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Abstract

Advances in the computational science joined medical imaging domain to help hu-

manity. It offers great support in clinical practices where automatic Computer Added

Systems (CAD) help in identification and localization of abnormal tissues. In recent

decades, a lot of research tuned non-invasive techniques have been devised to serve

mankind. One of them is Magnetic Resonance Imaging (MRI) which provides struc-

tural information at higher resolution even in presence of bone structures in the body.

Although it is free from ionizing ingredient, factors like electronic circuitry, patient

movement etc. provoke some artifacts in imaging system considered as noise. One

needs to get rid of these artifacts by means of software processing to enhance the

performance of diagnostic process. This thesis is also an attempt to deal with noisy

part of MRI and comply with preserving image structures such as boundary details

and preventing over-smoothing. It has been observed that, in case of MR data, noise

follows Rician distribution. As opposed to additive Gaussian noise, Rician noise is

signal dependent in nature due to MR image acquisition process.

The thesis constitutes a relationship between MRI denoising and uncertainty

model defined by Rough Set Theory (RST). RST already has shown some promising

outcomes in image processing problems including segmentation, clustering whereas

not much attention has been paid in image restoration task. The first part of the the-

sis proposes a novel method for object based segmentation and edge derivation given

the noisy MR image. The edges are closed and continuous in nature and segmentation

accuracy turns out to be better than well-known methods. The prior information is

used as cues in various image denoising frameworks.

In Bilateral filter framework along with spatial and intensity cues, a new weighing

factor is derived using prior segmentation and edge information. This further extends

to non local framework where waiver in spatial relation conceded to access similar

information from far of neighbors. Under non locality paradigm, a clustering based

method is proposed which clubs together similar patches based on similarity criteria.
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The proposed clustering method uniquely defines clusters of patches under multiple

class set up. These clusters are then used to define the basis vectors using Princi-

pal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA)

method followed by hard thresholding shrinkage procedure. Afterwards, multiple es-

timations of a pixel are averaged by number of estimations. In total, number of PCA

or KPCA operations are far less than other contemporary methods which repeat the

same process over chunks of patches in the image space.

The concept is then extended for 3D MRI data. The 3D imaging provides better

view of objects from three directions as compared to 2D imaging where only one face

of object can be viewed. It involves a complex relationship as compared to 2D imag-

ing and hence is computationally expensive. But it also includes more information

which helps in visualizing the object, its shape, boundary etc. similar to real world

phenomenon. We extended the segmentation and edge derivation mechanism to 3D

data in last part of the thesis. Clustering process is also extended by converting each

voxel to one dimensional vector. This part explores various kernels over Rician noise

distributed MR data. The results are promising in terms of structure measures even

with some simple kernels.
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Chapter 1

Introduction

Non-invasive imaging technique has been great help for medical practitioners for

many decades. Starting from X-Ray imaging, the technique of medical imaging has

traveled a long way and is constantly being extremely helpful for diagnosis. With the

introduction of digital techniques, medical imaging got its strength in recent years.

The science of medical imaging has matured a lot in last few decades. More so-

phisticated machines and non-invasive techniques have made medical imaging popular

and have thereby made the diagnosis more accurate. However, the main premise of

accurate diagnosis is noise free images which are still elusive. Parallel research on

removing artifacts/noise arising out of hardware, software and physical problems are

going on. The present thesis is an attempt in this direction. In particular, techniques

to estimate original data from its noisy form are presented for various noise models.

The type of medical image considered is Magnetic Resonance Imaging (MRI) of brain

tissues.

1.1 Overview of MRI

Magnetic Resonance Imaging (MRI) is one of the most popular clinical imaging meth-

ods developed alongside Computer Tomography (CT) and X-Rays Technology. It is

an ionization and radiation free modality, hence is a non-invasive technique and safer

1
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(a) T1 (b) T2 (c) PD

Figure 1.1: Sample images from Phantom BrainWeb Database [1]

than CT, X-Ray and other techniques. It also provides a better soft tissue contrast

and image resolution for diagnostic purpose [3], [4]. The MRI modality built upon

phenomenon of Nuclear Magnetic Resonance (NMR), was discovered by F. Bloch and

E. Purcell independently in 1946 (both awarded Nobel prizes in 1952). Further inves-

tigation of NMR phenomena led it to be useful for human society in notable works by

Richard Ernst, Paul C. Lauterbur and Sir Peter Mansfield who won the Nobel prize

in 1991, 2003 and 2003 respectively.

The principle of NMR involves quantum and classical mechanics, which involve

processing of protons (present in human body) under external Magnetic field. The

crux of MRI modality is utilization of abundance containment of hydrogen nucleus

present in human body in the form of water. The protons of H-atoms are aligned

by the external field. Under a radio frequency (RF) pulse, protons release their

energy generating an electromagnetic signal that gets recorded by receiver coils of

MRI scanners. These electromagnetic signals get encoded in phase and frequency

components. The Inverse Fourier transform of raw data generates image slice either 2

or 3 dimensional, also known as k-space. The reconstruction process from raw signal

to image space, provides an added choice to generate any particular slice in 2D form

or complete volumetric (3D) representation [5], [6]. MRI offers various modalities, in

addition, namely T1, T2, PD (Proton Density) modality, shown in Figure 1.1.

Although a versatile technique, the quality of image is often affected during image

acquisition process. The artifacts can mainly be classified as:
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• Hardware Related: such as power supply instability, thermal noise etc.

• Software Related: such as error in decoding pulse sequence, intensity inhomo-

geneity etc.

• Patient Related: such as body movement, holding breath for a long time, blood

flow etc.

• Physics Related: such as magnetic susceptibility, Gibbs ringing artifacts etc.

Many of the artifacts mentioned above are taken care of by MR scanner available.

Some noise/artifacts still remain in the scan which needed to be removed. Other-

wise, it may affect post-processing step which involves tissue identification, tissue

segmentation and other diagnostic decisions.

In the reconstruction step, there is always an uncertainty involved due to sampling

of Fourier domain to spatial domain, interpolation techniques used etc. This uncer-

tainty can be defined as whether a spatial location is representing an actual tissue

information of the subject or a true signal is may be affected by encoding scheme or

effect of neighborhood and so on. This uncertainty leads to some undesirable visual

effects, commonly referred as noisy image, which are needed to be overcome by some

software/mathematical modeling (referred as Image Denoising Problem). Here, Fig-

ure 1.2 shows two real sample images of different subjects (human) from benchmark

databases [7], [8] where noise is clearly visible. The image denoising problem is in

fact an inverse problem which tries to reconstruct a true noise-free image [9], hence,

can ease the image segmentation, disease identification etc.

The acquisition process of medical images is sensitive to noise or undesired signals.

Since noise is an inherent part of MRI data, denoising becomes a crucial ingredient of

medical image analysis process. Hence, there are two sets of problems: (a) estimation

and analysis of noise model/parameter and other artifacts such as intensity inhomo-

geneity, bias correction etc. and (b) construction of adaptive models for denoising

purpose. However, these can be considered independent problems or one can use the
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(a) OASIS database [7] (b) BRATS database [8]

Figure 1.2: Sample images from Real Databases

first one as guided input for the other. An inaccurate noise model may lead to doubt

on reliability of denoising method. Traditionally, Gaussian model is preferred at high

SNR locations in MRI [10]. A lot of efforts have been put to build a statistical noise

model in MRI [10], [11], [12], [13]. Similarly, efforts have been made to estimate

parameters of models in [2], [14], [15], [16].

On the other side, to develop denoising methods according to noise model in MRI

is highly sought. In this regard, many conventional methods have been modified

accordingly to adjust the nature of MRI data [17], [18], [19], [20]. However, one needs

to take care of the tissue information and boundary information in image and keep

them intact at the end of denoising process. In fact, Cerebrospinal Fluid (CSF), Gray

Matter (GM) and White Matter (WM) play significant role in differentiating healthy

brain from an abnormal one and also in clinical examinations [21]. So, even a small

change in it may produce a wrong clinical decision. Hence, any preprocessing part

must preserve the structure and properties of tissue as in the human subject. A large

review on denoising methods in MRI can be found in [22].
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1.2 Motivation

It is already stated that noise from different sources and for different conditions

accumulate in MR images. Hence, the main motivation of this work is to get MR

images which are noise free by pre-processing techniques before going into image

analysis such as tissue segmentation. Noise most naturally affects boundaries of

different tissues, thereby making it most difficult to identify proper edges. Another

motivation of the thesis, rather than first motivation is to get edges as proper as

possible from the noisy image.

Moreover, study revealed that the noise model present in MR images is very

different from that of natural images. This happens due to several unique sources of

noise generation and their combination. Thus, it is quite obvious that the technique

used in natural image denoising may not work properly for medical images. Another

motivation was to investigate such noise and explore the technique of removal of noise.

In MRI data, many edge detection methods failed and were not able to capture

all the edges [23]. The edges, that we are looking for, give rise to object boundaries

which must be closed in nature. The purpose of closed boundaries is to govern

denoising process near the boundary regions where two different tissues may interact.

Otherwise, denoising of one type of tissues may affect/disturb another type of tissues

at boundary. However, most of the methods proposed earlier [24] [25], fail to get such

closed boundaries while finding the edges.

Another significant difference (between natural images and medical images) lies

in the noise realization. Commonly, noise in natural images is considered as additive

and white in nature, defined as Y = X + η, where X is the actual signal and η is the

error component or noise inducted in the acquisition process. Here, noise occurrence

has been assumed to be independent and identically distributed (IID) noise. The

Rician noise was built from white Gaussian noise in the complex domain, defined

below

Y =
√

(X + η1)2 + (η2)2 (1.1)
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where X is the noise free image, η1 ∼ N(0, σn), η2 ∼ N(0, σn) and σn is the standard

deviation of the added white Gaussian noise. The signal dependency behavior makes

it difficult to implement many denoising methods in straight forward manner. How-

ever, some methods are acquainted with Variance Stabilization Techniques (VST)

for rician data, proposed in [2]. In addition, MRI denoising with Rician noise needs

to have bias correction module [20]. However, some methods also suggest for bias

correction in [26], [27], [28], [29].

Disturbances or noise induced in acquisition process lower down the quality of

the signal. Hence, it is desirable to have denoising methods suitable for Rician kind

of distribution while sustaining the integrity of the image scan. Noise brings uncer-

tainty in data and changes image intensity abruptly. Hence, it is difficult to find the

amount of change at each location in the MRI. One can only estimate/approximate

the possibility of true value at each location using other information from data.

A keen observation about MRI brain images is that they are symmetrical many

a times, hence one can use this kind of structural property in denoising process

(also evident in Figure 1.1 and 1.2). This property can be useful in patch based

processing non locally. In recent years, image denoising literature has dealt in patch

based denoising where idea is to get the similar patches with in the image space.

However, finding similar patches for each patch is tedious and time consuming. Hence,

such methods are restricted to find similarity with a given local neighborhood of the

underlying patch.

1.3 Scope and accomplishments of the thesis

The main scope of this thesis is to handle the uncertainty due to noise present in MR

image and make it as clean as possible. The clean image is expected to lead towards

robust diagnosis. The noise present in the image is assumed to be an uncertainty

model as no prior information is available to decide whether a pixel of the image is

noisy or non-noisy. Emphasis is given to deal this uncertainty through soft computing



CHAPTER 1. INTRODUCTION 7

approach. Rough Set Theory (RST) is a strong and well accepted component of soft

computing. RST provides a framework that can handle improper/incomplete infor-

mation and there by supports the decision makers to make more accurate conclusion.

Rough Set Theory was proposed by Z. Pawlak in 1982 to handle the uncertainity

in the data [30]. The applicability of RST for many decision making system has been

studied for last two decades. The applicability of RST for medical image analysis

has also been studied. Some notable works can be found in [31], [32], [33]. This

thesis explores applicability of RST for medical image denoising problem. So far,

almost no attempt has been made towards this. The first work reported was in

2008 [34], where the use of RST for medical image denoising was in nascent stage.

This thesis is an attempt to strengthen the applicability of RST in medical image

denoising field. However, the scope is restricted to brain MR images. Chapter-wise

major accomplishments of the thesis are listed down:

(1) A Rough Set based generalized multi-class thresholding mechanism is defined by

maximizing rough entropy. Based on this, Rough Class Label (RCL) and Rough

Edge Map (REM) are defined. The REM is closed and continuous in nature

which is a unique feature. Both RCM and REL accelerate denoising process.

(2) Under Bilateral Filter (BF) framework [35], different treatments are adopted for

homogeneous and heterogeneous regions present in the image. This filter mainly

consists of spatial and photometric similarity. By adopting varying weights

for these two similarity measures, homogeneous and heterogeneous regions are

catered in different ways. Along with two existing components of BF, a third

component is derived using RCL and REM to enhance the performance.

(3) Recent advancements suggested in the field of image denoising are mostly patch

based where the denoising task is carried out by aligning self-similar patches.

The basic framework is known as Non Local Self Similar (NLSS). Due to the

computational complexity, the search for similar patches is restricted, though

ideally it could be anywhere within the image support. Thus the current state
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of the art can be looked upon as a restriction on the NLSS framework. This

framework has also been applied on transformed domain images. PCA is the most

popular way to construct transformed domain images. RST based approaches for

aligning all the self similar patches within the image support are proposed. This

new alignment approach has also been applied on transformed domain image.

(4) Recent studies of MR images reveal that noise present is Rician in nature rather

than Gaussian [11]. Naturally, it is expected that PCA based method may not

be suitable under Rician noise. A Kernel Principal Component Analysis (KPCA,

[36]) based method has been proposed for Rician noise removal. This also incor-

porates RST based alignment of self similar patches.

(5) A common way to analysis 3D volumetric MR image is slicing it to 2D image. Re-

cently with the help of available computational power, researchers are analyzing

3D data directly. Keeping this in mind, RCL and REM, as proposed above, are

extended for 3D volumetric data. Assuming Rician noise, a structure preserving

KPCA based method is presented for 3D MRI data. Experiments are carried out

with varying kernels.

1.4 Organization of thesis

This work is on establishing a relevance of rough set theory in context of medical image

denoising problem. The work is built upon the proposed framework for rough class

labels (RCL) and rough edge map (REM) generation method. These information

are further utilized in some of the well-known image denoising framework in the

context of MR images. RCL and REM are used as a regularization term in bilateral

filter whereas patch based RCM and REM are used in non local means and principal

component analysis based methodologies. This work proposed a unique notion of

clustering of image patches which is used for denoising and is comparable to state-of-

the-art methods. To explore structure of image patches in higher dimensional space,
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a kernel principal component analysis based method is designed. The same concept

is extended for 3D patches to work on 3D MR image denoising. Brief overviews of

chapters are as under.

We have developed a generalized notion of Rough Class Label (RCL) and Rough

Edge Map (REM) subjected to rough entropy criteria in Chapter 2. The proposed

approach defines class in terms of object(s) of interest in the image and their combined

continuous closed boundary. The closed boundary works as a regularizing term in

the denoising process. The class information helps the denoising process based on

similarity between the underlying pixel/location in the image. The proposed method

of edge map is found to be superior to some of the well-established methods in the

field of image processing and computer vision.

Bilateral Filter is considered as the first method in modern image denoising lit-

erature. The method uses spatial and photometric similarity between the pixels for

denoising. The proposed method, in Chapter 3, adds one more weighing component

of similarity in conventional bilateral filter using the REM and RCL information.

The added information is found to be suitable in terms of denoising performance in

comparison to methods from the class of bilateral filters.

The next revolutionary idea in denoising is the notion of Non-Local Self Similarity.

In Chapter 4, we propose a more principled approach to explore self similarity within

the image space. The proposed approach makes cluster of patches according to REM

and RCL information which are further utilized in image denoising. The strategy

performed superior than many of the existing methods. The current method can be

considered as non-local in true sense where whole image space is explored.

The Principal Component Analysis (PCA) is one of the well-known nonparametric

methods and has been explored in image denoising problem. However, PCA inher-

ently assumes data to be Gaussian in Nature. The applicability of PCA in MRI

images denoising is not advocated as nature of noise is not Gaussian. To deal with

Rician noise of MRI images, a manifold based method using Kernel Principal Com-

ponent Analysis has been explored in Chapter 5. The proposed method transforms
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data to feature space where denoising takes place and noise free data (ideally) is re-

projected back to image space. Experimentally, the performance of rough set with

KPCA method is found to be comparable with state-of-the-art methods under Rician

noise model of MRI.

The MRI generation process is flexible in formation of 3D and 2D images. The

3D data provides insight into inter-slice and intra-slice relationship between tissues.

Currently, a lot of attention is devoted for processing 3D in real-time scenario. A

3D version of RCL and REM has been proposed in search of similar 3D patches

for denoising. A structure preserving method is proposed in Chapter 6 in compar-

ison to state-of-the-art method. This work also explores various kernels for better

performance.

This work is concluded in Chapter 7 with some of the possible directions of future

work.



Chapter 2

Rough Set in Image Processing

Granular information processing added a new dimension to information processing un-

der Soft Computing umbrella. A Granule is defined as a collection of few information

units forming larger ones and Granulation operation is decomposition of universe into

parts [37]. The term Granular Computing (GrC) is intended to deal with uncertainty,

partial truth, impreciseness under the granule space [38]. Granules at the lowest level

are composed of atomic particle of the universe of discourse. This composition could

be defined on spatial neighborhood, indistinguishable property, similarity function,

cohesion etc. between atomic particles. The soft computing approaches such as Fuzzy

Logic, Rough Set, Neural Network etc. try to model vagueness and uncertainty under

GrC framework.

2.1 Background Study on Rough Set

Rough Sets provide a unique approach to knowledge discovery and approximation

of sets using granular information. It provides structures for overlapping boundary,

given domain knowledge. Rough set methods have been applied as a component of

hybrid solutions in machine learning and data mining [39]. They have been found to

be particularly useful for rule induction and feature selection (semantics-preserving

dimensionality reduction). Rough set-based data analysis methods have been success-

11
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fully applied in bio-informatics [40], economics and finance [41], medical imaging [42],

multimedia [43], web mining [44], signal and image processing [45], decision theoretic

analysis [46], software engineering [47], robotics [48], and semiconductor engineering

[49] etc.

2.1.1 Soft Computing Siblings

The Rough Set Theory (RST) was proposed by Z. Pawlak in 1982 [30]. RST along

with Fuzzy Logic [50] intended to deal vagueness. In Fuzzy Logic, individual elements

are defined in terms of membership function for belonging to a particular set or

object. In contrast, RST induces notion of approximation space [51]. Using a granular

representation, RST has access to look at subset of object as one unit instead of

dealing with individuals. This in turn gives more insight to nature of elements in

terms of similarity measures. Recently, Near Set was proposed in [52] to focus on the

discovery of sets having matching description that does not require a consideration of

approximation boundaries. However, RST and Near set are considered as two sides

of the same coin [31]. RST and Fuzzy Sets are claimed to be two different approaches

in [53], where as in [54] it has been proved that rough sets are fuzzy sets but converse

is not true. Also, some combinations of RST and fuzzy sets were proposed in the past

as Rough Fuzzy Set and Fuzzy Rough Set [55], [56].

2.1.2 Rough Set and its extension to Image Processing

Rough set concept can be defined quite generally by means of topological operations,

interior and closure, called approximations [30]. Given a set of objects U called

the universe and an indispensability relation R ⊆ U × U , representing our lack of

knowledge about elements of U . Assume that R is an equivalence relation. Let X be

a subset of U. Now characterize the set X with respect to R. To this end we will need

the basic concepts of rough set theory given below.

• The lower approximation of a set X with respect to R is the set of all objects,
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which can be for certain classified as X with respect to R (are certainly X with

respect to R).

• The upper approximation of a set X with respect to R is the set of all objects

which can be possibly classified as X with respect to R (are possibly X in view

of R).

• The boundary region of a set X with respect to R is the set of all objects, which

can be classified neither as X nor as not−X with respect to R.

Now, set X would have following two possibilities:

• Set X is crisp (exact with respect to R), if the boundary region of X is empty.

• Set X is rough (inexact with respect to R), if the boundary region of X is

nonempty.

The equivalence class of R determined by element x is denoted by R(x). The in-

dispensability relation in certain sense describes lack of knowledge about the universe.

Equivalence classes formed by indispensability relation, called granules generated by

R, represent elementary portion of knowledge perceived due to R. Thus in view of

the indispensability relation, in general, it allows to observe individual objects but

forced to reason only about the accessible granules of knowledge. Formal definitions

of approximations and the boundary region are as follows:

• R-lower approximation of X

R(x) =
⋃
x∈U

R(x) : R(x) ⊆ X (2.1)

• R-upper approximation of X

R(x) =
⋃
x∈U

R(x) : R(x) ∩X 6= φ (2.2)
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Figure 2.1: Image granules with upper and lower approximation of an object as
conceptualized in Rough Set Theory

• R-boundary region of X

RNR(X) = R(X)−R(X) (2.3)

The lower approximation of a set is union of all granules which are entirely included

in the set; the upper approximation is union of all granules which have non-empty

intersection with the set; the boundary region of set is the difference between the

upper and the lower approximation. The figurative description is given in Figure 2.1.

Extension to Image Processing

RST incorporates the notion of granules (group of neighboring pixels in case of image).

As suggested in [57], the image space, Ω can be partitioned in overlapping/ non-

overlapping granules (Gi) of size m × n pixels, to derive more information under

given attribute vector (Θ) for each object (Ck, kth object) present in the image.

Under RST, each object/class with given attribute is represented in terms of lower

approximation (Ck
Θ) and upper approximation (C

k

Θ) separately. The Ck
Θ consists of
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certainly classified granules which are part of object Ck under attribute Θ. The C
k

Θ

constructed by possible granules of that class defined by attribute Θ including Ck
Θ.

The set difference of both approximations provide boundary set of the object. This

establishes an equivalence relationship among the data present in any approximation

given the attribute(s). In this work, pixel intensity is considered as an attribute to

distinguish objects present in the image. Each object in the image assumed to be

confined in intensity range. This range, as intensity thresholds, is obtained from image

histogram. Here, thresholds obtained from histogram serves as feature and an object

Ck is confined within two intensity thresholds given by [Θk−1,Θk]. Mathematically,

lower and upper approximation of object Ck with given attribute Θ can be defined

as follows:

Ck
Θ =

{⋃
i

Gi|Θk−1 ≤ Pj < Θk,∀j = 1, 2, ...,mn and pixel Pj ∈ Gi granule

}
(2.4)

C
k

Θ =

{⋃
i

Gi|Θk−1 ≤ Pj < Θk,∃j = 1, 2, ...,mn and pixel Pj ∈ Gi granule

}
(2.5)

For given attribute(s), a granule can be classified in lower or upper approximation

of an object. The attribute considered here is the intensity values at each location

in the image space. The objects present in the image are categorized in intensity

range by optimizing noisy image histogram. The class label can be assigned by

comparing intensity value at each location against the intensity ranges of all the

objects. Similarly, a granule (set of adjacent pixels) is assigned to an object’s lower

approximation (and upper also) if all the pixels fall in its intensity range. If some

pixels of the granule fall in the intensity range then granule will be considered in

upper approximation (not part of lower approximation). If none of the pixel in the

granule follows intensity range then it can be considered as background for particular

object. The union of difference of both the approximations of all objects will generate

pixels which are very near to possible edges in the image.
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2.1.3 Applications of RST in Image Processing & Pattern

Recognition

RST have been applied to handle various challenges in the field of image processing

and medical imaging. It has been applied across various problems from segmentation

to clustering, Feature reduction to Information theoretic analysis of various imag-

ing modalities including Magnetic Resonance Imaging (MRI), CT, Remote Sensing

Imaging, Fingerprint Imaging, Face Images etc. A recent review of RST in above

mentioned domains can be found in [31], [32]. RST has been explored on Face Recog-

nition problem in [58], brain tumor segmentation and processing in [59], [60]. RST

based entropy minimization method has been applied in Remote sensing and charac-

ter images in [57] whereas region of interest has been extracted from medical images in

[61]. The partial volume effect is dealt by RST in [62], cancer detection is attempted

in [63] and some other implementations have been reported in [64], [65], [66], [67],

[68], [69], [70], [71].

2.2 Proposed Class Label & Edge Map

The major contribution of this work is to provide more information from noisy image

to the denoising framework to boost up the performance. The edge information can

be used to stop across the boundaries. But the presence of noise makes it more

difficult to get actual edges, hence makes it an ill-posed problem [57]. This prompted

the present work to select rough set theory to get imprecise edge information that is

expected to include actual edges. The granule information processing of Rough Set

Theory (RST) helps to visualize the possible presence of edge or heterogeneity in the

granules. Granules are very small image blocks of size 2× 1, 1× 2 or 2× 2 etc. The

RST based approach, with the help of granules, provides partitions in the image to

create lower and upper approximations of the objects. Note that, lower approximation

set will be contained completely in upper approximation set. The difference of both

approximations provides a possible edge region for a particular object or class present
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in the image. Here, in this work, we considered four major class/objects namely, CSF,

White matter, Gray matter and Background in the brain MR images. For denoising

task, as a regularization term, the Rough Edge Map (REM) of the image and Rough

Class Labels (RCL) of each pixel are obtained. The procedure for obtaining REM

and RCL are presented in next two subsections followed by design of the proposed

filter.

2.2.1 Rough Class Labels

Objective of this step is to assign a class label to each individual pixel. However,

presence of noise makes this task hard. It is even harder as noise level increases.

Finding a suitable threshold from the histogram of the image is a common practice to

discriminate objects and thereby assigning class labels to the pixels. But, histogram

of noisy image may not lead to precise threshold for object segmentation. This im-

precise threshold in turn will define imprecise object boundary that could affect the

performance of denoising Filter. RST, being known for handling impreciseness, is

expected to give rise to a threshold that could boost up the performance of denoising

Filter.

The impreciseness is avoided as far as possible by optimizing Rough Entropy to

find a threshold as precise as possible. Now onwards, this threshold will be referred

as Rough Entropy Threshold (RET ). Originally, RET was proposed for a two class

problem [57], known as binarization. Initial approximate value of a threshold (valley

in the histogram) is obtained by using a window based method from the histogram.

This value is then refined by optimizing Rough Entropy criteria, defined as [57]:

RET = −1

2

[
ROT loge

(
ROT

e

)
+RBT loge

(
RBT

e

)]
(2.6)

where ROT = 1−
∣∣OT

∣∣ / |OT | and RBT = 1−
∣∣BT

∣∣ / |BT | (
∣∣S∣∣ and |S| are cardinality

of lower and upper approximation of set S respectively) are roughness of object of

interest (OT ) and background (BT ) respectively.
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In the present context, we are using MR images (noisy) having more than two

classes. The above defined RET for two class problem is applied in successive manner

to get thresholds for multi-modal histogram. The threshold of an object is obtained

by considering this current object as one class and all other objects as another class

(background). The image thus binarized depicts only one object. After getting the

threshold, each pixel is assigned a single bit binary symbol 0 or 1 depending on

whether it is below threshold or above threshold respectively. The procedure is re-

peated with respect to all objects. So in case there are N objects, N − 1 thresholds

are obtained and consequently at the end, each pixel will get a binary code of length

N . It is expected that, out of 2N possible binary codes, there only N different binary

codes will be assigned to all pixels. Pixels having same binary code belong to the same

class. By this way, class labels are assigned to each pixel. A figurative explanation is

shown in Figure 2.2.

The entire procedure is summarized below

a. Estimate approximate thresholds from the noisy image histogram using parzen

window approach.

b. Optimize each threshold separately using rough entropy criteria under GrC

framework (Eq. 2.6).

c. Binarize the image with respect to each optimized threshold. For each threshold,

assign 1 if pixel value is greater or equal to the threshold, 0 otherwise.

d. Combine assigned symbols (1 or 0) of each pixel for all thresholds. This will

lead to representing each pixel by a binary string of length K, if there are K−1

thresholds.

e. Classify all binary strings and there by pixels. Strings having same symbol at

same position will be classified as same class.
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Figure 2.2: Code and Class assignment for different number of thresholds. Here K is
number of thresholds.

2.2.2 Rough Edge Map

The size of granules is an important factor for finding Rough Edge Map (REM). For

deriving edge information, a heterogeneous granule is considered as having a possible

edge location. In this work, the granule size is kept as 2×2. This leads to a situation

where some granule will not be counted entirely in lower approximation of an object.

All such granules will be considered as boundary for an object and union of all object

boundaries will give a Rough Edge Map of the image.

The problem now turns to find those granules which are possibly on the boundary

of an object. This can be done by considering each optimized threshold separately.

First, binarize the image corresponding to each optimized threshold. A granule will

be called homogeneous, if all the pixels of the granule are either below threshold or

above it. Otherwise, it will be heterogeneous in nature, which in-fact, will form the

edge map of the image.
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2.3 Experimental Results

2.3.1 Overview on Edge extraction Methods

An abrupt change in image intensity is considered as presence of an edge or boundary

between two different objects. This provokes researchers to adopt an edge detection

method to find boundaries of objects. However, most of the edge detectors may not

give rise to close curves and hence fail to build complete object boundaries. This moti-

vated researcher to explore mechanism that can evolve near perfect object boundaries

(closed curves). Region Growing (RG) and Active Contour (AC) [72] based methods

are some such techniques. Moreover, edge detector based object boundary evolution

could be sensitive to the presence of noise with a few exceptions ([73], [24]). Region

Growing based methods are also susceptible to noise. On the other hand, AC based

methods could survive against noise at least up to certain extent. Both RG and AC

methods are highly dependent on initialization. Though many modification of AC

method are available [74], [75], still a more robust object boundary detection method

is high demand, especially in the field of medical images.

Snake Model [72] is the basis of AC based methods. Various attempts have been

made to make this model more robust against noise and other artifacts [74], [75].

A milestone achievement in this area was proposed by Chan and Vese [75]. Till

time, Snake models worked under binary assumption where object boundaries used

to evolve by segmenting Foreground and Background. A Multiphase Snake model was

first proposed in [25], to generalize the notion of detecting multiple object boundaries.

This method deals with partitioning image into 2N objects considering N level sets.

This restricts its usage for images where number of objects is not power of 2.

The Active Contour Models (Snake Models) are energy minimizing spline curves

to derive object boundary in the image. The energy minimization depends totally

on object shape, location and initialization of the contour. ACMs do not solve the

entire problem of finding contour in the images [76]. The weighted combination of

internal and external image forces forms an energy-minimization functional in the
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Snake model. The internal force depends on shape of the snake while external force

is dependent on image features such as edges, lines etc. In mathematical form, it can

be written as

ψ∗snake =

∫ 1

0

ψsnakec(s)ds (2.7)

where c(s) is parametric representation of the contour. Using Calculus of Variation,

the Euler-Lagrange condition states that the spline c(s) which minimizes ψ∗snake must

satisfy
d

ds
ψcs − ψc = 0 (2.8)

where ψcs is the partial derivative of ψ with respect to dc
ds

and ψc is the partial

derivative of ψ with respect to c.

The Chan-Vese (CV) method works on bi-model image assuming image space, Ω,

to be part of either object or background. The CV model is defined as follows:

ψ(c, µ1, µ2) = λ1

∫
inside(c)

|I(x, y)− µ1|2 dxdy+

λ2

∫
outside(c)

|I(x, y)− µ2|2 dxdy, (x, y) ∈ Ω

(2.9)

where I(x,y) is intensity value at location (x,y), µ1, µ2 are two constants which are

average intensities inside and outside the contour respectively. The Multiphase Chan-

Vese (MCV) Method, proposed in [25], uses multiple level sets to partition the image

space. The space can be divided into objects and background with respect to each

level set used. Hence, the combination of N level sets will partition the space into 2N

non-overlapping segments. This method does not require the computation on Euler-

Lagrange’s equation. But it suffers from initialization of multiple contours and one

cannot find desired segmentation if the number of objects is not exponent of 2.
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(a) (b) (c) (d)

Figure 2.3: (a) Synthetic Image, (b) Canny Edge Detector, (c) Multiphase Chan-Vese
Method and (d) Proposed Method

2.3.2 Simulation Results

The experiments are performed on synthetic image having four objects including

background and Magnetic Resonance Human Brain Phantom Images [1]. These im-

ages contain four objects naturally. A synthetic image of size 128 × 128 with four

objects of different intensity level is shown in Figure 2.3(a). The results of Canny

edge detector, Multiphase Chan-Vese (MCV) Method [25] and proposed method are

Figures 2.3(b)-2.3(d) respectively. Canny edge detector is unable to extract continu-

ous boundary, whereas MCV and RST based methods retain the close boundaries of

objects. The Gaussian noise of zero mean and standard deviation 15 is added in im-

age shown in Figure 2.4(a). The results are shown in Figure 2.4. Again, Canny edge

detector generates spurious edges and is not able to extract close boundary curve.

MCV method and proposed method retain the closed object boundaries. However,

the result of RST based method seems to be better as to retain very thin boundaries

as desired.

Another experiment is performed on MR brain image obtained from Brain Web

Dataset [1]. The specifications are as follows: Modality= T1, Protocol=ICBM,

RF=20%. The presented work considered 4 classes in the image slice, namely Cere-

brospinal Fluid (CSF), Gray Matter (GM), White Matter (WM) and Background.

The results for object boundary detection and hence segmentation are shown in Fig-

ure 2.5. The Figure 2.5a is noise free slice 100 image whereas Gaussian noise of zero
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(a) (b) (c) (d)

Figure 2.4: (a) Noisy Image with N(0, 15), (b) Canny Edge Detector, (c) Multiphase
Chan-Vese Method and (d) Proposed Method

mean and standard deviation 15 is added which is shown in Figure 2.5b. Figure 2.5c

shows output of canny edge detector. The edges do not build object boundaries as

those are disconnected. Figure 2.5d shows output of MCV method after 500 iterations

while Figure 2.5e is output of proposed method. Figure 2.5f is ground truth segmen-

tation of Figure 2.5a. The results of MCV method and proposed method is shown

in Figure 2.5g and 2.5h respectively. The segmentation accuracy of MCV method

was found to be 68.84% whereas it is 91.87% in proposed method. Note that these

statistics are obtained while comparing with ground truth.

The current state-of-the-art research on image denoising, inpainting suggest patch

based approach. For each candidate patch, the task is to find all similar patches within

image boundary. So naturally if a patch is within an object, its similar patches are

expected to be within that object itself. Similarly, if a patch is on the boundary of two

objects, similar patches would be on boundary too. Accurate object boundary de-

tection followed by segmentation could expedite search for similar patches. However,

performance depends on the accuracy of detecting object boundary. With this notion

in mind, we selected a patch and find its similar patches from the segmented image

preceded by MCV and RST method. Figure 2.6 shows experiment of finding similar

patches for a given patch. Figure 2.6a and 2.6b show patch location in image and

zoomed version respectively. Note that this patch is inside the circle drawn. Figure

2.6c shows the similar patches found in the ground truth segmentation. Figure 2.6d
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.5: (a) Noise free MR Image, (b) Noisy MR Image, (c) Canny edge detection
on noisy image (d) Boundary extraction from MCV method, (e) Boundary extrac-
tion from proposed RST based method, (f) Ground Truth segmentation of noise free
MR image (a), (g) Segmentation from MCV method, accuracy = 68.84% and (h)
Segmentation from proposed method, accuracy = 91.87%.
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is similar patches obtained from MCV segmentation whereas Figure 2.6e is similar

patches identified by proposed method. From ground truth segmentation, there are

5285 patches are found. In case of MCV method, 8738 similar patches are found, out

of which only 5132 patches are matching with ground truth patches (matching ratio

= 58.73%). From proposed method, 5291 patches are detected to be similar patches

and out of which 4936 patches are matching with ground truth patches (matching

ratio = 93%). Hence, proposed method can explore more similar patches from object

boundaries in comparison to MCV method.

2.4 Conclusion

Rough set has capacity to handle the uncertainty present in the data. This charac-

teristic of RST makes it a suitable candidate to obtain Edge and Class information

from the noisy image. The edge information and class information in-turn boost up

the performance of further diagnostic process. The obtained edge map is found to

be continuous and closed and is capable of defining object boundaries even in noisy

situations. It appeared to be defining object boundaries in a better way compared to

a couple of existing methodologies such as Canny Edge Detector and Active Contour

methods.
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(a) (b)

(c)

(d) (e)

Figure 2.6: (a) A patch (5x5) is shown at location (39,39), (b) Zoomed part of patch
location, (c) Similar patches available in Ground Truth segmentation, (d) Similar
patches obtained from MCV method and (e) Similar patches obtained from proposed
method. 58.73% and 93% patch matches are observed with MCV method and Pro-
posed method given ground truth patches shown in (c) respectively.



Chapter 3

Image Denoising in Early Age

Initial work in the domain of denoising includes Mean and Median filters, Isotropic

filter, Anisotropic filter [77], [17], [78], robust statistics [79], [80]. Furthermore, non-

iterative and more edge preserving Bilateral filter, proposed in [35], revolutionized

notion of denoising. The origin of it has been shown from Anisotropic diffusion meth-

ods under Bayesian approach in [81]. Bilateral Filter uses two filters simultaneously,

one on spatial location and another on intensity values. Since its inception, there

have been many modifications of bilateral filter as suggested in [82], [83], [84], [85],

[86]. However, its constant time version, in terms of computational complexity, have

been proposed recently in [87], [88]. It is even extended to Trilateral filters [89], [90]

and for medical images in [91]. The third filter which is used simultaneously with

bilateral filters, is designed in various ways. One can conclude that more information

could lead to better performance. In the present chapter, the filter proposed is trilat-

eral by nature. The third component of the filter is based on edge information and

neighborhood information. Various edge detectors, such as Canny [24] or segmenta-

tion methods and gradient based methods such as Active Contour Methods [72],[75],

could be utilized for obtaining edge details. However, we are looking for edges that

give rise to object boundaries, which are closed in nature. Most of the above men-

tioned methods fail to get such closed boundaries while finding the edges. Moreover,

the method such as Active Contour fails to get object boundaries where number of

27
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objects is not in power of two. The details of these are available in Chapter 2. The

current work includes Rough Set, [30], based methodology to find object boundaries

which are closed and continuous. As we mentioned, the third component of filter

also depends on neighborhood information, each image pixel is labeled as one of the

objects/classes present in the image. This class information (class label) is obtained

through the Rough set based mechanism [Chapter 2]. The edge map and class la-

bels are obtained simultaneously. There are few methods available which use pair of

images to denoise under bilateral framework, named Cross Bilateral Filter and Dual

Bilateral Filter. (Refer to [92] for more details). Now, very briefly, we will discuss

bilateral filter and related work before describing our proposed filter.

3.1 Related Work

The Bilateral Filter (BF) inherently defines spatial and range (photometric) filter to

denoise an image according to spatial domain and intensity domain respectively [35].

The final filter uses the product of weights of both the filters for a neighboring pixel.

Mathematically, BF can be defined as

∆(i, j) = ψ(i, j)ζ(i, j) (3.1)

where ψ and ζ are monotonically decreasing non-negative functions for spatial and

intensity closeness, i is the center pixel location and location j is in neighborhood of

i, i.e. j ∈ N(i), within window w × w. In general, both functions are assumed to be

Gaussian in nature and controlled by their parameters, σψ and σζ respectively. These

functions are defined as

ψ(i, j) = Gσψ (‖i− j‖) (3.2)

ζ(i, j) = Gσζ (‖Y (i)− Y (j)‖) (3.3)
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where Y (i) represent intensity at location i. The denoised pixel intensity Ŷ (i) at the

location i is given by

Ŷ (i) =

∑
j∈N(i) ∆(i, j)Y (j)∑

j∈N(i) ∆(i, j)
(3.4)

The Scaled Bilateral Filter proposed in [83], is one of the state-of-the-art approach

proposed on conventional BF framework. The key idea behind this is consider the

closeness in the scale-space domain where noise will get suppressed by some amount.

In this approach, input is first convolved with a Gaussian kernel of suitable size. In

its intensity filter, the difference is considered between scaled version of input image

at location p with input image at location q. But this blurring may lead to a loss of

edge information. The selection of appropriate scale for comparison purpose was not

suggested. The spatial filter is kept same. The intensity filter, ζ, is defined as follows:

ζ(p, q) = Gσζ (‖IG(p)− I(q)‖) (3.5)

IG(p) =
∑
q∈N(p)

Gscale (‖p− q‖) I(q) (3.6)

Here, IG is the scaled version of input image I, p and q are positions in the image

and N(p) is the neighborhood considered around position p.

A Wavelet based Bilateral Filter has been proposed in multi-resolution framework

[86]. An input image is decomposed into its approximation (LL band) and detail

sub-bands (LH, HL, HH bands) through wavelet decomposition at two levels using

’db8’ filter. The BF is applied on approximation sub-band at both level and wavelet

thresholding is applied on detail sub-bands. The denoised image is reconstructed

using filtered approximation band and detail sub-bands (after applying thresholding

on coefficients) at both the level using inverse wavelet transformation. The structure

and behavior of conventional Bilateral Filter [35] remains intact (refer to eq. (1)),

however, it is applied at various level of wavelet pyramid structure. More details can

be found in [86].

In BF, a pixel is estimated using weighted average of pixels in the given neigh-
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borhood space as discussed above. The extreme case of it can be defined if the

neighborhood window is assumed to be equal to given image space for each pixel.

This philosophy leads to the concept of Non Local Means [93] approach designed

for image denoising. Non-Local similarity focuses on the range filter by leveraging

the effect of spatial filter in predefined neighborhood. In other words, it inherently

assumes complete image space and estimation is based on weighted average of range

kernel function. Chapter 4 will provide more in-depth details.

3.2 Design of Proposed Filter

The proposed filter introduces a term which boosts up the impact of spatial closeness

and intensity closeness. The introduced term is adaptive in nature and derived from

Rough Edge Map and Rough Class Labels obtained from noisy image. The spatial

filter in the conventional approach does not consider presence of edge in the image.

Similarly, range filter is simply governed by parameters of functional form like de-

cay parameter if function is assumed to be Gaussian. This leads to include more

information about edges and homogeneous region of the image.

The third term ρ(i, j) ∈ [0, 1] is defined for each pixel of the image conditioned on

REM information around pixel (x, y) and RCL information at location (i, j) (Here,

(x,y) is the current pixel location in the image space and (i,j) location is in the prede-

fined neighborhood of (x,y) location). Both the information utilizes the uncertainty

or roughness of the image due to presence of noise. In this proposal, a fuzzy notion

is adopted to derive the value of ρ for each pixel depending on both the information.

Here, the value of ρ is categorized in three notions, namely small (ρs), moderate (ρm)

and high (ρh) based on impact of both the information for each pixel. The restriction

of ρ is defined as follows

a. ρh(i, j) ∈ [0, 0.4]

b. ρm(i, j) ∈ (0.4, 0.7]
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c. ρs(i, j) ∈ (0.7, 1]

So far, the ranges of small, medium and large values of ρ are fixed intuitively by

looking at its impact on the filter. However, a sigmoidal type of function could be

used. The third weight (ρ) is expected to either boost up or lower down the effect of

other two weights in conventional bilateral filter. The neighbors of a pixel are defined

by considering w × w window centered at each pixel. The pseudo assignment is as

follows:

1. if REM(i, j) == 1

2. if class(i, j) == class(x, y)

3. ρ(i, j) = ρm;

4. else

5. ρ(i, j) = ρs;

6. end

7. else

8. ifclass(i, j) == class(x, y)

9. ifREM(x, y) == 1

10. ρ(i, j) = ρm;

11. else

12. ρ(i, j) = ρh;

13. end

14. else

15. ifREM(x, y) == 1
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16. ρ(i, j) = ρs;

17. else

18. ρ(i, j) = ρs; (This should not occur)

19. end

20. end

21. end

The proposed filter is designed as follows

∆′(i, j) = ρ(i, j)(ψ(i, j)ζ(i, j)) (3.7)

The first condition (1) emphasizes that whether neighbor pixel is near to an edge

or not. The granule processing will give a thick edge which will also consider pixels

near to actual edges. Conditions (1) − (6) reveal that the edge may pass through

neighbor pixel and both are from same class, so current pixel is also near to an edge

hence assign moderate weight to preserve that edge. Otherwise both the pixel belongs

to different classes and hence assigns small weight so that it will have less impact.

If an edge is not passing through neighbor pixel then check whether they belong

to same class or not in condition (8). If both are from same class and edge is passing

from center pixel (condition (9)) then assign moderate weight to preserve that edge,

otherwise (condition (11)), they both belong to homogeneous area and have high

dependency on each other so assign high weight to increase the impact.

If both pixel and its neighbor do not belong to same class (condition (14)) and

center pixel is an edge pixel (condition (15)) then both belong to different classes

and edge is passing in between these two, so assign high weight. The condition (17)

should not occur ideally (but this case has been observed in experiments), so assign

high weight to have less impact on the current pixel.
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3.3 Computational Complexity

In this subsection, we evaluate the computational complexity of the method proposed

along with some other methods which are used for comparison. All the methods based

on bilateral filter are window based method, in other words, methods are restricted

in sufficient large window around current pixel for estimating its true value. Let S

be the predefined size of the neighborhood such as 3 × 3, 5 × 5 etc. and N be the

total number pixel of the image. Here, we assume that S involves in the computation

of spatial and range filters as defined in Section 3.1. Being a point-wise processing

method, for each pixel computation of both filters need to be performed. Hence the

complexity of Bilateral filter [35] can be defined as O(NS) [92]. In extreme case

(worst case complexity), S can be extended to image space which makes complexity

in order of O(N2).

In case of Scaled Bilateral filter [83], first scaled version of input image is computed

using Gaussian function with filter size K and range filter is based on difference

between scaled image and input image for each pixel. Hence, the complexity can

be defined as O(N(S + K)). The Multi-Resolution Bilateral filter [86] is based only

bilateral filter with additional two level wavelet decomposition. The method deploys

bilateral filter three times at various stages (Refer to schema provided in [86]). Hence,

computationally it can be defined in terms of O(3NS + W ), where W denotes the

computation required for two level decomposition and reconstruction.

The proposed method first computes Class information and Edge information

based on three optimized thresholds (see subsections 3.1 and 3.2). Note that, in

the current context, as we know there are four classes possible, hence the number of

thresholds are fixed to three. Let us consider, Tavg number of intensity values are

considered to find each optimized threshold. So the complexity of this task would be

O(N ∗Tavg). Now while designing the filter, an additional step is proposed along with

the conventional bilateral filter. This additional step assigns weight to each pixel by

comparing class information and edge information. Hence, the overall computational
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Table 3.1: Computational complexity for methods used in this work

Approach Complexity
Bilateral Filter [35] O(NS)
Multi Resolution O(3NS +W )

Bilateral Filter [86]
Scaled Bilateral Filter [83] O(N(S +K))

Proposed Filter O(N(S + C + Tavg)

complexity becomes O(N(S + C) +N ∗ Tavg), where C denotes the time to compute

weights. In extreme case, if S and C are extended to image space, then complexity

turns out to be O(N2) which is same as Bilateral filter. Thus, it could be concluded

that the proposed method does not carry high computational cost.

3.4 Experimental Results

The work has been carried out on 2D monochrome human brain MR images. The

experiments were performed on one simulated dataset downloaded from Brain Web

[1] and two real data sets namely, Open Access Series of Imaging Studies (OASIS,

[7]) and Brain Tumor Segmentation challenge data from MICCAI 2012 confernce

(BRATS, [8]). The experimental setup considers two noise models, Gaussian and

Rician in nature on Brain Web data. The method of addition of Rician noise is as

presented in [94]. To evaluate performance of denoising algorithm, four evaluation

measures are used. The measures consist of Peak Signal to Noise Ration (PSNR),

Root Mean Square Error (RMSE), Structure SIMilarity (SSIM) Index proposed in [95]

and Feature SIMilarity (FSIM) Index proposed in [96]. Note that these performance

measures are wisely used to validate denoising algorithms. In the real databases, noise

is assumed to be Rician in nature. The parameters of all methods are mentioned in

the table 3.2. All the experiments were performed in MATLAB 2012(b) environment

on Lenovo Z580 with Intel core i7 Windows7 laptop. The next subsection briefly

describe the evaluation measure in more detail followed by experimental set up and

results on all the data sets.
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Table 3.2: Parameter values for methods used in this work

Approach # of parameters Parameter value
Bilateral Filter [35] 2 σψ = 5 and σζ = 0.01
Multi Resolution 3 σψ = 5, L = 2

Bilateral Filter [86] σζ = estimated from input image
Scaled Bilateral Filter [83] 3 scale = 0.5, σψ = 5

and σζ = 0.01
Proposed Filter 3 σψ = 5 and σζ = 0.01

ρ = adaptive

3.4.1 Evaluation Measures

The evaluation measures used are defined as follows: Let I be noise-free image of size

M ×N and (̂I) be is its noise-free approximation.

• Root Mean Square Ratio (RMSE)

MeanSquareError(MSE) =
1

MN

M∑
i=1

N∑
j=1

(
I(i, j)− Î(i, j)

)

RMSE =
√
MSE (3.8)

• Peak-Signal-to-Noise Ratio (PSNR)

PSNR = 10log10

(
L2

MSE

)
(3.9)

where L is maximum intensity level present in the image I and MSE is same

as defined above.

• Structural Similarity Index (SSIM) [95]

SSIM(x, y) =
(2µxµy + ε1)(2σxy + ε2)

(µ2
x + µ2

y + ε1)(σ2
x + σ2

y + ε2)

MSSIM =
1

M

M∑
j=1

SSIM(xj, yj) (3.10)
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where ε1, ε2 ensure stability when either (µ2
x + µ2

y) or (σ2
x + σ2

y) us close to zero.

The SSIM is defined over a local window centered at (x, y) and average over

such windows gives a single measure for entire image, named as Mean SSIM

(MSSIM).

• Feature Similarity Index (FSIM) [96]

FSIM =

∑
x∈Ω SL(x)PCm(x)∑

x∈Ω PCm(x)
(3.11)

where Ω defines entire image spatial domain. The similarity measure SL(x)

is defined as product of similarity function on Phase Congruency (PC) and

similarity function of Gradient Magnitude (GM) (i.e. SL(x) = SPC(x).SG(x)).

The functions SPC(x) and SG(x) are as follows:

SPC(x) =
2PC1(x).PC2(x) + ε1
PC2

1(x) + PC2
2(x) + ε1

& SG(x) =
2G1(x).G2(x) + ε2
G2

1(x) +G2
2(x) + ε2

(3.12)

where ε1, ε2 ensure stability of above functions.

3.4.2 Simulation Results

Results on Brain Web Database

The implementation of algorithm on phantom data provides an insight of the algo-

rithm and ability to compare the results with available ground truth data. The Brain

Web database consists of phantom volumetric data with their ground truth details.

The other specifications are: size = 181 × 217 × 181, modality = T1&T2, protocol

= ICBM , RF= 0% and noise = 0%. The 2D slices are extracted from 3D volume

data of size 140 × 176 after removing unnecessary background area and normalized

in the range [0, 1].

The experiments are performed with different noise levels by adding Gaussian

noise and Rician noise in the data (Rician noise model and its properties are
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discussed in detail in Chapter 5). The addition of noise is done as suggested in [94].

In case of Rician noise, the bias removal (= 2σ2, where σ is noise standard deviation)

is also done as suggested in [20]. The results of both noise models at with different

noise levels are shown in tables. Table 3.3 and 3.4 show results on Gaussian noise

distribution over T1 and T2 images. In most of the cases, proposed method clearly

outperforms than other methods. Table 3.5 and 3.6 show results on Rician noise

distribution over both the modalities. In all the cases, NLM filter clearly outperforms

others in the class of Bilateral filters. However, proposed method performed better

than other methods in Bilateral category. The experiments were performed on 50

slices of both the modalities on Gaussian noise and Rician noise. The results of PSNR

and SSIM values are shown in Figure 3.1 and 3.2 where one can observe the superior

performance among bilateral filters (Note, we have shown results on bilateral class of

filters only). The Figures 3.3 and 3.4 show the denoised images with various methods

on slice 100 of T1 modality under Gaussian noise and Rician noise respectively.

Table 3.3: Performance comparison of proposed denoising filter with other approaches
on various quantitative measures under Gaussian Noise assumption on T1 images
of Brain Web database

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy Image 39 8.18 0.9472 0.9752 39.18 7.85 0.9345 0.973

Bilateral 40.23 6.17 0.9644 0.9866 40.81 5.39 0.9612 0.9869
Multi Resolution Bilateral 35.19 19.68 0.9275 0.9566 37.57 11.37 0.9533 0.9769

Scaled Bilateral 40.09 6.37 0.9661 0.9903 40.32 6.03 0.9637 0.9906
Proposed Method 40.6 5.66 0.9686 0.9898 41.35 4.75 0.9676 0.9907

5 Noisy Image 34.57 22.72 0.8776 0.9409 34.75 21.8 0.8541 0.9358
Bilateral 35.25 19.27 0.898 0.9546 35.64 17.75 0.8835 0.9522

Multi Resolution Bilateral 33.04 32.28 0.8840 0.9372 34.39 23.68 0.9058 0.9610
Scaled Bilateral 35.78 17.15 0.9099 0.9683 36.14 15.81 0.9017 0.9676

Proposed Method 36.53 14.44 0.9293 0.9772 37.36 11.95 0.9288 0.9793
7 Noisy Image 31.64 44.54 0.8028 0.9025 31.82 42.74 0.7735 0.8974

Bilateral 32.07 40.35 0.8191 0.914 32.33 38 0.7951 0.9081
Multi Resolution Bilateral 31.28 48.42 0.8391 0.9144 32.12 39.90 0.8577 0.9406

Scaled Bilateral 32.69 34.96 0.8387 0.9342 33.06 32.15 0.8243 0.9317
Proposed Method 33.58 28.5 0.8734 0.9547 34.2 24.72 0.8648 0.953

10 Noisy Image 28.55 90.89 0.6971 0.8458 28.72 87.22 0.6679 0.8352
Bilateral 28.77 86.34 0.7068 0.8534 28.98 82.83 0.6795 0.8439

Multi Resolution Bilateral 29.3 76.41 0.7783 0.8787 29.88 66.86 0.7954 0.9086
Scaled Bilateral 29.45 73.79 0.7323 0.8779 29.74 69.08 0.712 0.8706

Proposed Method 31.13 50.15 0.8156 0.936 31.67 44.26 0.8171 0.9433
15 Noisy Image 25.02 204.45 0.5524 0.7635 25.2 196.21 0.5323 0.7504

Bilateral 25.13 199.67 0.5566 0.7673 25.31 191.34 0.5367 0.7545
Multi Resolution Bilateral 27.19 124.24 0.7051 0.8321 27.86 106.4155 0.7290 0.8709

Scaled Bilateral 25.86 168.82 0.5831 0.7927 26.09 160.05 0.5649 0.7807
Proposed Method 27 129.88 0.64 0.8477 27.54 114.49 0.6481 0.8612
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Table 3.4: Performance comparison of proposed denoising filter with other approaches
on various quantitative measures under Gaussian Noise assumption on T2 images
of Brain Web database

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy Image 39 8.17 0.949 0.9793 39.18 7.85 0.9372 0.9769

Bilateral 40.14 6.25 0.9663 0.9887 40.79 5.42 0.9638 0.9892
Multi Resolution Bilateral 30.89 52.94 0.8795 0.9121 33.14 31.54 0.9330 0.9492

Scaled Bilateral 39.08 8.04 0.9682 0.9913 38.75 8.67 0.9668 0.9923
Proposed Method 40.5 5.79 0.9705 0.991 41.25 4.88 0.9697 0.9921

7 Noisy Image 31.67 44.22 0.8124 0.92 31.85 42.5 0.7852 0.9101
Bilateral 32.08 40.31 0.8281 0.9292 32.33 38.02 0.8059 0.9219

Multi Resolution Bilateral 28.09 100.9823 0.8106 0.8784 29.57 71.73 0.8503 0.9185
Scaled Bilateral 32.55 36.13 0.8492 0.947 32.8 34.15 0.8368 0.9452

Proposed Method 33.3 30.4 0.8705 0.9575 33.81 27.04 0.8652 0.957
10 Noisy Image 28.6 89.81 0.7166 0.8745 28.76 86.48 0.6893 0.86

Bilateral 28.82 85.33 0.7259 0.8808 29.01 81.66 0.7002 0.8675
Multi Resolution Bilateral 26.47 146.58 0.7701 0.8582 27.67 111.26 0.8030 0.8969

Scaled Bilateral 29.43 74.2 0.7517 0.9028 29.68 70.02 0.7328 0.8957
Proposed Method 31.01 51.59 0.8411 0.9299 30.98 51.96 0.8067 0.9393

15 Noisy Image 25.1 200.95 0.5917 0.8094 25.26 193.86 0.5722 0.79
Bilateral 25.21 196.08 0.5958 0.8127 25.37 188.86 0.5765 0.7935

Multi Resolution Bilateral 24.28 242.7605 0.7129 0.8252 25.0257 204.42 0.7356 0.8550
Scaled Bilateral 25.86 168.62 0.6203 0.8342 26.07 160.54 0.6024 0.8192

Proposed Method 28.48 92.25 0.7604 0.9078 28.69 87.85 0.7405 0.9057
20 Noisy Image 22.62 355.37 0.5015 0.7565 22.77 343.43 0.49 0.7338

Bilateral 22.69 350.31 0.5037 0.7584 22.84 338.31 0.4919 0.756
Multi Resolution Bilateral 22.56 360.91 0.6627 0.7899 23.17 313.07 0.6843 0.8159

Scaled Bilateral 23.42 295.54 0.5264 0.7794 23.58 285.04 0.5137 0.7580
Proposed Method 25.59 179.47 0.6313 0.8526 25.78 171.65 0.6114 0.8393

25 Noisy Image 20.71 552.55 0.4343 0.712 20.85 534.03 0.4285 0.688
Bilateral 20.75 547.7 0.4354 0.7133 20.9 529.16 0.4296 0.6892

Multi Resolution Bilateral 21.3 482.08 0.6227 0.7585 21.7321 436.39 0.6415 0.7796
Scaled Bilateral 21.53 457 0.4556 0.7336 21.69 440.93 0.4481 0.7091

Proposed Method 22.87 335.54 0.5149 0.7876 22.88 335.4 0.4957 0.7661

Table 3.5: Performance comparison of proposed denoising filter with other approaches
on various quantitative measures under Rician Noise assumption on T1 images of
Brain Web database

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy Image 37.83 10.71 0.9068 0.973 37.55 11.43 0.8712 0.97

Bilateral 40.23 6.17 0.9707 0.9861 40.83 5.37 0.9718 0.9862
Multi Resolution Bilateral 35.1 20.1 0.9395 0.9549 37.32 12.06 0.9730 0.9744

Scaled Bilateral 40.2 6.21 0.9794 0.9902 40.44 5.87 0.9854 0.9904
Proposed Method 40.69 5.55 0.979 0.9896 41.56 4.54 0.9845 0.9906

5 Noisy Image 33.4 29.75 0.8384 0.9358 33.11 31.74 0.7937 0.93
Bilateral 35.15 19.86 0.8992 0.9517 35.46 18.48 0.8867 0.949

Multi Resolution Bilateral 32.89 33.41 0.9100 0.9334 33.89 26.52 0.9467 0.9538
Scaled Bilateral 35.83 16.98 0.931 0.9667 36.21 15.58 0.9368 0.9658

Proposed Method 36.66 14.02 0.9538 0.9769 37.57 11.38 0.9683 0.9789
7 Noisy Image 30.47 58.29 0.7705 0.8942 30.19 62.2 0.7248 0.8838

Bilateral 31.87 42.27 0.8144 0.9084 32.07 40.39 0.7892 0.9019
Multi Resolution Bilateral 30.92 52.67 0.8713 0.9037 31.67 44.27 0.9164 0.9284

Scaled Bilateral 32.64 35.43 0.8551 0.9297 32.99 32.7 0.8521 0.9259
Proposed Method 33.58 28.47 0.9007 0.9523 34.2 24.31 0.9107 0.9508

10 Noisy Image 27.38 118.87 0.6733 0.8336 27.1 126.89 0.6332 0.8193
Bilateral 28.48 92.17 0.6986 0.8439 28.63 89.22 0.67 0.8337

Multi Resolution Bilateral 29.09 80.25 0.8233 0.8664 29.81 67.88 0.8781 0.8959
Scaled Bilateral 29.27 76.88 0.7364 0.8686 29.52 72.61 0.7201 0.81

Proposed Method 31.22 49.06 0.8613 0.9349 31.81 42.8 0.8991 0.9418
15 Noisy Image 23.87 266.81 0.5358 0.7467 23.58 285.02 0.5089 0.7285

Bilateral 24.7 220.34 0.545 0.7518 24.83 213.77 0.5239 0.7386
Multi Resolution Bilateral 27.07 127.77 0.7577 0.8182 27.71 110.23 0.8202 0.8523

Scaled Bilateral 25.5 183.17 0.5763 0.7775 25.69 175.35 0.5585 0.7641
Proposed Method 26.72 138.47 0.6579 0.8365 27.27 121.91 0.6964 0.8476
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(a) Legends

(b) PSNR comparison with Gaussian noise

(c) SSIM comparison with Gaussian noise

(d) PSNR comparison with Rician noise

(e) SSIM comparison with Rician noise

Figure 3.1: Graphs for PSNR & SSIM comparison of T1 images with Gaussian noise
and Rician noise for noise level 10.
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(a) Legends

(b) PSNR comparison with Gaussian noise

(c) SSIM comparison with Gaussian noise

(d) PSNR comparison with Rician noise

(e) SSIM comparison with Rician noise

Figure 3.2: Graphs for PSNR & SSIM comparison of T2 images with Gaussian noise
and Rician noise for noise level 10.
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(a) Original Image (b) Gaussian Noisy
Image

(c) Bilateral Filter

(d) MultiResolution
Bilateral Filter

(e) Scaled Bilateral
Filter

(f) Proposed Filter

(g) Zoomed part of
(a)

(h) Zoomed part of
(b)

(i) Zoomed part of (c)

(j) Zoomed part of
(d)

(k) Zoomed part of
(e)

(l) Zoomed part of (f)

Figure 3.3: Results on Brain Web data (slice 100) having Gaussian noise with zero
mean and standard deviation 5.
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(a) Original Image (b) Rician Noisy Image (c) Bilateral Filter

(d) MultiResolution
Bilateral Filter

(e) Scaled Bilateral
Filter

(f) Proposed Filter

(g) Zoomed part of
(a)

(h) Zoomed part of
(b)

(i) Zoomed part of (c)

(j) Zoomed part of
(d)

(k) Zoomed part of
(e)

(l) Zoomed part of (f)

Figure 3.4: Results on Brain Web data (slice 100) having Rician noise with zero mean
and standard deviation 10.
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Table 3.6: Performance comparison of proposed denoising filter with other approaches
on various quantitative measures under Rician Noise assumption on T2 images of
Brain Web database

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy Image 37.83 10.71 0.9123 0.9773 37.55 11.42 0.8787 0.9741

Bilateral 40.17 6.25 0.972 0.9881 40.81 5.4 0.9738 0.9885
Multi Resolution Bilateral 30.74 54.88 0.8868 0.9099 32.80 34.10 0.9468 0.9458

Scaled Bilateral 39.17 7.88 0.9801 0.9913 38.79 8.6 0.9868 0.9923
Proposed Method 40.6 5.66 0.98 0.9909 41.48 4.62 0.9861 0.9924

7 Noisy Image 30.5 58 0.7834 0.9128 30.21 61.93 0.7412 0.9005
Bilateral 31.88 42.22 0.8238 0.9241 32.06 40.47 0.8006 0.9159

Multi Resolution Bilateral 27.99 103.18 0.8430 0.8754 29.23 77.61 0.9044 0.9110
Scaled Bilateral 32.54 36.21 0.866 0.9442 32.76 34.43 0.8653 0.9422

Proposed Method 33.21 31.07 0.8953 0.956 34.07 25.46 0.9161 0.959
10 Noisy Image 27.42 117.88 0.6959 0.8644 27.13 126.03 0.6592 0.8642

Bilateral 28.54 90.98 0.718 0.8725 28.65 88.74 0.6901 0.8578
Multi Resolution Bilateral 26.28 153.24 0.8120 0.8522 27.14 125.76 0.8710 0.8838

Scaled Bilateral 29.29 76.53 0.757 0.896 29.5 73.08 0.7429 0.8865
Proposed Method 31.2 49.36 0.8921 0.9312 31.26 48.66 0.893 0.9434

15 Noisy Image 23.92 263.54 0.5782 0.7965 23.63 282.14 0.554 0.7722
Bilateral 24.79 215.91 0.5849 0.8002 24.85 212.87 0.564 0.779

Multi Resolution Bilateral 23.98 260.19 0.7603 0.8139 24.65 222.93 0.8209 0.8404
Scaled Bilateral 25.57 180.15 0.6144 0.8222 25.71 174.51 0.5969 0.8043

Proposed Method 28.3 96.19 0.7884 0.8987 28.52 91.39 0.7914 0.8946
20 Noisy Image 21.46 465 0.4908 0.7428 21.16 498.27 0.4763 0.7151

Bilateral 22.03 407.82 0.4875 0.7406 22.05 405.47 0.4742 0.716
Multi Resolution Bilateral 22.20 392.16 0.7092 0.7733 22.68 350.48 0.7705 0.7944

Scaled Bilateral 22.92 331.81 0.5141 0.7625 23.0 326.71 0.5 0.7391
Proposed Method 24.76 217.34 0.6114 0.8253 24.67 222.03 0.5865 0.8056

25 Noisy Image 19.56 720.13 0.4248 0.6987 19.26 771.56 0.4168 0.6697
Bilateral 19.77 684.97 0.4133 0.6896 19.79 682.89 0.4061 0.6634

Multi Resolution Bilateral 20.99 517.51 0.6712 0.7411 21.14 500.2480 0.7230 0.7513
Scaled Bilateral 20.77 544.15 0.4378 0.7117 20.8 540.85 0.4281 0.6855

Proposed Method 21.49 461.31 0.4746 0.7493 21.36 474.92 0.4585 0.7211

Results on Real database

The other two real datasets are having some pathological issues. The subject details

of selected data from OASIS dataset are as follows: Subject ID:0018, Age: 39 (male),

scan number: mpr-1, type: MPRAGE, voxel resolution: 1.0 mm x 1.0 mm x 1.25mm,

Orientation: Sagital, TR (ms)= 9.7, TE (ms)= 4.0, TI(ms)= 20.0, Flip angle= 10,

slice number used = 100. The results are shown in figure 3.5 along with their zoomed

in portion for more clearity.

Another dataset is selected from BRATS data where the given challenge was to

identify tumor region and other pathological disorder. The details of the subjects

are as follows: Subject ID: 0015, having high grade gliomas, slice= 100. In the real

datasets, the noise model was assumed to Rician in nature [11]. The Rician noise

estimation was done using recently proposed method in [2]. The results are shown

in figure 3.6. The figure 3.7 shows the estimated Tumor class in comparison with

the ground truth provided by the organizers. The Dice coefficient is found to be 0.71

where labels are re-estimated using approach given in section 3.1 after denoising.
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(a) OASIS database Im-
age

(b) Zoomed part of
(a)

(c) Bilateral filtered Im-
age

(d) MultiResolution Bi-
lateral Filter

(e) Scaled Bilateral fil-
tered Image

(f) Proposed filtered
Image

(g) Zoomed part of (b) (h) Zoomed part of (c) (i) Zoomed part of (e) (j) Zoomed part of (f)

Figure 3.5: Result on MR slice from OASIS database
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(a) BRATS database Im-
age

(b) Zoomed part
of (a)

(c) Bilateral filtered
Image

(d) MultiResolution
Bilateral Filter

(e) Scaled Bilateral
filtered Image

(f) Proposed filtered
Image

(g) Zoomed part of (b) (h) Zoomed part of
(c)

(i) Zoomed part of (d) (j) Zoomed part of (e)

Figure 3.6: Result on MR slice from MICCAI BRATS 2012 database

(a) Actual Tumor and Edema class in
the image

(b) Estimated Tumor class in the image

Figure 3.7: The comparison of actual tumor region and estimated region using Rough
Class labels is shown where Dice coefficient is found to be 0.71.
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3.5 Conclusion

Rough set has capacity to handle the uncertainty present in the data. This character-

istic of RST enables it to be a suitable candidate to obtain Edge and Class information

form the noisy image. The edge information and class information in-turn boost up

the performance of the proposed filter. The obtained edge map is found to be contin-

uous and closed and is capable of defining object boundaries even in noisy situations.

It appears to be defining object boundaries in a better way compared to a couple of

existing methodologies such as Canny Edge Detector, Active Contour methods. The

performance of the proposed filter is found to be satisfactory when compared with

the existing bilateral filters. Note that the performance of present filter for denoising

is not compared with some of the recent techniques included within paradigm of non-

local means. These methodologies are based on very different principle and hence

has not been compared. The propose method can be extended under cross bilateral

framework where a pair of images of similar characteristic are considered to denoise a

single image having the same characteristic. For example, different modality images

can be used to denoise Brain MR Image.



Chapter 4

Non Local Self Similar Image

Denoising

More recent work on image denoising includes patch based mechanism. For the last

one and half decades, it has matured a lot and is a front runner. In this work, an

attempt is made to utilize rough set based image information (discussed in earlier

chapters) in the framework of patch based image denoising.

The patch based processing coined the notion of self-similar patches. The sim-

ilarity between two patches can be defined in terms of geometrical and structural

perspective. The repetition of these kind of similar patches in the image are em-

ployed in Non local self-similarity (NLSS) fashion, as proposed in [93]. The term

non-local leverage distance constraint between location of two patches in the image

space rather than restricting in small window as done in Bilateral Filter. Philosoph-

ically, NLSS framework is based on photometric filter which eliminates least signif-

icant patch based on distance measure. Practically, searching of all similar patches

for each underlying patch, in the image space, is computationally intensive process.

Many methods restrict this search to sufficiently large predefined window, W ×W ,

which is not non local in true sense. The search window parameter, W , may set a

trade-off between computation time and performance of the method.

47
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4.1 State-of-the-art Methods

This section explains two primary methods of NLSS framework i.e. Non Local Means

method [93] and Local Pixel Grouping based Principal Component Analysis (LPG-

PCA) [97]. Brief overviews of variants of these methods are also mentioned thereafter.

Non Local Means Method

The Non Local Means (NLM) Method [93] is a successor of Bilateral filter method

where a pixel is denoised by weighted average of similar pixels in its vicinity. For

denoising a pixel, the difference between Gaussian ε-neighborhood of two pixel must

fall below a threshold criteria defined according to the measure used. The method is

non-local in terms of the space available to search similar pixel for any pixel which is

restricted in its predecessor methods. For an image X, the filtered value at location

p is:

X(p) =
∑
∀q∈X

S(p, q)X(q) (4.1)

where S(p, q) is the similarity function between pixel at location p and q. The function

S is defined as follows:

S(p, q) =
1

Zp
e
Gρ‖X(Np)−X(Nq)‖2

h2

0 ≤ S(p, q) ≤ 1,
∑
∀q∈X

S(p, q) = 1

where Zp is the normalizing constant, h is the exponential decay control parameter, Gρ

is normalized Gaussian weighting function with zero mean and ρ standard deviation.

The above formulation of NLM consider all the pixels in the image space for

computing weighted average for pixel at location p. However, this makes a time

consuming task and increases computational complexity. As suggest, one can have a

sufficiently large local search window around each pixel to get its similar pixel. Hence,

NLM method has three main parameters: patch size, local search window size, W
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and decaying parameter, h. The decaying parameter is kept equal to noise variance

itself as suggested in [93]. The patch size is an open issue in computer vision problems

where one can think of deriving adaptive patch size based on object homogeneity and

shape etc. The patch size is kept square and fixed in all the experiments. The local

search window parameter is crucial and sets a trade-off between computation time

and performance of the method. Note that, when W is kept as the image size, then

it would be said that similar patches are from anywhere in the image support.

LPG-PCA Method

The Local Pixel Grouping Principal Component Analysis (LPG-PCA) method [97]

also adapts the local search window mechanism to search for similar pixels for a query

pixel or patch. The idea is to get similar patches having same Gaussian neighborhood

surrounding the current patch and thus perform the PCA operation to build basis

vectors.

Let X be the matrix of n similar patches at location x in the image space and

X denotes the centralized matrix of X. The co-variance matrix is calculated as

Ω = 1
n
XX

T
. Using orthonormal transformation matrix P , PCA will de-correlate X,

i.e. Y = PX such that covariance matrix of Y becomes diagonal. In general, the

energy of a signal will concentrate on a subset of PCA transformed basis while the

energy of noise will spread over the whole basis values. Hence, the noise has been

suppressed by using LMMSE technique in LPG-PCA. The first stage denoised result

is considered as input to the second stage and noise is again estimated. The second

stage is replica of first stage of LPG-PCA. However, local search mechanism may not

explore similarity for rare patches in local surroundings.

Figure 4.1 represents analogy of spatially window based NLSS denoising methods.

Given a reference patch, P & R in figure, a window is considered (orange color) to

search similar patches. However, one may ignore dissimilar patches also based on

evaluation criteria within orange window. Then, matrices ΩP & ΩR are formed by

arranging similar patches as one dimension vector in the columns including reference
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Figure 4.1: Conventional NLSS image denoising framework

patch P & R respectively. The Projection Matrix step is corresponding to trans-

formation matrix like PCA etc. and reference patch is projected in the transformed

domain. The lower coefficients below a certain threshold level in the transformed

domain,, are replaced by zero, assuming to be correspond to noise [22]. These revised

coefficients are reprojected to their spatial location in image space by multiplying

them with inverse of projection matrix. In the image space, multiple estimation of

pixel location is averaged out [22]. Figure 4.1 shows complete process for two patches

and similarly repeated for all the possible patches in the image space.

Other Variants

Other than NLM and LPGPCA methods, K-SVD [98] is considered to another most

influential method based on singular value decomposition (SVD). K-SVD become pio-

neer method to utilize dictionary based sparse denoising method in the natural image

denoising and SVD further used in [99], [100]. In BM3D method [101], similarity be-

tween patches is defined based on Euclidean distance between patches. However, this

method uses fixed basis matrices and restricts the similarity search in a window. This

restriction led to a clustering based image denoising method. A brief representation is

shown in Figure 4.2 The image patches are classified using clustering techniques such

as K-Means, Mixture model and then a sparse dictionary is learned for these clusters.

This laid the foundation of CSR [102], PLOW [103]. In [104], all image patches are
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Figure 4.2: Clustering based NLSS image denoising framework

permuted by solving travelling salesman problem and then Wavelet based denoising is

applied. The PCA method was first applied for denoising purpose in [105], extended

in [97], [106] and for Poisson noise model in [107]. NLM methods further extended

based on different similarity measures in [108], [109], [110], [111], [112]. However,

there have been methods proposed in the literature based on Bayesian estimation like

[113], Graph based [114] and wavelet based methods pioneered by [115] 1.

4.2 Proposed Approach

As discussed earlier, the main challenge in NLSS is to search similar patches for a

patch of interest. The RST based information of REM and RCL (Chapter 2) is

utilized for patch selection 2.

4.2.1 Patch selection using RST

Two patches are considered to be similar if their respective ε-neighborhoods possess

the same property. Note that one can use a suitable metric to quantify this common

property. Most of the research use Euclidean norm to define it. Unlike others, here

1Discussion on these methods are outside the scope of this thesis.
2This thesis assumes granules and patches to be different as per context assuming granules is

small whereas patches could be bigger as of size 7× 7 or more.
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Rough Set Theory is used to identify similarity between patches non locally in a more

principled way. Precisely, patches are clubbed together based on RCL information

obtained as mentioned in Chapter 2. In Rough Set terminology, approximation spaces

are defined for a set. Here, an object in the image space is referred a set. Hence,

hereafter, approximation spaces are defined with respect to an object synonymous

to a set. If a candidate patch is within a lower approximation of an object, then

patches which constitute the lower approximation of this object are similar patches

according to the definition of similarity given above. In precise, two patches within

the lower approximation of an object will be similar. If a patch is in the upper

approximation of an object but not in its lower approximation then the patch is in

the boundary region of two distinct objects. This particular patch could also be in

the upper approximation of the second object but not in its lower approximation.

Any patch that is said to be similar of this patch has to have the same property.

A patch is classified in lower approximation of object Ck if all pixels have class

label as k. A patch is classified to upper approximation of Ck, if any pixel has class

label k. A clustering process is then define to club together similar pixels. If a patch

has two class label (say p and q) then it is clubbed together with similar patch have

labels p and q. All the possible combinations are been used in the clustering process.

Hence, for K objects in an image, the total pools constructed would be
∑K

i=1

(
K
i

)
.

For example, if there are three objects in an image (Oi, i = 1, 2, 3) then pools/clusters

constructed are:
{
O1, O2, O3, {O1, O2}, {O1, O3}, {O2, O3}, {O1, O2, O3}

}
(where Ok

and Ok represent lower and upper approximations of kth object respectively and

{Om, On} represents union of upper approximations of objects Om and On).

If a candidate patch is within a lower approximation of an object, then patches

which constitute the lower approximation of this object are similar according to the

definition of similarity given above. If a patch is in the upper approximation of an

object but not in its lower approximation then the patch is in the boundary region of

two distinct objects. This particular patch could also be in the upper approximation

of the second object but not in its lower approximation. Any patch that is said to be
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(a) (b)

Figure 4.3: A noise free T1 image is shown in (a) and zoomed part of box is shown
in (b). In (b), groups of patches are shown in circle centered at patch A, B, C, D, E
and F. The neighbor of patch A and B have same property and belong to same object
and therefore for denoising patch A, one can use the patch B or vice versa. Similarly
for patch E, one can use patch F for denoising and vice versa. The patches C and
D are on boundary of two different objects as shown. For denoising them one can
use patches which are falling on the boundary of two same objects. The conventional
methods fail to take advantage of these kinds of similarity and Rough Set approach
helps to look more in deeper to boundary patches.

similar of this patch has to have the same property. This implies that patches which

are in the upper approximations but not in the lower approximations of two adjacent

objects should be similar. The same concept is true for more than two adjacent

objects. The concept of identifying similar patches is illustrated in Figure 4.3.

4.2.2 Algorithms

In Algorithm 1,a set of similar patches for each candidate patch in the noisy image

are found and then denoising operation is performed. The proposed-1 algorithm

corresponds to denoising under Non-Local Means (NLM) [93] framework whereas the

Proposed-2 algorithm corresponds to PCA framework as suggested in [97].

The Algorithm 2 (Proposed 3) uses the same approach for deriving lower and

upper approximation of all the objects. Unlike, finding similar patches for a candidate

patch, a few pool of similar patches are constructed based on the patches either



CHAPTER 4. NON LOCAL SELF SIMILAR IMAGE DENOISING 54

within a object or on the boundary of two or more objects. Hence for K number

of objects present in the image, the number of pool constructed would be
∑K

i=1

(
K
i

)
.

Here one point is important that how to know the number of objects (or class as

described by RCL in Section 2). But in case of MRI, usually the number of classes

(objects) is known as stated in literature. After generation of these pools, one can take

PCA decomposition of each pool separately followed by Hard thresholding method

as suggested in [106]. This will give a basis vector representation of each pool. Then,

each patch in the noisy image, based on its class representation can be projected on

to particular pool basis vector. Instead of finding similar patches for each candidate

patch from noisy image, this method speeds up the process by computing basis vectors

only for once. The same is depicted in Figure 4.2.

4.3 Experimental Results

This Section encompasses the qualitative and quantitative evaluation of the proposed

methods along with some of the state-of-the-art methods.

4.3.1 Methods & parameters

The patch size, p, is kept square and fixed to 5 × 5 in all the experiments. The

local search window parameter is crucial to balance between computation time and

performance of the method. In fact, patch size, p, and search window size W are

dependent on each other. Note that, when W is kept as the image size, then it would

be said that similar patches are from anywhere in the image support. However this

is an exhaustive search and would take a lot of computational time. In this study,

we have consider two search windows for evaluation purpose. The NLM 1 method

represents NLM method with local search window of size 25 × 25 around each pixel

to denoise whereas NLM 2 method represents NLM method with local search window

of size 101 × 101. The NLM1 shows impact of selecting small local search window

whereas NLM 2 is more computational intensive process.
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Input: Noisy Image (In), patch size (p)
Output: Denoised Image (Î), Rough Class Label (RCL)

a. Get the intensity thresholds from histogram of image In using parzen window
method. Let there are K − 1 thresholds.

b. Partition the image into non-overlapping 2 × 2 granules. Define the lower ap-
proximation and upper approximation of those K objects and obtain Rough
Class Label (RCL) image.

c. Consider a patch of size p× p from noisy image, In, and get the corresponding
class patch, C, from RCL image.

d. Find the number of classes present in C. The presence of single class indicate
the homogeneous patch else it can be considered as heterogeneous patch.

e. For homogeneous patch, get the similar patches from the lower approximation
of that class.

f. For heterogeneous patch, fetch the similar patches from the union of upper
approximations of all the present classes in C.

g. Proposed 1: For NLM framework:

• Use all the similar patches (fetched from above mentioned method) to
denoise the candidate patch as in [93] for both homogeneous and hetero-
geneous patches.

h. Proposed 2: For PCA framework:

• From all available similar patches, select best L patches among them. Ap-
ply PCA decomposition followed by wiener filtering as suggested in [97].

Algorithm 1: Proposal 1 and Proposal 2
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Input: Noisy Image (In), patch size (p)
Output: Denoised Image (Î), Rough Class Label (RCL)

a. Get the intensity thresholds from histogram of image In using parzen window
method. Let there are K − 1 thresholds.

b. Partition the image into non-overlapping 2 × 2 granules. Define the lower ap-
proximation and upper approximation of those K objects and obtain Rough
Class Label (RCL) image.

c. Construct the patch of size p × p around each location present in the all the
approximation sets. This will create a pool of patches for an approximation set.
Hence, there will be

∑K
i=1

(
K
i

)
pool of patches by considering all the possible

overlapping of K objects.

d. Apply PCA decomposition of each pool individually followed by Hard thresh-
olding method. Now, we will have the basis vectors for the pools.

e. Now, consider a patch of size p×p from noisy image, In and get the correspond-
ing class patch, C from RCL image.

f. Find the classes present in the class patch, C. Accordingly, fetch the basis
vector for combination present in C and project the candidate patch.

Algorithm 2: Proposal 3
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In LPG-PCA method [97], the patch size p and local search window W need to

be fixed. This method requires to select few best similar patches to compute PCA

basis within the window size W × W . Here, we have used p = 5 and W = 41 in

all the experiments. The large number of patches may not be suitable for the basis

computation in PCA. During experiments, by default it is fixed to 200. The LPG-

PCA may not reveal similar patches for rare patches present at different places in the

image and is restricted to get those many patches from local window area.

The proposed strategy for selecting similar patches from the image space removes

the constraint of local search window W parameter from both state-of-the-art meth-

ods. The strategy has an intelligent way to get patches from the whole image. Hence,

it is also adaptive in terms of number of patches used for each pixel for denoising

current pixel or patch.

In another proposal under PCA framework, the formation of pool is remained

same. Here, number of such pool will be
∑K

i=1

(
K
i

)
and K = 4 is used in all ex-

periments (Hence, there will be 15 pools and these many PCA basis needs to be

computed). Instead of selecting few best patches for a given candidate patch as in

previous proposal, here whole pool is assumed to be similar and hence an equivalence

relation. So, PCA is computed on each pool respectively. Then hard thresholding

step is performed for coefficient shrinkage instead of wiener filtering. A comparison of

hard thresholding and soft thresholding is presented in [106]. This proposal is also a

non-iterative method in comparison to LPG-PCA method and found to have compa-

rable performance. Note that PCA method inherently assume Gaussian distribution

for noise in the data [116]. Hence, straight forward extension of all PCA methods

under Rician noise assumption is not possible.

4.3.2 Phantom Database

The experiments have been carried out on 2D monochrome phantom human brain

MRI images obtained from Brain Web Database [1]. The parameters are as follows:
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RF = 20, protocol = ICBM, slice thickness = 1mm, volume size = 181× 217× 181.

The experimental set up considers two different noise model (Gaussian and Rician)

at different noise levels along with two modalities, namely T1 and T2. Two slices are

considered from both the modalities, namely slice 70 and 100 and adjusted to size

140× 176 by truncating excessive background portions.

The quantitative evaluations of all the methods under Gaussian noise assumption

is shown in Tables 4.1 and 4.2 for T1 and T2 image slices respectively. The proposed-1

and proposed-2 found to be comparable to their corresponding contemporary meth-

ods. At lower noise levels, proposed-3 could not perform up to desired level due to

having large number of patches in the basis computation whereas at higher noise

level it performance is quite encouraging. The proposed-3 is better in terms of all

the measures in T2 images. The Figure 4.4 and 4.6 show noisy image and denoised

results of slice 100 in T1 and T2 modality respectively. The zoomed part of these are

shown in Figure 4.5 and 4.7 respectively for visual comparison. Similarly, Table 4.3

and 4.4 covers quantitative evaluation under Rician noise assumption for T1 and T2

images respectively.

4.3.3 Real database

All three proposed methods are also tested for real MRI data. In the real datasets,

the noise model was assumed to be Rician in nature [11]. The problem in the real

databases is the estimation of noise level present in terms of standard deviation or

percentage level of maximum intensity. Numerous approaches have been proposed

in the literature [15], [2], [13], [14]. A recently proposed approach [2] for estimation

of Rician noise level in real MR image has been adopted in this work. The itera-

tive method transforms heteroskedastic Rician noisy image into homoskedastic data

via variance stabilization technique where additive white Gaussian noise (AWGN)

estimation can be applied. The most common estimation of AWGN is Median Ab-

solute Deviation or Mean Absolute Deviation (MAD) has been applied. Here, only
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Table 4.1: Performance comparison of proposed denoising strategy with NLM and
LPG-PCA approaches on various quantitative measures under Gaussian Noise as-
sumption in BrainWeb database (slice=70 & 100, Modality = T1 and patch size
= 5× 5). The bold figures represent best figure for each noise level for all measures.

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy 39.0033 8.1800 0.9472 0.9752 39.1824 7.8495 0.9345 0.9730

NLM 1 38.4878 9.2110 0.9731 0.9902 40.0507 6.4270 0.9705 0.9918
NLM 2 39.6999 6.9678 0.9753 0.9913 41.1318 5.0107 0.9724 0.9929

Proposed 1 40.2146 6.1890 0.9761 0.9918 41.2662 4.8580 0.9730 0.9933
LPGPCA 42.6899 3.5002 0.9792 0.9924 43.1492 3.1489 0.9757 0.9926

42.8983 3.3362 0.9807 0.9930 43.4324 2.9501 0.9781 0.9934
Proposed 2 43.2144 3.1020 0.9804 0.9931 43.6717 2.7920 0.9758 0.9935
Proposed 3 41.4458 4.6613 0.9742 0.9820 40.9759 5.1939 0.9654 0.9789

5 Noisy 34.5663 22.7227 0.8776 0.9409 34.7454 21.8041 0.8541 0.9358
NLM 1 37.2108 12.3595 0.9505 0.9842 38.4707 9.2472 0.9415 0.9867
NLM 2 37.2210 10.9868 0.9516 0.9842 39.1392 7.9279 0.9434 0.9883

Proposed 1 38.0013 10.3028 0.9520 0.9845 39.1804 7.8530 0.9438 0.9885
LPGPCA 39.0903 8.0177 0.9554 0.9837 39.4677 7.3504 0.9459 0.9840

39.2712 7.6906 0.9585 0.9850 39.7782 6.8432 0.9516 0.9861
Proposed 2 39.5599 7.1959 0.9565 0.9845 39.9363 6.5985 0.9450 0.9848
Proposed 3 38.0680 10.1456 0.9490 0.9632 37.3722 11.9085 0.9309 0.9552

7 Noisy 31.6438 44.5353 0.8028 0.9025 31.8229 42.7360 0.7735 0.8947
NLM 1 35.9154 16.6547 0.9272 0.9770 37.0060 12.9561 0.9136 0.9811
NLM 2 36.0394 16.1862 0.9276 0.9764 37.4026 11.8255 0.9157 0.9831

Proposed 1 36.1936 15.6213 0.9276 0.9767 37.3974 11.8396 0.9157 0.9832
LPGPCA 36.7490 13.7462 0.9307 0.9738 37.0637 12.7853 0.9150 0.9740

36.8869 13.3166 0.9358 0.9760 37.3657 11.9264 0.9246 0.9778
Proposed 2 37.0354 12.8689 0.9292 0.9734 37.3969 11.8410 0.9111 0.9735
Proposed 3 35.6652 17.6426 0.9163 0.9394 35.0947 20.1190 0.8955 0.9311

10 Noisy 28.5457 90.8884 0.6971 0.8458 28.7248 87.2163 0.6679 0.8352
NLM 1 34.0846 25.3877 0.8949 0.9647 34.9940 20.5910 0.8782 0.9705
NLM 2 34.0291 25.7140 0.8956 0.9645 35.1379 19.9200 0.8806 0.9728

Proposed 1 34.0798 25.4153 0.8957 0.9647 35.0181 20.4771 0.8803 0.9723
LPGPCA 34.3078 24.1158 0.8954 0.9572 34.5764 22.6695 0.8724 0.9573

34.4206 23.4976 0.9046 0.9616 34.8828 21.1251 0.8898 0.9647
Proposed 2 34.3245 24.0232 0.8866 0.9535 34.6667 22.2029 0.8614 0.9525
Proposed 3 33.7537 27.3977 0.8900 0.9205 33.2131 31.0295 0.8629 0.9081

15 Noisy 25.0248 204.4551 0.5524 0.7635 25.2036 196.2080 0.5323 0.7504
NLM 1 31.4873 46.1692 0.8441 0.9383 32.0768 40.3088 0.8270 0.9455
NLM 2 31.2278 49.0116 0.8461 0.9377 31.8915 42.0656 0.8298 0.9450

Proposed 1 31.1918 49.4195 0.8459 0.9355 31.6760 44.2056 0.8282 0.9408
LPGPCA 31.5384 45.6290 0.8391 0.9270 31.7780 43.1797 0.8106 0.9263

31.6666 44.3021 0.8600 0.9369 32.1150 39.9556 0.8450 0.9421
Proposed 2 31.1903 49.4368 0.8116 0.9143 31.5172 45.8527 0.7837 0.9116
Proposed 3 31.7306 43.6535 0.8678 0.9142 31.1681 49.6906 0.8183 0.8820
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Table 4.2: Performance comparison of proposed denoising filter with NLM and LPG-
PCA approaches on various quantitative measures under Gaussian Noise assumption
in Brain Web database (slice=70 & 100, Modality = T2 and patch size = 5 × 5).
The bold figures represent best figure for each noise level for all measures.

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy 39.0062 8.1745 0.9490 0.9793 39.1840 7.8466 0.9372 0.9769

NLM 1 34.0656 25.4989 0.9724 0.9873 34.9016 21.0340 0.9698 0.9889
NLM 2 35.3489 18.9754 0.9745 0.9886 36.0625 16.1002 0.9270 0.9911

Proposed 1 36.2715 15.3436 0.9757 0.9892 36.4523 14.7179 0.9730 0.9918
LPGPCA 42.3015 3.8276 0.9816 0.9932 42.8303 3.3888 0.9784 0.9937

42.4723 3.6801 0.9830 0.9937 43.0882 3.1935 0.9809 0.9944
Proposed 2 42.6202 3.5568 0.9823 0.9936 43.0856 3.1953 0.9779 0.9940
Proposed 3 40.7245 5.5033 0.9734 0.9840 40.6771 5.5638 0.9691 0.9834

7 Noisy 31.6750 44.2159 0.8124 0.9199 31.8474 42.4950 0.7852 0.9102
NLM 1 32.6468 35.3506 0.9296 0.9744 33.3213 30.2658 0.9175 0.9786
NLM 2 33.4319 29.5045 0.9312 0.9754 34.2722 24.3143 0.9206 0.9814

Proposed 1 34.1362. 25.0877 0.9325 0.9762 34.6377 22.3518 0.9218 0.9819
LPGPCA 36.0440 16.1691 0.9378 0.9763 36.4815 14.6194 0.9238 0.9773

36.1306 15.8496 0.9428 0.9784 36.7300 13.8064 0.9340 0.9807
Proposed 2 36.3703 14.9987 0.9337 0.9759 36.7415 13.7697 0.9172 0.9760
Proposed 3 35.8224 17.0153 0.9527 0.9639 34.5427 22.8460 0.8995 0.9398

10 Noisy 28.5974 89.8134 0.7166 0.8746 28.7699 86.4757 0.6893 0.8600
NLM 1 31.4787 46.2607 0.8992 0.9628 31.1529 39.6084 0.8845 0.9676
NLM 2 32.0328 40.7189 0.9011 0.9646 32.8020 34.1101 0.8878 0.9700

Proposed 1 32.5938 35.7845 0.9031 0.9657 33.0595 32.1464 0.8883 0.9706
LPGPCA 33.3753 29.8916 0.9042 0.9615 33.8047 27.0778 0.8852 0.9627

33.4093 29.6586 0.9141 0.9654 34.0192 25.7730 0.9036 0.9696
Proposed 2 33.5845 28.4861 0.8909 0.9586 33.9640 26.1026 0.8693 0.9580
Proposed 3 33.4118 29.6414 0.9265 0.9463 33.7583 27.3682 0.9369 0.9509

15 Noisy 25.0997 200.9597 0.5917 0.8094 25.2559 193.8616 0.5722 0.7896
NLM 1 29.6076 71.1740 0.8494 0.9398 30.1840 62.3271 0.8371 0.9453
NLM 2 29.7120 69.4833 0.8499 0.9405 30.4111 59.1526 0.8395 0.9466

Proposed 1 29.9421 65.8976 0.8518 0.9418 30.5809 56.8844 0.8398 0.9478
LPGPCA 30.3258 60.3261 0.8488 0.9355 30.7441 54.7858 0.8276 0.9356

30.3370 60.1702 0.8731 0.9444 30.9306 52.4832 0.8650 0.9508
Proposed 2 30.3740 59.6811 0.8174 0.9273 30.7362 54.8854 0.7949 0.9240
Proposed 3 30.6543 55.9308 0.8848 0.9228 31.0021 51.6257 0.9042 0.9276

20 Noisy 22.6240 355.3679 0.5015 0.7565 22.7724 343.4283 0.4899 0.7338
NLM 1 27.8462 104.9507 0.8006 0.9162 28.5052 91.7404 0.7938 0.9225
NLM 2 27.6370 112.2367 0.7982 0.9139 28.4627 92.6419 0.7949 0.9232

Proposed 1 27.6093 112.6486 0.7987 0.9140 28.5006 91.8375 0.7943 0.9235
LPGPCA 28.1483 99.3691 0.7925 0.9101 28.5555 90.6843 0.7736 0.9071

28.2037 98.3366 0.8383 0.9249 28.7354 87.0052 0.8345 0.9318
Proposed 2 28.0775 101.2349 0.7466 0.8965 28.4334 93.2697 0.7278 0.8895
Proposed 3 28.5616 90.5563 0.8436 0.8994 28.8346 85.0403 0.8596 0.9008

25 Noisy 20.7071 552.5522 0.4342 0.7120 20.8551 534.0331 0.4285 0.6880
NLM 1 26.5430 144.1393 0.7553 0.8949 27.0817 137.3239 0.7524 0.9002
NLM 2 25.8927 167.4194 0.7495 0.8874 26.6663 140.1048 0.7506 0.8972

Proposed 1 25.5882 179.5794 0.7476 0.8834 26.3774 149.7409 0.7467 0.8915
LPGPCA 26.4655 146.7378 0.7364 0.8857 26.8252 135.0712 0.7212 0.8787

26.5483 143.9617 0.8068 0.9059 27.0183 129.1955 0.8069 0.9128
Proposed 2 26.2834 153.0173 0.6799 0.8665 26.6040 142.1273 0.6648 0.8554
Proposed 3 27.0504 128.2455 0.8005 0.8800 27.1099 126.4993 0.8119 0.8747
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Table 4.3: Performance comparison of proposed denoising filter with NLM ap-
proach on various quantitative measures under Rician Noise assumption in Brain
Web database (slice=70 & 100, Modality = T1 and patch size = 5× 5). The bold
figures represent best figure for each noise level for all measures.

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy 37.8322 10.7118 0.9068 0.9730 37.5516 11.4267 0.8713 0.9701

NLM 1 38.4189 9.3581 0.9853 0.9899 40.1874 6.2279 0.9906 0.9918
NLM 2 39.6518 7.0453 0.9872 0.9912 41.4113 4.6984 0.9923 0.9929

Proposed 1 40.2500 6.1387 0.9880 0.9917 41.7100 4.3862 0.9930 0.9934
5 Noisy 33.3959 29.7505 0.8384 0.9358 33.1147 31.7401 0.7937 0.9290

NLM 1 37.3165 12.0623 0.9772 0.9840 38.7274 8.7165 0.9851 0.9871
NLM 2 37.7701 10.8660 0.9778 0.9843 39.5639 7.1893 0.9868 0.9887

Proposed 1 38.1135 10.0400 0.9783 0.9846 39.6512 7.0463 0.9871 0.9889
7 Noisy 30.4746 58.2935 0.7705 0.8943 30.1928 62.2019 0.7248 0.8839

NLM 1 36.1236 15.8754 0.9672 0.9772 37.3746 11.9020 0.9780 0.9817
NLM 2 36.1493 15.7817 0.9668 0.9766 37.9375 10.4552 0.9798 0.9837

Proposed 1 36.2880 15.2855 0.9668 0.9769 37.8837 10.5855 0.9797 0.9838
10 Noisy 27.3799 118.8753 0.6734 0.8336 27.0967 126.8861 0.6332 0.8193

NLM 1 34.3661 23.7943 0.9489 0.9651 35.5171 18.2546 0.9644 0.9717
NLM 2 34.2259 24.5747 0.9489 0.9648 35.6979 17.5103 0.9664 0.9732

Proposed 1 34.2188 24.6152 0.9487 0.9647 35.4986 18.3323 0.9657 0.9724
15 Noisy 23.8689 266.8053 0.5358 0.7467 23.5821 285.0160 0.5089 0.7285

NLM 1 31.7086 43.8749 0.9088 0.9380 32.6333 35.4610 0.9316 0.9477
NLM 2 31.3893 47.2223 0.9103 0.9367 32.1920 39.2538 0.9317 0.9435

Proposed 1 31.1989 49.3388 0.9082 0.9297 31.5710 45.2879 0.9272 0.9344

Table 4.4: Performance comparison of proposed denoising filter with NLM ap-
proach on various quantitative measures under Rician Noise assumption in Brain
Web database (slice=70 & 100, Modality = T2 and patch size = 5× 5). The bold
figures represent best figure for each noise level for all measures.

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
3 Noisy 37.8331 10.7096 0.9123 0.9773 37.5530 11.4230 0.8787 0.9741

NLM 1 34.0044 25.8607 0.9834 0.9871 34.8524 21.2736 0.9983 0.9886
NLM 2 35.3224 19.0916 0.9854 0.9884 36.0799 16.0358 0.9905 0.9909

Proposed 1 36.2392 15.4581 0.9867 0.9891 36.5527 14.3817 0.9914 0.9917
7 Noisy 30.4961 58.0055 0.7834 0.9129 30.2117 61.9311 0.7412 0.9005

NLM 1 32.6043 35.6982 0.9652 0.9738 33.4493 29.3867 0.9770 0.9785
NLM 2 33.4922 29.0980 0.9669 0.9750 34.5264 22.9317 0.9801 0.9816

Proposed 1 34.2211 24.6019 0.9683 0.9757 34.9021 21.0313 0.9808 0.9820
10 Noisy 27.4166 117.8750 0.6959 0.8644 27.1262 126.6260 0.6592 0.8462

NLM 1 31.4948 46.0890 0.9476 0.9622 32.3291 38.0341 0.9643 0.9681
NLM 2 32.0600 40.4654 0.9494 0.9641 33.0714 32.0585 0.9679 0.9711

Proposed 1 32.6502 35.3234 0.9517 0.9656 33.3904 29.7880 0.9685 0.9717
15 Noisy 23.9223 263.5408 0.5782 0.7965 23.6261 282.1416 0.5540 0.7742

NLM 1 29.6345 70.7341 0.9095 0.9401 30.4214 59.0123 0.9355 0.9485
NLM 2 29.6681 70.1899 0.9099 0.9413 30.5742 56.9715 0.9380 0.9500

Proposed 1 29.8437 67.4079 0.9115 0.9422 30.7240 55.0406 0.9382 0.9508
20 Noisy 21.4563 464.9964 0.4908 0.7428 21.1562 498.2680 0.4763 0.7151

NLM 1 27.8369 107.0012 0.8655 0.9178 28.6805 88.1106 0.9005 0.9285
NLM 2 27.4349 117.3792 0.8618 0.9131 28.3237 95.6555 0.9002 0.9260

Proposed 1 27.2309 123.0242 0.8607 0.9100 28.2561 97.1561 0.8980 0.9226
25 Noisy 19.5567 720.1252 0.4248 0.6987 19.2571 771.5618 0.4168 0.6696

NLM 1 26.2158 155.4194 0.8216 0.8963 27.0615 127.9178 0.8627 0.9073
NLM 2 25.2324 194.9111 0.7986 0.8672 25.9354 165.7835 0.8456 0.8806

Proposed 1 24.6450 223.1435 0.7849 0.8522 25.2038 196.2009 0.8157 0.8558
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: T1 Image (a) Noisy image with Gaussian noise sd=15 (b) Original Image
(c) NLM1 method (d) NLM2 method (e) Proposed1 method (f) LPGPCA phase 1
method (g) LPGPCA phase 2 method (h) Proposed2 method (i) Porposed3 method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Zoomed part of images from Figure 4.4 respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: T2 Image (a) Noisy image with Gaussian noise sd=25 (b) Original Image
(c) NLM1 method (d) NLM2 method (e) Proposed1 method (f) LPGPCA phase 1
method (g) LPGPCA phase 2 method (h) Proposed2 method (i) Porposed3 method



CHAPTER 4. NON LOCAL SELF SIMILAR IMAGE DENOISING 65

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: Zoomed part of images from Figure 4.6 respectively.
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Non-local Means denoising methods have been applied since direct implementation

of PCA method under Rician noise data is not possible.

In this work, experiments have been performed on real MR images from two

publically available real MR image databases. The first one is extracted from OASIS

database [7] which does not have any pathological disorder. The subject details of

selected data from OASIS dataset are as follows: Subject ID:0018, Age: 39 (male),

scan number: mpr-1, type: MPRAGE, voxel resolution:1.0mm × 1.0mm × 1.25mm,

Orientation: Sagital, TR (ms)= 9.7, TE (ms)= 4.0, TI(ms)= 20.0, Flip angle= 10,

slice number used = 100. The noise standard deviation estimated for the image

is 4.66. The results are shown in Figure 4.8 along with their zoomed in portion for

more clarity. Note that experiments have been conducted for a large number of slices,

however the result of only two slices are presented here.

Another dataset is selected from Multimodal Brain Tumor Segmentation Chal-

lenge (BRATS) [8] data where actual challenge was to identify tumor region and

other pathological disorder. The details of the subjects are as follows: Subject ID:

0015, having high grade gliomas, slice= 100. The standard deviation of the image

estimated is 2.55. The results are shown in Figure 4.9.

4.4 Conclusion

A rigorous framework for patch based medical image denoising problem using Rough

Set Theory has been presented. There is a twofold implication of this work. Under

the noisy environment, imprecise information has been used to denoise the image and

another is the joint framework for image segmentation and denoising problem. The

contribution of this work is providing a fundamental way to explore similar patches

adapting to object boundary information. The proposed strategy of patch selection is

more informative in comparison to other methods which also use clustering approach

for patch selection (Refer to Figure 4.3). Instead of hard clustering approach, the

proposal also considers the adjacent boundary information between objects for getting

the similar patches. All proposed algorithms are tested for various phantom and real
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: (a) Noisy image with noise sd=4.66 estimated by [2], (b) NLM 1 method,
(c) NLM 2 method (d) Proposed 1 method (e)-(h) zoomed parts of images (a)-(d)
respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: (a) Noisy image with noise sd=2.55 estimated by [2], (b) NLM 1 method,
(c) NLM 2 method (d) Proposed 1 method (e)-(h) zoomed parts of images (a)-(d)
respectively.
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MR images. The results are very encouraging and comparable to some of the state-

of-the-art methods.

The problem in the predecessor frameworks of denoising is time complexity if one

explores whole image space for each patch in the image. It surely cannot be applied as

an online process; however the joint framework of denoising and segmentation could be

an added advantage. To speed up the process, the Proposal 3 is proposed to scarifies

the accuracy a little. Here the numbers of PCA operations to be performed are very

less as compared to LPG-PCA method. The proposal 3 tries to model object details

in PCA basis whereas LPG-PCA models local structure of image in basis vectors.

However, Gaussian assumption in data restricts application PCA methods to Rician

noisy data. The next chapter studies impact of PCA method and its kernel variant

on Rician noisy data.



Chapter 5

Rician Noise Removal using KPCA

As mentioned earlier that, noise most naturally acquired in MR images is Rician in

nature. So, it requires a different treatment. In this chapter, we first discuss, briefly,

the nature of Rician noise and then propose a mechanism based on Kernel Principal

Component Analysis (KPCA) that can remove Rician noise in a better way.

It has been shown that the intensities of MR images represent magnitude of un-

derlying complex data which follows Rice distribution [2]. The real and imaginary

parts are modeled as independently distributed Gaussian with means ar and ai re-

spectively, and with same variance σ2. The pdf of Rician random variable y can be

defined as follows:

fY (y|a, σ) =
y

σ2
e

(
− y

2+a2

2σ2

)
I0

(ya
σ2

)
, y > 0 (5.1)

where a =
√
a2
r + a2

i is underlying noise free signal amplitude and In(z) is nth order

modified bessel function of first kind. Asymptotic approximation of modified bessel

function of first kind, I0(x), is given by

I0(x) =
ex√
2πx

[
1 +

1

8x

(
1 +

9

2(8x)
(1 + . . .)

)]
(5.2)

Let SNR be the signal to noise ratio (here, it is a/σ). When SNR is high, the

70
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Rician distribution approaches Gaussian with mean
√
a2 + σ2 and variance σ2; when

SNR approaches zero (that is only noise is present, a→ 0) [11]. In this case, Rician

distribution becomes Rayleigh distribution and the pdf becomes

fY (y|a→ 0, σ) =
y

σ2
e

(
− y2

2σ2

)
(5.3)

Hence, the conventional methods for Rician noise removal first try to find the back-

ground portion in the Medical images where no signal is assumed. Hence, one can

use Rayleigh distribution on background portion and Gaussian distribution in the

rest (where SNR is assumed to be high enough) [19], [117]. However under the noisy

condition, it is difficult to find proper background in the image.

The recent methods use the principle of non-local similarity (as proposed in [93])

for image restoration task, where the first step involves finding out the similar patches

(in terms of some predefined criteria such as Euclidean distance) that are similar to

a given reference patch from the image. Thereafter, orthonormal basis is inferred for

each patch and shrinkage is performed on the coefficients obtained when the patch is

projected based on that basis. Hence coefficients are sparse in nature as described in

[118], [101], [100].

Out of recently proposed techniques, BM3D [101] seems to be most popular. The

BM3D technique creates a 3D stack of similar patches, projects it onto a 3D basis

(tensor product of 2D-DCT and 1D-Haar), and performs hard thresholding of these

coefficients followed by basis inversion, thereby allowing for a coupled update of the

coefficients [101]. Another class of methods such as [102], first try to cluster similar

patches and then learns basis for each cluster instead of searching the similar patches

for each underlying reference patch. However, due to nature of noise, straight for-

ward implication of natural image denoising methods has not been advocated for

medical images. The NLM method has been extended for Medical Image denoising

problem in [20] where bias correction needs to be considered. The BM3D has been

extended using a suitable invertible transformation of the medical data into another
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domain where data behaves like Gaussian distributed in resultant domain. The most

commonly known such kind of transformation for this purpose is Anacombe’s Trans-

formation, also known as Variance Stabilization Technique (VST). Recently, VST

has been proposed in [2] for Rician distributed data and BM3D method is referred as

BM3D+VST method. The BM3D+VST method can be summarized mathematically

as follows:

ŷ = V ST−1(BM3D(V ST (z, σ), σV ST ), σ) (5.4)

where V ST−1 denotes the inverse Variance Stabilization transform, σV ST is the stabi-

lized standard deviation induced by VST and z denotes the additive white Gaussian

noise whose true intensity is represented by y.

The aim of this chapter is to explore a direct technique that can handle Rician

noise suitably giving rise to noise removal as good as BM3D+VST, if not better.

We have extended PCA based method using Rough Set based clustering proposed in

previous chapter to Rician noise model and bias term correction is also made, referred

as ER-PCA in the paper. We have proposed a new Kernel based PCA (KPCA)

method for Rician noise. However, we have adopted the clustering strategy used in

Algorithm 2 (Proposal 3, Chapter 4), which is non-local approach in true-sense. As

per our knowledge, KPCA has not been applied for Rician noise removal in medical

image yet. The kernel based methods can find non-linearity of data in Feature space.

Recently, kernel based methods have been used in Medical imaging in [119], [120],

[121]. However, choice of appropriate or optimal kernel for given data is undecidable

[121]. In the current proposal, the Gaussian kernel is used and the performance of

noise removal technique is at par with the state-of-the-art methods.

The chapter has been arranged in following manner: Section 5.1 presents proposed

method using KPCA. Section 5.2 compares proposed method with other state-of-the-

art methods.
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Figure 5.1: Transformation of two circular data sets into higher dimension space
using kernel method where separation between them is more prominent and can be
classified using linear hyper-surface.

5.1 Proposed Method using KPCA

5.1.1 Kernel Principal Component Analysis

A nonparametric variant of PCA, known as Kernel Principal Component Analysis

(KPCA) has been explored for Rician noise removal. The KPCA tries to explore

the structure in the data in Feature space instead of data space and tries to capture

higher-order dependencies in the data. In Figure 5.1, two class data is shown in

circular form and transformed to higher dimension for classification purpose, where

transformation is φ(x) : (x1, x2)→ (x1, x2, x
2
1+x2

2). Hence, one can find a plane (linear

surface) in higher dimensions which is not possible in two dimensions for given data

points.

In KPCA, this nonlinearity is introduced by first mapping the data into another

space F using a nonlinear map Φ : RN → F , before a standard linear PCA is carried

out in F using the mapped samples φ(xk). The map Φ and the space F are determined

implicitly by the choice of a kernel function k, which acts as a similarity measure.

This mapping computes the dot product between two input samples x and y mapped

into F via

k(x; y) = Φ(x).Φ(y) (5.5)
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(a) (b)

(c) (d)

Figure 5.2: Reconstruction using PCA and KPCA over synthetic data with Rician
noise. (a) Synthetic Data, (b) Rician Noisy Data, (c) Reconstruction using PCA and
(d) Reconstruction using KPCA.

One can show that if k is a positive definite kernel, then there exists a map Φ into

a dot product space F such that Eq.5.5 holds. The space F then has the structure

of a Reproducing Kernel Hilbert Space (RKHS) [119].

The identity Eq.5.5 is important for KPCA since PCA in F can be formulated en-

tirely in terms of inner products of the mapped samples. Thus, we can replace all inner

products by evaluations of the kernel function. This has two important consequences:

first, inner products in F can be evaluated without computing Φ(x) explicitly. This

allows to work with a very high-dimensional, possibly infinite-dimensional RKHS F .

Second, if a positive definite kernel function is specified, we need to know neither Φ

nor F explicitly to perform KPCA since only inner products are used in the compu-

tations. Commonly used positive definite kernel functions are polynomial kernel of

degree d ∈ N, k(x,y) = (x.y)d or k(x,y) = (x.y + 1)d or Gaussian kernel of width

σ > 0, k(x,y) = exp
(
−‖x− y‖2 /2σ2

)
. In all the experiment, Gaussian Kernel has

been used which is isotropic stationary in nature and also satisfy Mercer’s Theorem

[121].

In PCA, the covariance matrix is defined as C = 1
N−1

X tX where is X is called
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Data matrix containing samples in columns. The covariance matrix in case of KPCA

of size M ×M , calculated by

CF =
1

N

N∑
i=1

φ(xi)φ(xi)
T (5.6)

Its eigenvalues and eigenvectors are given by CFvk = λkvk, where k = 1, 2, . . . ,M .

Mathematical simplification lead to vk =
∑N

i=1 akiφ(xi) and hence ak (N-dimensional

column vector of aki) can be solved by CFak = λkNak. If projected dataset φ(xi)

does not have zero mean, one can use Gram matrix C̃F to substitute the kernel matrix

CF which is given by

C̃F = CF − 1NCF − CF1N + 1NCF1N (5.7)

where 1N is the N ×N matrix with all elements equal to 1/N .

An experiment has been performed as shown in Figure 5.2 where rician noise

added in the synthetic data. Here, KPCA (with Gaussian kernel) is able to preserve

orientation of the data in a better way as compared to PCA based reconstruction.

5.1.2 Proposed Approach

The outline of approach can be described as follows:

a. Get the clusters of the given noisy image using Rough set based method (as

described in Chapter 4).

b. For each cluster, get the Basis vectors using KPCA method along pixel positions.

For patches of size p×p, Kernel matrix would of size p2×p2. Hence, the method

is data adaptive in nature.

c. Project the noisy image patches using the obtained basis vectors in the KPCA

domain.
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d. Apply coefficient shrinkage method on these projected patches to get the de-

noised patches. Transform patches back to image space.

e. Remove the bias term from denoised image for each pixel.

Iunbiased =

√
max(Î(i, j)2 − 2h2, 0) (5.8)

where h is the standard deviation of the noise and Î is the image obtained by

step (4). Figure 5.3 shows the method in a block diagram.

Figure 5.3: Flow chart of proposed method using KPCA

5.2 Experimental Results

This Section encompasses qualitative and quantitative evaluation of the proposed

method along with some of the state-of-the-art methods. Experiments have been

carried out on 2D monochrome phantom human brain MRI images obtained from

Brain Web Database [1]. The parameters are as follows: RF = 20, protocol = ICBM,

slice thickness = 1mm, volume size = 181x217x181. The experimental set up considers

Rician noise model at different noise levels along with two modalities, namely T1 and

T2. The simulated database provides the ground truth image for evaluating denoising
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performance which most of the time is unavailable with real database. The Rician

noise addition and bias correction are done as suggested in [122] and [20] respectively.

The evaluation measures used are Peak-Signal-to-Noise Ratio (PSNR), Root Mean

Square Error (RMSE), Structural Similarity Index (SSIM) [95] and Feature Similarity

Index (FSIM) [96].

For comparison, four state-of-the-art methods are considered: Unbiased Non Lo-

cal Means (UNLM method) presented in [20], BM3D+VST method proposed in [101],

RS-NLM method proposed in Chapter 4 (Algorithm 1). The PCA based method pro-

posed in the Chapter 4 (Algorithm 2) has been extended in this work for Rician noise,

referred as ER-PCA. The parameters of all methods are kept default as suggested by

respective authors. In all the experiments, patch size is kept as 5× 5. The proposed

KPCA method does not use VST method. Table 5.1 and Table 5.2 represent quan-

titative results for two slices 70 and 100 of T1 MR and T2 MR images respectively.

The performance of ER-PCA is comparable to UNLM and BM3D+VST methods.

The proposed KPCA method outperforms ER-PCA and preserves structure better

than other state-of-the-art methods. BM3D+VST is observed to be very robust and

hence performance of the proposed method is tested taking BM3D+VST as bench-

mark. Figure 5.4 shows difference of PSNR and SSIM measure for KPCA method

with reference to BM3D+VST (zero level on vertical axis) of 50 slices (from 61st to

110th slice of database mentioned above) with noise standard deviation equal to 15

for both T1 and T2 modalities. The negative value indicates BM3D+VST perform

better and, in reverse, positive value is indicator of better performance of KPCA

method. From the Figure 5.4, PSNR of KPCA is falls below BM3D+VST method

whereas it preserves structure of the image better in terms of SSIM measure. This is

also visually evident in Figure 5.5 for the slice 100 of T1 modality at noise level 15.

5.3 Conclusion

In this chapter, an approach for removing Rician noise from brain MR images using

Kernel PCA has been proposed. Being a manifold learning method, KPCA explores a
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(a) (b)

(c) (d)

Figure 5.4: Difference comparison of KPCA with reference to BM3D+VST method
(at zero level vertically) for 50 slices for noise standard deviation equal to 15 (a)
T1 images with PSNR difference values, (b) T1 images with SSIM difference values,
(c) T2 images with PSNR difference values and (d) T2 images with SSIM difference
values.

Table 5.1: Performance comparison of proposed denoising strategy with different
approaches on various quantitative measures under Rician Noise assumption in Brain
Web database (slice=70 & 100, Modality = T1, image size = 181× 217 and patch
size = 5× 5). Best figures are shown in Bold.

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
5 Noisy 32.4293 37.1660 0.6134 0.9296 32.2588 38.6549 0.5564 0.8922

UNLM [20] 39.0519 8.0889 0.9832 0.9845 40.1551 6.2744 0.9882 0.9887
BM3D+VST [2] 40.9727 5.1937 0.9602 0.9843 41.4921 4.6118 0.9602 0.9857

RS-NLM 39.8595 6.7163 0.9851 0.9853 41.5829 4.5164 0.9914 0.9913
ER-PCA 40.4514 5.8606 0.9791 0.9764 39.9719 6.5447 0.9689 0.9563
KPCA 40.2107 6.1946 0.9197 0.9797 41.2223 4.9073 0.9866 0.9850

10 Noisy 26.4115 148.5702 0.4717 0.8149 26.2398 154.5629 0.4183 0.7567
UNLM [20] 35.9894 16.3733 0.9608 0.9643 36.9916 12.9993 0.9707 0.9724

BM3D+VST [2] 36.3738 14.9866 0.9040 0.9607 36.8590 13.4025 0.9132 0.9653
RS-NLM 35.8260 17.0011 0.9631 0.9645 37.2231 12.3246 0.9762 0.9770
ER-PCA 35.7387 17.3464 0.9389 0.9439 36.3168 15.1846 0.9597 0.9484
KPCA 36.1061 15.9395 0.9586 0.9522 36.6642 14.0172 0.9682 0.9628

15 Noisy 22.8950 333.8752 0.3744 0.7177 22.7220 347.4434 0.3331 0.6495
UNLM [20] 33.5147 28.9475 0.9299 0.9391 34.4622 23.2732 0.9453 0.9498

BM3D+VST [2] 33.7666 27.3162 0.8583 0.9368 34.2393 24.4992 0.8684 0.9447
RS-NLM 32.1179 39.9292 0.9273 0.9244 32.5856 35.8523 0.9472 0.9448
ER-PCA 33.2440 30.8093 0.9133 0.9178 33.8155 27.0103 0.9377 0.9287
KPCA 33.4097 29.6557 0.9323 0.9262 34.0241 25.7438 0.9469 0.9404
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: (a) Synthetic Noisy T1 Image with Rician noise standard deviation=15
and PSNR =22.7220 dB, Denoised image using (b) UNLM method, PSNR = 34.4622
dB, (c) BM3D+VST method, PSNR = 34.2393 dB, (d) RS-NLM method, PSNR =
32.5856 dB, (e) ER-PCA method, PSNR = 33.8155 dB, (f) KPCA method, PSNR =
34.0241 dB.
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Table 5.2: Performance comparison of proposed denoising strategy with different
approaches on various quantitative measures under Rician Noise assumption in Brain
Web database (slice=70 & 100, Modality = T2, image size = 181× 217 and patch
size = 5× 5). Best figures are shown in Bold.

Noise Slice 70 Slice 100
SD Methods PSNR RMSE MSSIM FSIM PSNR RMSE MSSIM FSIM
5 Noisy 32.4349 37.1185 0.6257 0.9365 32.2639 38.6095 0.5691 0.9052

UNLM [20] 34.4831 23.1617 0.9822 0.9813 35.2666 19.3385 0.9869 0.9858
BM3D+VST [2] 40.4738 5.8305 0.9648 0.9861 41.0752 5.0764 0.9663 0.9885

RS-NLM 36.9814 13.0300 0.9856 0.9835 37.6322 11.2166 0.9915 0.9900
ER-PCA 39.8618 6.7127 0.9783 0.9727 39.1934 7.8297 0.9610 0.9473
KPCA 37.8578 10.6487 0.8002 0.9782 38.1996 9.8429 0.7610 0.9797

10 Noisy 26.4322 147.8642 0.4956 0.8356 26.2550 154.0201 0.4408 0.7757
UNLM [20] 32.9818 32.7262 0.9618 0.9623 33.8132 27.0246 0.9710 0.9687

BM3D+VST [2] 35.7377 17.3504 0.9181 0.9681 35.8044 17.0860 0.9683 0.9637
RS-NLM 34.5041 23.0502 0.9691 0.9676 35.2411 19.4522 0.9799 0.9766
ER-PCA 34.8288 21.3894 0.9432 0.9323 34.5457 22.8303 0.9262 0.9008
KPCA 35.0519 20.3182 0.8527 0.9567 36.1329 15.8413 0.9184 0.9727

15 Noisy 22.9275 331.3825 0.4131 0.7519 22.7460 345.5293 0.3676 0.6776
UNLM [20] 31.4832 46.2121 0.9346 0.9408 32.1181 39.9271 0.9472 0.9456

BM3D+VST [2] 32.8504 33.7321 0.8769 0.9496 33.1694 31.3427 0.8855 0.9567
RS-NLM 31.9206 41.7849 0.9446 0.9452 32.6973 34.9423 0.9601 0.9543
ER-PCA 31.7529 43.4297 0.9034 0.8973 31.7770 43.1894 0.8989 0.8718
KPCA 32.3606 37.7592 0.9363 0.9346 32.8539 33.7049 0.9516 0.9439

20 Noisy 20.4499 518.2594 0.3540 0.6871 20.2642 611.8738 0.3162 0.6059
UNLM [20] 30.0502 64.2771 0.9063 0.9205 30.5757 56.9519 0.9199 0.9216

BM3D+VST [2] 30.7168 55.1319 0.8426 0.9303 30.9691 52.0201 0.8508 0.9398
RS-NLM 29.4113 74.4654 0.9109 0.9104 30.1086 63.4192 0.9293 0.9137
ER-PCA 29.6008 71.2860 0.8723 0.8785 29.6002 71.2947 0.8647 0.8527
KPCA 30.1448 62.8934 0.9129 0.9144 30.6031 56.5941 0.9316 0.9245

25 Noisy 18.5384 910.4194 0.3095 0.6362 18.3487 951.0736 0.2774 0.5520
UNLM [20] 28.6394 88.9483 0.8777 0.9012 29.1108 79.7989 0.8914 0.8987

BM3D+VST [2] 29.0589 80.7598 0.8109 0.9114 29.2912 76.5527 0.8269 0.9227
RS-NLM 26.4734 146.4670 0.8599 0.8492 26.6486 140.6762 0.8696 0.8372
ER-PCA 28.0567 101.7219 0.8576 0.8824 28.1251 100.1314 0.8529 0.8685
KPCA 28.1995 98.4298 0.8792 0.8814 28.3402 95.2919 0.8932 0.8785

suitable transformation for image representation through sparse bases. This method

learns basis vectors from data itself unlike BM3D+VST method where basis vectors

are kept fixed. The limitation of KPCA method is the selection of suitable kernel

which is yet unanswered. If the nature of data is not known a-prior then one can try

various kernels to find a suitable one. However, commonly used Gaussian kernel in

KPCA, found to perform comparable with other state-of-the-art methods. The PCA

based method proposed in previous chapter has also been implemented to remove

Rician noise, but it fails to attend superior performance over KPCA. The proposed

method is implemented on synthetic data for quantitative evaluation since ground

truth data is available for it.



Chapter 6

3D MRI Denoising

3D MRI provides more insight into data and their inter slice relationship. With this in

mind, researchers, in recent days, prefer to work directly on 3D data. However, large

dimensions increase computation hugely and correlation between the dimensions play

major role. The search of relationship of data among different dimensions is a highly

sought. One class of method deploys non-local means strategy while deriving feature

set from the raw data/pre-processed data. Mainly, methods [123], [124], [125], [120],

[16] follow NLM process. Another class of methods transform data to Gaussian space

using VST, then perform denoising and invert back to data space [122], [126].

6.1 State-of-the-art Methods for 3D denoising

Many state-of-the-art methods for 3D image denoising are extensions of their 2D

counterpart versions. However, computational complexity becomes a crucial factor

during the extension. The 3D MR image denoising was introduced in modern liter-

ature in [123] and then followed by [124], [125], [120], [122], [126], [16] etc. Instead

of playing with patches in 2D images, here a voxel is defined as 3D cube centered

at location (i, j, k) in R3. Hence, a voxel is simply counterpart of a patch of size

w × w × w. Consequently, exploring relationship among intensity values in R3 is

highly sought and thus leads to computational intensive process.

81
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The Optimized Blockwise NLM (OBNLM, [123]) is extension of Non Local Means

method [93]. OBNLM tweak the computation of similarity weight between voxels

and constrained to have predefined criteria for mean and variance of both the voxels.

At the same time, it adopted the block-wise strategy to drop restoration of adja-

cent n voxels which effectively reduce the computational load by n3 times instead of

processing each voxel in the image space. A similar approach has been adopted in

[124], [122]. In case of ABONLM method [124], denoising is performed under Wavelet

framework using adaptive soft wavelet coefficient mixing (ASCM) approach.

A non-parametric kernel regression framework has also been adopted for 3D MR

image denoising in Unbiased Kernel Regression method [120]. UKR is rooted on

a zeroth order 3D kernel regression and similarity weight between voxels is derived

on small sized feature vectors based image intensity and gradient information. The

sparseness and self-similarity has been unified in PRI-NLM method [125]. PRI-NLM

incorporate rotational invariant version of NLM [109] and discrete cosine transform

hard thresholding for sparsity purpose.

One of the most well know BM3D method has been extended to 3D MR image

denoising as BM4D method [122]. Similar to BM3D, BM4D is also equipped with

collaborative filtering notion where similar voxels are arranged in fourth dimension.

It is also a two stage method where the output of first stage guides the second stage

and uses hard thresholding in first pass and wiener filtering in second pass. Ideally,

BM4D is designed for Gaussian noise whereas Variance Stabilization Technique (VST)

has been adopted to deal with Rician noise in 3D MRI data [122]. The VST based

scheme is also adopted in two phased HOSVD-R method [126] which is also a natural

extension of HOSVD method proposed in [100].

Recently, another two stage method PRI-NL-PCA [16] was proposed based on

sparsity and self-similarity of voxels. It is encompassed within PCA thresholding

strategy in first stage where rotational invariant NLM method is deployed in second

stage. The next section describes the current proposal.
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6.2 Proposed Method

6.2.1 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is described in Chapter 5, however

we are reminding the reader about the salient features of it. KPCA induces non-

linearity by projecting data to kernel space via similarity measuring kernel function.

A standard linear PCA operation is then carried out in the kernel space. In PCA,

the covariance matrix is defined as C = 1
N−1

X tX where is X is called Data matrix

containing samples in columns. The covariance matrix in case of KPCA of sizeM×M ,

calculated by

CF =
1

N

N∑
i=1

φ(xi)φ(xi)
T (6.1)

Its eigenvalues and eigenvectors are given by CFvk = λkvk, where k = 1, 2, . . . ,M .

Mathematical simplification lead to vk =
∑N

i=1 akiφ(xi) and hence ak (N-dimensional

column vector of aki) can be solved by CFak = λkNak. If projected dataset φ(xi)

does not have zero mean, one can use Gram matrix C̃F to substitute the kernel matrix

CF which is given by

C̃F = CF − 1NCF − CF1N + 1NCF1N (6.2)

where 1N is the N × N matrix with all elements equal to 1/N (Refer to Chapter 5

for more details).

6.2.2 Proposed Method

The 3D MR image denoising is extension of method used in Chapter 5 for slice image

denoising. In this work, Rough Class Label (RCL) and Rough Edge Map (REM)

notion is extended to 3D data in similar fashion via rough entropy optimization

criteria. Here, we refer a patch as voxel.
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The method proposed in Chapter 5 for 2D images has been extended for 3D data

in this chapter. We have extended Rough Set based RCL and REM information

(Chapter 2) for 3D data and the pool formation uses voxels (cube). A voxel (N ×

N×N) is first converted into vector format (N3×1). Afterwords, RST based pooling

process creates pool of similar voxels globally. The basis vectors from KPCA method

(Chapter 5), are then truncated using hard thresholding approach. The denoised

vector is projected back to image space. The proposed method is a single phase

process whereas methods proposed in [122], [126], [16] are two phase methods 5where

output of first phase used as informed input to the next phase.

The outline of present work can be described as follows:

a. Get the clusters of voxels (p × p × p) from the given noisy image using Rough

set based method (as described in Chapter 4).

b. For each cluster, get the basis vectors using KPCA method along pixel positions.

For cluster matrix of size p3 ×N , kernel matrix would be of size p3 × p3, where

N is number of voxels in the cluster.

c. Project the noisy image patches on the obtained basis vectors in the KPCA

domain.

d. Apply coefficient shrinkage method on these projected patches to get the de-

noised patches. Transform them back to image space.

e. Remove the bias term from each pixel of the denoised image i.e. Îunbiased(i, j, k) =√
max(Î(i, j, k)2 − 2h2, 0), where h is the standard deviation of noise and Î is

the image obtained by step (4).
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Figure 6.1: Flowchart of Proposed Method

6.3 Experimental Results

6.3.1 Validation on Phantom Database

The experiments have been carried out on Brain Web database [1] with T1, T2 and

PD modalities. The Simple Kernel is parameter free whereas other kernels, referred in

this work, have one parameter. Kernels with more than one parameters will increase

the computation drastically. For this reason, such kernels are not considered. The

kernels used in this work are mentioned in Table 6.1 with their respective parameters.

In this work, exhaustive experimental results are presented in Figure 6.2 and 6.3 for

finding optimized kernel parameter values. The parameter values are evaluated in

the range 10−3 to 106 with incremental step 10. The proposed method with single

threaded MATLAB implementation takes around 45 minutes on core i7 processor, 2.10

GHz and 8 GB RAM machine. The UKR is observed to have same computational

time whereas BM4D with MATLAB/C implementation takes 11 minutes and others

run in less than five minutes.

The proposed method has been compared with UKR [120], PRI-NLM [125], BM4D

[122], PRI-NL-PCA [16]. Table 6.2 shows reconstruction error of all methods when
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Table 6.1: Various Kernel used in this work

Kernel Name Expression Parameter
Simple/Linear xTy -

Gaussian exp
(
−‖x−y‖

2

2h2

)
h

Laplacian exp
(
−‖x−y‖h

)
h

Multiquadratic

√
‖x− y‖2 + h2 h

Sigmoid tanh
(
‖x− y‖2 + h2

)
h

Table 6.2: Results of state-of-the-art Methods for Noise Free Data for T1, T2 and
PD modalities (represented row-wise against each method)

Modality PSNR RMSE SSIM BC
UKR T1 12.45 60.83 0.7063 0.8519

T2 11.55 67.45 0.7045 0.8819
PD 7.24 110.73 0.7044 0.8519

PRI-NLM T1 12.45 60.83 0.7064 0.8548
T2 11.57 67.31 0.7053 0.8594
PD 7.25 11.61 0.7060 0.8618

BM4D T1 47.64 1.06 0.9976 0.9955
T2 40.57 2.39 0.9966 0.9923
PD 54.76 0.47 0.9989 0.9529

PRI-NL-PCA T1 56.24 0.39 0.9997 0.9734
T2 46.32 1.23 0.9995 0.9763
PD 48.07 1.01 0.9994 0.9783

KPCA T1 296.48 0.0 1.0 0.9988
T2 200.14 0.0 1.0 0.9963
PD 263.69 0.0 1.0 0.9901

no noise is present in image. In oracle situation, image (3D volume data here) must

be exactly reconstructed with result in PSNR = Infinity, RMSE = 0, SSIM = 1.0

and Bhattacharya Coefficient (BC) = 1.0. The proposed method reconstructs image

better than other state-of-the-art methods in terms of all the measures. Although,

PSNR of proposed method is not around Infinity but very high than that of other

methods.

Table 6.3, 6.4 and 6.5 present denoising results for T1, T2 and PD modality respec-

tively. All the tables present results with various noise levels (σ = 5, 10, 15, 20, 25). In

the table, 2× 2 block represents PSNR (top-left), RMSE (top-right), SSIM (bottom-

left) and BC (bottom-right). The best result along each noise is represented in bold

figure for all the measures. At lower noise level, KPCA method performed compara-
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Figure 6.2: Performance of various kernels over PSNR values with different noise
levels and modalities
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Figure 6.3: Performance of various kernels over SSIM values with different noise levels
and modalities
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(a) T1 volume (b) T2 volume (c) PD volume

Figure 6.4: Original volumes of T1, T2, PD data from BrainWeb Database

ble to other methods in all the modalities. At higher level, PSNR of proposed method

falls very down whereas it is able to preserve the structure of medical data far better

than other state-of-the-methods. At the same time, proposed method also stood best

in probabilistic measure BC. The kernel method may not be able to project data

on manifold under high noisy condition that might cause the fall in PSNR values.

However, a simple pre-processing such as mean or median filtering can be applied at

higher noise level as done in [120].

6.3.2 Results on Real Databases

The other two real datasets are having some pathological issues. The subject details

of selected data from OASIS dataset [7] are as follows: Subject ID: 012, 018, Age:

30 and 39 (both male) respectively, scan number: mpr-1, type: MPRAGE, voxel

resolution: 1.0 mm x 1.0 mm x 1.25mm, Orientation: Sagittal, TR (ms)= 9.7, TE

(ms)= 4.0, TI(ms)= 20.0, Flip angle= 10. The 3D cross sectional view of subject

results are shown in Figure 6.8 and 6.9 for subject 012 and 018 respectively and Figure

6.10 shows 2D view of a portion of Subject 018.
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6.4 Conclusion

Kernel method is explored in this work to deal with Rician noise present in the MRI

data. Being signal dependent noise, applicability of linear denoising operation such

as PCA is not advisable. It is expected in the present work that kernel method may

project the nonlinear data in the linear feature space. We have an extended Rough

Set based clustering method to collect similar voxels conditioned on class and edge

information. These similar voxels are then used to define kernel matrix via kernel

function. We have experimented with a small set of kernels having one parameter.

However, it can be exercised with other known kernel with suitable parameter esti-

mation method or data adaptive kernel for rician model can be thought of.

The proposed method is non-iterative and single stage method as opposed to some

of predecessor methods like BM4D, PRI-NL-PCA etc. In this work, intensity value

is used as a feature in clustering step and in kernel space however more features can

be considered like gradient information as in UKR. The predecessor methods restrict

the search space for searching similar voxels. However, current method exploits the

whole volume and thereby forms clusters for similar voxels.
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(a) Noisy volume (b) UKR

(c) PRINLM3D (d) BM4D

(e) PRINLPCA (f) Proposed

Figure 6.5: Comparison of various methods on T1 from BrainWeb Database
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(a) Noisy volume (b) UKR

(c) PRINLM3D (d) BM4D

(e) PRINLPCA (f) Proposed

Figure 6.6: Comparison of various methods on T2 from BrainWeb Database
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(a) Noisy volume (b) UKR

(c) PRINLM3D (d) BM4D

(e) PRINLPCA (f) Proposed

Figure 6.7: Comparison of various methods on PD from BrainWeb Database
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(a) Noisy volume (b) UKR

(c) PRINLM3D (d) BM4D

(e) PRINLPCA (f) Proposed

Figure 6.8: Comparison of various methods on subject 012 from OASIS Database
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(a) Noisy volume (b) UKR

(c) PRINLM3D (d) BM4D

(e) PRINLPCA (f) Proposed

Figure 6.9: Comparison of various methods on subject 018 from OASIS Database
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(a) Noisy volume (b) UKR (c) PRINLM3D

(d) BM4D (e) PRINLPCA (f) Proposed

Figure 6.10: Comparison of various methods on subject 018 with zoom from OASIS
Database



Chapter 7

Conclusion & Future Work

Medical Image Denoising plays a crucial role in Computer Aided Diagnostic (CAD)

system where a good quality image can better be utilized in disease identification,

segmentation of normal and abnormal tissues etc. This work started with some notion

of segmentation and edge detection problems in medical images preceded by noise

removal. The methods of noise removal in this thesis are revolving around utilizing

the notion of uncertainty management using Rough Set Theory (RST). Although,

RST has been used in past for segmentation purpose extensively, this is an early

attempt to use it in image denoising framework as prior information.

This thesis interlinked uncertainty model defined by Rough Set in the image de-

noising framework where data is assumed to be corrupted by signal dependent noise.

The prior information derived in RST framework is applied on three denoising frame-

works. The spectrum of frameworks varies from pixel level aggregation to patch level

aggregation and spread from bias correction to sparsity conditions.

This chapter summarizes the work accomplished in this thesis and discusses limi-

tations and possibilities to extend it in various directions.

100
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7.1 Winding Up

Being non-invasive technique, MRI offers a great help to diagnostic system by acquir-

ing structural information of human anatomy. However, there is always a chance to

get attenuated by various error sources, mentioned in Chapter 1. This thesis is an

endeavor to use Rough Set Theory (RST [30]) explored to remove Rician noise model

present in MRI. Main contributions of the thesis are listed below.

a. RST, being known for uncertainty handling capability, has been explored on

noisy MR images. A novel multi-class thresholding method is proposed to

generate Rough Class Label (RCL) and Rough Edge Map (REM) information.

This scheme is adaptive in terms of number of objects present in the image and

edges obtained here are closed and continuous. It also provides accessibility to

visualize an object of interest and its boundary information.

b. A more informative denoising filter is proposed under Bilateral filter framework

[35]. RCL and REM information are used to define a weighing term along with

spatial and photometric weights for pixel based denoising mechanism.

c. The notion of non-local self similarity (NLSS) widen the use of similar neighbor-

hoods in denoising instead of a pixel level processing in conventional methods.

This is also generalized to patch based processing where two locationally far

apart similar patches contribute to denoise each other. However, this process

involves heavy computational burden. Under this situation, a clustering based

framework is proposed which adhere to NLSS notion more appropriately. This

provides a unique and more intuitive gathering of similar patches and then pro-

ceeds for denoising task. Hence, the number of computations get lowered down

to an extent.

d. A non additive signal dependent Rician noise present in MRI makes the appli-

cability of the natural image denoising methods unfair for MRI. However, this

has been made possible by variance stabilization technique proposed in [2] to
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an extent. To deal with above mentioned problem, a Kernel Principal Com-

ponent Analysis (KPCA) based method with RCL and REM information has

been proposed. The results laid a new direction to explore KPCA for signal

dependent noisy environment.

e. Structure preserving property of previous proposal lays to explore it for 3D data

denoising. The REM and RCL information are extended to explore relationship

in 3D. Here, instead of dealing with patches, similarity criteria is redefined for

voxels (cubes) and clustering based denoising framework is adopted as men-

tioned earlier. Kernel Principal Component Analysis (KPCA) indeed preserves

structure, after denoising, better than its contemporary methods.

7.2 Contributions

This section gives a final glimpse of this thesis with an outline of the problem ad-

dressed in each chapter and solution addressed in that regard.

• The notion of Rough Set based class label and edge map information (i.e. RCL

and REM) is defined in Chapter 2 using multilevel histogram thresholding and

rough entropy optimization.

• REM and RCL are used as regularization factor in the Bilateral Filter to prevent

distortion at edges in the noisy images in Chapter 3. The proposed filter can

be regarded as Trilateral Filter.

• Patch based medical image denoising problem is addressed in Chapter 4. Rough

Set based clustering approach is proposed for transformed domain based non-

local MR image denoising problem.

• Kernel Principal Component Analysis (KPCA) method is adopted to deal with

Rician nature of noise present in MR images in Chapter 5. In this, data is

first projected to kernel space via function mapping then non local clustering
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based denoising framework is adopted in kernel space and inverted back to get

denoised MR image.

• Chapter 6 is an extension of methods proposed in Chapter 2 and Chapter 5

from 2D images to 3D volume MR data.

7.3 Overall Conclusion

The current work is an early attempt to explore Rough Set Theory for medical image

denoising under various frameworks. Starting from filter approaches, more sophisti-

cated and recent mechanism of patch based denoising are attempted. All methods

proposed are found to be as efficient as their contemporary methods, if not better.

All experiments are performed on phantom datasets; however the same is explored

for some real datasets as and when possible.

This work is complete by extending the proposals to denoise the 3D MRI which is

gaining lots of attention in recent times. Finally, it is concluded that soft computing

approach, specifically Rough Set Theory is successfully applied to MR image denoising

and the results are encouraging to researchers for further studies towards possible

extensions.

7.4 Future Work

The performance comparison of image denoising methods, on Real images like natural

or medical, is quite subjective if no gold standard is available. This thesis compares

methods on phantom database that is similar to Real human brain MRI scans, some

results are also shown on Real MRI data. Brain related diseases such as brain tumor,

multiple sclerosis etc. are analyzed based on change in Cerebrospinal Fluid (CSF),

Gray Matter (GM) and White Matter (WM) over a period of time. Hence, one

needs to keep track of the details of these tissues in MRI scans and hence must be

preserved intact during denoising process. This work considers four objects, namely
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CSF, GM, WM and rest as Background 1. Using these four objects/classes, RCL

and REM information (Chapter 2) is derived and further used for various denoising

frameworks. Methods presented here can be applied to MRI scan of human body

such as cardiac, knee by adopting number of objects present in them. Note that one

can acquire number of classes according to domain knowledge.

At the end of Chapter 3, a result is presented on brain tumor class estimation. The

dice coefficient was found to be 0.71 which is far behind from 1.0 in ideal situation.

Hence, one can further take this coefficient values towards unity aiming more feature

preservation during denoising. This can also be extendable for identification of other

diseases and there by supporting clinical practice and diagnostic.

In Non Local Self Similar (NLSS) framework (Chapter 4), thesis proposes a novel

clustering technique based on RCL and REM information between patches. The

conventional clustering methods such as K-Means, Finite Mixture Models, segment

an image in K number of clusters if there are K objects with crisp boundary. The

proposed approach assumes rough boundary where overlapping between multiple ob-

jects is possible. Hence, method constructs all possible combinations of K objects as

clusters. Clusters, thus formed are not analyzed statistically on the ground of com-

pactness such as mean, standard deviation in the thesis. Such inclusions may enhance

the robustness of proposed denoising framework during basis vector formation.

In Chapters 5 and 6, manifold based KPCA denoising framework for Rician noise

removal in the 2D and 3D MRI images is presented. During this work, limited subset

of kernels having single parameter is experimented. However, this work can further be

investigated using various other kernels with a mechanism to adjust kernel parameters.

One interesting line of work could be to design a Rician kernel or data adaptive kernel

specifically to deal Ricianity conditions. A more analytical study of manifold based

methods can be looked upon to investigate behavior of Rician noise under high noisy

environment. While performing patch and voxel based denoising, patch and voxel

1One can remove skull part in MRI data from some available tools but such methods are outside
the scope of the thesis
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are converted to their one dimensional representation which may lose the relation up

to some extent. A 2D or 3D PCA/KPCA method can be investigated in the light of

preserving structural information in the raw data.
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netic resonance imaging partial volume detection system. In Pattern Recognition

and Machine Intelligence, pages 756–761. Springer, 2005.

[34] Yi Xie. On medical image filtering based on rough set theory. In Fifth In-

ternational Conference on Fuzzy Systems and Knowledge Discovery (FSKD),

volume 5, pages 276–280. IEEE, 2008.

[35] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In

IEEE International Conference on Computer Vision, pages 839–846, 1998.



REFERENCES 110

[36] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel prin-

cipal component analysis. In Artificial Neural NetworksICANN’97, pages 583–

588. Springer, 1997.

[37] Jing Tao Yao. Information granulation and granular relationships. In Granular

Computing, IEEE International Conference on, volume 1, pages 326–329, 2005.

[38] Lotfi A Zadeh. Some reflections on soft computing, granular computing and

their roles in the conception, design and utilization of information/intelligent

systems. Soft Computing-A fusion of foundations, methodologies and applica-

tions, 2(1):23–25, 1998.

[39] Zdzislaw Pawlak. Rough sets and data mining. In Proceedings of the

Australiasia-Pacific Forum on Intelligent Processing and Manufacturing of Ma-

terials, 1997.

[40] Torgeir R Hvidsten and Jan Komorowski. Rough sets in bioinformatics. In

Transactions on rough sets VII, pages 225–243. Springer, 2007.

[41] Francis EH Tay and Lixiang Shen. Economic and financial prediction using

rough sets model. European Journal of Operational Research, 141(3):641–659,

2002.

[42] Aboul Ella Hassanien and Jafar MH Ali. Rough set approach for generation of

classification rules of breast cancer data. Informatica, 15(1):23–38, 2004.

[43] YM Lazim, M Nordin A Rahman, and Farham Mohamed. Clustering model

of multimedia data by using rough sets theory. In Computer & Information

Science (ICCIS), 2012 International Conference on, volume 1, pages 336–340.

IEEE, 2012.

[44] Pawan Lingras. Rough set clustering for web mining. In Fuzzy Systems, 2002.

FUZZ-IEEE’02. Proceedings of the 2002 IEEE International Conference on,

volume 2, pages 1039–1044. IEEE, 2002.



REFERENCES 111

[45] Sankar K Pal and James F Peters. Rough Fuzzy Image Analysis: Foundations

and Methodologies. CRC Press, 2010.

[46] Bing Zhou. Multi-class decision-theoretic rough sets. International Journal of

Approximate Reasoning, 55(1):211–224, 2014.

[47] Phillip A Laplante and Colin J Neill. Modeling uncertainty in software engi-

neering using rough sets. Innovations in Systems and Software Engineering,

1(1):71–78, 2005.

[48] Cheng-Dong Wu, Ying Zhang, Meng-Xin Li, and Yong Yue. A rough set ga-

based hybrid method for robot path planning. International Journal of Au-

tomation and Computing, 3(1):29–34, 2006.

[49] Andrew Kusiak. Rough set theory: a data mining tool for semiconductor

manufacturing. Electronics Packaging Manufacturing, IEEE Transactions on,

24(1):44–50, 2001.

[50] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[51] Albrecht Pietsch. Approximation spaces. Journal of Approximation Theory,

32(2):115–134, 1981.

[52] James F Peters. Near sets. general theory about nearness of objects. Applied

Mathematical Sciences, 1(53):2609–2029, 2007.

[53] Zdzis law Pawlak. Rough sets and fuzzy sets. Fuzzy sets and Systems, 17(1):99–

102, 1985.

[54] Ranjit Biswas. Rough sets are fuzzy sets. BUSEFAL, 83:24–31, 2000.

[55] Didier Dubois and Henri Prade. Rough fuzzy sets and fuzzy rough sets*. In-

ternational Journal of General System, 17(2-3):191–209, 1990.



REFERENCES 112

[56] Chris Cornelis, Martine De Cock, and Anna Maria Radzikowska. Fuzzy rough

sets: From theory into practice. Handbook of Granular Computing, pages 533–

552, 2008.

[57] S. K. Pal, B. Uma Shankar, and P. Mitra. Granular computing, rough entropy

and object recognition. Pattern Recognition Letters, 26:2509–2517, 2005.

[58] Xuguang Chen. A Rough Set Approach to Face Recognition. PhD thesis, Faculty

of Graduate Studies and Research, University of Regina, 2014.

[59] Pradipta Maji and Shaswati Roy. Rough-fuzzy clustering and unsupervised

feature selection for wavelet based mr image segmentation. PloS one, 10(4),

2015.

[60] Shaswati Roy and Pradipta Maji. A new post-processing method to detect

brain tumor using rough-fuzzy clustering. In Pattern Recognition and Machine

Intelligence, pages 407–417. Springer, 2015.

[61] Shoji Hirano and Shusaku Tsumoto. Rough representation of a region of interest

in medical images. International Journal of Approximate Reasoning, 40(1):23–

34, 2005.

[62] S Widz, D Slezak, and K Revett. Application of rough set based dynamic

parameter optimization to mri segmentation. In IEEE Annual Meeting of the

Information Processing NAFIPS, volume 1, pages 440–445, 2004.

[63] Roman W Swiniarski. Rough sets and bayesian methods applied to cancer

detection. In Rough Sets and Current Trends in Computing, pages 609–616.

Springer, 1998.

[64] Shoji Hirano and Shusaku Tsumoto. Segmentation of medical images based

on approximations in rough set theory. In Rough Sets and Current Trends in

Computing, pages 554–563. Springer, 2002.



REFERENCES 113

[65] Aboul Ella Hassanien and Jafar M Ali. Rough set approach for classification

of breast cancer mammogram images. In Fuzzy logic and applications, pages

224–231. Springer, 2006.

[66] P. Munshi and S. K. Mitra. A rough set based binarization technique for fin-

gerprint images. In IEEE International Conference on Signal Processing Com-

puting and Control, pages 1–6, March 2012.

[67] Pradipta Maji and Sankar K Pal. Rough set based generalized fuzzy-means

algorithm and quantitative indices. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 37(6):1529–1540, 2007.

[68] Pawan Lingras and Georg Peters. Rough clustering. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 1(1):64–72, 2011.

[69] Anca Loredana Ion. Rough sets and gaussian mixture model in medical image

diagnosis. Annals of the University of Craiova-Mathematics and Computer

Science Series, 38(4):50–62, 2011.

[70] Abhirup Banerjee and Pradipta Maji. Rough sets and stomped normal dis-

tribution for simultaneous segmentation and bias field correction in brain mr

images. Image Processing, IEEE Transactions on, 24(12):5764–5776, 2015.

[71] Pradipta Maji and Shaswati Roy. Sobt-rfw: Rough-fuzzy computing and

wavelet analysis based automatic brain tumor detection method from mr im-

ages. Fundamenta Informaticae, 142(1-4):237–267, 2015.

[72] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active con-

tour models. International journal of computer vision, 1(4):321–331, 1988.

[73] Mitra Basu. Gaussian-based edge-detection methods-a survey. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

32(3):252–260, 2002.



REFERENCES 114

[74] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours.

International journal of computer vision, 22(1):61–79, 1997.

[75] Tony F Chan and Luminita A Vese. Active contours without edges. Image

Processing, IEEE Transactions on, 10(2):266–277, 2001.

[76] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, analysis, and

machine vision. Cengage Learning, 2014.

[77] P. Perona and J. Malik. Scale space and edge detection using anisotropic dif-

fusion. IEEE Trans on Pattern Ana. and Machine Intell., 12(7):629–639, July

1990.

[78] Joachim Weickert. Anisotropic diffusion in image processing, volume 1. Teubner

Stuttgart, 1998.

[79] Michael J Black, Guillermo Sapiro, David H Marimont, and David Heeger. Ro-

bust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421–

432, 1998.

[80] VB Surya Prasath and Arindama Singh. Edge detectors based anisotropic

diffusion for enhancement of digital images. In Computer Vision, Graphics &

Image Processing, 2008. ICVGIP’08. Sixth Indian Conference on, pages 33–38.

IEEE, 2008.

[81] Michael Elad. On the origin of the bilateral filter and ways to improve it. Image

Processing, IEEE Transactions on, 11(10):1141–1151, 2002.

[82] Giovanni Sicuranza. Nonlinear image processing. Access Online via Elsevier,

2000.

[83] Shashaank M Aswatha, Jayanta Mukhopadhyay, and Partha Bhowmick. Image

denoising by scaled bilateral filtering. In Computer Vision, Pattern Recognition,



REFERENCES 115

Image Processing and Graphics (NCVPRIPG), 2011 Third National Conference

on, pages 122–125. IEEE, 2011.
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[125] José V Manjón, Pierrick Coupé, Antonio Buades, D Louis Collins, and Montser-

rat Robles. New methods for mri denoising based on sparseness and self-

similarity. Medical image analysis, 16(1):18–27, 2012.

[126] Xinyuan Zhang, Zhongbiao Xu, Nan Jia, Wei Yang, Qianjin Feng, Wufan Chen,

and Yanqiu Feng. Denoising of 3d magnetic resonance images by using higher-

order singular value decomposition. Medical image analysis, 19(1):75–86, 2015.



Publication
The list of publications out of the work is as under:

• Journals

(1) Ashish Phophalia and Suman K. Mitra, 3D MR Brain Image Denoising using Kernel

Principal Component Analysis (Manuscript Prepared)

(2) Ashish Phophalia and Suman K. Mitra, Rough Set based Bilateral Filter design for

Denoising Brain MR Images, pp. 1-14, vol. 33, Applied Soft Computing, Elsevier,

2015 (Impact Factor = 2.68).

(3) Ashish Phophalia, Ajit Rajwade and Suman K. Mitra, Rough set based Image Denoising

for Brain MR Images, Special Issue on Image Restoration Methods, pp. 24-35, vol. 103,

Signal Processing, Elsevier, 2014. (Impact Factor = 2.24)

• Conferences

(1) Ashish Phophalia and Suman K. Mitra, 3D MRI denoising using Rough set theory and

Kernel embedding method, 1st International Workshop on Patch-based Techniques in

Medical Imaging, MICCAI 2015, LNCS 9467, 2015 (In Press).

(2) Ashish Phophalia and Suman K. Mitra, Rician Noise Removal approach for Brain MR

Images using Kernel Principal Component Analysis, Sixth Pattern Recognition and

Machine Intelligence (PReMI), LNCS 9124, pp. 545-553, Springer, 2015.

(3) Ashish Phophalia, Suman K. Mitra, Ajit Rajwade, Object Boundary Detection using

Rough Set Theory, In Proc of fourth National Conference on Computer Vision Pattern

Recognition Image Processing and Graphics (NCVPRIPG), 2013.

(4) Ashish Phophalia, Suman K. Mitra, Ajit Rajwade, Medical Image Denoising from sim-

ilar patches derived by Rough Set, In Proc IEEE Second International Conference on

Image Information Processing (ICIIP), 2013.

(5) Ashish Phophalia, Suman K. Mitra, Ajit Rajwade, A new denoising filter for brain

MR images, In Eighth Indian Conference on Computer Vision Graphics and Image

Processing (ICVGIP), 2012.

120


	Declaration
	Certificate
	Acknowledgements
	Abstract
	Content
	List of Figures
	List of Tables
	Introduction
	Overview of MRI
	Motivation
	Scope and accomplishments of the thesis
	Organization of thesis

	Rough Set in Image Processing
	Background Study on Rough Set
	Soft Computing Siblings
	Rough Set and its extension to Image Processing
	Applications of RST in Image Processing & Pattern Recognition

	Proposed Class Label & Edge Map
	Rough Class Labels
	Rough Edge Map

	Experimental Results
	Overview on Edge extraction Methods
	Simulation Results

	Conclusion

	Image Denoising in Early Age
	Related Work
	Design of Proposed Filter
	Computational Complexity
	Experimental Results
	Evaluation Measures
	Simulation Results

	Conclusion

	Non Local Self Similar Image Denoising
	State-of-the-art Methods
	Proposed Approach
	Patch selection using RST
	Algorithms

	Experimental Results
	Methods & parameters
	Phantom Database
	Real database

	Conclusion

	Rician Noise Removal using KPCA
	Proposed Method using KPCA
	Kernel Principal Component Analysis
	Proposed Approach

	Experimental Results
	Conclusion

	3D MRI Denoising
	State-of-the-art Methods for 3D denoising
	Proposed Method
	Kernel Principal Component Analysis
	Proposed Method

	Experimental Results
	Validation on Phantom Database
	Results on Real Databases

	Conclusion

	Conclusion & Future Work
	Winding Up
	Contributions
	Overall Conclusion
	Future Work

	REFERENCES
	Publications

