLR is calculated using
enlarged candidate vector set. For example, consider a 4× 4 MIMO system.

• At first, H is ordered according to the minimum error prpagation ordering suggested in [9]
with LRL as first detection layer. At the same time, since all constellation points are tried at
each layer, the ordering criteria is used with loose ordering method based on SNR instead of
post detection SNR [26]. Thus H is ordered ‖ hi ‖2, i = 1, 2, 3, 4 as shown below.

Hordered,1 = [h3rdRL,h2ndRL,hMRL,hLRL]

Where ‖ hMRL ‖2>‖ h2ndRL ‖2>‖ h3rdRL ‖2>‖ hLRL ‖2. Where h2ndRL, h3rdRL represents
the 2nd and 3rd reliable layer of h respectively.

• Now using upper QR structure, candidate vector set VS,12 is generated for LRL and MRL as
per Table 1.
VS,12 = [Vcand,1, Vcand,2], Where VS,12 represents enlarged candidate vector set consist of
vectors Vcand,1 and Vcand,2. Here Vcand,1 and Vcand,2 are vector set corresponding to vectors
generated while trying each constellation point at LRL and MRL respectively.

• Again, to apply each constellation point at the remaining two layers i.e. 2nd and 3rd detection
layer, H is reordered as shown below.

Hordered,2 = [hLRL,hMRL,h3rdRL,h2ndRL]

Applying QR decomposition on reordered H, VS,12 is generated for the remaining two
layers, 2nd and 3rd reliable layer using Table (5.2), where VS,12 = [V3rdRL, V2ndRL]. Here
VS,12 represents enlarged candidate vector set which consists of vectors V2ndRL and V3rdRL,
where V2ndRL and V3rdRL are vector sets corresponding to vectors generated while trying each
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Table 5.2: Candidate Vector Set at LRL,MRL layer .

function[VS,12] = CandidateV12(y,Hordered)
[Q,R] = qr(Hordered)
for i = 1 : |C|
x(4) = C(i)

x(3) = Q(
ȳ3−r34x(4)

r33
)

x(2) = Q(
ȳ2−r23x(3)−r24x(4)

r22
)

x(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

Vcand,1(:, i) = [x(1), x(2), x(3), x(4)]
T

Distcand,1(:, i) = ||y− Hordered · (Vcand,1(:, i))||.2
end
for i = 1 : |C|
x(3) = C(i)

x(4) = Q(
ȳ3−r33x(3)

r34
)

x(2) = Q(
ȳ2−r23x(3)−r24x(4)

r22
)

x(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

Vcand,2(:, j) = [x(1), x(2), x(3), x(4)]
T

Distcand,2(:, i) = ||y− Hordered · (Vcand,2(:, i))||.2
end
VS,12 = [Vcand,1, Vcand,2]
DistS,12 = [Distcand,1, Distcand,2]
endfunction

constellation point at ithRL respectively.
Overall, V = [VLRL, VMRL, V3rdRL, V2ndRL]

Now V consists of vectors when every constellation point is applied at each layer. EVS problem is
effectively removed by this method at the cost of multiple QR decomposition ≈

⌈
N
2

⌉
for enlarg-

ing V . Complexity increases exponentially as N = min(Nt,Nr) increases, where Nt, Nr are
number of transmit and receive antennas respectively.
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Chapter 6

Proposed Detection Methods to Mitigate
EVS

6.1 Proposed Effectively Enlarged Candidate Vector Set of QR-
LRL MIMO Detector

The proposed method[46] is an alternative solution to avoid multiple QR decomposition as in
[26] and better performance compared to previous remedies [54][16] for soft output generation
while mitigating EVS. QR-LRL detector is fully described in [54][26]. From [54], the ordered
matrix H is used here for deriving candidate vector set.

y = Hordered · xordered + z (6.1)

Hordered = [h(m−1)thRL, .....h3ndRL,h2ndRL,hMRL,hLRL]

xordered = [x(m−1)thRL, .....x3rdRL, x2ndRL, xMRL, xLRL]T

Since all constellation points are tried at each layer, the strict layer ordering like post detection SNR
is not required. Thus ordering criteria is used with loose ordering method based on SNR, ‖ hi ‖2,
i = 1, 2, 3...m as in [26].

The proposed algorithm is fully described in Table (6.1) & (6.2). Here, the detection process
enlarges candidate vector set at 4 detection layers (LRL, MRL, 2ndRL, 3rdRL) consecutively. For
simplicity, an example of the proposed method with 4 × 4 MIMO system with QPSK modulation
(since the number of constellation points is 4) is shown in Fig. (6.1).
STEP 1 : Fig. (6.1) shows that upper triangular structure of R matrix allows to try each con-
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Figure 6.1: Enlarged Candidate Vector set

stellation point effectively at LRL and MRL (first two detected layers) without any other symbol
pre-guessing. Enlarged candidate vector set at 1st and 2nd detected layer is given by Vcand,1 and
Vcand,2 respectively. This ensures that LRL and MRL will no longer suffer from EVS.
STEP 2 : By combining the resultant vectors, candidate vector set at 1st and 2nd detected layer
VS,12 = (Vcand,1, Vcand,2) is formed i.e.([V 41, .., V 44], [V 31, .., V 34]) where V ij is candidate vec-
tor generated with ith symbol and jth constellation point.
STEP 3 : To effectively prevent error propagation, here least M distance values are chosen accord-
ing to the sorted distances from the combined set VS,12 according to DistS,12, where M ≤ |C|.
STEP 4 : TheseM values determine the 1st and 2nd detected symbol when every constellation point
is tried at 3rd layer. The resultant vector is ([V 211..V 214]..[V 241..V 244]) where V ikj represnts
vector generated by ith symbol kth value from leastM values and jth constellation point. Detection
at 2ndRL follows Table (6.2), where VsM,12 is sorted candidate vector set VS,12 with leastM values.
STEP 5 : Now the candidate vector set (V − SUB = Vcand,3) is formed using the minimum of
groupwise distances for same constellation point at 3rd detection layer i.e. from min(V (:, k, :)).
Here (V (:, k, :)) = ([V 211..V 241]..[V 214..V 244]) for k = 1, 2..M . For example, If 1st constel-
lation point is applied at 3rd detection layer with LRL and MRL chosen from least M values of
VsM,12, then V (:, 1, :) represents a vector set from which minimum distance vector according to
Dist3(:, 1, :) is chosen as a vector with 1st constellation point at 3rd detection layer. Rest of the
candidate vectors for 3rd detection layer are found in a similar fashion.
STEP 6 : Once all candidate vectors corresponding to all constellation points at 3rd detection layer
given by Vcand,3 are found, candidate vector set at 3rd detection layer is enlarged by combining
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Table 6.1: Candidate Vector Set at LRL,MRL layer .

function[VS,12] = CandidateV12(y,Hordered)
[Q,R] = qr(Hordered)
for i = 1 : |C|
x(4) = C(i)

x(3) = Q(
ȳ3−r34x(4)

r33
)

x(2) = Q(
ȳ2−r23x(3)−r24x(4)

r22
)

x(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

Vcand,1(:, i) = [x(1), x(2), x(3), x(4)]
T

Distcand,1(:, i) = ||y− Hordered · (Vcand,1(:, i))||.2
end
for i = 1 : |C|
x(3) = C(i)

x(4) = Q(
ȳ3−r33x(3)

r34
)

x(2) = Q(
ȳ2−r23x(3)−r24x(4)

r22
)

x(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

Vcand,2(:, j) = [x(1), x(2), x(3), x(4)]
T

Distcand,2(:, i) = ||y− Hordered · (Vcand,2(:, i))||.2
end
VS,12 = [Vcand,1, Vcand,2]
DistS,12 = [Distcand,1, Distcand,2]
endfunction

candidate vector set at LRL and MRL VS,12 with Vcand,3. This results in enlarged candidate vector
set VS,13.

Again least M (most probably M = 1, due to QR-LRL property, higher layers are reliable
layers in ascending order) values are chosen from sorted candidate vector set according to distances
found similar to STEP 2. These least M values determine previously detected three symbols at re-
spective three layers, while every constellation point is tried at 4th layer i.e. 3rdRL and candidate
vector set results in Vcand,4 as in STEP 5. This process goes on until the last layer is detected. Fol-
lowing STEP 6 again, the overall enlarged candidate vector set V = (VLRL, VMRL, Vcand,3, Vcand,4)

contains vectors with every constellation point tried at each layer. Thus EVS no longer persists.
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Table 6.2: Effectively Enlarge V at 3rd Detection layer .

function[VS,13] = EnlargeV (y, Hordered, VS,12, DistS,12)
VS,12 = sort(VS,12)
From− > DistS,12

VsM,12 = VS,12(1, 2, ...M)M ≤ |C|
for k = 1 : M
x(4) = VsM,12(k, 4)
x(3) = VsM,12(k, 3)
for l = 1 : |C|
x(2) = C(l)

x(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

V3(:, l, k) = [x(1), x(2), x(3), x(4)]
T

Dist3(:, l, k) = ||y− Hordered · (V3(:, , l, k))||.2
end
end
Vcand,3(1 : C) = (min(V3(:, 1, :))...,min(V3(:, C, :)))
From− > Dist3
VS,13 = [VS,12, Vcand,3]
endfunction

6.1.1 Simulation Results

Simulation results are shown for the proposed method with following specifications. The num-
ber of transmit and receive antennas is 4. Rayleigh fading channel is considered. Ideal channel
coefficient is assumed to be known at receiver. 1/3 rate Convolutional Turbo Code (CTC) is used
as a channel coder, so CTC decoder with 4-5 iteration is used to decode MIMO detected soft infor-
mation.

Fig.(6.2) shows the performance results for QPSK modulation. In the graph, various com-
binations of M least distance values for different layers are considered. Value of M3 represents
the number of least values considered for 3rd layer detection from the first two detected layers set,
while M4 considers the number of least values considered for 4th layer detection from previously
detected layers set. Figs. (6.3) & (6.4) show the performance result for 16-QAM and 64-QAM
respectively. The result shows that large value of M doesn’t contribute much in performance (dif-
fer by ≤ 0.5 dB for various modulation order) while complexity increases sharply. So M3 = 2,
M4 = 1 for QPSK and M3 = 1, M4 = 1 for 16QAM, 64QAM are sufficient to achieve near soft
ML performance with the lowest complexity. It also shows that as modulation order increases,
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Figure 6.2: Enlarged Candidate set based Soft Output for QPSK

the severity of EVS problem decreases. Figs. (6.4),(6.5) & (6.6) compare performance results of
proposed detector (M3 = 1, M4 = 1) 64QAM and (M3 = 2, M4 = 1) for QPSK, 16QAM case
with various QR-OSIC detectors. It shows that the proposed method achieves significant gain over
conventional methods while matching performance of QR-DD method.

6.1.2 Computation Complexity

Computation complexity of the proposed method for 4 × 4 MIMO system is shown in Table
(6.3). As seen from Figs. (6.2), (6.3) & (6.4), there is no effective performance improvement for
higher values of M3,M4. So (M3 = 2, M4 = 1) for QPSK and (M3 = 1, M4 = 1) for 16QAM,
64 QAM is considered for complexity consideration of the proposed method.
Complexity for all previous QR-OSIC methods are shown in Table (6.4). where C, M , D and M
stand for constellation point, order for QR-M, division and multiplications respectively. From Ta-
bles (6.3), (6.4) and (6.5), it is clearly seen that for low modulation order (< 64QAM ), complexity
of the proposed method is comparable to QR-LRL method, while it matches QR-DD method for
higher modulation order.
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Table 6.3: Complexity of Proposed Enlarged QR-LRL
Operation Complexity Iteration

‖ hi ‖2
i=1,2,3,4 8M 4

QRDecomposition 256M + 4D 1
QHy 48M 1

‖ y−Hx ‖2 8M |C| × (5)

Total = (5|C| × 8)M + 336M + 4D

Table 6.4: Complexity of All Methods
Method Complexity

QRM −MLD (2× | C | ×(3M + 1))M + 336M + 4D
QR− LRL (| C | ×8)M + 533M + 8D
QR−DD (4 | C | ×8)M + 640M + 8D
Proposed ((2 +M3 +M4) | C | ×8)M + 336M + 4D

Table 6.5: Complexity of All Methods for Different QAM Order
Type QRM-MLD QR-LRL QR-DD[26] Proposed

M-QAM M + D M + D M + D M + D
QPSK 440 + 4 565 + 8 768 + 8 476 + 4
16QAM 1904 + 4 661 + 8 1152 + 8 848 + 4
64QAM 25040 + 4 1045 + 8 2688 + 8 2384 + 4
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Figure 6.3: Enlarged Candidate set based Soft Output for 16 QAM
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Figure 6.4: BER Performance for Various methods: 64 QAM
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Figure 6.5: Comparision of SOFT BER Performance for various QR-OSIC: QPSK

Figure 6.6: Comparision of SOFT BER Performance for various QR-OSIC: 16QAM
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Figure 6.7: Proposed IDD Receiver

6.2 Proposed JIDD Receiver to Lessen/Soothe EVS

Proposed JIDD Receiver[50]:
An Iterative Detection and Decoding(IDD) [33][32][22][69] receiver is shown in Fig. (6.7).

It consists of a source encoder, an interleaver and SM-MIMO mapper. Receiver consists of MIMO
detector which incorporates channel estimator, de-interleaver and source decoder. Use of inter-
leaver between source decoder and MIMO detector effectively removes error burst due to channel
fading.

The proposed decision feedback IDD for mitigating EVS using extrinsic gain of Turbo decoder
is described below.

• Candidate vector set V is generated using QR-LRL detector as per Table (5.1).

• Soft LLR values are generated using candidate vector set V and passed to Convolution Turbo
Code (CTC) decoder.

• CTC decoder uses 4-5 internal iterations to maximize extrinsic gain which is fed back to
MIMO detector.

• For simplicity, initially let LLR values at Turbo decoder input and output for m MIMO layers
be

L(b1:m,l|y) = [L(b1,l|y), L(b2,l|y), L(b3,l|y).....L(bm,l|y)]

L(b̄1:m,l|y) = [L(b̄1,:|y), L(b̄2,l|y), L(b̄3,l|y).....L(b̄m,l|y)]
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where l varies from 1,2...log2C.

• Using hard decisions on Turbo decoder output L(b̄1:m,l|y), new candidate is formed as

VX(1 : m) = [x̄(m), x̄(m− 1), x̄(m− 2).....x̄(1)]

DX = ||y−Hordered · (VX)||.2 (6.2)

• Similarly using VX̄ in QR-LRL method as m detected symbols, new vector is formed as

V̂X(1 : m) = [.......Q(
y − rm−1,m · VX(m)

rm−1,m−1

), VX(m)]

This vector is already available in original candidate vector set, but here is represented in this
form for ease of understanding.

D̂X = ||y−Hordered · (V̂X)||.2 (6.3)

• Error propagation is prevented using metric which is

MinD = min([Dist(:, i), DX , D̂X ])

with two conditions, where Dist(:, i) is from Table (5.1), DX and D̂X are from Eq.(6.2) and
(6.3) respectively.

• Conditions :
1. If MinD is Dist(:, i) set, then previous LLR values are passed without any change to the
Turbo decoder.
2. However, if MinD is among DX or D̂X then corresponding candidate vector in V set
which consist of 1,2...‖C‖ candidate vectors is updated.

• Since QR-LRL soft detection method is considered here, updating is done by replacing cor-
responding candidate vector in candidate vector set V whose first symbol matches with the
minimum distance vector. For example, ifMinD corresponds toDX then candidate vector in
V, whose first symbol matches first symbol of VX is updated and new LLR value is generated.
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Figure 6.8: BER Performance Of Iterative QR-LRL for QPSK

6.2.1 Simulation Results

Simulation results are shown for the proposed method with following specifications. Monte
Carlo simulations are performed for 1000-1500 subframes of 802.16m (Mobile Wimax) standard.
The number of Tx., Rx. antennas is 4. QPSK and 16QAM modulation types are considered. Veh-
A channel is considered with mobile speed of 120 km/hr. Channel coefficients are derived using
COMB pilots and used for QR decomposition of channel matrix. CTC decoder 4-5 internal itera-
tion is used to decode MIMO detected soft information. Extrinsic gain is achieved from internal
CTC iterations.
Fig. (6.8) shows the performance results for QPSK modulation. It shows that with increasing
number of outer iterations (2-3) significant gain is achieved. Similarly, Fig. (6.9) shows the perfor-
mance results for 16QAM modulation. The results are compared with softML[10], SoftDD[26]
performances.

67



Figure 6.9: BER Performance Of Iterative QR-LRL for 16-QAM
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Chapter 7

Conclusion

In the presented work, two problems related to coherent detection for MIMO-OFDM system are
addressed. One is channel estimation and the other is EVS mitigation during soft output generation.
QR-RLS adaptive method is extended for time domain adaptive MIMO-OFDM cannel estimation.
Simulation results show that the proposed estimator gives near optimum perfromance while avoid-
ing matrix inversion as in RLS estimator. It also doesn’t require prior statistical information as in
MMSE estimator. Results also show that MMSE estimator is the best estimator with the highest
complexity while frequency domain least square estimator is the worst with lowest complexity.
The proposed estimator comes in between these two estimators in terms of performance as well as
complexity. Convergence result of the proposed estimator at different SNR values gurantee for ≤
10 % of training to converge to final CIR values. The proposed estimator is then used in DDCE
mode for low and moderate fade channels. Simulation results show that estimation error increases
with increase in fading rate.

Here, the work is advanced for fast fading channel using QR-LS joint channel estimator. Var-
ious pilot interpolation methods from previous works are compared to provide a refrence. As seen
from simulation results, various interpolation techniques like MMSE, linear, spline, cubic spline,
DFT-IDFT perform equally since pilots are scattered with consideration of coherence time and co-
herence bandwidth in time frequency grid. Based on simulation results, linear interpolation method
is chosen for comparison since its complexity is the lowest among all. Performance results show
that simulation results of QR-LS Coarse-Fine estimator gives better BER performance compared
to pilot linear interpolation based estimation. At the same time, pilot based linear estimation needs
different configurations depending on slow or fast channel conditions. Simulation results also show
that proposed method outperforms QR-RLS DDCE method under fast fading environment.

In the second part, the EVS problem is mitigated effectively by providing two solutions.
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In the first solution, candidate vector set of QR-LRL MIMO detector is effectively enlarged by
trying every constellation point at each layer while keeping the error propagation low. Selection
of least M distance candidates reduces error propagation at higher layer detection. Simulation
results show that the proposed method outperforms all previous QR methods while matching soft
ML and QR-DD [26] BER performance. It also achieves significant gain over original QR-LRL
based soft output generation ≈ (1.5dB for QPSK, 1dB for 16QAM), while avoiding multiple QR
decomposition as in QR-DD. Overall, near soft ML performance is achieved with low complexity
especially for low modulation order (< 64QAM ), where the EVS effect is more severe on BER
performance.

The other proposed solution is QR-LRL based IDD receiver. Here, Turbo gain is used to
soothe the EVS problem. Simulation results show clearly that by efficiently using extrinsic gain of
Turbo decoder, proper candidates are selected for soft output generation. This in turn reduces the
error propagation. It also shows that significant BER performance improvement(≈ 1 dB gain) is
achieved with 2-3 outer iterations of proposed method. At the same time, complex MIMO detectors
are avoided and simple receiver design is achieved.
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Appendix 1

.1 Error Minimization Mehods and Adaptive Equalixer Updat-
ing

Suppose d(n) is transmitted through wireless channel h(n) given by Eq. (2.1), then the received
signal for (CIR > CP )is given by

X(n) = (d(n) ∗ h(n)) + v(n) + i(n)

where i(n) is the ISI and v(n) is additive white gaussian noise.
To get back the desired signal d(n), a TEQ (inverse filter) with filter taps w(n) is employed at the
front end of the receiver. This not only nullifies the channel’s response but also divides noise and
ISI produced by the channel. The signal at the output of TEQ is given by

d̂(n) = X(n) ∗ w(n),

The difference between the desired signal d(n) and the obtained signal d̂(n) at the output of TEQ is
the error signal e(n) and is given by

e(n) = d(n)− d̂(n) = d(n)− (w(n) ∗X(n))

where d(n) is instantaneous value of desired signal ,
w(n) = [wn(0)wn(1)wn(2)...wn(p)]

XT (n) = [xn(0)xn(1)x2(n)...xn(p)] at time n.
where p shows the order of the FIR filter. Generally it range between (CIR−CP,CIR) to provide
optimum inverse filter. The error e(n) is minimized using MMSE, LSE based method and used to
update coefficients of TEQ, such that it better approximates d̂(n) to d(n) from obtained signal
X(n).

.1.1 MMSE Error Based Adaptive Updating

The mean square error [14][37] given by

ζ(n) = E|e(n)|2 (1)
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ζ(n) is minimized by differentiating it with respect to equalizer coefficients w(n) at time n and
equating it to zero. The resultant equation is

E[d(n)−
p∑
l=0

wn(l)x(n− l)]x∗(n− k) = 0 (2)

Rx(n)w(n) = rdx(n)

The solution of the above equation gives the optimum value for the tap coefficients w(n). Here
Rx(n) is the autocorrelation matrix of dimension (p+1)× (p+1) of the obtained signal and rdx(n)

is the cross correlation matrix of p + 1 between desired signal and the obtained signal at time n,
where p is channel length L as in Eq. (2.1)

.1.2 Least Mean Square(LMS) Based Updating

Since all the statistical information required to find out the solution of Eq. (2) is not available,
LMS replaces it by instantaneous value of the signal. The optimum coefficients are updated by the
recursive equation

w(n+ 1) = w(n) + µe(n)X∗(n)

where µ is the convergence parameter and it’s value is dependent on the eigen spread of the obtained
data vector x(n). Generally µ is kept between 0 < µ < 2

traceRx(n)
for stable and faster convergence.

.1.3 Standard RLS Based Updating

In LMS the expectation is replaced by instantaneous value. Due to this, convergence is slow and
MSE is not sufficiently minimum. To overcome this and increase the convergence, the expectation
term of Eq. (1) is replaced by summation and a forgetting factor λwith value varying from (0→ 1).
The resultant weighted least square error at time n is given by

ζ(n) =
n∑
i=0

λn−i|e(i)|2, (3)

where e(i) = d(i) − (w(i) ∗ x(i)). The difference between this and previous (LMS) method is
that the optimum filter coefficients found by minimizing Eq. (3) are purely data dependent, i.e.
even if the obtained data vector at different times has same statistical properties, the optimum tap
coefficients may differ due to variation in data. By differentiating Eq. (3) w.r.t to tap coefficients
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w(n) and equating it with zero provides the optimum solution given by

w(n) = R−1
x (n)rdx(n) (4)

where Rx is auto correlation matrix of channel output vector,
XT (n) = [x(0, x(1)...x(n)] and rdx is cross correlation vector between desiredD = [d(0), d(1)...d(n)]

and channel output/received data vector at time n. Instead of finding inverse ofRx woolbury’s iden-
tity is used, as given by

(A+ UV H)−1 = A−1 − A−1UV HA−1

1 + V HA−1U

where U = V T = X = [x(0), x(1).....x(n)] is prewindowing data of obtained vector. A recursive
solution [37][14] for tap coefficient update is given by,

wn = wn−1 +G(n)[d(n)− wTn−1x(n)] (5)

where P (n) = Rx(n)−1,

P (n) = λ−1[P (n− 1)−G(n)xT (n)P (n− 1)]

and G(n) is gain vector given by

G(n) =
λ−1P (n− 1)x∗(n)

1 + λ−1xT (n)P (n− 1)x∗(n)

The term Rx = (XTX) in Eq. (4) is extremely damaging from a numerical point of view because
the squaring doubles the dynamic range or word-length or accuracy becomes half. To avoid this,
Rx is decomposed with the help of QR [14] decomposition which results in QR based equalizer.
This avoids matrix inversion as well as roundoff errors.
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Appendix 2

.2 Various Hard ML OSIC Detection Methods

The ordering criterion is very important in OSIC based detection and it depends on the cancellation
method. For example, post detection SNR is the optimal criterion in ZF-OSIC and post detection
SINR is the optimal criterion in MMSE-OSIC.

MMSE-OSIC Method

The goal of MMSE-OSIC detection method is to increase the performance by combining the
MMSE filter and OSIC method. The MMSE filter, minimizing the interference is described be-
low:

G(1) = (((H(1))HH(1) + σz
2I)−1(H(1))H ,H(1) = [h1, h2, , hm] (6)

where, gk(i) is the kth row of G(i); hk(i) is the kth column of H(i), and SINR(i)
j is jth SINR value of

ith G(i) and H(i). From Table (1), it is observed that the MMSE filter and the post detection SINR
ordering are used to mitigate the error propagation and interference. However, the MMSE-OSIC
still suffers from significant performance degradation due to inaccurate detection of the first layer
symbol.

QR-OSIC Method

It is well known that the cancellation ordering dominates the overall performance in OSIC detection
method. Since ZF-OSIC is used for interference cancellation in conventional OSIC, post detection
SNR is used for ordering criterion. The post detection SNR value is given as follows:

ζi = ‖ G(i, :) ‖2,i=1,2,...,m,G = (HHH)−1HH (7)

where, ζi denotes the post detection SNR value of ith layer. The example of conventional OSIC
ordering process for 4 × 4 MIMO system is described in Fig. (1). After ordering, the system
equation is given by

y = Hordered · xordered + z (8)
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Table 1: Psuedo code for MMSE-OSIC SM-MIMO Detector .

function[x̂] = MMSE −OSIC(y,H(1),G(1))
k = argmaxjSINR(1)

j

fori = 1 : m
xk = g(i)

ky
(i)

x̂k = Q(xk)
y(i+1) = y(i) − h(i)

kx̂k
H(i+1) = [h(i)

1, h
(i)

2, , h
(i)
k−1, h

(i)
k+1, , h

(i)
m−i+1]

G(i+ 1) = (((H(i+ 1))HH(i+ 1) + σ2
zI)−1(H(i+ 1))H

k = argmaxjSINR
(i+1)

j

x̂(i) = x̂k
end

Figure 1: Example of Conventional ordering method 4× 4 MIMO method

Hordered = [hLRL(1) ...h2ndRL
(m−1)h

MRL
(m) ] (9)

xordered = [xLRL(1) ...x2ndRL
(m−1)x

MRL
(m) ] (10)

where, subscript (i) denotes the ith column vector or ith symbol after ordering, respectively. Su-
perscript ith RL denotes the layer or symbol corresponding to ith reliable layer and symbol before
ordering, respectively. If a 4 × 4 MIMO system is assumed, then cancellation method involving
QR decomposition is given as follows:

Hordered = Q ·R (11)

where, Q is a 4× 4 unitary matrix, and R is a 4× 4 upper triangular matrix. Multiplying both sides
with QH , the system equation is given by
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Table 2: Psuedo code for QR-OSIC .

x̂(4) = Q( ȳ4
r44

)

x̂(3) = Q(
ȳ3−r34x(4)

r33
)

x̂(2) = Q(
ȳ2−r23x(3)−r24x(4)

r22
)

x̂(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

xordered = [x̂1x̂2x̂3x̂4]T

ȳ = QH(Horderedxordered + z) = Rxordered + z̄ (12)


y1

y2

y3

y4

 =


h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,1 h3,2 h3,3 h3,4

h4,1 h4,2 h4,3 h4,4




x1

x2

x3

x4



where, ȳ = QHy, ẑ = QHz.
The pseudo code for the OSIC is given in Table (2). From Table (2), it is observed that the first
detected symbol is assumed to be correct and is used to eliminate the co-channel interference.
Therefore, it is important to exactly detect the first layer symbol. Otherwise, error propagation
will occur. That is why the most reliable layer (MRL) is chosen as the first layer for detection in
ordering of OSIC.

.2.1 QR-MRL Algorithm

As mentioned in the above section, proper ordering improves the overall performance of OSIC.
Pseudo code for QR-MRL detection method is summarized in Table (3). From Table (3), it can be
seen that instead of deciding the first symbol as in conventional QR-OSIC method, all constellation
points are tried as the first layer symbol. Thus QR-MRL can exactly detect the first layer symbol
and the error propagation is significantly reduced compared to conventional OSIC method. After
all the symbols are tried, the minimum distance vector is chosen as optimum to achieve hard ML
performance.
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Table 3: Psuedo code for QR-MRL .

fori = 1 :‖ C ‖
x̂(4) = C(i)

x̂(3) = Q(
ȳ3−r34x(4)

r33
)

x̂(2) = Q(
ȳ2−r23x(3)−r24x(4)

r22
)

x̂(1) = Q(
ȳ1−r12x(2)−r13x(3)−r14x(4)

r11
)

xordered = [x̂1x̂2x̂3x̂4]T

ifMetric < BigNumber
BigNumber = Metric
x̂ordered = Metric
end
end

.2.2 QRM-MLD Detection Algorithm

In QRM-MLD detection method, all constellation points are considered as all layer symbols via
breadth-first search algorithm. Although QRM-MLD can exactly detect the first layer symbol com-
pared to conventional OSIC, a large number of candidate vectors are required in order to achieve
hard-output ML performance. If a 4 × 4 MIMO system is assumed, the detailed description of
QRM-MLD is described as follows:
After the ordering process based on the ‖ hk ‖2, (k = 1, 2, 3, 4), 4 × 4 ordered (as in Fig. (1),
except instead of SINR, ordering is based on SNR so it is in reverse order of Fig.1), channel matrix
Hordered is decomposed as where, ȳ = QHy, z̄ = QHz. After obtaining system equation Eq.(12), all
the constellation points are assigned to the first layer symbol. Then, select the transmitted candi-
date vector set [x4,(1), ..., x4,(M)] from the all possible candidate vector sets [x4,(1), x4,(2), ..., x4,(|C|)],
where |C| is the number of elements of the constellation point set. The ML metric is then used for
candidate vector selection which will be transferred to the next layer. The ML metric is calculated
as follows:

|ȳ4 − r44x4,(k)|2, k = 1, 2, ..., |C| (13)

After selecting the M candidate vectors that correspond to the least M value of metric, the each
selected candidate vector is expanded into the second layer and M |C| ML metric calculation is
performed using Eq. (13). (

y1

y2

)
−
(

r3,3 r3,4

0 r3,4

)(
x3,(k)

x4,(k)

)
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Again, M candidate vectors corresponding to the smallest M metric values out of M |C| vector
set are chosen for the transmitted signal [x3 x4]T . This process will continue till the last layer.
After obtaining the final candidate vectors for transmitted signal [x1 x2 x3 x4]T at the last layer, the
transmitted signal corresponding to the minimum metric value is determined. The performance of
QRM-MLD method depends on the M parameter which decides the number of candidate vectors.
A large M parameter value can achieve the hard-output ML performance. However it increases the
complexity tremendously.
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