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Abstract

The thesis addresses Blind Source Separation (BSS) in Large Scale (LS) and near-Independent
(nI) sources scenario. The large scale in BSS imply number of unknown sources ranging from 15
to 140, so that the corresponding number of unknowns to be optimized range from 100 to 10000.
The real world sources producing either an added spurious local optima or a shift of global optima
or both are defined to be near-independent with respect to the used BSS contrast as an optimization
criteria. The exponentially increasing solution space with linearly increasing dimensions for opti-
mization and added complexity in the optimization landscape due to the near-independent sources
make the Large Scale near-Independent BSS (LSnIBSS) to be a more difficult problem than the
BSS. As a solution to the LSnIBSS problem, the thesis derives suitable optimization criteria and
a Large Scale Global Optimization (LSGO) technique. Looking Probability Density Function
(PDF) as a generalized multivariate differentiable function, there is derived L2-Norm of Gradient
of Function Difference (GFD) as a BSS contrast, where, GFD is the difference between gradient
of product of marginal PDFs and gradient of joint PDF. A nonparametric estimation of the derived
contrast is achieved through ‘least squares’ based kernel method in a single stage directly, instead
of a two stages indirect estimation method. The contrast estimation is a particular demonstration
of a derived more general method for information field analysis through a newly introduced con-
cept of Reference Information Potential (RIP). The performance of kernel methods depend upon
the choice of kernel bandwidth parameter. There is derived Extended Rule-of-thumb (ExROT)
for bandwidth parameter selection in Kernel Density Estimation (KDE). The method is based on
Gram-Charlier A-Series expansion as an approximation to the unknown PDF, assuming it being
near Gaussian. The ExROT is better, in terms of Integrated Mean Square Error (IMSE) criteria of
performance, compare to the Silverman’s Rule-of-thumb (ROT) for unimodal density estimation
with marginal increase in computational cost. The ExROT derived for multivariate density esti-
mation and multivariate gradient of density estimation are applied to the derived BSS contrast. To
accommodate near-independent scenario, there is introduced a Search for Rotation based Indepen-
dent Component Analysis (SRICA) algorithm using, Genetic Algorithm (GA) like, search based
global optimization technique. The BSS contrasts in simultaneous mode are proved to be nonsep-
arable optimization functions (functions those can not be optimized componentwise), a difficult
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class of functions for LSGO. Towards success of GA, the schema concept is further generalized to
dependency relation based Extended Forma from an existing generalization of equivalence relation
based Forma. The generalization has an impact on the current debate on whether minimal (binary)
alphabet or maximal (float) alphabet of representation for GA success. Taking inspiration from
nature, the work in the thesis recommends use of either an intermediate level of alphabet or vary-
ing representation throughout the search. The former suggestion is empirically realized through
Mendelian GA (MGA) based on the operators exploiting Extended Forma. The latter suggestion is
empirically realized through newly defined the Gradual search scheme, the Spiral search scheme
and others. The concepts are combined together to achieve a GA variant for LSGO of nonseparable
functions. The solution is tested on the LSGO test bench functions and applied to the LSnIBSS
problem using various contrasts.
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Chapter 1

Introduction

Blind Source Separation (BSS) is an area of research started in 1980’s, popularized in 1990’s
and still expanding. It aims retrieval of unobserved sources from the observed mixtures in the
absence of any prior information about the sources or the mixing system. Originated from a
neuro-biological problem, now it finds applications in the areas of feature extraction, classifica-
tion, telecommunications, brain signal processing, audio and speech processing, denoising and so
on. The research has been nurtured and advanced by the research communities mainly working
in the areas of neural net, signal processing and statistics. The detailed history can be found in
(35, 65, 76).

1.1 The BSS Problem

The famous Cocktail party problem is a good example to explain the Source Separation problem.
Let there be going on a cocktail party with multiple speakers, background music, breaking of a
glass, continuous murmuring of a mass etc. as audio sources. Though there are multiple audio
sources; for a human being present in that party, it is possible to focus on a particular audio source
of choice. Whether a machine could have similar ability to separate the sources of choice from
their mixtures? Elaborating more, let the recording devices are placed at some locations. The
audio sources combine together to generate a mixture signal at each recording device. Let there
be an assumption that the audio sources are linearly and instantaneously combined; where, the
coefficients of linearity depend on their mutual geometrical locations, distances, characteristics of
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the environment and others. Mathematically,

x1(t) = a11s1(t) + a12s2(t) + . . .+ a1nsn(t)
...

xm(t) = am1s1(t) + am2s2(t) + . . .+ amnsn(t)

where, m is the number of mixture signals; n is the number of sources; t is the time indice;
xi(t), i = 1 : m are the mixture signals; si(t), i = 1 : m are the source signals and aij, i = 1 :

m, j = 1 : n are the mixing coefficients. Overall, the generation mechanism of the mixture signals
can be explained, using matrix notations, as under:

x(t)m×1 = Am×ns(t)n×1 (1.1)

where, x(t) = (x1(t), x2(t), ..., xm(t))T ∈ Rm is an observed mixture random vector;
s(t) = (s1(t), s2(t), ..., sn(t))T ∈ Rn is a source random vector and A is a mixing transformation.
The cocktail party problem aims to separate and obtain back the actual sources (s(t)) from the
available mixtures (x(t)). There are many possible approaches to solve this source separation
problem. But, the ‘blind’ assumption implies there is no information available about the audio
sources or recording devices; e.g. their mutual location geometry or source distributions or other.

F G- - -

s(t) y(t) = G(F(s(t)))
x(t) = F(s(t))

Generation (Latent) Estimation

Figure 1.1: The BSS Model and the BSS Problem

Formally, the BSS model explains generation of an observed random vector x(t) as an unknown
transformation F to an unobserved source vector s(t). Mathematically,

x(t) = F(s(t)) (1.2)

where, F is an m-component invertible mixing transformation from Rn to Rm.
Formally, the BSS problem is to estimate the unknown s(t) based on some generic assump-

tion∗ on the sources. The word blind implies that there is no other information available about the
∗more generalized, in contrast to application specific assumptions in semi-BSS problem.
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sources or the miximng system, except the applicability of the generic assumption. If y(t) is the
estimated source vector and G is the estimated inverse of the mixing function F then

y(t) = G(x(t)) = G(F(s(t))) = H(s(t)) (1.3)

where,H is an n-component transformation from Rn to Rn and each component hi, i = 1, 2, . . . , n

is a left indeterminacy transformation giving one-one mapping between the ith estimated source
and the ith actual source; i.e. yi(t) = hi(si(t)).

The mixing transformation (F) can be linear or non-linear, instantaneous (without memory)
or dynamic (with memory), stationary or time-varying. Similarly, the transformation with condi-
tion m > n (i.e., number of mixtures more than the number of sources) implies an overdetermined

system; with condition m < n (i.e., number of mixtures less than the number of sources) implies
an underdetermined system; and that with condition m = n (i.e., number of mixtures are same as
the number of sources) implies a determined system. The thesis, if not specified, assumes linear,
instantaneous and determined system.

1.1.1 Linear Instantaneous BSS Problem

Assuming the mixing transformation F to be linear, instantaneous and invertible; similar to those
in cocktail party problem example; and extending the model for N sample instances, the BSS
generation mechanism is explained as under:

X(t)n×N = An×nS(t)n×N (1.4)

Accordingly, the linear instantaneous BSS problem is to estimate the source random vector S(t)n×N

back from the available mixture random vector X(t)n×N without using any information about A

or S(t). Mathematically, it is represented as in Equation (1.5) below:

y(t)n×N = Wn×nX(t)n×N = WAS(t) = Hn×nS(t)n×N (1.5)

where, Y(t) = Ŝ(t) denotes estimated source random vector, W = Â−1 denotes estimated inverse
of the mixing matrix and H is the left indeterminacy transformation.

1.2 The BSS Solution

Towards the BSS solution, there are mainly four different approaches based on four different
generic assumptions. The assumptions are:
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1. Second order uncorrelatedness among the sources

2. Statistically independence and identical distribution among the sources, which leads to In-
dependent Component Analysis (ICA)

3. Sparsity of the sources, which leads to Sparse Component Analysis (SCA)

4. Nonnegativity of the sources, which leads to Non-negative Matrix Factorization (NMF)

Instead of using mere uncorrelatedness depending upon second order statistics, statistical indepen-
dence considering higher order statistics among the sources is a more stronger property. Sparsity
and nonnegativity are relatively new assumptions valid in specific applications. In general, BSS
using the generic assumption of independence among the sources has a wider perspective to cover
more applications and the topic under the scope of this thesis.

1.2.1 Can Independence Assumption Solve the Linear, Instantaneous BSS
Problem?

The fact that independence assumption can lead to BSS solution is proved by Darmois-Skitovich
Theorem. The Theorem is independently proved by both Darmois (38) and Skitovitch (117), in the
context of factor analysis.

Theorem 1.1 (The Darmois-Skitovich Theorem). Let y1 and y2 be random variables defined as

under:

y1 = g11s1 + g12s2 + . . .+ g1nsn

y2 = g21s1 + g22s2 + . . .+ g2nsn

where, s1, s2, . . ., sn are independent random variables. Then, if y1 and y2 are independent, all

variables sk for which g1kg2k 6= 0 are Gaussian.

The theorem states that non-Gaussian independent random variables can not be mixed linearly
and instantaneously to have independent mixture outcomes. Consequently, with linear and instan-
taneous (memoryless) transformations both G and F in the above equation (1.3), if s(t) and y(t)

both are independent then G(F(·)) must correspond to a product of scale and permutation transfor-
mations. This proves that independence assumption can lead to separation of sources if not more
than one source is Gaussian.
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1.2.2 Linear, Instantaneous ICA for BSS

The equation (1.4) reminds us factorization of a data matrix in Component Analysis (CA). The goal
of CA is to remove redundancy in the data matrix by change of basis. The conventional Principal
Component Analysis (PCA) achieves this goal of redundancy removal by finding directions with
maximum variance and mutually uncorrelated. As based on second order statistics, PCA is used
to separate Gaussian or wide sense stationary (WSS) random processes. The general framework to
solve BSS, based on the assumption of statistical independence among the sources, is inspired by
PCA and has been identified as Independent Component Analysis (ICA). It achieves redundancy
removal by finding the components, which are statistically the most independent; in a sense that the
information in a component direction can not be known by knowing the other components. Other
than a BSS technique, as a CA tool, ICA has been reported for many applications as dimensional-
ity reduction, pattern classification, pattern recognition, feature extraction, data compression and
others (42). The formal definition of ICA, given by P. Comon in (33) for linear transformations, is
as under:

Definition 1.2. The ICA of a random vector x = (x1, x2, ..., xm)T with finite covariance CX is a
pair {B, ∆2} of matrices such that

i. the covariance factorizes into Cx = B∆2B∗, where ∆ is diagonal real positive and B is full
column rank matrix, ∗ indicates complex conjugate;

ii. the observations can be written as x = By, where y is an n × 1 random vector with co-
variance ∆2 and whose components are ’the most independent possible’, in the sense of the
maximization of a given ’contrast function’†, as defined in Chapter 2.

The first condition, similar to the PCA definition, identifies B as a set of eigenvectors. In
case of PCA, the second condition on B is orthogonality. For ICA, the second condition restricts
B to give random variables yi as independent components (ICs).

As can be noted, the ICA definition assumes x and y as random vectors without any time
indices. Also, the instantaneous model, if extended for N number of samples, assumes identical
distribution of the sources. Over all, ICA model assumes ‘independent and identical distribution’
(i.i.d.) assumption on the sources. Given the assumption is satisfied by a source random process,
ICA can be used for BSS. Conventionally, linear ICA is considered equivalent to BSS. More details
on the ICA solution and discussion on its’ use for BSS is provided in Chapter 4.

†Roughly speaking, contrast function is a maximization function based on independence measure, satisfying spe-
cific conditions to bring the ICs uniquely.
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As a conclusion, the BSS solution for linear, instantaneous mixing system can be obtained
by maximizing the independence among yi(t)s with respect to the separation matrix W, as:

y∗(t) = argmax
W

Φ(y(t)) (1.6)

where, Φ(y(t)) is the contrast function. The solution demands discussion on the suitable con-
trast functions as optimization criteria and suitable optimization technique corresponding to that
contrast function.

1.3 The Linear ICA Problem and Solution

The Independent Component Analysis (ICA) model explains generation of an observed random
vector x, as a linear transformation to another latent (hidden) random vector s. Mathematically,
x = As, where x = [x1;x2; . . . ;xm]; s = [s1; s2; . . . ; sn]; xi, si are random variables with values
inR; m = n >= 2 and A is full rank. Let there be available N umber of samples of each observed
random variable. Assuming an identical distribution, the instantaneous model can be extended for
N realizations. Let X = [x1; x2; . . . ; xm] be the m × N data or observation matrix and S be the
n×N component or source matrix. Then,

X = AS (1.7)

The problem of ICA is to estimate both the unknowns A and S, with the only assumption of si

being mutually the most independent possible (m.i.p.) random variables with respect to a given
contrast. If W is the estimated inverse of the mixing matrix A then the estimated source or
component matrix Y is:

Y = A−1X = WX = WAS (1.8)

The above ICA solution has the following inherent limitations or indeterminacy as dis-
cussed in (25, 33, 46):

• As X = AS, scaling to any source si can be canceled by dividing corresponding column ai
of A. So, both being unknown, the scaling or the variances and the signs of the ICs can not
be estimated. Similarly, if P is the permutation matrix, X = (AP−1)(PS) i.e. the order
of the estimated components can change with the change in the estimated mixing matrix. In
short, the estimated sources Y can be obtained as a scaled and permuted version of actual
sources S. To have a unique solution, ICA assumes all components to be equivariant or
univariant (33, Section 1.5).
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• Gaussian distribution is symmetric. It can not be modified by the mixing vector or any
mixing vector produces the same distribution. Accordingly, if there are more than one com-
ponents with Gaussian distribution, actual mixing vector can not be known from the mixture.

1.3.1 An Orthogonal Approach to ICA Solution

The goal is to obtain ICs (yis) from the correlated mixtures (xis) of them.

• By definition, statistical independence implies uncorrelatedness (the opposite is true only for
Gaussian variable). The uncorrelated components with zero mean imply orthogonality. So,
the ICs with zero mean are also mutually orthogonal.

• The zero mean uncorrelated components of the data matrix are mutually orthogonal and zero
mean ICs of the data matrix are also mutually orthogonal. There are techniques available to
get zero mean uncorrelated components of the data matrix. If we think of a transformation
from the former to the latter, then it must be an orthogonal transformation. Because, only an
orthogonal transformation can keep the orthogonal components, still orthogonal. To bring
uniqueness of the estimated components, the uncorrelated components should be univariant
or equivariant. Let a zero mean observed mixture data matrix X, be linearly transformed
through a whitening matrix V, to give a zero mean, univariant, whiten (uncorrelated and
equivariant) data matrix Z.

Z = VX (1.9)

⇒ Z = VAS (1.10)

The goal is to obtain the estimated sources yi as zero mean, univariant, ICs. Let us assume
R is the linear transformation for that. Then,

Y = RZ (1.11)

⇒ E{yyT} = E{RZZTRT}

⇒ I = E{RIRT} (1.12)

where, I is the identity matrix. It proves that R needs to be orthogonal. Accordingly,

Y = RZ = RVAS = WAS (1.13)

where, W = RV is the estimated unmixing matrix.

7



1. Introduction 1.4. The Large Scale BSS (LSBSS) Problem

• Orthogonal matrices with determinant +1 are rotation matrices and those with determinant
-1 are reflection matrices. Given a reflection orthogonal matrix with determinant -1, by
negating an odd number of columns, a new rotation orthogonal matrix with determinant +1
can be derived. As the estimated sources are allowed to be scaled or reflected version of the
actual sources, the orthogonal transformation matrix R can be a rotational matrix.

• Concluding above - a specific rotation matrix, from the infinite set of all n-dimensional
rotation matrices, will be able to transform a set of zero mean whiten or eigen (not univariant
but orthogonal) components to ICs. So, the ICA problem reduces to estimating a rotation
matrix R giving m.i.p. yis.

Y∗ = argmax
W∗

Φ(WZ) (1.14)

where, Φ(y) or Φ(Y) is the contrast function based on the dependnece or independence
measure of random vector Y.

• The n× n rotation matrix R has d = n(n−1)
2

entries to be estimated. Other way, d = n(n−1)
2

number of 2-d rotations are required to have Rn×n. Overall, the linear ICA or linear BSS
problem to separate n number of sources reduces to d-dimensional optimization problem.

1.4 The Large Scale BSS (LSBSS) Problem

It is known and also proved in the Section 1.3.1 that the linear BSS problem with n number of
unknown sources is an d = n(n−1)

2
dimensional optimization problem. Accordingly, with num-

ber of sources n > 14 in BSS, the optimization problem has to deal with dimensions d > 100.
Similarly, n > 45 corresponds to d > 1000 and n > 141 corresponds to d > 10000. The op-
timization research community refers a problem with dimensions d ∈ [100, 10000) as the Large
Scale Global Optimization (LSGO) problem and a problem with dimensions d > 10000 as the Big
Scale Global Optimization problem. So, the thesis refers ‘Large Scale’ in LSBSS problem as the
BSS in higher dimensions with number of sources ranging from more than 14 to less than 141,
i.e. n ∈ [15, 140] ⇒ d ∈ [100, 10000)]. The optimization techniques already face the problem
of ‘curse of dimensionality’. With the linear increase in number of dimensions (d), the solution
space increases exponentially (ad, some a ) and so does the difficulty in optimization. So, the
LSGO for real world applications is still challenging and an identified problem (139). It has been a
part of competitions at many conferences; such as, IEEE Congress on Evolutionary Computation
(IEEE CEC) 2008, 2010, 2013, 2015. Overall, the solution of LSBSS demands multi-disciplinary
approach.
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1.5 The Large Scale near-Independent BSS (LSnIBSS) Prob-
lem

The literary meaning of near-independence is - ‘not exact independence’. But, The ICA model
allows the components, being separated, as mutually the ‘most independent possible’ (m.i.p.)‡

with respect to a given contrast function. So, the thesis defines ‘near-independent’ sources as the
sources not being m.i.p. with respect to the used contrast function.

The m.i.p. sources correspond to the global optima of the optimization landscape. The near-
independence among the sources may be exhibited in the following three ways in the optimization
landscape of the used contrast:

i. The actual sources correspond to the solution near global optima i.e. there is a shift of the
global optima such that the optimal solution do not correspond to the actual sources.

ii. There exists an added one or more local optima, which do not correspond to the actual
sources.

iii. There is simultaneously an added local optima, as well as, shifted global optima.

The added local optima makes the optimization landscape difficult to be optimized but the shifted
global makes either almost impossible to find the optima corresponding to the actual sources with-
out any additional information or only an approximate solution can be obtained based on the
amount of shift. At lower dimensions, a slight shift in global optima may allow atleast an ap-
proximate solution. With increasing dimension, cumulative slight shifts in pairwise optima, may
cause the actual solution much far than the global optimal. Overall, the LSBSS problem demands
special focus on the study of the circumstances causing these adverse optimization landscape and
their consequences on separability. The thesis identifies the study area as ‘near-Independent’ BSS
(nIBSS). The sources producing either shift of global optima or addition of spurious local optima
or both with respect to the used contrast qualify to be near-independent for that contrast. It is to be
noted that the near-independence is not a characteristic of sources alone, but it is the characteristic
of sources exhibited in the presence of a specific contrast.

Though the term near-independence is new, there already exists local minima and ex-
trema/optima analysis of different contrast functions with respect to various types of sources. Re-
cently, there has been found situations that affect the optimization landscape in case of BSS of
real world sources. There exists spurious local optima of information theoretic independence mea-
sures for multimodal source distributions. The empirical observations are supported by theoretical
extrema analysis in (17, 90, 91, 92, 132, 134). On the other hand, it has been proved that lack of
‡whether mention or not, m.i.p. implies most independent possible with respect to the given contrast function.
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number of samples may bring overlearning phenomena in ICA for kurtosis like independence mea-
sures (83, 108, 109). The overlearning results into a shift of global optima. The near-independence
terminology makes it possible to study two differently looking problems, under the same roof.

The near-independence condition is not same as the non-independent or non-i.i.d. condi-
tions stated in the BSS literature. Usually, non-independent sources imply time dependencies and
non-identicle conditions imply non-stationarity. There exists BSS model extensions for non-i.i.d.

i.e. temporally dependent sources and/or non-stationary sources (41, 70, 73). More precisely, the
non-i.i.d. is the property of the sources only, while the near independence implies the source model
violation with respect to the used contrast function only. Also, non-independence is more stronger
than the near-independence, in terms of violating of ICA source model assumption.

Overall, the LSBSS of the more difficult real world near-independent sources give birth
to the Large Scale near-Independent BSS (LSnIBSS) problem. The performance degradation in
LSnIBSS is either due to the failure of an optimization techniques in the presence of local minima]
or due to the shift of global (i.e. an optimization technique is successful in finding the optimal but
the optimality does not assure separability) or due to both the former reasons.

1.6 Current State of the Art

The linear BSS algorithms differ based on the used optimization criteria and optimization method.
Conventionally, independence interpretations in terms of minimization of mutual infor-

mation, maximization of non-gaussianity and their approximations using higher order statistics
(cumulants and moments) have served as the major guiding principles to derive the BSS contrasts.
There exists ICA techniques using adaptive learning through neural net (11, 63, 64, 71, 77, 129).
The nonlinearity used for learning has to be a function of probability density function (PDF) of
the components to be estimated. In the absence of this knowledge, family of densities (e.g. super-
Gaussian or sub-Gaussian) is used as an approximation to select the nonlinearity. This requires
some prior knowledge of densities to be estimated and so violates the blind assumption. There
exists algebraic techniques (22, 23, 27, 28, 33) trying to obtain uncorrelatedness of third or fourth
order statistics, inspired by the diagonalization techniques for PCA through second order uncorre-
latedness. With approximate independence measures, they offer a less precise solution (10). There
are also likelihood (12, 24) based signal processing techniques for ICA.

Most of the ICA algorithms use gradient based optimization techniques though exhaustive
search based optimization techniques have also been explored (75, 112). The gradient based opti-
mization techniques lack global convergence, required specifically in near-independent BSS with
local minima. The exhaustive search methods used for optimization are computationally demand-
ing, specifically in large scale.

10



1. Introduction 1.6. Current State of the Art

Overall, a BSS algorithm using contrast that allows blind estimation, offers precision in
separation quality and computationally efficient is still in demand. Further, the large scale and
near-independent scenario demands the same BSS algorithm using a global and computationally
efficient optimization technique.

The kernel based nonparametric estimation methods (10, 18, 87) are both quite precise and
blind but require high computational cost. In search of a BSS contrast with computation reduction,
there has been explored alternative definitions of Entropy other than Shanon’s. So, the latest trend
is to develop an ICA algorithms using kernel estimation of an independence measure that is based
on alternative definitions of Entropy, specifically, the quadratic measures of independence offering
low computational cost. The Information Theoretic Learning (ITL) - a new research area (96) and
article (1) provide many such alternative definitions of independence and quadratic independence
measures; for example, generalized β-Class Entropy, Renyi’s Entropy, Cross Information Potential
(CIP), Euclidean distance (DED) based and Cauchy-Schwartz distance (DCS) based Quadrature
Mutual Information (QMI) (58, 112) and others. It should also be noted that Pham (93) proved
that there are risks using Renyi’s entropy definition for BSS.

Concluding above, in the midst of existing many other algorithms, there is still a require-
ment for a linear BSS algorithm that is - blind in nature, based on computationally efficient kernel
based nonparametric estimation of contrast and using optimization technique with good global
convergence - even in small or medium scale BSS.

The performance degradation of existing ICA algorithms with increase in dimensions is a
known fact (10, 75). The large scale in BSS, using independence assumption, has been addressed
only in article (18) as per the knowledge of the author. There it is claimed that the ICA technique
(NPICA) based on the nonparametric estimation of marginal entropies can seamlessly handle large
scale. But, the empirical results reported in this thesis in the Chapter 4.8, show failure of NPICA
in two dimensions, as well, in higher dimensions for near independent sources. There are efforts
to solve LSBSS problem using other than independence assumption by (30) and (19). In general,
the LSnIBSS, through conventional independence assumption, is still an unsolved problem. The
performance degradation in LSnIBSS is either in terms of the failure of an optimization techniques
to converge to an optimal or in terms of highly increased computation. Atleast the brain signal
processing area, for EEG (Electro-Encephalo-Graph) and MEG (Megneto-Encephalo-Graph) data
analysis like applications, currently demands LSBSS. Conventionally, they are derived through
sequentially executing Blind Signal Extraction (BSE) algorithm to extract one or few important
signals, instead of BSS (37, 133). It is anticipated that the LSnIBSS solution will find applications
in brain signal processing, feature extraction and other data analysis problems.

The LSnIBSS solution demands contrast providing optimization landscape without any
spurious local optima and shift of global optima. It demands optimization algorithm that is com-
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putationally efficient and has good global convergence. The solution also demands study on near-
independence scenario.

Overall, the requirements of LSnIBSS have been identified as the research problem for the
thesis. This also justifies the title of the thesis.

1.7 The Motivation Summary and Work Directions

The thesis addresses the LSnIBSS problem in three directions:

1. Towards optimization criteria: As concluded in the previous Section 1.6, contrast that sticks
to the blind assumption through kernel based nonparametric estimation, offers precision in
separation quality, computationally efficient, without any local minima and using a ’prior’
that does not violate the blind assumption is i demand. The work towards this direction is
briefed in Chapter 2 and Chapter 3.

2. Towards optimization landscape: The near independent sources scenario needs to analyze
situations affecting the optimization landscape, their consequences on separation quality and
possible remedies. The related work is reported in Chapter 4.

3. Towards optimization technique: The Large Scale Global Optimization (LSGO) is reported
to have linear time complexity (O(d ln d), where d is the dimension of search) for a spe-
cific type of problems and an exponential time complexity (O(dd) or O(exp(d ln d))) for an
another type of problems (107). The BSS contrasts belong to which group of optimization
functions for LSGO that need be identified first. Then, a suitable LSGO technique, either
existing or newly defined, need be used for LSnIBSS. The work towards this direction, is
reported in chapters 4, 5 and 6.

1.8 The Thesis Organization and Detailed Outline

The next Chapter 2 derives new contrasts for linear BSS. For differentiable multivariate functions
with equal hyper volumes (region bounded by hyper surfaces) some results are proved relating
equality of derivatives to equality of the functions. The results are applied to the independence
definition stating equality of joint PDF and product of the marginal PDFs of a random vector. This
avails new independence measures and BSS contrasts. The Chapter defines difference between the
joint PDF and the product of the marginal PDFs as a Function Difference (FD) of a random vector.
Similar to the Score Function Difference (SFD) definition in (7, 8), the gradient of FD (GFD) and
the Hessian of FD (HFD) are defined. It is proved that FD, GFD, HFD all are zero everywhere
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when the corresponding random variables are independent. The results lead to derive minimization
of Lp-Norm of FD, GFD and HFD as contrasts for BSS.

The estimation method should be computationally efficient to match the requirement specif-
ically for LSBSS. The contrasts depending upon joint PDF and marginal PDFs both are usually
computationally demanding though more accurate (88). Instead of a conventional two stage esti-
mation approach for a quantity like FD, a direct single stage estimation is more accurate. This is
concluded and applied for ‘least squares’ based density difference estimation in (123). Also, the
kernel theory identifies the fact that it is computationally more efficient to estimate the integra-
tion of square of PDF than the estimation of actual PDF. The ITL theory has given significance
to this fact by defining integration of the square of PDF as an Information Potential of a random
variable. The analogy, with the existing potential theory in Physics, also has given other concepts
related to the information field; like, information forces, information particle interactions and oth-
ers (96, 140, 141). The Section 2.7 targets both the efficient estimation of the proposed contrasts
and extension of the potential theory for an information field. The potential theory has a concept
of reference potential and it is used to derive closed form expression for the relative analysis of
potential field. Analogous to it, the Section 2.8 introduces the concepts of Reference Information
Potential (RIP) and Cross Reference Information Potential (CRIP) based on the potential due to
kernel function placed at selected sample points as basis in kernel methods. The quantities are used
to derive closed form expressions for information field analysis using least squares. The expres-
sions are derived through multiplicative kernel basis in two ways: (a) basis placed at the selected
paired sample points (b) basis placed at the selected paired or un-paired sample points. The ex-
pressions are used to estimate the required contrast functions. They are used to estimate L2-Norm
of FD and L2-Norm of GFD based contrasts.

The performance of a kernel method depends upon efficient bandwidth parameter selection.
The most popular and simple Silverman’s Rule-of-Thumb (ROT) (116) does not give precise band-
width parameter and the precise solve-the-equation based plug-in methods are computationally too
demanding. So, deriving data dependent bandwidth selection method for Kernel Density Estima-
tion (KDE) that balances accuracy and computation is the focus of the next Chapter 3. It achieves
this goal by deriving a novel Extended rule-of-thumb (ExROT). The ROT optimizes Asymptotic
Mean Integrated Square Error (AMISE) with the assumption that the density being estimated is
Gaussian. The ExROT uses infinite series expansion as an approximation to the unknown PDF.
As an example here, the ExROT uses an extended assumption that the density being estimated is
near Gaussian. The assumption makes it possible to use the Gram-Charlier (GC) A-series expan-
sion of near Gaussian PDF with the same AMISE criteria for bandwidth optimization. There exist
many other infinite series expansions of PDF based on which other variants of the ExROT could
be derived. The multivariate ExROT is derived using the multivariate GC A-series. For that, the
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multivariate GC A-series is derived by generalizing a specific derivation in (13) for the univari-
ate Generalized Gram-Charlier (GGC) series expansion to multivariate using Kronecker algebra.
The ExROT is also derived for gradient of multivariate density estimate. The empirical results on
the standard test set for univariate density show the superiority of ExROT over ROT in all uni-
modal density estimation cases - skewed or kurtotic or with outliers and some of the multimodal
cases. Thus, ExROT is a better option to ROT with comparable cost. The Chapter ends with the
application of ExROT for previously derived estimators of FD and GFD based contrasts.

The Chapter 4 is devoted to the near-Independent BSS. It provides both theoretical and
empirical local minima analysis of selected BSS contrasts for various source distributions. Then,
it derives ICA algorithm using, Genetic Algorithm (GA) like, search based global optimization
technique to allow BSS of near-independent source. It verifies the newly derived L2-Norm of
FD and L2-Norm of GFD as BSS contrasts. The contrasts are estimated using the RIP and CRIP
based formal expressions. The bandwidth selection for estimation is provided through both ROT
and ExROT. The SRICA facilitates comparison of separation quality due to various BSS contrasts
against varying source distributions by allowing use of same optimization algorithm for all the
contrasts. The experimental results show failure of most ICA algorithms, including SRICA, in BSS
of two sources with specific distributions and in BSS of higher dimensions. All the experimental
results put together, bring further understanding of the overlearning phenomena and a discussion
on the equivalence of ICA and BSS even in linear case. The failure of SRICA also necessitates
focus on the success of GA as an optimization technique in the Chapter 5 and misconvergence of
GA in higher dimensions in the Chapter 6.

The success of GA is explained through a notion of Schema (a template of similarity among
the search strings) and Schema Theorem. The next Chapter 5 extends this GA search theory (GA
algebra). The notion of schema, has been further generalized to dependency relation based Ex-

tended Forma from the current generalization as an equivalence relation based Forma. There are
derived some operators exploiting the Extended Formae (plural of Forma) based similarities. Over
all, the generalization achieves theoretical maximum possible schemata (plural of schema) for both
the string and non-string representation structures using maximal alphabet. This has an impact on
the current discussion on whether small alphabet (bi-nary) or maximal alphabet (float) for GA rep-
resentation. Taking inspiration from the nature, the work recommends use of either an intermediate
level alphabet - balancing maximal alphabet to avail maximum schemata and minimal alphabet to
overcome some of the disadvantages due to maximum schemata - or varying representations dur-
ing various stages of search. The above representation and operators are empirically used to derive
Mendelian Genetic Algorithm (MGA). MGA, with abundance of schema, is inferred to avoid this
misconvergence at least partially.

The Chapter 6 collaborates LSGO and BSS. It starts with the state of the art large scale
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global optimization methods and the reason for possible misconvergence. The discussion also
figures out that the BSS contrasts, in simultaneous mode, are non-separable functions, a difficult
class of functions for LSGO. Towards the partial success to overcome misconvergence in GA and
to reduce the computation for a non-separable global function optimization, there are discussed
various search strategies with GA. The search strategies, for example, are - varying representations
(gradual search), spiral search, delta search, refine search, population reinitialization and others.
The concepts are mingled with existing Cooperative Coevolution search technique (95) and random
grouping (143) for LSGO of standard test bench functions. The LSGO solutions are also applied
to LSnIBSS.

Finally, the thesis ends with conclusion and possible future extensions in Chapter 7.

1.9 Contribution and Novelty

The contribution and novelty of the work can be briefed as under.

• For kth order differentiable multivariate functions with equal hyper volumes (region bounded
by hyper surfaces) and added condition of bounded support, it is proved that equality of kth

order derivatives implies equality of the corresponding functions.

• The Lp-norm of FD, GFD and HFD are derived as contrasts for BSS.

• The closed form expressions in terms of RIP and CRIP are derived for information field
analysis using least squares and applied to estimate the derived L2-norm of FD and GFD
contrasts.

• The near-Gaussian PDF assumption and the Gram-Charlier A-Series based an Extended

Rule-of-thumb is derived. It is experimentally proved to be better compare to ROT atleast in
all sorts of (skewed or kurtotic or with outliers) unimodal density estimations. The ExROT
is also derived for multivariate density estimation and gradient of univariate or multivariate
density estimation.

• A specific derivation for the univariate GGC is extended to multivariate using kronecker
algebra.

• The Search for Rotation based ICA (SRICA) algorithm using, GA like, global search based
optimization method is derived.

• The near-Independent analysis brings some new conditions providing local minima. Also, it
provides discussion on the use of ICA as BSS in linear case.
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• The schema definition is further generalized to dependency relation based Extended Forma

for both string and non-string structures of representation. The definition achieves theoretical
maximum possible schemata with diploid representation (pair of chromosomes per individ-
ual) and corresponding operators. The new insights also leads to a discussion on whether
maximal alphabet or minimal alphabet for representation.

• The novel Mendelian Genetic Algorithm using Extended Forma based representation and
operators is derived.

• A varying representation, while search in progress, is achieved using gradual search and
spiral search concepts. The concepts are empirically proved to be better than conventional
search of a group of variables in nonseparable function global optimization. The concepts are
mingled with existing Cooperative Coevolution search technique (95) and random grouping
(143) for LSGO of standard test bench functions and a LSnIBSS application.
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Chapter 2

Contrast Functions

The chapter defines contrast function for BSS, discusses the state of the art and derives some new
contrast functions. The new contrasts are based on the Lp distance between the joint PDF and
product of the marginal PDFs of a random vector; its gradient and Hessian. A direct estimate of L2

distance based contrasts using least squares with Gaussian kernel basis is derived. The contrasts
with their estimation methods are compared with existing other contrasts. Finally, the contrasts are
tested as independence measures. The computational load for parameter selection bring motivation
to derive an accurate and computationally efficient data dependent kernel bandwidth parameter
selection method, which has been addressed in the next chapter.

2.1 Introduction

Contrast functions or simply contrasts∗ are the optimization functions to assure blind separation of
unobserved sources from the available observation mixtures, when maximized. The independence
definition, its various interpretations and their approximations are used to derive contrasts.

The initial phase of research on BSS contrasts focused on the Shanon entropy and Kullback-
Leibler divergence (KLD) based information theoretic independence interpretations and their ap-
proximations through higher order statistics (36, 84). The other significant group of contrasts came
from non-Gaussianity interpretations of independence and their approximations (65). More details
on these widely used, conventional contrast functions can be found in (26, 62, 94).

The research towards new contrasts for BSS has the following motivations.

1. More accurate BSS solution seems an everlasting hunger. So, just out of mathematical vigor
to search for a more accurate solutions, new contrasts are always of interest.

∗The formal definition is in Section 2.6.
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2. The Shanon entropy based contrasts are found to have spurious local optima (18, 90, 132).
Therefore, the contrast functions without the existence of spurious local optima are desired.

3. The large scale in BSS requires balancing accuracy with computation. This has motivated
direct and fast estimation methods to derive contrasts (88, 89, 124).

4. Some BSS contrasts with their estimation methods are biased towards a parametric family,
say, subGaussian or superGaussian To achieve unbiased estimation of sources, the focus
has shifted to BSS using kernel based non-parametric estimation of various independence
measures, as in Nonparametric ICA (NPICA) (18) and kernel ICA (kICA) (10).

5. The use of ‘prior’ information with the independence assumption may find better estima-
tions of the actual sources. Therefore, the contrast functions incorporating more generalized
priors without violating the blind assumptions, other than the application specific priors used
in Bayesian approach for BSS and semi-BSS problems, are of interest. The bounded sup-
port assumption is one of such assumptions, used by many geometry based ICA and BSS
algorithms (126, 133).

Overall, the contrasts giving more accuracy at low computation, blind and without local minima
are still in demand and open for further research.

To overcome this demand, the latest trend in BSS contrasts follows two directions.

1. Other than the conventional Shanon entropy and KLD as a divergence measure between two
PDFs, there exists many alternative definitions and interpretations of entropy, PDF distance
measures and independence interpretations (96, 112, 128). Inspired by the above motiva-
tions, the research community has started focusing on these alternatives to derive new BSS
contrasts (10, 75).

2. The new independence interpretation should be incorporated with kernel based fast and non-
parametric estimation technique to derive new BSS contrast.

Combining both the above directions, the latest trend is to use quadratic measures of inde-
pendence for BSS. The article by Achard et al. (1) uses L2 distance between the transformed
characteristic functions of joint and product of the marginal PDFs. The Information Theoretic
Learning (ITL) suggests many such quadratic independence measures, for example, Renyi’s En-
tropy, Cross Information Potential (CIP), Euclidean distance (DED) based and Cauchy-Schwartz
distance (DCS) based Quadrature Mutual Information (QMI) (58, 96). The article by Seth et al.
(112) provides ITL based unified framework to those quadratic distance measures and proposes a
new parameter free distance measure for ICA.
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The current chapter is inspired by all the above motivations and follows the latest trend. It
derives some new independence interpretations relating gradient of the PDFs, specifically for
bounded support random variables, and proposes new BSS contrasts. It achieves their nonparamet-
ric estimation with reduced computation by using least squares based direct estimation approach.
The suitable choice of a kernel bandwidth parameter using data dependent bandwidth selection
Extended Rule-of-Thumb by (? ) achieves a parameter free contrast estimation.

There have been proved some results for generalized differentiable multivariate functions.
Looking PDFs as a generalized functions, the results are applied on independence of random vec-
tors. The results are: 1) The equality of the gradient of joint probability density function (PDF)
and the gradient of product of the marginal PDFs imply independence. 2) The equality of the
Hessian of joint PDF and the Hessian of product of the marginal PDFs imply independence, if the
prior given that the random vector has bounded support i.e. its probability outside certain region
is zero. These new independence interpretations are used to derive new independence measures
and contrast functions for BSS. The bounded support condition is not very restricting. The reasons
are: 1) Empirically, the sampled region is always bounded. 2) Numerically, the computers always
work with definite range. Though may not be always, it might be a valid approach in most cases
to blindly consider PDF outside the bounded sampled region to be zero. To achieve nonparametric
estimation of the newly derived contrasts, there has been derived single stage direct estimation
method using least squares. To take the advantage of the quadratic nature of the contrasts, there
are defined concepts of Reference Information Potential (RIP) and Cross RIP (CRIP) that depend
upon IP due to selected kernel basis. The concepts are used to achieve closed form expressions
for information field analysis. The derived closed form expression are verified by applying them
to obtain L2-Norm of FD and L2-Norm of GFD contrasts. The method uses Gaussian kernels as
basis and has two variations. One, the basis are placed at the selected paired sample points only.
Another, the basis are placed at selected sample points may be paired or unpaired.

The next Section 2.2 derives some results for generalized multivariate differentiable functions
with bounded support. The results are applied to statistical independence condition in Section 2.3.
To better exploit the results, it derives new definitions and their important properties. Correspond-
ing to that, the new independence measures are derived in Section 2.4. The Section 2.5 briefs the
BSS problem and the possible approach for solution. The previous results are used to derive new
BSS contrasts; satisfying the important properties of Scale invariance, Dominance and Discrim-
ination; in Section 2.6.. There is also done local minima analysis of the derived contrast. The
next Section 2.7 discusses the contrast function estimation approaches and derives prerequisites of
Kernel Theory and Information Potential (IP). The Section 2.8 defines the Reference IP (RIP) and
related concepts. Then, the Section 2.8.4 derives the least squares based closed form expression
for information field analysis. The expressions are used to derive FD based estimators LSFD and
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LSFD2 in Section 2.9.1 and GFD based estimators LSGFD and LSGFD2 in Section 2.10. The
Section 2.11 reports empirical verification of the derived independence measures and BSS con-
trasts. The Section 2.11.1 provides important discussion on required parameter selection for the
derived estimators. Finally, the chapter ends with conclusion in Section 2.12.

2.2 Some Results On the Equality of Generalized Constrained
Multivariate Functions

Definition 2.1. A function f : Rn → f(Rn) is said to have support R if f(x) = 0, ∀x ∈ R′,
where, R ⊆ Rn and R′ is its complement set. It is represented as supp(f) = R. Any superset of
R is also a support. If R is bounded above and bounded below then f is a said to be a bounded
support function.

Let Conv(R) be the convex hull of R that contains all convex combinations of points in R.
Then, the definition says that for the bounded support functions both the supportR and its convex
hull Conv(R) have finite measures. If R is convex, both the support measure (l(R)) and its range
(l(Conv(R))) are same, where l is the length of an interval. For example: let R = [−1, 1]. Then,
the support measure l(R) and the range l(Conv(R)) = 2. Now, letR = [−1, 1]

⋃
(2, 4] \ 3. Then,

l(R) is 4. But, the Conv(R) is [−1, 4] and l(Conv(R)) = 5.
For differentiable multivariate functions with equal hyper volumes (region bounded by hyper

surfaces) the following results are derived. For some of the results, an added constraint of random
vector having bounded support is required.

Theorem 2.2. Let f : Rn → R, g : Rn → R and both satisfy the following conditions:

1. They have bounded support.

2. They are differentiable.

3.
∫
Rn f(x)dx =

∫
Rn g(x)dx, x ∈ Rn

Then, the following holds:

∇f(x) = ∇g(x)⇒ f(x) = g(x) (2.1)

Proof. Let us prove this Theorem by mathematical induction.
The Base Case: n = 1

Without loss of generality, let I = [−a, a] ⊇ Conv(R), a ∈ R
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Given
∫
Rn f(x)dx =

∫
Rn g(x)dx and d

dx
f(x) = d

dx
g(x).

Integrating both the sides of the latter equation leads to,

f(x) = g(x) + c (2.2)

where, c is some arbitrary constant.
Integrating both the sides of Equation (2.2) with respect to x from −a to a, brings:∫ a

−a
cdx = 0⇒ c = 0

This proves the Theorem for the base case.
The induction step: Given the Lemma holds for n = k, let us prove it for n = k + 1.
For the sake of simplicity, let us prove it for k = 2 i.e. n = 3, assuming it holds for n = 2.
Its generalization to k > 2 is obvious.
Without loss of generality, let x = (x1, x2, x3)T and I = [−a, a]3 ⊇ Conv(R), a ∈ R
Given,

∫
I
f(x)dx =

∫
I
g(x)dx and ∇f(x) = ∇g(x).

⇒ ∂
∂x1
f(x) = ∂

∂x1
g(x).

Integrating both the sides with respect to x1 leads to:

f(x) = g(x) + c(x2, x3) (2.3)

where, c(x2, x3) is some arbitrary function of x2 and x3.
Integrating equation (2.3) over I, we get:

∫
x3

∫
x2
c(x2, x3)dx2dx3 = 0

Integrating equation (2.3) with respect to x1 from −a to a, we get:

f1(x2, x3) = g1(x2, x3) + 2ac(x2, x3) (2.4)

where, f1(x2, x3) =
∫ a
−a f(x)dx1 and g1(x2, x3) =

∫ a
−a g(x)dx1.

Integrating equation (2.4) with respect to both x2 and x3, we get:
∫
x3

∫
x2
f1(x2, x3)dx2dx3 =∫

x3

∫
x2
g1(x2, x3)dx2dx3.

Integrating ∂
∂x2
f(x) = ∂

∂x2
g(x) with respect to x1 from−a to a, we get: ∂

∂x2
f1(x2, x3) = ∂

∂x2
g1(x2, x3)

Integrating ∂
∂x3
f(x) = ∂

∂x3
g(x) with respect to x1 from−a to a, we get: ∂

∂x3
f1(x2, x3) = ∂

∂x3
g1(x2, x3)

Applying n = 2 case, with all the required conditions satisfied, we get: f1(x2, x3) = g1(x2, x3)

Therefore, from equation (2.4), c(x2, x3) = 0. This proves the Lemma for n = k + 1.
Combining both the base case and inductive step, by mathematical induction, the Theorem holds
for all natural n.
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Lemma 2.3. Let f : Rn → R, g : Rn → R and both satisfy the following conditions:

1. They are second order differentiable.

2.
∫
R f(x)dx =

∫
R g(x)dx, x ∈ Rn, R = supp(f)

⋃
supp(g)

3. They have bounded support.

Then, the following holds:

∇2f(x) = ∇2g(x)⇒ f(x) = g(x) (2.5)

Proof. Let us prove this Lemma by mathematical induction.
The Base Case: n = 1

Without loss of generality, let I = [−a, a] ⊇ Conv(R), a ∈ R
Given

∫
I
f(x)dx =

∫
I
g(x)dx and d2

dx2
f(x) = d2

dx2
g(x).Double integrating both the sides of latter

equation with respect to x leads to,

f(x) = g(x) + c1x+ c2 (2.6)

where, c1 and c2 are some arbitrary constant.
Integrating both the sides of Equation (2.6) with respect to x from −a to a, brings c2 = 0.
Integrating both the sides of Equation (2.6) with respect to x from −a to b, b > a, , b ∈ R brings
c1 = 0.
This proves the Theorem for the base case.
The induction step:
Given the Lemma holds for n = k, let us prove it for n = k + 1.
For the sake of simplicity, let us prove it for k = 2 i.e. n = 3, assuming it holds for n = 2. Its
generalization to k > 2 is obvious.
Without loss of generality, let x = (x1, x2, x3)T and I = [−a, a]3 ⊇ Conv(R), a ∈ R
Given

∫
I
f(x)dx =

∫
I
g(x)dx; ∇2f(x) = ∇2g(x).

⇒ ∂2

∂x12
f(x) = ∂2

∂x12
g(x). Integrating twice both the sides with respect to x1 leads to:

f(x) = g(x) + c1(x2, x3)x1 + c2(x2, x3) (2.7)

where, c1(x2, x3) and c2(x2, x3) are some arbitrary functions of x2 and x3.
Integrating Equation (2.7) over I, we get:

∫
x3

∫
x2
c2(x2, x3)dx2dx3 = 0

Integrating Equation (2.7) with respect to x1 from −a to a, we get:

f1(x2, x3) = g1(x2, x3) + 2ac2(x2, x3) (2.8)
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where, f1(x2, x3) =
∫ a
−a f(x)dx1 and g1(x2, x3) =

∫ a
−a g(x)dx1.

Integrating Equation (2.8) with respect to both x2 and x3, we get:
∫
x3

∫
x2
f1(x2, x3)dx2dx3 =∫

x3

∫
x2
g1(x2, x3)dx2dx3

Integrating ∂2

∂x22
f(x) = ∂2

∂x22
g(x) with respect to x1 from −a to a, we get: ∂2

∂x22
f1(x2, x3) =

∂2

∂x22
g1(x2, x3)

Integrating ∂2

∂x32
f(x) = ∂2

∂x32
g(x) with respect to x1 from −a to a, we get: ∂2

∂x32
f1(x2, x3) =

∂2

∂x32
g1(x2, x3)

Applying, n = 2 case, with all conditions satisfied, we get: f1(x2, x3) = g1(x2, x3)

Therefore, from Equation (2.8), c2(x2, x3) = 0.
Integrating the Equation (2.7) with respect to x1 from−a to b, b > a, b ∈ R, we get: c1(x2, x3) = 0

This proves the Lemma for n = k + 1.
Combining both the base case and inductive step, by mathematical induction, the Lemma for all
natural n.

Lemma 2.4. Let f : Rn → R, g : Rn → R and both satisfy the following conditions:

1. They are pth order differentiable.

2.
∫
R f(x)dx =

∫
R g(x)dx, x ∈ Rn, R = supp(f)

⋃
supp(g)

3. They have bounded support.

Then, the following holds:

∇pf(x) = ∇pg(x)⇒ f(x) = g(x) (2.9)

Proof. The Theorem 2.2 proves this for p = 1 and the Lemma 2.3 proves the same for p = 2.
Here, it needs be proved for any p > 2.
Let us prove this Lemma by mathematical induction.
The Base Case: n = 1

Without loss of generality, let I = [−a1, a1] ⊇ Conv(R), a1 ∈ R
Given

∫
I
f(x)dx =

∫
I
g(x)dx and dp

dxp
f(x) = dp

dxp
g(x).

Integrating p times both the sides of latter equation with respect to x leads to,

f(x) = g(x) + c1x
p−1 + c2x

p−2 + · · ·+ cp (2.10)

where, ci, i = {1, 2, . . . , p} are some arbitrary constant.
We can have two cases: Let p be even.
Integrating both the sides of Equation (2.10) with respect to x from −a1 to a1, brings a11c2 +
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a12c4 + . . .+ a1qcp = 0, where q = p/2 and a1is are the coefficients as a result of integration.
Let there be q−1 real numbers ai, i = {2, 3, . . . q} such that ai > a1 and each one is different from
the other. Then, integrating (2.10) with respect to x from −ai to ai, brings over all q equations
with coefficients aij, i = {1, 2, . . . , q}, j = {1, 2, . . . , q}. Representing them in a matrix form,
Ac = 0, where A = [aij], ∀ aij 6= 0 and c = (c2, c4, . . . , cp)

T . The only solution to this equation
is: ci = 0, i = {2, 4, . . . , p} i.e. all ci, i = ∀ even in Equation 2.10 are zero.
Now, let there be q real numbers bi > ai, i = {1, 2, . . . , q} such that none of them is equal to
the other. Integrating both the sides of Equation (2.10) with respect to x from −ai to bi brings
bi1c1 + bi2c3 + . . .+ biqcp−1 = 0, where q = p/2 and bij, j = {1, 2, . . . , q} are the coefficients as a
result of integration. In a matrix form, Bc = 0, where B = [bij] and c = (c1, c3, . . . , cp−1)T . This
brings all ci, i = odd also to be zero.
This proves the lemma from Equation (2.10) for p even case.
The p odd case can also be solved similarly.
This proves the Lemma for the base case.
The induction step:
Given the Lemma holds for n = k, let us prove it for n = k + 1.
For the sake of simplicity, let us prove it for k = 2 i.e. n = 3, assuming it holds for n = 2.
Its generalization to k > 2 is obvious.
Without loss of generality, let x = (x1, x2, x3)T and I = [−a1, a1]3 ⊇ Conv(R), a ∈ R
Given

∫
I
f(x)dx =

∫
I
g(x)dx;∇pf(x) = ∇pg(x).

⇒ ∂p

∂x1p
f(x) = ∂p

∂x1p
g(x). Integrating p times both the sides with respect to x1 leads to:

f(x) = g(x) + c1(x2, x3)xp−1
1 + c2(x2, x3)xp−2

1 + . . .+ cp(x2, x3) (2.11)

where, ci(x2, x3), i = {1, 2, . . . , p} are some arbitrary functions of x2 and x3.
Let p be even.
Integrating Equation (2.11) over I, we get:∫
x3

∫
x2
{a11c2(x2, x3)xp−2

1 + a12c4(x2, x3)xp−4
1 + . . .+ a1qcp(x2, x3)}dx2dx3 = 0

where q = p/2 and a1i are the relevant coefficients.
Integrating Equation (2.11) with respect to x1 from −a1 to a1, we get:

f1(x2, x3) = g1(x2, x3) + a11c2(x2, x3)xp−2
1 + a12c4(x2, x3)xp−4

1 + . . .+ a1qcp(x2, x3) (2.12)

where, f1(x2, x3) =
∫ a
−a f(x)dx1 and g1(x2, x3) =

∫ a
−a g(x)dx1.

Integrating Equation (2.12) with respect to both x2 and x3, we get:
∫
x3

∫
x2
f1(x2, x3)dx2dx3 =∫

x3

∫
x2
g1(x2, x3)dx2dx3

Integrating ∂2

∂x22
f(x) = ∂2

∂x22
g(x) with respect to x1 from −a1 to a1, we get: ∂2

∂x22
f1(x2, x3) =
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∂2

∂x22
g1(x2, x3)

Integrating ∂2

∂x32
f(x) = ∂2

∂x32
g(x) with respect to x1 from −a1 to a1, we get: ∂2

∂x32
f1(x2, x3) =

∂2

∂x32
g1(x2, x3)

Applying, n = 2 case, with all conditions satisfied, we get: f1(x2, x3) = g1(x2, x3)

Therefore, from Equation (2.12), a11c2(x2, x3)xp−2
1 + a12c4(x2, x3)xp−4

1 + . . .+ a1qcp(x2, x3) = 0.
Similar to the n = 1 case, we can form q − 1 such other independent equations, solving them we
get: ci = 0.∀i even
Integrating the Equation (2.11) with respect to x1 from −a1 to b1, b1 > a1, b1 ∈ R, we get:
b11c1(x2, x3)xp−1

1 + b12c3(x2, x3)xp−3
1 + . . .+ a1qcp−1(x2, x3)x1 = 0

Similar to the n = 1 case, we can form q − 1 such other independent equations, solving them we
get: ci = 0.∀i odd
This proves the Lemma for n = k + 1.
Combining both the base case and inductive step, by mathematical induction, the Lemma for all
natural n.

Lemma 2.5. Let f : Rn → R, g : Rn → R and both satisfy the following conditions:

1. They are pth order differentiable.

2.
∫
R f(x)dx =

∫
R g(x)dx, x ∈ Rn, R = supp(f)

⋃
supp(g)

3. They have bounded support.

Then, the following holds:

f(x) = g(x)⇔ ∇pf(x) = ∇pg(x) (2.13)

Proof. Given f(x) and g(x) are differentiable: f(x) = g(x)⇒ ∇pf(x) = ∇pg(x)

The converse part is proved in Lemma 2.4. This proves the current Lemma.

Theorem 2.6. Let f : Rn → R, g : Rn → R and both satisfy the following conditions:

1. They are pth order differentiable.

2.
∫
R f(x)dx =

∫
R g(x)dx, x ∈ Rn, R = supp(f)

⋃
supp(g)

3. They have bounded support.

Then, the following holds:

f(x) = g(x)⇔ ∇f(x) = ∇g(x)⇔ . . .⇔ ∇pf(x) = ∇pg(x) (2.14)

25



2. Contrast Functions 2.3. Applications of the Results On Independence

Proof. Applying principle of transitivity of implication (Hypothetical syllogism) to Lemma 2.5
with varying values of p, this Theorem is proved.

For a generalized functions, given any pth order derivatives are equal, the only available infor-
mation would be that the functions differ by a constant in their (p− 1)th order derivative. It would
require p initial conditions to decide about equality of the functions. The Theorem 2.2 proves that
if the given condition for p = 1 is added with one more condition of equal hypervolumes then it
brings equality of the functions. The above Theorem 2.6 proves further the strength of an added
prior information that the function is also having bounded support. This prior implies that any pth

order derivatives are equal, the functions are equal. Conversely, given two functions with equal pth

derivative are not equal imply either of the conditions are not matching. For example; let f(x) and
g(x) are constant functions with unequal constant values and unequal supports on real line such
that area under them are same. The derivatives are same and zero everywhere. The example seems
counterexample of the Theorem 2.2 as both derivatives are same but not the functions. More better
observation clears that both the functions are discontinuous at boundary points. This violates the
differentiability condition of Theorem. The derivative values given zero, actually excludes points
with Lebesgue measure zero.

2.3 Applications of the Results On Independence

By definition, the probability density functions have area under the curve to be unity. The bounded
support function assumption seems restricting application to many PDFs. But, as said in the Sec-
tion 2.1, empirically and numerically this assumption is not restricting. So, it is natural to think
of extending the previous results to independence condition. Looking similarity with the results
on Score Function Difference (SFD) and its properties related to independence in (7), the topic is
developed using matching terminology.
Let x = (x1, x2, . . . , xn)T is an n-dimensional random vector, where, xi, i = 1, 2, . . . , n are ran-
dom variables; px(x1, x2, . . . , xn) is the joint PDF of x and

∏n
i=1 pxi(xi) is the product of the

marginal PDFs. For this description, the statistical independence as in (84), and other terms are
defined.

Definition 2.7 (Statistical Independence). The random variables x1, x2, . . . , xn are said to be sta-
tistically independent, if

px(x1, x2, . . . , xn) =
n∏
i=1

pxi(xi)

As the statistical independence finds many applications, it is worth defining the following term.
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Definition 2.8 (Function Difference (FD)). The Function Difference (FD) of x is the difference
between product of its marginal PDFs

∏n
i=1 pxi(xi) and its joint PDF px(x1, x2, . . . , xn), that is:

∆(x)
def
=

n∏
i=1

pxi(xi)− px(x1, x2, . . . , xn)

From the Definition, ∆(x) ≡ 0 implies independence.
With the assumption that the joint PDF and the marginal PDFs are differentiable, the followings

are defined.

Definition 2.9 (GPF). The Gradient of the Product Function (GPF) of x is the gradient of the
product of the marginal PDFs

∏n
i=1 pxi(xi), that is:

ξ(x)
def
= ∇

(
n∏
i=1

pxi(xi)

)
= (ξ1(x1), ξ2(x2), . . . , ξn(xn))T

where, ξl(xl)
def
=

∂

∂xl

(
n∏
i=1

pxi(xi)

)

Definition 2.10 (GJF). The Gradient of the Joint Function (GJF) of x is the gradient of the joint
PDF px(x1, x2, . . . , xn), that is:

ζ(x)
def
= ∇px(x1, x2, . . . , xn) = (ζ1(x), ζ2(x), . . . , ζn(x))T

where, ζl(x)
def
=

∂

∂xl
px(x1, x2, . . . , xn)

Definition 2.11 (GFD). The Gradient Function Difference (GFD) of x is the difference between
its GPF and GJF or equivalently it is the gradient of FD, that is:

α(x)
def
= ξ(x)− ζ(x) = ∇(∆(x))

The following property proves that GFD (α(·)) contains important information about indepen-
dence of the components of a random vector.

Property 1. The components of a random vector x = (x1, x2, . . . , xn)T are independent if and

only if α(x) ≡ 0, that is:

ξ(x) = ζ(x) (2.15)

Proof. Let us take for better analogy, f(x) = px(x1, x2, . . . , xN) and g(x) =
∏N

i=1 pxi(xi)

⇒
∫
R f(x)dx =

∫
R g(x)dx = 1

Given ξ(x) = ζ(x) or ∇f(x) = ∇g(x).
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2. Contrast Functions 2.3. Applications of the Results On Independence

The required conditions are satisfied. So, applying Theorem 2.2 and the Definition 2.7 of Indepen-
dence, the property is proved.

For the same random vector x with added assumptions that the joint PDF and the product of
the marginal PDFs are both second order differentiable and have bounded support, the following
definitions and results are obtained.

Definition 2.12 (HPF). The Hessian of the Product Function (HPF) of x is the Hessian of the
product of the marginal PDFs

∏n
i=1 pxi(xi), that is:

Ξ(x)
def
= ∇ξ(x) = ∇2

(
n∏
i=1

pxi(xi)

)

Definition 2.13 (HJF). The Hessian of the Joint Function (HJF) of x is the Hessian of the joint
PDF px(x1, x2, . . . , xn), that is:

Z(x)
def
= ∇ζ(x) = ∇2px(x1, x2, . . . , xn)

Definition 2.14 (HFD). The Hessian Function Difference (HFD) of x is the difference between its
HPF and HJF, or equivalently it is the Hessian of FD, that is:

A(x)
def
= Ξ(x)−Z(x) = ∇ (ξ(x)− ζ(x))

= ∇2(∆(x)) = ∇α(x)

The following property proves that HFD (A(·)) contains important information about indepen-
dence of the components of a random vector.

Property 2. The components of a bounded support random vector x = (x1, x2, . . . , xn)T are

independent if and only ifA(x) ≡ 0, that is:

Ξ(x) = Z(x) (2.16)

Proof. Applying Lemma 2.4 with p = 2, the property is proved.

Corollary 2.15. Let x = (x1, x2, . . . , xn)T be an n-dimensional random vector; px(x1, x2, . . . , xn)

be its joint PDF;
∏n

i=1 pxi(xi) be its product of the marginal PDF; the PDFs be second order

differentiable with bounded supportR ⊆ Rn. Then:

px(x1, x2, . . . , xn) =
n∏
i=1

pxi(xi)⇔ ξ(x) = ζ(x)⇔ Ξ(x) = Z(x) (2.17)
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2. Contrast Functions 2.4. Deriving new Independence Measures

Proof. Applying Theorem 2.6 and the Definition 2.7 of independence, the corollary is proved.

The Property 1 of GFD, Property 2 of HFD and the Corollary 2.15 bring further interpretations
on independence of bounded support random vector. Our goal is to develop new contrasts based
on them. For that the quantities should be nonnegative to be quantified as measures. So, first let
there be derived independence measures based on these results.

2.4 Deriving new Independence Measures

The goal here is to derive independence measures based on the quantities FD, GFD and HFD. But,
the quantities do not assure nonnegativity to be quantified as measures. Assuming a class of Lp

integrable PDFs, the Lp norm can be applied on them. Being norm, they satisfy all the properties
of a metric and an added property of absolute scale invariance, as per the definition of norm. The
details on the definitions of a measure, a metric, a norm and the specific Lp-norm are briefed in
Appendix A.

It is desired that a distance measure between PDFs is invariant with respect to translation
and scaling i.e. the deviation in mean and the variance should not affect the distance measure.
The reason is, the nearness of the PDFs should imply their shapes are matching. The desired
property of scale invariance, instead of the absolute scale invariance, can be assured by defining an
independence measure that applies a norm on normalized PDFs i.e. converting them first into zero
mean, univariance PDFs.

Proposition 2.16. For a random vector x ∈ Rn with Lp integrable joint and marginal PDFs,

LpFD(x) or ∆p(x) defined as under is an independence measure.

∆p(x)
def
= ||∆(z)||p =

(∫
Rn
|∆(z)|p dz

) 1
p

(2.18)

or dp

(
n∏
i=1

pxi(xi), px(x)

)
=

(∫
x

∣∣∣∣∣
n∏
i=1

pxi

(
xi − x̄i
σxi

)
− px

(
x− x̄

σx

)∣∣∣∣∣
p

dx

) 1
p

(2.19)

where, z =
(

x−x̄
σx

)
, x̄ and x̄i are consecutively mean of x and xi, σx and σxi are corresponding

standard deviations.

Proof. By definition, ∆p(x) ≥ 0 and ∆p(x) = 0 if and only if ∆(x) ≡ 0. Also, by Definition 2.7
of independence, ∆p(x) = 0 if and only if the components of x are independent.
This proves that ∆p(x) is an independence measure. More specifically, it is an independence
metric with respect to ∆(x), but not necessarily on the space of random vectors x themselves.
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2. Contrast Functions 2.4. Deriving new Independence Measures

The GFD is essentially a vector, whose value is an n-tuple of functions. Accordingly,
α : Lp × Lp × . . . Lp → R. So, Lp-norm can still be applied as under.

Proposition 2.17. For an n-dimensional random vector x = (x1, x2, ..., xn) with differentiable

joint and marginal PDFs, LpGFD(x) or αp(x) defined as under is an independence measure.

αp(x)
def
= ||α(z)||p =

(
n∑
i=1

(||αi(z)||p)p
) 1

p

(2.20)

or dp (ξ(x), ζ(x)) =

(
n∑
i=1

∫
z

∣∣∣∣ξi(x− x̄

σx

)
− ζi

(
x− x̄

σx

)∣∣∣∣p dz
) 1

p

(2.21)

where, z =
(

x−x̄
σx

)
, x̄ is the mean of x and σx is the corresponding standard deviation.

Proof. The differentiable PDF condition, assures Lp integrability.
By definition,αp(x) ≥ 0 andαp(x) = 0 if and only ifα(x) ≡ 0. Applying Property 1,αp(x) = 0

if and only if the components of x are independent.
This proves thatαp(x) is an independence measure. More specifically, it is an independence metric
with respect to α(x), but not necessarily on the space of random vectors x themselves.

The HFD is essentially a matrix. So, matrix norms are applicable. The ‘Entrywise’ norms
treat matrix entries as a vector entries. The following independence measure can be defined.

Proposition 2.18. For a bounded support random vector x = (x1, x2, ..., xN) with second order

differentiable joint and marginal PDFs, LpHFD(x) orAp is an independence measure, where:

Ap(x)
def
= ||A(z)||p =

(
n∑
j=1

n∑
i=1

(||Aij(z)||p)p
) 1

p

(2.22)

or dp (Ξ(x),Z(x)) =

(
n∑
j=1

n∑
i=1

∫
zij

∣∣∣∣Ξij

(
x− x̄

σx

)
− Zij

(
x− x̄

σx

)∣∣∣∣p dzij
) 1

p

(2.23)

where, x̄ is the mean of x and σx is the corresponding standard deviation.

Proof. The second order differentiable PDF condition, assures Lp integrability.
By definition, Ap ≥ 0 and Ap(x) = 0 if and only if A(x) ≡ 0. Applying property 2, Ap = 0 if
and only if the components of x are independent.
This proves that Ap is an independence measure. More specifically, it is an independence metric
with respect toA(x), but not necessarily on the space of random vectors x themselves.
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2.5 The Linear BSS Problem and Solution

The Blind Source Separation (BSS) model explains generation of an observed random vector x(t),
as an transformation to another latent (hidden) random vector s(t). Assuming linear and instan-
taneous transformation, mathematically, x(t) = As(t), where x(t) = [x1(t);x2(t); . . . ;xm(t)];
s(t) = [s1(t); s2(t); . . . ; sn(t)]; xi(t), si(t) are random variables with values in R; m = n >= 2

and A is full rank. Let there be available N umber of samples of each observed random variable.
Assuming an identical distribution, the instantaneous model can be extended for N realizations.
Let X(t) = [x1(t); x2(t); . . . ; xm(t)] be the m × N data or observation matrix and S(t) be the
n×N component or source matrix. Then,

X(t) = AS(t) (2.24)

The problem of BSS is to estimate both the unknowns A and S(t), with the only assumption of
si(t) being mutually the most independent possible (m.i.p.) random variables with respect to a
given contrast. If W is the estimated inverse of the mixing matrix A then the estimated source or
component matrix Y(t) is:

Y(t) = A−1X(t) = WX(t) = WAS(t) (2.25)

As, X(t) = AS(t) = (AΛ−1P−1)(PΛS(t)), for any permutation matrix P and a scaling matrix
Λ, there are going to be scaling and permutation ambiguities in the estimated components.

Given the unknown sources are independent and identically distributed (i.i.d.) with max-
imum one of them being Gaussian, a unique BSS solution is assured by Darmois-Skitovtch The-
orem (33, 35, 46). Accordingly, the BSS solution for linear, instantaneous mixing system can be
obtained by maximizing the independence among yi(t)s with respect to the separation matrix W,
as:

y∗(t) = argmax
W

Φ(y(t)) (2.26)

where, Φ(y(t)) is the optimization function, based on independence or dependence measure, that
assures source separation on maximization. It is identified as a contrast function or simply a
‘contrast’. Overall, the BSS solution demands a suitable contrast function as an optimization
criteria and a suitable optimization technique corresponding to that contrast function.

2.6 Deriving New Contrasts for ICA and BSS

A formal definition of contrasts, based on references (34) and (35, Chapter 3), for BSS is as under.
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Definition 2.19 (Contrast for BSS). LetH be a set of static transformations (filters) containing an
identity transformation (filter) I; S be a set of source random variables that are independent and
; X = H · S be the set of random variables obtained by the action of H on S; Φ be a mapping
from H × H · S to R. Also, denoted by T the set of trivial filters of H, which leave criterion Φ

unchanged. A mapping Φ(H; x) is a contrast if it depends solely on the PDF of x and if it satisfies
the following three properties below.

a. Invariance: ∀x ∈ X ,∀T ∈ T ,Φ(T; x) = Φ(I; x)

b. Dominance: ∀s ∈ S,∀H ∈ H,Φ(H; s) ≤ Φ(I; s)

c. Discrimination: ∀s ∈ S, if H ∈ H satisfies

Φ(H; s) = Φ(I; s), then H ∈ T

The Dominance property assures that the actual sources have the global maxima. The Dis-
crimination property assures that there is no other spurious solution achieving the global maxima.
There is some discussion needed on the invariance property. It is obvious that the independence
components found using a given measure, are still independent if permuted or scaled. So, one of
the solutions is available, whole class of solutions related through permutation and scaling oper-
ation is available. The Invariance property assures this by stating that whole class should have a
same measure. The widely used KL-divergence assures this property. But, it is known that many
other PDF divergence measures such as; Itakura-Saito distance, density-power divergences do not
assure this scale invariance property. To accommodate such a larger class of divergences, without
deteriorating the BSS performance, there has been first defined and then proposed relative scale
invariance property as the sufficient property with other properties to be quantified as contrast.

Definition 2.20. The contrast Φ : H×H·S → R is said to have relative Scale Invariance property;
if it satisfies the following condition: Given y = Λx

Φ(y) = k(Λ)Φ(x)

where, k(Λ) is a fixed transformation as a function of Λ.

Proposition 2.21. Φ : H×H ·S → R is a contrast for linear BSS, if it satisfies the Relative Scale

Invariance property with other required properties satisfied.

Proof. The following arguments justify the proposition.

• Given T ∈ T is a scale matrix with diagonal entries only. As the source components are
independent, Φ(s) = 0. From the definition of the relative scale invariance property, k(T) is

32



2. Contrast Functions 2.6. Deriving New Contrasts for ICA and BSS

a predefined transformation acting as a scaling factor. So, Φ(y) = 0. ⇒ ∀T ∈ T ,Φ(T; s) =

Φ(I; s) = 0

As per this argument, scale invariance is required corresponding to the source components
s and not necessarily with respect to x. This is satisfied by the contrasts measuring 0 corre-
sponding to independence and satisfying relative scale invariant.

• By definition, the relation between the measures corresponding to x components and their
scaled version Tx components is known. ∀T ∈ T ,Φ(T; x) = k(T)Φ(I; x)

This assures the contrast measure for whole equivalence class of solutions are known.

• For the most BSS algorithms or precisely the orthogonal approach BSS algorithms y =

Wx, where W is the estimated unmixing orthogonal rotation transformation and x are the
equivariant uncorrelated (whiten) components. This implies that the measure is applied on
the solution set that is equally scaled. Mathematically, y = Λx, but Λ is a constant for the
whole solution set. Also, corresponding k(Λ) is constant for the whole solution set.

Though the relative scale invariance property is sufficient for a quantity to be a contrast, in
most of the cases the quantity can be easily converted into a scale invariant quantity. This has been
demonstrated for Lp norm of FD, GFD and HFD distance measures. Now, let us verify whether
the derived independence measures qualify to be a contrast or not.

Proposition 2.22. ΦFD
p or Φ∆

p : H×H · S → R is a contrast for linear BSS, where:

ΦFD
p (H; x) or Φ∆

p (H; x) = Φ∆
p (y)

def
= −∆p(y) = −dp

(
n∏
i=1

pyi(yi), py(y)

)

Proof. Let us verify the scale invariance property of the contrast for both without and with normal-
ization. Let T ∈ T be n× n diagonal scaling matrix, as a trivial filter, with the non-zero diagonal
entries ti, i = 1, . . . , n.

pTx(t1x1, t2x2, . . . , tnxn) =
1

|detT|
px(x1, x2, . . . , xn)

p(Tx)i((Tx)i) =
1

|ti|
pxi(xi)

⇒
N∏
i=1

pxi(xi) =
1

|detT|

N∏
i=1

pxi(xi)
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Now, Φ∆
p (y) = −∆p(y) = −||∆(y)||p

= −

(∫
y

∣∣∣∣∣
n∏
i=1

pyi(yi)− py(y)

∣∣∣∣∣
p

dy

) 1
p

= −

(∫
x

(
1

| det T|

∣∣∣∣∣px(x)−
n∏
i=1

pxi(xi)

∣∣∣∣∣
)p

| det T|dx

) 1
p

= − |detT|
1−p
p ∆p(x)

This proves that the contrast Φ∆
p (y), without normalization of PDFs, is scale invariant for p = 1

i.e. corresponding to L1-norm of ∆. It assures relative scale invariance for 1 < p <∞. As already
discussed either the relative scale invariance is a sufficient condition or the measures are applied on
normalized densities (i.e. densities with zero mean and unit variance) the scale invariance property
is satisfied. Corresponding to normalized density, ti = 1,∀i = 1, 2, . . . , n.
The permutation invariance can be proved in a same way as | det T| = 1.
The Proposition 2.18 proves the Dominance property.
By Definition 2.7, ∆p(y) = 0 if and only if the components y = Hs are independent. So, H

should be a trivial filter in T . This proves the Discrimination property.

Similarly, let us now verify whether the GFD is qualified to be a BSS contrast or not.

Proposition 2.23. ΦGFD
p or Φα

p : H×H · S → R is a contrast for linear BSS, where:

ΦGFD
p (H; x) or Φα

p (H; x) = Φα
p (y)

def
= −αp(y) = −dp (ξy(y), ζy(y))

Proof. Let us verify the scale invariance property of the contrast for both without and with normal-
ization. Let T ∈ T be n× n diagonal scaling matrix, as a trivial filter, with the non-zero diagonal
entries ti, i = 1, . . . , n.
To simplify, let us start with the gradient of one dimensional transformed variable.

Y = aX ⇒ pY (y) =
1

a
pX

(y
a

)
⇒ dpY (y)

dy
=

1

a2
pX

(y
a

)
⇒
∫
y

dpY (y)

dy
dy =

1

a

∫
x

dpX(x)

dx
dx
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Let y = Tx.

⇒ ΦGFD
p = −αp(y) = −

(
n∑
i=1

∫
yi

(ζi(y)− ξi(y))p dyi

) 1
p

= −

(
n∑
i=1

∫
xi

∣∣∣∣ 1

t2i
(ζi(x)− ξi(x))

∣∣∣∣p tidxi
) 1

p

= −

(
n∑
i=1

|ti|1−2p ‖αi(x)‖p

) 1
p

This proves, αp(y), without normalization, is neither scale invariant nor relative scale invariant.
So, without normalization it can not be a BSS contrast, though being an independence measure.
But, as already discussed the measures are applied on normalized densities i.e. densities with zero
mean and unit variance, the scale invariance property is satisfied. Corresponding to normalization,
ti = 1,∀i = 1, 2, . . . , n.
The permutation invariance can be proved in a same way as | det T| = 1.
The Proposition 2.17 proves the Dominance property.
By Property 1, αp(y) = 0 if and only if the components y = Hs are independent. So, H should
be a trivial filter in T . This proves the Discrimination property.

Similarly, let us decide whether HFD - with and without normalization is qualified to be a
BSS contrast or not.

Proposition 2.24. ΦHFD
p or ΦA

p : H × H · S → R is a contrast for linear BSS of sources with

bounded support, where:

ΦHFD
p (H; x) or ΦA

p (H; x) = ΦA
p (y)

def
= −Ap(y) = −dp (Ξy(y), Zy(y))

Proof. Let us verify the scale invariance property of the contrast for both without and with normal-
ization. Let T ∈ T be n× n diagonal scaling matrix, as a trivial filter, with the non-zero diagonal
entries ti, i = 1, . . . , n.
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To simplify, let us start with the Hessian of one dimensional transformed variable.

Y = aX ⇒ pY (y) =
1

a
pX

(y
a

)
⇒ d2pY (y)

dy2
=

1

a3
pX

(y
a

)
⇒
∫
y

d2pY (y)

dy2
dy =

1

a2

∫
x

dpX(x)

dx
dx

Let y = Tx.

Ap(y) =

(
n∑
j=1

n∑
i=1

∫
yij

(Zij(y)− Ξij(y))p dyij

) 1
p

=

(
n∑
i=1

n∑
i=1

|ti|1−3p ‖Aij(x)‖p

) 1
p

This proves, Ap(y), without normalization, is neither scale invariant nor relative scale invariant.
So, without normalization it is not a BSS contrast, though being an independence measure.
But, as already discussed the measures are applied on normalized densities i.e. densities with zero
mean and unit variance, the scale invariance property is satisfied. Corresponding to normalization,
ti = 1,∀i = 1, 2, . . . , n

The permutation invariance can be proved in a same way as | det T| = 1.
The Proposition 2.18 proves the Dominance property.
By Property 2, Ap(y) = 0 if and only if the components y = Hs are independent. So, H should
be a trivial filter in T . This proves the Discrimination property.

2.6.1 Local Minima Analysis of the Proposed Contrasts

The contrasts defined using Lp-norm over FD, GFD and HFD have one more advantage that they
do not have any local minima. This is a known property of Lp-norm, p > 1, proved as under:

d

d ‖f(x)‖
‖f(x)‖p = p ‖f(x)‖p−1

∴
d

d ‖f(x)‖
‖f(x)‖p = 0⇒ ‖f(x)‖ = 0⇒ f(x) = 0,∀x

So, there is no separate proof required to show that the contrasts ∆p(y(θ)),αp(y(θ)) andAp(y(θ))

do not have local minima with respect to the corresponding functions. But, still they may have local
minima with respect to θ. Also, the estimation method may add local minima. Actually, it could
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be easily proved that the contrasts may contain local optima, as under.

∇∆p(y0) = 0

⇒∆p(y0) = c (an arbitrary constant)

Obviously, as only c = 0 imply independence, other values of c correspond to possible local
optima. The more detailed analysis follows as under.
Let x = (x1, x2, . . . , xn)T be a bounded random vector and δ = (δ1, . . . , δn)T be a ‘small’ random
vector. Then, the interest here is in the differential of Φ∆

p or ‖∆(x + δ)‖p − ‖∆(x)‖p.

‖∆(x + δ)‖p − ‖∆(x)‖p =

∫
x

∣∣∣∣∣
n∏
i=1

pxi+δi(x)− px+δ(x)

∣∣∣∣∣
p

dx−
∫

x

∣∣∣∣∣
n∏
i=1

pxi(x)− px(x)

∣∣∣∣∣
p

dx

Assuming t as the support of all the PDFs,

‖∆(x + δ)‖p − ‖∆(x)‖p =

∫
t

∣∣∣∣∣
n∏
i=1

pxi+δi(t)− px+δ(t)

∣∣∣∣∣
p

dt−
∫

t

∣∣∣∣∣
n∏
i=1

pxi(t)− px(t)

∣∣∣∣∣
p

dt

=

∫
t

|a− b|p − |c− d|p dt using symbolic notations

where, a =
∏n

i=1 pxi+δi(t), b = px+δ(t), c =
∏n

i=1 pxi(t) and d = px(t).
Let’s assume p = 1:

‖∆(x + δ)‖1 − ‖∆(x)‖1 = 0

⇒ Either
∫

t

|a− b| dt =

∫
t

|c− d| dt

or |a− b| = |c− d| ,∀t

or a = b and c = d,∀t

The condition
∫

t
|a− b| dt =

∫
t
|c− d| dt do not assure gradient zero for optimal indicating inde-

pendence condition.
As per |a− b| = |c− d| ,∀t, four different cases can be thought:

Case I: a > b, c > d ⇒ a− b = c− d⇒ a− c = b− d⇒ ξx(x) = ζx(x)

Case II: a > b, c < d ⇒ a− b = −c+ d⇒ a+ c = b+ d⇒ spurious optima

Case III: a < b, c > d ⇒ −a+ b = c− d⇒ a+ c = b+ d⇒ spurious optima

Case IV: a < b, c < d ⇒ −a+ b = −c+ d⇒ a− c = b− d⇒ ξx(x) = ζx(x)
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The Case I and Case IV imply independence but not the other cases.
The condition a = b and c = d,∀t also implies independence.
Over all, the analysis implies that the contrast Φ∆

1 may have gradient zero indicating spurious
maxima.
Let’s assume p = 2:

‖∆(x + δ)‖2 − ‖∆(x)‖2 = 0

⇒ Either
∫

t

|a− b|2 dt =

∫
t

|c− d|2 dtdt

or |a− b|2 = |c− d|2 ,∀t

or a = b and c = d,∀t

The condition
∫

t
|a− b|2 dt =

∫
t
|c− d|2 dt do not assure gradient zero for optimal indicating

independence condition.
As per |a− b|2 = |c− d|2 ,∀t⇒ two different cases can be thought:

Case I:a− b− c+ d = 0⇒ a− c = b− d⇒ ξx(x) = ζx(x)

Case II: a− b+ c− d = 0⇒ a+ c = b+ d⇒ spurious optima

The Case I imply independence but not the Case II.
The condition a = b and c = d,∀t also implies independence.
Over all, the analysis implies that the contrast Φ∆

2 may have gradient zero indicating spurious
maxima.
Same way, for other values of p also, existence of spurious optima can be proved.
Also, in a similar way, possible existence of local optima for contrasts Φα

p and ΦA
p can be proved.

2.6.2 FD and its Stochastic Gradient

The previous relation of FD, GFD and HFD reminds us the relationship between mutual informa-
tion and the SFD. As proved by Babaie-Zadeh et al. (9), SFD is the stochastic gradient and can
be used to derive differential of mutual information. Also, it has been used to derive that mutual
information has no local minima (8). So, it will be desired to investigate whether such results can
be obtained with respect to FD, GFD and HFD.

Let us try to obtain differential of FD, in terms of GFD as defined in Section 2.3. Let x =

(x1, x2, . . . , xn)T be a random vector and δ = (δ1, . . . , δn)T be a ‘small’ random vector. Then, the
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interest here is in the differential function of FD that is, ∆(x + δ)−∆(x).

∆(x + δ)−∆(x) =

(
n∏
i=1

pxi+δi(xi + δi)− px+δ(x + δ)

)
−

(
n∏
i=1

pxi(xi)− px(x)

)

Assuming t as the support of all the PDFs,

∆(x + δ)−∆(x) =

(
n∏
i=1

pxi+δi(ti)− px+δ(t)

)
−

(
n∏
i=1

pxi(ti)− px(t)

)

Using Lemma 1 in (9), the following holds.

px+δ(t)− px(t) = −
n∑
i=1

∂

∂ti
{Eδi{δi|x = t}px(t)}+ o(δ) (2.27)

= −Eδ{δT ζx(x)}+ o(δ) (2.28)

Same can be applied to the product of the marginal PDFs, itself being a PDF.

n∏
i=1

pxi+δi(t)−
n∏
i=1

pxi(t) = −
n∑
i=1

∂

∂ti
{Eδi{δi|x = t}

n∏
i=1

pxi(xi)}+ o(δ)

= −Eδ{δTξx(x)}+ o(δ) (2.29)

Combining Equation (2.28) and Equation (2.29), the differential function of FD can be given by,

∆(x + δ)−∆(x) = −Eδ{δTαx(x)}+ o(δ)

This is the differential function and to convert it into a number, let us simply integrate it over t.

⇒ ∇
∫

x

∆x(x) =

∫
t

(∆x+δ(t)−∆x(t)) dt =

∫
t

Eδ{δTαx(x)}dt + o(δ)

⇒
∫

x

(∆(x + δ)−∆(x)) dx =

∫
x

Eδ{δTαx(x)}dx + o(δ) = δT
∫

x

αx(x) + o(δ)

⇒ ∇
∫

x

∆x(x) = lim
δ→0

∆(x + δ)−∆(x)

δ
=

∫
x

αx(x)dx

Similarly, ⇒ E{∆(x + δ)−∆(x)} = E{Eδ{δTαx(x)}}+ o(δ) = δTE{αx(x)}+ o(δ)

⇒ ∇E{∆(x)} = E{α(x)}

The above result proves that the GFD (α) serves as a stochastic gradient of the integrated Function
Difference or expectation FD of a random vector. So, it could have been easier prove that ∆(x +
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δ) −∆(x) = 0 ⇔ α(x) = 0 and that implies independence. But, the similar can not be proved
for their corresponding lp measures i.e. ∆p(x + δ)−∆p(x) = 0 < αp(x) = 0 can not be proved.
The reason is the contrast defined use the Lp-norm of FD and not just the integration or expectation
of FD, as this quantities do not assure nonnegativity. So, the effort to prove that the contrasts are
without local minima in the previous Section 2.6.1, actually resulted into the proof for possible
existence of spurious local optima for them.

Overall, the contrast Φ∆
p (y(θ)), Φα

p (y(θ)) and ΦA
p (y(θ)) do not have any local maxima with

respect to itself. But, it may still have local maxima as a function of θ (or some other variable),
as y itself is a function of the search parameter θ. The next Section 2.7 focuses on the empirical
estimation of these contrasts.

2.7 Preliminary background on Estimation of the Derived Con-
trasts

Usually, the independence measures avoid estimation of joint PDF, as higher dimension joint PDF
estimation is less accurate or requires more samples than marginal PDF estimation. The article
(88) notes that the measures based on estimation of joint PDF and marginal PDF both, try to
cancel out estimation errors compare to the measures only estimating the marginal entropies. The
minimization of Lp-norm of FD, GFD and HFD are the BSS contrasts belong to this class of
contrasts. The conventional way is to estimate them following a two stage process. In the first
stage, separate estimation of joint PDF and marginal PDFs for Φ∆

p , their gradients for φα
p and their

Hessians for ΦA
p is achieved. Then, the second stage estimates their difference or Lp-norm. The

separate estimation of the PDFs and their derivatives can be achieved through histogram based
technique or kernel based method. The histogram based PDF estimation method is fast but less
accurate compare to the kernel method. The estimation theory basics says that two stage estimation
process for a required quantity amplifies the error in estimation. So, either separate estimation of
joint and marginal PDFs and then their difference or the first joint PDF estimation, then based
on it the marginal PDFs estimation and then the difference - this both way are indirect estimation
method. Compare to them, the direct estimation of the required quantity from the data is supposed
to be less erroneous. Though theoretically any real p ≥ 1 is allowed, either p = 1 or p = 2 are
more suitable for computation. The Kernel theory says that a quantity based on the square of the
PDF requires less computations than that based on PDF; if a Gaussian kernel is used.

In general, compare to the estimation of PDFs, their derivatives and Hessians have more in-
accuracies or require more samples for same precision. So, the chapter derives only the contrasts
based on FD and GFD. In the light of these observations, there is proposed direct estimation of the
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L2 based contrasts using ‘least squares’ approach. There are two different estimation approaches
based on the sample locations selected to place the kernel basis. The first approach is to select
the joint sample locations to place the multivariate kernel basis. The corresponding estimator for
FD is identified as ΦLSFD

2 and that for GFD is identified as ΦLSGFD
2 . The methods require O(b2)

computations, where b is the number of basis selected. The another approach places kernel basis
at selected paired or un-paired sample locations. It requires O(b3) computations with better esti-
mations. It is to be noted that the estimation of the same contrasts without the least square based
approach requires O(N2) or O(N3) order of computations where N is number of samples. Also,
using Fast Gauss Transform (FGT) and Incomplete Cholskey Factorization the computational com-
plexity can be further reduced. Similar methods are already in use for direct estimation of density
difference (123), density ratio (121, 142) and squared loss mutual information (106, 120, 122).
The information potential due to such an arrangement of basis functions is identified as the Refer-
ence Information Potential (RIP). The chapter extends Information field theory to incorporate the
new concepts of Reference Information Potential (RIP) and Cross-RIP (CRIP). The concepts are
demonstrated, through above four estimators, to be useful to derive closed form expressions for
information field analysis.

2.7.1 Kernel Basics and Information Potential

Given N realizations of an unknown PDF f(x), the kernel density estimate ˆf(x) is given by

ˆf(x) =
1

N

N∑
i=1

1

h
K

(
x− xi
h

)
(2.30)

where, K(u) is the kernel function and h is the bandwidth parameter deciding the spread of the
kernel. Usually, K(u) is a symmetric, positive definite and bounded function, i.e. it satisfies the
following properties:

K(u) ≥ 0,

∫ ∞
−∞

K(u)du = 1,

∫ ∞
−∞

uK(u)Du = 0,

∫ ∞
−∞

u2K(u)du = µ2(K) <∞ (2.31)

It is known that the convolution (symbol ‘∗’) of two Gaussian functions is still a Gaussian
function(G(·, ·)). In a single dimension,

G(v, σ1) ∗G(u− v, σ2) = G(u,
√
σ2

1 + σ2
2) (2.32)

Let us use this property to estimate the expectation of the square of PDF. Let the Gaussian kernel
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be given as,

Gσ(x−mx) =

∫ ∞
−∞

1√
2πσ

exp−
1
2(x−mxσ )

2

dx (2.33)

Then,

∫
{ ˆf(x)

2
}dx =

∫ ∞
−∞

(
1

N

N∑
i=1

Gσ (x− xi)

)2

dx (2.34)

=

∫ ∞
−∞

1

N2

N∑
j=1

N∑
i=1

Gσ(x− xi)Gσ(x− xj)dx (2.35)

=
1

N2

N∑
j=1

N∑
i=1

∫ ∞
−∞

Gσ(x− xi)Gσ(x− xj)dx (2.36)

=
1

N2

N∑
j=1

N∑
i=1

Gσ
√

2(xi − xj) (2.37)

Thus, the integration of the square of PDF is achieved in a computationally efficient way, avoiding
the continuous integration. The ITL theory has given significance to this property by identifying
it as a quadratic information potential. The details on IP, related independence measure QMIED

and information forces follow in the Appendix B.

2.8 Extention to IP Theory

One of the interpretations describes potential as the amount of work done required to bring a unit
charge (for electric field) or unit mass (for gravity field) from infinity to the point in the force
field, where infinity implies a point with zero potential. The particle contains amount of potential
energy that has been applied to work against the force. It is customary in potential theory to think
of a reference potential i.e. assuming that a particle is moved from a reference point in the field
instead from the infinity. This helps analyzing a potential or gravitational field through a reference
framework instead absolute. In a gravitational field theory, the potential energy at a hight from
a sea level reference or some other local reference; in an electric field theory potential difference
with respect to the common/neutral of the system or earth - are the respective examples. Moreover,
during field analysis it is a general practice to start with a reference potential and then to express the
required related quantities as a function of this reference potential. For example, in nodal analysis
for electrical circuit analysis, reference potential is assumed at every node.

Once defined IP, the natural query is whether it is possible to derive the concept of reference
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potential for information fields? Further, whether there can be derived some laws for information
field analysis using the reference IP concept? The first question is answered defining RIP and
related quantities in Section 2.8.1, 2.8.2 and 2.8.3 . The second question is answered in the Section
2.8.4.

2.8.1 Reference Information Potential (RIP)

In kernel analysis, it is customary to initially assume a set of kernel basis placed at some selected
sample points and then the required quantities are expressed as a function of the basis. The potential
due to kernel basis can be identified as a Reference Information Potential (RIP). Analogous with the
laws in electric circuit analysis, the least squares like approaches can be thought to bring functional
relationship between a required quantity and the reference potential.

Let Ψ(x) = {ψ(x1), ψ(x2), . . . , ψ(xb)} be the set of kernel functions consecutively placed
at selected sample locations† xi, i = 1, 2, . . . , b. They act as basis as potential at any point in the
field is measured using linear combinations of them. . The selected sample points can be seen
as the occurrences of a random variable Xψ. Then, the potential of Xψ (V̂α(Xψ)) is a Reference
Information Potential (RIP). More specifically, quadratic RIP is the integral of the square of the
PDF of Xψ (pxψ(x)), as under:

RIP2 = V 2
R

def
=

∫
x

p2
Xψ

(x)dx

V̂ 2
R =

∫
x

p̂2
Xψ

(x)dx

=

∫
x

(
1

b

b∑
i=1

ψσ (x− xi)

)2

dx

=

∫
x

1

b2

b∑
j=1

b∑
i=1

ψσ(x− xi)ψσ(x− xj)dx

=
1

b2

b∑
j=1

b∑
i=1

∫
x

ψσ(x− xi)ψσ(x− xj)dx

= V̂2(Xψ)

†usually, the basis are placed at sample points but can be placed at some other points in the field
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For a Gaussian kernel, ψ(xi) = G(xi), the following holds:

V̂R =
1

b2

b∑
j=1

b∑
i=1

∫
x

Gσ(x− xi)Gσ(x− xj)dx

=
1

b2

b∑
j=1

b∑
i=1

Gσ
√

2(xi − xj)

The quadratic RIP definition can be generalized to α RIP, as:

RIPα = Vα
R

def
=

∫
x

( ˆpXψ(x))αdx

Once defined RIP, two more related concepts can be defined to bring the closed form expression
for information field analysis.

2.8.2 Cross Reference Information Potential (CRIP)

The Cross Information Potential (CIP) is defined as the entropy of a PDF f(x) with respect to an
another PDF g(x): CIP = E{f(x)} =

∫
f(x)g(x)dx. With reference to the newly defined RIP

concept, entropy of a PDF f(x) with respect to the reference PDF p̂Xψ is called CRIP. The CRIP
estimates the potential on the selected locations as the basis due to the interactions of locations
from the sample space of f(x) (or vice versa).

CRIP2 = V2
R(f)

def
= V2(f,Xψ) =

∫
f(x)pXψdx

V̂2(f,Xψ) =

∫
x

1

N

N∑
i=1

ψσ(x− xf (i))
1

b

b∑
j=1

ψσ(x− x(j))dx

=
1

Nb

b∑
j=1

N∑
i=1

∫
x

ψσ(x− xf (i))ψσ(x− x(j))dx

For a Gaussian kernel, ψ(x− xi) = G(x− xi), then:

V̂R =
1

Nb

b∑
j=1

N∑
i=1

∫
x

Gσ(x− xf (i))Gσ(x− x(j))dx

=
1

Nb

b∑
j=1

b∑
i=1

Gσ
√

2(xf (i)− x(j))
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2.8.3 Information Interaction Matrix (IIM)

The analysis may not just require the final scalar outcome, but may depend upon the intermediate
information interactions. So, let there be defined an Information Interaction Matrix (IIM) as the
matrix due to each interaction. There can be IIM for potential, IIM for reference potential and IIM
for information forces etc. For example, the field with N sample points will have N2 interactions
that will be the size of the IIM for potential. Similarly, the IIM for reference potential will be
of dimension b × b and IIM for CRIP will be of dimension N × b. This is analogous to the
Gram Matrix. Let us symbolize (Vα(xi, xj)) as the potential on xj due to interaction with xi and
Vα(X) as the IIM for the potential of random variable X . Also, Vα(X) is already symbolized as
the scalar quantity IP of X . Accordingly, V α

R is the reference potential and VR is the Reference
potential IIM. In short, V (x(i), x(j)) =

∫
ψ(x, x(i))ψ(x, x(j))dx, [V2(X)]ij = V (x(i), x(j)) and

V2(X) = 1
N2

∑N
j=1

∑j
i=1[V2(X)]ij . Similarly, V(xf (i), x(j)) =

∫
x
ψσ(x−xf (i))ψσ(x−x(j))dx,

[V2
R]ij = V(xf (i), x(j)) and V2

R(X) = 1
Nb

∑b
j=1

∑b
i=1[V2

R]ij .

2.8.4 Closed-Form Expression using Reference Potential through Least Squares

Conventionally, the concept of reference potential is used in both electric field and gravitation field
analysis. Analogous to them, this section demonstrates that existing ’least squares’ like principles
can be used to derive closed-form expressions; in terms of the RIP and related concepts; for infor-
mation field analysis. A mathematical expression is of type closed form if it requires finite number
of constants, variables and operations.

The method of ‘least squares’ aims at estimating the model parameters that minimize the
sum of squared errors between the true and the estimated quantity. Without loss of generality, let
us use assume that f(x) is the quantity to be estimated and g(x) = f̂(x) is the estimation. Then:

lsf =

∫
R

(g(x)− f(x))2dx

=

∫
x∈R

g(x)2dx− 2

∫
x∈R

g(x)f(x)dx+

∫
x∈R

f(x)2dx

= V2(g(x))− 2V(g(x), f(x)) (∵ the last term has no effect on optimal lsf) (2.38)

where, V2(g(x)) = ||f̂(x)||2 is the potential of the estimated f(x) and V(g(x), f(x)) = ||f̂(x)f(x)||
is the cross information potential between the actual and estimated f(x). So, both quantities repre-
sent the estimation of

∫
R f(x)2dx. But, as proved by Sugiyama et al. (123), the linear combination

of them, the lsf, is more bias corrected estimator of
∫
R f(x)2dx.

Let us assume further that g(x) is given by a linear combination of the selected basis func-
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tions placed at the selected sample points.

g(x) =
b∑
i=1

θiψi(x) = θ(x)TΨ(x) (2.39)

where, b denotes the number of basis functions; θ(x) = (θ1, θb, ..., θb)
T is the parameter vector and

Ψ(x) = (ψ1, ψ2, ..., ψb)
T is the basis function vector. So, with regularization functionR(θ) = θTθ

and λ as the regularization parameter,

lsf(θ) = θTVRθ − 2VTRθ + λθTθ (2.40)

where, VR(b×b) =

∫
R

Ψ(x)ΨT (x)dx (2.41)

VR(b×1) := Vb×1((ψ(x), f(x))) =

∫
R

Ψ(x)f(x)dx (2.42)

The estimator depends upon the IIM for RIP (VR) and the IIM for CRIP (VR) of f(x). The optimal
value of parameter vector θ(x) can be obtained by minimizing the gradient of lsf.

θ∗ = argmin
θ

lsf(θ) (2.43)

∂

∂θ
lsf = VRθ + λθ − VR (2.44)

θ∗ = (VR + λIb)
−1VR (2.45)

where, Ib is a b-dimensional identity matrix. Thus, obtaining IIMs VR and VR(Ψ(x), f(x)) gives
the parameter vector (θ) and that, in turn, gives least squares estimator lsf. Overall, the Equation
(2.40), with Equation (2.45), imply closed-form equation is available for the estimation of f(x) or
||f(x)||2. This also justifies the purpose to define the quantities RIP, CRIP and IIMs.

2.9 ΦFD2 Estimation

The section targets estimation of the contrast ΦFD
2 using closed form expressions, in terms of the

RIP and related concepts, derived in the previous Section 2.8.4. Instead of the conventional two
stage approach, here, the estimation is achieved directly in a single stage through ‘least squares’.
Similar methods are already in use for direct estimation of density difference (123), density ra-
tio (121, 142) and squared loss mutual information (106, 120, 122). Also, it is worth noting that
ΦFD

2 := −||∆(·)|2 and QIMED = ||∆(·)|2; where, QIMED denotes the Euclidean Distance
based Quadratic Independence Measure defined by Principe (96). Overall, the section also esti-
mates QIMED directly, in a single stage.
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Without loss of generality, let us estimate ∆(·) of a two dimensional random vector and
then the results be generalized to higher dimensions. The ∆(·) of a two-dimensional random
vector is:

∆(x, y) := pxy(x, y)− px(x)py(y) (2.46)

Let g(x, y) = ∆̂(x, y) be the estimated ∆(x, y) and LSFD be the Least Squares based FD estima-
tor. Then:

LSFD =

∫
R2

∫
(g(x, y)−∆(x, y))2dxdy (2.47)

= V2(g(x, y))− 2V(g(x, y),∆(x, y)) (∵ using Equation (2.38)) (2.48)

where, V2(g(x, y)) = ||∆̂||2 is the potential of the estimated ∆(x, y) and V(g(x, y),∆(x, y)) =

||∆̂∆|| is the cross information potential between the actual and estimated ∆(x, y).
Let us assume further that g(x, y) is given by a linear combination of the selected basis functions
placed at the selected sample points.

g(x, y) =
b∑
i=1

θiψi(x, y) = θ(x, y)TΨ(x, y) (2.49)

where, b denotes the number of basis functions; θ(x, y) = (θ1, θb, ..., θb)
T is the parameter vec-

tor and Ψ(x, y) = (ψ1, ψ2, ..., ψb)
T is the basis function vector. So, with regularization function

R(θ) = θTθ and λ as the regularization parameter,

LSFD(θ) = θTVRθ − 2VTRθ + λθTθ (2.50)

where, VR(b×b) =

∫
R

∫
R

Ψ(x, y)ΨT (x, y)dxdy (2.51)

VR(b×1) := Vb×1((ψ(x,y),∆)) =

∫
R

∫
R

Ψ(x, y)(pxy(x, y)− px(x)py(y))dxdy (2.52)

[VR]1 := VR(ψ(xl, yl),∆) =
N∑
i=1

[VR(Ψ(xl, yl),∆)′]li (2.53)

The estimator depends upon the IIM for RIP and the IIM for CRIP of ∆(x, y). The optimal value
of parameter vector θ(x, y) can be using the following equation.

θ∗ = (VR + λIb)
−1VR (2.54)

where, Ib is a b-dimensional identity matrix. Thus, obtaining IIMs VR and VR(Ψ(xl, yl),∆)

gives the parameter vector (θ). Finally, the least squares estimator LSFD gives the bias corrected

47



2. Contrast Functions 2.9. ΦFD
2 Estimation

estimation of ΦFD
2 .

2.9.1 ΦFD
2 Estimation through Multiplicative Kernel Model

Let us use multiplicative Gaussian kernel function as a basis function placed at the selected sample
points. So,

g(x, y) =
b∑
i=1

θiK(x, xi)L(y, yi) = θT [k(x) o l(y)] (2.55)

where, K(x, xi) and L(y, yi) are the kernel functions at xi and yi consecutively;
k(x) = (K(x, x1), K(x, x2), ..., K(x, xb))

T and l(y) = (L(y, y1), L(y, y2), ..., L(y, yb))
T are the

kernel vectors and the operator o denotes Hadamard product. This gives

[VR(x, y)]ij =

∫
R

∫
R
K(x, xi)L(y, yi)K(x, xj)L(y, yj)dxdy

⇒ V̂R(b×b)(x, y) = VR(x) o VR(y)

or [V̂R(x, y)]ij =

(
1√
π2σ

)2

exp

(
−(xi − xj)2

4σ2
− (yi − yj)2

4σ2

)
where, VR(x) is a b× b matrix with entries [VR(x)]ij = K(x, xi) ∗K(x, xj) and VR(y) is a b× b
matrix with entries [VR(y)]ij = L(y, yi) ∗ L(y, yj) and ∗ is the symbol for convolution operation.

The IIM for RIP VR(b×b), for an n-dimensional quantity, is obtained using bn multipli-
cations. The computations can be reduced by replacing multiplications through additions of the
exponents. This will require square of the nb2 terms, nb2

2
additions of exponents and then taking
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exponents of b2 terms. Now, the sample estimate of VR (V̂R) can be obtained as under:

VR(b×1)(Ψ(x, y),∆(x, y)) =

∫
R

∫
R

(k(x) o l(y))(pxy(x, y)− px(x)py(y))dxdy (2.56)

[V̂R(Ψ(x, y),∆(x, y))]l = V(ψ(xl, yl), pxy(x, y))− V(ψ(xl, yl), px(x)py(y)) (2.57)

V(ψ(xl, yl), pxy(x, y)) =

∫
R

∫
R
(K(x, xl)L(y, yl))

(
1

N

N∑
i=1

(K(x, xi)L(y, yi))

)
dxdy

(2.58)

=
1

N

N∑
i=1

VR(xi, xl)VR(yi, yl) (2.59)

=
1

4πσ2N

N∑
i=1

exp

{
−(xi − xl)2 + (yi − yl)2

4σ2

}
(2.60)

V(ψ(xl, yl), px(x)py(y)) =

∫
R

∫
R
(K(x, xl)L(y, yl))

(
1

N2

N∑
j=1

N∑
i=1

(K(x, xi)L(y, yj))

)
dxdy

(2.61)

=
1

N2

N∑
i=1

(
VR(xi, xl)

(
N∑
j=1

VR(yj, yl)

))
(2.62)

=
1

N2

(
N∑
i=1

VR(xi, xl)

)(
N∑
j=1

VR(yj, yl)

)
(2.63)

The estimation of V(ψ(xl, yl), pxy(x, y)) is obtained by replacing the Hadamard product through
addition of the exponents, as for the estimation of VR(x, y). Each entry requires n − 1 addi-
tions and N exponents followed by N additions. Each entry V(ψ(xl, yl), px(x)py(y)) is obtained
through nN additions and (n− 1) multiplication. So, over all vector
V̂R(Ψ(x, y), pxy(x, y)) requires (N +n− 1)b additions and Nb number of exponents. The estima-
tion of vector V̂R(Ψ(x, y), px(x)py(y)) requires nNb additions and b(n− 1) multiplications.

Once VR(x, y) and VR are available, the linear coefficients (θ) can be obtained solving
Equation (2.54). The time complexity for this isO(b2). Based on Equation 2.48, the required Φ∆

2 =

−LSFD, is estimated. Also, the method estimates both the Function Difference (∆) and ΦFD
2 of a

random vector simultaneously. The time complexity is usually measured in terms of the number of
multiplications. With this, the total multiplication time complexity is only O(b2 + b(N + n− 1)).
It can be further reduced by taking exponent of values corresponding to (xi − xj)

2 < (3σ)2 or
(yi − yj)

2 < (3σ)2 as zero. Though not the time complexity, the performance directly depends
upon the number of samples available; specifically in higher dimensions. To effectively increase
the available samples for estimation, the next section uses basis placed at both paired and unpaired
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samples to estimate ∆̂. The estimator is identified as LSFD2.

2.9.2 LSFD2 Estimation through Multiplicative Kernel Basis Placed at Paired
and Un-paired Samples

The estimation method places the multiplicative kernels as basis at unpaired samples also. This
allows the use of Kronecker structure to reduce the computational cost. The approximation g(x, y)

is defined as:

g(x, y) =
b∑

j=1

b∑
i=1

θijK(x, xi)L(y, yj)

= vec(Θ)T [(Ib ⊗ k(x)) o (l(y)⊗ Ib)]

where, Θ is a b×b parameter matrix, vec(·) is a vectorization function and⊗ implies the Kronecker

product. Accordingly,

[VR](i·(b−1)+j,k·(b−1)+l) =

∫ ∫
K(x, xi)L(y, yj)K(x, xk)L(y, yl)dxdy

⇒ VR(bn×bn)(x, y) = VR(y)⊗VR(x) (2.64)

where, VR(x) is a b× b matrix with entries [VR(x)]ij = K(x, xi) ∗K(x, xj) and VR(y) is a b× b
matrix with entries [VR(y)]ij = L(y, yi) ∗ L(y, yj).

The sample estimate of VR (V̂R) can be obtained as under:

VR(bn×1)(Ψ(x, y),∆) =

∫
R

∫
R

[(Ib ⊗ k(x)) o (l(y)⊗ Ib)](pxy(x, y)− px(x)py(y))dxdy(2.65)

V̂R(l·(b−1)+l′)(Ψ(x, y),∆) =
1

N

N∑
i=1

V(xi, xl)V(yi, y
′
l)−

1

N2

N∑
j=1

N∑
i=1

V(xi, xl)V(yj, y
′
l) (2.66)

⇒ V̂R(Ψ(x, y),∆) = VR(Ψ(x, y), pxy(x, y))− VR(Ψ(x, y), px(x)py(y)) (2.67)

where,

VR(Ψ(x, y), pxy(x, y)) =

 1
N

vec
(
VTR(x)VR(y)

)
, for n = 2

[VR(pxy(x, y))]l+(l′−1)·b+(l′′−1)·b2 for n = 3

where, [VR(pxy(x, y))]l+(l′−1)·b+(l′′−1)·b2 =
1

Nn

N∑
i=1

V(xi, xl)V(yi, y
′
l)V(zi, z

′′
l ) (2.68)

50



2. Contrast Functions 2.9. ΦFD
2 Estimation

VR(Ψ(x, y), px(x)py(y)) =

[VR]l+(l′−1)·b = 1
N2

(∑N
i=1 V(xi, xl)

)(∑N
j=1 V(yj, y

′
l)
)

for n = 2

[VR(px(x)py(y))]l+(l′−1)·b+(l′′−1)·b2 for n = 3

where, [VR(px(x)py(y))]l+(l′−1)·b+(l′′−1)·b2 =
1

N3

N∑
i=1

V(xi, xl)
N∑
j=1

V(yj, y
′
l)

N∑
k=1

V(zk, z
′′
l ) (2.69)

The equation of VR(pxy(x, y)) for n = 2 is not extensible as it is to n > 2. The equations for n = 3

show the way to get generalization for higher dimensions. As explained previously, the estimation
of vector VR(pxy(x, y)) requires (N + n − 1)bn additions and Nbn number of exponents. The
estimation of vector VR(px(x)py(y)) requires b2N additions and n(bn) multiplications.
To estimate Φ∆

2 , the optimal parameter matrix Θ is needed. The Equation (2.54) can be written as:

VRvec(Θ) + λvec(Θ) = VR

This is the famous discrete Sylvester equation and requires O(b3) computations to solve it.
Now, the Equation (2.40) can be given as under:

LSFD2 = vec(Θ)T (VR(y)⊗VR(x))vec(Θ)− 2VTRvec(Θ) (2.70)

= vec(Θ)Tvec(VR(x)ΘVR(y)T )− 2VTRvec(Θ) (2.71)

= trace(ΘTVR(x)ΘVR(y)T )− 2VTRvec(Θ) (2.72)

The computational complexity of above direct estimation of least square error in FD estimation is
O(b3). Overall, the multiplicative kernel used as basis at sampled and unsampled pairs has O(b3 +

(N + n)bn) computations but expected to be more accurate specifically, with higher dimensions
and less number of samples.

2.9.3 A Note on the CRIP Estimations in above Derivations

The least squares method has been used for direct estimation of density difference and density
ratio, as it is mention in the Section 2.9. One could have noted that the VR has been calculated
in this chapter in a different way compare to elsewhere. For example, calculation for [VR]l =
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∫
R ψ(x, xl)px(x)dx in both the ways is demonstrated here. This chapter simplifies [VR]l as under:

[VR]l =

∫
R
Gσ(x, xl)px(x)dx

=

∫
R
Gσ(x, xl)

(
1

N

N∑
i=1

Gσ(x, xi)dx

)

=
1

N

N∑
i=1

G√2σ(xi, xl)

Intuitively, the kernel interacts with each sample of the PDF px(x). The interaction is a convolution
resulting into Gaussian with parameter

√
2σ.

The other references simplify [VR]l as under:

[VR]l =

∫
Gσ(x, xl)px(x)dx =

∫
Gσ(x, xl)

(
1

N

N∑
i=1

δ(x, xi)dx

)

=
1

N

N∑
j=1

Gσ(xl − xi)

This is also correct, as [VR]l can be thought as a convolution of the actual PDF with direct delta.
Overall, both the approaches are correct. But, the first approach is more precise, as better

approximates the PDF px(x) through Gaussian kernel, than the delta kernel in the second approach.
The empirical results, not reported here, also justify this approach. The Cross IP estimation in (96)
follows the first approach, though conventionally the second approach is more popular.

2.10 ΦGFD2 Estimation

To remind; ΦGFD
2 := −||α(·)||2. The least squares approximation of either α(·) = ∇(∆(·)) or

directly ||α(·)||2 and either A(·) = ∇2(∆(·)) or directly ||A(·)||2 can be achieved in the same way
as that for ∆ in the previous Section 2.9. In general, ∆(r)(·) is the rth order derivative of ∆ and is
a multi-linear vector function. Say, for r = 1, it is a vector function and for r = 2 it is a matrix of
functions.

Without loss of generality, the estimator can be derived for two dimensions. Then, the com-
ponents can be estimated using the linear approximation g(x, y) := ∆̂

(r)
(x, y) = θ(x, y)TΨ(r)(x, y).

It is a customary approach to use multiplicative kernels for multivariate density estimation and
then multiplicative derivative kernels for the derivative of multivariate density estimation. Accord-
ingly, all major equations for ∆(r)(x, y) estimation remain as they are in ∆(x, y) estimation, with
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simply the basis Ψ(x, y) replaced by Ψ(r)(x, y). For example, with Gaussian kernel Ψ(x, y) =

Gh(x)oGh(y), we get Ψ(r)(x, y) = ∇(r)(Gh(x)oGh(y)). More specifically, for r = 1 and multi-
plicative Gaussian kernel Ψ(1)(x, y) = ∇(1)(Gh(x)oGh(y)) = [h−1H1(x)(G(x)oG(y)) h−1H1(y)(G(x)oG(y))]

T .
Let the least squares estimator for GFD be called LSGFD (Least Square GFD) and be

derived as under. Let g(x, y) := α̂(x, y) = [ ∂̂
∂x

∆(x, y) ∂̂
∂y

∆(x, y)]T = [gx(x, y) gy(x, y)]T .
and α(x, y) = [αx(x, y) αy(x, y)]T . Then,

LSGFD =

∫
R

∫
R

(gx(x, y)− αx(x, y))2 + (gy(x, y)− αy(x, y))2dxdy (2.73)

= (V2(gx(x, y)) + V2(gy(x, y)))− 2 (V(gx(x, y), αx(x, y)) + V(gy(x, y), αy(x, y)))

(2.74)

= V2(g(x, y))− 2V(g(x, y), α(x, y)) (2.75)

where, V2(g(x, y)) = V2(gx(x, y)) + V2(gy(x, y)) is the ‖α̂‖2 = ‖α̂x‖2 + ‖α̂y‖2 and
V(g(x, y), αx(x, y)) = V(gx(x, y), αx(x, y))+V(gy(x, y), αy(x, y)) is ‖α̂α‖ = ‖α̂xαx‖+‖α̂yαy‖.
So, both the quantities represent the required contrast. But, as proved by Sugiyama et al. (123) the
linear combination of them, LSGFD, is more bias corrected estimator. Also, let

g(x, y) = θ(x, y)TΨ(1)(x, y) = [θ(x, y)T
∂

∂x
Ψ(x, y) θ(x, y)T

∂

∂y
Ψ(x, y)] (2.76)

where, θ(x, y) = (θ1, θb, ..., θb)
T is the parameter vector; b denotes the number of basis func-

tions and Ψ(x, y) = (ψ1, ψ2, ..., ψb)
T is the basis function vector. So, with regularization function

R(θ) = θTθ and λ as the regularization parameter,

LSGFD(θ) = θT (VRx + VRy)θ − 2 (VRx + VRy)T θ + λθTθ (2.77)

where, VR(b×b) =

∫
R

∫
R

Ψ(1)(x, y)Ψ(1)T (x, y)dxdy (2.78)

VRx(b×b) =

∫
R

∫
R

∂

∂x
Ψ(x, y)

∂

∂x
ΨT (x, y)dxdy (2.79)

VRy(b×b) =

∫
R

∫
R

∂

∂y
Ψ(x, y)

∂

∂y
ΨT (x, y)dxdy (2.80)

VR(b×1) =

∫
R

∫
R

Ψ(1)(x, y)(∇pxy(x, y)−∇(px(x)py(y)))dxdy (2.81)

VRx(b×1) =

∫
R

∫
R

∂

∂x
Ψ(x, y)

∂

∂x
(pxy(x, y)− (px(x)py(y)))dxdy (2.82)

VRy(b×1) =

∫
R

∫
R

∂

∂y
Ψ(x, y)

∂

∂y
(pxy(x, y)− (px(x)py(y)))dxdy (2.83)

The optimal value of parameter vector θ(x, y) can be obtained by minimizing the gradient of
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LSGFD and obtained as

θ∗ = (VR + λIb)
−1VR (2.84)

where, Ib is a b-dimensional identity matrix.

2.10.1 ΦGFD
2 Estimation through Multiplicative Kernel Model

Let us use multiplicative Gaussian kernel function as a basis function placed at the selected sample
points. So, Ψ(x, y) = k(x) o l(y) and [Ψ(x, y)]l = K(x, xl)L(y, yl). The required quantities VRx,
VRy and the sample estimates of VRx and VRy are obtained as under:

[VRx(b×b)]ll′ =

∫
R

∫
R
h−2(xl − x)K(x, xl)L(y, yl) · h−2(xl′ − x)K(x, xl′)L(y, yl′)dxdy (2.85)

Using, the convolution property of Gaussian in equation (2.32), the following result can be derived.∫
R
(xl − x)(xl′ − x)G(x, xl)G(x, xl′)dx =

1

2
√
πh

[
2h2 − (xl − xl′)2

4

]
exp

(
−(xl − xl′)2

4h2

)
(2.86)

Applying the result in Equation (2.86) to Equation (2.85), we get:

[VRx(b×b)]ll′ =

[
2h2 − (xl − xl′)2

2d+2πd/2hd+4

]
exp

(
−(xl − xl′)2 + (yl − yl′)

4h2

)
(2.87)

Similarly,

[VRy(b×b)]ll′ =

[
2h2 − (yl − yl′)2

2d+2πd/2hd+4

]
exp

(
−(xl − xl′)2 + (yl − yl′)

4h2

)
(2.88)

⇒ [VR(b×b)]ll′ =

[
2nh2 − {(xl − xl′)2 + (yl − yl′)2}

2d+2πd/2hd+4

]
exp

(
−(xl − xl′)2 + (yl − yl′)

4h2

)
(2.89)
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Same way,

[VRx(b×1)]l =

∫
R

∫
R
h−2(xl − x)K(x, xl)L(y, yl)

{
N∑
i=1

h−2(xi − x)K(x, xi)L(y, yi)

−
N∑
j=1

N∑
i=1

h−2(xi − x)K(x, xi)L(y, yj)

}
dxdy (2.90)

=
1

N

N∑
i=1

[
2h2 − (xl − xi)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl − yi)2

4h2

)

− 1

N2

N∑
i=1

N∑
j=1

[
2h2 − (xl − xi)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl − yj)2

4h2

)
(2.91)

[VRy(b×1)]l =

∫
R

∫
R
h−2(yl − y)K(x, xl)L(y, yl)

{
N∑
i=1

h−2(yi − y)K(x, xi)L(y, yi)

−
N∑
j=1

N∑
i=1

h−2(yj − y)K(x, xi)L(y, yj)

}
dxdy (2.92)

=
1

N

N∑
i=1

[
2h2 − (yl − yi)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl − yi)2

4h2

)

− 1

N2

N∑
i=1

N∑
j=1

[
2h2 − (yl − yj)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl − yj)2

4h2

)
(2.93)

⇒ [VR(b×1)]l =
1

N

N∑
i=1

[
2nh2 − {(xl − xi)2 + (yl − yi)2}

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl − yi)2

4h2

)

− 1

N2

N∑
i=1

N∑
j=1

[
2nh2 − {(xl − xi)2 + (yl − yi)2}

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl − yj)2

4h2

)
(2.94)

Thus, the parameter vector (θ), the scalar value LSGFD = ||∆||2 and the ∆(x, y) - all are obtained
in terms of the reference and cross reference IIMs.

The interaction matrices for RIP (VR) and CRIP (V) for LSGFD estimation could be same as
those used to estimate the LSFD. But, for more precise estimations it is better to recalculate them
using suitable bandwidth parameter for density derivative estimator, which is usually smaller than
that used for density estimation.
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2.10.2 ΦGFD
2 Estimation through Multiplicative Kernel Basis Placed at Paired

and Un-paired Samples

Similar to the LSFD2 estimator, LSGFD2 estimator can be derived using multiplicative kernel
basis at unpaired samples and Kronecker structure to achieve precise computation. So, the basis
vector is defined as: Ψ(x, y) = [(Ib ⊗ k(x)) o (l(y) ⊗ Ib)]; where, o denotes Hadamard product
and ⊗ denotes the Kronecker product. The approximation g(x, y) is defined as:

g(x, y) = vec(Θ)TΨ(1)(x, y) (2.95)

=

[ ∑N
j=1

∑N
i=1 θijh

−2(xi − x)K(x, xi)L(y, yj)∑N
j=1

∑N
i=1 θijh

−2(yj − y)K(x, xi)L(y, yj)

]
(2.96)

where, Θ is a b× b parameter matrix and vec(·) is a vectorization function. The required quantities
VRx, VRy and the sample estimates of VRx and VRy are obtained as under:

[VRx(b×b)]mn =

∫
R

∫
R
h−4(xi − x)K(x, xi)L(y, yj)(xk − x)K(x, xk)L(y, yl)dxdy (2.97)

where, m = i+ (j − 1)b and n = k + (l − 1)b (2.98)

=

[
2h2 − (xi − xk)2

2d+2πd/2hd+4

]
exp

(
−(xi − xk)2 + (yj − yl)

4h2

)
(2.99)

[VRy(b×b)]mn =

[
2h2 − (yj − yl)2

2d+2πd/2hd+4

]
exp

(
−(xi − xk)2 + (yj − yl)

4h2

)
(2.100)

⇒ [VR(b×b)]ll′ =

[
2nh2 − {(xi − xk)2 + (yj − yl)2}

2d+2πd/2hd+4

]
exp

(
−(xi − xk)2 + (yj − yl)

4h2

)
(2.101)
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Same way,

[VRx(b×1)]q =

∫
R

∫
R
h−2(xl − x)K(x, xl)L(y, yl′)

{
N∑
i=1

h−2(xi − x)K(x, xi)L(y, yi)

−
N∑
j=1

N∑
i=1

h−2(xi − x)K(x, xi)L(y, yj)

}
dxdy (2.102)

where, q = l + (l′ − 1)b (2.103)

=
1

N

N∑
i=1

[
2h2 − (xl − xi)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl′ − yj)2

4h2

)

− 1

N2

N∑
i=1

N∑
j=1

[
2h2 − (xl − xi)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl′ − yj)2

4h2

)
(2.104)

[VRy(b×1)]q =

∫
R

∫
R
h−2(yl′ − y)K(x, xl)L(y, yl′)

{
N∑
i=1

h−2(yi − y)K(x, xi)L(y, yi)

−
N∑
j=1

N∑
i=1

h−2(yj − y)K(x, xi)L(y, yj)

}
dxdy (2.105)

where, q = l + (l′ − 1)b (2.106)

=
1

N

N∑
i=1

[
2h2 − (yl′ − yj)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl′ − yi)2

4h2

)

− 1

N2

N∑
i=1

N∑
j=1

[
2h2 − (yl′ − yj)2

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl′ − yj)2

4h2

)
(2.107)

⇒ [VR(b×1)]l =
1

N

N∑
i=1

[
2nh2 − {(xl − xi)2 + (yl′ − yj)2}

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl′ − yi)2

4h2

)

− 1

N2

N∑
i=1

N∑
j=1

[
2nh2 − {(xl − xi)2 + (yl′ − yj)2}

2d+2πd/2hd+4

]
exp

(
−(xl − xi)2 + (yl′ − yj)2

4h2

)
(2.108)

To estimate Φα
2 , the optimal parameter matrix Θ is needed. The Equation (2.54) can be written as:

VRvec(Θ) + λvec(Θ) = VR

57



2. Contrast Functions 2.11. Empirical Verification of the Derived Estimators

This is the famous discrete Sylvester equation and requires O(b3) computations to solve it.
Now, the Equation (2.50) can be given as under:

LSGFD2 = trace(ΘTVR(x)ΘVR(y)T )− 2VTRvec(Θ) (2.109)

2.11 Empirical Verification of the Derived Estimators as Inde-
pendence Measures

The derived four estimators - LSFD, LSFD2, LSGFD and LSGFD2 - need empirical verification. A
simple test experiment is designed that verifies their ability to separate the independent and depen-
dent signals. Further testing, as a BSS contrast, has been left for the future sections. The estimators
need bandwidth parameter (h) selection for multivariate kernel density estimation (KDE) and the
regularization parameter λ. Conventionally, the least squares based direct estimation methods use
a Cross Validation (CV) method to select both the parameters. The CV method is computationally
demanding if good number of choices for a free parameter are provided to obtain accuracy in es-
timation. Instead, the Silverman’s rule-of-thumb (ROT) (116), balancing computation and optimal
parameter value, is used for selecting (h). The Experiment uses ROT for λ = 0.01 for the test
experiments.
Experiment (Independence test): Let there be generated two uniformly distributed independent
signals X(1, :) and X(2, :) with 300 samples each. Let there be generated a dependent signal:
Y (1, :) = sin(X(1, :)/20 ∗ π). Find the estimated values for the independent signals - X(1, :) and
X(2, :) - and dependent signals - X(1, :) and Y (1, :).
The results are tabulated in the following Table 2.1. Each entry in the Table is a mean of 100
trials. The results show that all the estimators are able to give estimator value sufficiently low for
independent signals than dependent signals.
Experiment (Independence test against varying number of samples ): Let there be generated

Table 2.1: Performances of the derived independence measures with their estimation techniques:
on the test set with independence and dependence signals; number of samples 300; kernel band-
width parameter h using ROT; regularization parameter λ = 0.01. The table entries indicate mean
of 100 trials.

Test Condition LSFD LSFD2 LSGFD LSGFD2
independent signals 0.4725e-03 0.5057e-03 0.2915e-03 0.1165e-03
dependent signals 0.0180 0.0411 0.0055 0.0091

two uniformly distributed independent signals X(1, :) and X(2, :) with varying number of samples
each. Let there be generated a dependent signal: Y (1, :) = sin(X(1, :)/20 ∗ π) for each experi-
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ment. Find the estimated values for the independent signals - X(1, :) and X(2, :) - and dependent
signals - X(1, :) and Y (1, :).

The results are tabulated in the following Table 2.2, for LSFD and LSFD2 estimators, and
Table 2.3, for LSGFD and LSGFD2 estimators. Each entry in the tables is a mean of 100 trials.
For a given estimator there is tabularized measure value for independent signals (X1 and X2),
dependent signals (X1 and Y1), their differences and the mean time taken to calculate the measure
for dependent and independent signals in given iterations. The results show that all the estimators
are able to give estimator value sufficiently low for independent signals than dependent signals.
With increase in number of samples, the measure for independent signals decreases and that for
dependent signals increases. Thus, with increasing number of samples the measures are more able
to separate the independent and dependent signals. The exception is LSGFD2 estimator. For it, the
dependence value is also decreasing with increasing samples. Still, there is a sufficient gape that
can separate the dependent and independent signals. The results show that the estimators LSFD
and LSGFD take almost same amount of time. Similarly, the estimators LSFD2 and LSGFD2
take almost same amount of time; but quite higher than that for LSFD and LSGFD estimators The
figure 2.1 show the relative time complexity of LSGFD and LSGFD2 estimators. The time is in
milliseconds The experiments were performed on a Intel(R) Core(TM)2 Duo CPU, 2.93 GHz, 4.00
GB Internal RAM, 32 bit Windows 7 Professional, MATLAB R2010a.

Table 2.2: Performances of the derived independence measures with their estimation techniques
against varying number of samples: on the test set with independence and dependence signals;
kernel bandwidth parameter h using ROT; regularization parameter λ = 0.01. The table entries
indicate mean of 100 trials and after multiplication by 1e03.

Column:C1 C2 C3 C4 C5 C6 C7 C8 C9

No. of LSFD LSFD2
Samples (X1, X2) (X1, Y1) C3 − C2 time(Sec) (X1, X2) (X1, Y1) C7 − C6 time(Sec)

50 1.3350 6.5648 5.2298 0.9597 1.4513 12.6976 11.2463 5.4452
100 1.1493 9.2332 8.0839 2.4046 1.1806 18.4183 17.2377 22.320
150 0.9277 10.7252 9.7975 5.3477 0.9406 21.6348 20.6942 61.929
200 0.7508 12.1338 11.3830 10.2709 0.7576 24.6161 23.8585 190.87
300 0.6726 14.1059 13.4333 25.3974 0.6755 28.6221 27.9466 862.99
500 0.5338 17.5576 17.0238 40.6980 0.5358 35.0553 34.5194 1900.2

2.11.1 Parameter Selection in the Derived Estimators for BSS

The Experiment justified the use of ROT for bandwidth selection, instead CV for the same. But,
both the methods have one more problem for BSS like signal processing and machine learning
applications. Compare to the applications in previous experiment, where the comparison was at an
event or at a point, those applications require to find the most optimal from a given solution set. If
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Table 2.3: Performances of the derived independence measures with their estimation techniques
against varying number of samples: on the test set with independence and dependence signals;
kernel bandwidth parameter h using ROT; regularization parameter λ = 0.01. The table entries
indicate mean of 100 trials and after multiplication by 1e03.

Column:C1 C2 C3 C4 C5 C6 C7 C8 C9

No. of LSGFD LSGFD2
Samples (X1, X2) (X1, Y1) C3 − C2 time(Sec) (X1, X2) (X1, Y1) C7 − C6 time(Sec)

50 0.8631 5.0004 4.1372 0.9149 1.3400 8.7550 7.4150 4.98629
100 0.7176 6.1479 5.4303 2.6821 0.6148 6.4483 5.8334 22.5187
150 0.5337 6.4147 5.8810 6.2353 0.3363 5.1740 4.8377 62.8617
200 0.4421 6.7454 6.3033 12.351 0.2246 4.5042 4.2796 191.534
300 0.3713 7.0058 6.6345 32.491 0.1401 3.6119 3.4718 865.969
500 0.2672 7.4779 7.2106 52.082 0.0717 2.8410 2.7692 1907.48

CV method is used, there needs to be found new parameter value at every point in consideration.
That will be computationally too demanding. The ROT assumes Gaussian distribution for the
unknown PDF. The feasible solution set for the problem is expected to have varying properties,
like, varying distances from Gaussianity and others. Ideally, same bandwidth parameter is not
best for all points. For example; in case of the BSS application, the goal is to find the most non-
Gaussian (independent) components. For this goal, assuming Gaussianity for the whole solution
set is contradictory and sure way to bring estimation errors. This brings the need to use data
dependent rules for kernel smoothing parameter that takes into consideration the variation in the
distributions of solutions and is also computationally efficient. Such a rule, identified as Extended
ROT (ExROT) is derived in the next Chapter 3 based on an assumption that the density being
estimated is near Gaussian and can be approximated using Gram-Charlier A Series. The rule is
used for the contrast estimation in BSS in the following experiment.

2.12 Conclusion

The chapter proves that the Gradient Function Difference (GFD) being zero everywhere imply
independence. For a bounded support random vector the Hessian Function Difference (HFD) being
zero everywhere imply independence. Accordingly, LP measure of FD, GFD and HFD are proved
to be independence measures. They are used to derive contrast functions for simultaneous ICA and
BSS. The contrast functions are proved to satisfy the properties of Scale Invariance, Dominance
and Discrimination, avoiding spurious global maxima. There has also been derived least squares
based two methods to estimate L2 of FD and L2 of GFD contrasts using multiplicative kernel basis.
In the first method the basis are placed at only joint samples and in the another method basis are
placed at both paired and unpaired samples. The first method requires computations of the order
of O(b2 +N(b+ n− 1)) and the second method requires that of the order of O(b3 + (N + n)bn)).
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Figure 2.1: Time complexity of LSGFD and LSGFD2 estimators against varying number of sam-
ples; Time is in milli Seconds; Experiments were performed on Intel(R) Core(TM)2 Duo CPU,
2.93 GHz, 4.00 GB Internal RAM, 32 bit Windows 7 Professional, MATLAB R2010a

But, the second method requires less samples for the same performance. The empirical verification
justifies the derived contrasts for BSS applications. But, further experiments are needed to have
the comparison with other contrasts on separation quality against varying number of sources and
varying number of samples. The required performance analysis is restricted here and targeted in
the future versions of this article. The assumption of Gaussianity for the whole solution set of
BSS, when the goal is to achieve maximization of Gaussianity, does not seem proper. Over all, the
estimation methods lag computationally efficient data dependent bandwidth selection method. So,
deriving a suitable bandwidth parameter estimation technique for BSS applications is the target for
next Chapter 3.
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Chapter 3

Extended Rule-of-Thumb for Bandwidth
Selection in Kernel Methods

The chapter derives a novel Gram-Charlier A (GCA) Series based Extended Rule-of-Thumb (ExROT)
for bandwidth selection in Kernel Density Estimation (KDE). There are existing various bandwidth
selection rules achieving minimization of the Asymptotic Mean Integrated Square Error (AMISE)
between the estimated probability density function (PDF) and the actual PDF. The rules differ in a
way to estimate the integration of the squared second order derivative of an unknown PDF (f(·)),
identified as the roughness R(f ′′(·)). The simplest Rule-of-Thumb (ROT) estimates the R(f ′′(·))
with an assumption that the density being estimated is Gaussian. Intuitively, better estimation of
R(f ′′(·)) and consequently better bandwidth selection rules can be derived, if the unknown PDF
is approximated through an infinite series expansion based on a more generalized density assump-
tion. As a demonstration and verification to this concept, the ExROT derived in the chapter uses an
extended assumption that the density being estimated is near Gaussian. This helps use of the GCA
expansion as an approximation to the unknown near Gaussian PDF. The ExROT for univariate
KDE is extended to that for multivariate KDE. The required multivariate AMISE criteria is re-
derived using elementary calculus of several variables, instead of Tensor calculus. The derivation
uses the Kronecker product and the vector differential operator to achieve the AMISE expression
in vector notations. There is also derived ExROT for kernel based density derivative estimator.

The part of the chapter derives multivariate Generalized Gram-Charlier (GGC) series that
expands an unknown joint probability density function (pdf ) of a random vector in terms of the
differentiations of the joint pdf of a reference random vector. Conventionally, the higher order
differentiations of a multivariate pdf in GGC series will require multi-element array or tensor rep-
resentations. But, the current chapter derives the GGC series in vector notations. The required
higher order differentiations of a multivariate pdf in vector notations are achieved through applica-
tion of a specific Kronecker product based differentiation operator. Overall, the chapter uses only
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elementary calculus of several variables; instead Tensor calculus; to achieve the extension of an
existing specific derivation for GGC series in univariate to multivariate. The derived multivariate
GGC expression is more elementary as using vector notations compare to the coordinatewise tensor
notations and more comprehensive as apparently more nearer to its counterpart for univariate. The
same advantages are shared by the other expressions obtained in the chapter; such as the mutual
relations between cumulants and moments of a random vector, integral form of a multivariate pdf,
integral form of the multivariate Hermite polynomials, the multivariate Gram-Charlier A (GCA)
series and others.

3.1 Introduction

Continuous probability density function (PDF) estimation using kernel methods is widely used in
statistics, machine learning and signal processing (116). The optimal estimation depends upon the
selected kernel function and its spread decided by the smoothing or bandwidth parameter. The
selection of kernel has limited impact on optimal PDF estimation, although Epanechnikov kernel
is the most optimal kernel (45). On the other hand, the optimal value of bandwidth parameter
avoids either too rough or too smooth estimation of an unknown PDF.

There exist variety of rules for bandwidth selection in KDE. The rules vary based on the
criteria to measure accuracy of density estimation and to satisfy the used criteria. The brief survey
of data driven bandwidth selectors is provided by Jones et al. (69), Park and Marron (85), Park and
Turlach (86), Sheather (115), Wand and Jones (136). The Asymptotic Mean Integrated Square Er-
ror (AMISE) between the estimated PDF and the actual PDF is the most widely used performance
criteria to derive the rules, though there are many others. The AMISE criteria requires estimating
the roughness of the squared second order PDF (R(f ′′(·))) as a prior step to estimate the kernel
bandwidth parameter, where the roughness of a function is defined as integration of the squared
function. The rules, based on the AMISE as a performance criteria, differ in a way to estimate the
R(f ′′(·)). The simplest Rule-of-Thumb (ROT), satisfying the AMISE, by Silverman (116) assumes
Gaussian distribution for the unknown density. It is not the most optimal bandwidth selector but is
used either as a very fast reasonably good estimator or as a first estimator in multistage bandwidth
selectors. More precise solve-the-equation plug-in rules (113, 114) use estimation of integrated
squared density derivative functional to estimate R(f ′′(·)). They demand high computations to
solve a non-linear equation using iterative methods. They use ROT as a very first estimate. The
fastest ε-exact approximation algorithm based solve-the-equation plug-in rule (101, 102) requires
O(N + M) order of computations, where N is number of samples and M is the selected number
of evaluation points. So, deriving a data dependent bandwidth parameter selection rule for KDE
that balances accuracy and computation is the goal of this chapter.
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The chapter achieves this goal by deriving an Extended Rule-of-Thumb (ExROT). The as-
sumption about Gaussianity of an unknown PDF in ROT is too restrictive. Expressing an unknown
PDF, in terms of an infinite series of higher order statistics, based on a more generalized assump-
tion should result into a better bandwidth selection rule. As a verification and demonstration to this
concept, the ExROT extends the Gaussian assumption in ROT to near Gaussian assumption. This
facilitates use of cumulants based Gram-Charlier A (GCA) Series expansion as an approximation
for the unknown PDF to satisfy the same AMISE criteria. The empirical simulations prove that the
ExROT for bandwidth selection is better than the ROT, with respect to an integrated mean square
error (IMSE) or MISE performance criteria, for all types of nongaussian unimodal distributions in-
cluding the skewed, the kurtotic and with outlier distributions. This is achieved with computation
comparable to the ROT and too less compare to the ε-exact solve-the-equation plug-in rule.

The ExROT for bandwidth selection in univariate KDE is extended to the similar for mul-
tivariate KDE and kernel based multivariate density derivative estimation. The ExROT for mul-
tivariate KDE requires multivariate expression for AMISE, multivariate Taylor Series expansion,
multivariate Hermite polynomials and multivariate GCA Series expansion. The required multivari-
ate AMISE is conventionally derived using gradient and Hessian of the PDF of a random vector
(136). Conventionally, the other required multivariate expressions are also derived using Tensor
calculus, as higher order derivatives of a multivariate functions are involved. Often, the corre-
sponding final expressions requires coordinatewise representations. But recently, the higher order
cumulants (105, 125) and multivariate Hermite polynomials (61, 125) are derived using only el-
ementary calculus of several variables. This is achieved by replacing conventional multivariate
differentiations by repeated applications of the Kronecker product to vector differential operator.
The derived expressions are also more elementary as using vector notations and more comprehen-
sive as apparently more nearer to their counterparts in univariate. The same approach has been used
here to derive multivariate AMISE criteria in a vector notations. Overall, the multivariate ExROT
is derived using the multivariate Taylor Series, the multivariate cumulants and the multivariate
Hermite polynomials derived by Holmquist (61), Terdik (125), the multivariate GCA derived by
Bhaveshkumar (15) and the multivariate AMISE obtained in Section 3.15 of this chapter. There is
also derived bandwidth selection rule for kernel based density derivative estimation.

The next Section 3.2 derives the univariate AMISE criteria and gives brief on the existing rules
for data driven kernel bandwidth selectors. The Section 3.3 derives the ExROT. The performance
analysis is done using two separate experiments in Section 3.4. The preliminary background on
multivariate KDE, Kronecker product, multivariate Taylor Series and others is briefed in Section
??. A compact derivation for multivariate GGC Series and GCA Series is provided in Section 3.13.
Then, the Section 3.15 derives multivariate AMISE in a vector form using Kronecker Product.
The multivariate AMISE and multivariate GCA Series are used to derive ExROT for multivariate
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KDE in Section 3.16. Similarly, the Section 3.18 derives ExROT for density derivative estimation.
Finally, the chapter is concluded in Section 3.19.

3.2 Bandwidth Selection Criteria and Selectors

Let there be a random variable X with an unknown PDF f(x). GivenN realizations x1, x2, . . . , xN

of X, the kernel density estimate ˆf(x) is given by

ˆf(x) =
1

N

N∑
i=1

1

h
K
(
x− xi
h

)
(3.1)

where, K(u) is the kernel function and h is the bandwidth parameter deciding spread of the kernel.
Usually, K(u) is a symmetric, positive definite and bounded function, i.e. it satisfies the following
properties:

K(u) ≥ 0,

∫ ∞
−∞
K(u)du = 1,∫ ∞

−∞
uK(u)du = 0,

∫ ∞
−∞

u2K(u)du = µ2(K) <∞

The accuracy of a PDF estimation can be quantified by the available distance measures between
PDFs; like; L1 norm based mean integrated absolute measure, L2 norm based mean integrated
square error (MISE), Kullback-Leibler divergence and others. The optimal smoothing parameter
(the bandwidth) h is obtained by minimizing the selected distance measure. The most widely
used criteria MISE or IMSE (Integrated Mean Square Error) based bandwidth selection rule, as in
(116, 136), is detailed in the Appendix .1. It is briefed as under:

MISE( ˆf(x)) = E{ISE(f(x), ˆf(x))} = E

{∫ ∞
−∞

( ˆf(x)− f(x))2dx

}
=

∫ ∞
−∞

Bias2( ˆf(x))dx+

∫ ∞
−∞

Var( ˆf(x))dx

=
h4

4
µ2

2(K)R(f ′′) +
1

Nh
R(K) +O(h4) +O

(
h

N

)
(3.2)

where, µ2(K) =
∫
R z

2K(z)dz, R(f ′′) =
∫
R (f ′′(x))2dx and R(K) =

∫
RK

2(z)dz. In general,
R(g) =

∫
g2(z)dz is identified as the roughness of function g(x). An asymptotic large sample

approximation AMISE is obtained, assuming limN→∞ h = 0 and limN→∞Nh =∞ i.e. h reduces
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to 0 at a rate slower than 1/N .

AMISE( ˆf(x)) =
h4

4
µ2

2(K)R(f ′′) +
1

Nh
R(K) (3.3)

The Equation (3.3) interprets that a small h increases estimation variance, whereas, a larger h
increases estimation bias. An optimal h minimizing the total AMISE( ˆf(x)) is given by,

⇒ hAMISE =

(
R(K)

µ2
2(K)R(f ′′)N

) 1
5

(3.4)

= (CN)−1/5 where, C =
µ2

2(K)R(f ′′)

R(K)
(3.5)

Thus, the optimal bandwidth parameter depends upon some of the kernel parameters, number of
samples and the second derivative of the actual PDF being estimated.

3.2.1 Brief Survey on the bandwidth selectors

As the bandwidth selection rules vary based on the choice of performance criteria for density
estimation, they also vary based on the way the performance criteria is optimized. The various
rules, satisfying AMISE, for bandwidth parameter selection differ in the way R(f ′′) is estimated.
The first group of rules named scale measures give rough estimate of the bandwidth parameter
with less computation. It includes Silverman’s Rule-of-Thumb that estimates h assuming f(x)

being Gaussian (116). For a Gaussian PDF R(f ′′) = 3σ−5

8
√
π

and for a Gaussian kernel R(k) = 1
2
√
π

.
Accordingly, using equation (3.4), we get:

hrot = 1.0592σN−1/5 (3.6)

where, σ is the standard deviation of f(x). There are many other rules based on the assumption
of other parametric family. There are also rules based on oversmoothed h, difference based h and
others briefed by (67).

An another group of rules is based on the more accurate at high computation plug-in rules.
They plug-in the kernel based estimate of theR(f ′′). The direct plug-in rules estimate derivative of
the density functional instead of estimating actual derivatives. Every rth order derivative functional
estimation requires (r + 2)th order estimate and pilot bandwidth to start with. Assuming, some
parametric density for the (r + 2)th order density the pilot bandwidth is selected and cumulatively
the bandwidth parameter to estimate f(x) is obtained. The solve-the-equation plug-in rules use
the same approach but, instead of assuming bandwidth parameter, they optimize it by directly
putting it into the AMISE. This requires solving a non-linear equation iteratively. They have better
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performances at high computation. Other than the rules for bandwidth selection, there are also
cross-validation methods selecting the best from a user-defined list of bandwidth parameter based
on some performance criteria. But, there is always a compromise between a length of the list for
possible bandwidth parameters and the amount of computation.

Over all, a bandwidth selection rule that achieves precise bandwidth parameter at low com-
putation is still open for research.

3.3 Extended Rule-of-Thumb (ExROT) Bandwidth Selector

The Gaussianity assumption for an unknown PDF to estimate R(f ′′) is too restrictive. Intuitively,
better PDF estimations can be derived if R(f ′′) is estimated by approximating PDFs through in-
finite series expansion. As a verification and demonstration to this concept, ExROT is derived
in this section using cumulants based Gram-Charlier A (GCA) series expansion of f(x) based
on near Gaussianity assumption for an unknown PDF f(x). There exists multiple ways to de-
rive univariate GCA series, as reported by Hald (2000). It’s generalization to univariate General-
ized Gram-Charlier (GGC) series is derived by Schleher (1977); Cohen (1998); Berberan-Santos
(2007); Cohen (2011). The GCA series is given as:

f(x) = exp

[
∞∑
r=0

(kr − γr)
(−D)(r)

r!

]
G(x;µ, σ) (3.7)

where, G(x;µ, σ) = 1√
2πσ

exp
[
−1

2

(
x−µ
σ

)2
]

is the Gaussian PDF; kr is the rth order cumulant of
f(x); γr is the rth order cumulant of G(x) and D is the derivative operator with respect to x. The
nth derivative of Gaussian is given by

D(n)G(x;µ, σ) =
d(n)G(x;µ, σ)

dxn
=

1

σn
(−1)nHn

(
x− µ
σ

)
G(x;µ, σ) (3.8)

where, Hn is the nth order Hermite polynomial. Accordingly, with k1 = γ1 = µ, k2 = γ2 = σ2,
approximating upto the fourth order cumulants and taking z = x−µ

σ
; we get:

f(x) ≈ 1√
2πσ

exp
(
−1

2
z2

)[
1 +

k3

3!σ3
H3(z) +

k4

4!σ4
H4(z)

]
(3.9)

Taking derivative twice with respect to x of the Equation (3.7) yields:

f ′′(x) =
1√
2πσ

exp

[
∞∑
r=0

(kr − γr)
(−D)(r+2)

r!

]
exp

(
−1

2

(
x− µ
σ

)2
)

(3.10)
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Again, with k1 = γ1, k2 = γ2 and approximating upto fourth order cumulants; we get:

f ′′(x) ≈ 1√
2πσ

exp
(
−1

2
z2

)[
1

σ2
H2(z) +

k3

3!σ5
H5(z) +

k4

4!σ6
H6(z)

]
(3.11)

⇒ R(f ′′) =

∫
R
f ′′(x)2dx =

∫
R

exp (−z2)

2πσ

[
1

σ2
H2(z) +

k3

3!σ5
H5(z) +

k4

4!σ6
H6(z)

]2

dz(3.12)

The integration is obtained using the following rules:∫ ∞
−∞

e−ax
2

dx =

√
π

a∫ ∞
−∞

xne−ax
2

dx =


(n)!!

(2a)n/2

√
π
a

for n even

0 for n odd, as the function becomes odd

where, (n)!! = (n− 1)(n− 3)(n− 5) . . . is called the odd factorial. Accordingly, the quantities in
Equation (3.12) are obtained as under:

T1 =

∫ ∞
−∞

G2(z)

[
1

σ2
H2(z)

]2

dx =
1

σ5

3

8
√
π

T2 =

∫ ∞
−∞

G2(z)

[
1

σ5
H5(z)

]2

dx =
1

σ11

945

64
√
π

T3 =

∫ ∞
−∞

G2(z)

[
1

σ6
H6(z)

]2

dx =
1

σ13

10395

128
√
π

T4 =

∫ ∞
−∞

G2(z)

[
2

σ7
H2(z)H5(z)

]
dx = 0

T5 =

∫ ∞
−∞

G2(z)

[
2

σ11
H5(z)H6(z)

]
dx = 0

T6 =

∫ ∞
−∞

G2(z)

[
2

σ8
H2(z)H6(z)

]
dx =

1

σ9

105

16
√
π

This gives:

R(f ′′) =
1

σ5

3

8
√
π

[
1 +

1

σ6

315

8

(
k3

6

)2

+
1

σ8

3465

16

(
k4

24

)2

+
1

σ4

35

2

k4

24

]

R(f ′′) =
1

σ5

3

8
√
π

[
1 + 1.0938

k2
3

σ6
+ 0.3764

k2
4

σ8
+ 0.7292

k4

σ4

]
(3.13)

Combining above Equation (3.13) with Equation (3.5), the Gram-Charlier A Series based an Ex-

tended Rule-of-Thumb for bandwidth parameter hGC selection using near Gaussian PDF assump-
tion and Gaussian kernel is given as under. As shown, the Silverman’s Rule-of-Thumb is one case
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of the extended rule.

hExGCA = 1.0592σ(CN)−
1
5 (3.14)

where, C =



1 both k3 = K4 = 0 i.e. Gaussian PDF

1 + 0.3764
k24
σ8 + 0.7292 k4

σ4 if k3 = 0 i.e. symmetric PDF,

1 + 1.0938k2
3 + 0.3764k2

4 + 0.7292k4 if σ = 1,

1 + 1.0938
k23
σ6 + 0.3764

k24
σ8 + 0.7292 k4

σ4 otherwise

3.4 Performance Analysis of ExROT Bandwidth Selector

There has been performed two separate experiments to test the performance of bandwidth selector.
In both the experiments, the performance is tested on a set of 15 densities selected as a test-bed
for density estimators by J. S. Marron (66). The densities are shown in Figure 3.1. In both the
experiments, the performance of ExROT is compared against Silverman’s Rule-of-Thumb and the
ε-exact approximation algorithm based solve-the-equation plug-in rule (101, 102).

Figure 3.1: The Probability density functions (PDFs), generated through Normal mixtures, used to
have performance comparison of various bandwidth selection rules for Kernel Density Estimation
(KDE): (1) Gaussian (2) Skewed Unimodal (3) Strongly Skewed (4) Kurtotic Unimodal (5) Outlier
(6) Bimodal (7) Separated Bimodal (8) Skewed Bimodal (9) Trimodal (10) Claw (11) Double Claw
(12) Asymmetric Claw (13) asymmetric Double Claw (14) Smooth Comb (15) Discrete Comb
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3.4.1 Experiment (Performance against varying PDFs)

The first experiment is done to test the performance against varying PDFs. The experiment is
done with 50000 samples and for 100 trials. The results are shown in Table 3.1. Each table
entry is an average of the 100 trials. The selected three rules are compared for performances
against three parameters - the value of bandwidth estimated, the corresponding IMSE between the
estimated PDF and the theoretical PDF and the time taken in Seconds to estimate the bandwidth.
The theoretical PDF, required to calculate IMSE, is obtained from the normal mixture equations.
That is why, all the 15 selected densities are generated using normal mixture equations.

The ε-exact solve-the-equation plug-in rule is the best giving minimum IMSE error in all the
cases accept the pure Gaussian density estimation. For Gaussian density, ROT is slightly better than
remaining both the rules. The best IMSE performance of ε-exact solve-the-equation plug-in rule
is at the cost of very high computation time. The mean time to estimate the bandwidth parameter
for ROT is less than one millisecond. For ExROT it is about 10 to 20 milliseconds and the same
for ε-exact solve-the-equation plug-in rule is about 30 to 60 seconds. That means, the ExROT has
time complexity comparable to that of the ROT. So, the IMSE performance of these two needs a
comparision. The boldface values for IMSE comparison in Table 3.1, show a better between these
two. It shows that in all non-Gaussian unimodal density estimation cases - skewed or kurtotic or
with outlier - ExROT has outperformed ROT. The worst performance of ExROT in multimodal
density estimation is due to wrong estimation of the skewness and kurtosis. The ExROT has also
outperformed ROT in some of the - claw and Asymmetric claw - multimodal density estimation
cases. Thus, ExROT surely is a better option to ROT in unimodal density estimation.

3.4.2 Experiment (Performance against varying number of samples)

The second experiment is done to have the performance comparision of the same selected three
bandwidth estimators against varying number of samples. The results of estimated bandwidth
parameter, the IMSE and the estimation time (in Seconds) versus number of samples for varying
PDFs are tabulated in Table 3.2. For better interpretations, the IMSE versus log of the number of
samples are plotted; for all 15 PDFs and number of samples varying from 100 to the 50000; as
shown in Figure 3.2.

The IMSE performances against varying number of samples (Nsamples) for varying PDFs
are similar to that discussed in Experiment 1. The ExROT performance is better for unimodal
skewed, kurtotic or with outlier densities. Even it is better in some cases of multimodal skewed
densities. Also, for small number of samples the ExROT performance is better compare to ROT.
The convergence performance of ExROT is matching other two rules. The IMSE decreases almost
inversely with increase in number of samples.
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Table 3.1: Performance comparison of the bandwidth selection rules for Kernel Density Estimation
(KDE) using 50000 samples. The results show the mean of the 100 trials. The boldface IMSE value
show a better between the Rule-of-Thumb (IMSErot) and extended Rule-of-Thumb (IMSEexrot)
rules. The time calculation is on a machine with features: Intel(R) Core(TM)2 Duo CPU, 2.93
GHz, 4.00 GB Internal RAM, 32 bit Windows 7 Professional, MATLAB R2010a

PDF Bandwidth (h) Integrated MSE (IMSE)*105 Estimation Time (in Sec)
Type hrot hexrot heqfast rot exrot eqfast Trot Texrot Teqfast

1 0.1217 0.1216 0.1213 0.1424 0.1424 0.1426 0.0005 0.0171 30.9182
2 0.0993 0.0860 0.0818 0.1770 0.1702 0.1702 0.0005 0.0157 35.9430
3 0.1263 0.0964 0.0200 3.7034 2.8516 0.4061 0.0006 0.0155 52.1223
4 0.0996 0.0693 0.0204 3.0476 1.8294 0.3834 0.0008 0.0154 48.2712
5 0.0402 0.0044 0.0129 1.9249 0.7042 0.4425 0.0006 0.0148 41.9652
6 0.1464 0.1632 0.0967 0.1908 0.2220 0.1504 0.0006 0.0149 41.0530
7 0.1999 0.2065 0.0925 0.3681 0.3897 0.1640 0.0006 0.0147 40.6588
8 0.1333 0.1596 0.0736 0.3122 0.4117 0.1920 0.0006 0.0153 41.7342
9 0.1552 0.1700 0.0785 0.3438 0.3954 0.1781 0.0005 0.0145 41.1552

10 0.1058 0.1042 0.0242 2.3709 2.3269 0.3392 0.0005 0.0149 48.2730
11 0.1459 0.1629 0.0895 0.7810 0.7961 0.7357 0.0005 0.0146 41.7426
12 0.1356 0.1350 0.0323 1.6634 1.6586 0.5287 0.0005 0.0156 54.3546
13 0.1450 0.1652 0.0461 1.1161 1.1926 0.5791 0.0005 0.0147 47.9025
14 0.2001 0.2058 0.0280 3.2280 3.2763 0.8810 0.0005 0.0140 51.0985
15 0.2059 0.2111 0.0230 3.2382 3.2824 0.4599 0.0006 0.0145 50.8321

Figure 3.2: The Integrated Mean Square Error (IMSE) comparision of the bandwidth selection
rules for Kernel Density Estimation (KDE) of various PDFs against varying number of samples.
The solid lines (-) indicate Rule-of-Thumb; dashed lines (- -) indicate extended Rule-of-Thumb; the
dash-dot lines (-.) indicate the ε-exact solve-the-equation plug-in rule
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Table 3.2: Performance comparison of the bandwidth selection rules for Kernel Density Estimation
(KDE) against varying number of samples. The results show the mean of the 50 trials. The time
calculation is on a machine with features: Intel(R) Core(TM)2 Duo CPU, 2.93 GHz, 4.00 GB
Internal RAM, 32 bit Windows 7 Professional, MATLAB R2010a

PDF Nsamples Bandwidth Parameter (h) Integrated MSE (IMSE)*103 Estimation Time (in Sec)
Type *10−3 hrot hexrot heqfast rot exrot eqfast Trot Texrot Teqfast

0.0100 0.4189 0.4379 0.4059 6.2430 6.5102 6.5579 0.0011 0.0004 0.0968
0.0200 0.3613 0.3797 0.3573 2.6582 2.6653 2.7344 0.0001 0.0002 0.1210
0.0500 0.3038 0.3099 0.3008 0.7831 0.7855 0.8064 0.0001 0.0004 0.3287
0.1000 0.2659 0.2681 0.2602 0.3148 0.3176 0.3239 0.0001 0.0006 0.6734

1 0.2000 0.2324 0.2337 0.2287 0.1253 0.1262 0.1274 0.0001 0.0010 1.3470
0.5000 0.1929 0.1931 0.1911 0.0346 0.0346 0.0349 0.0001 0.0024 3.2634
1.0000 0.1680 0.1678 0.1672 0.0127 0.0128 0.0128 0.0002 0.0038 6.3346
2.0000 0.1464 0.1466 0.1455 0.0050 0.0050 0.0050 0.0002 0.0073 12.8339
0.0100 0.3454 0.3723 0.2944 8.9172 10.3399 9.2006 0.0001 0.0002 0.0720
0.0200 0.2993 0.3130 0.2533 3.4302 3.8549 3.4604 0.0001 0.0002 0.1420
0.0500 0.2465 0.2339 0.2026 0.9394 0.9924 0.9915 0.0001 0.0004 0.3852
0.1000 0.2165 0.1870 0.1819 0.3954 0.3974 0.3945 0.0001 0.0007 0.7551

2 0.2000 0.1893 0.1663 0.1565 0.1399 0.1374 0.1381 0.0001 0.0010 1.5336
0.5000 0.1571 0.1367 0.1296 0.0425 0.0422 0.0422 0.0001 0.0023 3.7511
1.0000 0.1370 0.1198 0.1134 0.0168 0.0162 0.0161 0.0002 0.0036 7.2034
2.0000 0.1194 0.1038 0.0986 0.0066 0.0064 0.0064 0.0003 0.0065 14.2614
0.0100 0.4429 0.3498 0.1650 40.3373 36.7614 25.9410 0.0001 0.0002 0.0864
0.0200 0.3846 0.2996 0.1188 18.8112 16.7646 9.6509 0.0001 0.0002 0.1738
0.0500 0.3183 0.2459 0.0844 6.8916 6.0170 2.8246 0.0001 0.0004 0.4436
0.1000 0.2775 0.2125 0.0653 3.2038 2.7464 1.0352 0.0001 0.0006 0.9069

3 0.2000 0.2410 0.1845 0.0510 1.4770 1.2452 0.3778 0.0001 0.0010 1.9033
0.5000 0.2003 0.1532 0.0384 0.5282 0.4362 0.1080 0.0001 0.0021 4.9425
1.0000 0.1744 0.1332 0.0310 0.2397 0.1939 0.0377 0.0002 0.0032 10.3360
2.0000 0.1518 0.1158 0.0257 0.1080 0.0856 0.0151 0.0003 0.0058 21.1275
0.0100 0.3500 0.2631 0.1247 41.5059 36.6378 23.6608 0.0001 0.0002 0.1076
0.0200 0.2999 0.2169 0.0934 19.3056 16.1740 8.6166 0.0001 0.0002 0.2175
0.0500 0.2517 0.1805 0.0686 7.0407 5.6630 2.3757 0.0001 0.0003 0.5464
0.1000 0.2167 0.1509 0.0557 3.2218 2.4513 0.9320 0.0001 0.0006 1.0900

4 0.2000 0.1899 0.1333 0.0449 1.4626 1.0710 0.3232 0.0001 0.0010 2.1309
0.5000 0.1582 0.1102 0.0350 0.5031 0.3439 0.0875 0.0001 0.0022 4.8694
1.0000 0.1375 0.0957 0.0296 0.2205 0.1448 0.0344 0.0002 0.0037 9.6654
2.0000 0.1197 0.0833 0.0252 0.0951 0.0600 0.0136 0.0002 0.0058 19.3117
0.0100 0.1329 0.0158 0.0511 56.5031 41.3602 21.4029 0.0003 0.0003 0.1138
0.0200 0.1215 0.0145 0.0429 25.6093 14.6056 8.5744 0.0001 0.0002 0.2072
0.0500 0.0992 0.0110 0.0352 8.1567 4.2720 2.5379 0.0001 0.0003 0.4943
0.1000 0.0881 0.0100 0.0297 3.4558 1.6044 0.9628 0.0001 0.0006 0.9657

5 0.2000 0.0761 0.0084 0.0257 1.4268 0.6472 0.4009 0.0001 0.0010 1.7802
0.5000 0.0640 0.0072 0.0209 0.4287 0.1696 0.1052 0.0001 0.0017 4.2263
1.0000 0.0556 0.0062 0.0181 0.1705 0.0652 0.0397 0.0002 0.0028 8.4271
2.0000 0.0483 0.0053 0.0156 0.0675 0.0244 0.0156 0.0002 0.0056 16.8823
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Table 3.3: Performance comparison of the smoothing (bandwidth) parameter selection rules for
Kernel Density Estimation (KDE) against varying number of samples. The results show the mean
of the 50 trials. The time calculation is on a machine with features: Intel(R) Core(TM)2 Duo CPU,
2.93 GHz, 4.00 GB Internal RAM, 32 bit Windows 7 Professional, MATLAB R2010a

PDF Nsamples Bandwidth Parameter (h) Integrated MSE (IMSE)*103 h Calculation Time (T)
Type *10−3 hrot hexrot heqfast rot exrot eqfast Trot Texrot Teqfast

0.0100 0.5128 0.5781 0.3875 8.3749 9.1194 8.1524 0.0001 0.0002 0.0670
0.0200 0.4421 0.4948 0.3186 3.2862 3.6643 3.0184 0.0001 0.0002 0.1404
0.0500 0.3652 0.4096 0.2540 0.9741 1.1004 0.8728 0.0001 0.0004 0.3652
0.1000 0.3190 0.3558 0.2254 0.4326 0.4840 0.3629 0.0001 0.0006 0.7373

6 0.2000 0.2780 0.3105 0.1927 0.1644 0.1873 0.1335 0.0001 0.0010 1.5391
0.5000 0.2315 0.2583 0.1558 0.0483 0.0550 0.0402 0.0001 0.0019 3.9894
1.0000 0.2020 0.2251 0.1356 0.0186 0.0214 0.0145 0.0002 0.0028 8.0967
2.0000 0.1759 0.1960 0.1174 0.0072 0.0083 0.0056 0.0003 0.0054 16.3610
0.0100 0.6923 0.7155 0.3566 14.2086 14.7060 8.3466 0.0001 0.0002 0.0742
0.0200 0.5997 0.6202 0.3015 5.8889 6.1350 3.1726 0.0001 0.0002 0.1494
0.0500 0.5005 0.5175 0.2410 1.7750 1.8618 0.8813 0.0001 0.0003 0.3908
0.1000 0.4367 0.4512 0.2086 0.7399 0.7760 0.3704 0.0001 0.0006 0.7544

7 0.2000 0.3807 0.3933 0.1800 0.2883 0.3037 0.1360 0.0001 0.0010 1.5005
0.5000 0.3167 0.3272 0.1489 0.0854 0.0901 0.0397 0.0001 0.0018 3.8518
1.0000 0.2759 0.2850 0.1285 0.0321 0.0340 0.0141 0.0002 0.0031 7.9127
2.0000 0.2402 0.2481 0.1117 0.0130 0.0138 0.0058 0.0002 0.0054 16.0277
0.0100 0.4647 0.5979 0.3305 10.3872 11.9845 9.8866 0.0001 0.0002 0.0731
0.0200 0.4010 0.5166 0.2932 4.3730 5.1674 3.8251 0.0001 0.0002 0.1431
0.0500 0.3390 0.4076 0.2206 1.4163 1.6669 1.1203 0.0001 0.0004 0.4028
0.1000 0.2907 0.3550 0.1834 0.5798 0.7038 0.4435 0.0001 0.0007 0.8379

8 0.2000 0.2538 0.3065 0.1534 0.2290 0.2850 0.1614 0.0001 0.0010 1.7051
0.5000 0.2114 0.2527 0.1225 0.0674 0.0856 0.0441 0.0001 0.0019 4.1356
1.0000 0.1841 0.2201 0.1045 0.0268 0.0345 0.0173 0.0002 0.0030 8.2747
2.0000 0.1602 0.1917 0.0896 0.0106 0.0139 0.0068 0.0002 0.0054 16.6340
0.0100 0.5406 0.5921 0.3817 9.4215 10.1084 7.9126 0.0003 0.0002 0.0782
0.0200 0.4662 0.5133 0.3161 4.0153 4.3435 3.4017 0.0001 0.0002 0.1410
0.0500 0.3881 0.4268 0.2522 1.3227 1.4426 1.0262 0.0001 0.0003 0.3687
0.1000 0.3397 0.3718 0.2046 0.5546 0.6094 0.3941 0.0001 0.0007 0.7998

9 0.2000 0.2952 0.3235 0.1741 0.2397 0.2638 0.1620 0.0001 0.0010 1.6285
0.5000 0.2461 0.2696 0.1354 0.0713 0.0800 0.0426 0.0001 0.0018 4.1529
1.0000 0.2143 0.2345 0.1148 0.0293 0.0330 0.0168 0.0002 0.0030 8.1136
2.0000 0.1865 0.2042 0.0979 0.0119 0.0135 0.0066 0.0002 0.0055 16.2836
0.0100 0.3648 0.3635 0.3384 22.3775 22.4492 22.3534 0.0001 0.0002 0.0631
0.0200 0.3172 0.3375 0.2825 10.9313 10.9990 10.8045 0.0001 0.0002 0.1406
0.0500 0.2635 0.2995 0.1727 4.2370 4.2810 3.5900 0.0001 0.0004 0.6232
0.1000 0.2304 0.2471 0.0805 2.0575 2.0706 0.9325 0.0001 0.0006 1.0865

10 0.2000 0.2011 0.2032 0.0563 0.9881 0.9879 0.3128 0.0001 0.0010 2.0001
0.5000 0.1675 0.1668 0.0427 0.3624 0.3609 0.0834 0.0001 0.0018 5.3371
1.0000 0.1459 0.1454 0.0359 0.1648 0.1642 0.0329 0.0002 0.0028 10.9701
2.0000 0.1271 0.1254 0.0303 0.0728 0.0719 0.0124 0.0002 0.0055 21.3417
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Table 3.4: Performance comparison of the smoothing (bandwidth) parameter selection rules for
Kernel Density Estimation (KDE) against varying number of samples. The results show the mean
of the 50 trials. The time calculation is on a machine with features: Intel(R) Core(TM)2 Duo CPU,
2.93 GHz, 4.00 GB Internal RAM, 32 bit Windows 7 Professional, MATLAB R2010a

PDF Nsamples Bandwidth Parameter (h) Integrated MSE (IMSE)*103 h Calculation Time (T)
Type *10−3 hrot hexrot heqfast rot exrot eqfast Trot Texrot Teqfast

0.0100 0.5102 0.5779 0.3879 9.1443 9.9017 8.6536 0.0001 0.0002 0.0664
0.0200 0.4393 0.4940 0.3334 3.9503 4.2723 3.6995 0.0001 0.0002 0.1355
0.0500 0.3681 0.4133 0.2540 1.2492 1.3551 1.1489 0.0001 0.0003 0.3606
0.1000 0.3193 0.3569 0.2210 0.5709 0.6103 0.5283 0.0001 0.0006 0.7447

11 0.2000 0.2778 0.3103 0.1894 0.2513 0.2663 0.2331 0.0001 0.0010 1.5428
0.5000 0.2311 0.2585 0.1560 0.0902 0.0941 0.0848 0.0001 0.0018 3.9834
1.0000 0.2013 0.2250 0.1332 0.0422 0.0435 0.0399 0.0002 0.0028 8.1323
2.0000 0.1754 0.1958 0.1140 0.0204 0.0210 0.0193 0.0003 0.0055 16.4165
0.0100 0.4851 0.4874 0.4530 16.3492 16.3720 16.2242 0.0001 0.0002 0.0590
0.0200 0.4049 0.4045 0.3320 7.6083 7.6088 7.1462 0.0001 0.0002 0.1398
0.0500 0.3403 0.3400 0.1940 2.8506 2.8496 2.2314 0.0001 0.0003 0.4242
0.1000 0.2963 0.2950 0.1373 1.3352 1.3324 0.9125 0.0001 0.0006 0.8973

12 0.2000 0.2583 0.2578 0.1070 0.6246 0.6240 0.3869 0.0001 0.0010 1.8709
0.5000 0.2151 0.2138 0.0748 0.2231 0.2223 0.1165 0.0001 0.0018 5.2212
1.0000 0.1871 0.1864 0.0583 0.1022 0.1020 0.0480 0.0002 0.0028 10.5090
2.0000 0.1628 0.1620 0.0449 0.0469 0.0468 0.0189 0.0002 0.0053 21.5027
0.0100 0.5067 0.5846 0.3639 10.9392 11.8958 10.0277 0.0009 0.0002 0.0855
0.0200 0.4336 0.5002 0.3073 4.8686 5.2675 4.5417 0.0001 0.0002 0.1442
0.0500 0.3617 0.4161 0.2481 1.7277 1.8489 1.5896 0.0001 0.0004 0.3750
0.1000 0.3177 0.3619 0.2087 0.7961 0.8408 0.7279 0.0001 0.0006 0.7774

13 0.2000 0.2758 0.3146 0.1767 0.3753 0.3933 0.3341 0.0001 0.0010 1.6145
0.5000 0.2298 0.2622 0.1320 0.1372 0.1429 0.1116 0.0001 0.0022 4.6669
1.0000 0.2002 0.2279 0.0903 0.0652 0.0680 0.0441 0.0002 0.0033 9.4382
2.0000 0.1742 0.1985 0.0650 0.0307 0.0323 0.0179 0.0003 0.0057 19.0233
0.0100 0.6986 0.7179 0.2714 29.3331 29.6279 19.9200 0.0001 0.0002 0.0831
0.0200 0.6026 0.6199 0.2071 13.8366 13.9978 8.7139 0.0001 0.0002 0.1697
0.0500 0.5026 0.5169 0.1452 5.1074 5.1724 2.8475 0.0001 0.0004 0.4440
0.1000 0.4371 0.4496 0.1157 2.4004 2.4320 1.2555 0.0001 0.0006 0.9195

14 0.2000 0.3807 0.3916 0.0894 1.1236 1.1389 0.5365 0.0001 0.0010 1.9072
0.5000 0.3169 0.3260 0.0638 0.4101 0.4159 0.1757 0.0001 0.0022 4.9003
1.0000 0.2762 0.2840 0.0497 0.1913 0.1941 0.0738 0.0002 0.0035 9.9515
2.0000 0.2404 0.2472 0.0388 0.0889 0.0903 0.0302 0.0003 0.0055 20.1263
0.0100 0.7044 0.7231 0.2236 33.5149 33.7061 18.1842 0.0001 0.0002 0.0791
0.0200 0.6215 0.6373 0.1796 16.1934 16.3224 8.1126 0.0001 0.0002 0.1713
0.0500 0.5164 0.5295 0.1367 5.9831 6.0581 2.8509 0.0001 0.0004 0.4384
0.1000 0.4496 0.4610 0.1143 2.7692 2.8119 1.3265 0.0001 0.0006 0.8907

15 0.2000 0.3924 0.4022 0.0948 1.2618 1.2839 0.5925 0.0001 0.0010 1.8308
0.5000 0.3262 0.3345 0.0738 0.4410 0.4493 0.1936 0.0001 0.0022 4.7281
1.0000 0.2841 0.2913 0.0561 0.1987 0.2024 0.0721 0.0002 0.0034 9.7408
2.0000 0.2474 0.2536 0.0347 0.0905 0.0920 0.0200 0.0002 0.0055 19.9594
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3. ExROT for Bandwidth Selection 3.5. Multivariate GGC in Vector Notations

3.5 Multivariate Generalized Gram-Charlier Series in Vector
Notations

The Generalized Gram-Charlier (GGC) series expands an unknown pdf as a linear combination of
the increasing order differentiations of a reference pdf, where the coefficients of expansion involve
cumulant differences between those of an unknown pdf and a reference pdf. The GGC expansions
are used to approximate pdf and functions of pdf in Statistics, Machine Learning, Economics,
Chemistry, Astronomy and other application areas. There have been used Poisson’s distribution
(5), log-normal distribution (6), binomial distribution (103), gamma distribution (20) and others as
reference pdf s. But, the Gram-Charlier (GC) expansion with Gaussian density as a reference pdf

is the most popular and identified as the Gram-Charlier A (GCA) series. Specifically, the GCA
series is used for test of Gaussianity or near Gaussian pdf approximations (6, 40, 48, 68, 130), for
entropy measure and independence measure approximations (3, 65), for optima analysis through
derivatives of pdf (17), for time-frequency analysis (31) and others. The rearrangement of the
terms in GCA series results into the Edgeworth series with better convergence property.

There exists multiple ways to derive univariate GCA series, as reported by Hald (54), Hald
and Steffensen (55). It’s generalization to univariate GGC series is derived by Berberan-Santos
(13), Cohen (31, 32), Schleher (111).

The multivariate GGC or GCA series derivation requires multivariate representations of the
Taylor series, the increasing order differentiations of a reference pdf and the cumulants. To signify
the representation issue in required multivariate extensions; it is worth quoting Terdik (125) that
says, ‘ . . . though the generalizations to higher dimensions may be considered straightforward, the
methodology and the mathematical notations get quite cumbersome when dealing with the higher
order derivatives of the characteristic function or other functions of a random vector . . . ’.

Conventionally, the higher order differentiations of a multivariate pdf ; and therefore, the
multivariate cumulants and multivariate Hermite polynomials; require multilinear representations.
It is known and acknowledged historically that going from matrix like notations to tensor notations
for multivariate cumulants and multivariate Hermite polynomials have made the representation
more transparent and the calculations more simpler (81). Though the tensor notations have ad-
vantages over the matrix notations, they require componentwise separate representations and are
more tedious compare to the vector notations. As a unified and comprehensive solution to this,
there has been used an approach based only on elementary calculus of several variables by Terdik
(125). The approach uses a specific Kronecker product based differential operator, identified as
the ‘K-derivative operator’, to achieve vectorization of the Jacobian matrix of a multivariate vec-
tor function. The successive applications of this K-derivative operator achieves vectorization of
the higher order derivatives also. Using this approach, there have been derived the multivariate
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Taylor series and the higher order cumulants (105, 125); as well, the multivariate Hermite poly-
nomials (125) in vector notations resulting into more transparent representations. In fact, it could
be noticed that the same approach has been first used to derive vector Hermite polynomials by
Holmquist (61); and later∗ it has been formalized and generalized by Terdik (125).

There exists various approaches deriving multivariate GCA series with various representa-
tions. They include GCA series representation using multi-element matrix notations for moments
and cumulants by Sauer and Heydt (110); using recursive formula for Hermite polynomials by
Berkowitz and Garner (14); using tensor representation for cumulants and Hermite polynomials by
McCullagh (81, Chapter 5); using tensor representation for cumulants and involving multivariate
Bell polynomials by Withers and Nadarajah (137); using vector moments and vector Hermite poly-
nomials by Holmquist (61) and others. There exists various derivations for multivariate Edgeworth
series (2, 39, 74, 81, 118, 137). There also exists multivariate GGC series, derived by McCullagh
(81, Chapter 5), in tensor notations. But, as per the author’s knowledge, there exists neither the
multivariate GGC series nor the multivariate Edgeworth series in vector notations. For the ease of
the readers in following and comparing the various representations; the existing representations of
multivariate GGC series and multivariate GCA series are shown and compared in C.1.

Overall, to take advantages due to the recent advancement in representation, this article
extends a specific derivation for univariate GGC series by Berberan-Santos (13) to multivariate;
using only elementary calculus of several variables instead of Tensor calculus. As a by product, it
also derives mutual relations between vector cumulants and vector moments of a random vector;
integral form of the multivariate pdf ; integral form of the multivariate vector Hermite polynomials
and the multivariate GCA series. All the derived multivariate expressions are more elementary as
using vector notations and more comprehensive as apparently more nearer to their counterparts for
univariate; compare to their coordinatewise tensor notations. The intermediate theoretical results,
in the article, are verified using suitable known examples.

Towards the aim of the article, the next Section 3.6 briefs some necessary background on
the Kronecker product and a way to obtain vectorization of the higher order differentiations of a
multivariate pdf. It also obtains the required multivariate Taylor series expansion using the de-
rived notations. After the preliminary background, this article follows almost the same sequence
for multivariate as that in (13) for univariate. The Section 3.7 uses the characteristic function and
the generating functions to derive cumulants and moments of a random vector in vector notations
with their mutual relationships. The Section 3.8 obtains multivariate pdf in terms of its vector
cumulants. The expressions for derivatives of multivariate Gaussian density and vector Hermite
polynomials are derived in Section 3.9. The Section 3.10 derives multivariate GCA series by rep-
resenting an unknown pdf in terms of the Gaussian pdf as a reference. The Section 3.11 derives

∗Somehow, the citation for (61) is not found in article (125).
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3. ExROT for Bandwidth Selection 3.6. Vectorization of the higher order differentiations

GGC Expansion, representing an unknown pdf in terms of the a known reference pdf. The Section
3.12 derives an unknown characteristic function of a random vector in terms of a reference charac-
teristic function. The Section 3.13 derives the same GGC expansion in a more compact way that
summarizes the approach of the whole derivation. Finally, Section 3.14 concludes the article. For
the sake of clarity; the calculation details, the proofs and the expressions for existing multivariate
expansions are kept in appendix at the end of the article.

3.6 Vectorization of the higher order differentiations

The section briefs the Kronecker product and the way it can be applied to achieve vectorization
of the higher order differentiations of a multivariate pdf. Based on it, the multivariate Taylor
series is obtained in vector notations. More details can be found on the Kronecker Product in (80,
Chapter 2), on achieving vectorization of the higher order differentiations in (105, 125) and on the
commutation matrices in (80, Chapter 3, Section 7).

Definition 3.1 (Kronecker Product Operator (⊗)). The Kronecker Product Operator (⊗) between
matrices A with size p× q and B with size m× n is defined as:

A⊗B =


a11B a12B · · · a1qB

a21B a22B · · · a2qB
...

... . . . ...
ap1B ap2B · · · apqB

 (3.15)

The resultant matrix is of dimension pm × qn. As a further example; let A is with size p × 1

and B is with size m × 1, then A ⊗ B′ is† a matrix with size p × m. A ⊗ A is symbolically
represented as A⊗2 and has size p2 × 1. In general, A ⊗ A ⊗ . . . ⊗ A (n times) is symbolically
represented as A⊗n and has size pn × 1.

Definition 3.2 (Jacobian Matrix). Let λ = (λ1, λ2, . . . , λd)
′, λ ∈ Rd and f(λ) =

(f1(λ), f2(λ), . . . , fm(λ))′ ∈ Rm be a differentiable m-component vector function. Then, Jacobian

†The symbol ’ stands for Transpose of a matrix
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matrix of f(λ) (J(f)) is an m× d matrix defined as under:

J(f(λ)) =
df

dλ
=

[
∂f

∂λ1

,
∂f

∂λ2

, . . . ,
∂f

∂λd

]
=


∂f1
∂λ1

∂f1
∂λ2

· · · ∂f1
∂λd

∂f2
∂λ1

. . . ...
... . . . ...

∂fm
∂λ1

∂fm
∂λ2

· · · ∂fm
∂λd

 (3.16)

Let the vector differential operator be defined as a column vector Dλ =
(

∂
∂λ1
, ∂
∂λ2
, . . . , ∂

∂λd

)′
,

then the Jacobian matrix, in terms of the Dλ, can be re-written as:

J(f(λ)) = Dλ(f) = f(λ)D′λ = (f1(λ), f2(λ), . . . , fm(λ))′
(

∂

∂λ1

,
∂

∂λ2

, . . . ,
∂

∂λd

)
(3.17)

This implies that to match the definition of differentiation from matrix calculus, the vector differ-
ential operator should be applied from the right to the left. This is same as the requirement to be
satisfied on generalization of vector derivative to matrix derivative as discussed by Magnus (79).
So, applying vector derivative operator from right to the left, has been kept as a rule throughout
the chapter.

Definition 3.3 (The K-derivative Operator). Let λ = (λ1, λ2, . . . , λd)
′, λ ∈ Rd; the vector dif-

ferential operator Dλ =
(

∂
∂λ1
, ∂
∂λ2
, . . . , ∂

∂λd

)′
and a differentiable m-component vector function

f(λ) = (f1(λ), f2(λ), . . . , fm(λ))′ ∈ Rm. Then, the Kronecker product between Dλ and f(λ) is
given as under:

D⊗λ f(λ) =


f1(λ)

f2(λ)
...

fm(λ)

⊗


∂
∂λ1
∂
∂λ2
...
∂
∂λd

 = V ec


∂f1
∂λ1

∂f1
∂λ2

· · · ∂f1
∂λd

∂f2
∂λ1

. . . ...
... . . . ...

∂fm
∂λ1

∂fm
∂λ2

· · · ∂fm
∂λd


′

(3.18)

⇒ D⊗λ f(λ) = V ec

(
∂f

∂λ′

)′
= V ec

(
∂

∂λ
f ′
)

(3.19)

where, the V ec operator converts m × d matrix into an md × 1 column vector by stacking the
columns one after an other. The operator D⊗λ is called Kronecker derivative operator or simply,
K-derivative operator.

Thus, the Kronecker product with the vector differential operator, obtains vectorization of the
transposed Jacobian of a vector function. Corresponding to the definition, the kth order differenti-
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ation is given by:

D⊗kλ f = D⊗λ
(
D⊗k−1

λ f
)

= [f1(λ), f2(λ), . . . , fm(λ)]′ ⊗
[
∂

∂λ1

,
∂

∂λ2

, · · · , ∂

∂λd

]′⊗k
(3.20)

The D⊗kλ f is a column vector of dimensionmdk×1. Some important properties of the K-derivative
operator, those are useful in the further derivations, are listed in Appendix C.2.

3.6.1 Application of the K-derivative operator to the multivariate Taylor
series

Let x = (X1, X2, ..., Xd)
′ be a d-dimensional column vector and f(x) be the function of several

variables differentiable in each variable. Using the defined K-derivative operator, the Taylor series
for f(x), expanding it at origin, is given as:

f(x) =
m=∞∑
m=0

1

m!
c(m, d)′x⊗m (3.21)

where, c(m, d) is the vector of dimension dm × 1 and given in terms of the derivative vector

Dx =
(

∂
∂x1
, ∂
∂x2
, · · · , ∂

∂xd

)′
as

c(m, d) =
(
D⊗mx f(x)

)
x=0 (3.22)

The Taylor series expansion near λ = 0, called the Maclaurian series, of some required functions
based on the Equation (3.21) are derived in appendix C.3.

3.7 Moments, cumulants and characteristic function of a ran-
dom vector

Let x = (X1, X2, ..., Xd)
′ be a d-dimensional random vector and f(x) be its joint pdf differentiable

in each variable.
The Characteristic function (F) of x is defined as the expected value of eix′λ, where

λ = (λ1, λ2, . . . , λd)
′, λ ∈ Rd. Also, both the characteristic function and the pdf are the Fourier

Transform (F) of each other, in the sense they are dual.

Fx(λ) = E
{

ei(x
′λ)
}

= F(f(x)) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x)ei(x
′λ)dx (3.23)
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Expanding eix′λ using its Maclaurian series in Equation (C.16) in appendix C.3, we get:

Fx(λ) =
∞∑
k=0

m(k, d)′
(iλ)⊗k

k!
(3.24)

where, m(k, d) is the kth order moment vector of dimension dk × 1 and given by

m(k, d) =

∫
Rd

x⊗kf(x)dx

Also, f(x) = F−1(F(λ)) = F−1

(
∞∑
k=0

m(k, d)′
(iλ)⊗k

k!

)
(3.25)

=
∞∑
k=0

m(k, d)′

k!

(
1

(2π)d

∫
Rd

(iλ)⊗ke−ix
′λdλ

)
=
∞∑
k=0

(−1)k
m(k, d)′

k!
D(k)δ(x) (3.26)

(∵ Proof in Appendix C.4.1)

The Moment Generating Function (MGF) of f(X) is given as

M(λ) = E
{

ex′λ
}

=

∫
Rd
f(X)ex′λdX (3.27)

=
∞∑
k=0

m(k, d)′
λ⊗k

k!
( ∵ Expanding ex′λ) (3.28)

Assuming M(λ) and F(λ) are expanded using Taylor series,

m(k, d) = D⊗kλ M(λ)λ=0 = (−i)kD⊗kλ Fx(λ)λ=0 (3.29)

The Cumulant Generating Function (CGF) of f(X) is given by,

C(λ) = ln M(λ) =
∞∑
k=1

c(k, d)′
λ⊗k

k!
(3.30)

where, c(k, d) is the kth order cumulant vector of dimension dk × 1.
The Cumulant Generating Function (CGF) of f(X) can also be defined using the characteristic
function, as under:

C(λ) = lnF(λ) =
∞∑
k=1

c(k, d)′
(iλ)⊗k

k!
(3.31)
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Assuming C(λ) and C(λ) have been expanded using Taylor series,

c(k, d) = D⊗kλ C(λ)λ=0 = (−i)kD⊗kλ Cx(λ)λ=0 (3.32)

Significantly, this section has derived the moments and the cumulants of a random vector in vector
notations.

3.7.1 Relation between the cumulant vectors and the moment vectors

The relation between the moments and the cumulants is given by combining Equation (3.28) and
Equation (3.30) as below:

M(λ) =
∞∑
k=0

m(k, d)′
λ⊗k

k!
= exp

(
∞∑
k=1

c(k, d)′
λ⊗k

k!

)
(3.33)

For k = 1, using Equation (3.29), we get:

m(1, d) = D⊗1
λ M(λ)λ=0

Applying K-derivative (D⊗λ ) to Equation (3.33),

∞∑
p=1

m(p, d)′

(
λ⊗(p−1) ⊗ Id

)
(p− 1)!

λ=0 =
∞∑
p=1

c(p, d)′

(
λ⊗(p−1) ⊗ Id

)
(p− 1)!

⊗ exp

(
∞∑
q=1

c(q, d)′
λ⊗q

q!

)
λ=0

⇒m(1, d) = c(1, d)

Similarly, based on Equation (3.29), for any k taking kth order K-derivative of above Equation
(3.33) on both sides relates m(k, d) with c(k, d). For example, the cases for k = 2 and k = 3 are
shown in Appendix C.4.2. Overall, the vector moments in terms of the vector cumulants can be
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summarized as under:

m(1, d) = c(1, d)

m(2, d) = c(2, d) + c(1, d)⊗2

m(3, d) = c(3, d) + 3c(2, d)⊗ c(1, d) + c(1, d)⊗3

m(4, d) = c(4, d) + 4c(3, d)⊗ c(1, d) + 3c(2, d)⊗2 + 6c(2, d)

⊗ c(1, d)⊗2 + c(1, d)⊗4

m(5, d) = c(5, d) + 5c(4, d)⊗ c(1, d) + 10c(3, d)⊗ c(2, d)

+ 10c(3, d)⊗ c(1, d)⊗2 + 15c(2, d)⊗2 ⊗ c(1, d)

+ 10c(2, d)⊗ c(1, d)⊗3 + c(1, d)⊗5

m(6, d) = c(6, d) + 6c(5, d)⊗ c(1, d) + 15c(4, d)⊗ c(2, d)

+ 15c(4, d)⊗ c(1, d)⊗2 + 10c(3, d)⊗2 + 60c(3, d)⊗ c(2, d)

⊗ c(1, d) + 20c(3, d)⊗ c(1, d)⊗2 + 15c(2, d)⊗3

+ 45c(2, d)⊗2 ⊗ c(1, d)⊗2 + 15c(2, d)⊗ c(1, d)⊗4 + c(1, d)⊗6

(3.34)

The above set of equations can be represented through more compact formulas as under. The
Equation (3.35) gives generalized kth order d-variate cumulant vector in terms of the moment
vectors and the Equation (3.36) gives the vice-a-versa.

m(k, d) =
k−1∑
p=0

(
k − 1

p

)
K−1

ph↔lc(k − p, d)⊗m(p, d) (3.35)

c(k, d) = m(k, d)−
k−1∑
p=1

(
k − 1

p

)
K−1

ph↔lc(k − p, d)⊗m(p, d) (3.36)

where, K−1
ph↔l is a specific commutation matrix with corresponding dimensions that changes the

place of the cumulants for Kronecker product such that the expression has decreasing order cumu-
lants from left to the right, i.e. the higher order cumulant vector on the left and the lower order
cumulant vector on the right. As the Kronecker products are non-commutative, without using the
commutation matrices it would have been impossible to derive the compact formula. The derived
multivariate expressions reduce to the following expressions for dimension d = 1 and are exactly
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same as those derived in (13).

c(k, 1) = m(k, 1)−
k−1∑
p=1

(
k − 1

p

)
c(k − p, 1)m(p, 1)

or more simply, ck = mk −
k−1∑
p=1

(
k − 1

p

)
ck−pmp

(3.37)

Thus, the derived multivariate expressions in Equation (3.34) are elementary vector extensions to
those for univariate.

3.8 Multivariate pdf expressed in terms of the cumulants

From Equation (3.25) and Equation (3.31), the multivariate pdf f(x) can be written as:

f(x) = F−1(eC(λ)) =

(
1

2π

)d ∫
Rd

exp

(
∞∑
k=1

c(k, d)′
(iλ)⊗k

k!

)
exp (−ix′λ)dλ (3.38)

As pdf is a real function and Re(eA+iBe−iC) = eA cos(B − C) = eA cos(C − B), the Equation
(3.38) can be re-written as:

f(x) =
1

(2π)d

∫
Rd

exp

(
∞∑
k=1

c(2k, d)′

2k!
(iλ)⊗2k

)

cos

(
x′λ+

∞∑
k=1

c(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)
dλ (3.39)

The integrand in this equation is an even function. So,

f(x) =
1

(π)d

∫
(R+)d

exp

(
∞∑
k=1

c(2k, d)′

2k!
(iλ)⊗2k

)

cos

(
x′λ+

∞∑
k=1

c(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)
dλ (3.40)

where, R+ = {x ∈ R : x ≥ 0}. The Equation (3.39) and the Equation (3.40) give a multivariate
pdf in terms of the cumulants. As they are derived using Taylor series expansion, the infinite order
differentiability is an implicit assumption.

The equations can be verified using known pdf examples with finite number of moments
and cumulants. Let say, the impulse delta density function has only the first order cumulant being
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non-zero and all other higher order cumulants are zero. Using this knowledge in Equation (3.39),

f(x) =
1

(2π)d

∫
Rd

cos
(
(x− c(1, d))′ λ

)
dλ (3.41)

= δ(x− c(1, d)) (shifted impulse delta function)

Let’s take another example, the Gaussian density function has first two order cumulants nonzero
and all other order cumulants are zero. Using this knowledge in Equation (3.39),

f(x) =
1

(2π)d

∫
Rd

exp

(
−c(2, d)′

2
λ⊗2

)
cos
(
(x− c(1, d))′ λ

)
dλ

= G(x) ( See Appendix C.4.3 for proof)
(3.42)

3.9 The multivariate Hermite polynomials in integral form

An interesting application of the integral form of multivariate pdf representation is achieved in this
section. The multivariate Gaussian expressed as in Equation (3.42) is used to derive it’s differen-
tials and Hermite polynomials in a simple way. Taking kth K-derivative of G(x),

G(k)(x) := D⊗kx G(x) =
1

(2π)d

∫
Rd
λ⊗k exp

(
−c(2, d)′

2
λ⊗2

)
cos

(
(x− c(1, d))′ λ+

kπ

2

)
dλ (3.43)

The multivariate Hermite polynomials defined by Holmquist (61) are defined as under:

Hk(x; 0,Cx) = [G(x; 0,Cx)]−1(−1)k (CxDx)
⊗kG(x; 0,Cx) (3.44)

where, G(x; 0,Cx) = |Cx|−1/2 (2π)−d/2 exp

(
−1

2
x′C−1

x x

)
= |Cx|−1/2 (2π)−d/2 exp

(
−1

2

(
V ec C−1

x

)′
x⊗2

)
(3.45)

This is equivalent to the 1-dimensional definition of Hermite polynomials‡ by Rodrigues’s formula
in Equation (3.46), except the introduction of matrix Cx.

Hk(x) = [G(x)]−1(−1)k
dk

dxk
G(x) where, G(x) =

1

2π
e−

1
2
x2 (3.46)

‡This is the ’probabilists’ Hermite polynomials and not the ’physicists’ Hermite polynomials used by Berberan-
Santos (13).
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Using Equation (3.43), the Equation (3.44) for multivariate Hermite polynomials is rewritten as:

Hk(x; 0,Cx) = (2π)d/2 |Cx|1/2 (−1)k (Cx)⊗k exp

(
1

2

(
V ec C−1

x

)′
x⊗2

)
1

(2π)d∫
Rd
λ⊗k exp

(
−c(2, d)′

2
λ⊗2

)
cos

(
(x− c(1, d))′λ+

kπ

2

)
dλ (3.47)

Taking Cx = Id, where Id is d × d identity matrix; using the property (V ec Id)
′x⊗2 = x′x and

using change of variable as λ/
√

2 = u - the integral form of multivariate Hermite polynomials is
obtained as under:

Hk(x; 0, Id) = (2)
k+d+1

2 (π)−d/2 exp

(
1

2
x′x

)
∫
Rd

u⊗k exp (−u′u) cos

(√
2x′u− kπ

2

)
du (3.48)

The result in Equation (3.43) can also be obtained using Equation (3.42) and applying the
derivative property of Fourier transform (F). The kth derivative of G(x) is given by,

G(k)(x) = F−1
(
F(G(k)(x))

)
(3.49)

=
1

(2π)d

∫
Rd

(iλ)⊗k F(G(x)) exp−ix
′λ dλ (3.50)

=
1

(2π)d

∫
Rd
λ⊗k exp

(
−c(2, d)′

2
λ⊗2

)
cos

(
(x− c(1, d))′ λ+

kπ

2

)
dλ (3.51)

3.10 Multivariate Gram-Charlier A series

Till now, the chapter has derived - an unknown pdf expressed in terms of its cumulants in Equation
(3.39); the Gaussian density function expressed in terms of its cumulants in Equation (3.42) and
the Hermite polynomials in Equation (3.48). Based on them, the multivariate Gram Charlier A
series that expresses an unknown pdf using Gaussian density as a reference can be obtained. The
expansion assumes first and second order cumulants being same for both the unknown pdf and the
reference pdf. Using the expansion exp(A + B) cos(C + D) = exp(A) exp(B)(cosC cosD −
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sinC sinD), the Equation (3.39) can be re-written as:

f(x) =
1

(2π)d

∫
Rd

exp

(
−c(2, d)′

2
λ⊗2

)
exp

(
∞∑
k=2

c(2k, d)′

2k!
(iλ)⊗2k

)
{

cos((x− c(1, d))′λ) cos

(
∞∑
k=2

c(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)

− sin((x− c(1, d))′λ) sin

(
∞∑
k=2

c(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)}
dλ (3.52)

Using the expansions in Appendix C.3, parts of the Equation (3.52) can be approximated upto
maximum 6th-order statistics as under:

exp

(
∞∑
k=2

c(2k, d)′

2k!
(iλ)⊗2k

)
cos

(
∞∑
k=2

c(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)

= 1 +

(
c(4, d)′λ⊗4

4!
− c(6, d)′λ⊗6

6!

)
− 1

2

(
c(3, d)′λ⊗3

3!

)⊗2

+ . . . (3.53)

exp

(
∞∑
k=2

c(2k, d)′

2k!
(iλ)⊗2k

)
sin

(
∞∑
k=2

c(2k − 1, d)′

(2k − 1)!
(−i)2k(λ)⊗(2k−1)

)

=
c(3, d)′λ⊗3

3!
− c(5, d)′λ⊗5

5!
+ . . . (3.54)

Using above Equation (3.53) and Equation (3.54), the Equation (3.52) can be re-written as:

f(x) =
1

(2π)d

∫
Rd

{
exp

(
−c(2, d)′

2
λ⊗2

)
cos((x− c(1, d))′λ)(

1 +
c(4, d)′λ⊗4

4!
− 1

6!

(
c(6, d)− 10c(3, d)⊗2

)′
λ⊗6 + . . .

)}
dλ

− 1

(2π)d

∫
Rd

{
exp

(
−c(2, d)′

2
λ⊗2

)
cos
(

(x− c(1, d))′ λ− π

2

)
(

c(3, d)′λ⊗3

3!
− c(5, d)′λ⊗5

5!
+ . . .

)}
dλ (3.55)

Using the Equation (3.43) for derivatives of Gaussian defined, the above Equation can be simplified
as:

f(x) = G(x)− c(3, d)′

3!
G(3)(x) +

c(4, d)′

4!
G(4)(x)− c(5, d)′

5!
G(5)(x)

+
c(6, d)′ + 10c(3, d)⊗2′

6!
G(6)(x) + . . . (3.56)

86



3. ExROT for Bandwidth Selection 3.11. Multivariate Generalized Gram-Charlier series

The Equation (3.56) is the Gram-Charlier A series expressed directly in terms of the cumulants
and the derivatives of the Gaussian pdf. Usually, the GCA is represented in terms of the Hermite
polynomials. So, the GCA expansion (Equation (3.56)) in terms of the Hermite polynomials;
either using definition in Equation (3.44) or using Hk(x; 0,C−1

x ) derived in Equation (3.47); can
be re-written as:

f(x) = G(x)

[
1 +

c(3, d)′

3!

(
C−1

x

)⊗3
H3(x; 0,Cx) +

c(4, d)′

4!

(
C−1

x

)⊗4
H4(x; 0,Cx)

+
c(5, d)′

5!

(
C−1

x

)⊗5
H5(x; 0,Cx) +

c(6, d)′ + 10c(3, d)⊗2′

6!

(
C−1

x

)⊗6

H6(x; 0,Cx) + . . .] (3.57)

f(x) = G(x)

[
1 +

c(3, d)′

3!
H3(x; 0, Id) +

c(4, d)′

4!
H4(x; 0, Id) +

c(5, d)′

5!
H5(x; 0, Id)

+
c(6, d)′ + 10c(3, d)⊗2′

6!
H6(x; 0, Id) + . . .

]
(3.58)

Finally, the GCA series, in vector notations, can be expressed either using kth order derivative of
Gaussian (Gk(x)) or using kth order vector Hermite polynomials (Hk(x)) as under:

f(x) =
∞∑
k=0

(−1)k
c(k, d)′

k!
G(k)(x) (3.59)

=
∞∑
k=0

c(k, d)′

k!
Hk(x; 0, Id) (3.60)

3.11 Multivariate Generalized Gram-Charlier series

To derive the generalized Gram-Charlier series, an unknown pdf f(x) need be represented in
terms of any known reference pdf ψ(x), where both the pdf s are represented in terms of their
cumulants. Let the kth order cumulant vector of the reference pdf ψ(x) be cr(k, d). Then, the kth

order cumulant difference vector δ(k, d) is: δ(k, d) = c(k, d) − cr(k, d), ∀k. Using δ(k, d), the
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Equation (3.39) can be re-written as under:

f(x) =
1

(2π)d

∫
Rd

exp

(
∞∑
k=1

cr(2k, d)′

2k!
(iλ)⊗2k

)
exp

(
∞∑
k=1

δ(2k, d)′

2k!
(iλ)⊗2k

)

cos

(
x′λ+

(
∞∑
k=1

cr(2k − 1, d)

(2k − 1)!
+
∞∑
k=1

δ(2k − 1, d)

(2k − 1)!

)′
(i)2k(λ)⊗(2k−1)

)
dλ (3.61)

=
1

(2π)d

∫
Rd

exp

(
∞∑
k=1

cr(2k, d)′

2k!
(iλ)⊗2k

)
exp

(
∞∑
k=1

δ(2k, d)′

2k!
(iλ)⊗2k

)
{

cos

(
x′λ+

∞∑
k=1

cr(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)
cos

(
∞∑
k=1

δ(2k − 1, d)′

(2k − 1)!

(i)2k(λ)⊗(2k−1)
)
− sin

(
x′λ+

∞∑
k=1

cr(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)

sin

(
∞∑
k=1

δ(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)}
dλ (3.62)
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Using the expansions in Appendix C.3, parts of the Equation (3.62) can be approximated upto
maximum 6th-order statistics as under:

exp

(
∞∑
k=1

δ(2k, d)′

2k!
(iλ)⊗2k

)
cos

(
∞∑
k=1

δ(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)

= 1 +

(
∞∑
k=1

δ(2k, d)′

2k!
(iλ)⊗2k

)
+

1

2

(
∞∑
k=1

δ(2k, d)′

2k!
(iλ)⊗2k

)⊗2

− 1

2

(
∞∑
k=1

δ(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1)

)⊗2

− . . .

= 1 +

(
−δ(2, d)′

2!
λ⊗2 +

δ(4, d)′

4!
λ⊗4 − δ(6, d)′

6!
λ⊗6

)
+

1

2

(
−δ(2, d)′

2!
λ⊗2

)⊗2

− 1

2

(
−δ(1, d)′λ+

δ(3, d)′

3!
λ⊗3

)⊗2

+
1

6

(
−δ(2, d)′

2!
λ⊗2

)⊗3

− 1

2

((
−δ(2, d)′

2!
λ⊗2

+
δ(4, d)′

4!
λ⊗4

)
⊗ (δ(1, d)′λ)

⊗2

)
− 1

4

((
−δ(2, d)′

2!
λ⊗2

)⊗2

⊗ (δ(1, d)′λ)
⊗2

)

+
1

4!

(
−δ(2, d)′

2!
λ⊗2

)⊗4

− 1

4!
(−δ(1, d)′λ)

⊗4 −
(
δ(2, d)′

2!
λ⊗2 ⊗ δ(1, d)′λ⊗4

)
+ . . .

= 1− 1

2

(
δ(1, d)⊗2 + δ(2, d)

)′
λ⊗2 +

1

4!

(
δ(1, d)⊗4 + 6δ(2, d)⊗ δ(1, d)⊗2

+3δ(2, d)⊗2 + 4δ(3, d)⊗ δ(1, d) + δ(4, d)
)′
λ⊗4 − 1

6!

(
δ(1, d)⊗6 + 15δ(2, d)⊗3

+10δ(3, d)⊗2 + 15δ(4, d)⊗ δ(2, d) + 15δ(4, d)⊗ δ(1, d)⊗2 + 20δ(3, d)⊗ δ(1, d)⊗2

+15δ(2, d)⊗ δ(1, d)⊗4 + 45δ(2, d)⊗2 ⊗ δ(1, d)⊗2 + 6δ(5, d)⊗ δ(1, d)

+60δ(3, d)⊗ δ(2, d)⊗ δ(1, d) + δ(6, d))′ λ⊗6 + . . . (3.63)
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Similarly,

exp

(
∞∑
k=1

δ(2k, d)′

2k!
(iλ)⊗2k

)
sin

(
∞∑
k=1

δ(2k − 1, d)′

(2k − 1)!
(−i)2k(λ)⊗(2k−1)

)

=

(
−δ(1, d)′λ+

δ(3, d)′

3!
λ⊗3 − δ(5, d)′

5!
λ⊗5

)
+

(
δ(2, d)′λ⊗2

2!
⊗ δ(1, d)′λ

1

+
δ(3, d)′λ⊗3

3!
⊗ δ(2, d)′λ⊗2

2!
+
δ(4, d)′λ⊗4

4!
⊗ δ(1, d)′λ⊗1

1!

)
− 1

2

(
δ(2, d)′λ⊗2

2!

)⊗2

⊗ δ(1, d)′λ⊗1

1!
− (−δ(1, d)′λ)

⊗3
+ . . .

= δ(1, d)′λ+
1

3!

(
δ(3, d) + 3δ(2, d)⊗ δ(1, d) + δ(1, d)⊗3

)′
λ⊗3 − 1

5!
(δ(5, d)

+5δ(4, d)⊗ δ(1, d) + 15δ(2, d)⊗2 ⊗ δ(1, d) + 10δ(3, d)⊗ δ(2, d)

+10δ(2, d)⊗ δ(1, d)⊗3 + 10δ(3, d)⊗ δ(1, d)⊗2 + δ(1, d)⊗5
)′
λ⊗5 . . . (3.64)

Now, D⊗kx ψ(x) can be obtained by taking kth-order K-derivative of Equation (3.39) as under:

ψ(k)(x) = D⊗kx ψ(x) =
1

(2π)d

∫
Rd

(λ)⊗k exp

(
∞∑
k=1

cr(2k, d)′

2k!
(iλ)⊗2k

)

cos

(
x′λ+

∞∑
k=1

cr(2k − 1, d)′

(2k − 1)!
(i)2k(λ)⊗(2k−1) +

kπ

2

)
dλ (3.65)

The above Equation (3.65) with the previous results on expansions in Equation (3.63) and Equa-
tion (3.64) can be used to simplify the Equation (3.62). This derives the Generalized Gram-
Charlier (GGC) series expressing an unknown pdf f(x) in terms of the cumulant difference vectors
(δ(k, d)) and derivatives of a reference pdf ψ(k)(x) as under:

f(x) =
∞∑
k=0

(−1)k
α(k, d)′

k!
ψ(k)(x) (3.66)
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where,

α(0, d) = 1

α(1, d) = δ(1, d)

α(2, d) = δ(2, d) + δ(1, d)⊗2

α(3, d) = δ(3, d) + 3δ(2, d)⊗ δ(1, d) + δ(1, d)⊗3

α(4, d) = δ(4, d) + 4δ(3, d)⊗ δ(1, d) + 3δ(2, d)⊗2 + 6δ(2, d)

⊗ δ(1, d)⊗2 + δ(1, d)⊗4

α(5, d) = δ(5, d) + 5δ(4, d)⊗ δ(1, d) + 10δ(3, d)⊗ δ(2, d)

+ 10δ(3, d)⊗ δ(1, d)⊗2 + 15δ(2, d)⊗2 ⊗ δ(1, d)

+ 10δ(2, d)⊗ δ(1, d)⊗3 + δ(1, d)⊗5

α(6, d) = δ(6, d) + 6δ(5, d)⊗ δ(1, d) + 15δ(4, d)⊗ δ(2, d)

+ 15δ(4, d)⊗ δ(1, d)⊗2 + 10δ(3, d)⊗2 + 60δ(3, d)⊗ δ(2, d)

⊗ δ(1, d) + 20δ(3, d)⊗ δ(1, d)⊗2 + 15δ(2, d)⊗3 + 45δ(2, d)⊗2

⊗ δ(1, d)⊗2 + 15δ(2, d)⊗ δ(1, d)⊗4 + δ(1, d)⊗6

(3.67)

The above set of equations (3.67) has exact resemblance with that expressing moments in terms
of the cumulants in Section 3.7.1. This must happen, as Equation (3.66) for GGC expansion with
δ(x) as a reference pdf is matching Equation (3.26). This matching proves that α(k, d) is related
in same way to δ(k, d), as m(k, d) to c(k, d). That is,:

∞∑
k=0

α(k, d)′
λ⊗k

k!
= exp

(
∞∑
k=1

δ(k, d)′
λ⊗k

k!

)
(3.68)

Further, the α(k, d) in Equation (3.66) recursively can be obtained in terms of the cumulant differ-
ence vector δ(k, d) as under:

α(k, d) =
k−1∑
p=0

(
k − 1

p

)
K−1

ph↔lδ(k − p, d)⊗α(p, d) (3.69)

where, K−1
ph↔l is a specific commutation matrix; as described previously; to change the order of the

cumulants for Kronecker product such that the expression has decreasing order cumulants from
left to the right.

The verification of the derived GGC can be obtained by taking Gaussian density as a refer-
ence pdf. With Gaussian density as a reference, δ(1, d) = 0 and δ(2, d) = 0. So, the coefficients
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α(k, d) in Equation (3.66) can be derived as under:

α(0, d) = 1

α(1, d) = 0

α(2, d) = 0

α(3, d) = δ(3, d) = c(3, d)

α(4, d) = δ(4, d) = c(4, d)

α(5, d) = δ(5, d) = c(5, d)

α(6, d) = δ(6, d) + 10δ(3, d)⊗2 = c(6, d) + 10c(3, d)⊗2

(3.70)

Thus, the GGC series is derived and verified using known examples.

3.12 Characteristic function of an unknown random vector in
terms of a reference characteristic function

The GGC derived as in Equation (3.66) can be used to give the characteristic function of an un-
known pdf, in terms of the characteristic function of a reference pdf. For that taking Fourier
transform (F) of Equation (3.66), we get:

Fx(λ) =
∞∑
k=0

(−1)k
α(k, d)′

k!
F(ψ(k)(x)) (3.71)

Fx(λ) =

[
∞∑
k=0

α(k, d)′
(iλ)⊗k

k!

]
F(ψ(x)) (∵ differentiation property of F ) (3.72)

= exp

[
∞∑
k=1

δ(k, d)′
(iλ)⊗k

k!

]
Fr(x) (∵ Equation (3.68)) (3.73)

where, Fr is the characteristic function of the reference pdf.
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3.13 Compact derivation for the Generalized Gram-Charlier
expansion

The compact derivation of Equation (3.66) follows as under:

Fx(λ) = exp

[
∞∑
k=1

c(k, d)′
(iλ)⊗k

k!

]
( ∵ definition in Equation (3.31) ) (3.74)

= exp

[
∞∑
k=1

δ(k, d)′
(iλ)⊗k

k!

]
exp

[
∞∑
k=1

cr(k, d)
(iλ)⊗k

k!

]
(3.75)

(∵ δ(k, d) = c(k, d)− cr(k, d))

=

[
∞∑
k=0

α(k, d)′
(iλ)⊗k

k!

]
F(ψ(x)) (3.76)

Taking inverse Fourier transform of the above equation brings

f(x) =
∞∑
k=0

α(k, d)′
(−1)k

k!
δ(k)(x) ∗ ψ(x) (3.77)

or f(x) =
∞∑
k=0

α(k, d)′
(−1)k

k!
ψ(k)(x) (3.78)

where, ∗ indicates convolution. Thus, the Equation (3.66) is obtained in a more compact way.

3.14 Conclusion

The chapter has derived multivariate Generalized Gram-Charlier (GGC) expansion in Equation
(3.66); combined with Equation (3.69); that expresses an unknown multivariate pdf in terms of
vector cumulants and vector derivatives of a reference pdf. The multivariate Gram-Charlier A
series is derived in Equation (3.59) and Equation (3.60) representing an unknown multivariate pdf

in terms of its vector cumulants and vector Hermite polynomials. There has been also derived
compact formulas for obtaining multivariate vector moments from vector cumulants in Equation
(3.35) and vise-a-verse in Equation (3.36); the integral form of multivariate pdf representation
in Equation (3.39) and the integral form of multivariate vector Hermite polynomials in Equation
(3.47), as well, in Equation (3.48). The expressions are derived using only elementary calculus of
several variables in vector notations through Kronecker product based derivative operator. Thus,
they are more transparent and more comprehensive compare to their corresponding multi-linear
matrix representations or tensor representations.
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3.15 AMISE in vector notations for bandwidth selection multi-
variate KDE

The derivation for bandwidth parameter selection in multivariate KDE, satisfying AMISE between
the estimated multivariate PDF and the actual multivariate PDF, can be found in (136). For the
reasons discussed in Section 3.1, this chapter re-derives multivariate AMISE in terms of the vector
notations. The conventional higher order derivatives of a multivariate PDF necessitates matrix or
tensor notations. Instead, this chapter achieves vectorization using the Kronecker product of the
multivariate PDF with the vector differential operator Dx =

(
∂
∂x1
, ∂
∂x2
, · · · , ∂

∂xd

)′
.

MISE(f(x), ˆf(x)) =

∫
Rd

Bias2( ˆf(x))dx +

∫
Rd

Var( ˆf(x))dx (3.79)

The bias and variance estimations, using the Taylor Series expansion in Equation (3.21), are de-
rived as under.

E{ ˆf(x)} =
1

N

N∑
i=1

E {KH(x− xi)} (3.80)

=

∫
Rd
KH(u− x)f(u)du

=

∫
Rd
K(z)f(x + Hz)dz ( ∵ substituting z = u− x )

=

∫
Rd
K(z)

(
f(x) + k(1, d)′(Hz) +

1

2
k(2, d)′(Hz)⊗2 +O(tr(H⊗2))

)
dz (3.81)

where, k(i, d) = D⊗ix f(x) |x=x

Assuming the kernel with symmetric, bounded and uncorrelated PDF the following properties are
satisfied: ∫

Rd
uK(u)du = 0 (3.82)∫

Rd
u⊗ uK(u)du = mK(2, d) = µ2(K)Vec(I(d×d)) (3.83)

= µ2(K)δ2 where, δ2 = Vec(I(d×d)) (3.84)

Here, mK(2, d) is the second order moment vector of the d-variate kernel with d2 components and
δ2 is vector of size (d2× 1), used as an indicator function with only specific d values being 1. The
second order moment of each component is constant with value µ2(K) and all cross-moments are
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zero. Using these properties, the bias can be written as:

⇒ Bias( ˆf(x)) = E{ ˆf(x)} − f(x) =
1

2
k(2, d)′

(
H⊗2mK(2, d)

)
+O(H⊗2) (3.85)

Similarly, the variance of the estimation can be approximated as under:

Var(f̂(x)) = Var

(
1

N

N∑
i=1

KH(x− xi)

)
=

1

Ndet(H)

∫
Rd
K2(z)f(x + Hz)dz− 1

N
E2
{
f̂(x)

}
=

1

Ndet(H)

∫
Rd
K2(z)

(
f(x) + k(1, d)′Hz +

1

2
k(2, d)′(Hz)⊗2 +O(tr(H⊗2))

)
dz

− 1

N
E2
{
f̂(x)

}
(∵ using Taylor’s expansion)

⇒ Var(f̂(x)) =
1

Ndet(H)
f(x)

∫
Rd
K2(z)dz +O

(
det H

N

)
(∵ assuming large N , small h)

(3.86)

Combining equations (3.79), (3.85) and (3.86); we get:

MISE(f̂(x)) =
1

4

∫
Rd

(
k(2, d)′H⊗2mK(2, d)

)2
dz +

R(K)

Ndet(H)
+O

(
tr
(
H⊗4

))
+O

(
det(H)

N

)
where, R(K) =

∫
Rd K

2(z)dz. An asymptotic large sample approximation AMISE is obtained,
assuming limN→∞ det(H) = 0 and limN→∞Ndet(H) = ∞ i.e. det(H) reduces to 0 at a rate
slower than 1/N .

AMISE(f̂(x)) =
1

4

∫
Rd

(
k(2, d)′H⊗2mK(2, d)

)2
dz +

1

Ndet(H)
R(K)

=
1

4
µ2

2(K)

∫
Rd

(
k(2, d)′

(
H⊗2δ2

))2
dz +

1

Ndet(H)
R(K)(∵ using Equation(3.84))

(3.87)

The Equation (??) interprets that a small det(H) increases estimation variance, whereas, a larger
det(H) increases estimation bias.

3.15.1 AMISE for H ∈ S

To simplify further the bandwidth estimation, let us assume H ∈ S , where S ⊆ D with constant
diagonal. Accordingly, let H = hH0 i.e. same bandwidth in all directions. With this condition
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and an added assumption of H0 = Id (an identity matrix with dimension d × d), the AMISE can
be given as:

AMISE(f̂(x)) =
h4

4
µ2

2(K)
(
I⊗4
d δ

⊗2
2

)′
R(f ′′(x)) +

1

Nhd
R(K)

=
h4

4
µ2

2(K)R(f ′′(x)) +
1

Nhd
R(K) (3.88)

Taking derivative of AMISE(f̂(x)) in Equation (3.88) with respect to h and comparing it to zero
gives the optimal bandwidth parameter minimizing the AMISE. It is:

d

dh
AMISE( ˆf(x)) = h3µ2

2(K)R(f ′′(x))− d

Nh(d+1)
R(K) = 0

⇒ hAMISE =

(
d

R(K)

µ2
2(K)R(f ′′(x))N

) 1
d+4

(3.89)

= (CN)−
1
d+4 where, C =

µ2
2(K)R(f ′′(x))

dR(K)
(3.90)

Thus, the optimal bandwidth parameter depends upon some of the kernel parameters, number of
samples and the second order derivative of the actual PDF being estimated.

By comparing Equation (??) for hi,H ∈ D with the Equation (3.89) for h,H ∈ S , we get
a notion for R(f ′′(x)) as under:

R(f ′′(x)) = d

[
(Ri(f

′′(x)))
−(d+4)

(
d∏
p=1

Rp(f
′′(x))

)]−1/4

(3.91)

3.15.2 Rule-of-Thumb for multivariate KDE

Let us apply the Rule-of-Thumb for bandwidth estimation i.e. estimate the bandwidth assuming
the unknown PDF as a multivariate Gaussian. For a multiplicative Gaussian kernel, µ2(K) = 1,
R(K) = 2−dπ−d/2 and R(f ′′(x)) = d(d+2)

2(d+2)πd/2σ(d+4) . So, the bandwidth parameter h; for H ∈
S,H = hId; is obtained as under:

hROT =

(
4

(2 + d)N

) 1
4+d

σ (3.92)

where, σ is the standard deviation, assumed same in all directions.

96



3. ExROT for Bandwidth Selection 3.16. Extended Rule-of-Thumb for multivariate PDF

3.16 Extended Rule-of-Thumb for multivariate PDF

The ExROT expressions in vector notation for bandwidth selection in multivariate KDE satisfying
AMISE criteria requires estimation of either R(k(2, d)) or Ri(k(2, d)) or R(k(2, d)) that in turns
require estimation of k(2, d). This can be achieved by twice application of the vector derivative
operator with Kronecker product to the Equation (3.66) for GGC Series. The k(2, d) is derived as
under:

k(2, d) = D⊗2
x f(x) =

∞∑
k=0

(−1)k
(α(k, d)⊗ Id2)

′

k!
ψ(k+2)(x) (3.93)

Taking Gaussian PDF as a reference PDF; i.e. ψ(x) = G(x); in Equation (3.93) or directly taking
twice differentiation of Equation (3.56) for GCA Series and also using Equation (??) for kth order
vector Hermite polynomial Hk

§ the k(2, d) is re-written as under:

k(2, d) = D⊗2
x f(x) =

∞∑
k=0

(−1)k
(c(k, d)⊗ Id2)

′

k!
G(k+2)(x) (3.94)

≈ (1⊗ Id2)
′

1
G(2)(x; Cx)− (c(3, d)⊗ Id2)

′

3!
G(5)(x; Cx) +

(c(4, d)⊗ Id2)
′

4!
G(6)(x; Cx)

(3.95)

k(2, d) =

[
∞∑
k=0

(c(k, d)⊗ Id2)
′

k!

(
C−1

x

)⊗(k+2)
Hk+2(x; Cx)

]
G(x) (3.96)

≈ (2π)−d/2 |Cx|−1/2 exp
(
−1

2

(
VecC−1

x

)′
x⊗ x

)[
(1⊗ Id2)

′

1

(
C−1

x

)⊗2
H2(x)

− (c(3, d)⊗ Id2)
′

3!

(
C−1

x

)⊗5
H5(x) +

(c(4, d)⊗ Id2)
′

4!

(
C−1

x

)⊗6
H6(x)

]
(3.97)

R(f ′′(x)) ≈
∫
Rd

[{
(1⊗ Id2)

′

1
G(2)(x; Cx)− (c(3, d)⊗ Id2)

′

3!
G(5)(x; Cx)

+
(c(4, d)⊗ Id2)

′

4!
G(6)(x; Cx)

}
o δ2

]2

dz (3.98)

R(f ′′(x)) ≈
d4∑
i=1

[∫
Rd
G2(x)

{(
(1⊗ Id2)

′

1

(
C−1

x

)⊗2
H2(x)− (c(3, d)⊗ Id2)

′

3!

(
C−1

x

)⊗5
H5(x)

+
(c(4, d)⊗ Id2)

′

4!

(
C−1

x

)⊗6
H6(x)

)
o δ2

}⊗2

dx

]
i

(3.99)

§The symbol Hk for kth order Hermite polynomial need not be confused with the notation H for bandwidth matrix.
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3.16.1 ExROT for H ∈ S

The assumption H ∈ S, requires estimation of R(f ′′(x)) for the selection of bandwidth parameter
h, which is obtained as under:

R(f ′′(x)) =

∫
Rd

[
d∑
i=1

∂2f(x)

∂x2
i

]2

≈
∫
Rd

[
d∑
i=1

∂2

∂x2
i

[
G(x)− c(3, d)′

3!
G(3)(x) +

c(4, d)′

4!
G(4)(x)

]]2

dx (3.100)

=

∫
Rd

[ d∑
i=1

∂2

∂x2
i

G(x)

]2

+

[
d∑
i=1

∂2

∂x2
i

c(3, d)′G(3)(x)

3!

]2

+

[
d∑
i=1

∂2

∂x2
i

c(4, d)′G(4)(x)

4!

]2

−2

[
d∑
i=1

∂2

∂x2
i

G(x)

][
d∑
j=1

∂2

∂x2
j

c(3, d)′G(3)(x)

3!

]

−2

[
d∑
i=1

∂2

∂x2
i

c(3, d)′G(3)(x)

3!

][
d∑
j=1

∂2

∂x2
j

c(4, d)′G(4)(x)

4!

]

+2

[
d∑
i=1

∂2

∂x2
i

G(x)

][
d∑
j=1

∂2

∂x2
j

c(4, d)′G(4)(x)

4!

])
dx (3.101)

= Q1 +Q2 +Q3 −Q4 −Q5 +Q6 (3.102)

where, the Qi, i = 1 : 6 are the symbols for corresponding terms simplified as under.

ExROT based on 3rd and 4th order cross-cumulants assumed zero

The simplification is obtained knowing G(x) =
∏d

i=1G(xi) and assuming all third order and
fourth order cross-moments to be zero. Also, there have been used the symbol ci(3, d) as the third
order cumulant (i.e. skewness) of xi, c(3, d,mean) = 1

d

∑d
i=1 ci(3, d) as the mean of the skewness
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and c(4, d,mean) = 1
d

∑d
i=1 ci(4, d) as the mean of the kurtosis.

Q1 =

∫
Rd

[
d∑
i=1

∂2

∂x2
i

G(x)

]2

dx =
4!!d+ 2!!2!!d(d− 1)

2d+2πd/2σd+4
=

d(d+ 2)

2d+2πd/2σd+4
(3.103)

Q2 =

∫
Rd

[
d∑
i=1

∂2

∂x2
i

c(3, d)′G(3)(x)

3!

]2

dx (3.104)

=

∫
Rd


[

d∑
i=1

ci(3, d)

3!

∂5

∂x5
i

G(x)

]2

+

[
d∑
j=1

∂2

∂x2
j

d∑
k=1,k 6=j

ck(3, d)(x)

3!

∂3

∂x3
k

G(x)

]2

+2

[
d∑
i=1

d∑
j=1

ci(3, d)cj(3, d)

3!3!

∂5

∂x5
i

G(x)

(
∂2

∂x2
j

d∑
k=1,k 6=j

∂3

∂x3
k

G(x)

)]}
dx (3.105)

=

∫
Rd


d∑
i=1

[
ci(3, d)

3!
H5(xi)G(x)

]2

+

[
d∑
j=1

d∑
k=1,k 6=j

ck(3, d)(x)

3!
H2(xj)H3(xk)G(x)

]2

+2

[
d∑
i=1

ci(3, d)cj(3, d)

3!3!
H5(xi)G(x)

(
d∑
j=1

d∑
k=1,k 6=j

H2(xj)H3(xk)G(x)

)]}
dx (3.106)

=
c2
i (3, d)

(3!)2

10!!d

2d+5πd/2σd+10
+

c2(3, d,mean)

(3!)2

4!!6!!d(d− 1) + 2!!6!!2!!d(d− 1)(d− 2)

2d+5πd/2σd+10

(3.107)

=
c2(3, d,mean)

(3!)2

[
15d(d2 + 62)

2d+5πd/2σd+10

]
(∵ assuming ci(3, d) = c(3, d,mean)) (3.108)

Q3 =

∫
Rd

[
d∑
i=1

∂2

∂x2
i

c(4, d)′G(4!)(x)

4

]2

dx (3.109)

=

∫
Rd


[

d∑
i=1

ci(4, d)

4!
H6(xi)G(x)

]2

+

[
d∑
j=1

d∑
k=1,k 6=j

ck(4, d)(x)

4!
H2(xj)H4(xk)G(x)

]2

+2

[
d∑
i=1

ci(4, d)cj(4, d)

4!4!
H6(xi)G(x)

(
d∑
j=1

d∑
k=1,k 6=j

H2(xj)H4(xk)G(x)

)]}
dx (3.110)

=
c2(4, d,mean)

(4!)2

{
(12!!d+ 6!!6!!d(d− 1)) + 4!!8!!d(d− 1) + 4!!4!!4!!d(d− 1)(d− 2)

2d+6πd/2σd+12

+
2!!8!!2!!d(d− 1)(d− 2) + 2!!4!!2!!4!!d(d− 1)(d− 2)(d− 3)

2d+6πd/2σd+12

+2
8!!4!!d(d− 1) + 6!!2!!4!!d(d− 1)(d− 2) + 10!!2!!d(d− 1))

2d+6πd/2σd+12

}
(3.111)

=
c2(4, d,mean)

(4!)2

[
3d(3d3 + 56d2 + 516d+ 2890)

2d+6πd/2σd+12

]
(3.112)
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Q4 =

∫
Rd

2

[
d∑
i=1

∂2

∂x2
i

G(x)

][
d∑
j=1

∂2

∂x2
j

c(3, d)′G(3)(x)

3!

]
dx (3.113)

=

∫
Rd

2

[
d∑
i=1

ci(3, d)

3!
H2(xi)H5(xi)G

2(x)

+
d∑
i=1

d∑
j=1,j 6=i

cj(3, d)(x)

3!
H2(xi)H2(xi)H3(xj)G

2(x)

+
d∑
i=1

d∑
j=1,j 6=i

ck(3, d)(x)

3!
H2(xi)H2(xj)H3(xi)G

2(x)

+
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ci(3, d)(x)

3!
H2(xi)H2(xj)H3(xk)G

2(x)

]
dx (3.114)

= 0 (3.115)

Q5 =

∫
Rd

2

[
d∑
i=1

∂2

∂x2
i

c(3, d)′G(3)(x)

3!

][
d∑
j=1

∂2

∂x2
j

c(4, d)′G(4)(x)

4!

]
dx (3.116)

=

∫
Rd

{
2

[
d∑
i=1

ci(3, d)

3!
H5(xi)G(x) +

d∑
j=1

d∑
j=1,j 6=i

cj(3, d)

3!
H2(xi)H3(xj)G(x)

]
[

d∑
k=1

ck(4, d)

4!
H6(xk)G(x) +

d∑
l=1,l 6=k

cl(4, d)

4!
H2(xk)H4(xl)G(x)

]}
dx (3.117)

= 0 (3.118)

Q6 =

∫
Rd

2

[
d∑
i=1

∂2

∂x2
i

G(x)

][
d∑
j=1

∂2

∂x2
j

c(4, d)′G(4)(x)

4!

]
dx (3.119)

=

∫
Rd

2

[
d∑
i=1

H2(xi)G(x)

][
d∑
i=1

ci(4, d)

4!
H6(xi)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

cj(4, d)

4!
H2(xi)H4(xj)G(x)

]
dx (3.120)

= 2
c(4, d,mean)

(4!)

(2!!)(6!!)d2 + 4!!4!!d(d− 1) + 2!!2!!4!!d2(d− 1)

2d+4πd/2σd+8
(3.121)

=
c(4, d,mean)

(4!)

6d(d2 + 7d− 3)

2d+4πd/2σd+8
(3.122)
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Combining above simplifications, the formula for R(f ′′(x)) can be derived as under:

R(f ′′(x)) =
d(d+ 2)

2d+2πd/2σd+4
+

c2(3, d,mean)

(3!)2

[
15d(d2 + 62)

2d+5πd/2σd+10

]
+

c2(4, d,mean)

(4!)2[
3d(3d3 + 56d2 + 516d+ 2890)

2d+6πd/2σd+12

]
+

c(4, d,mean)

(4!)

[
6d(d2 + 7d− 3)

2d+4πd/2σd+8

]
(3.123)

With R(K) = 2−dπ−d/2, µ2(K) = 1 and using Equation (3.90); the bandwidth parameter using
GCA based ExROT (hi(ExROT)) can be given as under:

hExROT = [CN ]−
1
d+4 (3.124)

where, C =
(d+ 2)

22σd+4

[
1 +

c2(3, d,mean)

(3!)2

15(d2 + 62)

23(d+ 2)σ6
+

c2(4, d,mean)

(4!)2

3(3d3 + 56d2 + 516d+ 2890)

24(d+ 2)σ8
+

c(4, d,mean)

4!

6(d2 + 7d− 3)

22(d+ 2)σ4

]
(3.125)

3.17 Performance Analysis of ExROT in Multivariate

There has been performed two experiments to understand the performance of ExROT derived in
multivariate KDE. For both the experiments, 12 normal mixture densities are selected for per-
formance test, as used by (135) and by (43). The normal mixture equations make it possible to
calculate the IMSE error between the expected probability at a point and that estimated using the
estimated kernel bandwidth parameter. The densities are reported in the following Table 3.5. The
first experiment analyzes the performance against varying type of density with fixing the number
of samples to 50000. The second experiment analyzes the performance against varying number of
samples for all the various densities. There are six different classes of bandwidth selection rules.

1. The class Z1 = {h2
1I : h1 > 0}. There is only one bandwidth value estimated form the data.

2. The class Z2 = diag(h2
1, h

2
2) : h1, h2 > 0}. For 2-d signals, there are two different band-

width values estimated along each dimension.

3. The class

Z2 =

{[
h1 h12

h21 h2

]
: h1, h2 > 0

}
.There are three different bandwidth parameter values estimated.

4. The class, with ’scaling’, C2 = h2D : h > 0; where, D is a scaling matrix.

5. The class, with ’sphering’, C3 = h2C : h > 0; where, C is a covariance matrix.
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6. The ’hybrid’ class

Y =

{[
h1 ρ12h1h2

ρ12h1h2 h2

]
: h1, h2 > 0

}
.

For both the experiments, there were 7 types of bandwidth estimators implemented. The Silver-
man’s ROT (136) is used with four different classes: Z1,Z2, C2, C3. The ExROT, derived in this
chapter, is used with three different classes: Z1, C2, C3.

Table 3.5: Bivariate Normal Mixture Densities for the Performance Test of Bandwidth Selection
Rules in multivariate Kernel Density Estimations

Density w1N(µ11, µ12, σ2
11, σ

2
12, ρ1) + . . .+ wkN(µk1, µk2, σ

2
k1, σ

2
k2, ρk)

(1) Uncorrelated Normal N
(
0, 0, 1

4
, 1, 0

)
(2) Correlated normal N

(
0, 0, 1, 1, 7

10

)
(3) Skewed 1

5
N (0, 0, 1, 1, 0) + 1

5
N
(

1
2
, 1
2
,
(
2
3

)2
,
(
2
3

)2
, 0
)

+ 3
5
N
(

13
12
, 13
12
,
(
5
9

)2
,
(
5
9

)2
, 0
)

(4) Kurtotic 2
3
N
(
0, 0, 1, 4, 1

2

)
+ 1

3
N
(

0, 0,
(
2
3

)2
,
(
1
3

)2
,− 1

2

)
(5) BimodalI 1

2
N
(
−1, 0,

(
2
3

)2
,
(
2
3

)2
, 0
)

+ 1
2
N
(

1, 0,
(
2
3

)2
,
(
2
3

)2
, 0
)

(6) BimodalII 1
2
N
(
− 3

2
, 0,
(
1
4

)2
, 1, 0

)
+ 1

2
N
(

3
2
, 0,
(
1
4

)2
, 1, 0

)
(7) BimodalIII 1

2
N
(
−1, 1,

(
2
3

)2
,
(
2
3

)2
, 3
5

)
+ 1

2
N
(

1,−1,
(
2
3

)2
,
(
2
3

)2
, 3
5

)
(8) BimodalIV 1

2
N
(

1,−1,
(
2
3

)2
,
(
2
3

)2
, 7
10

)
+ 1

2
N
(
−1, 1,

(
2
3

)2
,
(
2
3

)2
, 0
)

(9) TrimodalI 9
20
N
(
− 6

5
, 6
5
,
(
3
5

)2
,
(
3
5

)2
, 3
10

)
+ 9

20
N
(

6
5
,− 6

5
,
(
3
5

)2
,
(
3
5

)2
,− 3

5

)
+ 1

10
N
(

0, 0,
(
1
4

)2
,
(
1
4

)2
, 1
5

)
(10) TrimodalII 1

3
N
(
− 6

5
, 0,
(
3
5

)2
,
(
3
5

)2
, 7
10

)
+ 1

3
N
(

6
5
, 0,
(
3
5

)2
,
(
3
5
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(
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√
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(
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2

)

Results of the first experiment are tabularized in Table 3.6. The table entries show mean of
the IMSE error in 100 trials. The results show that for all the type of densities, ExROT out-performs
ROT in it’s respective class. The bold face values indicate best entry in the corresponding row. The
ExROT with class Z1 implementation, out-performance other bandwidth estimators for densities 5
and 10 those are equi-variant. The 2-d density 5 is uncorrelated, but 10 is correlated. The ExROT
with class C2 implementation out-performance other classes, when the test densities are having
unequal variances and uncorrelated; such as, for density types 1, 3, and 6. But, the same estimators
also out-performs 4, 7 and 8. For the remaining density types 2, 9, 11 and 12; the ExROT with
class C3 implementation out-performs other classes.

Results of the second experiment are tabularized in Table 3.7 to Table 3.12. The entries in
Table 3.7 to Table 3.9 show the bandwidth parameter estimated. The entries in Table 3.10 to Table
3.12 show the IMSE values due to the estimated bandwidth parameter. The IMSE error in Table
3.10 to Table 3.12 show that for a specific class type, ExROT out-performs ROT in all cases, for
any pdf and any number of samples. The bold face values indicate best entry in the row. Also,
there has been shown in bold faced italics two values, one from ROT and another from ExROT.

102



3. ExROT for Bandwidth Selection 3.18. ExROT for Density Derivative Estimator

Table 3.6: Performance comparison of the bandwidth selection methods for Kernel Density Esti-
mation (KDE) against varying 2-d distributions using 50000 samples. The results show the mean
IMSE (Integrated Mean square Error) of the 100 trials. The 2-d densities used are: 1. Uncorrealted
Normal 2. Correlated Normal 3. Skewed 4. Kurtotic 5. Bimodal I 6. Bimodal II 7. Bimodal III 8.
Bimodal IV 9. Trimodal I 10. Trimodal II 11. Trimodal III 12. Quadrimodal

PDFi rot(Z1) exrot(Z1) rot(C2) exrot(C2) rot(Z2) rot(C3) exrot(C3)

1 0.1307 0.0286 0.1282 0.0255 0.1282 0.1282 0.0255
2 0.1854 0.0305 0.1852 0.0305 0.1852 0.1078 0.0217
3 0.1392 0.0371 0.1896 0.0287 0.1896 0.1838 0.0289
4 0.3774 0.1428 0.3218 0.1103 0.3218 0.3226 0.1191
5 0.1519 0.0261 0.1424 0.0280 0.1424 0.1424 0.0280
6 0.6822 0.3279 0.6509 0.2752 0.6509 0.6509 0.2752
7 0.3829 0.0877 0.3256 0.0625 0.3256 0.3622 0.0849
8 0.3656 0.0883 0.3127 0.0634 0.3127 0.3394 0.0864
9 0.4593 0.1815 0.3993 0.1307 0.3993 0.3280 0.1241

10 0.2621 0.0479 0.2680 0.0570 0.2680 0.2644 0.0555
11 0.2511 0.0519 0.2271 0.0433 0.2271 0.2095 0.0373
12 0.2550 0.0638 0.2206 0.0462 0.2206 0.2167 0.0446

That from ROT denotes the best performance for that density from ROT; mostly using maximum
number of 50000 samples. Corresponding to that performance of ROT at 50000 samples; there
is one entry from ExROT that indicates maximum number of samples required to achieve atleast
slightly better than that performance. The performance of ExROT, equivalent to the performance
of ROT at 50000, is achieved for type 1 and type 4 densities using 500 samples; for type 3 density
using 1000 samples; for type 9 density using 2000 samples and for all other remaining 8 density
types just 200 samples are sufficient. To decide the best of the used estimators, mean and median
of all the experiments are taken and reported in the last two rows of Table 3.12. With respect to
both mean and median of the IMSE performance criteria, the ExROT with C2 is the best.

3.18 ExROT for Bandwidth Selection in Kernel Density Deriva-
tive Estimator

In general, the rth derivative of multivariate density f(x) using a vth order kernel is estimated as
under:

f̂ (r)(x) =
1

N

N∑
i=1

K(r)
v,H (x− xi) (3.126)
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Usually a product kernel is used with whitening in all directions and H = hId×d as defined under:

K(r)
v,H(x− xi) =

d∏
j=1

1

h
K(rj)
v

(
xji − xj

h

)
(3.127)

where, r = (r1, r2, . . . , rd)
T and the (rj)

th derivative corresponds to the fact that

f (r)(x) =
∂rf(x)

∂r1x1∂r2x2 . . . ∂rdxd

The AMISE for density derivative is derived as in (56); but in vector notations similar to that for
density estimation in Section 3.15. as under:

E{f̂ (r)(x)} =

∫
Rd
K(z)

(
f (r)(x) + k(1 + r, d)′(Hz⊗ I⊗rd )

+
1

2
k(2 + r, d)′(Hz⊗ I⊗rd )⊗2 +O(tr(H⊗2))

)
dz (3.128)

⇒ Bias(f̂ (r)(x)) = E{f̂ (r)(x)} − f (r)(x)

=
1

v!
k(v + r, d)′

(
H⊗vmKr(v, d)⊗ I⊗2r

d

)
+O(H⊗2) (3.129)

Var(f̂(x)) =
1

Ndet(H)
f (r)(x)

∫
Rd

(
K(r)(z)

)2
dz +O

(
det H

N

)
(∵ assuming large N , small h) (3.130)

Now, assuming H ∈ S we get simplified AMISE criteria and the taking derivative with respect to
h, we get the bandwidth parameter as under:

AMISE
{
f̂ (r)(x)

}
=
µv(Kv)
(v!)2

∫
h2v
(
k(r + v, d)′

(
I⊗vd δv ⊗ I⊗2r

d

))2
dx +

1

Nhd+2r
R(K)

(3.131)

hAMISE =

(
(v!)2

2v

(d+ 2r)R(K)

µ2
v(K)R(∇(v)f (r)(x))N

) 1
d+2v+2r

(3.132)

or hAMISE = [CN ]−
1

d+2v+2r where, C =
µ2
v(K)R(∇(v)f (r)(x)

(d+ 2r)R(K)
(3.133)

With this, the ExROT for gradient density can be derived and needs R(k(r + v, d)) definition.
With Gaussian kernel, the first order derivative of 1-dimensional density; i.e., v = 2, r = 1 and
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d = 1; the required parameter R(k(r + v, d)) can be derived as under.

R(f (3)(x)) =

∫ ∞
∞

1

2πσ
exp

(
− (z)2) [− 1

σ3
H3(z) +

k3

3!σ6
H6(z)− k4

4!σ7
H7(z)

]2

dz

=
1

2
√
πσ

[
1

σ6

15

8
+

1

σ12

(
k3

3!

)2
10395

64
+

1

σ14

(
k4

4!

)2
135135

27
+

1

σ9

(
k4

4!

)
945

32

]
⇒ hGC = σ(CN)−

1
7 (3.134)

where, C =
1.875

σ6
+ 4.5117

k2
3

σ12
+ 1.8329

k2
4

σ14
+ 2.4609

k4

σ6
(3.135)

Similarly, let for example, with Gaussian kernel (i.e. v = 2) and i.i.d. components; the
bandwidth parameter hGC for first of derivative (i.e. r = 1) of a d-dimensional density f(x) be
derived. The required roughness R(∇2f 1(x)) is obtained as under:

R(∇2f (1)(x)) =

∫
Rd

[
d∑
i=1

∂2f (1)(x)

∂x2
i

]2

(3.136)

≈
∫
Rd

[
d∑
i=1

∂2

∂x2
i

[
G(1)(x)− (c(3, d)⊗ Id)

′

3!
G(4)(x) +

(c(4, d)⊗ Id)
′

4!
G(5)(x)

]]2

dx

(3.137)

=

∫
Rd

[ d∑
i=1

∂2

∂x2
i

G(1)(x)

]2

+

[
d∑
i=1

∂2

∂x2
i

(c(3, d)⊗ Id)
′G(4)(x)

3!

]2

+

[
d∑
i=1

∂2

∂x2
i

(c(4, d)⊗ Id)
′G(5)(x)

4!

]2

−2

[
d∑
i=1

∂2

∂x2
i

G(1)(x)

][
d∑
j=1

∂2

∂x2
j

(c(3, d)⊗ Id)
′G(4)(x)

3!

]

−2

[
d∑
i=1

∂2

∂x2
i

(c(3, d)⊗ Id)
′G(4)(x)

3!

][
d∑
j=1

∂2

∂x2
j

(c(4, d)⊗ Id)
′G(5)(x)

4!

]

+2

[
d∑
i=1

∂2

∂x2
i

G(1)(x)

][
d∑
j=1

∂2

∂x2
j

(c(4, d)⊗ Id)
′G(5)(x)

4!

])
dx (3.138)

= Q1 +Q2 +Q3 −Q4 −Q5 +Q6 (3.139)

where, Qi, i = 1 : 6 are the symbols for corresponding terms.
The simplification of these terms is obtained knowing G(x) =

∏d
i=1G(xi) and assuming

all third order and fourth order cross-moments to be zero. Also, there have been used the symbol
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ci(3, d) as the third order cumulant (i.e. skewness) of xi, c(3, d,mean) = 1
d

∑d
i=1 ci(3, d) as the

mean of the skewness and c(4, d,mean) = 1
d

∑d
i=1 ci(4, d) as the mean of the kurtosis.

Q1 =

∫
Rd

[
d∑
i=1

∂2

∂x2
i

G(1)(x)

]2

dx =

∫
Rd

[
d∑
i=1

d∑
j=1

∂2

∂x2
i

∂

∂xj
G(x)

]2

dx (3.140)

=

∫
Rd


[

d∑
i=1

∂3

∂x3
i

G(x)

]2

+

[
d∑
i=1

∂2

∂x2
i

d∑
j=1,j 6=i

∂

∂xj
G(x)

]2

+2

[
d∑
i=1

d∑
j=1

∂3

∂x3
i

G(x)

(
∂2

∂x2
j

d∑
k=1,k 6=j

∂

∂xk
G(x)

)]}
dx (3.141)

=

∫
Rd


d∑
i=1

[H3(xi)G(x)]2 +

[
d∑
j=1

d∑
k=1,k 6=j

H2(xj)H1(xk)G(x)

]2

+2

[
d∑
i=1

H3(xi)G(x)

(
d∑
j=1

d∑
k=1,k 6=j

H2(xj)H1(xk)G(x)

)]}
dx (3.142)

=
6!!d

2d+3πd/2σd+6
+

4!!2!!d(d− 1) + 2!!2!!2!!d(d− 1)(d− 2) + 2 ∗ 4!!2!!d(d− 1)

2d+3πd/2σd+6
(3.143)

=
d(d2 + 6d+ 8)

2d+3πd/2σd+6
(3.144)
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Q2 =

∫
Rd

[
d∑
i=1

∂2

∂x2
i

(c(3, d)⊗ Id)
′G(4)(x)

3!

]2

dx (3.145)

=

∫
Rd

[
d∑
i=1

∂2

∂x2
i

d∑
j=1

∂

∂xj

(c(3, d))′G(3)(x)

3!

]2

dx (3.146)

=

∫
Rd


d∑
i=1

[
ci(3, d)

3!
H6(xi)G(x)

]2

+

[
d∑
i=1

d∑
j=1,j 6=i

cj(3, d)(x)

3!
H3(xi)H3(xj)G(x)

]2

+

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ck(3, d)(x)

3!
H2(xi)H1(xj)H3(xk)G(x)

]2

+

[
d∑
i=1

d∑
j=1,j 6=i

cj(3, d)(x)

3!
H5(xi)H1(xj)G(x)

]2

+2

[
d∑
i=1

d∑
j=1,j 6=i

ci(3, d)cj(3, d)

3!3!
H6(xi)G(x) (H3(xi)H3(xj)G(x))

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ci(3, d)ck(3, d)

3!3!
H6(xi)G(x)H2(xi)H1(xj)H3(xk)G(x)

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

ci(3, d)cj(3, d)

3!3!
H6(xi)G(x) (H5(xi)H1(xj)G(x))

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

cj(3, d)ck(3, d)

3!3!
H3(xi)H3(xj)G(x)H2(xi)H1(xj)H3(xk)G(x)

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

cj(3, d)ck(3, d)

3!3!
H3(xi)H3(xj)G(x)H5(xi)H1(xj)G(x)

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

cj(3, d)ck(3, d)

3!3!
H5(xi)H1(xj)G(x)H2(xi)H1(xj)H3(xk)G(x)

]}
dx

(3.147)

=
c2(3, d,mean)

(3!)2

[
12!!d+ 6!!6!!d(d− 1)

2d+6πd/2σd+12
+

6!!6!!d(d− 1)

2d+6πd/2σd+12
+

4!!2!!6!!d(d− 1)(d− 2)

2d+6πd/2σd+12

+
10!!2!!d(d− 1)

2d+6πd/2σd+12
+

2 ∗ 8!!4!!d(d− 1)

2d+6πd/2σd+12

]
(∵ assuming ci(3, d) = c(3, d,mean)) (3.148)

=
c2(3, d,mean)

(3!)2

[
5d(9d2 + 374d+ 1528)

2d+6πd/2σd+12

]
(3.149)
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Q3 =

∫
Rd

[
d∑
i=1

∂2

∂x2
i

(c(4, d)⊗ Id)
′G(5)(x)

4

]2

dx (3.150)

=

∫
Rd

[
d∑
i=1

∂2

∂x2
i

d∑
j=1

∂

∂xj

(c(4, d))′G(4)(x)

4!

]2

dx (3.151)

=

∫
Rd


[

d∑
i=1

ci(4, d)

4!
H7(xi)G(x)

]2

+

[
d∑
i=1

d∑
j=1,j 6=i

cj(4, d)(x)

4!
H3(xi)H4(xj)G(x)

]2

+

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ck(4, d)(x)

4!
H2(xi)H1(xj)H4(xk)G(x)

]2

+

[
d∑
i=1

d∑
j=1,j 6=i

cj(4, d)(x)

4!
H6(xi)H1(xj)G(x)

]2

+2

[
d∑
i=1

d∑
j=1,j 6=i

ci(4, d)cj(4, d)

4!4!
H7(xi)G(x) (H3(xi)H4(xj)G(x))

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ci(4, d)ck(4, d)

4!4!
H7(xi)G(x)H2(xi)H1(xj)H4(xk)G(x)

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

ci(4, d)cj(4, d)

4!4!
H7(xi)G(x) (H6(xi)H1(xj)G(x))

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

cj(4, d)ck(4, d)

4!4!
H3(xi)H4(xj)G(x)H2(xi)H1(xj)H4(xk)G(x)

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

ci(4, d)cj(4, d)

4!4!
H3(xi)H4(xj)G(x) (H6(xi)H1(xj)G(x))

]

+2

[
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

cj(4, d)ck(4, d)

4!4!
H6(xi)H1(xj)G(x)H2(xi)H1(xj)H4(xk)G(x)

]}
dx

(3.152)

=
c2(4, d,mean)

(4!)2

[
14!!d+ (6!!8!!d(d− 1) + 6!!4!!4!!d(d− 1)(d− 2))

2d+7πd/2σd+14

+
(4!!2!!8!!d(d− 1)(d− 2) + 2!!2!!4!!2!!4!!d(d− 1)(d− 2)(d− 3)(d− 4))

2d+7πd/2σd+14

+
(12!!2!!d(d− 1) + 6!!2!!6!!d(d− 1)(d− 2)) + 2 ∗ 10!!4!!d(d− 1)

2d+7πd/2σd+14

+
2 ∗ 8!!2!!4!!d(d− 1)(d− 2)

2d+7πd/2σd+14

]
(∵ assuming ci(4, d) = c(4, d,mean)) (3.153)

=
c2(4, d,mean)

(4!)2

[
9d(d4 − 10d3 + 180d2 + 1475d+ 13369)

2d+7πd/2σd+14

]
(3.154)
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Q4 =

∫
Rd

2

[
d∑
i=1

d∑
i=1

∂2

∂x2
i

∂

∂xj
G(x)

][
d∑
j=1

∂2

∂x2
j

d∑
k=1

∂

∂xk

c(3, d)′G(3)(x)

3!

]
dx (3.155)

=

∫
Rd

{
2

[
d∑
i=1

H3(xi)G(x) +
d∑
i=1

d∑
j=1,j 6=i

H2(xi)H1(xj)G(x)

]
[

d∑
i=1

ci(3, d)

3!
H6(xi)G(x) +

d∑
i=1

d∑
j=1,j 6=i

ck(3, d)

3!
H2(xi)H4(xj)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

ck(3, d)

3!
H5(xi)H1(xj)G(x) +

d∑
i=1

d∑
j=1,j 6=i

ck(3, d)

3!
H3(xi)H3(xj)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ck(3, d)

3!
H2(xi)H1(xj)H3(xk)G(x)

]}
dx (3.156)

= 0 (3.157)

Q5 =

∫
Rd

2

[
d∑
i=1

d∑
j=1

∂2

∂x2
i

∂

∂xj

c(3, d)′G(3)(x)

3!

][
d∑
i=1

d∑
j=1

∂2

∂x2
j

∂

∂xj

c(4, d)′G(4)(x)

4!

]
dx (3.158)

=

∫
Rd

{
2

[
d∑
i=1

ci(3, d)

3!
H6(xi)G(x) +

d∑
i=1

d∑
j=1,j 6=i

ck(3, d)

3!
H2(xi)H4(xj)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ck(3, d)

3!
H2(xi)H1(xj)H3(xk)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

ck(3, d)

3!
H5(xi)H1(xj)G(x) +

d∑
i=1

d∑
j=1,j 6=i

ck(3, d)

3!
H3(xi)H3(xj)G(x)

]
[

d∑
i=1

ci(4, d)

4!
H7(xi)G(x) +

d∑
i=1

d∑
j=1,j 6=i

ck(4, d)

4!
H2(xi)H5(xj)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

ck(4, d)

4!
H6(xi)H1(xj)G(x) +

d∑
i=1

d∑
j=1,j 6=i

ck(4, d)

4!
H3(xi)H4(xj)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ck(4, d)

4!
H2(xi)H1(xj)H4(xk)G(x)

]}
dx (3.159)

= 0 (3.160)
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Q6 =

∫
Rd

2

[
d∑
i=1

d∑
i=1

∂2

∂x2
i

∂

∂xj
G(x)

][
d∑
j=1

∂2

∂x2
j

d∑
k=1

∂

∂xk

c(4, d)′G(4)(x)

4!

]
dx (3.161)

=

∫
Rd

{
2

[
d∑
i=1

H3(xi)G(x) +
d∑
i=1

d∑
j=1,j 6=i

H2(xi)H1(xj)G(x)

]
[

d∑
i=1

ci(4, d)

4!
H7(xi)G(x) +

d∑
i=1

d∑
j=1,j 6=i

cj(4, d)

4!
H2(xi)H5(xj)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

cj(4, d)

4!
H6(xi)H1(xj)G(x) +

d∑
i=1

d∑
j=1,j 6=i

cj(4, d)

4!
H3(xi)H3(xj)G(x)

+
d∑
i=1

d∑
j=1,j 6=i

d∑
k=1,k 6=i,j

ck(4, d)

4!
H2(xi)H1(xj)H4(xk)G(x)

]}
dx (3.162)

=
c(4, d,mean)

4!

2 ∗ 10!!d+ 4!!6!!d(d− 1) + 4!!2!!4!!d(d− 1)(d− 2) + 8!!2!!d(d− 1)

2d+5πd/2σd+10

(3.163)

=
c(4, d,mean)

4!

3d(3d2 + 41d+ 586)

2d+5πd/2σd+10
(3.164)

Combining above simplifications, the formula for R(∇2f (1)(x)) can be derived as under:

R(f (3)(x)) =
d(d+ 4)(d+ 2)

2d+3πd/2σd+6
+

c2(3, d,mean)

(3!)2

[
5d(9d2 + 374d+ 1528)

2d+6πd/2σd+12

]
+

c2(4, d,mean)

(4!)2

[
9d(d4 − 10d3 + 180d2 + 1475d+ 13369)

2d+7πd/2σd+14

]
+

c(4, d,mean)

(4!)

[
3d(3d2 + 41d+ 586)

2d+5πd/2σd+10

]
(3.165)

With R(K) = 2−dπ−d/2, µ2(K) = 1 and using Equation (3.133); the bandwidth parameter using
GCA based ExROT (hi(ExROT)) can be given as under:

hExROT = [CN ]−
1
d+6 where, C =

µ2
2(K)R(∇(2)f (1)(x))

(d+ 2)R(K)
(3.166)

C =
d(d+ 4)

23σd+6

[
1 +

c2(3, d,mean)

(3!)2

5(9d2 + 374d+ 1528)

23σ6(d+ 4)(d+ 2)

+
c2(4, d,mean)

(4!)2

9(d4 − 10d3 + 180d2 + 1475d+ 13369)

24σ8(d+ 4)(d+ 2)

+
c(4, d,mean)

(4!)

3(3d2 + 41d+ 586)

22σ4(d+ 4)(d+ 2)

]
(3.167)
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3.19 Conclusion and Future directions

The chapter addresses the issue of bandwidth selection in KDE for both - univariate and multivari-
ate. There has been proposed Gram-Charlier A Series based Extended Rule-of-Thumb (ExROT)
on the assumption that the density being estimated is near Gaussian. The performance analysis of
ExROT is done using standard test set for univariate density estimation. The results show that in
all nongaussian unimodal density estimation cases - skewed or kurtotic or with outlier - ExROT
has performed better than ROT. This is achieved at computation comparable to ROT and too small
compare to the ε-exact solve-the-equation plug-in rule. The ExROT has also outperformed ROT
in some of the skewed multimodal density estimation - skewed bimodal, claw, Asymmetric claw.
The Gram-Charlier A Series based ExROT for bandwidth selection is also obtained for multivariate
KDE and multivariate density derivative estimations.

The chapter serves as a particular demonstration to a more generalized class of bandwidth
selection rules based on PDF approximations through infinite series. The PDF approximation
through infinite series expansion is a well established area and there exist many such approxima-
tions based on various reference PDFs. As the first results are encouraging, many such rules can
be developed.
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Table 3.7: Performance comparison of the bandwidth selection methods for Kernel Density Esti-
mation (KDE) using varying number of samples. The results show mean bandwidth of 100 trials.
The 2-d distributions are: 1. Uncorrealted Normal 2. Correlated Normal 3. Skewed 4. Kurtotic 5.
Bimodal I 6. Bimodal II 7. Bimodal III 8. Bimodal IV 9. Trimodal I 10. Trimodal II 11. Trimodal
III 12. Quadrimodal
PDFi nsam hrot(Z1) hexrot(Z1) hrot(C2) hexrot(C2) hrot(Z2) hrot(C3) hexrot(C3)

100 0.8854 0.2179 1.4736 0.4571 0.7405 1.4310 1.4736 0.4569
200 0.8230 0.2196 1.3128 0.4091 0.6540 1.3143 1.3128 0.4091
500 0.7088 0.2061 1.1269 0.3540 0.5619 1.1314 1.1269 0.3540

1000 0.6276 0.1882 1.0040 0.3157 0.5013 1.0041 1.0040 0.3157
1 2000 0.5591 0.1717 0.8944 0.2815 0.4463 0.8948 0.8944 0.2815

5000 0.4814 0.1499 0.7678 0.2418 0.3838 0.7693 0.7678 0.2418
10000 0.4276 0.1338 0.6840 0.2154 0.3417 0.6843 0.6840 0.2154
20000 0.3806 0.1194 0.6094 0.1919 0.3048 0.6090 0.6094 0.1919
50000 0.3267 0.1027 0.5231 0.1647 0.2615 0.5229 0.5231 0.1647
100 1.4807 0.4571 1.4736 0.4572 1.4723 1.4729 1.4736 0.4585
200 1.3284 0.4134 1.3128 0.4091 1.3143 1.3234 1.3128 0.4098
500 1.1209 0.3507 1.1269 0.3527 1.1264 1.1205 1.1269 0.3532

1000 0.9989 0.3143 1.0040 0.3159 1.0030 0.9994 1.0040 0.3159
2 2000 0.8962 0.2820 0.8944 0.2814 0.8952 0.8952 0.8944 0.2814

5000 0.7675 0.2417 0.7678 0.2418 0.7670 0.7681 0.7678 0.2417
10000 0.6840 0.2153 0.6840 0.2153 0.6841 0.6838 0.6840 0.2154
20000 0.6095 0.1920 0.6094 0.1919 0.6095 0.6094 0.6094 0.1919
50000 0.5238 0.1650 0.5231 0.1647 0.5234 0.5234 0.5231 0.1647
100 0.9625 0.1940 1.4736 0.4147 1.1813 1.1931 1.4736 0.4173
200 0.8715 0.1748 1.3128 0.3671 1.0757 1.0605 1.3128 0.3684
500 0.7458 0.1470 1.1269 0.3147 0.9121 0.9202 1.1269 0.3160

1000 0.6678 0.1316 1.0040 0.2802 0.8145 0.8225 1.0040 0.2814
3 2000 0.5946 0.1167 0.8944 0.2495 0.7287 0.7295 0.8944 0.2504

5000 0.5114 0.1003 0.7678 0.2140 0.6270 0.6261 0.7678 0.2148
10000 0.4561 0.0896 0.6840 0.1907 0.5584 0.5587 0.6840 0.1915
20000 0.4051 0.0793 0.6094 0.1699 0.4970 0.4967 0.6094 0.1706
50000 0.3481 0.0682 0.5231 0.1459 0.4267 0.4267 0.5231 0.1464
100 2.6376 0.8273 1.4736 0.4312 1.3349 2.4390 1.4736 0.4372
200 2.2746 0.7130 1.3128 0.3842 1.1840 2.1328 1.3128 0.3889
500 2.0053 0.6291 1.1269 0.3297 1.0206 1.8632 1.1269 0.3333

1000 1.7563 0.5509 1.0040 0.2947 0.9070 1.6437 1.0040 0.2982
4 2000 1.5715 0.4930 0.8944 0.2620 0.8082 1.4687 0.8944 0.2653

5000 1.3502 0.4236 0.7678 0.2250 0.6924 1.2624 0.7678 0.2278
10000 1.2030 0.3774 0.6840 0.2005 0.6174 1.1245 0.6840 0.2030
20000 1.0731 0.3366 0.6094 0.1787 0.5499 1.0027 0.6094 0.1809
50000 0.9207 0.2889 0.5231 0.1533 0.4722 0.8604 0.5231 0.1552
100 1.3906 0.4221 1.4736 0.4558 1.7676 0.9798 1.4736 0.4558
200 1.2365 0.3787 1.3128 0.4083 1.5734 0.8749 1.3128 0.4082
500 1.0702 0.3303 1.1269 0.3515 1.3577 0.7532 1.1269 0.3515

1000 0.9491 0.2936 1.0040 0.3137 1.2060 0.6714 1.0040 0.3137
5 2000 0.8445 0.2611 0.8944 0.2794 1.0744 0.5966 0.8944 0.2794

5000 0.7257 0.2247 0.7678 0.2400 0.9231 0.5119 0.7678 0.2400
10000 0.6459 0.2000 0.6840 0.2139 0.8219 0.4560 0.6840 0.2139
20000 0.5753 0.1782 0.6094 0.1906 0.7323 0.4060 0.6094 0.1906
50000 0.4942 0.1531 0.5231 0.1636 0.6289 0.3486 0.5231 0.1636
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Table 3.8: Performance comparison of the bandwidth selection methods for Kernel Density Esti-
mation (KDE) using varying number of samples. The results show mean bandwidth of 100 trials.
The 2-d distributions are: 1. Uncorrealted Normal 2. Correlated Normal 3. Skewed 4. Kurtotic 5.
Bimodal I 6. Bimodal II 7. Bimodal III 8. Bimodal IV 9. Trimodal I 10. Trimodal II 11. Trimodal
III 12. Quadrimodal
PDFi nsam hrot(Z1) hexrot(Z1) hrot(C2) hexrot(C2) hrot(Z2) hrot(C3) hexrot(C3)

100 2.4476 0.7734 1.4736 0.4376 2.2501 1.4627 1.4736 0.4377
200 2.1851 0.6904 1.3128 0.3906 2.0006 1.3155 1.3128 0.3907
500 1.8710 0.5911 1.1269 0.3356 1.7190 1.1228 1.1269 0.3356

1000 1.6686 0.5272 1.0040 0.2993 1.5265 1.0098 1.0040 0.2993
6 2000 1.4813 0.4680 0.8944 0.2667 1.3601 0.8943 0.8944 0.2667

5000 1.2708 0.4015 0.7678 0.2290 1.1673 0.7673 0.7678 0.2290
10000 1.1336 0.3582 0.6840 0.2040 1.0402 0.6845 0.6840 0.2040
20000 1.0095 0.3190 0.6094 0.1818 0.9267 0.6094 0.6094 0.1818
50000 0.8663 0.2737 0.5231 0.1560 0.7955 0.5230 0.5231 0.1560
100 2.1401 0.6777 1.4736 0.4559 1.7799 1.7657 1.4736 0.4626
200 1.9179 0.6075 1.3128 0.4069 1.5883 1.5829 1.3128 0.4142
500 1.6350 0.5180 1.1269 0.3496 1.3540 1.3603 1.1269 0.3565

1000 1.4534 0.4605 1.0040 0.3117 1.2086 1.2070 1.0040 0.3180
7 2000 1.2930 0.4097 0.8944 0.2777 1.0739 1.0768 0.8944 0.2834

5000 1.1101 0.3517 0.7678 0.2384 0.9233 0.9230 0.7678 0.2434
10000 0.9882 0.3131 0.6840 0.2125 0.8226 0.8217 0.6840 0.2168
20000 0.8798 0.2788 0.6094 0.1893 0.7323 0.7321 0.6094 0.1932
50000 0.7556 0.2394 0.5231 0.1625 0.6289 0.6284 0.5231 0.1658
100 2.1418 0.6783 1.4736 0.4563 1.7749 1.7730 1.4736 0.4594
200 1.8791 0.5954 1.3128 0.4065 1.5660 1.5729 1.3128 0.4121
500 1.6260 0.5152 1.1269 0.3498 1.3548 1.3517 1.1269 0.3548

1000 1.4519 0.4600 1.0040 0.3117 1.2069 1.2075 1.0040 0.3164
8 2000 1.2913 0.4092 0.8944 0.2777 1.0732 1.0760 0.8944 0.2821

5000 1.1084 0.3512 0.7678 0.2384 0.9233 0.9216 0.7678 0.2421
10000 0.9885 0.3132 0.6840 0.2124 0.8221 0.8224 0.6840 0.2158
20000 0.8801 0.2789 0.6094 0.1893 0.7324 0.7322 0.6094 0.1922
50000 0.7558 0.2395 0.5231 0.1625 0.6287 0.6287 0.5231 0.1650
100 2.4181 0.7652 1.4736 0.4520 1.8801 1.8917 1.4736 0.4476
200 2.1370 0.6764 1.3128 0.4028 1.6790 1.6693 1.3128 0.3991
500 1.8323 0.5799 1.1269 0.3462 1.4388 1.4346 1.1269 0.3438

1000 1.6291 0.5156 1.0040 0.3087 1.2790 1.2786 1.0040 0.3061
9 2000 1.4575 0.4613 0.8944 0.2750 1.1401 1.1433 0.8944 0.2731

5000 1.2482 0.3951 0.7678 0.2361 0.9783 0.9795 0.7678 0.2344
10000 1.1130 0.3523 0.6840 0.2103 0.8725 0.8725 0.6840 0.2088
20000 0.9918 0.3139 0.6094 0.1874 0.7772 0.7775 0.6094 0.1861
50000 0.8507 0.2692 0.5231 0.1609 0.6671 0.6670 0.5231 0.1597
100 1.2232 0.3566 1.4736 0.4575 1.6797 0.8804 1.4736 0.4563
200 1.1137 0.3331 1.3128 0.4101 1.5139 0.7922 1.3128 0.4090
500 0.9457 0.2850 1.1269 0.3536 1.2948 0.6734 1.1269 0.3525

1000 0.8489 0.2575 1.0040 0.3152 1.1581 0.6023 1.0040 0.3143
10 2000 0.7529 0.2282 0.8944 0.2808 1.0293 0.5359 0.8944 0.2800

5000 0.6440 0.1953 0.7678 0.2412 0.8814 0.4603 0.7678 0.2405
10000 0.5747 0.1745 0.6840 0.2149 0.7860 0.4104 0.6840 0.2143
20000 0.5119 0.1554 0.6094 0.1915 0.7002 0.3655 0.6094 0.1909
50000 0.4393 0.1334 0.5231 0.1644 0.6008 0.3139 0.5231 0.1639
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Table 3.9: Performance comparison of the bandwidth selection methods for Kernel Density Esti-
mation (KDE) using varying number of samples. The results show mean bandwidth of 100 trials.
The 2-d distributions are: 1. Uncorrealted Normal 2. Correlated Normal 3. Skewed 4. Kurtotic 5.
Bimodal I 6. Bimodal II 7. Bimodal III 8. Bimodal IV 9. Trimodal I 10. Trimodal II 11. Trimodal
III 12. Quadrimodal
PDFi nsam hrot(Z1) hexrot(Z1) hrot(C2) hexrot(C2) hrot(Z2) hrot(C3) hexrot(C3)

100 1.8372 0.5796 1.4736 0.4561 1.7098 1.5747 1.4736 0.4504
200 1.6442 0.5194 1.3128 0.4077 1.5242 1.4100 1.3128 0.4029
500 1.4036 0.4437 1.1269 0.3506 1.3069 1.2057 1.1269 0.3469

1000 1.2480 0.3945 1.0040 0.3125 1.1630 1.0736 1.0040 0.3084
11 2000 1.1071 0.3500 0.8944 0.2785 1.0331 0.9555 0.8944 0.2751

5000 0.9526 0.3012 0.7678 0.2392 0.8879 0.8212 0.7678 0.2362
10000 0.8482 0.2682 0.6840 0.2130 0.7917 0.7304 0.6840 0.2104
20000 0.7565 0.2392 0.6094 0.1898 0.7051 0.6518 0.6094 0.1875
50000 0.6488 0.2051 0.5231 0.1629 0.6052 0.5590 0.5231 0.1609
100 2.1622 0.6847 1.4736 0.4551 1.7824 1.7836 1.4736 0.4573
200 1.8991 0.6016 1.3128 0.4067 1.5790 1.5769 1.3128 0.4089
500 1.6313 0.5168 1.1269 0.3498 1.3513 1.3596 1.1269 0.3516

1000 1.4536 0.4606 1.0040 0.3116 1.2084 1.2074 1.0040 0.3134
12 2000 1.2953 0.4104 0.8944 0.2777 1.0763 1.0763 0.8944 0.2793

5000 1.1101 0.3517 0.7678 0.2385 0.9234 0.9229 0.7678 0.2398
10000 0.9892 0.3134 0.6840 0.2125 0.8222 0.8230 0.6840 0.2136
20000 0.8803 0.2789 0.6094 0.1893 0.7327 0.7320 0.6094 0.1903
50000 0.7556 0.2394 0.5231 0.1625 0.6286 0.6287 0.5231 0.1634
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Table 3.10: Performance comparison of the bandwidth selection methods for Kernel Density Es-
timation (KDE) using varying number of samples. The results show the mean IMSE (Integrated
Mean Square Error) error of 100 trials. The 2-d distributions are: 1. Uncorrealted Normal 2. Cor-
related Normal 3. Skewed 4. Kurtotic 5. Bimodal I 6. Bimodal II 7. Bimodal III 8. Bimodal IV 9.
Trimodal I 10. Trimodal II 11. Trimodal III 12. Quadrimodal

PDFi nsam rot(Z1) exrot(Z1) rot(C2) exrot(C2) rot(Z2) rot(C3) exrot(C3)

100 0.4394 0.2811 0.4693 0.1891 0.4693 0.4685 0.1909
200 0.4170 0.1962 0.4310 0.1535 0.4310 0.4307 0.1543
500 0.3642 0.1362 0.3729 0.1160 0.3729 0.3728 0.1162
1000 0.3198 0.1041 0.3270 0.0901 0.3270 0.3270 0.0903

1 2000 0.2798 0.0816 0.2840 0.0731 0.2840 0.2840 0.0731
5000 0.2324 0.0616 0.2332 0.0558 0.2332 0.2332 0.0558

10000 0.1966 0.0485 0.1961 0.0435 0.1961 0.1961 0.0435
20000 0.1660 0.0392 0.1646 0.0351 0.1646 0.1646 0.0351
50000 0.1307 0.0286 0.1282 0.0255 0.1282 0.1282 0.0255

100 0.4703 0.1927 0.4724 0.1883 0.4724 0.3951 0.1581
200 0.4460 0.1612 0.4456 0.1589 0.4456 0.3610 0.1314
500 0.4004 0.1197 0.4014 0.1197 0.4014 0.3100 0.0937
1000 0.3679 0.1017 0.3689 0.1017 0.3689 0.2742 0.0776

2 2000 0.3360 0.0814 0.3358 0.0812 0.3358 0.2375 0.0614
5000 0.2903 0.0624 0.2904 0.0623 0.2904 0.1943 0.0456

10000 0.2565 0.0496 0.2566 0.0496 0.2566 0.1636 0.0363
20000 0.2248 0.0410 0.2247 0.0409 0.2247 0.1378 0.0293
50000 0.1854 0.0305 0.1852 0.0305 0.1852 0.1078 0.0217

100 0.4611 0.2949 0.5332 0.1966 0.5332 0.5230 0.1984
200 0.4281 0.2252 0.4999 0.1558 0.4999 0.4893 0.1565
500 0.3733 0.1753 0.4475 0.1232 0.4475 0.4370 0.1240
1000 0.3346 0.1345 0.4079 0.1009 0.4079 0.3978 0.1009

3 2000 0.2931 0.1086 0.3653 0.0806 0.3653 0.3552 0.0811
5000 0.2434 0.0809 0.3114 0.0603 0.3114 0.3022 0.0604

10000 0.2087 0.0630 0.2721 0.0481 0.2721 0.2639 0.0483
20000 0.1752 0.0509 0.2337 0.0378 0.2337 0.2265 0.0379
50000 0.1392 0.0371 0.1896 0.0287 0.1896 0.1838 0.0289

100 0.5491 0.3582 0.4963 0.3038 0.4963 0.4860 0.3105
200 0.5320 0.3267 0.4758 0.2775 0.4758 0.4657 0.2850
500 0.5161 0.3008 0.4532 0.2494 0.4532 0.4432 0.2582
1000 0.4962 0.2718 0.4321 0.2248 0.4321 0.4232 0.2342

4 2000 0.4781 0.2481 0.4125 0.2024 0.4125 0.4048 0.2124
5000 0.4515 0.2161 0.3864 0.1739 0.3864 0.3809 0.1840

10000 0.4301 0.1934 0.3669 0.1542 0.3669 0.3633 0.1641
20000 0.4079 0.1706 0.3475 0.1341 0.3475 0.3457 0.1436
50000 0.3774 0.1428 0.3218 0.1103 0.3218 0.3226 0.1191

100 0.4100 0.1678 0.3791 0.1699 0.3791 0.3786 0.1709
200 0.3817 0.1369 0.3485 0.1402 0.3485 0.3483 0.1407
500 0.3455 0.1081 0.3094 0.1111 0.3094 0.3093 0.1112
1000 0.3138 0.0874 0.2791 0.0908 0.2791 0.2791 0.0909

5 2000 0.2825 0.0704 0.2502 0.0741 0.2502 0.2502 0.0742
5000 0.2430 0.0526 0.2163 0.0559 0.2163 0.2163 0.0559

10000 0.2134 0.0421 0.1922 0.0450 0.1922 0.1922 0.0450
20000 0.1854 0.0338 0.1696 0.0365 0.1696 0.1697 0.0365
50000 0.1519 0.0261 0.1424 0.0280 0.1424 0.1424 0.0280
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Table 3.11: Performance comparison of the bandwidth selection methods for Kernel Density Es-
timation (KDE) using varying number of samples. The results show the mean IMSE (Integrated
Mean Square Error) error of 100 trials. The 2-d distributions are: 1. Uncorrealted Normal 2. Cor-
related Normal 3. Skewed 4. Kurtotic 5. Bimodal I 6. Bimodal II 7. Bimodal III 8. Bimodal IV 9.
Trimodal I 10. Trimodal II 11. Trimodal III 12. Quadrimodal

PDFi nsam rot(Z1) exrot(Z1) rot(C2) exrot(C2) rot(Z2) rot(C3) exrot(C3)

100 0.8052 0.6559 0.7819 0.6123 0.7819 0.7818 0.6123
200 0.7978 0.6271 0.7746 0.5804 0.7746 0.7745 0.5804
500 0.7867 0.5827 0.7637 0.5341 0.7637 0.7637 0.5341
1000 0.7779 0.5499 0.7552 0.4986 0.7552 0.7551 0.4986

6 2000 0.7673 0.5123 0.7441 0.4604 0.7441 0.7441 0.4604
5000 0.7504 0.4618 0.7255 0.4082 0.7255 0.7255 0.4082

10000 0.7343 0.4234 0.7073 0.3689 0.7073 0.7073 0.3689
20000 0.7143 0.3824 0.6851 0.3280 0.6851 0.6851 0.3280
50000 0.6822 0.3279 0.6509 0.2752 0.6509 0.6509 0.2752

100 0.5749 0.3537 0.5535 0.2942 0.5535 0.5376 0.3398
200 0.5629 0.3197 0.5397 0.2596 0.5397 0.5247 0.3050
500 0.5433 0.2665 0.5172 0.2097 0.5172 0.5058 0.2557
1000 0.5274 0.2315 0.4978 0.1789 0.4978 0.4920 0.2224

7 2000 0.5095 0.1991 0.4751 0.1512 0.4751 0.4768 0.1914
5000 0.4817 0.1610 0.4393 0.1198 0.4393 0.4525 0.1551

10000 0.4561 0.1352 0.4078 0.0990 0.4078 0.4297 0.1303
20000 0.4265 0.1124 0.3732 0.0813 0.3732 0.4028 0.1088
50000 0.3829 0.0877 0.3256 0.0625 0.3256 0.3622 0.0849

100 0.5582 0.3390 0.5351 0.2850 0.5351 0.5096 0.3224
200 0.5422 0.2994 0.5180 0.2465 0.5180 0.4926 0.2870
500 0.5233 0.2593 0.4957 0.2080 0.4957 0.4738 0.2481
1000 0.5068 0.2259 0.4758 0.1769 0.4758 0.4589 0.2165

8 2000 0.4877 0.1947 0.4528 0.1497 0.4528 0.4428 0.1877
5000 0.4592 0.1585 0.4180 0.1192 0.4180 0.4193 0.1535

10000 0.4345 0.1342 0.3886 0.0992 0.3886 0.3986 0.1305
20000 0.4063 0.1125 0.3566 0.0820 0.3566 0.3748 0.1097
50000 0.3656 0.0883 0.3127 0.0634 0.3127 0.3394 0.0864

100 0.6318 0.4363 0.6043 0.3702 0.6043 0.5261 0.3199
200 0.6189 0.4032 0.5884 0.3357 0.5884 0.5013 0.2907
500 0.6006 0.3641 0.5654 0.2966 0.5654 0.4734 0.2609
1000 0.5846 0.3345 0.5455 0.2688 0.5455 0.4519 0.2380

9 2000 0.5678 0.3059 0.5241 0.2412 0.5241 0.4303 0.2166
5000 0.5411 0.2673 0.4916 0.2060 0.4916 0.4012 0.1881

10000 0.5190 0.2404 0.4654 0.1818 0.4654 0.3795 0.1672
20000 0.4945 0.2142 0.4376 0.1587 0.4376 0.3570 0.1482
50000 0.4593 0.1815 0.3993 0.1307 0.3993 0.3280 0.1241

100 0.5286 0.2452 0.5095 0.2627 0.5095 0.5085 0.2597
200 0.5078 0.2152 0.4847 0.2322 0.4847 0.4840 0.2287
500 0.4680 0.1716 0.4452 0.1894 0.4452 0.4449 0.1860
1000 0.4413 0.1472 0.4193 0.1642 0.4193 0.4189 0.1606

10 2000 0.4099 0.1206 0.3920 0.1371 0.3920 0.3913 0.1339
5000 0.3680 0.0937 0.3575 0.1083 0.3575 0.3561 0.1057

10000 0.3368 0.0768 0.3316 0.0896 0.3316 0.3295 0.0874
20000 0.3047 0.0632 0.3048 0.0744 0.3048 0.3019 0.0725
50000 0.2621 0.0479 0.2680 0.0570 0.2680 0.2644 0.0555

116



3. ExROT for Bandwidth Selection 3.19. Conclusion and Future directions

Table 3.12: Performance comparison of the bandwidth selection methods for Kernel Density Es-
timation (KDE) using varying number of samples. The results show the mean IMSE (Integrated
Mean Square Error) error of 100 trials. The 2-d distributions are: 1. Uncorrealted Normal 2. Cor-
related Normal 3. Skewed 4. Kurtotic 5. Bimodal I 6. Bimodal II 7. Bimodal III 8. Bimodal IV 9.
Trimodal I 10. Trimodal II 11. Trimodal III 12. Quadrimodal

PDFi nsam rot(Z1) exrot(Z1) rot(C2) exrot(C2) rot(Z2) rot(C3) exrot(C3)

100 0.4509 0.2337 0.4319 0.2118 0.4319 0.4203 0.1963
200 0.4329 0.2091 0.4128 0.1869 0.4128 0.4003 0.1710
500 0.4057 0.1733 0.3852 0.1529 0.3852 0.3712 0.1390
1000 0.3844 0.1477 0.3635 0.1289 0.3635 0.3478 0.1155

11 2000 0.3623 0.1227 0.3412 0.1055 0.3412 0.3247 0.0933
5000 0.3336 0.0989 0.3112 0.0843 0.3112 0.2935 0.0741

10000 0.3098 0.0818 0.2866 0.0692 0.2866 0.2687 0.0604
20000 0.2855 0.0680 0.2616 0.0571 0.2616 0.2436 0.0497
50000 0.2511 0.0519 0.2271 0.0433 0.2271 0.2095 0.0373

100 0.4209 0.2425 0.3927 0.2081 0.3927 0.3803 0.2067
200 0.4015 0.2162 0.3734 0.1822 0.3734 0.3602 0.1806
500 0.3787 0.1873 0.3504 0.1533 0.3504 0.3381 0.1513
1000 0.3609 0.1637 0.3326 0.1305 0.3326 0.3213 0.1283

12 2000 0.3433 0.1424 0.3148 0.1112 0.3148 0.3053 0.1089
5000 0.3194 0.1156 0.2898 0.0881 0.2898 0.2828 0.0857

10000 0.3012 0.0982 0.2702 0.0736 0.2702 0.2646 0.0713
20000 0.2818 0.0814 0.2492 0.0599 0.2492 0.2447 0.0579
50000 0.2550 0.0638 0.2206 0.0462 0.2206 0.2167 0.0446

mean 0.4207 0.1905 0.4023 0.1628 0.4023 0.3844 0.1644
median 0.4100 0.1611 0.3875 0.1324 0.3875 0.3738 0.1365
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Chapter 4

Near Independence and BSS

This chapter aims BSS of near-independent sources for linear, instantaneous mixtures. To achieve
that, it does theoretical and empirical study on the optimization landscape due to various contrasts
against varying source distributions. It derives a Search for Rotation based ICA (SRICA) algorithm
using search based global optimization technique. Using SRICA, it verifies the previously derived
contrasts and compares separability of various contrasts. Based on the empirical results, it provides
discussion on the use of ICA for BSS in linear, instantaneous mixtures.

4.1 Introduction

The ICA model assumes the sources being separated, as mutually the m.i.p. with respect to a given
contrast function. The m.i.p. sources assure global optimal in the optimization landscape due to
used contrast. As already discussed and defined in Chapter 1.5; the sources producing either shift
of global optima or addition of spurious local optima or both with respect to the used contrast
qualify to be near-independent for that contrast. It is to be noted that the near-independence is not
a characteristic of sources alone, but it is the characteristic of sources exhibited in the presence
of a specific contrast. The BSS of such near-independent sources with given contrast function is
defined as ’near-independent BSS’ (nIBSS). The nIBSS study should focus on the optimization
landscape violations due to either source distribution and contrast duos or other reasons and their
consequences on separation quality. The nIBSS study do not denounce use of approximations
and approximate solutions. But, more precise solution is an everlasting hunger. Overall, there are
following motivations to study the nIBSS.

1. At lower dimensions, a slight shift in global optima may allow atleast an approximate so-
lution. With increasing dimension, cumulative slight shifts in pairwise optima, may cause
the actual solution much far than the global optimal. So, nIBSS study is needed when large
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scale.

2. There are two already known phenomena that affect the optimization landscape of ICA con-
trasts. There exists spurious local minima for entropy based contrast (17, 90, 91, 92, 132,
134). There happens to be a shift of global for kurtosis based contrasts with lack of number
of samples (83, 108, 109). There is needed a study to find other phenomena or circumstances
that bring optimization landscape violations. Also, this motivates to search for a contrast that
do not have local minima, atleast for multimodal distributions.

3. There is atleast one more reason that produces a shift of global optima. The existing ICA
algorithms use contrasts derived through varying independence definitions, their interpre-
tations and approximations. The various interpretations of independence definition include
either non-Gaussianity based or entropy based or pairwise independence based or nonlinear
decorrelation based interpretations. The approximations are derived in terms of higher or-
der cumulants or moments using truncated version of either a Gram-Charlier expansion or
an Edgeworth expansion of PDF or entropy. The various contrasts may agree for the exact
independence condition, but it is highly unlikely that they will match for the ‘degree of in-
dependence’. So, m.i.p. with respect to one of the contrsts do not assure m.i.p. with respect
to the others. In practice, before an actual BSS application through ICA, it is rarely assured
either the sources are m.i.p. or there are not other possible signals separated from the same
mixture that are more independent than the actual sources with respect to the used contrast.
The scenario is - the ICA mathematics, many times, uses properties available through ideal
independence; the ICA definition allows the components to be m.i.p. and the real world ICA
applications deal with the sources that are neither independent nor m.i.p.. For example, as
proved in (33), pairwise independence among random variables is equivalent to indepen-
dence of the random vector. But, isn’t it worth to question whether pairwise m.i.p. random
variables imply m.i.p. random vector? Overall, whether solution within acceptable range
or not, there must be atleast a study on the separation quality and possible remedy due to
various approximations together.

4. Independent Component Analysis (ICA) is an established tool for both Component Analysis
(CA) (16, 42) and Blind source Separation (BSS) (25, 35). As a tool for CA, ICA claims to
express the real nature of data by finding components that are m.i.p. with respect to the used
contrast. If the contrast changes, the ICs get changed for the same data. For CA applications,
the solution is still useful with some change in the amount of redundancy removal. Compare
to that, the goal for BSS is to get back the actual sources irrespective of the used contrast. So,
with change in estimated ICs, the estimated sources get affected. Historically, ICA has been
introduced as a way for BSS in linear instantaneous mixing. So, conventionally, in linear
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instantaneous mixing system ICA is considered equivalent to BSS though both CA and BSS
have different goals. But, whether this equivalence should be considered even in large scale
also? To answer this, it would be interesting to study on how the estimated sources are
affected due to change in the contrast in lower dimensions as well in higher dimensions.

The require study needs comparision of separated sources through various contrasts against
varying distributions, against varying number of samples and against varying number of sources.
The sources separated depend both upon the used contrast and the used optimization technique.
So, to have comparision of separated sources due to the contrast only, there is needed an ICA
algorithm that permits use of various contrasts with a same optimization technique.

There are existing many algebraic (21, 22, 26, 28, 33) and neural net techniques (11, 18, 63,
64, 72, 77) for linear ICA. The algebraic techniques are based on the uncorrelatedness of higher
order statistics, similar to the algebraic techniques for PCA based on the uncorrelatedness of sec-
ond order statistics. With approximated contrasts, approximate solutions are expected. In case of
a neural net techniques, the nonlinearity used for learning has to be a function of PDF of the com-
ponents to be estimated. In the absence of this knowledge, family of densities e.g. superGaussian
or subGaussian; is used as an approximation to select the nonlinearity. This requires to have some
prior knowledge of densities to be estimated and so violates the blind assumption. Also, gradient
based optimization methods have poor global convergence. Overall, an ICA algorithm - allowing
use of varying independence measures, assuring global solution and being truly blind - is required
and can not be obtained through gradient based optimization technique. This leads to have an ICA
algorithm based on global search techniques.

With above motivations, the chapter contents are divided into three parts. The next Section
4.2 briefs conventional BSS contrasts. The Section 4.3 defines the concept of near-independence
and does empirical study of the optimization landscape due to various ICA contrasts.The next Sec-
tion 4.4 studies the theoretical extrema analysis for Shannon entropy and kurtosis based contrasts.
Then, the Section ?? concludes the extrema analysis. The Section 4.7 derives the Search for Rota-
tion based ICA (SRICA) algorithm based on the global search based optimization techniques as a
solution to the needed ICA algorithm. The contrasts derived in previous chapters are verified using
the SRICA in Section 4.8. The Section ?? provides comparision of various contrasts based on the
separated sources and finally the Section ?? provides discussion based on the empirical results.
Finally, the Section 4.9 concludes the chapter.
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4.2 The Conventional Optimization Criteria or Contrasts for
ICA

Let y = (y1, y2, . . . , yn)T be a random vector. Then, the variable yi, i = 1 : n are independent
if and only if py(y1, y2, . . . , yn) =

∏n
i=1 pyi(yi) (36, 84), where p(y) is the joint distribution and∏n

i=1 p(yi) is the product of marginal distributions. Accordingly, the contrasts based on an asym-
metric distance measure Kullback-Leibler Divergence (KLD) between two distributions, p(y) and∏n

i=1 p(yi), and the mutual information (25, 33) are most widely used.

Φkld(y) := −KLD

(
p(y),

n∏
i=1

p(yi)

)
= −

∫
y

p(y) log
p(y)∏n
i=1 p(yi)

dy (4.1)

where, dy = dy1dy2...dyn

The equation 4.1 also interprets KLD, as a measure of mutual information I(y) among the random
variables yis.

Φmikld(y) := −I(y1, y2, ..., yn) = −KLD

(
p(y),

n∏
i=1

p(yi)

)
(4.2)

= −

(
n∑
i=1

H(yi)−H(y)

)
(4.3)

= −

(
n∑
i=1

H(yi)−H(z)− log(|R|)

)
(∵ y = Rz) (4.4)

Φhyi(y) := −
n∑
i=1

H(yi) (4.5)

where, H(·) denotes Shannon’s Entropy (36). The Φkld(y) and Φmi(y) are zero when both the
distributions are same or the yis are mutually independent. The other independence measures used
for the experiments in the thesis are defined as under.

Φjskld(y) := − (KLD(y,M) +KLD(yi,M)) (4.6)

Φk4(y) :=
n∑
i=1

|kurt(yi)− 3| (4.7)

where, M = 1
2
(p(y) +

∏n
i=1 p(yi)); kurt(·) denotes kurtosis and | · | denotes the absolute value.
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4.3 Empirical Extrema Analysis of Conventional Contrasts

The goal, in this section, is to empirically verify the existence of spurious optima of various inde-
pendence measures for varying distributions. This type of results have been obtained for entropy
measure applied to multimodal distributions, in the articles (17, 90, 91, 92, 132, 134). The current
section, achieves this for 21 distributions (shown in fig. 4.1) and for three independence mea-
sures Φhyi, Φk4 and ΦradH ; where ΦradH is the contrast derived by (75) that is based on sum of
marginal entropies and spacing estimates of entropy. The first 18 types (a to r) of distributions are
suggested by (10) and two more skewed types of distributions were added to test the performance
of the ICA algorithms against skewed sources. The s type is a GGD with skewness µ3 = −0.25

(left skewed) and kurtosis k4 = 3.75 and the t type is a GGD with skewness µ3 = 0.75 (right
skewed) and kurtosis k4 = 0. Both the distributions are generated using Power Method with pa-
rameters b = 0.75031534111078, c = −0.02734119591845, d = 0.07699282409939 for s type and
b = 1.11251460048528, c = 0.17363001955694 and d = −.05033444870926 for t type. The u
type is a Rayleigh distribution with β = 1 and so the corresponding µ3 = 0.631 and k4 = 0.245.
All 21 distributions are shown in the Figure 4.1.

Assuming the sources sis to be zero-mean and univariant, y = Gs from the previous
equation The variance of yis is restricted to be 1, as equal to that of sis. So, g2

i1 + g2
i2 = 1. The

matrix G can be represented as

G =

[
cos θ sin θ

− sin θ cos θ

]
Accordingly, by varying θ for G(θ), all possible estimated sources can be generated.

There have been obtained plots of independence measures versus angle θ for all the distri-
butions. The optima for maximum independence should be obtained at θ = 0, as corresponding
to this point estimated sources yis are equal to the actual sources sis. The results were interesting
for the multi-modal densities and the skewed densities. Accordingly, figure 4.2 shows the plots of
independence measure versus θ for symmetric, multi-modal densities from f to i. Similarly, figure
4.3 shows the plots of independence measure versus θ for skewed multi-modal density j; skewed
uni-modal densities s, t and a Gaussian density u. In both the figures - the plots in the first column
are for Φhyi(y); the plots in the second column are for Φk4(y) and the plots in the third column are
for ΦradH(y). The following observations can be made.

• The density u (Gaussian) has both multiple minima and shift of the global. That is as ex-
pected. So, discussion here is for other densities.

• The densities - g, i, j, n and t - for which dissatisfactory performances were obtained, as in
table ??, show existence of spurious optima except density n. The Φhyi(y) measure shows
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Figure 4.1: Probability density functions of sources with their kurtosis: (a) Student with 3 degrees
of freedom; (b) double exponential; (c) uniform; (d) Student with 5 degrees of freedom; (e) expo-
nential; (f) mixture of two double exponentials; (g)-(h)-(i) symmetric mixtures of two Gaussians:
multimodal, transitional and unimodal; (j)-(k)-(l) nonsymmetric mixtures of two Gaussians, multi-
modal, transitional and unimodal; (m)-(n)-(o) symmetric mixtures of four Gaussians: multimodal,
transitional and unimodal; (p)-(q)-(r) nonsymmetric mixtures of four Gaussians: multimodal, tran-
sitional and unimodal; (s) left skewed Generalized Gaussian Distribution(GGD); (t) right skewed
GGD; (u) Gaussian distribution
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Figure 4.2: The plots of independence measures versus theta for some symmetric, multi-modal
distributions:- plots (1)-(4)-(7)-(10): Φhyi(y) for distributions f, g, h, i; plots (2)-(5)-(8)-(11):
Φk4(y) for distributions f, g, h, i; plots (3)-(6)-(9)-(12): ΦradH(y) for distributions f, g, h, i

spurious minima for densities f, g, i and j. The density i has also slight shift of the global
optima. The ΦradH(y) measure shows many local minima and requires smoothening, as dis-
cussed in the article (75). But, obvious spurious minima, which can not be avoided through
smoothening, are obtained for densities f, g, i and j. Out of them, the densities i show shift
in global also. The observations justify the values obtained for API and the independence
measure, in the previous tables.

• The Φk4(y) measure does not show existence of spurious maxima for any densities. Instead,
it shows shift of the global maxima for densities i and t.

• It should be noted that an added local optima makes the optimization landscape more diffi-
cult to optimize but the shifted global optima makes it almost impossible to find the actual
solution without any additional information.

• The observations need further mathematical analysis to find the reasons for the observations.
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Figure 4.3: The plots of independence measures versus theta for skewed distributions and Normal
distribution:- plots (1)-(4)-(7)-(10): Φhyi(y) for distributions j, s, t, u; plots (2)-(5)-(8)-(11): Φk4(y)
for distributions j, s, t, u; plots (3)-(6)-(9)-(12): ΦradH(y) for distributions j, s, t, u

4.4 Theoretical Extrema Analysis of Conventional BSS Con-
trasts against Varying Distributions

The extrema analysis of an entropy measure for symmetric and near Gaussian sources have been
done in the articles (17, 132, 134). Here, similar analysis of both entropy based and kurtosis
based independence measures have been done. The sources are assumed to be independent, near
Gaussian, symmetric or non-symmetric and identical or un-identical

The ICA problem, to estimate the orthogonal matrix R, can be expressed as,

arg min
R

Φ(R) s.t. RRT = 1 (4.8)

We are interested to verify whether a spurious optima of the cost function Φ(R) exists or not. At
the stationary points, including a spurious optima, the gradient must be zero. Taking gradient of
the cost function Φ(R) on the Stiefel manifold (∇m),

∇mΦ(R) = ∇Φ(R)−R∇Φ(R)TR (4.9)

125



4. Near Independence and BSS 4.4. Theoretical Extrema Analysis of Conventional Contrasts

where,∇Φ(R) is the gradient of the cost function on the Euclidean space.

∇mΦ(R) = 0⇒ ∇Φ(R)RT = R∇Φ(R)T (4.10)

4.4.1 Extrema Analysis of Entropy based Contrasts

We are interested in finding the independence measure for the possible estimated sources. Without
loss of generality, let, the two sources s = (s1, s2)T are zero-mean, uni-variant and the mixing
matrix A is identity. Then, the estimated sources yis can be represented, using y = RAs, as

y1 = r11s1 + r12s2

y2 = −r21s1 + r22s2

The pdf of any near Gaussian signals can be expressed using Gram-Charlier series with two cor-
rection terms to a Gaussian pdf. For example, pdf of yi is represented as under,

fyi(u) = g(u)

(
1 +

k3,yi

6
H3(u) +

k4,yi

24
H4(u)

)
i = 1, 2 (4.11)

where, g(u) is a zero-mean, uni-variant Gaussian pdf; H3(u) and H4(u) are, consecutively, the
third and fourth order Chebyshev-Hermite polynomials; k3,yi and k4,yi are the third and fourth
order cumulants for signal yi. The cumulants can be calculated as under.

µ3,yi = E{y3
i } = E{(ri1s1 + ri2s2)3}

= r3
i1µ3,s1 + r3

i2µ3,s2 (4.12)

(∵ zero mean, uncorrelated sources )

k3,yi = µ3,yi

µ4,yi = E{y4
i } = E{(ri1s1 + ri2s2)4}

= r4
i1µ3,s1 + 6r2

i1r
2
i2 + r4

i2µ3,s2 (4.13)

(∵ zero mean, univariant, uncorrelated sources)

k4,yi = µ4,yi − 3
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The learning rule in equation (4.10) can be rewritten for the Φhyi measure as,

∇h(r1)r2
T = ∇h(r2)r1

T

⇒ r21
∂h(r1)

∂r11

+ r22
∂h(r1)

∂r12

= r11
∂h(r2)

∂r21

+ r12
∂h(r2)

∂r22

(4.14)

The corresponding derivatives with h(yi) =
∫∞
−∞ f(yi) log f(yi)dyi can be expressed as,

∂h(ri)

∂rij
= −

∫ ∞
−∞

(1 + log fyi(u))
∂fyi
∂rij

du

∂fyi(u)

∂rij
= g(u)

[
1

2

(
r2
ijµ3,si

)
H3(u)

+
1

6

(
r3
ijµ4,si + 3rijri1ri2

)
H4(u)

]
(4.15)

Rewriting equation (4.14),∫ ∞
∞

(1 + log fy1(u))

[
r21

∂fy1(u)

∂r11

+ r22
∂fy1(u)

∂r12

]
du

=

∫ ∞
∞

(1 + log fy2(u))

[
r11

∂fy2(u)

∂r21

+ r12
∂fy2(u)

∂r22

]
du∫ ∞

−∞
g(u) (1 + log fy1(u))D1(u, r)du

=

∫ ∞
−∞

g(u) (1 + log fy2(u))D2(u, r)du (4.16)

where,

D1(u, r) =
1

g(u)

[
r21

∂fy1(u)

∂r11

+ r22
∂fy1(u)

∂r12

]
= c3,y1H3(u) + c4,y1H4(u) (4.17)

c3,y1 =
1

2

(
r2

11r21µ3,s1 + r2
12r22µ3,s2

)
(4.18)

c4,y1 =
1

6

(
r3

11r21µ4,s1 + r3
12r22µ4,s2

)
+

1

2

(
r11r

2
12r21 + r2

11r12r22

)
(4.19)
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Similarly,

D2(u, r) =
1

g(u)

[
r11

∂fy2(u)

∂r21

+ r12
∂fy2(u)

∂r22

]
= c3,y2H3(u) + c4,y2H4(u) (4.20)

c3,y2 =
1

2

(
r11r

2
21µ3,s1 + r12r

2
22µ3,s2

)
(4.21)

c4,y2 =
1

6

(
r11r

3
21µ4,s1 + r12r

3
22µ4,s2

)
+

1

2

(
r11r21r

2
22 + r12r

2
21r22

)
(4.22)

Using this for equation (4.16)∫ ∞
∞

(1 + log fy1(u)) (c3,y1H3(u) + c4,y1H4(u)) g(u)du

=

∫ ∞
∞

(1 + log fy2(u)) (c3,y2H3(u) + c4,y2H4(u)) g(u)du (4.23)

Now, expanding fyi as in equation (4.11) and using Taylor series expansion log(1+ε) = ε− ε2

2
+. . .

log fyi(u) =− 1

2
log 2π − u2

2
log e

+ log

(
1 +

k3,si

6
H3(u) +

k4,si

24
H4(u)

)
(4.24)

=− 1

2
log 2π − u2

2
+

(
k3,si

6
H3(u) +

k4,si

24
H4(u)

)
− 1

2

(
k3,si

6
H3(u) +

k4,si

24
H4(u)

)2

(4.25)
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Also, ∫ ∞
−∞

g(u)H3(u)du = 0∫ ∞
−∞

u2g(u)H3(u)du = 0∫ ∞
−∞

g(u)H4(u)du = 0∫ ∞
−∞

u2g(u)H3(u)du = 0∫ ∞
−∞

g(u)Hm(u)Hn(u)du = 0;m 6= n

= n!;m = n∫
g(u)Di(u)du = − (c3,yiH2(u) + c4,yiH3(u))

The left side of the equation (4.23) can be re-written using expansion for pdf in equation (4.25),∫ ∞
−∞

log (1 +Xi(u)) (c3,yiH3(u) + c4,yiH4(u)) g(u)du

=

∫ ∞
−∞

(
k3,si

6
c3,yiH3(u)2 +

k4,si

24
c4,yiH4(u)2

− 1

2

k2
3,si

36

k4,si

24
H3(u)2H4(u)− 1

2

(
k4,si

24

)3

H4(u)3

− 1

2
2
k2

3,si

36

k4,si

24
H3(u)2H4(u)

)
du

=
k3,si

6
c3,yi(6) +

k4,si

24
c4,yi(24)

− 1

2

(
k2

3,si

36

k4,si

24
(3)(216) +

(
k4,si

6

)3

(1728)

)
=k3,sic3,yi + k4,sic4,yi

− 1

16
k4,si

(
6k2

3,si
− k2

4,si

)
(4.26)

Accordingly, the equation (4.24) can be write as,

k3,s1c3,y1 + k4,s1c4,y1 −
1

16
k4,s1

(
6k2

3,s1
− k2

4,s1

)
= k3,s2c3,y2 + k4,s2c4,y2 −

1

16
k4,s2

(
6k2

3,s2
− k2

4,s2

)
(4.27)
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Case-I:- Near Gaussian, i.i.d. sources

The sources are i.i.d. implies µ3,s1 = µ3,s2 and µ4,s1 = µ4,s2 .
Case-I(a) Let the sources are symmetrical also. Accordingly, k3,s1 = k3,s2 = 0, k4,s1 = k4,s2 =

k4 6= 0 The equation (4.27) reduces to,

c4,y1 = c4,y2 (4.28)

⇒1

6

(
− cos3 θ sin θµ4,s1 + sin3 θ cos θµ4,s2

)
+

1

2

(
− cos θ sin3 θ + sin θ cos3 θ

)
− 1

6

(
− cos θ sin3 θµ4,s1 + sin θ cos3 θµ4,s2

)
− 1

2

(
− cos3 θ sin θ + sin3 θ cos θ

)
= 0

⇒− 1

6
sin θ cos θ cos 2θµ4,s1 −

1

6
sin θ cos θ cos 2θµ4,s2

+ sin θ cos θ cos 2θ = 0

⇒ sin θ cos θ cos 2θ(µ4 − 3) = 0 (∵ µ4,s1 = µ4,s2 = µ4) (4.29)

The ICA allows permutation and reflection of the solution. So, θ ∈ [0, Π
2
). The equation (4.29)

proves that θ = 0, π
2
, π

4
and µ4 = 3 are the stationary points. Among them, θ = 0, pi/2 are the

required minima and θ = pi/4 corresponds to the global maxima. There do not exist a spurious
local minima of an entropy measure for symmetric, near Gaussian and i.i.d. sources. This also
justifies that the when the kurtosis is near zero, almost for all θ the gradient is near zero. This brings
a possibility of a spurious local or global minima due to randomization. This was empirically
observed in the plot for density i, in figure 4.2.
Case-I(b) Let the sources are asymmetric, with zero kurtosis and i.i.d.. This case corresponds to
the skewed Normal distribution. Accordingly, k3,s1 = k3,s2 = k3 6= 0, k4,s1 = k4,s2 = 0 The
equation (4.27) reduces to,

c3,y1 = c3,y2 (4.30)

⇒1

2

(
− cos2 θ sin θµ3,s1 + sin2 θ cos θµ3,s2

)
− 1

2

(
cos θ sin2 θµ3,s1 + sin θ cos2 θµ3,s2

)
= 0

⇒2 sin θ cos θ cos θµ3 = 0 (∵ µ3,s1 = µ3,s2 = µ3) (4.31)

The equation 4.31 proves that θ = 0, θ = π
2

and µ3 = 0 are the stationary points. The conditions
µ3 = 0 and k4 = 0 implies Gaussianity. In that case, for all θ the gradient is zero. This justifies
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that the ICA solution can not be obtained for mixture of more than one Gaussians. But, in case
of µ3 6= 0, the gradient follows the shape of the sin θ cos θ cos θ. So, there do not exist a spurious
local minima of an entropy measure for asymmetric, zero-kurtosis and i.i.d. sources. The empirical
results for t type distributions justify this.
Case-I(c) Let the sources are asymmetric and i.i.d.. Accordingly, k3,s1 = k3,s2 = k3 6= 0, k4,s1 =

k4,s2 = k4 6= 0. The equation (4.27) reduces to,

k3,s1c3,y1 + k4,s1c4,y1 = k3,s2c3,y2 + k4,s2c4,y2 (4.32)

⇒k3(c3,y1 − c3,y2) + k4(c4,y1 − c4,y2) = 0

⇒Either (c3,y1 − c3,y2 = 0 and c4,y1 − c4,y2 = 0)

or
(
c3,y1 − c3,y2

c4,y1 − c4,y2

= −k4

k3

)
(4.33)

This proves that other than θ = 0, π
2
, there is only one other stationary point satisfying cos 2θ

cos θ
=

− µ3
µ4−3

= −k3
k4

. This corresponds to a shifted maxima. There is no spurious minima of entropy
measure for non-symmetric, near Gaussian i.i.d. sources.

Case-II:- Near Gaussian, un-identical but independent sources

The un-identical sources imply, µ3,s1 6= µ3,s2 and µ4,s1 6= µ4,s2 . Let µ3,s1 − µ3,s2 = a3; µ3,s1 +

µ3,s2 = b3; µ4,s1 − µ4,s2 = a4 and µ4,s1 − µ4,s2 = b4.
Case-II(a) Let the sources are symmetrical also. Accordingly, k3,s1 = k3,s2 = a3 = b3 = 0. The
equation (4.27) reduces to,

k4,s1c4,y1 +
1

16
k3

4,s1
= k4,s2c4,y2 +

1

16
k3

4,s2
(4.34)

⇒ (rc4,y1 − c4,y2) +
1

16

(
rk4,s1

2 − k2
4,s2

)
he = 0

∵ taking r =
k4,s1
k4,s2

⇒c4,y1 − c4,y2 = − 1

16
ab+ (1− r)c4,y1 − (1− r)

k2
4,s1

16
(4.35)

The actual sources, though assumed i.i.d., empirically will not measure identical cumulant mea-
sures. For them, r → 1⇒ a→ 0. Using this values,

c4,y1 − c4,y2 ≈ ε, where, ε→ 0 as r → 1. (4.36)

⇒ sin θ cos θ cos 2θ(−b4

6
+ 1) = ε (4.37)
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The solution implies that the stationary points are θ = 0+θ(ε), θ = pi/2+θ(ε) and k4,s1+k4,s2 = 6,
where θ(ε) is a very small angle, as a function of ε.
Case-II(b) Let the sources are asymmetric, with zero kurtosis and un-identical independent distri-
butions. Accordingly, k4,s1 = k4,s2 = 0 The equation (4.27) reduces to,

k3,s1c3,y1 = k3,s2c3,y2

⇒ a(c3,y1 − c3,y2) = 0

This same as the results for Case-I(b). That is, θ = 0, θ = π
2

and k3,s1 = k3,s2 are the stationary
points. So, there do not exist a spurious local minima of an entropy measure for asymmetric,
zero-kurtosis, un-identical independent sources.

4.4.2 Extrema Analysis of kurtosis measure for near Gaussian and indepen-
dent sources

Taking Φk4(ri) = kurtosis(yi), the equation (4.10) can be written as:

∇k4(r1)r2
T = ∇k4(r2)r1

T

⇒r21
∂k4(r1)

∂r11

+ r22
∂k4(r1)

∂r12

= r11
∂k4(r2)

∂r21

+ r12
∂k4(r2)

∂r22

Also,
∂k4(ri)

∂rij
= 4r3

ijµ4,sj + 12rijr
2
ik, k 6= j

⇒4r3
11r21µ4,s1 + 12r11r

2
12r21 + 4r3

12r22µ4,s2 + 12r11r
2
12r21

= 4r11r
3
21µ4,s1 + 12r11r21r

2
22 + 4r12r

3
22µ4,s2 + 12r12r

2
21r22 (4.38)

case-I:- Near Gaussian, i.i.d. sources

Assuming i.i.d. sources, µ4,s1 = µ4,s2 = µ4. Re-writing equation (4.38), we get:

⇒{4 cos θ3(− sin θ)− 4(− sin θ)3 cos θ}µ4,s1

+ {4 sin θ3 cos θ − 4 sin θ cos θ3}µ4,s2

+ 12 cos θ(− sin θ)(sin θ2

− cos θ2) + 12 sin θ cos θ(cos θ2 − sin θ2) = 0

⇒8 sin θ cos θ cos 2θ(µ4 − 3) = 0 (4.39)

This proves that θ = 0, pi
2
, pi

4
and µ4 = 3 are the stationary points of the kurtosis measure. So,

there do not exist spurious local maxima of kurtosis measure for near Gaussian, i.i.d. sources.
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case-II:- Near Gaussian, un-identical but independent sources

Assuming un-identical but independent sources, µ4,s1 6= µ4,s2 and |µ4,s1 − µ4,s2| = a. Let µ4,s1 >

µ4,s2 ⇒ µ4,s1 = µ4,s2 + a. Re-writing equation 4.38,

4 sin θ cos θ(− cos 2θ)(µ4,s2 + a) + 4 sin θ cos θ(− cos 2θ)µ4,s2

+ 24 sin θ cos θ cos 2θ = 0

4 sin θ cos θ cos 2θ(2(µ4,s2 − 3) + a) = 0 (4.40)

So, θ = 0, pi
2
, pi

4
and (µ4 − 3) = −a

2
⇒ µ4,s1 + µ4,s2 = 6 are the stationary points of the kurtosis

measure.
Now, let µ4,s1 < µ4,s2 ⇒ µ4,s1 = µ4,s2 − a

4 sin θ cos θ(− cos 2θ)(µ4,s2 − a) + 4 sin θ cos θ(− cos 2θ)µ4,s2

+ 24 sin θ cos θ cos 2θ = 0

4 sin θ cos θ cos 2θ(2(µ4,s2 − 3)− a) = 0 (4.41)

So, θ = 0, pi
2
, pi

4
and (µ4 − 3) = a

e
2 ⇒ µ4,s1 + µ4,s2 = 6 are the stationary points of the kurtosis

measure. Overall, there do not exists spurious local maxima of kurtosis measure for all - i.i.d or
un-identical but independent; uni-modal or multi-modal; near Gaussian sources.

4.5 Conclusions on the Extrema Analysis of the Conventional
Contrasts

The empirical observations in section 4.3 and the theoretical analysis in the current section 4.4
brings the following conclusions.

• The Φhyi(y) measure shows spurious local minima for densities f, g and j. The measure,
show spurious minima that is global for density i. The theoretical analysis in the articles
support the existence of spurious local minima for some of the multimodal densities but spu-
rious global minima is not justified. Similar empirical results are obtained for the ΦradH(y).
The same extrema analysis is valid for the ΦradH(y) measure after applying smoothening to
the separated sources.

• The Φk4(y) measure does not show existence of spurious maxima for any densities. Instead,
it shows shift of the global maxima for densities i and t.
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Figure 4.4: The plots of independence measures Φhyi(y) versus theta for Generalized Gaussian
Distributions with varying shape parameters

Figure 4.5: The plots of independence measures Φk4(y) versus theta for Generalized Gaussian
Distributions with varying shape parameters

• The previous analysis in Case I(a) for the entropy based independence measure and the anal-
ysis in Case I for the kurtosis based independence measure give a hint that for the densities
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with near zero kurtosis the gradient is also near zero. This may have caused spurious min-
ima, local or global, due to randomization and limited samples. To verify the correctness of
this logical possibility, a separate experiment was done. The ICA solutions were obtained
for the pairs of sources with GGD distributions for varying shape parameter. The results are
plotted for Φhyi(y) measure in figure 4.4 and the similar are plotted for Φk4(y) measure in
figure 4.5. It is found that either the existence of spurious minima (local or global) or the
shift of the global occurs, specifically for the GGD distributions with the shape parameter
β ∈ [1.7, 2.5] that is when they are well near Gaussian with k4 ∈ [−0.5, 0.5]. The theoretical
analysis in the current section is for unimodal sources only and can not applied as it is to the
multi-modal densities. But, possibly the behavior for the multi-modal density i is also due
to the same reason as k4 = −0.5 for this density. Separate analysis need be done for this.

• The behavior for density t is justified by Case I(b) for the entropy based independence
measure and the analysis in Case I for the kurtosis based independence measure.

4.6 Empirical Extrema Analysis of Derived BSS Contrasts

The experiment is designed to test the existence of spurious local minima in the optimization land-
scape of the derived contrast for BSS in Chpater 2 of two i.i.d. sources with varying distributions.
The contrast estimation was supported through both Silverman’s ROT and ExROT method. The
number of samples (N) were kept 300.
The contrasts tested include the derived LSFD (LSFD with ROT for bandwidth parameter se-
lection), LSFD (with ExROT for bandwidth parameter selection), LSFD2 (LSFD2 with ROT for
bandwidth parameter selection), LSFD2 (with ExROT for bandwidth parameter selection), LS-
GFD (LSGFD with ROT for bandwidth parameter selection), LSGFD (with ExROT for bandwidth
parameter selection), LSGFD2 (LSGFD2 with ROT for bandwidth parameter selection), LSGFD2
(with ExROT for bandwidth parameter selection) and existing least squares based independence
measures LSMI (with Cross-Validation (CV) for bandwidth parameter selection) (120), LSMI2
(with CV for bandwidth parameter selection) (106) for comparision. There are used same previous
21 types of distributions and used first 20 (type a to t) for this experiment. All 21 distributions are
shown in the Figure 4.1.

The results of the Experiment for local minima analysis are shown in terms of the plots of
negative of the contrast value versus the rotation angle theta. The minima of the plots corresponds
to the actual sources. Ideally, it should be at θ = 0 or π/2. The plots show the θ values in
radian multiplied by 100. The comparative study shows that the local minima plots of all the
derived estimators (fig. 4.6 to fig. 4.13) are far better than LSMI in fig. 4.14 and LSMI2 in fig.
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Figure 4.6: Plots of LSFD Contrast estimated with bandwidth parameter through ROT versus theta
value for the first 20 distributions a-s stacked rowwise

4.15 estimators those using the same type of least squares based estimation method. They are also
better to kernel based naive estimatorQMIED estimator (the plots ofQMIED are not shown here).
They are comparable to those of conventional contrasts. For high kurtotic density type (d), all the
derived contrasts give multiple local minima. The LSGFD2 estimator with ExROT as bandwidth
parameter selection in fig. 4.13 has the best performance for multimodal distributions compare
to all other contrasts, though it has local minima for distributions Type d (student with 5 degrees
of freedom as high kurtotic) and Type o (symmetric mixture of four Gaussians unimodal). One
more fact observable is, the local minima plots of gradient based contrasts (LSGFD and LSGFD2)
are having small gradient compare to the Φhyi contrast. The plots also gives the performance
comparison of ExROT and ROT on BSS contrasts. The ExROT has performed definitely better
than the ROT. But, the overall performance of the derived contrasts is not expected to get largely
improved by the ExROT.

The optimization landscape analysis of the derived and conventional contrasts is done.
Now, let us see how much separation quality they achieve when used as a BSS contrast; whether
the optimization algorithm can overcome the ideal landscape violations or not? For that, we need
a BSS or ICA algorithm that can have global optimization technique and can be used to compare
performances of various contrasts. The following section proposes such an ICA algorithm.
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Figure 4.7: Plots of LSFD Contrast estimated with bandwidth parameter through ExROT versus
theta value for the first 20 distributions a-s stacked rowwise

Figure 4.8: Plots of LSFD2 Contrast estimated with bandwidth parameter through ROT versus
theta value for the first 20 distributions a-s stacked rowwise
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Figure 4.9: Plots of LSFD2 Contrast estimated with bandwidth parameter through ExROT versus
theta value for the first 20 distributions a-s stacked rowwise

Figure 4.10: Plots of LSGFD Contrast estimated with bandwidth parameter through ROT versus
theta value for the first 20 distributions a-s stacked rowwise
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Figure 4.11: Plots of LSGFD Contrast estimated with bandwidth parameter through ExROT versus
theta value for the first 20 distributions a-s stacked rowwise

Figure 4.12: Plots of LSGFD2 Contrast estimated with bandwidth parameter through ROT versus
theta value for the first 20 distributions a-s stacked rowwise
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Figure 4.13: Plots of LSGFD2 Contrast estimated with bandwidth parameter through ExROT ver-
sus theta value for the first 20 distributions a-s stacked rowwise

Figure 4.14: Plots of LSMI Contrast estimated with bandwidth parameter through CV versus theta
value for the first 20 distributions a-s stacked rowwise
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Figure 4.15: Plots of LSMI2 Contrast estimated with bandwidth parameter through CV versus
theta value for the first 20 distributions a-s stacked rowwise

4.7 The SRICA Proposal

Here, the orthogonal approach for ICA, explained in Chapter 1.3.1 is used. The goal is to obtain
ICs (yis) from the correlated mixtures (xis) of them. The method can be summarized in two steps.

1. Find zero mean whiten components using PCA (Principle Component Analysis) through
EVD (Eigen Value Decomposition) or SVD (Singular Value Decomposition), as a compul-
sory step. Let a zero mean observed mixture data matrix x, be linearly transformed through a
whitening matrix V, to give a zero mean, univariant, whiten data matrix z. z = Vx = VAs

2. Search for the optimal n−dimensional angle of rotation, through a global search technique,
to transform the whiten components into independent components. The optimality can be
defined through either maximization of independence or minimization of dependency. Let
R be the rotation orthogonal matrix. Then,

y = Rz = RVAs = WAs (4.42)

where, W = RV is the estimated unmixing matrix.

As the algorithm is searching for a perfect angle of rotation, let it be called the Search for Rotation

based ICA (SRICA) algorithm. The current chapter uses GA as the global search method.
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4.7.1 How to rotate in a higher dimensional space?

A two dimensional rotation can be achieved through Given’s rotation. To convert a 3-dimensional
rotation matrix Q into an identity matrix I, we need three, 2-dimensional rotations.

RyzRxzRxyQ =

 1 0 0

0 1 0

0 0 1


⇒ R = RyzRxzRxy = Q′ or Q = R−1

xyR
−1
xz R

−1
yz = R′ An n × n rotation matrix will have

M = (n − 1) + (n − 2) + . . . + 1 = n(n − 1)/2 entries below the diagonal to zero. So, it can
be concluded that rotation in n dimension can be performed through n(n− 1)/2 two dimensional
rotations sequentially performed.

4.7.2 The Genetic algorithm

GA tries to imitate the evolution process, where natural selection is the guiding principle. Nature
selects those, which are fit to survive. The fitness is measured based on the optimization function
called the fitness criteria. GA represents the solution as a binary string or a float variable. GA,
randomly selects a set of possible solutions, called initial population, from the given solution space
(total population). Assigns fitness to all. Then assuming the current population as the parent,
generates a new child population using selection, crossover and mutation operators. The operators
are some definite rules, using random number generation and fitness. The child becomes parents
for the next generations. Thus, iteratively. it achieves the optimal solution. The GA, with elitist
model, keeps track of the best obtained so far. The stopping criteria can be based on number of
iterations or optimality.

The genetic operators defined are:

• Selection: Selects the parents, which should contribute to the next generation

• Crossover: Forms the pairs and decides whether and how to breed

• Mutation: Individual parents can be mutated, changed with very small probabilities

4.7.3 Summarizing the suggested solution

The above discussed solution for ICA has three components.

1. Data whitening technique

2. GA as an optimization technique

142



4. Near Independence and BSS 4.7. The SRICA Proposal

3. Fitness function for GA as an optimality criteria

Overall, the method differs from the existing methods, not just in using GA as an optimization
technique. Compare to most other ICA techniques, which search for W or wis in the gradient
directions and then separately following the orthogonalization steps; SRICA is searching for W,
among the rotational matrices only. Conventionally, most of the ICA techniques aim orthogonal-
ization of the wis separately and not just search for W from a rotational transformation matrices,
as in the suggested solution. Here, the GA simply, makes it possible to search for the optimal from
the infinite set of rotational transformation matrices. So, it is worth naming the technique as Search
for Rotation based ICA (SRICA) algorithm. By varying the optimality criteria or the global search
algorithm (other than GA) used, a different variant to the SRICA algorithm can be derived. GA has
been used for a post-nonlinear BSS (53, 104), but never before for a linear BSS or ICA problem.

4.7.4 SRICA characteristics and Algorithm Complexity

• For data whitening, the first component of SRICA, numerically stable versions are available.

• GA, the second component, is a technique, applicable to optimize an objective function
which is constrained or unconstrained or non differentiable or discontinuous or probabilistic
or complex. So, SRICA can be used with any such type of independence measure. The GA
requires neither about the fitness landscape nor about the solution any previous information.
So, SRICA could be completely blind. But, if available either a partial or full prior informa-
tion regarding the possible distribution of few or all sources or the mixing matrix, then that
could be easily incorporated in the fitness criteria. Accordingly, SRICA could be used for
ICA, BSS or semi-BSS problems.

• GA has a very good characteristic to converge to a global optima and thus SRICA finds if
not optimal, near optimal solution.

• All above advantages come at the cost of more computation.

• The SRICA can be thought having three variable parameters: 1) a global search based opti-
mization technique 2) ICA contrast as an optimization criteria and 3) estimation technique
of the optimization criteria. There can be derived variants of the SRICA by varying either of
these variable parameters. Overall, SRICA facilitates to tailor made or customize the algo-
rithm, as on the performance or application requirement by selecting specific optimization
technique, optimization criteria and the estimation method.

For an n-dimensional ICA problem, the GA has to search for optimality of d = n(n− 1)/2

variables. If these m variables are independently affecting the fitness function f i.e. if the fitness
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function can be represented as f(θ1, θ2, ..., θd) =
∑d

i=1 f(θi) then f(·) is called a decomposable
(separable) function. In case of a decomposable fitness function, the optimal value of parameters
can be found by just running the GA for each of the variable one by one, irrespective of their order.
So, the algorithm complexity for continuous or float type of m variable, elitist GA with decompos-
able fitness function, would have been just O(kd) or maximally O(kd ln d) (107), where assumed
number of function evaluation for a single variable is k and number of computations for a function
evaluation is 1. In case of a non-decomposable (nonseparable) fitness function optimization, GA
algorithm complexity may go up to kdd or k exp(d ln d) theoretically and more significantly, the
convergence is not assured (107). This is true for any other Evolutionary Algorithm (EA). In the
EA literature, optimization of nonseparable functions is an open unsolved problem that face the
problem of ‘curse of dimensionality’. In this chapter, GA is used as a representative of the EA
community. As proved in the Chapter 6, the simultaneous BSS or ICA contrasts are nonseparable
optimization functions. Also the chapters then report the efforts either to avoid misconvergence
problem or to reduce the algorithm complexity in case of large scale nonseparable function opti-
mization.

One possible way to avoid application of GA in large scale for BSS is derived by (33)
using pairwise independence principle. Here, to search for optimal d number of 2-d angle of
rotations, n − 1 number of sweeps are performed, whereas in each sweep the all 2-d rotations are
individually found. The multiple sweeps are expected to remove the shift of optimal due to mutual
dependencies. The search scheme is used exhaustive search and is identified as ’eqpart’ scheme
for GA.

4.8 Simulations

There have been designed three experiments with the aim to check the validity of the SRICA
algorithm. The first experiment is to verify performance of SRICA and derived contrast against
varying source distributions compare to the existing other contrasts and ICA algorithms. For that
SRICA is used with some of the conventional contrasts and some of the derived contrasts. For
all the simulations in this chapter, the existing 5 ICA algorithms for comparision are: FastICA
(deflation mode and tanh nonlinearity) by (64), EFICA by (72), NPICA by (18) and RADICAL
(without augmentation) by (75) with their standard parameters. The fifth algorithm for comparision
is done using Exhaustive search method of (75) on Φhyi contrast. For all the experiments with 2
sources following GA parameters were tuned to balance exploration and exploitation abilities.
The selection of the individuals was done through normalized geometric distribution based on
ranking through fitness, with the probability to select the best being 0.08. The float GA was
using - arithmetic crossover (linear combination of the parents) and heuristic crossover (linear
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extrapolation, with the child generated near the more fit parent) - both with equal probability and
total probability of crossover being .90. The mutation probability was kept to be 0.95 for the initial
10% of the total generations. Then, for the remaining 90% generations, it was reduced to 0.05.
The initial high mutation probability takes care about the exploration and then the lower mutation
probabilities allow for exploitation. In the experiments the population size was taken to be 10
and the maximum number of generations were kept to be 15. The termination criteria for all the
experiments was based on maximum generations.

The parameter for performance comparision is explained below. As mentioned, y is a
permuted and scaled to univariant version of s. If u is zero mean, univariant source matrix, then
u = D−1(s− s̄) where, D is a diagonal matrix, with inverse of the standard deviations of all si as
the diagonal. So, from equation 1.13

y = PWADu = Gu

where P is a permutation matrix and G = PWAD is the gain matrix. Ideally the so called
performance or gain matrix G should be an identity matrix. Based on this criteria, the Amari

Performance Index (API) measures the deviation from diagonalization, of the gain matrix.

API(G) =
n∑
i=1

(
n∑
j=1

|gij|
maxk |gik|

− 1

)
+

n∑
j=1

(
n∑
i=1

|gij|
maxk |gkj|

− 1

)
(4.43)

So, better the performance, the measure should be more nearer to zero. The following experiments
are done.

Experiment: To verify the performance of SRICA and derived contrasts against varying
distributions

There have been generated mixtures of two ‘i.i.d.’ sources, with varying distributions and sample
size (N) of 300. The results were obtained using 10 simulation trials, for 20 types of distributions.
The first 18 types (a to r) of distributions are suggested by (10) and three more skewed types of dis-
tributions were added to test the performance of the ICA algorithms against skewed sources. The
s type is a GGD with skewness s = −0.25 (left skewed) and kurtosis k = 3.75 and the t type is a
GGD with skewness s = 0.75 (right skewed) and kurtosis k = 0. Both the distributions are gener-
ated using Power Method with parameters b = 0.75031534111078, c = −0.02734119591845,
d = 0.07699282409939 for s type and b = 1.11251460048528, c = 0.17363001955694 and
d = −.05033444870926 for t type. The u type is a Gaussian distribution that is added for experi-
ment randomly selecting the density. All 21 distributions are shown in the Figure 4.16. To study
the performances of different independence measure on the source separation SRICA is used with
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Figure 4.16: Probability density functions of sources with their kurtosis: (a) Student with 3 degrees
of freedom; (b) double exponential; (c) uniform; (d) Student with 5 degrees of freedom; (e) expo-
nential; (f) mixture of two double exponentials; (g)-(h)-(i) symmetric mixtures of two Gaussians:
multimodal, transitional and unimodal; (j)-(k)-(l) nonsymmetric mixtures of two Gaussians, multi-
modal, transitional and unimodal; (m)-(n)-(o) symmetric mixtures of four Gaussians: multimodal,
transitional and unimodal; (p)-(q)-(r) nonsymmetric mixtures of four Gaussians: multimodal, tran-
sitional and unimodal; (s) left skewed Generalized Gaussian Distribution(GGD); (t) right skewed
GGD; (u) Gaussian distribution

the five conventional contrasts Φjskld, Φkld, Φhyi, Φk4 as defined in 4.2 and the fifth ΦradH , as per
entropy definition in (75). The SRICA is also used with newly derived ΦQMIED,ROT (96) using
Quadratic Mutual Information based on Euclidean distance (QMIED) with bandwidth parame-
ter through ROT, ΦQMIED,ExROT as QMIED with bandwidth parameter through ExROT, ΦLSMI

and ΦLSMI2. The last two techniques use bandwidth parameter selection through cross-validation.
For the PDF estimation, the kernel method with Gaussian kernel had been used. The SRICA
is also used with derived contrasts with 7 versions ΦLSFD,ROT , ΦLSFD,ExROT , ΦLSFD,ExROT ,
ΦLSFD2,ROT , ΦLSGFD,ROT , ΦLSGFD,ExROT , ΦLSGFD2,ROT .

The results are tabulated in Table 4.1 to Table 4.3. For a density type, the performance of
all the ICA algorithms is available in a column. The boldface values indicate best and boldface
with italics indicate API > 0.1 i.e. performance is not acceptable within permissible range. The
second last column in Table 4.3 indicate mean of the results for all the 20 density types and then
last column in the same table show the result for two sources randomly selected from 21 types.

The above experimental results for two i.i.d. sources against varying source PDF verifies
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Table 4.1: Performances of SRICA with various independence measures; varying distributions
form Type (a) to Type (h) in fig. 4.16 Comparison with other ICA algorithms using API as the per-
formance measure. Number of sources = 2 with varying source distributions; number of samples
= 300; GA parameters: float version, population size = 10, generations = 15. All other entries are
median of 10 trials.PDF Types: (a) Student with 3 degrees of freedom; (b) double exponential; (c)
uniform; (d) Student with 5 degrees of freedom; (e) exponential; (f) mixture of two double expo-
nential; (g)-(h)-(i) symmetric mixtures of two Gaussians: multimodal, transitional and unimodal

pdf→ a b c d e f g h
SRICA(Φ)

Φjskld 0.0282 0.0469 0.0386 0.0942 0.0313 0.0263 0.0090 0.0184
Φkld 0.0337 0.0565 0.0382 0.1299 0.0330 0.0263 0.0090 0.0136
Φhyi 0.0395 0.0495 0.0317 0.1083 0.0274 0.0264 0.0141 0.0184
Φk4 0.0462 0.0441 0.0311 0.0718 0.0547 0.0342 0.0087 0.0138

ΦradH 0.0864 0.0565 0.0420 0.1791 0.0223 0.0356 0.0129 0.0140
ΦQMIED,ROT 0.0457 0.0440 0.9468 0.0717 0.0539 0.9250 0.9847 0.9677

ΦQMIED,ExROT 0.0424 0.0447 0.9418 0.0804 0.0589 0.9300 0.9847 0.9677
ΦLSFDR 0.0539 0.0411 0.0407 0.1488 0.0305 0.0264 0.0141 0.0184
ΦLSFD 0.1027 0.0459 0.0426 0.1639 0.0262 0.0262 0.0086 0.0184

ΦLSFD2R 0.0499 0.0418 0.0407 0.1455 0.0258 0.0262 0.0196 0.0136
ΦLSGFDR 0.2831 0.0608 0.0382 0.4147 0.0315 0.0261 0.0087 0.0136
ΦLSGFD 0.7885 0.9204 0.6353 0.8056 0.8344 0.7074 0.9826 0.9676

ΦLSGFD2R 0.4897 0.3891 0.0945 0.4546 0.4987 0.0793 0.1035 0.0352
ΦLSMI 0.1651 0.2017 0.0673 0.4410 0.0488 0.0381 0.0145 0.0184
ΦLSMI2 0.7852 0.8518 0.0452 0.8293 0.0542 0.0347 0.0105 0.0177

Algorithm Performance of Existing ICA Algorithms
FastICA 0.0481 0.0512 0.0430 0.0897 0.0646 0.0424 0.0134 0.0154
EFICA 0.0661 0.0360 0.0205 0.0781 0.0530 0.0666 0.0058 0.0265
NPICA 0.0346 0.0542 0.0248 0.1083 0.0239 0.8902 0.0056 0.2232

RADICAL 0.0611 0.0577 0.0487 0.1121 0.0207 0.0271 0.0132 0.0136
Ex.Search(hyi) 0.0837 0.0894 0.0411 0.1536 0.0321 0.0440 0.0181 0.0233

the derived contrasts for BSS. The following conclusions can be derived.

1. Baesd on mean of the performances Φhyi, using SRICA is the best ICA algorithm and for
randomly selected densities RADICAL has performed best. The sum of marginal densities
estimated through KDE is a contrast used by both SRICA and NPICA. But, SRICA(Φhyi)
gives almost consistent performance. This indicates SRICA has been able to avoid local min-
ima. So, as an optimization algorithm it proves the worth of search based global optimization
techniques.

2. The proposed contrasts in the thesis have performed very well for multi-modal densities.
That indicate their partial superiority over other algorithms. The gradient based contrasts
need caution in use.

3. The API > 0.1 for some of the entries indicate that the corresponding algorithm has con-
verged to the spurious optima - either local minima or shifted global. This has happened
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Table 4.2: Performances of SRICA with various independence measures; varying distributions
form Type (i) to Type (p) in fig. 4.16 Comparison with other ICA algorithms using API as the
performance measure. Number of sources = 2 with varying source distributions; number of sam-
ples = 300; GA parameters: float version, population size = 10, generations = 15. All other entries
are median of 10 trials.PDF Types: (g)-(h)-(i) symmetric mixtures of two Gaussians: multimodal,
transitional and unimodal; (j)-(k)-(l) nonsymmetric mixtures of two Gaussians, multimodal, tran-
sitional and unimodal; (m)-(n)-(o) symmetric mixtures of four Gaussians: multimodal, transitional
and unimodal; (p)-(q)-(r) nonsymmetric mixtures of four Gaussians: multimodal, transitional and
unimodal; (s) left skewed Generalized Gaussian Distribution(GGD); (t) right skewed GGD; (u)
Gaussian distribution

pdf→ i j k l m n o p
SRICA(Φ)

Φjskld 0.0198 0.0303 0.0490 0.0590 0.0229 0.0383 0.0766 0.0424
Φkld 0.0198 0.0302 0.0503 0.0591 0.0234 0.0382 0.0612 0.0420
Φhyi 0.0197 0.0302 0.0473 0.0574 0.0158 0.0362 0.0552 0.0234
Φk4 0.0227 0.1805 0.0377 0.1316 0.0360 0.0688 0.0663 0.0493

ΦradH 0.0200 0.0345 0.0554 0.1288 0.0310 0.0342 0.1765 0.0363
ΦQMIED,ROT 0.9585 0.7605 0.9338 0.7655 0.8945 0.8779 0.8560 0.9160

ΦQMIED,ExROT 0.9614 0.9286 0.9111 0.8920 0.8803 0.8808 0.8774 0.8874
ΦLSFD,ROT 0.0198 0.0334 0.0569 0.0763 0.0416 0.0354 0.1235 0.0501

ΦLSFD,ExROT 0.0198 0.0348 0.0576 0.0774 0.1031 0.0482 0.0780 0.0546
ΦLSFD2,ROT 0.0198 0.0349 0.0567 0.0751 0.0348 0.0330 0.1226 0.0504
ΦLSGFD,ROT 0.0198 0.0354 0.0615 0.0939 0.0136 0.0323 0.1110 0.0315

ΦLSGFD,ExROT 0.9615 0.9092 0.4273 0.5862 0.3138 0.1101 0.4379 0.5352
ΦLSGFD2,ROT 0.0394 0.4253 0.2840 0.6803 0.1028 0.1454 0.3398 0.3006

ΦLSMI 0.0268 0.0396 0.0720 0.1187 0.0538 0.0641 0.0594 0.0601
ΦLSMI2 0.0241 0.0387 0.0449 0.0719 0.0409 0.0653 0.0850 0.0590

Algorithm Performance of Existing ICA Algorithms
FastICA 0.0281 0.7992 0.0332 0.1376 0.0607 0.1282 0.0627 0.1169
EFICA 0.0214 0.7521 0.0406 0.1252 0.0353 0.0626 0.0602 0.0381
NPICA 0.0217 0.4680 0.0449 0.0593 0.0165 0.4590 0.1109 0.0257

RADICAL 0.0230 0.0467 0.0579 0.2029 0.0208 0.4543 0.7915 0.0243
Ex.Search(hyi) 0.0297 0.0576 0.0843 0.1358 0.0317 0.0632 0.0929 0.0262

for all the algorithms, including NPICA. As stated as an open problem by the author in (18),
such occurrences (API > 0.1) identify the distributions for those NPICA has misconverged.
This also hampers NPICA’s claim to seamlessly handle the large scale ICA problems.

4. The ΦQMIED, ΦLSMI and ΦLSMI2 indicate failure in most cases including those of - mean
performance and performance on randomly selected densities.

Experiment: To verify the performance of SRICA in higher dimensions

The Experiment is done with gradually varying number of sources randomly selected from the
given 21 sources. The sample size for all the experiments is kept constant as 600. The results
are tabulated in the Table 4.4. The SRICA is used with LSFD, as a representative of the derived
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Table 4.3: Performances of SRICA with various independence measures; against varying distri-
butions form Type (q) to Type (u), mean performance of Types (a) to (u) and randomly selected
two sources; in fig. 4.16 Comparison with other ICA algorithms using API as the performance
measure. Number of sources = 2 with varying source distributions; number of samples = 300;
GA parameters: float version, population size = 10, generations = 15. All other entries are me-
dian of 10 trials.PDF Types: (a) Student with 3 degrees of freedom; (b) double exponential; (c)
uniform; (d) Student with 5 degrees of freedom; (e) exponential; (f) mixture of two double expo-
nentials; (g)-(h)-(i) symmetric mixtures of two Gaussians: multimodal, transitional and unimodal;
(j)-(k)-(l) nonsymmetric mixtures of two Gaussians, multimodal, transitional and unimodal; (m)-
(n)-(o) symmetric mixtures of four Gaussians: multimodal, transitional and unimodal; (p)-(q)-(r)
nonsymmetric mixtures of four Gaussians: multimodal, transitional and unimodal; (s) left skewed
Generalized Gaussian Distribution(GGD); (t) right skewed GGD; (u) Gaussian distribution

pdf→ q r s t u mean rand
SRICA(Φ)

Φjskld 0.0496 0.0525 0.0736 0.0372 0.5881 0.0682 0.0679
Φkld 0.0480 0.0529 0.0683 0.0351 0.5881 0.0694 0.0672
Φhyi 0.0494 0.0526 0.0525 0.0333 0.5628 0.0644 0.0513
Φk4 0.0759 0.1123 0.0629 0.3680 0.2375 0.0835 0.0724

ΦradH 0.1120 0.0889 0.0665 0.0167 0.4518 0.0810 0.0382
ΦQMIED,ROT 0.8612 0.7974 0.0628 0.1885 0.6419 0.6454 0.6924

ΦQMIED,ExROT 0.5443 0.8885 0.0614 0.9235 0.4563 0.6735 0.8121
ΦLSFD,ROT 0.0832 0.0723 0.0595 0.0473 0.5634 0.0779 0.0480

ΦLSFD,ExROT 0.0812 0.0718 0.1142 0.0470 0.5780 0.0857 0.0531
ΦLSFD2,ROT 0.0819 0.0847 0.0760 0.0474 0.5705 0.0786 0.0489
ΦLSGFD,ROT 0.0642 0.0734 0.7228 0.0421 0.2146 0.1140 0.0626

ΦLSGFD,ExROT 0.1016 0.5070 0.8409 0.8868 0.2337 0.6425 0.5639
ΦLSGFD2,ROT 0.4824 0.4331 0.3971 0.3337 0.5216 0.3157 0.3002

ΦLSMI 0.1587 0.1455 0.2022 0.1298 0.3324 0.1170 0.0586
ΦLSMI2 0.1627 0.0540 0.8328 0.0548 0.1948 0.2075 0.0692

Algorithm Performance of Existing ICA Algorithms
FastICA 0.1551 0.0981 0.0574 0.2821 0.4565 0.1325 0.0549
EFICA 0.1874 0.1161 0.0695 0.4182 0.2496 0.1204 0.0652
NPICA 0.0742 0.0500 0.0528 0.0237 0.4159 0.1518 0.0455

RADICAL 0.0807 0.1258 0.0618 0.0278 0.6389 0.1386 0.0411
Ex.Search(hyi) 0.0587 0.0741 0.0797 0.0420 0.5329 0.0854 0.0600

contrasts, and with Φk4, as a representative of the conventional contrasts. It is used with two
different search schemes fro GA. The ‘simultaneous’ scheme, searches for the optimal in all search
dimensions (d) simultaneously. The ‘eqpart’ scheme searches for the optimal, simultaneously only
in one search dimension. But, to remove the affect due to inter-dependence it uses (d-1) sweeps.
The ‘eqpart’ scheme requires (d − 1) ∗ d ∗ Imin amount of function evaluations; where, d is the
number of search variables, Imin is the minimum number of evaluations required to search for
optimal in one dimension simultaneously. As the ideal implementation requires large amount of
computation, there have been used here 70 ∗ d function evaluations.

The results show that the SRICA with LSFD contrast performs comparable to other exist-
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ing ICA algorithms. It almost performs second best to NPICA for 2, 4 and 8 sources. It could be
noticed that with increasing number of sources, the performance of all the algorithms degrades.
For, 16 sources all the algorithms; except EFICA; give API > 0.1. The SRICA with kurtosis con-
trast badly performs even for 8 sources. Overall, even SRICA, using GA as a global optimization
technique; as well, the RADICAL with exhaustive search fails in higher dimensions.

Table 4.4: Performances of SRICA using varying independence measures in higher dimensions;
Comparison with other ICA algorithms using API as the performance measure. Number of samples
= 600; Each row entry is a median of the number of trials (niter) in column 2.

nsrc niter srica(kurt) srica(kurt) srica(LSFD) FastICA EFICA NPICA radical
simultaneous eqpart eqpart

2 50 0.0618 0.0616 0.0352 0.0615 0.0427 0.0296 0.0422
4 25 0.0966 0.0642 0.0426 0.0631 0.0500 0.0380 0.0484
8 10 0.1880 0.0843 0.0536 0.0760 0.0800 0.0386 0.0623
16 5 0.2422 0.1555 0.1767 0.1023 0.0937 0.2179 0.2850

Experiment: Performance of SRICA against real world sources

The experiment tests the performance of SRICA against real world sources. As a representative
of derived contrasts, LSFD is considered with SRICA in ‘eqpart’ scheme. For comparison, the
conventional contrast sum of marginal entropies (Φhyi) using KDE is also considered with SRICA
in ‘eqpart’ scheme. The real world sources are taken from ICALAB Cichocki et al. (29).

The results show that SRICA with Φhyi fails for real world sources 8 and 10. But, SRICA
with LSFD has comparable performance to other ICA algorithms, even best in one of the cases.
The failure of FastICA for one of the test case is also noticeable.

Table 4.5: Performances of SRICA using varying independence measures against real world
sources from ICALAB; Comparison with other ICA algorithms using API as the performance
measure. GA number of function evaluations = number of search variables * 70

Source nsrc srica(
∑

hyi) srica(LSFD) FastICA EFICA NPICA radical
eqpart eqpart

Speech4 4 0.0562 0.0167 0.0179 0.0160 0.0219 0.189
Speech8 8 0.1858 0.0408 NaN 0.0467 0.0592 0.0475
Speech10 10 0.1800 0.0687 0.0700 0.0734 0.0499 0.0639

The SRICA results in higher dimensions show misconvergence or near optimal solution.
With the failure of other algorithms and even the Exhaustive Search based RADICAL, there
emerges a need to go into more details of misconvergence and suitable choice of an LSGO al-
gorithm. This inspires to look at the GA like, optimization techniques for large scale in two ways:
(i) How the search for optimal progresses in GA? and (ii) What are the reasons leading to miscon-
vergence in GA, specifically in large scale, and how the BSS contrasts behave as an optimization
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functions for an LSGO algorithm? The dual focus should be able to bring more theoretical knowl-
edge and possible remedies to avoid misconvergence and to reduce computations for LSGO and
specific LSnIBSS problems. The Chapter 5 focuses on the first aspect and then next Chapter 6
focuses on the second aspect.

4.8.1 Discussion On ICA as BSS

The experimental results show that there was no algorithm giving performance in a permissible
range (API < 0.1), even in two source separation or higher dimensions. The failure may be due
to the ideal optimization landscape violation by the sources for a given contrast or due to the failure
of optimization algorithm. The performance analysis in two source separation and empirical local
minima analysis has proved the presence of near-independence sources even in laboratory gener-
ated source cases. This atleast puts a caution on using ICA algorithm for BSS, even in linear case.
Though use of ICA algorithm for BSS can not be denounced, for large scale and some specific
type of distributions there question whether they should be considered equivalent. There were per-
formed some experiment on adding priors like identical distributions or un-identical distributions,
but further testing is needed before anything firmly could be stated. Also, a mathematical extrema
analysis in higher dimensions is needed, for which the GGC in multivariate is developed, but due
to time constraint could not be done.

4.9 conclusion

The SRICA algorithm has been best (based on mean performance) at being able to avoid local
minima, even better than the exhaustive search based algorithm. It gave consistently good perfor-
mance for sum of marginal entropy Φ(hyi) estimated through KDE based contrast. The algorithm
has facilitated the study of the effects of various independence definitions and measures on ICA
solution. The study has resulted declaring minimization of sum of marginal entropies, with kernel
based PDF estimation method as the mean wise best independence measure, in terms of source
matching, among the used other independence measure. There SRICA algorithm and the contrasts
ΦFD

2 and ΦGFD
2 are verified. They have performance better for the multimodal densities but lack

consistency. The failure of GA and SRICA leads to further two queries. The first is how GA suc-
ceeds in global search and how it could be improved. This query has been handled in next Chapter
5. The second query is LSGO algorithms perform on BSS problems and how that performance can
be improved. This query has been handled in Chapter 6.
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Chapter 5

Extended Forma Analysis and Mendelian
Genetic Algorithm

There exists a long discussion over the issue of whether minimal alphabet or maximal alphabet
gives maximum schemata. The chapter generalizes the concept of schemata to dependency re-
lation based ‘extended formae’. Further, it proves that theoretical maximum schemata could be
achieved through an operator exploiting extended formae and using maximal alphabet. It shows
that the previous conclusion of minimal alphabet giving maximum schemata is also true for some
operators. It is believed that maximum schemata is advantageous to achieve maximum implicit
parallelism. The chapter raises a discussion over the disadvantages of maximum schemata. As a
conclusion, it suggests to use an intermediate-level alphabet for representation, balancing maximal
alphabet to avail maximum schemata and minimal alphabet to overcome the disadvantages due to
maximum schemata.

5.1 Introduction

Genetic Algorithm (GA) has been fairly successful as a huiristic search and optimization technique,
in many practical engineering and design problems. Towards the success of GA, Holland made a
powerful observation of progress in search through prorogation (inheritance) of similarities within
chromosomal representation of the solution space. To signify the importance of similarities among
the chromosomes, he gave mathematical notion to it deriving the concept of Schema and Schema
Theorem.

The significance of the schema concept can be understood by the generalizations it has
obtained. Towards the efforts to understand real coded GA (RCGA), the schema concept got gen-
eralized as Wright’s schema by Wright (138), as interval-schema by Eshelman (47) and as virtual
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alphabet by Goldberg (52). Schema, as a way to define similarity among the set of chromosomes,
got generalizations as forma induced by an equivalence relation by Radcliffe (99, 100), as a predi-
cate by Vose (131) and also through work by Antonisse (4).

Though available many generalizations, the maximum schemata∗ has not achieved the the-
oretical maximum possible. Towards providing maximum schemata†, this chapter contributes in
the following ways:

1. It provides generalization of the schemata concept through further generalization of equiv-
alence relation based formae definition to the dependency relation based extended formae
definition. This makes it possible to achieve theoretical maximum possible schemata for
both string and non-string representations, which would not have been possible through for-
mae or other previous definitions of schemata.

2. It signifies that similarity has to be an operator perspective. To be able to exploit similarity
information through extended forma definition -

(a) it proposes the use of already existing ploidy representation and derives for it a novel
ploidy schemata (p-schemata) definition. Thus, it adds the notion of past similarities to
define schemata.

(b) it derives a specific Mendelian Crossover Operator to exploit the similarity information
through p-schemata.

3. It proves that not the minimal but the maximal alphabet gives maximum schemata, through
extended formae definition. It also proves that extended formae could achieve theoretical
maximum schemata.

4. It provides discussions on the relevance of previous concept of minimal alphabet giving
maximum schemata (49, 51, 52, 59) and the need of maximum schemata for efficient GA.
Based on the discussions and inspiration from nature it provides a conclusion.

The next section 5.3, defines the extended forma induced by an arbitrary dependency relation.
It compares extended forma with the existing schema definitions, in terms of the definition and
available maximum schemata. Section 5.4, signifies the role of operator by concluding that the
schemata has to be an operators perspective. Towards, achieving an operator exploiting extended
formae it proposes a ploidy representation and a Mendelian crossover operator in section 5.5. Then

∗Schemata - is a plural of Schema
†To avoid confusion, this chapter uses ‘schemata’ nomenclature as a more generalized form for similarity subsets

through any existing (original Holland’s schemata, o-schemata, formae, predicates etc.) or futuristic representation
and definition; and ‘Holland’s schemata’ as that specifically defined by Holland.
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after, section 5.6 derives the important theorems and interpretation to achieve maximum schemata.
Section 5.7 provides discussion on the requirement of maximum schemata and then finally the
section 5.10 provides conclusion.

5.2 Concept of Schema and the Motivation for Further Gener-
alization

Let ρ be a mapping of the n-point discrete search space S onto the space of chromosomes C.

ρ : S −→ C

Let the chromosomes be a k-ary string of length l; setA be the set of all k symbols of k-ary alpha-
bet,A = {0, 1, . . . , k−1},P(A) be the power set ofA and Ω = P(A)−{set of all subsets of P(A)

with cardinality 0 and 1}.
There are different ways possible to define the similarity in C.

Holland’s Schemata

Holland (59, 60) defined schema, S as a similarity template describing a subset of k-ary strings
with fixed values, say either 0 or 1 for k = 2, at certain positions and ‘don’t care’ (#) at the other
positions. For example, a Holland’s schema 1#00 implies a subset {1000, 1100}.

Generalization of schemata as an equivalence relation based Formae

Radcliffe (99, 100) defined similarity through an arbitrary equivalence relation on C and identified
it as the Forma. That generalized the concept of schemata to be applicable for string and non-string
structures.

The similarity among a subset of chromosomes in C can be represented by a string of
symbols � and �, indicating ‘fixed’ or ‘matching’ values at � symbol positions and ‘don’t care’
at the � symbol positions. There each symbol in the string was called a component and the string
containing symbols may be named as a relational string. More precisely, a relation ∼∈ Ψ be
defined for η, ζ ∈ C

η ∼ ζ ⇔ (∀i ∈ Zl; (∼i= �) : ηi = ζi) (5.1)

where, Zl = {1, 2, . . . , l}; ∼i indicates ith component of the relational string. The properties
of =, defines ∼ as an equivalence relation, satisfying the properties of symmetry, reflexivity and
transitivity. An equivalence relation string may be written for example as����. A specific fixed
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value at � symbol, in a given equivalence relation string will induce equivalence classes, called
formae. The formae, induced by a particular equivalence relation, will divide C into a disjoint
partition.

Theoretical maximum possible schemata and motivation for further generalization of schemata

The maximum possible correlated subsets among the n-point search region S (NSmax) would give
an upper bound on the theoretical maximum possible schemata in C (NCmax).

NSmax =

(
n

1

)
+

(
n

2

)
+ . . .+

(
n

n

)
= 2n − 1 (5.2)

If ρ is a one-one mapping, NCmax = NSmax. Without loss of generality, this is the case assumed
for rest of the chapter. In case of, an under-specified or over-specified representation NCmax =

αNSmax, where α = |C|/|S| and | · | indicates cardinality of a set.
It could be observed that the theoretical maximum possible 2n − 1 subsets of C (NCmax)

are not disjoint. Many of theses subsets share some common elements. This implies that forma
definition can not achieve all correlated subsets in S as schemata in C i.e. NCmax 6= NSmax.
By discarding the transitivity condition, an equivalence relation gets generalized to dependency
relation (finite tolerance relation)‡. This will allow dependency relation based extended formae
to define similarity subsets also for those schemata in C, which are not available through forma
definition. As has been proved later in Theorem 5.4, section 5.6 that this will achieve for extended
formae NCmax = NSmax.

5.3 Proposed Dependency Relations based Extended Formae

Towards the goal of schema definition, the similarity in C can be obtained defining an arbitrary
dependency relation (finite toletrence relation). Let,

Ψ = {�,�}l

is the space of all dependency relations on C. The related chromosome strings are having ‘fixed’
or ‘matching’ values from A, at the � symbol positions and are having either of the elements of
the specific subset �(p)

i..j at symbol � positions, where �(p)
i..j ∈ Ω . So, the � could be interpreted

as ‘either or’ symbol reminding selection of either of the element of Ω as the specific subset.
The specific subset �(p)

i..j could be interpreted as ‘p-level either or’; where p = |�|, | · | indicates

‡Tolerance relation is a relation which is symmetric and reflexive but not necessarily transitive.
Dependency relation is a finite tolerance relation.
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cardinality of a set, 1 < p ≤ k aand the suffix i..j is the list of all elements in that subset. For
ease, �(k) may be used and the suffix may be avoided to indicate ‘k-level either or’ or ‘don’t care’.
For the same reason of ease, the cardinality representation as power may be avoided. Given, say
l = 4, a relation ∼∈ Ψ, (�,�,�,�) could be represented as the relational string ���� and ∼i
indicates ith component of the relational string.

More precisely, a relation ∼∈ Ψ be defined for η, ζ ∈ C and Zl = {1, 2, . . . , l}

η ∼ ζ ⇔
(
∀i ∈ Zl; (∼i= �) : ηi = ζi, (∼i= �) : ηi, ζi ∈ �(p)

i..j �
(p)
i..j ∈ Ω

)
(5.3)

As all the members of Ω are not disjoint, based on the definition and properties of = and ∈ oper-
ators, the relation ∼ satisfies the properties of symmetry and reflexivity but not transitivity. Also,
due to finite chromosome space assumed, it is a dependency relation or a finite tolerance relation.

Fixing the value of� and� at the given positions, induces the similarity subsets (schemata)
for each dependency relation in Ψ. As dependency relations are generalization of equivalence
relations and schemata induced by equivalence relations are called formae, the schemata induced
by dependency relations could be named ‘extended formae’.

The comparision of equation 5.3 with equation 5.1 and the used relational strings makes
clear the difference between formae and extended formae. As the first step, let equivalence relation
be defined as ��(3)�(3)� for k = 3,A = {0, 1, 2} alphabet. Fixing the values for � symbols,
will induce a disjoint subset of a partition. Let, 1�(3)�(3)2 is one of the disjoint subset of a
partition. Now, as the second step, let � be interpreted as ‘either or’ interpretation taking different
possible values from Ω. Extending the example, a relational string 1�12�012 and 1�01�122 are
under consideration. It could be observed that this is like dividing the previous disjoint subset of a
partition further into correlated subsets. This further division is correlated as having a non-empty
intersection. The common string between the considered two correlated subsets would be {1112}.

This makes clear the relation between the formae and extended formae, and also the nomen-
clature ‘extended formae’.

For example: k=2 (a binary alphabet), then P(A) = {{}, {0}, {1}, {0, 1}} and Ω =

{{0, 1}}. Accordingly,� = {0, 1} is the only possibility. An extended forma 1�00 = {1000, 1100}
Similarly, for k=4, a 4-ary alphabet with A = {0, 1, 2, 3}, corresponding

Ω = {{0, 1}, {1, 2}, {2, 3}, {3, 0}, {0, 2}, {1, 3}, {0, 1, 2}, {1, 2, 3}, {2, 3, 0}, {3, 0, 1},
{0, 1, 2, 3}}, Symbolically, Ω = {�01,�12,�23,�30,�02,�13,�012,�123,�230,�301,

�0123}. � could be any of these 11 sets. An extended formae 20�121 = {2011, 2021}, where
�12 = {1, 2}.
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Antonisse work (4) and comparision

It must be acknowledged that the chapter (4) by Antonisse suggested almost similar generalization
of Holland’s schemata. The chapter interpreted the symbol # in the Holland’s Schema as any
subset from Ω. But, the dependency relation was not used there for schemata definition. The
proposed arbitrary dependency relation based extended forma definition is applicable to both string
and non-string structures. Also, that chapter (4) did not tried to answer from where or how these
extra schemata will be available to GA. There it was almost neglected that the similarity has to be
an operator perspective. Rather, in the concluding remark it hoped to achieve the extra schemata
with crossover operator being intact. Compare to this, the present work, identifies the significance
of an operator ( section 5.4) and derives an operator (section 5.5) exploiting the extra schemata
available through dependency relation.

5.4 Schemata and Operators

GA has to find the optimal and generally, is blind i.e. there is an absence of any information about
the correlated regions in the fitness landscape. The goal of schema definition is to get subsets in
the set of chromosomes, with some similarities (schemata) based on two assumptions:

1. The similarities in the set of chromosomes (representational landscape) gives possible infor-
mation about the correlations in the actual fitness landscape. To validate this assumption for
a wide range of fitness landscapes, the notion of schemata definition has to be based upon
the most common search principles of searching through say, locality, periodicity etc. For a
specific fitness landscape there could be thought upon specific notions of similarity.

2. There exists a GA operator, using this information about the similarities or dissimilarities in
the set of chromosomes to direct the next generation search towards the corresponding most
correlated or uncorrelated regions.

The success of GA or the used schemata definition and a corresponding representation depends
upon the degree by which both the assumptions are satisfied.

Holland interpreted the used symbol # as a ’wild-card’ or a ‘don’t care’. But, the then
existing crossover operators, were interpreting the symbol as ‘2-level either or’, as they select a
specific value from either of the two parents. The assumed interpretation of ‘don’t care’ and the
actual interpretation of ‘2-level either or’ by a crossover operator - are same only in case of binary.
The difference between the interpretations is important as it will create difference in the number of
schemata possible. If assumed the conventional single-point, multi-point or uniform crossover then
the maximum possible schemata per position (NCPmax) for k-ary would be,NCPmax =

(
k
1

)
+
(
k
2

)
;
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which is more than k + 1 schemata for all k > 2. An example of an operator, which interprets
Holland’s schemata as he defined i.e. ‘don’t care’ or a ‘wild card’ interpretation - is the Random
Respectful Recombination (R3) Operator by Radcliffe (100). So, for this operator NCPmax with
k-ary symbol would be, NCPmax = k + 1, as expected by Holland.

As mention earlier, Antoisse expressed schemata in a way similar to extended formae.
But, then existing conventional crossover operator is an operation between two parents. So, these
operators would not be able to interpret schema position with # as any subset with cardinality
|#| > 2 from a power set P(A). Say, for k = 4, a schema 20#013 indicates the set of strings with
value at not matching positions to be ‘3-level either or’ from the subset {0, 1, 3}. But, the available
single-point, multi-point or uniform crossover can not operate on this interpretation.

So, this section concludes that for a successful GA, similarity has to be an operator per-
spective or schemata should be the perception of an operator. Accordingly, there must be designed
a GA operator exploiting similarity information through extended formae.

5.5 GA Operator - Exploiting Extended Formae

Achieving ‘p-level either or’ with 2 < p < k interpretation for �(p)
i..j necessitates two things.

1. Representation Perspective: There has to be available at least p allele values at a position.

2. Operator Perspective: There has to be an operator implementing ‘p-level either or’.

The requirements lead to at least two solutions. One of the solutions is to use a multi-parent (p par-
ents) recombination operator. The other solution is to use a ploidy (multiplicity of chromosomes)
representation with atleat p/2 copies of chromosomes for both parents with an operator working on
this representation. The operator with multiple parents and ploidy representation for each parent
- both together; and many others may be thought. But, it is better to use a solution approved by
nature.

5.5.1 Inspiration from Nature for Representation Perspective

It is known that in nature the most complex organisms are diploid or polyploid. Humans, most
animals and many plants are diploid (pairs of chromosomes). Polyploidy is also existing in few
plants and animals. The ploidy structure makes it possible to store and inherit the past genetic
history in terms of the unexpressed. It is one of the sources of wide diversity in nature.

Also, the ploidy structures, specifically the diploidy are not new to the GA community and
have already proved their significance for non-stationary or time-varying applications (51, 119).
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Also, the multi-parent recombination operators (44) have been found useful in some applications,
but are not that popular compare to ploidy structures.

Finally, there has been decided to follow nature and to use ploidy representation and corre-
sponding operator than a multi-parent haploidy, for the further development of the topic.

5.5.2 Deriving p-schemata for Ploidy Representations

Conventionally, schemata definition is applied to get similarities among the parents or chromo-
somes from different individuals. In case of ploidy representations, there exists two way sim-
ilarities. The first one is, within an individual among the multiple copies of chromosomes i.e.
intra-parent similarity. The other one is, similarity between (among) the parental ploidy repre-
sentations - inter-parent similarity. It could be observed that the intra-parent similarities and the
inter-parent similarities - both could be obtained by extended forma definition.

For example, let k = 4, A = {0, 1, 2, 3} and ploidy structurewith four copies of chromo-
somes per parent is in use. Let, the parent P1 be with chromosomes 0123, 1103, 2133, 2103 and
the parent P2 be with copies 3120, 2130, 0120, 0130. The intra-parent extended forma for parent
P1 could be written as �0121�0233 and that for parent P2 could be written as �0231�230. Then,
inter-parent extended forma for parent P1 and P2 could be written as �01231�023�0,3.

It is possible to give importance to the multiplicity of alleles and precedence of the chromo-
somes in terms of the generation in which they were expressed. If the operator needs to use these
information, then instead of the used conventional set structure for �; there has to be used ordered
multiset § structure.

Overall, the application of the extended forma definition to ploidy representation for sim-
ilarity subsets has been achieved. Let both the intra-parent and inter-parent schemata be given
a common name ‘p-schemata’, where p reminds us the term ploidy. To be more precise, if re-
quired, the intra-parent schemata may specifically be named as ‘p1-schemata’ and the inter-parent
schemata may specifically be named as ‘p2-schemata’.

The introduction to p-schemata, introduces the notion of either past similarities or past
inheritance or past successful changes in allele values or past, in general - as the search strategy
to define schemata. GA using diploidy representations are existing. That means the past or the
unexpressed genetic information was already in use for search in GA. But, the notion of past with
the already existing notion of search through locality, periodicity etc. for schemata definition is
new and may find useful.

§Multiset is a generalization of set to allow repeatation of elements.
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5.5.3 Inspiration from Nature for Operator Perspective

Towards the goal of deriving an operator exploiting extended formae, the first necessity of availing
more than p alleles at a gene position has been achieved through deriving ploidy representation
and p-schemata for it. The next step is to derive an operator implementing ‘p-level either or’.

Organisms with ploidy, follow largely two major inheritance mechanisms. First, the Mendelian
inheritance and second, the non-Mendelian inheritance. Accordingly, there could be suggested
crossover operators matching Mendelian Inheritance or Non-Mendelian Inheritance using p-schemata.

Mendelian Inheritance

Though basically defined for diplody, can be made applicable to all ploidy. There are two basic
principles of Mendelian inheritance, described here in the way they are understood now.

1. Law of Segregation : It says that during gameteeogenesis¶ through meiosis, in both the
parents, the sets of chromosomes is segregated and gametes have only half of the total chro-
mosomes. During fertilization, any of the gamete is randomly selected and without any
exchange of genetic material just passed on to the embryo. The embryo will have full sets of
chromosomes, adding half from each gamete. Generalizing, the inheritance does not depend
upon the allele at a gene position being expressed or unexpressed. The dominancy decides
what is expressed and does not affect the probability of what is inherited.

2. Law of Independent Assortment or Inheritance Law: This law states that all genes are passed
on independent of each other to the gametes during gameteeogenesis. This says that no two
genes are having linkage to get inherited always together. Practically, crossover point could
be anywhere in the string of genes.

Non-Mendelian Inheritance

Non-Mendelian inheritance is a collective nomenclature for inheritance mechanisms not follow-
ing laws of Mendelian Inheritance. Say, importance of dominancy to the inheritance, assuming
unequal probabilities for crossover points etc. could be considered Non-Mendelian.

5.5.4 Mendelian Crossover Operator Exploiting Extended Formae

Just to give example of an operator exploiting extended formae there is described a Mendelian
Crossover Operator assuming diploidy and following Mendelian inheritance. The operator is three
step:

¶The process of gamete formation, before fertilization
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1. During gameteeogenesis through meiosis, there will be a crossover between the two copies
of chromosomes in each parent. In humans, there are created 4 haploid gametes through
separate crossover for each. For ease of operation and representation, let the simulated
operator be using the expressed (i.e. dominant) allele combination and the unexpressed
(i.e. dormnat) allele combination as two chromosomes in a parent. Also, two crossover
operations would be sufficient - one, modifying the expressed and the other, modifying the
unexpressed‖.

2. During the fertilization step a child gets one copy of chromosome from a gamete from each
parent randomly.

3. Then, the dominance mechanism decides the alleles which are expressed and unexpressed.
In case of no knowledge about dominant alleles, there could be assumed random dominancy
mechanism i.e. any allele at a gene position is equally likely to get expressed. This could be
implemented using a one more crossover operator application on the available two haploids
with the child.

The above operator requires three crossovers (two during gameteeogenesis and one for depen-
dency). It could be assumed that the gene locations affected by the crossover during gameteeogen-
esis are the same as those affected by the crossover during dominancy decision. This assumption,
can bring the same overall result through a single crossover between randomly selected one chro-
mosome from each parent. This has been shown in table 5.1. Other than computational reductions,
use of single crossover will also bring reduction in the population diversity. The table, specifically
the last column entries for equivalent single crossover among the selected chromosomes from par-
ents, reminds the outcomes of Mendel’s experiments in terms of the probabilities of inheritance of
the dominant and dormant alleles.

5.6 Whether Small Alphabet or Large Alphabet?

Till now, dependency relation based extended formae and a Mendelian operator exploiting that has
been derived. So, it will be interesting to re-look at the issue of whether small alphabet or large
alphabet to get maximum schemata, based on this new schemata definition.

Theorem 5.1. An alphabet of cardinality k will induce ns = (2k−1)1/ log2 k schemata or similarity

subsets per bit of information, based on extended formae definition.

‖The conventional crossover will keep the most significant gene position unaffected. So, the modified chromosome
is the one with the most significant gene position allele intact.
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Table 5.1: Mendelian Crossover Operator
Parent p1 Expressed Chromosome (p1e): A1B1; Unexpressed Chromosome (p1u): a1b1
Parent p2 Expressed Chromosome (p2e): A2B2; Unexpressed Chromosome (p2u): a2b2

Gametogenesis
Parent p1 gamete 1 (g11) : A1b1; gamete 2 (g12) : a1B1;
Parent p2 gamete 1 (g21) : A2b2; gamete 2 (g22) : a2B2;

Possible children after fertilization and dominancy mechanism
Child Gametes Selected Expressed Chromosome Unexpressed Chromosome Equivalent Parent

for fertilization Chromosomes for
single crossover

c1 g11-g21 A1b2 A2b1 p1e-p2u
c2 g11-g22 A1B2 a2b1 p1e-p2e
c3 g12-g21 a1b2 a2B1 p1u-p2u
c4 g12-g22 a1B2 a2B1 p1u-p2e
c5 g21-g11 A2b1 A1b2 p2e-p1u
c6 g21-g22 A2B1 a1b2 p2e-p1e
c7 g22-g21 a2b1 A1B2 p2u-p1u
c8 g22-g22 a2B1 a1B2 p2u-p1e

Proof. Let s be the set of all k symbols and Sp be the set of all schemata per position, through
extended formae definition. Then, the maximum schemata per position,

NCPmax = |Sp| = |P(s)− {}| =
(
k

1

)
+

(
k

2

)
+ . . .+

(
k

k

)
= 2k − 1

Each position represents log2 k bits.
So,

ns = |Sp|1/ log2 k = (2k − 1)1/ log2 k

Corollary 5.2. The set of extended formae as schemata for k-ary alphabet contains all extended

formae (schemata) induced by all m-ary alphabets, m < k.

Proof. Let Ak be the set of all k symbols and Sk be the set of all schemata induced by k-ary
alphabet. Let P(Ak) be the power set of Ak. Similarly, let Am be the set of all m symbols and Sm
be the set of all schemata induced by m-ary alphabet. Let P(Am) be the power set of Am.
Given m < k, Am ⊂ Ak ⇒ P(Am) ⊂ P(Ak)
As schema position takes any value from the set {P(·)− {}}, Sm ⊂ Sk.

Theorem 5.3. For a given information content, strings coded with larger alphabets give more

extended formae as schemata per bit of information than that coded with smaller alphabets.

Proof. From Theorem 5.1,
ns = (2k − 1)1/ log2 k
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We are interested in the rate of change of ns with respect to k. Then,

log2 ns =
log2(2k − 1)

log2 k

⇒ 1

ns

dns
dk

=
1

log2 k

[
2k

2k − 1
− 1

(ln 2)2

log2(2k − 1)

k

]
=

1

log2 k
[p (k)− q (k)]

where, p (k) = 2k

2k−1
and q (k) = 1

(ln 2)2
log2(2k−1)

k
. As p (k) > 1 and q (k) < 1, the derivative is

always positive, ns is monotonically increasing function. This proves that for a given information
content, larger alphabets give more extended formae as schemata than that coded with smaller
alphabet.

Theorem 5.4. For an n-point search space S, maximum schemata induction requires n-ary alpha-

bet and schemata as extended formae.

Proof. Without loss of generality, let us assume a one-one mapping ρ : S −→ C. Given n-point
search grid, the length of binary coded chromosome string will be log2 n. Let also assume that a
k-ary alphabet gives maximum schemata. As already discussed in section 5.2 and the calculation
of maximum schemata per position (NCPmax) in section 5.4; the maximum possible schemata in
C is

NCmax = NSmax = 2n − 1

and neither the Holland’s schemata nor the formae can achieve these maximum schemata.
Now, from Theorem 5.1, total extended formae as schemata per bit of information are ns =(
2k − 1

)1/ log2 k. Then, the total extended formae (schemata) for the n-point search grid using
k-ary alphabet (Nk),

Nk =
((

2k − 1
)(1/ log2 k)

)(log2 n)

Nk = NCmax, iff k = n

5.7 Discussion and Interpretations

The old result had stated that minimal alphabet gives maximum schemata (49, 51, 59) and the
current chapter proved that maximal alphabet could give maximum schemata, same as maximum
correlated search points are available. This raises a question, whether the previous conclusion was
correct or the current conclusion? The answer is, both the conclusions - the minimal alphabet
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giving maximum schemata and the maximal alphabet giving maximum schemata - are correct, but
both with respect to separate group of operators. The R3 like operators, interpreting � as ‘don’t
care’ will give maximum schemata for minimal alphabet. The uniform crossover operator inter-
preting � as ‘2-level either or’ will give maximum schemata for maximal alphabet, but available
schemata will not be same as the theoretical maximum possible. It is the combination of ploidy
representation and the derived operator 5.5.4, interpreting � as ‘p-level either or’ with 2 ≤ p ≤ k

that will provide theoretical maximum possible schemata.
Also, it is important to ask whether successful GA requires maximum schemata? It is true

that implicit parallelism increases with the increased schemata. This may suggests to maximize
the schemata. The schema generalizations have shown that other than the traditional Holland’s
schemata, these generalized schemata may also contribute to the implicit parallelism. Radcliffe
(99) emphasized that only the schemata with correlated performances are significant and not the
total number. May be, in a blind case it could be assumed that maximization of schemata gives
maximization of correlated schemata i.e. with least fitness variance schemata.

But, can a question be raised, whether maximal schemata have any disadvantage? The
previous Theorem 5.4 gives us a hint. It says that maximum schemata for an n-point search space
could be available through n-ary alphabet. That means, single position schema would be required.
This is correct intuitively also, as more the chromosome string length - the ‘Hamming Cliff’ ∗∗

causes more schemata reprsenting correlated nearby search points to be missed. But, at the same
time single digit schema implies search through just locality principle; and periodicity principle
is not in use for search. The total schemata is more but all based on the principle of similarity
through locality. In general, it could be observed that larger the alphabet, larger the locality region
and smaller the periodicity (number of repeatations).

For a succesful GA, based on the application and search stage, both the principles of search-
ing through locality and searching through periodicity may be given varying significances. Say for
example, as the search progresses - the locality search regions should become smaller to make
the search finer (exploitative search) and at the same time the periodicity (number of repeatations)
should be increased to look for the alternative search regions so that the search is not confined
to a local region (exploratory search). Similarly, the initial search will be benefited by increased
implicit parallelism and progress in search through locality may be sufficient enough.

This interprets that large alphabet may serve better in the initial stages. But, it may not be
that good in the latter generations. So, for latter generations minimal alphabet providing search
through more periodicity and smaller local width is a better options. Usually, it is known that

∗∗Hamming Cliff is the effect of the used representation causing points nearer in the actual search space to be far
in the representation space. Say, 7 and 8 are the given search points nearer to each other. But when represented using
binary coding, they are mapped as 0111 and 1000 and are at the farthest hamming distance.
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GA, if property initialized, will search out the regions with above average fitness in very few
initial generations, irrespective of used initial representation. So, it may be sufficient to use a
single representation throughout. The used representation should be a balance between - maximal
alphabet giving maximum schemata and a minimal alphabet providing better search regions i.e.
providing smaller locality width and more periodicity for further search.

Nature also supports this argument. The genetic information is coded in terms of four
nucleobases. The four DNA-bases†† are cytosine (C), guanine (G), adenine (A) and thymine (T)
and four RNA-bases‡‡ are A, G, C and Uracil (U). Thus, nature balances the small alphabet and
large alphabet using 4-ary and diploidy representation.

5.8 The Mendelian Genetic Algorithm (MGA)

The MGA uses diploidy (pair of chromosomes per individual) representation and Mendelian inher-
itance through the Mendelian crossover operator derived in the previous subsection. The conven-
tional selection and mutation techniques are extended for MGA also. Important is the initialization
techniques. As with double the initial chromosomes, computational cost for initialization may
increase. But, there are suggested initialization schemes with same computations as for haploid
representation. There are also derived various child selection schemes. The schemes define how
many children, what way the expressed and unexpressed chromosomes of a child are generated and
have different results on diversity and convergence of the generated population. Based on whether
at a given stage exploitation or exploration is required, a specific child selection scheme can be
used. Overall, MGA can have same computational complexity as for conventional GA. But, the
abundance of schema is inferred to avoid loss of genetic material after higher generations. The ex-
perimental analysis proved low rate of convergence during initial stages, and again misconvergence
at higher generations, though at a better value than conventional GA. This demands intelligent use
of parameter values, balancing the exploration and exploitation ability of MGA. The demand is
fulfilled providing convergence analysis and deriving adaptation rules based on it.

5.9 Convergence Analysis of MGA

The goal is to derive relations between the progress in fitness value and the free parameters, specif-
ically the degree of importance given to the past generation. More significance to the past informa-
tion imply more diversity at the cost of fitness improvement. The analysis follows the similar for

††Nucleobses for Deoxyribo-nucleic acid
‡‡Nucleobses for Ribo-nucleic acid
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GA in (97, 98) and assumes infinite population in continuous space. The analysis brings adaptive
MGA (aMGA).

5.10 Conclusion

The chapter generalizes the concept of schemata to dependency relation based extended formae.
The generalization makes it possible to achieve theoretical maximum possible schemata for both
the conventional string and non-string representations. The chapter also derives an operator ex-
ploiting extended formae. For that it uses the ploidy representation and derives p-schemata defini-
tion for it. This brings the notion of ‘past’ information with existing locality, periodicity and other
notions for schemata definition. It proves that whether minimal alphabet gives maximum schemata
or maximal alphabet gives maximum schemata is decided by the operator used, as schemata has
to be exploited by an operator. Also, successful GA do not just require maximum schemata but a
balance between the available maximum schemata for intrinsic parallelism and required similarity
regions in terms of locality and periodicity for further progress. The nature suggests to use 4-ary,
diploidy representation.
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Chapter 6

Optimization Issues in Large Scale and BSS

The Chapter starts with the results of BSS in higher dimensions through SRICA (using GA) and
other BSS algorithms. Specifically, the failure of SRICA (using GA) bring two requirements: 1)
How to avoid misconvergence of GA in higher dimensions 2) How the BSS contrasts behave as
optimization functions. The Chapter examines both the view points and provides furher research
directions.

6.1 Introduction

There exists many bio-inspired search and optimization algorithms imitating natural phenomena or
a behaviour of some biological species. The Evolutionary Algorithms (EA) are the subset of this
bio-inspired algorithms. Instead of a single search trajectory, they have multiple search trajectories
formed due to repeated applications of operators on the randomly selected initial population (of
possible solutions). There are three basic operators named selection, recombination (crossover)
and mutation as already explained in the previous Chapter 4, Section 4.7.2. The EAs may differ
in using some or withdrawing some of the operators from them. For example, the Evolution
Strategies (ES) more depend upon the mutation operator and so the recombination operator is
either completely missing or used with small probabilities. Compare to them, GA more depends
on the recombination operator. In general, the better search algorithms should have two types
of abilities: 1) Exploration: The algorithm should not get stuck to the better regions found by
previous generations. Instead, it should be able to explore in the new regions. This ability of
an algorithm corresponds to the global search ability. 2) Exploitation: Once found the possible
better fitness regions (niche) from the search space, the algorithm should be able to exploit that
acquired knowledge in terms of fine tuning the search. This ability correspondce to a local search
ability. The performance of an algorithm depends upon the balanced utilization of the abilities of
exploration and exploitation.
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The GA is one of the EAs imitating natural evolution process, where ’Survivle of the fittest’
and ’Natural selection’ are the guiding principles. In a successive generations, how GA achieves
better population is explained by the concept of Schema and schema Theorem (51, 60). There
exists many generalizations of schema theorem that makes it applicable to almost all EAs with
slight variations. The schema, as defined by Holland, is a similarity template describing a subset
of binary strings with fixed value either 0 or 1 at certain positions and don’t care at the other po-
sitions. The Schema Theorem, the fundamental theorem of Genetic Algorithm (GA) states that
the short, low-order, above average fitness schemata (plural of schema), also called the building
blocks (BBs), receive exponentially increasing trials in subsequent generations. Thus, the match-
ing schema between the parents is seen as a genetic material being propogeted (inherited) to the
next generation. In terms of a search strategy, schema gives direction for the next generation
search in the intervals correlated through the principles of locality and periodicity (99). As each
chromosome could be considered a sample from multiple schemata (intervals), a fitness calcula-
tion for a chromosome implicitely contibutes towards the knowledgw about the mean fitness of
multiple schemata (intervals). So, an alphabet providing maximum schemata better fascilitates
implicit parallelism. The understanding has brought some design priciples for GA (51) guiding on
representation and operators issues. Ingeneral, all EAs face the ’curse of dimensionality’ that de-
mands exponential increase in the amount of computtaion with the increase in simaltaneus search
dimensions. This implies with increase in computation the convrgence is assured. But, there are
situations when increased computations also do not assure convergence.

6.2 GA Misconvergence and BSS Contrasts

The misconvergence in GA coud be grouped due to the following reasons.

• Schema Deception: This is due to representation, specifically in binary coded GA (BCGA).
The GA search progresses in correlated strings. But, binary representation many times makes
the near by regions coded in completely uncorrelated strings. This is identified as Hamming
cliff, for example the points 7 and 8 coded in binary would be 0111 and 1000. Thus, though
in the actual optimization landscap they are nearer, they are too far in the representational
landscap. The problem and the possible solutions can be studied in more detail in articles
(50, 57, 82) and many others. Overall, this is a representation issue and can be solved using
float representtaion or varying representations in consecutive generations.

• Domino Convergence and Genetic Drift: This misconvergence phenomena has its root in the
unequal time taken in the convergence of different bits in a long binary solution string. For
example, it is possible that before the best fitness region (niche) is found the lower side bits,
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indicating higher precision, may have converged to a specific value in the whole population.
So, the population do not have the genetic material at the lower sides to generate themost
optimal solution. Thus, the loss of genetic material in the population in higher generations
causes misconvergence. More details of this problemcan be found in (127) and the possible
solutions in (78).

• Non-separable functions or Genetic Linkage problem The optimal of the search variables
may be linked with each other. That means the best of one variable, varies with the value
of the other. The only possible solution is to search both of them together. The problem is
explained in more detail in the next subsection here.

SRICA was either failed to converge to an optimal or required too large computations. The per-
formance of an optimization method depends upon the balanced utilization of the abilities of ex-
ploration (ability to explore in the new regions or the global search) and exploitation (using the
acquired knowledge for the betterment of search or the local search). With the aim to reduce the
computations for high-dimensional ICA, keeping in mind the balance of exploration and exploita-
tion abilities for better search there were done many efforts. The efforts were done chronologically
towards using other Evolutionary algorithms (EA), using different representations in GA, setting
parameter values in GA, adaptive GA. Most of the experiments and conclusions were already noted
in the history of GA. Some of the new concepts were also tested and succeeded partially. Important
among them are Co-operative Convolution GA (CCGA), delta search and the concept of gradual
search. The gradual search implies varying the representations through the progress in search.
Overall, a technique combining CCGA framework with gradual search concept and fixed adaption
of parameters was the best proved. But, still the problem of misconvergence was not solved.

The understanding of the reasons of misconvergence required a lots of literature survey from
GA and EA. There were identified three different classes of problems leading to misconvergence
of GA. Schema deceptive problems are based on the representation of solutions in GA and is more
GA specific. The misconvergence due to the phenomena of ‘Domino convergence’ and ‘Genetic
drift’ is also to a specific class of problems in GA. The misconvergence due to non-separability is
the common problem where all optimization techniques fail. The reasons are discussed in (107).
The same article concludes that the algorithm complexity of GA for an n-dimensional separable
function is O(n lnn) but the same for a non-separable function optimization is nn or exp(n lnn).
The definitions of separable functions and non-separable functions are as under (107).

Definition 6.1 (Separable (decomposable) function). A function f(x) is separable (decomposable)
iff

arg min
(x1,,xn)

f(x1, , xn) = (arg min
(x1)

f(x1, , xn), arg min
(x2)

f(x1, , xn), ..., arg min
(xn)

f(x1, , xn))
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In other words, a function of n variables is separable if it can be rewritten as a sum of n functions
of just one variable. If a function f(x) is separable, its parameters xis are called independent.

Functions which are not separable are called non-separable.

Definition 6.2 (nonSeparable (nondecomposable) function). A nonseparable function f(x) is called
m-nonseparable function if at most m of its parameters xi are not independent. A non-separable
function f(x) is called fully-nonseparable function if any two of its parameters xi are not indepen-
dent.

The following figures taken from (107) explain the reason what makes the non-separable func-
tion optimization a difficult problem. There was taken a random rotation of a separable function to
simulate a non-separable function. The figure 6.2 explains the performance loss for unimodal func-
tions, as a reduction of effective length, due to function non-aligned with the co-ordinates. Simi-
larly, the figure 6.2 explains the loss of global optima for multimodal functions and requirement of
simultaneous change in both the variables. The actual loss of performance in large scale global op-
timization is much higher because of the increased dimensions and varying essentricity throughout
the search space. As a result, large scale optimization for non-separable and m-separable func-
tions is still an unsolved problem. The solution to the misconvergence problems in GA requires
to understand the theory on how GA works and progresses the search. The next section focuses
on that. It will be interesting to look at ICA problem, in terms of an optimization problem.
The ICA problem requires to find optimal n-dimensional rotation to have statistically indepen-
dent sources. As discussed previously, rotation of separable function (independent variables) gives
non-separable functions. So, ICA problem is like, from the given non-separable function, find the
anti-rotation to get back the separable variables. Also, n-dimensional rotation in ICA problem,
requires m = n(n− 1)/2 angle of 2-D rotations to be found optimally. Accordingly, n-D ICA is a

170



6. Optimization Issues in Large Scale and BSS 6.3. GA Variants for BSS in higher dimensions

specific type of m-D nonseparable function optimization problem.

6.3 GA Variants for BSS in higher dimensions

The initial experiments for BSS in higher dimensions using SRICA proved its failure to con-
verge near optimal solution. Increasing computations helped only marginally. The misconvergence
may be either due to improper use of the exploration and exploitation properties of GA or due to
any of the previous reasons of misconvergence. Towards achieving this balance of exploitation and
exploration, there were done many experiments. Chronologically they are: using other Evolution-
ary algorithms (EA), using different representations in GA, setting fixed parameter values in GA,
making parameter values semi-adaptive (fixed in adaptive manner) in GA, implementing existing
other search strategies like Co-operative Coevolution GA (CCGA) and then defining new search
concepts like gradual search, delta search and others. They are reported in Section 6.3. Either
the partial success or faiure in convergence demands the need to further explore the reasons of
misconvergence. To reduce the coputations and avoid misconvergence, there were derived many
variants of the basic or simple GA. The variants are based on varying the type of representation
and varying the search ’scheme’. This GA variants are used with simaltaneous approach for BSS.

6.3.1 Representation Types

There were used three types of variable representations. With conventional binary and float repreesnta-
tion, there is also developed a gradual type of representtaion. The idea behind is, each representa-
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tion has a specific accuracy in solution representation. More number of bits used for representation
achieves better accuracy of representation but results into long strings of solutions specifically, for
higher dimension simaltaneous search. This results into increased misconvergence probability due
to genetic drift. Also, the problem due to ’Hamming Cliff’ can be avoided by varying represen-
tation. Initial generations aims at exploration. So, small length binary code with low precision,
reducing the total variable length are more suitable. In the letter generations, when exploitation or
local search is needed the search can use more precise representations.

6.3.2 Various Search Schemes

There are defined 6 basic search schemes with ’simaltaneous’ approach.

• Simaltaneous: The scheme searches for all the variables simaltaneously. To remind, n-
dimensional BSS problem requires m = n(n − 1)/2 search variables. The scheme may be
combined with all the threee types.

• Eqpartk: The scheme searches for k variables simaltaneously, where 1 ≤ k ≤ m. The
scheme basically corresponds to the Cooperative Coevolution (CC) or the ’divide and con-
quer’ principle (95) that has been successfully aplied in many EAs, including GA (CCGA).
The scheme may be combined with all the threee types. This scheme with k = m is not same
as the scheme Simaltaneous, as the sweep concept is not there in the Simaltaneous scheme.

• Delta Search: Usually, the search progresses in the whole solution space. But, when it is
known that the optimal solution is in the vicinity of a certain part of the solution space,
search should mainly focus on this highly probable area. This is achieved by generating a
population through Gaussian distribution with small variace or Laplacian distribution with
mean at the center of the most probable area. Thus, producing more individuals in the most
probable region to find optimal and less samples in the remaining regions, the exploitation
ability is increased. In case of lack of this knowledge, the scheme can be combined with
other schemes and used whenever exploitation is needed.

• Randpart: The acheme is equivalent to the ’random grouping’ principles in (143). The idea is
to divide the search variables into random number of equal or unequal length groups in each
sweep. In each sweep, the variables in a single group are simaltaneously searched to avoid
linkage problem. So, with large number of sweeps, the scheme is supposed to avoid mis-
convergence in non-separable and semiseparable problems. Compare to the original scheme
with swarm optimization in article (), here there are incorporated two changes with GA. One
is, instead of suggetsed large groups in mutiple of 50 search variables, here there are used
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only small groups of say, 3 to 10 variables. The scheme may be combined with all the threee
types.

• Finegrad: The scheme targets to use the power of gradual representation type in efiicient
way. The total nmber of generations are divided into three stages: rough search, fine search
and refined search. The rough search starts with small size binary codes and graually in-
creasing the codesize. Then follows the few generation of fine search stage with search in
float representation. Finally, the refine search stage assumes that the optimal fitness niche
is already available in the population and now just further fine tuning matters. So, it uses
float representtaion and generates new population members only around the selected best
individuals. The part of the best solution from the end population of fine search stage are
copied as an initial population of refine search stage. The remaining population is generated
through Gaussian distribution with small variace or Laplacian distribution with centers as
the best individuals. That means, by default the refine stage uses delta search. There may be
internally more than one substages for each of these stages. The operator meters like selec-
tion, crossover and mutation probabilities are set to meet with the target of that stage. While
switching from one stage or substage to the other, if the end population is as it is copiesd
as the initial population then the lower bits are all same or zeros. That means, the genetic
material corresponding to that bit positions is fixed and variation is lacking. To avoid this
there three ways possible. First, the newer bit positions may be generated through random
end bit populations. For example, while switching from 5 bit precision level to the 8 bit
precision level, the lower endbits are added through randomly generated 3 bit population.
This will also avoid misconvergence due to genetic drift at lower positions. One more fact
not to be missed is, already searched best solution should be kept intact in the new popu-
lation to assure ellitism. This is crucial as the new number system may not contain exactly
the value in the previous number system. For example, the range [0 1] coded through 5 bit
binary has found best at 11001 = 1/32 ∗ 25 = 0.7813. In an 8 bit binary coded represen-
tation, this value 25/32 should be achievable. This best individual should be converted into
11001000 = 1/256 ∗ 200 = 0.7813. The second possible way is to throw away part of the
end population and generating them newly with new precision at that stage. Thus, there is
available sufficient genetic material at lower bit positions. The third that combines both the
above solutions is also possible. Also, for the final stage the crossover probability is reduced.

• Randfinegrad: The scheme combines random grouping scheme with finegrad scheme. The
random groups are search through finegrad scheme.
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6.3.3 Various search strategies

: There are defined atleast 9 different search stratagies combining the various types and schemes.
The Finegrad and ’randfinegrad’ schemes by definition use gradual search type. Other schemes
can be combined with any of the search type. While stage switch over in the simaltaneous scheme
combined with gradual type, the best and randomly selected or most fit few of them are copied to
the initial population of the next stage and the remaining population is newly generated. By default,
randomly selected 25% of the total population including the best fit individuals are selected for the
new stage. The Eqpartk scheme can be combined with the delta search, assuming in each new
sweep only a correction is needed to the previous value and not the exploration. By default, the
Eqpartk scheme uses delta search after each stage or substage.

The types, schemes and stratagies are summerized in the following Table 6.3.3.

Table 6.1: Description of the GA Search Schemes and Representation Types
Representation Type Description

float search variables are of type real
binary search variables are of type binary
gradual search variables are with gradually increasing accuracy,

initially of type binary and finally real
delta variable values as the deviation to the last best;
spiral the search accuracy is increasing gradually in a cycle;

repeatative such cycles; so the nomenclature spiral representation;
Search Scheme Description

simultaneous Simultaneously searching for all d variables
eqpart k Simultaneously searching for k variables sequentially selected,

1 ≤ k ≤ d, thus
⌈
d
k

⌉
group search per sweep;

Basically CCGA with multiple sweeps - usually (d-1)
delta search Search focused on the most probable optimality region;

population generation through Gaussian or Laplacian distribution
finegrad Gradual search with three stages:

Coarse search, Fine search and Refine search
randgroup Random grouping per sweep and small size groups

randfinegrad Random grouping with finegard i.e. three stage search
spiral uses spiral representation;

going from high precision to low precision with elitism
is possible through delta representation;

each cycle aims exploration first and then exploitation;
thus repeated cycles of exploration - exploitation

fixgrad fixed way of number of search variables in each sweep;
grouping randomly selected variables with randfinegrad, spiral
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6.4 Application to LSGO standard test bench and LSnIBSS

The techniques are tested on the standard test bench for LSGO defined by (139) for the IEEE
CEC2010 LSGO competition and also on BSS application. The partial results are shown in the
following Table 6.2. The last row indicates the application of all the schemes on BSS of Speech4
data from ICALAB using Φhyi contrast.

Table 6.2: Performances of defined GA strategies against standard test bench functions; f1: Shifted
Elliptic function (Separable), f19: Shifted Schwefels Problem 1.2 (Nonseparable), f20: Shifted
Rosenbrocks Function (Nonseparable)

fno nsrc Simal Simal Simal randgroup randgroup randgroup fixgrad
float binary gradual float binary gradual finegrad

4 5.8003e06 1.2677e05 5.1319e04 3.7310e05 8.6028e03 3.1225e04 3.8513e00
1 10 5.4364e07 1.4475e06 3.0447e05 3.5562e04 7.9341e02 2.8767e03 1.3464e-01

20 2.3469e08 2.3401e06 2.1003e06 2.7746e01 1.8785e01 1.4290e02 2.3793e-06
4 6.2264e02 6.9459e01 1.1141e02 4.6643e02 2.9023e02 2.9171e02 2.8977e02

19 10 6.2500e03 4.4429e02 6.2238e02 1.0866e03 7.0740e02 4.4494e02 3.9499e02
20 3.4370e04 2.8443e03 3.1035e03 1.0565e03 1.5045e03 8.3672e02 1.4052e03
4 5.6068e07 5.5445e05 1.5886e04 3.2438e04 2.6523e03 3.4713e03 1.6656e03

20 10 7.0200e08 6.7230e05 5.9044e05 2.2670e04 3.0648e03 2.6518e03 1.2688e03
20 4.7301e09 1.1630e07 6.1228e06 2.8484e03 1.4763e03 1.5304e03 9.3689e02

Speec4 4 0.0558 0.0653 0.0755 0.0255 0.0450 0.0779 0.0198

The results verify the application of gradual search concept for nonseparable function
LSGO. The real life problems are semiseparale type, where which variables are separable and
which group of them are nonseparable is not known. The fixgrad scheme gives hope to be a better
solution for semiseparable function LSGO by giving better results for both separable and nonsep-
arable problems.

6.5 Conclusion

The gradual search concept has been proved useful for nonseparable function LSGO. The real life
problems are semiseparale type, where which variables are separable and which group of them are
nonseparable is not known. The fixgrad scheme gives hope to be a better solution for semiseparable
function LSGO by giving better results for both separable and nonseparable problems. The same
scheme has also assured better results i large scale for BSS problems with reduced computational
cost.
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Chapter 7

Conclusion and future work

The thesis actually has focused on three different issues: i. Linear BSS ii. Near independence
BSS and iii. Large Scale BSS. The issues are combined as a large scale near-independence BSS
problem. The solution has focused independently on deriving new contrasts for BSS based on
the ITL theory and the large scale global optimization problem through EA. It has the following
contributions:

• Towards independence measure for BSS

– The difference between joint probability density function (PDF) and product of the
marginal PDFs is defined as a Function Difference (FD) of a random vector. Based
on the first and second order optima analysis, minimization of Lp − Norm of FD is
derived as a criteria for Blind Source Separation (BSS).

– Instead of a, conventional, two stage estimation approach for FD (separate estimation
of joint PDF and marginal PDFs and then the difference), the direct linear least squares
FD (LSFD) estimation is achieved in two ways: (a) kernel basis placed at the selected
paired sample points (b) kernel basis placed at the selected paired or un-paired sample
points.

– The performances of kernel methods depend upon the selected smoothing (bandwidth)
parameter. There is derived Extended Rule-of-Thumb method for bandwidth selection
in uni-variate Kernel Density Estimation (KDE). The derivation uses PDF approxima-
tion through Gram-Charlier series expansion.

– A specific derivation for uni-variate generalized Gram-Charlier series is extended to
multivariate generalized Gram-Charlier series. Based on this, the Extended Rule-of-

Thumb method for bandwidth selection is extended to multivariate KDE.
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– Application of minimization of L2−Norm of FD through LSFD estimator with band-
width selection using the Extended Rule-of-Thumb method for BSS of linear mixtures
is achieved.

• Towards analysis of non-independent BSS

– A theoretical local minima analysis of some of the existing cumulants based approxi-
mations of indepependence measures for BSS is done. This is supported through em-
pirical comparative study of the effects of the used independence measures and non-
independent sources on the BSS solution. There has been observed either existence
of local optima or shift of the global optima or both; through both the information
theoretic and the kurtosis based optimization functions; for BSS of specific type of uni-
modal and multimodal PDF sources. The empirical study is done in higher dimensions
also. The study is done through Search for Rotation based Independent Component
Analysis (SRICA) algorithm, which uses GA as a search based global optimization
method.

• Towards large scale global optimization (LSGO) and avoiding misconvergence in GA

– Towards the algebra of GA, there exists the concept of equivalence relation based forma
as a generalization to the notion of schema. This has been further generalized to de-
pendency relation based extended forma. There has also been derived some operators
exploiting extended formae (plural of forma) based similarities.

– The suggested representation and operators are empirically used to derive Mendelian
Genetic Algorithm (MGA).

– Towards the partial success to reduce the computation for a non-separable global func-
tion optimization; there has been tried and tested different search strategies with GA.
The search strategies, for example, are - varying representations (gradual search), spiral
search, delta search, refine search, population reinitialization etc.

The part of the contribution can be viewed as significant extension to the theory of ITL and
Machine Learning. The ITL, till now, is using only the direct kernel estimation methods to derive
important statistics. The least square method for FD estimation gives a new way to use RKHS
theory to derive important statistics. The Machine Learning and ITL based applications usually
require to select the best solution from a given solution set. Using same bandwidth for all the
solutions is equivalent to assuming all being with same PDF characteristics. The ExROT method
can provide varying bandwidth parameter for varying solution from the given solution set.
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The part of the contribution can also be viewed as significant towards the field of Applied
Statistics. The theory behind derivation of the ExROT method uses PDF approximation through
Gram-Charlier Series. The PDF approximation through infinite series is an independent area well
travelled in Statistics. There exists many other such series defined using various reference PDFs
and for various applications. The research can be used to derive new general and application
specific rules for bandwidth parameter selection. Similarly, the multivariate extension of Gram-
Charlier series can also be used for other applications in Statistics.

There seems many directions the future work can be extended. The following extensions are
the ideas which are already verified through preliminary testing but have not been included due to
the time constraint and limiting the scope of the thesis. They are as under:

1. The independence measure and the optimization methods applied here for linear BSS are
also applicable to other mixing systems as Convolutive mixtures, post-nonlinear mixtures
and convolutive post-nonlinear mixtures.

2. The Edgworth series is more precise and can definitely be used to get better estimations of
bandwidth parameter. So, ExROT based on the Edgeworth series can be obtained.

3. The ICA concepts can be used to improve convergence in GA, MGA and aMGA by propa-
gating search in independent directions. The concept already exist by propagating search in
orthogonal directions through PCA.

4. The multivariate Gram-Charlier Series developed here can be used to perform theoretical
local minima analysis in higher dimensions.

5. As FD, GFD and HFD as well their combinations can be used for BSS.

6. The gradient and projection based optimization techniques can be applied for the same inde-
pendence measures.

7. The search strategies, for example, are - varying representations (gradual search), spiral
search, delta search, refine search, population reinitialization etc. which are conceptualized
during Thesis work, can be independently studied for their performances.

8. The overall solution, including the suggested independence measure and the optimization
method can be applied to a real time large scale brain signal separation problem.
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for blind source separation. Signal Processing, IEEE Transactions on, 56(10):4611–4620,
2008.

[94] D.T. Pham. Contrast functions for ica and sources separation technical report - bliss project.
Technical report, HUT and FhG, 2001.

[95] Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach to
function optimization. In Parallel problem solving from naturePPSN III, pages 249–257.
Springer, 1994.

[96] Jose C. Principe. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspec-
tives. Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 1441915699,
9781441915696.

[97] Xiaofeng Qi and Francesco Palmieri. Theoretical analysis of evolutionary algorithms with
an infinite population size in continuous space. part i: Basic properties of selection and
mutation. IEEE Transactions on Neural Networks, 5:102–119, 1994.

[98] Xiaofeng Qi and Francesco Palmieri. Theoretical analysis of evolutionary algorithms with
an infinite population size in continuous space. part ii: Analysis of the diversification role
of crossover. IEEE Transactions on Neural Networks, 5:120–129, 1994.

[99] N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems, 5(2):
183–205, 1991.

185



BIBLIOGRAPHY

[100] N.J. Radcliffe. Forma analysis and random respectful recombination. In Proceedings of
the fourth international conference on genetic algorithms, pages 222–229. San Marco CA:
Morgan Kaufmann, 1991.

[101] V. C. Raykar and R. Duraiswami. Very fast optimal bandwidth selection for univariate
kernel density estimation. Technical Report CS-TR-4774, Department of computer science,
University of Maryland, Collegepark, 2005.

[102] V. C. Raykar and R. Duraiswami. Fast optimal bandwidth selection for kernel density es-
timation. In J. Ghosh, D. Lambert, D. Skillicorn, and J. Srivastava, editors, Proceedings of
the sixth SIAM International Conference on Data Mining, pages 524–528, 2006.

[103] Henry Lewis Rietz. Mathematical Statistics, volume 3 of Carus Mathematical Monographs.
Mathematical Association of America, 1 edition, 1927.

[104] F. Rojas, I. Rojas, RM Clemente, and CG Puntonet. Nonlinear blind source separation using
genetic algorithms. In Proc. Int. Conf. on Independent Component Analysis and Signal
Separation (ICA2001), pages 400–405. Citeseer, 2001.

[105] T. Subba Rao S. Rao Jammalamadaka and Gyorgy Terdik. Higher order cumulants of ran-
dom vectors and applications to statistical inference and time series. Sankhya: The Indian
Journal of Statistics (2003-2007), 68(2):326–356, May, 2006.

[106] T. Sakai and M. Sugiyama. Computationally efficient estimation of squared-loss mutual
information with multiplicative kernel models. IEICE Transactions on Information and
Systems, E97-D(4):968–971, 2014.

[107] R. Salomon. Re-evaluating genetic algorithm performance under coordinate rotation of
benchmark functions. a survey of some theoretical and practical aspects of genetic algo-
rithms. BioSystems, 39(3):263–278, 1996.

[108] J. Sarela and R. Vigario. The problem of overlearning in high-order ICA approaches: analy-
sis and solutions. In J. Mira and A. Prieto, editors, Proc. Int. Workshop on Artificial Neural
Networks (IWANN-2001), pages 818–825, Granada, Spain, June 13-15 2001.

[109] J. Sarela and R. Vigario. Overlearning in marginal distribution-based ica: analysis and
solutions. The Journal of Machine Learning Research, 4:1447–1469, 2003.

[110] P Sauer and G Heydt. A convenient multivariate gram-charlier type a series. IEEE Trans-
actions on Communications, pages 247–248, 1979.

[111] D. C. Schleher. Generalized gram-charlier series with application to the sum of log-normal
variates (corresp.). IEEE Transactions on Information Theory, 23(2):275–280, 1977.

[112] S. Seth, M. Rao, Il Park, and J. C. Principe. A unified framework for quadratic measures of
independence. Signal Processing, IEEE Transactions on, 59(8):3624–3635, August 2011.

[113] S. Sheather. A data-based algorithm for choosing the window width when estimating the
density at a point. Computational Statistics and Data Analysis, 1,, page 229238, 1983.

186



BIBLIOGRAPHY

[114] S. Sheather. An improved data-based algorithm for choosing the window width when esti-
mating the density at a point. Computational Statistics and Data Analysis, 4,, page 6165,
1986.

[115] S. Sheather. The performance of six popular bandwidth selection methods as same real data
sets (with discussion). Computational Statistics, 7,, page 225250, 1986.

[116] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall,
1986.

[117] V. P. Skitovich. Linear forms of independent random variables and the normal distribution
law (in russian). Seriya Matematiceskaya, 18:185200, 1954.

[118] Ib M. Skovgaard. On multivariate edgeworth expansions. International Statistical Review /
Revue Internationale de Statistique, 54(2):pp. 169–186, 1986.

[119] R. E. Smith and D. E. Goldberg. Diploidy and dominance in artificial genetic search. Com-
plex Systems, 6(3):251–285, 1992.

[120] M. Sugiyama. Machine learning with squared-loss mutual information. Entropy, 15(1):
80–112, 2013.

[121] M. Sugiyama, T. Suzuki, and T. Kanamori. Density ratio matching under the Bregman
divergence: A unified framework of density ratio estimation. Annals of the Institute of
Statistical Mathematics, 64(5):1009–1044, 2012.

[122] M. Sugiyama, S. Liu, M. C. du Plessis, M. Yamanaka, M. Yamada, T. Suzuki, and
T. Kanamori. Direct divergence approximation between probability distributions and its
applications in machine learning. Journal of Computing Science and Engineering, 7(2):
99–111, 2013.

[123] M. Sugiyama, T. Suzuki, T. Kanamori, M. C. du Plessis, S. Liu, and I. Takeuchi. Density-
difference estimation. Neural Computation, 25(10):2734–2775, 2013.

[124] Taiji Suzuki and Masashi Sugiyama. Least-squares independent component analysis. Neural
Computation, 23(1):284–301, 2011.

[125] Gyorgy Terdik. Higher order statistics and multivariate vector hermite polynomials. Teor.
Imovir. Mat. Stat., 66:147–168, 2002.

[126] Fabian J. Theis, Andreas Jung, Carlos G. Puntonet, and Elmar W. Lang. Linear geometric
ica: fundamentals and algorithms. Neural Comput., 15(2):419–439, February 2003. ISSN
0899-7667.

[127] D. Thierens, D.E. Goldberg, and A.G. Pereira. Domino convergence, drift, and the temporal-
salience structure of problems. In Evolutionary Computation Proceedings, 1998. IEEE
World Congress on Computational Intelligence., The 1998 IEEE International Conference
on, pages 535–540. IEEE, 1998.

187



BIBLIOGRAPHY

[128] Aman Ullah. Entropy, divergence and distance measures with econometric applications.
Journal of Statistical Planning and Inference, 49(1):137–162, 1996.

[129] H. Valpola and P. Pajunen. Fast algorithms for Bayesian independent component analysis.
In Proc. Int. Workshop on Independent Component Analysis and Blind Signal Separation
(ICA2000), pages 233–237, Espoo, Finland, 2000.

[130] Larry A. Viehland. Velocity distribution functions and transport coefficients of atomic ions
in atomic gases by a gramcharlier approach. Chemical Physics, 179(1):71 – 92, 1994.

[131] Michael D. Vose. Generalizing the notion of schema in genetic algorithms. Artif. Intell., 50
(3):385–396, August 1991. ISSN 0004-3702. doi: 10.1016/0004-3702(91)90019-G.

[132] Frdric Vrins and Michel Verleysen. On the entropy minimization of a linear mixture of
variables for source separation. Signal Processing, 85:1029–1044, 2005.

[133] Frédéric Vrins, John Aldo Lee, and Michel Verleysen. A minimum-range approach to blind
extraction of bounded sources. IEEE Transactions on Neural Networks, 18(3):809–822,
2007.

[134] Frederic Vrins, Dinh-Tuan Pham, and Michel Verleysen. Mixing and non-mixing local min-
ima of the entropy contrast for blind source separation. IEEE Transactions on Information
Theory, 53(3):1030–1042, 2007.

[135] M. P. Wand and M. C. Jones. Comparison of smoothing parameterizations in bivariate kernel
density estimation. Journal of the American Statistical Association, 88(422):520–528, June
1993. URL http://oro.open.ac.uk/28293/.

[136] P. Wand and C. Jones. Kernel Smoothing. Chapman & Hall/CRC Monographs on Statistics
& Applied Probability. Taylor & Francis, 1994.

[137] Christopher S Withers and Saralees Nadarajah. The dual multivariate charlier and edgeworth
expansions. Statistics & Probability Letters, 87:76–85, 2014.

[138] A.H. Wright. Genetic algorithms for real parameter optimization. Foundations of genetic
algorithms, 1:205–218, 1991.

[139] Li Xiaodong, Ke Tang, Mohammad N. Omidvar, Zhenyu Yang, and Kai Qin. Benchmark
functions for the cec2013 special session and competition on large scale global optimization.
2015 IEEE Conferenc on Evolutionary Computations, Competetition on Large Scale Global
Optimization, 2013.

[140] Dongxin Xu. Energy, entropy and information potential for neural computation. PhD thesis,
Citeseer, 1999.

[141] Dongxin Xu, Jose C Principe, John Fisher, and Hsiao-Chun Wu. A novel measure for
independent component analysis (ica). In Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, volume 2, pages 1161–1164.
IEEE, 1998.

188



BIBLIOGRAPHY

[142] M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama. Relative density-
ratio estimation for robust distribution comparison. Neural Computation, 25(5):1324–1370,
2013.

[143] Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using cooper-
ative coevolution. Information Sciences, 178(15):2985–2999, 2008.

189



Appendix A

Measure, Metric, Norm and Lp-norm

Measures necessarily assign some nonnegative number to the members of a set in some systematic
way. The distance measures or distance functions assign nonnegative value for two elements of
a set. Let there be set S. Then, a distance function d : S × S → R may satisfy the following
conditions for x, y, z ∈ S:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 iff x = y (identity of indiscemibles)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality)

The distance functions satisfying first two conditions are called divergence measures and those
satisfying all four conditions are called metric. For example, if S contains n-dimensional vectors
then ∀x,y ∈ S, p ≥ 1, dp : S × S → R defined as under is a metric.

dp(x,y) =

(
n∑
i=1

|xi − yi|p
) 1

p

The concept to derive above metric is inspired by the distances in Euclidean geometry. The
generalization of this distance measure on sets to that on vector spaces is obtained by defining a
norm. Given a vector space V over a field F , a norm is a function ρ : V → R with the above four
properties of metric and added property of absolute Scale Invariance defined as under:

ρ(ax) = |a|ρ(x),∀x ∈ V, a ∈ F
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For example, given an n-dimensional vector space Rn and x ∈ Rn; the Lp-norm of x for a real
number p ≥ 1, is defined as:

‖x‖p = (|x1|p + |x2|p + . . .+ |xn|p)
1
p

The same definition has been also extended for functions in Lp-spaces. A point in Lp-space
is an Lp integrable function. A function f : Rn → R is Lp integrable, if p-th power of its absolute
value is finite, or equivalently,

‖f(x)‖p =

(∫
Rn
|f(x)|pdx

) 1
p

<∞

It is a complete normed space with all the Lp integrable functions, their linear combinations
through real coefficients and including all limit points.
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Appendix B

Information Potential (IP) and related
Concepts

In a general sense, potential means an unrealized ability. The gravitational potential and the electric
potential are the known examples from Physics. In both the examples, potential created by a
particle (with mass or charge) is inversely proportional to the distance. In kernel density estimation,
a kernel is placed at each sample location and usually kernel is a positive definite function decaying
with distance. This fact brings analogy with the potential theory. Each sample is an information
particle. The PDF is the information potential field in which the information particles interact with
each other. In a scalar field, the total potential is the summation of potential due to individual
particles. The information potential (IP) due to the system of samples or the field is given in a
same way. For a random variable x, the potential on a sample xj due to other samples, assuming
Gaussian kernel, is given by

V2(xj)
def
=

1

N

N∑
i=1

V2(xj, xi) where, V2(xj, xi) = Gσ
√

2(xj − xi)

So, the IP of x is

V2(x)
def
=

1

N

N∑
j=1

V2(xj) =
1

N2

N∑
j=1

N∑
i=1

V2(xj, xi) =

∫
{ ˆf(x)

2
}

The quantity V2(x) or IP is same as the integration of the square of the PDF. Instead of usual sum
in potential theory, the normalization is done to get integral over PDF to be 1. The subscript of V
reminds us that this is the quadratic information potential (QIP) as square of the PDF is integrated.
The definition is generalized for any α by defining Vα as the integral of α power of the density.
Also, instead of a Gaussian kernel any other kernel can be selected. But, they may not have as
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smooth characteristic as for α = 2 with Gaussian kernel. Using this result, ITL theory has defined
several scalar descriptors of PDF, that just depend upon the available samples with whole PDF
structure into consideration.

The ΨLSFD
2 defined in the article, is already defined as QMIED by (96). The quantity

QMIED, for a random vector x = (x1, x2), in terms of IP is derived as under:

QMIED(x1, x2) = DED(px1x2(x1, x2), px1(x1)px2(x2))

=

∫
x2

∫
x1

(px1x2(x1, x2)− px1(x1)px2(x2))2dx1dx2

=

∫
x2

∫
x1

(px1x2(x1, x2))2dx1dx2 +

∫
x2

∫
x1

(−px1(x1)px2(x2))2dx1dx2

−
∫
x2

∫
x1

2px1x2(x1, x2)px1(x1)px2(x2)dx1dx2

= VJ + VM − 2VC

where, VJ is the IP of the joint PDF, VM is the potential of the product of the marginal PDFs
and VC is the Cross Information Potential (CIP) similar to the concepts of cross entropy or cross
correlation.

The potentials can be estimated through kernel methods.

V̂J =
1

N2

N∑
j=1

N∑
i=1

V̂2(x(i),x(j))

=
1

N2

N∑
j=1

N∑
i=1

Gσ
√

2(x(i),x(j))

=
1

N2

N∑
j=1

N∑
i=1

Gσ
√

2(x1(i)− x1(j))Gσ
√

2(x2(i)− x2(j))

=
1

N2

N∑
j=1

N∑
i=1

V̂2(x1(i), x1(j))V̂2(x2(i), x2(j))

V̂M =

(
1

N2

N∑
j=1

N∑
i=1

Gσ
√

2(x1(i)− x1(j))

)(
1

N2

N∑
j=1

N∑
i=1

Gσ
√

2(x2(i)− x2(j))

)
= V̂2(x1)V̂2(x2)
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V̂C =

∫
x2

∫
x1

px1x2(x1, x2)px1(x1)px2(x2)dx1dx2

=

∫ ∫ [
1

N

N∑
k=1

Gσ(x1 − x1(k))Gσ(x2 − x2(k))

][
1

N

N∑
j=1

Gσ(x1 − x1(i))

]
[

1

N

N∑
j=1

Gσ(x2 − x2(j))

]
dx1dx2

=
1

N

N∑
i=1

1

N

N∑
j=1

1

N

N∑
k=1

∫
Gσ(x1 − x1(i))Gσ(x1 − x1(k))dx1∫

Gσ(x2 − x2(j))Gσ(x2 − x2(k))dx2

=
1

N

N∑
k=1

[
1

N

N∑
i=1

Gσ
√

2(x1(k)− x1(i))

][
1

N

N∑
j=1

Gσ
√

2(x2(k)− x2(j))

]

=
1

N

N∑
k=1

V̂2(x1(k))V̂2(x2(k))

B.1 Information Forces (IF)

It is obvious to think of information forces, once defined the IP. Potential and the force are related
concepts. One of the interpretation of potential is the amount of work done required to bring a
unit charge or unit mass from infinity to the point in the force field. The particle contains amount
of potential energy that has been applied to work against the force. The force on sample xj is the
derivative of the IP at a sample with respect to the position of sample xj , that is:

ˆF2(xj)
def
=

∂

∂xj
V̂2(xj)

=
1

N

N∑
i=1

G′
σ
√

2
(xj − xi) =

1

N

N∑
i=1

F̂2(xj − xi)

=
1

2Nσ2
(xi − xj)Gσ

√
2(xj − xi)
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Appendix C

Computational Details in Chapter 3

C.1 The Multivariate Representations of GCA Series and GGC
Series

As mention in Section 3.1, this section of the appendix describes existing representations of GCA
series and GGC series. The goal is to place together various historical representations for the ease
of comparison, on the level of difficulty or simplicity in representation, to the readers. Therefore,
no attempt is made to explain their derivation or each terms in representation. For further details
the actual references need be referred.

The GCA series representation using multi-element matrix notations for cumulants and
moments by Sauer and Heydt (110) is as under:

fx(x) =
∞∑
s1=0

∞∑
s2=0

. . .
∞∑
sd=0

[
Cs1s2···sd · (−1)

∑d
i=1 si

d∏
p=1

Hsp(xp)G(xp)

]
(C.1)

with, Cs1s2···sd =
E
{∏d

i=1Hsi(Xi)
}

(−1)
∑d
i=1 si

∏d
j=1 sj!

(C.2)

where, Cs1s2···sd is the constant depending upon cross-moments and Hi(x) is the one-dimensional
Hermite polynomial of ith order.

The GCA Series representation using recursive formula for Hermite polynomials by Berkowitz
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C.1. The Multivariate Representations of GCA Series and GGC Series

and Garner (14) is as under:

fx(x) = G(x)
∞∑
m=0

AmHm(z) (C.3)

with, Am =
d∏
i=1

(mi!)
−1

∫
R
Jm(z)fx(x)dx (C.4)

where, G(x) denote the multivariate Gaussian; z = (x − µ) is the normalized variable; µ is the
mean vector; {Hm(x)} and {Jm(x)} are the complete bi-orthogonal system of Hermite polynomi-
als.
Using recursive relations of {Jm(x)}, Am is given recursively as under:

Am =
1

N

[
d∏
i=1

(mi!)
−1

N∑
i=1

z
(i)
k Jm−ek(y

i)−
N∑
i=1

rkim
−1
k Am−ek−ef

]
, k = 1, . . . , d (C.5)

where, N is the number of available samples and ek is a vector with a ”1” as the kth component
and ”0” elsewhere. This defines the coefficients of expansions also recursively.

The GGC series representation using tensor notations for cumulants and Hermite polyno-
mials by McCullagh (81, Chapter 5) is as under:

fx(x;κ) = f0(x)
[
1 + ηihi(x) + ηijhij(x)/2! + ηijkhijk(x)/3! + . . .

]
(C.6)

where, hi(x) = hi(x;λ) = fi(x)/f0(x), hij(x) = hij(x;λ) = fij(x)/f0(x), . . . and fi(x) =

∂f0(x)/∂xi, fij(x) = ∂2f0(x)/∂xi∂xj, . . .; so on. Also, given
κi, κi,j, κi,j,k, . . . are the cumulant tensors of random vector x and λi, λi,j, λi,j,k, . . . are the cumu-
lant tensors of the reference pdf f0(x); we get:

ηi = κi − λi, ηi,j = κi,j − λi,j, ηi,j,k = κi,j,k − λi,j,k, . . .

The formal ‘moments’ ηi, ηij, ηijk, . . . are defined based on the formal ‘cumulants’ (or the cumu-
lant differences) ηi, ηi,j, ηi,j,k and so on.

Taking f0(x) = G(x) i.e. multivariate Gaussian density as the reference pdf and taking
ηi = 0, ηi,j = 0 in above Equation (C.6); the GCA series based on cumulant tensors is written as
under:

fx(x;κ) = G(x)
[
1 + κi,j,khijk(x)/3! + κi,j,k,lhijkl(x)/4! + κi,j,k,l,mhijklm(x)/5!

+
(
κi,j,k,l,m,n + 10κi,j,kκl,m,n

)
hijklmn(x)/6! . . .

]
(C.7)
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C.1. The Multivariate Representations of GCA Series and GGC Series

As could be observed, the GGC series and GCA series using tensor notations adds quite an ease to
representation. But, with increase in number of terms, the difficulty in representation increases.

The GCA series using vector moments and vector Hermite polynomials by Holmquist (61)
is as under:

fx(x) = G(x− µ; Cx)
∞∑
k=0

1

k!
GT
k (x− µ; Cx)E {Hk(x− µ; Cx)} (C.8)

where, Gk(x − µ) is the kth order vector derivative of G(x − µ) and E {Hk(x− µ)} is the
expectation of kth order vector Hermite polynomial that is the function of vector moments.

Ef
{
Hk(X− µ; C−1

x )⊗j
}

= k!Sd1k

[k/2]∑
j=0

mk−2j ⊗ (−V ec Cx)⊗j

(k − 2j)!j!2j
(C.9)

where, Ef {(X− µ)⊗j} ≡mj(µ).
The GCA series representation using Bell polynomials is obtained by Withers and Nadara-

jah (137). Here, the Bell polynomials are represented through cumulant tensors. With r =

(r1, r2, . . . , rd) ∈ Id, xr = xr11 . . . xrdd , r! = r1!r2! . . . rd! and |r| = r1 + r2 + . . . + rd; the GCA
series is as under:

fx(x)/G(x)− 1 =
∞∑
|r|≥3

BrHr(x,Cx)/r! (C.10)

where, Br =

|r|∑
j=0

Br,j (C.11)

Br,j =
1

k1(r − j)

r−j∑
l=1

(
r

j

)(
j + 1− r + 1

l + 1

)
kl+1Br−l,j (C.12)

kr = κ(Xr1, Xr2, . . . , Xrd) (C.13)

where, kr is the rth order cumulant and κ(x) is the moment.
Finally, the existing representations described in this Section C.1 can be compared with

those derived in the current article. , can be compared with the GCA series derived in Equa-
tion (3.59) and the GGC series derived in Equation (3.66) combined with Equation (3.68). More
specifically, the GCA series in Equation (C.1) using multi-element array representation and the
GGC series in Equation (C.6) using tensor representation can be compared with the GCA series
derived in Equation (3.59) and the GGC series derived in Equation (3.66), combined with Equation
(3.68), in vector notations. The comparison demonstrates the ease obtained in representation. The
same advantages are also obtained for other intermediate results in the article.
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C.2 Some important properties of the K-derivative operator

Some important properties of the K-derivative operator are listed below.

Property 3 (Scaling Property). Let λ = (λ1, λ2, . . . , λd)
′, λ ∈ Rd, f(λ) ∈ Rm and f1(λ) =

Af(λ), where A is an n×m matrix. Then

D⊗λ (f1) = (A⊗ Id) D⊗λ (f) (C.14)

where, Id is a d-dimensional unit matrix.

Property 4 (Chain Rule). Let λ = (λ1, λ2, . . . , λd)
′, λ ∈ Rd, f(λ) ∈ Rm1 and g(λ) ∈ Rm2 . Then

D⊗λ (f ⊗ g) = K−1
3↔2(m1,m2, d)((D⊗λ f)⊗ g) + f ⊗ (D⊗λg) (C.15)

where, K3↔2(m1,m2, d) is a commutation matrix of size m1m2d×m1m2d that changes the order

of the the Kronecker product components. For example,

K3↔2(m1,m2, d)(a1 ⊗ a2 ⊗ a3) = a1 ⊗ a3 ⊗ a2

The above K-derivative properties can be used to derive further the following properties:

1. D⊗λλ = V ec Id

2. D⊗λλ
⊗k = k

(
λ⊗k−1 ⊗ V ec Id

)
3. Let g(λ) = a′f(λ)

D⊗λg(λ) = (a⊗ Id)
′D⊗λf(λ)

4. D⊗λa′λ⊗k = k (a⊗ Id)
′ (λ⊗k−1 ⊗ V ec Id

)
= k a′

(
λ⊗k−1 ⊗ Id

)
5. D⊗λa′⊗kλ⊗k = k

(
a⊗k ⊗ Id

)′ (
λ⊗k−1 ⊗ V ec Id

)
= k (a′λ)⊗k−1 ⊗ a

6. D⊗rλ λ
⊗k = k(k − 1) · · · (k − r + 1)

(
λ⊗k−r ⊗ (V ec Id)

⊗r)
( ∵ Repeated application of the Chain Rule )

7. D⊗rλ a′⊗kλ⊗k = k(k − 1) · · · (k − r + 1)
(
a⊗k ⊗ I⊗rd

)′ (
λ⊗k−r ⊗ (V ec Id)

⊗r)
= k(k − 1) · · · (k − r + 1) (a′λ)⊗k−r ⊗ a⊗r

( ∵ Repeated application of the Chain Rule and the property: )
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C.3. The Taylor series expansion of some required functions near zero

C.3 The Taylor series expansion of some required functions
near zero

The Taylor series expansion of the required functions near λ = 0, based on the Equation (3.21),
are given as under:

ea′x =
∞∑
k=0

(a′x)⊗k

k!
= 1 + a′x +

(a′x)⊗2

2!
+

(a′x)⊗3

3!
+ . . . (C.16)

sin(a′x) =
∞∑
k=0

(−1)k

(2k + 1)!
(a′x)⊗2k+1 = a′x− (a′x)⊗3

3!
+

(a′x)⊗5

5!
− . . . (C.17)

cos(a′x) =
∞∑
k=0

(−1)k

(2k)!
(a′x)⊗2k = 1− (a′x)⊗2

2!
+

(a′x)⊗4

4!
− . . . (C.18)

ea′x cos(b′y) = 1 + a′x +
(a′x)⊗2

2!
− (b′y)⊗2

2!
+

(a′x)⊗3

3!
− (a′x)⊗ (b′y)⊗2

2!

+
(a′x)⊗4

4!
+

(b′y)⊗4

4!
− (a′x)⊗2 ⊗ (b′y)⊗2

2!2!
+ . . . (C.19)

ea′x sin(b′y) = b′y + (a′x)⊗ (b′y)− (a′x)⊗2 ⊗ (b′y)

2!
− (b′y)⊗3

3!

− (a′x)⊗ (b′y)⊗3

3!
+

(b′y)⊗5

5!
− (a′x)⊗2 ⊗ (b′y)⊗3

2!3!
+ . . . (C.20)

C.4 Some Proofs

C.4.1 K-derivative of δ(x)

Based on the Differentiation Property of Fourier Transform, the following is obtained:

F−1
(
F
(
D⊗kf(x

))
= F−1

(
(iλ)⊗kF(f(x))

)
⇒ D⊗kδ(x) = F−1(iλ)⊗k
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C.4.2 Relationship between m(k, d) and c(k, d) for k = 2 and k = 3

For k = 2; using Equation (3.29), Equation (3.33) and the differentiation rules for Kronecker
product in Appendix C.2; the following is derived:

m(2, d) = D⊗2
λ M(λ)λ=0 (C.21)

⇒
∞∑
p=2

m(p, d)′

(
λ⊗(p−2) ⊗ Id ⊗ Id

)
(p− 2)!

λ=0 = K−1
p3↔2(d1, d2, d)

{(
∞∑
p=2

c(p, d)′(
λ⊗(p−2) ⊗ Id ⊗ Id

)
(p− 2)!

⊗ exp

(
∞∑
q=1

c(q, d)′
λ⊗q

q!

) λ=0

+


 ∞∑

p=1

c(p, d)′

(
λ⊗(p−1) ⊗ Id

)
(p− 1)!

⊗2

⊗ exp

(
∞∑
q=1

c(q, d)′
λ⊗q

q!

) λ=0

⇒m(2, d) = c(2, d) + c(1, d)⊗2 (C.22)

where, p3 ↔ 2 ∈ P is the required permutation and Kp3↔2(d1, d2, d) is the corresponding com-
mutation matrix.
For k = 3; using Equation (3.29), Equation (3.33) and the differentiation rules for Kronecker
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product in Appendix C.2; the following is derived:

m(3, d) = D⊗3
λ M(λ)λ=0 (C.23)

⇒
∞∑
p=3

m(p, d)′

(
λ⊗(p−3) ⊗ Id3

)
(p− 3)!

λ=0 = K−1
p3↔2(d1, d2, d)K−1

p3↔2(d1, d2, d)
 ∞∑

p=3

c(p, d)′

(
λ⊗(p−3) ⊗ Id3

)
(p− 3)!

⊗ exp

(
∞∑
q=1

c(q, d)′
λ⊗q

q!

) λ=0

+ K−1
p3↔2(d1, d2, d)


 ∞∑

p=2

c(p, d)′

(
λ⊗(p−2) ⊗ Id2

)
(p− 2)!

⊗( ∞∑
p=1

c(p, d)′

(
λ⊗(p−1) ⊗ Id

)
(p− 1)!

⊗ exp

(
∞∑
q=1

c(q, d)′
λ⊗q

q!

) λ=0 + K−1
p3↔2(d1, d2, d)

2

 ∞∑
p=2

c(p, d)′

(
λ⊗(p−2) ⊗ Id2

)
(p− 2)!

⊗1

⊗

 ∞∑
p=1

c(p, d)′

(
λ⊗(p−1) ⊗ Id

)
(p− 1)!

⊗1

⊗ exp

(
∞∑
q=1

c(q, d)′
λ⊗q

q!

)}
λ=0 +

 ∞∑
p=1

c(p, d)′

(
λ⊗(p−1) ⊗ Id

)
(p− 1)!

⊗2

⊗

(
∞∑
p=1

c(p, d)′

(
λ⊗(p−1) ⊗ Id

)
(p− 1)!

⊗1

exp

(
∞∑
q=1

c(q, d)′
λ⊗q

q!

)
λ=0

⇒m(3, d) = c(3, d) + 3c(2, d)⊗ c(1, d) + c(1, d)⊗3 (C.24)

201



C.4. Some Proofs

C.4.3 Multivariate Gaussian representation in terms of the cumulants (The
proof related to the Section 3.8

Applying D⊗x on Equation (3.42),

D⊗x f(x) =
1

(2π)d

∫
Rd

(λ⊗ Id)⊗ exp

(
−c(2, d)′

2
λ⊗2

)
sin
(
(x− c(1, d))′ λ

)
dλ (C.25)

Let, U(λ) = exp

(
−c(2, d)′

2
λ⊗2

)
(C.26)

⇒ D⊗λU(λ) = −c(2, d)′ (λ⊗ Id) exp

(
−c(2, d)′

2
λ⊗2

)
(C.27)

Also, let V (λ) = (x− c(1, d)) cos
(
(x− c(1, d))′ λ

)
(C.28)

⇒
∫
V dλ = sin

(
(x− c(1, d))′ λ

)
(C.29)

Using above Equation (C.26), Equation (C.28) in Equation (C.25) and taking inv c(2, d) = V ec (C−1
x );

we get:

D⊗x f(x) = −inv c(2, d)′

(2π)d

∫
Rd

(
D⊗λU(λ)

)(∫
V dλ

)
dλ (C.30)

Applying integration by parts to above Equation (C.30), we get:

D⊗x f(x) = −inv c(2, d)′

(2π)d

{
exp

(
−1

2
c(2, d)′λ⊗2

)
sin
(
(x− c(1, d))′ λ

)∣∣∣∣
Rd

− exp

(
−c(2, d)′

2
λ⊗2

)
(x− c(1, d)) cos

(
(x− c(1, d))′ λ

)
dλ

}
(C.31)

= inv c(2, d)′ (x− c(1, d)) f(x) (C.32)

The solution of above differential equation leads to the following:

f(x) = c exp
(
− (inv c(2, d))′ (x− c(1, d))

)
(C.33)

where, c = f(0) =
1

(2π)d

∫
Rd

exp

(
−c(2, d)′

2
λ⊗2

)
dλ

= (2π)−d/2 (|Cx|)−1/2 (C.34)

⇒ f(x) = (2π)−d/2 (|Cx|)−1/2 exp
(
− (inv c(2, d))′ (x− c(1, d))

)
(C.35)

⇒ 1

(2π)d

∫
Rd

exp

(
−c(2, d)′

2
λ⊗2

)
cos (x′λ− c(1, d)′λ) dλ = G(x) (C.36)
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.1 AMISE for bandwidth parameter selection in KDE

Given N realizations of an unknown PDF f(x), the kernel density estimate ˆf(x) is given by

ˆf(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
=

1

N

N∑
i=1

Kh (x− xi) (37)

where,K(u) is the kernel function and h is the bandwidth parameter. Usually,K(u) is a symmetric,
positive definite and bounded function; mostly a PDF; satisfying the following properties:

K(u) ≥ 0,

∫
Rd
K(u)du = 1,

∫
Rd
uK(u)Du = 0,

∫
Rd
u2K(u)du = µ2(K) <∞

The accuracy of a PDF estimation can be quantified by the available distance measures between
PDFs; like; L1 norm based mean integrated absolute measure, L2 norm based mean integrated
square error (MISE), Kullback-Libeler divergence and others. The optimal smoothing parameter
(the bandwidth) h is obtained by minimizing the selected distance measure. The bandwidth selec-
tion rule based on the most widely used criteria MISE or IMSE (Integrated Mean Square Error) is
derived as under (116, 136).

ISE(f(x), ˆf(x)) = L2(f(x), ˆf(x)) :=

∫
Rd

( ˆf(x)− f(x))2dx

MISE(f(x), ˆf(x)) = E{ISE(f(x), ˆf(x))} = E

{∫
Rd

( ˆf(x)− f(x))2dx

}
=

∫
Rd
E{( ˆf(x)− f(x))2}dx =

∫
Rd

MSE(f(x), ˆf(x)) = IMSE(f(x), ˆf(x))

=

∫
Rd

(E{ ˆf(x)} − f(x))2 + E{( ˆf(x)− E{ ˆf(x)})2}dx

=

∫
Rd

Bias2( ˆf(x))dx+

∫
Rd

Var( ˆf(x))dx (38)

Now, E{ ˆf(x)} =
1

Nh

N∑
i=1

E

{
K

(
x− xi
h

)}
=

1

h

∫
Rd
K

(
x− s
h

)
f(s)ds

=

∫
Rd
K(z)f(x− hz)dz ( ∵ substituting z = x−s

h
)
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Expanding f(x−hz) using Taylor Series with the assumption of f(x) being a smooth PDF i.e. all
derivatives exist

E{ ˆf(x)} =

∫
Rd
K(z)

(
f(x)− hzf ′(x) +

h2z2

2
f ′′(x) +O(h2)

)
dz

= f(x) +
h2

2
µ2(K)f ′′(x) +O(h2)

⇒ Bias( ˆf(x)) ≈ h2

2
µ2(K)f ′′(x) (39)

where, µ2(K) =
∫
z2K2(z)dz, the second order central moment of the kernel.

Similarly, Var( ˆf(x)) = Var

(
1

Nh

N∑
i=1

K

(
x− xi
h

))

=
1

N2h2

N∑
i=1

Var
(
K

(
x− xi
h

))
=

1

Nh2

[
E

{
K2

(
x− xi
h

)}
− E2

{
K

(
x− xi
h

)}]
=

1

N

∫
Rd

1

h2

(
K2

(
x− s
h

))
f(s)ds− 1

N

(
1

h

∫
Rd
K

(
x− s
h

)
f(s)ds

)2

=
1

Nh

∫
Rd
K2(z)f(x− hz)dz − 1

N

(
f(x) + Bias( ˆf(x))

)2

(40)

where, s is the mean of x and z = x−s
h

. Now, expanding f(x − hz) using Taylor Series with
assumption of f(x) being a smooth PDF i.e. all derivatives exist

Var( ˆf(x)) =
1

Nh

∫
Rd
K2(z)

(
f(x)− hzf ′(x) +

h2z2

2
f ′′(x) +O(h2)

)
dz

− 1

N

(
f(x) +

h2z2

2
f ′′(x) +O(h2)

)2

⇒ Var( ˆf(x)) ≈ 1

Nh
f(x)

∫
K2(z)dz (∵ assuming large N , small h ) (41)

Combining equations (38), (39) and (41)

MISE( ˆf(x)) =
h4

4
(µ2(K))2R(f ′′) +

1

Nh
R(K) +O(h4) +O

(
h

N

)
where, R(f ′′) =

∫
(f ′′(x))2dx and R(K) =

∫
K2(z)dz. In general, R(g) =

∫
g2(z)dz is iden-

tified as the roughness of function g(x). An asymptotic large sample approximation AMISE is
obtained, assuming limN→∞ h = 0 and limN→∞Nh =∞ i.e. h reduces to 0 at a rate slower than
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1/N .

AMISE( ˆf(x)) =
h4

4
(µ2(K))2R(f ′′) +

1

Nh
R(K) (42)

The Equation (42) interprets that a small h increases estimation variance, whereas, a larger h
increases estimation bias. An optimal h minimizes the total AMISE( ˆf(x)). So,

d

dh
AMISE( ˆf(x)) = h3(µ2(K))2R(f ′′)− 1

Nh2
R(K) = 0

⇒ hAMISE =

(
R(k)

µ2(K)2R(f ′′)N

) 1
5

(43)

Thus, the optimal bandwidth parameter depends upon some of the kernel parameters, number of
samples and the second derivative of the actual PDF being estimated.
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