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Abstract

Peer-to-peer opportunistic communication between mobile devices carried by humans

without using any infrastructure is largely unexploited. As these devices are carried by

humans, their encounter pattern depends on human mobility pattern which is governed

by human social behaviour. Individuals belong to multiple communities, i.e. communi-

ties in social network overlap. These social ties significantly affect people’s movement

pattern and in-turn contact pattern of mobile nodes carried by them. This network

paradigm is known as Mobile Social Network (MSN). The communication framework

for MSN includes community-based and heterogeneous node popularity-based message

transmission mechanisms. In this work, we design algorithms for such framework and

develop two proof of concept applications on top of this framework. We also propose a

realistic mobility model for MSN for reliable performance analysis through simulation.

Traditional mobility models, such as Random Way Point (RWP) and Brownian Mo-

tion (BM), model device mobility as random. However, researchers have shown that

human mobility is rarely random and such models do not provide a reliable analysis of

network protocol performance. Various characteristics of human mobility are derived in

the literature from mobility traces and social network theory. We propose Community

Aware Heterogeneous Human Mobility (CAHM) model incorporating all such character-

istics. CAHM model is based on Heterogeneous Human Walk (HHW)[1] mobility model.

CAHM achieves heterogeneous local popularity as observed in real mobility traces which

HHW fails to achieve. It also incorporates following additional properties of human mo-

bility: preference of nearby locations, speed as a function of distance to be traveled and

power-law distributed pause time. We also analyze the performance of traditional and

socially-aware routing protocols with CAHM and other existing mobility models. Our

analysis shows that existing mobility models significantly underestimate the performance

of socially-aware routing protocols.

Socially-aware routing protocols are designed to exploit the overlapping community

structure of MSN for efficient communication. Nodes in MSN should be able to detect

one or more communities in which it is member independently in a distributed manner

because of the peer-to-peer nature of MSN. There is no distributed overlapping commu-

nity detection mechanism for MSN proposed in the literature. We devise Distributed
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Overlapping Community Detection (DOCD) mechanism by modifying non-overlapping

community detection algorithm SIMPLE[2]. Simulation results show that DOCD detects

overlapping community structure with 75-80% accuracy.

Analysis of properties of overlapping community structure formed by human mobility

can give important insights for designing better routing protocols. We analyze, through

simulation, properties such as actual community sizes, the probability of community exis-

tence and the fraction of hub and gateway nodes present in the community on an average.

Different individuals have different local popularity within a community and different

global popularity in the network. We call them hub and gateway nodes respectively.

Our analysis of overlapping community structure establishes that small communities are

transient. As per simulation results, the threshold for the same is around 10% of the

total number of nodes in the network. Further, a higher fraction of hub and gateway

nodes remain present in larger communities with less standard deviation as compared

to smaller communities. Also, the fraction of gateway nodes present in a community is

much lower than the fraction of hub nodes present in the community.

Identifying correct hub and gateway nodes is very important for the efficiency of a

protocol aiming to exploit heterogeneous popularity. Existing methods to identify hub

and gateway nodes require either flooding of messages or forwarding of not only node’s

encounter information but also accumulated encounter information from other nodes.

We identify hub and gateway nodes using Markov-chain from the overlapping community

structure itself (which is found using our DOCD mechanism) without doing message

flooding or forwarding of accumulated encounter information from other nodes. Socially-

aware routing protocols based on explicit community detection need to find such structure

anyway for efficient forwarding. We make use of this structure for identifying hub and

gateway nodes also. We compare ordered lists of hub and gateway nodes generated

by Markov chain-based methods with ordered lists generated through simulation using

flooding and encounter information. Simulation results show that these ordered lists are

highly correlated, i.e. Markov chain-based methods correctly identify hub and gateway

nodes.

We develop protocols for viral spread (many-to-all broadcast) and micro-blogging ap-

plications in MSN exploiting overlapping community structure and heterogeneous pop-

ularity of nodes for efficient forwarding. For the viral spread, buffering all packets from
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all sources of a community at each node is prohibitive. Buffer space is limited and buffer

occupancy level also has an impact on energy requirements. Existing protocols either

work with specific assumptions regarding the type of MSN or do not aim to achieve im-

provement in terms of average packet delivery delay or delivery ratio in the presence of a

limited buffer. In our Community Aware Viral Spread (CAVS) protocol, to reduce buffer

usage, we probabilistically buffer received packets for forwarding. To offset the loss in

performance due to this, we employ network coding. Network coding is a mechanism in

which nodes encode two or more incoming packets and forward encoded packets instead

of forwarding them as it is. Simulation results show that CAVS gives acceptable perfor-

mance for buffering probability (Pb) value as low as 0.3 as compared to Pb = 1. Also,

with a decrease in Pb, the performance of CAVS gets increasingly better than Epidemic

routing[3]. For Pb = 0.1, packet delivery ratio and average packet delivery delay of CAVS

is 122% more and 22% less than Epidemic routing respectively.

Our protocol for micro-blogging restricts message forwarding based on distance as

well as time and keeps a constant amount of state information. The protocol is scalable

and efficient as message filtering is done at the network protocol level itself as opposed

to the conventional approach where it is done at the end points of the network. Further,

because of in-network filtering, users can follow their interests and receive messages of

their interests without getting overwhelmed, instead of having to identify and follow users

with similar interests. It also eliminates the need to maintain a large amount of data at

server machines. As server farms consume a huge amount of energy, it is useful to not to

use infrastructure even though the bandwidth requirement of the application is limited.

We also propose three models to generate user interest profiles synthetically where user

interest profile is defined as a list of tags in which a user is interested along with interest

level in each tag. Allen et al. in [4] have also proposed a micro-blogging protocol for

MSN named as ‘Uttering’. We measure and compare ‘efficiency’ and ‘spread index’ of

our protocol with ‘Uttering’. Efficiency is defined as the ratio of the total number of useful

messages received by all nodes to the total number of messages transmitted by all nodes.

Spread index is defined as the ratio of the total number of users who have received useful

messages to the total number of users who were interested in those messages. Simulation

results show that spread index of our protocol is better than ‘Uttering’ by 18-59% and

efficiency is better than ‘Uttering’ by 35-56% for different user interest profile models.
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Chapter 1

Introduction

In recent times, the growth of mobile devices (especially smartphones) is phenomenal.

These devices support Bluetooth and Wifi connectivity. Further, they are equipped

with good computing power and memory. Because of this, an entirely new network

paradigm has emerged in which encounters between these mobile devices can be exploited

for opportunistic data transfer without using any fixed network infrastructure[5]. This

opportunistic network paradigm is called Pocket Switched Network (PSN) as we carry

smartphones in our pockets. Message broadcast, news spread, traffic updates, micro-

blogging and peer-to-peer file sharing are some of the applications which can run on such

type of network. Further, it can significantly offload infrastructure based networks such

as cellular network and infrastructure based Wifi network and reduce data cost for users

considerably[6].

As these devices are carried by humans, their encounter patterns depend on human

mobility patterns. Thus, knowledge of human movement behaviour and social structure

can be exploited for efficient peer-to-peer communication[7, 8]. As a result, this network

paradigm is also called Mobile Social Network (MSN).

1.1 Overlapping Community Structure in Mobile So-

cial Network

Movements of individuals are not independent of each other. Humans belong to multiple

social communities like friends, family, co-workers etc.[9, 10]. Individuals meet people

1



1.2 Mobility Modeling for Mobile Social Network 2

from the same community more frequently than people of other community[11] and some

of these communities are tied to the corresponding places (locations). E.g. family and

co-workers are tied to home and office respectively. So, these social ties significantly

affect individuals’ movement. The communities in a social network overlap as individuals

belong to multiple communities[10], i.e. individuals also move between these communities.

Further, some nodes meet more nodes in the community than others (locally popular

nodes) or visit other communities more often than others (globally popular nodes). We

call these locally and globally popular nodes as hub and gateway nodes respectively.

These hub and gateway nodes can play important roles in spreading information in MSN

efficiently.

The above community structure is called as overlapping community structure in MSN.

As an example, consider a professor working in a university. Her office is in a faculty

building. Professors sitting in that building form a community. She teaches a course to

a group of students in a classroom. So, she is also part of those students’ community.

During office hours, she moves within and across these communities. Similarly, after office

hours, she forms communities with family members and also with friends she meets in

a park in the evening. It is evident from the example that the overlapping community

structure changes as per different time periods of the day.

1.2 Mobility Modeling for Mobile Social Network

To analyze the performance of protocols which aim to exploit human movement behaviour

through simulation, it is essential to design realistic mobility models which can mimic

human mobility patterns as closely as possible. A number of experimental projects have

been undertaken to collect encounter information of devices carried by humans[12, 13].

These traces can be used in the simulation to evaluate and analyze the performance of dif-

ferent protocols. While this approach generates realistic mobility patterns, its usefulness

is limited as the performance of a protocol can be evaluated only for limited values of net-

work parameters for which traces are available. Nonetheless, from analysis of these traces,

various statistical properties of human mobility are derived[12, 13, 14, 15]. Well-known

and widely used mobility models such as Random Way Point (RWP)[16], Brownian Mo-

tion (BM)[17] etc. do not exhibit these properties. So, trace-based mobility models such
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as Levy Walk (LW)[14], TVC[18], SWIM[19], and SLAW[20] are proposed based on these

statistical properties. Although these models are able to reproduce statistical properties

of real-world mobility traces, they assume that each node moves independently of others.

Mobility models such as CMM[11] and HCMM[21] do model the community structure

of humans but they do not model overlapping community structure and heterogeneous

local and global popularity. These properties have a significant impact on the performance

of forwarding strategy. Only Heterogeneous Human Walk (HHW) mobility model[1]

attempts to incorporate these properties for generating overlapping community structure

synthetically, i.e. it does not require real life social graph as an input, as requirement of

real life social graph significantly restricts community structures that can be generated.

Further, it also does not use Social Network Models (SNM) such as Caveman model[22]

to generate community structure, as these models are quite simplistic and do not take

into account all of the above social network theory based properties.

However, HHW does not incorporate following important trace-based properties: i)

preference of nearby locations over far-away locations (Levy walk) ii) speed of nodes as

a function of distance to be traveled and iii) power-law distributed pause time. Further,

we show that HHW model does not correctly reproduce heterogeneous local popularity of

nodes in a community as observed in mobility traces. So, we propose Community Aware

Heterogeneous Human Mobility (CAHM) model which incorporates these properties and

also generates correct heterogeneous local popularity.

1.2.1 Effect of Mobility Models on the Performance of Routing

Protocols

We also analyze the performance of traditional and socially-aware routing protocols with

CAHM and other existing mobility models. Our analysis shows that, compared to CAHM,

existing mobility models significantly underestimate packet delivery ratio and average

packet delivery delay of socially-aware routing protocols.
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1.3 Distributed Overlapping Community Detection

in MSN

To exploit overlapping community structure for efficient communication, nodes in MSN

should be able to detect overlapping community structure in a distributed manner; i.e.

each node should be able to detect one or more communities in which it is a member

independently. SIMPLE, k-CLIQUE and MODULARITY algorithms proposed in [2]

detect and maintain only one community per node. Further, in these algorithms, there is

no mechanism to drop nodes from the community based on aging process. AD-SIMPLE

[23] modifies SIMPLE and proposes aging mechanism to drop nodes from the community

and maintains the current community only.

Another problem with MODULARITY, k-CLIQUE, SIMPLE, AD-SIMPLE and the

mechanism in [24] is that they do not detect multiple communities of a node. But,

nodes in MSN can belong to multiple communities like friends, family, co-workers etc.

MODULARITY, k-CLIQUE, and SIMPLE merge all these communities and detect sin-

gle community per node. AD-SIMPLE does not merge these communities but maintains

only one of these communities as the current community of the node. It is desirable

for a node to maintain information about all the communities in which it is a member.

This information can be used by routing protocols to make better forwarding decisions.

Further, as we shall see in chapter 4, this information is also used to detect hub and gate-

way nodes of communities without doing message flooding or forwarding of accumulated

encounter information from other nodes.

Williams et al. in [25] propose a mechanism for decentralized detection of periodic

encounter communities in opportunistic networks. Periodic encounter community means

that a community is formed periodically when members of the community come in con-

tact with each other. Then, it gets dissolved as its members move away from each other;

e.g. during office hours, a community is formed every day between office workers which

dissolves after office hours. So, this mechanism can detect different communities in which

a node is a member in different periods. But, it is evident from the discussion in section

1.1, a node can be part of different communities within any given period and nodes can

move between communities without communities getting dissolved. We call such a com-

munity structure as overlapping community structure. None of the existing mechanisms
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detects overlapping community structure in MSN in a distributed manner. So, we pro-

pose Distributed Overlapping Community Detection (DOCD) mechanism by modifying

SIMPLE algorithm to detect overlapping communities in a distributed manner. Simu-

lation results show that DOCD detects overlapping community structure with 75-80%

accuracy.

1.3.1 Analysis of Overlapping Community Structure

Analysis of properties of overlapping community structure formed by human mobility

can give important insights for designing better communication protocols. We analyze,

through simulation, properties such as actual community sizes, probability of community

existence, and fraction of hub and gateway nodes present in the community on an average.

Our analysis of overlapping community structure establishes that small communities

are transient. As per simulation results, the threshold for the same is around 10% of

total number of nodes in the network. Further, a higher fraction of hub and gateway

nodes remain present in larger communities with less standard deviation as compared

to smaller communities. Also, the fraction of gateway nodes present in a community is

much lower than the fraction of hub nodes present in the community. These results give

important insights for designing better forwarding protocols for MSN.

1.4 Identifying Hub and Gateway Nodes in Overlap-

ping Community Structure

Identifying correct hub and gateway nodes is very important for the efficiency of a protocol

aiming to exploit heterogeneous popularity. Existing methods[5, 26, 27, 28] to identify hub

and gateway nodes require either flooding of messages or forwarding of not only node’s

encounter information but also accumulated encounter information from other nodes. So,

the performance of these methods does not scale with network size or community size.

We identify hub and gateway nodes using Markov-chain from the overlapping community

structure itself, which is found using our DOCD mechanism, without doing message

flooding or forwarding of accumulated encounter information from other nodes. Socially-

aware routing protocols based on explicit community detection need to find such structure
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anyway for efficient forwarding[27, 29, 28, 5, 30, 31]. We make use of this structure for

identifying hub and gateway nodes also. Further, in DOCD also, a node sends only its

own encounter information to its neighbour and does not send accumulated encounter

information from other nodes.

To validate Markov chain-based methods, we also propose two simulation-based ap-

proaches to identify hub nodes and another two simulation-based approaches to identify

gateway nodes. We compare ordered lists of hub and gateway nodes generated by Markov

chain-based methods with ordered lists generated by these methods. Simulation results

show that these ordered lists are highly correlated, i.e. Markov chain-based methods

correctly identify hub and gateway nodes.

1.5 Viral Spread in MSN

Viral spread (Many-to-all broadcast) in MSN is an important functionality which can

be useful to a variety of applications in MSN such as message broadcast, news spread,

traffic updates etc. Further, it is also useful for routing as many routing protocols require

flooding of control messages. We propose a protocol called Community Aware Viral

Spread (CAVS) for many-to-all broadcast in MSN. The protocol exploits properties of

human mobility like overlapping community structure and heterogeneous popularity of

nodes for efficient forwarding. Buffering all packets from all sources of a community at

each node is prohibitive. Buffer space is limited and buffer occupancy level also has an

impact on energy requirements[32]. Existing protocols[33, 34, 35, 36, 37] either work with

specific assumptions regarding the type of MSN or do not aim to achieve improvement

in terms of average packet delivery delay or delivery ratio in the presence of a limited

buffer. To reduce buffer usage, we probabilistically buffer received packet for forwarding.

To offset for the loss in performance due to this, we employ network coding[38]. Network

coding is a mechanism in which nodes encode two or more incoming packets and forward

encoded packets instead of forwarding them as it is.

Fragouli et al. in [39] propose network coding based protocol for all-to-all broadcast

in ad hoc network. For network coding, a generation is defined as a group of packets

such that packets of the same generation only can be linearly combined to generate

encoded packets. Packets from different sources are added in a generation in a distributed
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manner. To decide the generation in which a new packet should be added, each source

node inspects generations of incoming packets. If the number of packets in a generation

(generation size) is less than the threshold, the packet is added in that generation. If no

such generations are present then a new generation is created. In typically sparse MSN,

packets propagate slowly. As a result, nodes do not receive packets of existing generations

quickly enough. So, when the average transmission rate is high, source nodes have to

create new generations for their packets as they would not have received information

about existing generations in the network. As a result, a large number of generations

with small generation sizes are created in the network. It leads to less mixing opportunity

and less average delivery ratio as packets of the same generation only can be linearly

combined. Widmer et al. in [40] use hashing function for generation management and

their technique also has the same problem. Therefore, we propose a community-based

distributed generation management technique for MSN to overcome this limitation.

To compare the performance of CAVS with Epidemic routing[3], we modify Epidemic

routing such that it delivers packets to all nodes instead of delivering to single desti-

nation. Simulation results show that CAVS gives acceptable performance for buffering

probability (Pb) value as low as 0.3 as compared to Pb = 1. Also, with a decrease in Pb,

the performance of CAVS gets increasingly better than Epidemic routing. For Pb = 0.1,

packet delivery ratio and average packet delivery delay of CAVS is 122% more and 22%

less than Epidemic routing respectively. Starting from Pb = 0.1, the rate of increase in

packet delivery ratio and the rate of decrease in average packet delivery delay in CAVS

and Epidemic routing protocols are high till Pb = 0.3. So, we recommend operating the

protocol with Pb = 0.3 approximately. The large performance difference between CAVS

and CAVS (without hubs and gateways) for lower Pb values shows that hub and gateway

nodes play very significant role in the performance improvement of CAVS protocol.

Results also show that gateway nodes play greater role in the performance improve-

ment of CAVS as compared to hub nodes and improvement in packet delivery ratio and

average packet delivery delay beyond 20% of total nodes as popular nodes is not signif-

icant. So, we recommend using 20% of total nodes in the network as hub and gateway

nodes. Further, packet delivery ratio is almost independent of the maximum generation

size (G). But, there is a 12% improvement in average packet delivery delay with G = 16

as compared to average packet delivery delay with G = 2. Also, after G = 16, it remains
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almost constant. So, we recommend setting maximum generation size G = 16 approx-

imately. With recommended values of buffering probability (Pb), maximum generation

size (G), and percentage of total nodes as popular nodes, packet delivery ratio and av-

erage packet delivery delay of CAVS is 58% more and 41% less than Epidemic routing

respectively.

We model CAVS protocol as SI (Susceptible Infected) epidemic model and show that

optimal buffering probability found through simulation is in conformance with the optimal

buffering probability calculated using the model.

1.6 Scalable Micro-blogging in MSN

Micro-blogging, particularly Twitter, is very popular among Internet users. Users post

small, 140 characters long, messages called tweets. These tweets are about their status,

opinions, news, events, emergency situations, traffic updates, advertisements etc. Users

tag their tweets based on its content which is called hashtag. Each user receives tweets

from users she is following. One can follow a user but not a topic in the system. A user

does not get all tweets, with hashtags she is interested in, on her timeline because a huge

number of tweets are generated for a hashtag across the Internet. User gets tweets with

a hashtag only when she searches for it.

Micro-blogging can be a very promising application for MSN. Small messages posted

by users can be opportunistically spread in the network without using any infrastructure.

As co-located devices communicate with each other in this network, messages with local

and temporal properties can be pushed to users based on their interests without over-

whelming them. Users can specify their interests or they can be derived from their posts.

Further, co-located devices generally have similar interests[41]. So, users can receive

messages in which they are interested in with high probability.

We propose a scalable micro-blogging protocol for MSN which exploits overlapping

community structure and heterogeneous popularity of nodes. When two nodes come in

contact, each node pushes to the other node messages with tags in which the other node

is interested in. To increase chances of delivery to interested nodes, all messages of a

community are also forwarded to hub and gateway nodes of the community. Hub nodes

help in spreading messages in the community while gateway nodes help in spreading
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messages to other communities.

Nodes share their interest profile with community members and hub nodes of the com-

munity. Hub and gateway nodes of the network share and accumulate aggregate interest

profiles of communities. Based on aggregate interest profiles, the distance threshold is

estimated up to which interest is relatively high in the message. Till the distance thresh-

old, messages are forwarded to hub and gateway nodes of the network with probability 1.

After the distance threshold, the messages are forwarded to hub and gateway nodes of the

network with decreasing probability as distance increases. So, the forwarding overhead

of the protocol is limited. Further, nodes do not share their interest profile with nodes

of other communities and hub and gateway nodes store only few aggregate entries per

tag. As a result, control overhead is also limited. The protocol is scalable as message

filtering is done at the network protocol level itself as opposed to the conventional ap-

proach where it is done at the end points of the network. It also eliminates the need to

maintain a large amount of data at server machines. As server farms consume a huge

amount of energy[42], it is useful to not to use infrastructure even though the bandwidth

requirement of the application is limited.

Allen et al. in [4] have also proposed a micro-blogging protocol for MSN named as

‘Uttering’. We measure and compare ‘efficiency’ and ‘spread index’ of our protocol with

‘Uttering’. Efficiency is defined as the ratio of total number of useful messages received by

all nodes to the total number of messages transmitted by all nodes. Spread index is defined

as the ratio of total number of users who have received useful messages to the total number

of users who were interested in those messages. Spread index and efficiency measures

are same as ‘recall’ and ‘precision’ measures used for the performance measurement of

‘Uttering’ in [4]. Simulation results show that spread index of our protocol is better than

existing protocol (Uttering) by 18-59% and efficiency is better than ‘Uttering’ by 35-56%

for different user interest profile models. Simulation results also show that keeping only a

constant amount of state information does not degrade the performance of our protocol.

1.7 Contributions of the Ph.D. Work

In this section, we summarize major contributions of the Ph.D. work for efficient peer-

to-peer communication in MSN.
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We identify that HHW model does not reproduce heterogeneous local popularity of

nodes in a community as observed in mobility traces and propose Community Aware

Heterogeneous Human Mobility (CAHM) model which rectifies this problem. CAHM

also incorporates following properties of human mobility: Levy walk nature of human

movement, speed of nodes as a function of distance to be traveled and power-law dis-

tributed pause time. We also analyze the effect of mobility models on the performance

of routing protocols.

We propose Distributed Overlapping Community Detection (DOCD) mechanism for

MSN and also analyze properties of overlapping community structure such as actual

community sizes, probability of community existence and fraction of hub and gateway

nodes present in the community on an average.

We devise, using mathematical models, methods to identify hub and gateway nodes

from the given overlapping community structure itself without doing message flooding or

forwarding of accumulated encounter information from other nodes.

We develop a viral spread (many-to-all broadcast) protocol for MSN which exploits

properties of human mobility such as overlapping community structure and heterogeneous

popularity of nodes for efficient forwarding. The protocol has following salient features:

probabilistic buffering of packets at nodes for limited buffer usage, network coding to offset

the loss of performance due to probabilistic buffering, and community-based generation

management technique for network coding.

We also develop a scalable micro-blogging protocol for MSN which also exploits

overlapping community structure and heterogeneous popularity of nodes. The protocol

has following salient features: restricted message forwarding based on distance, limited

amount of state information which is independent of number of communities and network

size and limited control messaging of aggregate interest profiles of communities between

hub and gateway nodes only. We also propose three novel models to synthetically generate

user interest profiles to analyze the performance of the micro-blogging protocol.

1.8 Organization of the Thesis

In chapter 2, we present a survey of existing mobility models for MSN and propose Com-

munity Aware Heterogeneous Human Mobility (CAHM) model. We also analyze the



1.8 Organization of the Thesis 11

effect of mobility models on the performance of traditional and socially-aware routing

protocols in this chapter. In chapter 3, we survey existing distributed community detec-

tion mechanisms for MSN and present Distributed Overlapping Community Detection

(DOCD) mechanism for the same. We also analyze properties of overlapping community

structure in this chapter. In chapter 4, we discuss existing methods for identifying popular

nodes in MSN and describe our methods to identify hub and gateway nodes. In chapter

5, we review related work in the literature for many-to-all broadcast (viral spread) in

MSN and present our protocol for viral spread. In chapter 6, we discuss existing protocol

for micro-blogging in MSN and propose our protocol for the same. Finally, conclusion

and future work are written in chapter 7 and 8 respectively.



Chapter 2

Mobility Modeling for Mobile Social

Network

For reliable analysis of the performance of network protocols through simulation, it is very

important to model the mobility of communicating devices as realistically as possible.

As these devices are carried by humans, their mobility pattern is governed by human

mobility pattern. Traditional mobility models, such as Random Way Point (RWP)[16]

and Brownian Motion (BM)[17], model device mobility as random. However, researchers

have shown that human mobility is rarely random and such models do not provide reliable

analysis of network protocol performance[43].

In the following section 2.1, we present literature survey of existing mobility models

for Mobile Social Network (MSN). We present our proposed Community Aware Heteroge-

neous Human Mobility (CAHM) model in section 2.2. In section 2.3, we analyze the effect

of mobility models on the performance of routing protocols. We conclude the chapter in

section 2.4.

2.1 Survey of Existing Mobility Models for MSN

To study characteristics of human mobility, many experimental studies at various uni-

versities (UCSD[44], Dartmouth[45], MIT[13], and University of Illinois[46]) and confer-

ences (Infocom 2005[12], Infocom 2006[7], and SIGCOMM[47]) have been undertaken. In

these experiments, humans participating in the experiment carry devices equipped with

Wifi/Bluetooth and/or GPS sensor. These devices log encounter, location, and time

12
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information for a period of time.

These real-world mobility traces can directly be used to move nodes in the simulation.

But, this approach is not flexible and scalable as the performance of a protocol can be

evaluated only for limited values of network parameters for which traces are available.

Nonetheless, from analysis of these traces, various statistical properties of human mobility

are derived which are as follows.

T.1 Aggregate inter-contact time follows power-law distribution with exponential cutoff[7,

12].

T.2 Pause time follows truncated power-law distribution[14].

T.3 Humans visit nearby locations more frequently compared to far-away locations[15].

T.4 Humans have location preferences and they periodically re-appear at these locations[15].

T.5 Speed at which humans move increases with distance to be traveled[14].

2.1.1 Real-trace Based Models

Real-trace based models try to capture features of individual’s independent movement

observed from mobility traces. Working Day Mobility (WDM) model[48] incorporates

properties T.1 and T.4 by modeling individual’s mobility during a day with home sub-

model, office sub-model, transport sub-model, and evening sub-model. Time Variant

Community (TVC) model[18] also incorporates properties T.1 and T.4. Small World In

Motion (SWIM) model[19] incorporates all properties T.1 to T.5. In this model, each

node is assigned a randomly and uniformly chosen point over the network area called

home. For each node, a weight is assigned to each possible destination which grows with

the popularity of the place and decreases with distance from home. This weight represents

the probability for the node to choose that place as next destination. Self-similar Least

Action Walk (SLAW) model[20] incorporates properties T.1, T.2 and T.3.

2.1.2 Social-aware Models

Although real-trace based models are able to reproduce statistical properties of mobility

traces, they assume that each node moves independently. But, movement of an individual
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is not independent. Humans belong to multiple social communities like friends, family,

co-workers, etc.[9, 10]. These social ties significantly affect their movement. Following

are the main characteristics derived from the social network theory which affect human

mobility.

S.1 Humans form communities based on their social relationships[9].

S.2 Humans belong to multiple communities and so, communities overlap[10].

S.3 Different individuals have different local popularity within a community and differ-

ent global popularity in the social network[5].

S.4 Community size, the number of communities in which a node is a member and over-

lap size approximately follow power-law distribution where overlap size is defined

as the number of individuals which are common in two communities[10].

Community-based Mobility Model (CMM)[11] groups nodes based on social relation-

ships among individuals carrying these nodes. This grouping is then mapped to a topo-

graphical space. Movement of nodes is influenced by the strength of social ties among

individuals which may also change in time. CMM uses Caveman model[22] as artificial

Social Network Model (SNM) to generate community structure. Home-cell Community-

based Mobility Model (HCMM)[21] assigns the home cell to each individual which is

the location where people with whom the node shares social relationships are likely to

be at some point in time. After each trip, the node moves to the home cell with some

probability. N-body[49] learns the grouping behaviour of a small set of nodes from their

mobility traces and generates mobility traces for a large number of nodes exhibiting simi-

lar grouping behaviour. These models incorporate only S.1 of social network theory based

properties. CMM and HCMM also incorporate some of the properties derived from mo-

bility traces. But, these models do not incorporate properties S.2, S.3, and S.4 which

are very important properties and have a significant effect on the performance of routing

protocols. Social, sPatial, and Temporal mobility framework (SPoT)[50] is flexible and

controllable mobility framework. But, it generates only contact traces and proposal in

the paper for generating movement traces is preliminary. Further, it takes a social graph

as an input instead of generating community structure synthetically. So, it lacks the flex-



2.1 Survey of Existing Mobility Models for MSN 15

Table 2.1: Comparison of mobility models for MSN
Mobility model T.1 T.2 T.3 T.4 T.5 S.1 S.2 S.3 S.4

SLAW[20] X X X
WDM[48] X X X X
TVC[18] X X X X

SWIM[19] X X X X X
N-body[49] X X
CMM[11] X X X

HCMM[21] X X X X
HHW[1] X X X X X X

CAHM (Proposed) X X X X X X X X X

ibility of generating a large number of different social graphs for simulation. A detailed

review of human mobility in opportunistic networks is available in [51].

Heterogeneous Human Walk (HHW) model[1] incorporates all properties S.1 to S.4

derived from social network theory to generate community structure synthetically. HHW

is able to generate any number of overlapping community structures on its own based on

input parameters. It does not take real life social network as an input, as requiring real life

social network as an input restricts possible scenarios for which performance evaluation

can be done. Further, it also does not use Social Network Models (SNM) such as Caveman

model[22] to generate community structure, as these models are quite simplistic and do

not take into account all social network theory based properties. However, HHW does not

incorporate following important trace-based properties: i) Levy walk nature of human

mobility ii) speed of nodes as a function of distance to be traveled and iii) power-law

distributed pause time. Further, we show that HHW model does not correctly reproduce

the heterogeneous local popularity of nodes in a community as observed in mobility traces.

So, we propose Community Aware Heterogeneous Human Mobility (CAHM) model which

incorporates these properties and also generates correct heterogeneous local popularity.

We summarize the comparison of different mobility models for MSN in Table 2.1.

As CAHM is based on HHW, we give an overview of HHW model in the following

sub-section.
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2.1.3 Overview of Heterogeneous Human Walk (HHW) Mobil-

ity Model

There are two options to generate overlapping community structure. First is to get a social

graph from some real life social network. After getting the social graph, one can apply

algorithm similar to the one proposed in [10] to identify overlapping communities. But, it

will significantly increase implementation and computational complexity and one has to

collect a large number of social graphs to analyze the performance of protocols. It is also

less flexible and scalable. The second option is to directly construct synthetic overlapping

community structure which follows all the properties found in real life social networks.

To achieve a trade-off between reality and complexity, HHW uses the second approach.

In this approach, any number of different community structures can be generated using

different random seeds.

In overlapping community structure, each individual n in the social network may

belong to number of communities denoted as membership number Λn. Further, any two

communities x and y may share Sovx,y individuals, defined as overlap size between two

communities. Let us denote size of community x as Scomx and probability distribution

functions of membership number, overlap size and community size as P(Λ), P(Sov) and

P(S
′com) respectively. Here, S

′com = Scom−k to keep minimum community size equal to k

where k is clique size. A k-clique is complete sub-graph of size k and k-clique community

is union of all k-cliques that can be reached from one another through series of adjacent

k-cliques where two k-cliques are adjacent if they share k − 1 nodes[10]. Based on the

analysis of a variety of social networks, Palla et al.[10] conclude that P(Λ), P(Sov) and

P(S
′com) approximately follow power-law distribution P(x) ∼ x−τ , with exponents τ =

ΥΛ, τ = ΥOsize and τ = ΥCsize, respectively. Further, they report that values of ΥΛ and

ΥOsize are not less than 2, and the value of ΥCsize is between 1 and 1.6. HHW model

uses these statistical properties to synthetically construct k-clique overlapping community

structure.

HHW model is composed of four components: 1) Establishing overlapping commu-

nity structure, 2) Generating heterogeneous local degree, 3) Mapping communities into

geographical zones, and 4) Driving individual motion. These components are explained

in following four sub-sections.
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Establishing k-clique Overlapping Community Structure

A day (or a week or any time duration) is divided into periods, and overlapping community

structures are different in each of these periods but is same in the same period of different

days. Let us define nodes with membership number larger than 2, equal to 2 and equal to

1 as M-3 nodes, M-2 nodes, and M-1 nodes respectively. Community structure for each

period is constructed as follows:

1. Generate nodes’ membership numbers such that they follow P(Λ) with exponent

ΥΛ. Then, establish initial empty communities whose sizes Scom follow P(S
′com)

with exponent ΥCsize such that
∑

i Λi =
∑

j Sj
com.

2. Use all M-3 nodes to establish initial overlaps between pairs of communities.

3. Modify initial overlaps by allocating all M-2 nodes to communities such that over-

laps’ sizes follow P(Sov) with exponent ΥOsize.

4. Allocate all M-1 nodes to unsaturated communities.

Generating Heterogeneous Local Degree

Local degree of a node within a community is defined as the number of neighbours of

the node in the community. A node’s local popularity depends on its local degree. Let

Localni denote local degree of node n in its community i where Localni ≥ k − 1 as per

the definition of k-clique community. These values are generated such that they follow a

power-law distribution with exponent ΥLocal.

Mapping Communities into Geographical Zones

To simulate n mobile nodes in a two-dimensional square plane, the model divides the

plane into a grid of non-overlapping square cells. For each period, each community with

size Scom is associated with a zone composed of Scom adjacent cells. The location of a zone

within the simulation plane is chosen randomly such that zones of different communities

do not overlap. Each node n is randomly associated with Localni cells within the zone of

its community i.
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Driving Individual Motion

Initially, each node randomly selects one of its associated cells and then it is located

at a random position inside that cell. To move, each node selects next goal inside one

of its associated cells and then moves towards it by following the straight path. The

speed at which it moves towards next goal is chosen randomly with uniform distribution.

When a node reaches its current goal, it waits for a uniformly distributed pause time

and then selects and moves towards next goal. The overlapping community structure,

corresponding associated zones and cells change at the start of the new period. When

the period changes, after reaching its current goal, the node selects next goal inside one

of its newly associated cells of the new period.

The paper[1] demonstrates that nodes of this overlapping community structure ex-

hibit global heterogeneous popularity and aggregate inter-contact time follows power-law

distribution with exponential cutoff.

2.2 Community Aware Heterogeneous Human Mo-

bility (CAHM) Model

In this section, we discuss shortcomings of existing HHW model and propose our solution

for each of them.

2.2.1 Incorporating Levy Walk Nature of Human Mobility

In HHW, if a node is a member of more than one community, then it will have associated

cells in all those communities. As per the model, the node chooses an associated cell

as next goal randomly with uniform distribution irrespective of the community of the

associated cell; i.e. the node chooses next goal irrespective of the distance it will have

to travel. This is contrary to the finding that humans prefer short distances over long

distances or, in other words, human movement can be characterized as Levy walk[14]. It

is also counter-intuitive, e.g. a postman has to visit multiple offices in multiple buildings

to deliver posts. As per the existing model, the postman will move from an office in a

building to another office in another building with more probability than to the office in

the same building assuming that the total number of offices of other buildings is more



2.2 Community Aware Heterogeneous Human Mobility (CAHM) Model 19

than the number of offices in the same building.

As established in [14], distances covered in flights by a person follow a power-law

distribution with exponent less than 2.5 where flight can be defined as single displacement

from one place to another place without a pause in between. We have incorporated this

property in our model.

In CAHM, a node chooses an associated cell as next goal based on the distance it will

have to travel with truncated power-law distribution instead of choosing it randomly with

uniform distribution. We calculate distances at which all associated cells of a node are

located from the current cell from their location information and sort associated cells of

a node based on these distances. Then, we use random variate (RV) following power-law

distribution P(D) with exponent ΥD between the minimum distance and the maximum

distance a node has to travel. We choose the associated cell as next goal whose distance

from the current cell is nearest to the value generated by the random variable. As RV

will generate short distance values with higher probability than long distance values, in

our model, a node prefers short distances over long distances. As each community is

associated with a zone composed of adjacent cells, distance between any two cells within

a community will most probably be less than distance between any two cells of two

different communities if the simulation area is not too small. Therefore, a node will be

choosing one of the associated cells of the current community as its next goal with high

probability compared to the associated cells of the node in other communities, which is

correct behaviour as we have seen in the postman example.

2.2.2 Generating Correct Heterogeneous Local Popularity

In HHW, each community with size Scom is associated with a zone composed of Scom

adjacent cells; i.e. number of nodes (N) and number of cells (C) of a community are

same. So, the average number of nodes associated with a cell is equal to the average local

degree of a community (µ). One important effect of it is that a node, on an average, meets

µ number of nodes in each cell it visits. So, the local popularity of nodes increases with an

increase in local degree at the rate proportional to µ times rate of increase in local degree

instead of increasing with the same rate. As a result, there are a higher percentage of

nodes with high local popularity than observed in mobility traces[5]; i.e. HHW generates
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too many locally popular nodes than expected. Further, µ increases with an increase

in community size because local degree follows truncated power-law distribution with

the maximum value equal to community size. So, the problem is aggravated in large

communities.

In CAHM, we consider C and N as separate parameters. Let Cx be the number of

adjacent cells, µx be the average local degree andNx be the number of nodes in community

x. Let m be the community density index denoting denseness of a community. Then,

Cx = m× µx ×Nx (2.1)

2.2.3 Calculating Speed Based on Distance

In HHW, the speed at which a node moves from one goal to next goal is chosen from

given range uniformly regardless of the distance to be traveled. But, as found in [14],

speed increases with the increase in flight length because individuals use transportation

to travel long distances instead of walking. They have also derived following relation

between flight time (t) and flight length (l) from different mobility traces.

t = p× l1−η, 0 ≤ η ≤ 1 (2.2)

From mobility traces, Rhee et al.[14] have proposed p = 30.55 and η = 0.89 when

l < 500 meters, and p = 0.76 and η = 0.28 when l ≥ 500 meters. In CAHM also, we

use this model to calculate speed at which a node should travel to next goal instead of

choosing it uniformly from given range.

2.2.4 Simulation Results

We have implemented HHW and CAHM model in ONE simulator[52]. It is a de facto

simulator for Delay Tolerant Network (DTN) research. We simulate HHW and CAHM

models with following scenario. There are 200 nodes in a simulation plane of 5000 meters

x 5000 meters, divided into a grid of 62,500 cells of 20 meters x 20 meters each. The

transmission range of each node is 20 meters. For HHW, the speed of a node is uniformly

distributed between 1 and 6 m/s. For CAHM, speed follows Eq. 2.2 and pause time is
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Figure 2.1: Complementary Cumulative Distribution Function (CCDF) of aggregate
inter-contact times

generated using power-law distribution with exponent 2 between 0 and 1000 seconds. We

generate 4-clique communities, i.e. with k = 4. We set ΥΛ = 3, ΥOsize = 2, ΥCsize = 1.2,

ΥLocal = 2.5, and flight length exponent ΥD = 2. All these values are in the range

recommended for these exponents in the literature from mobility traces[14, 9, 10]. For

comparison, we use same community structures for both HHW and CAHM model.

To verify that in CAHM also, aggregate inter-contact time distribution is power-

law with exponential cutoff, we simulate HHW and CAHM model for two days and

each day is divided into three identical periods of 8 hours each. We generate three

different overlapping community structures for each period using random variables which

follow power-law distribution with exponents for different quantities as specified earlier.

As shown in Fig. 2.1, Complementary Cumulative Distribution Function (CCDF) of

aggregate inter-contact times of CAHM follows power-law distribution with exponential

cutoff. It matches with CCDF of aggregate inter-contact times of HHW which is shown

to be matching with CCDF of aggregate inter-contact times of mobility traces[1].

To understand the behaviour of nodes with membership in multiple communities, we
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Figure 2.2: Complementary Cumulative Distribution Function (CCDF) of flight lengths

select a node which is a member of 11 different communities and record flight lengths of all

its flights both in HHW and CAHM. As shown in Fig. 2.2, flight lengths in CAHM follow

power-law distribution while, in HHW, flight lengths do not follow power-law distribution.

As shown in Fig. 2.3, in HHW, the node takes high number of long flights; i.e. it

jumps from one community to another community frequently while, in CAHM, the node

moves within one community most of the time before jumping to another community.

In the simulation, in order to measure local popularity, we count the number of

encounters between all pairs of nodes in a community. Let, for a pair of nodes, the

average number of such encounters be µe and variance be σe. Then, the node’s local

neighbours are the nodes in the community it has encountered more number of times

than µe + σe. Number of such local neighbours denotes the node’s local popularity.

Fig. 2.4 shows CCDF of local popularities of nodes in a community of size 70 in HHW

and CAHM with community density index m=1, 2, and 3 (Eq. 2.1). As conjectured,

it is evident from the figure that in HHW, there are too many nodes with high local

popularity than expected while CAHM generates power-law distributed local popularity.

Further, in CAHM, with an increase in the value of m (i.e. with a decrease in denseness)
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local popularity of nodes decreases. So, by changing the value of m, one can control the

local popularity of nodes in a community.

2.3 Effect of Mobility Models on the Performance of

Routing Protocols

In order to analyze effect of mobility models on the performance of routing protocols, we

compare packet delivery ratio and delay for Epidemic routing[3] and BUBBLE Rap[5]

protocols with CAHM, HHW, CMM, and RWP mobility models. HHW and CMM in-

corporate some of the properties of human mobility listed in section 2.1 while RWP does

not incorporate any of these properties. Epidemic routing does not exploit any of the

properties of human mobility while BUBBLE Rap exploits community structure and

heterogeneous popularity of nodes to achieve better performance.

Implementation of Epidemic routing is available in ONE simulator. For CMM, Mu-

solesi et al.[11] have provided an implementation which generates mobility scenario for
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ities

Network Simulator (NS-2). We have implemented conversion class in ONE simulator

which moves nodes in ONE simulator as per the mobility scenario generated for NS-2.

We move 200 nodes in the area of 5000 meters x 5000 meters. In CAHM, the speed

of individual flight is calculated based on Eq. 2.2. The equation and values of terms

in the equation are derived in [14] from mobility traces of four different places. For our

simulation scenario, with CAHM, average flight speed turns out to be 5.43 m/s. So, we

set average flight speed as 5.43 m/s with uniform distribution in the range [0.09, 10.77] for

other mobility models. In CAHM, the pause time is power-law distributed with exponent

2.39, minimum pause time 25 seconds, and maximum pause time 9500 seconds. These

values are derived in [14] from mobility traces of a university campus referred as ‘Campus

I’ in the paper. For our simulation scenario, with CAHM, average pause time turns out to

be 83.82 seconds. So, we set average pause time as 83.82 seconds with uniform distribution

in the range [25, 142.64] for other mobility models. In CAHM, the flight length exponent

is 1.29. The transmission speed of nodes is 3 MBps and transmission range is 20 meters.

Nodes are not buffer constrained. Packets are of 8 KB size. We vary inter-packet arrival
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time from 1 to 8 seconds.

For HHW, CAHM, and CMM, the number of communities are 13. For HHW and

CAHM, cell size is 100 meters x 100 meters and remaining parameters are as specified

in sub-section 2.2.4. For CMM, the number of rows and columns are 7. It is chosen

such that node density within a community remains same in HHW, CAHM, and CMM.

Re-wiring probability for CMM is 0.1.

It is evident from Fig. 2.5 that packet delivery ratio of both Epidemic routing and

BUBBLE Rap routing is significantly greater with CAHM mobility model as compared

to other three mobility models. As packet delivery ratio of BUBBLE Rap with CAHM

is much higher than packet delivery ratio with HHW and CMM, it can be said that

packet delivery ratio increases significantly with CAHM because of heterogeneous local

popularity of nodes as observed in mobility traces and also because of following additional

properties of human mobility which are not incorporated in HHW and CMM but are part

of CAHM: Levy walk nature of human mobility, speed of nodes as a function of distance

to be traveled, and power-law pause time.

It is also evident from Fig. 2.5 that the packet delivery ratio of Epidemic routing is

greater than BUBBLE Rap as it does around 50% more transmissions per packet than

BUBBLE Rap. But, the difference in the packet delivery ratio of Epidemic routing and

BUBBLE Rap with CAHM, HHW and CMM models is less pronounced as compared to

with RWP. As seen in Fig. 2.6, similar results are obtained for average packet delivery

delay also.

To check whether the results are similar for different node density, we repeat the sim-

ulation in the 13000 m x 13000 m area. For this area, with CAHM, average flight speed

turns out to be 8.23 m/s. So, we set average flight speed as 8.23 m/s with uniform distri-

bution in the range [0.35, 16.11] for other mobility models. Further, with CAHM, average

pause time turns out to be 82.32 seconds. So, we set average pause time as 82.5 seconds

with uniform distribution in the range [25, 140] for other mobility models. With these

parameters too, we get similar results. The results confirm that exploiting community

structure and heterogeneous node popularity significantly improves performance.
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2.4 Conclusion

Several real-world mobility traces have established that human mobility is not random.

So, traditional mobility models such as Random Way Point (RWP) and Brownian Motion

(BM) should not be used for reliable analysis of protocol performance in MSN through

simulation. Various characteristics of human mobility are derived from mobility traces

and from social network theory in the literature. No existing scalable and flexible mobility

model incorporates all these characteristics.

We propose Community Aware Heterogeneous Human Mobility (CAHM) model with

four modifications in HHW: incorporation of Levy walk nature of human mobility, treat-

ment of number of cells and number of nodes in a community as separate parameters,

calculation of speed based on distance to be traveled and power-law pause time. Simula-

tion results demonstrate that CAHM successfully generates flight lengths with power-law

distribution while in HHW flight lengths are uniformly distributed. Further, movement

of individuals in CAHM is as per rational human behaviour of preference of nearby lo-

cations over far-away locations while in HHW it is not. The Results also establish that

CAHM generates desired heterogeneous local popularity of nodes while HHW generates

too many highly popular nodes.

We analyze the effect of mobility models on the performance of routing protocols in

MSN. Simulation results confirm that exploiting community structure and heterogeneous

node popularity significantly improves performance. The results also show that due to

less realistic mobility models, simulation significantly underestimates the performance

of protocols. The packet delivery ratio of Epidemic routing and BUBBLE Rap routing

is 21-28% higher with CAHM as compared to HHW in our simulation setup. The re-

sult shows that additional properties of human mobility incorporated in CAHM such as

heterogeneous popularity of nodes as observed in mobility traces, Levy walk nature of hu-

man mobility, speed as a function of distance, and power-law pause time have significant

impact on the performance of routing protocols.



Chapter 3

Distributed Overlapping Community

Detection in Mobile Social Network

Humans belong to multiple communities, i.e. communities in social network overlap[10].

These social ties significantly affect humans’ movement pattern and, in turn, contact

pattern of mobile nodes carried by them. Social-aware routing protocols are designed to

exploit this contact pattern for efficient communication in Mobile Social Network (MSN).

Such routing protocols can be categorized as i) explicit community detection based and

2) implicit community detection based protocols. Explicit community detection based

protocols[27, 29, 28, 5, 30, 31] detect underlying community structure of MSN and use

this structure for forwarding decisions. Implicit community detection based protocols[53,

54, 55, 56, 57, 58, 59] do not detect underlying community structure explicitly but uses

different metrics to capture human social behaviour.

It is desirable that the community detection mechanism employed by explicit com-

munity detection based protocols is distributed in nature because of the peer-to-peer

nature of MSN. Further, as humans belong to multiple communities, community de-

tection mechanism should be able to find overlapping communities. In section 3.1, we

survey distributed community detection mechanisms for MSN available in the literature

and conclude that there is no distributed overlapping community detection mechanism

available in the literature. So, we propose Distributed Overlapping Community Detection

(DOCD) mechanism for MSN in section 3.2. We also analyze properties of overlapping

community structure in section 3.3. We conclude the chapter in section 3.4.

29
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3.1 Survey of Distributed Community Detection in

MSN

In MSN, some nodes come in contact with each other more frequently or remain in

contact for a longer duration than other nodes in the network. This contact pattern can

be represented as a graph. Vertices in the graph represent nodes. An edge between two

vertices is added in the graph if, for corresponding nodes in MSN, average inter-contact

time is less than some threshold or total contact duration is greater than some threshold.

As humans form communities, the graph created from MSN is not a random graph. The

degree distribution of the graph often follows a power-law distribution, i.e. there are many

vertices with a low degree and some vertices with a high degree. Further, distribution of

edges is also inhomogeneous with a high number of edges within groups of vertices and a

low number of edges between these groups. These groups are called communities.

Community detection in graphs is a well-studied topic as any network can be rep-

resented as a graph. The problem of community detection in graphs has applications

wherever something can be represented as a network and there is a requirement of de-

tecting groups (communities) in the network; e.g. online social networks, protein-protein

interaction networks, World Wide Web (WWW) etc. A very good and detailed review

for community detection in graphs is presented in [60]. But, all the techniques discussed

in the paper are centralized with the assumption that the entire graph of the network is

available at one place. So, these techniques are not directly applicable for MSN where

the requirement is to detect communities in a distributed manner at each node from the

contact pattern available locally.

Hui et al. in [2] have proposed three algorithms for distributed community detection

in Delay Tolerant Networks (DTN) namely MODULARITY, K-CLIQUE, and SIMPLE.

These algorithms are widely used by a number of explicit community detection based

routing protocols for MSN. These algorithms differ in the level of complexity and over-

head. MODULARITY is most complex with highest overhead while SIMPLE is least

complex with least overhead. The accuracy of communities detected by these algorithms

as compared to centralized mechanism varies with MODULARITY algorithm being most

accurate. But, the difference in accuracy of these algorithms is not very significant as

authors report the accuracy of all algorithms between 80% and 90%.
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In these algorithms, each node detects and maintains its own single local community.

Each node in the network maintains cumulative contact duration information for each

node with which it comes into contact. If encountered node’s cumulative contact duration

is greater than given threshold then that node is added to the familiar set as well as to the

local community of the node (threshold criteria). When a node encounters another node,

it exchanges its local knowledge of the network with its neighbour. Then, each node

decides whether to add encountered node in its local community based on admission

criteria if it is not already added based on threshold criteria. It also decides whether to

merge encountered node’s local community with its local community based on merging

criteria. All three algorithms differ in the admission criteria and merging criteria while

threshold criteria is common for all the algorithms.

The problem with these algorithms is that there is no aging mechanism involved.

Once a node is added to the local community of some node, it is never dropped from

the local community even if it is not encountered for a long period of time. The AD-

SIMPLE[23] algorithm modifies SIMPLE and adds an aging mechanism to rectify this

problem. It prunes a node from the familiar set of the current node if the running average

of the percentage of contact duration of the node in a given time period falls below a

given threshold. It also prunes a node from the local community of the current node

if, in a given time period, the node is encountered neither directly by the current node

nor by any community member of the current node. If a node is pruned from the local

community and it is present in the familiar set then it is also removed from the familiar

set. Orlinski et al. in [24] propose a distributed mechanism to detect communities which

change over space and time. It also employs aging mechanism similar to AD-SIMPLE to

account for the changes in community membership over space and time.

Another problem with MODULARITY, k-CLIQUE, SIMPLE, AD-SIMPLE, and the

mechanism in [24] is that they do not detect multiple communities of a node. We know

that nodes in MSN can belong to multiple communities like friends, family, co-workers

etc. But, MODULARITY, k-CLIQUE and SIMPLE merge all these communities and

detect single community per node. AD-SIMPLE does not merge these communities but

maintains only one of these communities as the local community of the node at any

given point of time. It is desirable for a node to maintain information about all the

communities in which it is a member. This information can be used by routing protocols
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to make better forwarding decisions. Further, as we shall see in chapter 4, we also use

this information to detect hub and gateway nodes of communities without doing message

flooding or forwarding of accumulated encounter information from other nodes.

Williams et al. in [25] propose a mechanism for decentralized detection of periodic

encounter communities in opportunistic networks. Periodic encounter community means

that a community is formed periodically when members of the community come in contact

with each other. Then, it gets dissolved as its members move away from each other;

e.g. during office hours, a community is formed every day between office workers which

dissolves after office hours. So, this mechanism can detect different communities in which

a node is a member in different periods. But, it is evident from the example discussed

in 1.1, a node can be part of different communities within any given period and nodes

can move between communities without communities getting dissolved. We call such a

community structure as an overlapping community structure.

So, we propose Distributed Overlapping Community Detection (DOCD) mechanism

by modifying SIMPLE algorithm to detect multiple communities of each node in the

following section 3.2.

3.2 Distributed Overlapping Community Detection

(DOCD) in MSN

Out of MODULARITY, k-CLIQUE, and SIMPLE algorithms for distributed community

detection, SIMPLE is the least complex and control message overhead of SIMPLE is also

minimum as compared to MODULARITY and k-CLIQUE. Further, accuracies of these

algorithms are similar. So, we choose to modify SIMPLE to detect multiple communities.

As such, our mechanism can work with any of these algorithms.

As our mechanism (DOCD) is based on SIMPLE, in the next sub-section 3.2.1, we

give an overview of the SIMPLE algorithm. Detailed description of the same can be found

in the original paper[2]. In sub-section 3.2.2, we discuss our mechanism to detect multiple

communities. We propose two measures to evaluate the performance of any distributed

overlapping community detection mechanism in sub-section 3.2.5. Simulation results for

DOCD are discussed in sub-section 3.2.6.
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3.2.1 SIMPLE Algorithm for Distributed Community Detec-

tion

As discussed before, familiar set (Fv) of a node v is set of all encountered nodes for

which cumulative contact duration is greater than given familiarity threshold. It is called

threshold criteria. Local community (Cv) of a node v includes all the nodes in its familiar

set and the nodes added through admission criteria and merging criteria. When two

nodes comes into contact with each other, each node sends the other node its familiar set

and the local community. Using this information, each node updates its local community

based on following two criteria. Let the nodes be vi and vj. Then, node vi updates its

local community Ci as follows.

• Admission criteria: If threshold criteria is not satisfied for node vj then admission

criteria is applied. If number of nodes shared among Ci and Fj is higher than λ

times the number of nodes in Fj then the encountered node vj is added in the local

community (Ci) of vi. Here, 0 < λ ≤ 1 is a parameter of the algorithm. Intuitively,

a node is added in a community if majority nodes in the familiar set of the node

are also in the community.

• Merging criteria: If admission criteria is satisfied then merging criteria is applied.

If the number of nodes shared between Ci and Cj is higher than γ times the number

of nodes in the set union of Ci and Cj then all members of Cj are added in Ci also.

Here, 0 < γ ≤ 1 is another parameter of the algorithm. Intuitively, two communities

are merged if they share significant number of nodes as their members.

To detect multiple communities, we add following proposed mechanism in the SIMPLE

algorithm.

3.2.2 The Proposed Mechanism to Detect Multiple Communi-

ties

As different communities are associated with different locations in MSN, the mechanism

identifies a community by its location. For the same, a node maintains a list of locations

it has visited in a community. The node identifies the community with the centroid of

these locations.
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3.2.3 Recording Visited Locations

On each contact with another node, each node updates its current community as per

SIMPLE algorithm. It also adds contact location as a new location it has visited in

the current community if the distance between contact location and other locations it

has visited in the current community is greater than some threshold. Thus, each node

maintains a separate list of locations it visits in a community for each detected community.

Centroid of a Community

Each node identifies its detected communities by the centroid of these communities.

For a node, the centroid of a community is the geometric center of all the locations of

the community the node has recorded. The node updates the centroid of a community

whenever the list of locations it visits in a community is updated. As locations of a

community visited by member nodes of the community will be different from each other,

each node will have different centroid for the community.

Adaptive Threshold Distance (dth)

At a node, threshold distance (dCi
th ) of community Ci is calculated as the distance between

the centroid of the community and the farthest location of the community visited by the

node. Initially, its value is set as an input parameter to the mechanism and it is common

for all nodes. Then, each node maintains different threshold distance values for each

detected community.

Packet forwarding protocols can check whether two communities Ci and Cj detected by

two different nodes are same or not by calculating the distance between two corresponding

centroids. If the distance is less than minimum of threshold distances dCi
th and d

Cj

th then

Ci and Cj are considered to be the same.

Recording Detected Community

On each contact with another node, a node checks for the distance it has traveled from the

centroid of the current community. If it is greater than the threshold distance (dth) of the

current community then the node searches for communities it has recorded previously at a

location which is within dth distance from the centroid. All such communities are merged
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with current community and removed from the detected communities list. Familiar sets

and lists of locations are also merged.

The current community is also checked for the possibility of merging with other com-

munities recorded previously based on merging criteria of SIMPLE. If merging criteria

is satisfied with an existing community, then the current community is merged with the

existing community. Familiar sets and lists of locations are also merged.

If merging is not possible, the current community is added as a community detected

at the centroid of the locations of current community in the detected community list.

Deciding Current Community

The node then searches for the nearest community recorded from the current location.

If the distance between its centroid and the current location is less than its threshold

distance, it is considered as the current community. Otherwise, the node considers the

current community as empty.

It is evident from the DOCD mechanism that it detects overlapping community struc-

ture without any additional communication overhead as compared to SIMPLE algorithm.

The only assumption that the mechanism makes is that each node can track its own lo-

cation.

3.2.4 Complexity Analysis

Upon each contact of a node with another node, the communication cost involves trans-

mitting familiar set and local community of the node to the neighbour node. So, the

communication cost is O(n) where n denotes the total number of nodes in the network.

This communication cost is that of SIMPLE algorithm. DOCD itself does not have any

additional communication cost involved.

Computational Complexity

Upon each contact of a node with another node, following computational cost is involved

at the node.

SIMPLE algorithm’s admission criteria and merging criteria involves comparing two

lists to count the number of common nodes. So, the computational cost for the same is
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O(n log(n)).

Recording visited locations, calculating centroid of a community, and calculating

adaptive threshold distance each involves the computational cost of O(m) where m is

the number of locations visited by a node in a community.

Recording detected community has to parts: i) comparing centroids of already recorded

communities with the detected community’s centroid which involves the computational

cost of O(p) where p is the number of communities in the network, and ii) checking the

possibility of merging with one of the already recorded communities based on merging

criteria which involves the computational cost of O(n log(n)).

Deciding current community also involves the computational cost of O(p).

3.2.5 Performance Analysis

To analyze the performance of DOCD mechanism, we use CAHM mobility model (chapter

2) to generate overlapping community structure and to move nodes as per community

structure in ONE simulator. We measure the similarity between input communities

generated by CAHM and communities detected by each node using DOCD mechanism.

For similarity measurement, we use Jaccard index[61], as done in [2] to evaluate the

performance of SIMPLE algorithm. Let Γi and Γj be sets of nodes in communities Ci

and Cj respectively. Let |Γ| be the cardinality of the set Γ. Then, Jaccard index (σijJ )

between Ci and Cj is defined as follows.

σijJ =
|Γi
⋂

Γj|
|Γi
⋃

Γj|
(3.1)

For a node, let input communities in which it is member be Ci, i = 1, 2, ...,M and

communities detected by the node using DOCD mechanism be Dj, j = 1, 2, ..., N . For

each input community Ci, we calculate Jaccard index with each of the detected commu-

nities Dj; i.e., total M ∗ N Jaccard index values are calculated. Then, these values are

sorted in descending order. We propose two different similarity index calculation meth-

ods based on this ordered list to measure the overall similarity between the input set of

communities and the sets of communities detected by all the nodes in the network which

are part of at least two communities.
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Jaccard-based Similarity Index (JSI)

We consider input community Ci and detected community Dj with the highest Jaccard in-

dex value σijJ in the ordered list of Jaccard index values to be matching communities. The

corresponding Jaccard index value σijJ is removed from the ordered list and this value is

considered as similarity value between input community Ci and detected community Dj.

We also remove Jaccard index values from the ordered list in which either input commu-

nity Ci or detected community Dj is involved. This procedure is repeated till the ordered

list is empty. If M = N , then each of the input and detected communities will match

with corresponding detected and input community respectively. If M > N , then M −N

input communities will remain unmatched. If M < N , then N−M detected communities

will remain unmatched. Let the size of input community Ci be ScomCi
, summation of sizes

of matching input communities be ScomCM
, summation of sizes of unmatched input commu-

nities be ScomCU
, summation of sizes of unmatched detected communities be ScomDU

and set of

matching communities be ΓM = {(i, j) : Ci and Dj are matching communities}. Then,

average Jaccard index for the node is given by

σavgJ =

∑
(i,j)∈ΓM

(σijJ ∗ ScomCi
)

ScomCM
+ ScomCU

+ ScomDU

(3.2)

As it is more important to correctly detect larger communities as compared to smaller

communities for efficient communication, Jaccard index is multiplied by the size of the

matching input community in the numerator of the equation. To normalize the average

Jaccard index between [0,1], in the denominator, summation of sizes of input matching

communities, input non-matching communities, and detected non-matching communities

is taken where, for non-matching input and detected communities, Jaccard index value

is considered as 0.

Further, Jaccard-based Similarity Index (JSI) is mean of σavgJ of all nodes in the

network which are part of at least two communities.

Threshold Jaccard-based Similarity Index (TJSI)

In this method, we consider input community Ci and detected community Dj with the

highest Jaccard index value σijJ in the ordered list of Jaccard index values to be matching

communities if and only if σijJ > Jth where Jth is Jaccard index threshold; i.e., we consider
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two communities to be matching if and only if their Jaccard index is greater than some

threshold. The actual Jaccard index between them is not taken into account and is not

included in average Jaccard index calculation. We remove the corresponding Jaccard in-

dex value σijJ from the ordered list. We also remove Jaccard index values from the ordered

list in which either input community Ci or detected community Dj is involved. This pro-

cedure is repeated till the ordered list is empty. Let size of input community Ci be ScomCi
,

summation of sizes of input communities be ScomC , summation of sizes of unmatched input

communities be ScomCU
, summation of sizes of unmatched detected communities be ScomDU

and

set of matching communities be ΓM = {(i, j) : Ci and Dj are matching communities}.

Then, threshold-based average Jaccard index for the node is given by

σ
Tavg
J =

∑
(i,j)∈ΓM

ScomCi

ScomC + ScomCU
+ ScomDU

(3.3)

Further, Threshold Jaccard-based Similarity Index (TJSI) is mean of σ
Tavg
J of all nodes

in the network which are part of at least two communities.

3.2.6 Simulation Results

There are 200 nodes with the world size of 11000 meters x 11000 meters, divided into a

grid of cells of 40 meters x 40 meters each. The transmission range of each node is 40

meters. With a random seed, CAHM generated 13 communities. We run the simulation

for 86400 seconds. We have implemented DOCD in ONE simulator.

To see the effect of adaptive threshold distance on the performance, in non-adaptive

version of the DOCD mechanism, we do not update initial threshold distance (dth) using

the adaptive threshold distance calculation method; i.e. threshold distance for all detected

communities remains the same and it is equal to initial threshold distance which is an

input parameter to the mechanism. We call the non-adaptive version of the protocol as

‘DOCD-fixed’. In Fig. 3.1 and Fig. 3.2, we compare DOCD and DOCD-fixed protocols.

From these figures, it is evident that the performance of the mechanism in terms of both

Threshold Jaccard-based Similarity Index (TJSI) and Jaccard-based Similarity Index

(JSI) is similar. So, in the following analysis of the performance of the mechanism, we

consider Jaccard-based Similarity Index (JSI) only. For these results, familiarity threshold

value is set to 60 seconds.
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Figure 3.1: Threshold Jaccard-based Similarity Index (TJSI) vs. Initial threshold dis-
tance (dth)
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Figure 3.2: Jaccard-based Similarity Index (JSI) vs. Initial threshold distance (dth)
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Figure 3.3: Jaccard-based Similarity Index (JSI) vs. Familiarity threshold

As seen in Fig. 3.2, in DOCD-fixed, with very low initial threshold distance (dth),

JSI is quite low. While in DOCD, even with very low dth, JSI is acceptable. With

low dth, the mechanism breaks single community into multiple communities. Some of

these communities get merged due to merging criteria of SIMPLE algorithm. Because of

this, DOCD increases the threshold distance of the community. As the mechanism also

merges all communities which are less than the threshold distance away from the current

community, it is able to merge broken multiple communities of an original community

because of the increased threshold distance in DOCD. Because of the merging, threshold

distance further increases and adapts to the radius of the community in DOCD. But,

in DOCD-fixed, merging based on distance does not happen because of non-adaptive

threshold distance.

With an increase in initial threshold distance (dth), the performance of the mechanism

increases up to some dth. For the given scenario, it is 500 meters for DOCD. Then, it

starts decreasing with higher dth value in both the versions. With higher dth, the mecha-

nism merges multiple communities into one. As there is no provision in the mechanism to

split merged communities, threshold distance does not adapt with higher dth. So, we rec-
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Figure 3.4: Jaccard-based Similarity Index (JSI) vs. World size

ommend keeping initial threshold distance (dth) on the lower side so that the mechanism

can adapt it.

Further, as seen in the figure, DOCD achieves maximum similarity index between

75-80%; i.e. it is able to detect overlapping community structure quite accurately.

As shown in Fig. 3.3, the performance of DOCD is not sensitive to the familiarity

threshold parameter. As discussed before, familiarity threshold is the parameter of SIM-

PLE algorithm being used in DOCD which decides minimum cumulative contact duration

required between two nodes to be in the familiar set of each other. As seen in the figure,

familiarity threshold can be set to as low as 30 seconds in DOCD.

As shown in Fig. 3.4, Jaccard-based Similarity Index (JSI) decreases if world size is

very small. As in that case, the same number of communities with the same community

structure are placed in a small area. So, communities come very close to each other. As

world size increases, the performance improves and then after some world size, it remains

almost constant.

We calculate JSI for different overlapping community structures generated by CAHM

using different random seeds. With random seeds {Si : i = 1, 2, ..., 5}, let the set of
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Figure 3.5: Jaccard-based Similarity Index (JSI) vs. Instance number corresponding to
the community structure

overlapping community structures generated be CS = {CS i : i = 1, 2, ..., 5}. We call i as

the instance number corresponding to the community structure CS i. As shown in Fig.

3.5, the performance of DOCD is similar for different overlapping community structures.

3.3 Analysis of Overlapping Community Structure

Analysis of properties of overlapping community structure formed by human mobility

can give important insights for designing better routing protocols. We analyze properties

such as actual community sizes, probability of community existence and fraction of hub

and gateway nodes present in the community on an average.

We created 172 separate contact graphs based on the number of encounters between

all pairs of nodes for 172 intervals of 1000 seconds. An edge between two nodes is added

if the number of encounters is greater than some threshold. We imported this graph

in Gephi[62]. Then, we ran modularity algorithm, which is an implementation of the

algorithm presented in [63] with resolution=1[64], to find out communities. Fig. 3.6
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Figure 3.6: Community structure detected by modularity algorithm in three consecutive
time intervals using Gephi

shows communities found in first three consecutive time intervals. Nodes with the same

colour belong to the same community. The size of a node is proportional to node degree.

A node with a different color in a cluster of differently colored nodes means that the

node’s community has changed.

We checked the similarity between communities generated by CAHM mobility model

and communities found using modularity algorithm by calculating Jaccard-based Simi-

larity Index (JSI) (see sub-section 3.2.5). The JSI value came out to be 0.95 which shows

that both community sets are highly similar, i.e. CAHM is successful in creating intended

community structure of mobile nodes.

Fig. 3.7 shows average of sizes of each community in 172 different intervals. As in

CAHM, a node can be part of multiple communities but modularity algorithm will put it

with only one of these communities, community sizes found through modularity algorithm

are less than community sizes generated in CAHM.

Fig. 3.8 shows that smaller communities are transient and they get merged with bigger

communities most of the time. For this, we found community structures using modularity

algorithm for 172 different intervals and counted how many times a community is detected

by the algorithm. From the figure, it is evident that for 13 communities and 200 total

nodes with power-law community sizes, knee point is around community size of 20. The

result is very useful for community-based forwarding as it serves as a guideline for deciding

whether a group of nodes should be considered as part of a separate community or not.

Fig. 3.9 shows the average of the fraction of identified hub nodes present in communi-

ties in different intervals where community structure is created for 1000 nodes. We define

a fraction of the nodes of a community which have higher number of neighbour nodes
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Figure 3.9: Hub fraction vs. Community number

(node degree) in the community as compared to other nodes of the community as hub

nodes (locally popular nodes) of the community. To identify neighbour nodes through

simulation, we count the number of encounters between all pairs of nodes in a commu-

nity. Let, for a pair of nodes, the average number of such encounters be µe and variance

be σe. Then, the node’s neighbours are the nodes in the community it has encountered

more number of times than µe + σe. For this result, we identify first 30% of nodes of

a community which have higher number of neighbour nodes in the community as hub

nodes. Community size is shown on the second y-axis. It is evident that a higher fraction

of hub nodes remain present in larger communities with less standard deviation and a

lower fraction of hub nodes remain present in smaller communities with high standard

deviation. This information can be used while deciding the percentage of nodes to be

considered as hub nodes and also for other forwarding decisions.

Fig. 3.10 shows the average of the fraction of identified gateway nodes present in

communities in different intervals. We define a fraction of the nodes of a community

which have higher betweenness centrality as compared to other nodes of the community

as gateway nodes (globally popular nodes) where betweenness centrality of a node is
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Figure 3.10: Gateway fraction vs. Community number

defined as the number of shortest paths from all nodes of the community to all others

nodes in the network that pass through the node. To calculate betweenness centrality, we

accumulate encounter information of all nodes through simulation. We form a weighted

graph from this encounter information where nodes are vertices in the graph and an edge

is placed between two vertices if there is at least one encounter between corresponding

nodes. The weight of an edge represents the number of encounters between corresponding

nodes. From the resultant weighted graph, for each community, we calculate betweenness

centrality values of all nodes with membership in multiple communities. While calculating

betweenness centrality for a node, we consider only those shortest paths for which source

is in one community and the destination is in another community. For this result, we

identify first 30% of nodes of a community which have higher betweenness centrality as

gateway nodes. The result is similar to the result for hub nodes. Further, it is evident

from Fig. 3.9 and Fig. 3.10 that the fraction of gateway nodes present in a community

is much lower than the fraction of hub nodes present in the community.
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3.4 Conclusion

Routing protocols in MSN can exploit overlapping community structure formed by hu-

mans for efficient forwarding. Further, as discussed in chapter 4, this structure can also

be used to identify hub and gateway nodes of a community without doing message flood-

ing. Nodes in MSN need to detect overlapping community structure in a decentralized

manner. There is no mechanism available in the literature for the same. We modify ex-

isting distributed algorithm SIMPLE and propose Distributed Overlapping Community

Detection (DOCD) mechanism to detect overlapping community structure. Simulation

results show that DOCD detects overlapping community structure with 75-80% accuracy.

Further, it is evident from the results that the performance of DOCD is good if the value

of the initial threshold distance (dth) is kept low, and it is not sensitive to the familiarity

threshold parameter.

Our analysis of overlapping community structure establishes that small communities

are transient. As per simulation results, the threshold for the same is around 10% of

total number of nodes in the network. Further, a higher fraction of hub and gateway

nodes remain present in larger communities with less standard deviation as compared

to smaller communities. Also, the fraction of gateway nodes present in a community is

much lower than the fraction of hub nodes present in the community. These results give

important insights for designing better forwarding protocols for MSN.



Chapter 4

Identifying Hub and Gateway Nodes

in Overlapping Community

Structure

As stated previously, different individuals have heterogeneous local and global popularity

within a community and in a social network respectively. These locally and globally

popular nodes can play very important role in the efficient dissemination of information

in Mobile Social Network (MSN)[5]. We call them hub and gateway nodes respectively.

We discuss existing methods to detect hub and gateway nodes in section 4.1. We

propose methods, based on mathematical models, to identify hub and gateway nodes

from overlapping community structure itself without doing message flooding in section

4.2. In section 4.3, we present the validation of our methods to identify hub and gateway

nodes. We conclude the chapter in 4.4.

4.1 Survey of Hub and Gateway Nodes Identification

in Community Structure

In BUBBLE Rap[5], nodes with high betweenness centrality in a community are consid-

ered as hub nodes where betweenness centrality of a node within a community is equal to

the number of shortest paths from all nodes to all other nodes of the community that pass

through that node. To calculate betweenness centrality, messages are flooded between

48
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nodes of the community. A node’s betweenness centrality in a community is equal to the

number of times the node is part of the shortest paths taken by messages sent between

nodes of the community. Similarly, to find gateway nodes, messages are flooded between

nodes of different communities. But, this method involves considerable overhead. To

reduce overhead, the paper also proposes to use the cumulative average of unit-time node

degree based on past encounters. The method is called C-Window. But, as shown in the

paper, this approximation reduces protocol performance. Wehmuth and Ziviani in [26]

propose a method to calculate closeness centrality of nodes in the network by restricted

flooding of messages up to given number of hops where closeness centrality of a node

within a community is defined as the inverse of the sum of distances to all other nodes in

the community. They show that the correlation between optimal ordering of nodes based

on centrality values and the ordering obtained using 2-hop flooding is comparable.

Yoneki et al. in [27] consider nodes with high closeness centrality as hub nodes.

Gateway nodes are not considered. To calculate closeness centrality, nodes accumulate

encounter information. They also exchange this information with community members.

Then, each node calculates its closeness centrality from the contact graph thus acquired.

Similarly, LocalCom[28] also uses such contact graph and initially considers all nodes

which have neighbours in two or more communities as gateway nodes. To prioritize them,

it also calculates betweenness centrality of a node from the contact graphs of communities

in which the node has neighbours.

All the methods discussed above require either flooding of messages or forwarding of

not only node’s encounter information but also accumulated encounter information from

other nodes. So, most of these methods do not scale with network size or community

size. We identify hub and gateway nodes from the overlapping community structure itself

without doing message flooding or forwarding of accumulated encounter information from

other nodes. The overlapping community structure is found in a distributed manner

using Distributed Overlapping Community Detection (DOCD) mechanism proposed in

chapter 3. Social-aware routing protocols such as BUBBLE Rap[5] need to find such

structure for efficient forwarding anyway. We make use of this structure for identifying

hub and gateway nodes also. Further, in DOCD also, a node sends only its own encounter

information to its neighbour and does not send accumulated encounter information from

other nodes.
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Figure 4.1: Communities and movement of a node between communities represented as
Markov chain

4.2 The Proposed Markov Chain-based Methods

Each node of a community estimates its local and global popularity values for the com-

munity independently using following information: i) community sizes of all communities

in which the node is a member and ii) locations the node visits in these communities.

This information is provided by DOCD.

Using this information, we model node’s movement in the overlapping community

structure as a Markov chain. Communities are considered as states in Markov chain.

Fig. 4.1 shows Markov chain of a node with membership in communities i, j, and k. In

the figure, Pxy with x = i, j, k and y = i, j, k represent probability with which the node

travels from community x to community y or remains in the same community (x = y)

in the next flight. If we can find these probabilities, then steady state probability vector

of the node will give the fraction of time for which a node will be in each community. If

locations of the communities are known then we can calculate distances between them.

It is known that human flight distances follow power-law distribution[14]. We can use

this property to find transition probabilities.

Let a node be a member of M communities and let it be currently in community

i = 0. Let other communities be numbered from 1 to M − 1 in the increasing order of

their distances from community 0 where the distance between community i and j (dij)

is defined as the distance between centroids of communities i and j. For a node, the

centroid of a community is the geometric center of all the locations of the community the

node visits. The Distributed Overlapping Community Detection (DOCD) mechanism,
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proposed in chapter 3, records locations a node visits in a community while detecting

communities of the node and it also computes centroids of the node’s communities.

Let probability of node movement from community i to community j be Pij, minimum

and maximum distances a node travels in a flight be minD and maxD respectively, dcom

be the maximum distance the node travels to reach a location within its community and

D be power-law exponent. Then, from Fig. 4.2, it is clear that

P00 =

∫ dcom

minD

cx−Ddx

P0j =

∫ d0j

d0(j−1)

cx−Ddx; j = 1, 2, ...,M − 1 (4.1)

Where c =
1∫ maxD

minD
x−Ddx

is the normalizing constant

Here, we assume that all distances between community 0 and locations of each com-

munity are either less or greater than all distances between community 0 and locations of

the rest of the communities. It is a reasonable assumption to make as distances between

different places a person visits daily from home (for example) are rarely same; i.e. dis-
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tances between home and locations she visits in her office are either less or greater than

distances between home and locations she visits in a park.

Let w be the steady state probability vector of this Markov chain and the transition

probability matrix of the node be P, then it is known that[65]

w0 + w1 + ...+ wM−1 = 1

wP = w (4.2)

From these equations, steady state probability vector w can be found which represents

the fraction of time for which the node will be in each community. We use transition

probabilities and steady state probability vector thus found to identify hub and gateway

nodes.

4.2.1 Hub Nodes

A node with a high local degree in a community can be considered as a hub node of the

community where local degree of a node within a community is defined as the number of

neighbours of the node in the community. But in overlapping community structure, if a

node with high local degree in a community is also member of other communities, then

it is important to consider what fraction of time will it remain in the community; i.e. a

node’s local popularity in a community is dependent not only on local degree but also on

the fraction of time it spends in that community.

We consider the number of places a node visits in community i as its local degree

(∆i), as a node visiting more number of places in a community will come in contact with

more number of nodes in the community. We have already calculated the fraction of time

the node spends in community i, i.e. wi. Then, the local popularity (Li) of the node in

community i is

Li = wi ×∆i (4.3)
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4.2.2 Gateway Nodes

Intuitively for a node to qualify as a gateway node of a community, it should move from

one community to another community frequently. It should also spend more time in that

community to carry packets of the community to other communities. Moreover, a node

with membership in larger communities should be preferred over a node with membership

in smaller communities. Hence, the global popularity of a node should depend on all these

three factors.

Mathematically, a node with less average self-transition probability will move between

communities more frequently. Let the average self-transition probability of a node be Pavg

and M be the number of communities in which the node is a member. Then,

Pavg =
1

M

i=M−1∑
i=0

Pii (4.4)

Similarly, a node with high steady state probability wi for community i will spend

more time in community i. Let S̃i represent the summation of sizes of communities in

which a node is a member except community i. Then, the global popularity (Gi) of the

node in community i is

Gi = (1− Pavg)× wi × S̃i (4.5)

Using the above methods, each node estimates its local and global popularity values

for all communities in which it is a member.

When two nodes come in contact with each other, they exchange their local and

global popularity values for all communities in which both are members. Thus, a node

accumulates local and global popularity values of member nodes of a community. From

the received local and global popularity values, each node independently prepares sorted

lists of locally and globally popular nodes for each community in which it is a member.

Then, it identifies a given percentage of nodes from these sorted lists of each community

as hub and gateway nodes of the community independently.
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4.2.3 Complexity Analysis

Our proposed methods to identify hub and gateway nodes do not involve any additional

communication cost for calculating local and global popularities at each node. To identify

hub and gateway nodes in a community, member nodes of a community exchange and

accumulate local and global popularity values. So, the communication cost is O(C3)

where C is the maximum community size in the network.

The baseline method of flooding in the entire network for identifying hub and gateway

nodes based on betweenness centrality involves communication cost of O(n3) where n is

the number of nodes in the network. So, our method scales with number of nodes in the

network but the baseline method is not scalable.

Computational Complexity

In our methods, each node calculates transition probability matrix P, which involves

computational cost of O(C2). For calculating steady state vector w, the cost is O(C3).

Further, costs involved for calculating Pavg and sorting popularity values are O(C) and

O(Clog(C)) respectively.

At each node, the baseline method involves calculating number of times a node is

on shortest paths, for all nodes in the network. The computational cost for the same

is O(n3). Then, the node sorts all nodes in the network based on their betweenness

centralities which involves the cost of O(nlog(n)). So, again, our method scales with the

number of nodes in the network but the baseline method is not scalable.

4.3 Validation of the Proposed Methods

To validate proposed methods, we use CAHM mobility model (chapter 2) to generate

overlapping community structure and to move nodes as per community structure in ONE

simulator. There are 200 nodes in a simulation plane of 5000 meters x 5000 meters,

divided into a grid of 62,500 cells of 20 meters x 20 meters each. The transmission range

of each node is 20 meters. With a random seed, CAHM generated 13 communities.

To validate steady state probabilities found using Eq. 4.2, in simulation, we kept a

log of the amount of time a node has spent in each community in which it is a member.
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Dividing these times by total simulation time gives the fraction of the time a node has

spent in each community. It turns out that, these values are very closely matching with

those found using Eq. 4.2 with the average error of only 0.05.

4.3.1 Validation of Hub Identification Method

We compare ordered list of hub nodes of a community generated through our Markov

chain-based method with lists generated using following two methods.

1. Encounter-based: In the simulation, we count the number of encounters between

all pairs of nodes in a community. Let, for a pair of nodes, the average number of

such encounters be µe and variance be σe. Then, the node’s local neighbours are

the nodes in the community it has encountered more number of times than µe +σe.

Number of such local neighbours denotes the node’s local popularity. We order

nodes based on these popularity values.

2. Flooding-based: For each community, we send packets from different sources to

different destinations within the same community through epidemic routing in the

simulation. Then, we count the number of times a node of the community is on

shortest paths followed by packets to reach destinations and order nodes based on

these counts.

Then, we use Spearman’s rank correlation coefficient (ρ)[66] to compare two ordered

lists. Spearman coefficient is a nonparametric measure of statistical dependence between

two variables. It assesses how well the relationship between two variables can be described

using a monotonic function. Spearman coefficient ρ = 1 means that one ordered list is a

perfect monotone function of other ordered list.

Average Spearman coefficient (ρavg) of all communities comes out to be 0.9890 for

Markov chain-based method and encounter-based method. Similarly, for Markov chain-

based method and flooding-based method, ρavg is 0.9980. The results confirm that Markov

chain-based method identifies correct hub nodes.
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4.3.2 Validation of Gateway Identification Method

We compare ordered list of gateway nodes of a community generated through our method

with lists generated using following two methods.

1. Encounter-based: We accumulate encounter information of all nodes through

simulation. We form a weighted graph from this encounter information where nodes

are vertices in the graph and an edge is placed between two vertices if there is at

least one encounter between corresponding nodes. The weight of an edge repre-

sents the number of encounters between corresponding nodes. From the resultant

weighted graph, for each community, we calculate betweenness centrality values of

all nodes with membership in multiple communities. While calculating betweenness

centrality for a node, we consider only those shortest paths for which source is in

one community and the destination is in another community. We order nodes based

on these betweenness centrality values.

2. Flooding-based: We randomly select source-destination pairs such that both are

in different communities. We generate a large number of such pairs and send packets

from these sources to corresponding destinations through epidemic routing in the

simulation. By definition, gateway node of a community should be at the edge of

the community. So, to qualify as a gateway node of a community, a forwarding

node should be on the shortest path followed by a packet and the next node on

the shortest path after the forwarding node should be in different community. We

count the number of times each forwarding node of a community satisfy the above

criteria and order them based on these counts.

Average Spearman coefficient (ρavg) of all communities comes out to be 0.9770 for

Markov chain-based method and encounter-based method. Similarly, for Markov chain-

based method and flooding-based method, ρavg is 0.9880. The results confirm that Markov

chain-based method identifies correct gateway nodes.

4.4 Conclusion

Hub and gateway nodes of a community can play very important role in the efficient

dissemination of information in MSN. Existing methods to detect hub and gateway nodes
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Table 4.1: Average Spearman coefficient (ρavg)
Markov chain-based
vs. Encounter-based

Markov chain-based
vs. Flooding-based

Hub 0.9890 0.9980
Gateway 0.9770 0.9880

require either flooding of messages or forwarding of not only node’s encounter information

but also accumulated encounter information from other nodes. So, the performance of

these methods does not scale with network size or community size. We identify hub and

gateway nodes from the overlapping community structure itself without doing message

flooding or forwarding of accumulated encounter information from other nodes.

We propose Markov chain-based methods to identify hub and gateway nodes of a

community. The methods involve exchange of independently calculated popularity values

of a node with community members only. So, the communication cost (as well as the

computational cost) of the method is O(C3) only, where C denotes maximum community

size; i.e. the performance of Markov chain-based methods scales with the number of nodes

in the network. While, for the baseline method, the communication cost (as well as the

computational cost) is O(n3), where n is the number of nodes in the network.

To validate Markov chain-based methods, we also propose two simulation-based ap-

proaches to identify hub nodes and another two simulation-based approaches to identify

gateway nodes. We compare ordered lists of hub and gateway nodes generated by Markov

chain-based methods with ordered lists generated by these methods. As shown in Table

4.1, these ordered lists are highly correlated, i.e. Markov chain-based methods correctly

identify hub and gateway nodes.



Chapter 5

Viral Spread in Mobile Social

Network

Viral spread (Many-to-all broadcast) in Mobile Social Network (MSN) is an important

functionality which can be useful for a variety of applications in MSN such as message

broadcast, news spread, traffic updates etc. Further, it is also useful for routing, as

many routing protocols require flooding of control messages. In this chapter, we propose

Community Aware Viral Spread (CAVS) protocol for many-to-all broadcast in MSN.

In the following section 5.1, we survey relevant literature. We present our protocol in

section 5.2. Section 5.3 discusses simulation results. We conclude the chapter in section

5.4.

5.1 Literature Survey

Maiti et al. in [33] propose use of a directional antenna for epidemic broadcasting in

Delay Tolerant Network (DTN). They show that use of directional antenna improves

performance. But, mobile devices used by humans do not have a directional antenna. So,

their protocol is not applicable in MSN. Yusuke et al. in [34] propose broadcast protocol

based on estimation and preservation of stable links in DTN. Their protocol is applicable

only when the network is dense which is generally not the case in MSN. Gong et al.

in [35] propose a protocol to prioritize broadcast, based on application requirements in

DTN; i.e. their protocol does not improve performance in terms of packet delivery ratio

or delay.

58
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Table 5.1: Comparison of existing protocols
Protocol Type of network Network coding Community-based Hub nodes Gateway nodes

Directional antenna[33] DTN No No No No
Stable links[34] DTN No No No No

Prioritized broadcast[35] DTN No No No No
OSN based broadcast[36] MSN No Yes No Yes

Epidemic spread[37] MSN No No Yes No
CAVS (our protocol) MSN Yes Yes Yes Yes

Lee et al. in [36] propose a broadcast protocol which exploits online social network

links to choose nodes for rebroadcasting. The protocol assumes that these nodes are

connected with infrastructure based network to deliver messages between disconnected

clusters. Connection to the infrastructure-based network is also used to collect infor-

mation about online social network connections to make better forwarding decisions.

While their approach improves average packet delivery delay and delivery ratio, it re-

quires smartphones to have a cellular data connection. Our objective is to develop a viral

spread protocol which also works in situations like natural calamities, disaster recovery,

and battlefield, when or where such infrastructure based network is not available. Yoneki

et al. in [37] analyze the effect of hub nodes for broadcast in MSN. They consider all

popular nodes as hub nodes. They conclude that deactivation of hub nodes brings down

the performance significantly. So, their aim is not to improve performance but to analyze

the effect of hub nodes on the performance.

These protocols are compared in Table 5.1 based on different parameters. We conclude

that existing protocols either work with specific assumptions regarding the type of MSN

or do not aim to achieve improvement in terms of average packet delivery delay or delivery

ratio in the presence of a limited buffer. So, we propose one such protocol. As nodes

have limited buffer and using less buffer is also more energy efficient as shown in [32],

we use network coding[38] and probabilistic buffering to pro-actively use less buffer while

not compromising on performance significantly.

Fragouli et al. in [39] propose network coding based protocol for all-to-all broadcast

in ad hoc network. For network coding, a generation is defined as a group of packets

such that packets of the same generation only can be linearly combined to generate

encoded packets. Packets from different sources are added in a generation in a distributed

manner. To decide the generation in which a new packet should be added, each source

node inspects generations of incoming packets. If the number of packets in a generation
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(generation size) is less than the threshold, the packet is added in that generation. If no

such generations are present then a new generation is created. In typically sparse MSN,

packets propagate slowly. As a result, nodes do not receive packets of existing generations

quickly enough. So, when the average transmission rate is high, source nodes have to

create new generations for their packets as they would not have received information

about existing generations in the network. As a result, a large number of generations

with small generation sizes are created in the network. It leads to less mixing opportunity

and less average delivery ratio as packets of the same generation only can be linearly

combined. Widmer et al. in [40] use hashing function for generation management and

their technique also has the same problem. Therefore, we propose a community-based

distributed generation management technique for MSN to overcome this limitation.

For performance comparison, we modify Epidemic routing[3] implementation in ONE

simulator by delivering packets to all nodes instead of only to one destination node and

by buffering packets probabilistically instead of buffering all the packets for forwarding.

5.2 Community Aware Viral Spread (CAVS) Proto-

col

The protocol exploits properties of human mobility like overlapping community structure

and heterogeneous popularity of nodes for efficient forwarding. Overlapping community

structure and popular nodes are found as described in chapter 3 and 4 respectively.

In the viral spread, each node potentially receives packets from all source nodes. If

all packets are buffered for forwarding, a node may require a very large buffer. In order

to reduce buffer occupancy, all packets should not be buffered at all nodes. Ideally, the

decision to buffer a received packet should be based on the number of available copies of

the packet in the network. As this information is not easily available, CAVS buffers each

packet with some probability. To offset for the loss in performance due to this, CAVS

employs network coding. Network coding is a mechanism in which nodes create encoded

packets by combining two or more incoming packets and forward encoded packets instead

of forwarding incoming packets as it is[38].

For network coding, packets from multiple sources of a community are grouped into
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a generation. A packet belongs to a community in which the source node is present at

the time of packet creation. Packets of a same generation only can be combined. With

an increase in generation size, mixing opportunity increases as there are less number

of generations in the network but coding complexity and decoding delay increases. We

propose a community-based distributed generation management technique which decides

to which generation a new packet of a source is to be added. The technique limits the

number of packets contributed by a source to a generation based on target generation

size and the estimated number of source nodes in a community.

CAVS exploits overlapping community structure as well as hub and gateway nodes of a

community for efficient packet forwarding. For packet transmission, if a node has multiple

neighbours then it gives priority to neighbours which are gateway and hub nodes of the

current community of the node. Further, while transmitting to a particular neighbour,

packets of generations for which the neighbour is a gateway node or the node itself is a

gateway node are transmitted first.

Salient features of our protocol are following.

• We exploit social properties of humans such as overlapping community structure

and heterogeneous popularity of nodes for efficient forwarding.

• We propose probabilistic buffering of packets at nodes for efficient buffer usage.

• We use network coding to offset the loss of performance due to probabilistic buffer-

ing.

• We propose a community-based distributed generation management technique for

network coding.

• We suggest optimal values of buffering probability, generation size and percentage

of total nodes to be used as hub and gateway nodes in the protocol.

The following sub-sections describe the protocol in detail.

5.2.1 Network Model

Nodes in the network form overlapping community structure. Each community is associ-

ated with a place (office, home, park etc.). The location of the place is chosen randomly.
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A node can be part of multiple communities. A node moves between different locations

within a place when it is in a community. The number of different locations in a commu-

nity that a node visits depends on its popularity in the community. A node visits places

associated with those communities in which it is a member. A node moves within a place

more frequently while between places, it moves less frequently. The nodes in the network

find such overlapping community structure using Distributed Overlapping Community

Detection (DOCD) mechanism proposed in chapter 3. The network is typically sparse

and there is generally no contemporaneous path between source and destination. Due

to this, we use opportunistic forwarding where packets are exchanged opportunistically

when two nodes come within communication range of each other.

5.2.2 Hub and Gateway Nodes

Locally popular (hub) nodes of a community come in contact with more number of nodes

in the community than rest of the nodes of the community. Similarly, globally popular

(gateway) nodes of a community visit multiple communities and come in contact with

more number of nodes in the entire network than rest of the nodes of the community. We

use methods described in chapter 4 to identify hub and gateway nodes from overlapping

community structure itself without doing message flooding or forwarding of accumulated

encounter information from other nodes. These methods order nodes of a community

based on their suitability as hub or gateway node. From the ordered list of candidate

hub nodes, we choose a fraction of most suitable nodes as hub nodes of the community.

Similarly from the ordered list of candidate gateway nodes, a fraction of most suitable

nodes are chosen as gateway nodes of the community.

5.2.3 Network Coding

Network coding is a mechanism in which nodes create encoded packets by combining two

or more incoming packets and forward encoded packets instead of forwarding incoming

packets as it is[38]. Successful reception of a generation does not depend on receiving

specific packets of the generation but on receiving sufficient number of independent pack-

ets of the generation; i.e. each transmission of a coded packet contributes the same to

the eventual delivery of all packets of the generation.



5.2 Community Aware Viral Spread (CAVS) Protocol 63

S1

SS2

F1

F2

1R1

A

A

B

B

Y1

Y2

A,B

A,B

Y1,Y2

S1

SS2

F1

F2

1R1

A

A

B

B

A

A

A,B

A,B

A,A

(a) (b)

A,B

Y2

Y1

Figure 5.1: Packet forwarding with probabilistic buffering: (a) With network coding (b)
Without network coding

Network coding offsets for the performance drop due to probabilistic buffering as

shown by an intuitive example in Fig. 5.1. Sources S1 and S2 transmit their packets A

and B respectively to two nodes F1 and F2. In the example, without network coding,

nodes F1 and F2 receive A and B but both buffer only A for forwarding. Then, both

transmit A to R1. R1 accepts A from either F1 or F2 and rejects A as duplicate from the

other. As probability of receiving same packet at R1 is 0.5, probability of loss at R1 is

0.5. With network coding, nodes F1 and F2 combine A and B before dropping B. Then,

F1 transmits coded packet Y1 to R1 and F2 transmits coded packet Y2 to R1. From Y1

and Y2, R1 decodes A and B. So, with network coding, there is no loss at R1.

In linear network coding, nodes forward linear combinations of two or more input

packets as encoded packets. In Random Linear Network Coding (RLNC)[67], coefficients

for the linear combination are generated randomly at each node. RLNC is distributed

and less computationally intensive than linear network coding. So, we use RLNC in our

protocol. The following explanation of RLNC is based on [68].

Random Linear Network Coding (RLNC)

Let each packet contain L bits. If packets to be combined are not of the same size,

smaller packets are padded with trailing zeros. Consider s consecutive bits of a packet as
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a symbol over the Galois Field GF2s , i.e. each packet consists of a vector of L
s

symbols.

An outgoing packet at each node is a linear combination of incoming packets or generated

packets at that node where addition and multiplication operations are performed over the

Galois Field GF2s . The encoded packet also contains L bits. An encoded packet contains

information about all original packets and multiple such packets can be generated. In

effect, information of an original packet is spread across a number of encoded packets.

Encoding Let original packets generated by one or more sources be M1, ...,Mn. Then,

an encoded packet X1 =
∑n

i=1 g
1
iM

i, where sequence of coefficients g1
1, .., g

1
n are chosen

uniformly at random over the Galois Field GF28 . The summation is to be done for every

symbol in a vector of L/s symbols in a packet, i.e., X1
p =

∑n
i=1 g

1
iM

i
p, where M i

p and X1
p

is the pth symbol of M i and X1 respectively. Coefficient vector g1 = (g1
1, .., g

1
n) is also sent

along with encoded packet X1. The process is illustrated by following example where

n = 2, p = 1, and addition and multiplication operations are over the Galois Field GF28 .

M =
( M1

M2

)
=
( 161

87

)
,g =

( g1
1 g1

2

g2
1 g2

2

)
=
( 230 33

155 85

)

gM =
( 230 33

155 85

)( 161

87

)
=
( 108

104

)
=
( X1

X2

)
= X

Forwarding nodes can also do encoding on already encoded packets. Consider a node

has a set (g1, X1), ..., (gm, Xm), where m ≤ n. The node can generate a new encoded

packet (k1, Y 1) by selecting uniformly at random a set of coefficients h1
1, ..., h

1
m and com-

puting linear combinations Y 1 =
∑m

j=1 h
1
jX

j and k1
i =

∑m
j=1 h

1
jg
j
i where k1

i is the ith

element of the coefficient vector k1 = (k1
1, .., k

1
n). For following example, m = 2.

g =
( 230 33

155 85

)
,X =

( 108

104

)

h =
( h1

1 h1
2

h2
1 h2

2

)
=
( 39 202

236 141

)

hX =
( 39 202

236 141

)( 108

104

)
=
( 142

97

)
=
( Y 1

Y 2

)
= Y

hg =
( 39 202

236 141

)( 230 33

155 85

)
=
( 133 186

127 123

)
=
( k1

1 k1
2

k2
1 k2

2

)
= k
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Decoding Let a node has received the set (k1, Y 1), ..., (km, Y m), where m ≤ n. To re-

trieve original packets, it needs to solve the system of m linear equations Y j =
∑n

i=1 k
j
iM

i,

where {M i : i = 1, ..., n} is a set of unknowns. If m = n, i.e. the number of received

packets are equal to the number of original packets, we can recover all the original packets

provided all the received packets are linearly independent. But, there is a possibility that

some of the encoded packets are linearly dependent. Simulation results indicate that even

for small field sizes (e.g. s = 8), the probability becomes negligible[69]. For following

example, m = n = 2.

k =
( 133 186

127 123

)
,Y =

( 142

97

)
( 133 186

127 123

)( M1

M2

)
=
( 142

97

)
( 1 0

0 1

)( M1

M2

)
=
( 161

87

)
= M

5.2.4 Community-based Distributed Generation Management

Generations are identified by community Id (CId) and a generation counter (C). Every

source node starts with an independent counter value of C = 0 for each community in

which it is a member. Let the maximum target generation size of the network be Gmax

and number of source nodes in a community be S. The number of source nodes (S)

for a community is estimated from source identification of packets of the community

present in a node’s buffer. As nodes of the same community communicate with each

other frequently, S can be predicted quite accurately. Then, threshold (Nth) is given by

Nth =
S

Gmax

(5.1)

If Nth ≥ 1 then each source node of a community contributes Nth number of packets to

each generation of the community with same C value before incrementing C by one. Else,

each source node of a community contributes a packet to a generation of the community

with ‘Nth’ probability.

As, a source node may generate packets with different rate than others and is absent

in a community when it visits other communities, counter C of the node for a given



5.2 Community Aware Viral Spread (CAVS) Protocol 66

community may be too low as compared to nodes which permanently reside in the com-

munity and/or are generating packets with higher rate. If C is too low, the source will

add packets to old generations and newly added packets will get little mixing opportu-

nity, as many of the packets of old generations may have already been dropped from

buffers of community members. So, to avoid adding packets to old generations, we need

to loosely synchronize counters of all nodes of a community such that difference between

maximum and minimum values of counters of community members is not greater than

some threshold. For the same, maximum counter value (maxC) in received generations

of the community is recorded. If the difference between counter C of the source node and

maxC is greater than some threshold (Dth), then C is set to maxC.

The entire generation management procedure at a source node for a community is

presented in the algorithmic form in Algorithm 5.1. In the algorithm, function rand()

generates random number between 0 and 1 with uniform distribution, ‘o’ is string con-

catenation operator, GId represents generation Id.

5.2.5 Opportunistic Forwarding

For packet forwarding, a node first decides the number of independent packets it can

contribute to its neighbour node, of each generation it has in its forwarding buffer, by

exchanging coefficient matrices of generations with its neighbour node. Then, it forwards

these packets to its neighbour. If a node has multiple neighbours then it gives priority

to neighbours which are gateway and hub nodes of the current community of the node.

Further, while transmitting to a particular neighbour, packets of generations for which

the neighbour is a gateway node or the node itself is a gateway node are transmitted first.

The detailed forwarding protocol is explained in following paragraphs.

A node maintains nodes in its communication range in sorted neighbour list in the

following order: all gateway neighbours of the current community, all hub neighbours

of the current community, all regular nodes. It also maintains two buffers. One for its

own packet reception and decoding and the other for forwarding. We call these buffers

‘received’ buffer and ‘forwarding’ buffer respectively. A node also maintains two coefficient

matrices for each generation it receives. In one coefficient matrix, it adds coefficients of

all independent packets it receives of a generation. We call it ‘received’ coefficient matrix.
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Algorithm 5.1: Generation management at a source node for a community

C = 0
Nth = S

Gmax

i = 0
for each new packet do

if maxC − C > Dth then {Synchronize counter C to maximum counter maxC in
the community}
C = maxC
i = 0
GId = CId o C
continue

end if
if Nth < 1 then {Contribute a packet with ‘Nth’ probability to a generation}

while true do
if rand() < Nth then

break
else
C = C + 1

end if
end while

else {Contribute ‘Nth’ packets to each generation}
if i == Nth then
C = C + 1
i = 0

else
i = i+ 1

end if
end if
GId = CId o C

end for
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In the second coefficient matrix, it adds coefficients of an independent packet only if it

decides to add the packet in ‘forwarding’ buffer. We call it ‘forwarding’ coefficient matrix.

If a node has packets in its forwarding buffer and if communication medium is not

busy, it transmits independent packets to the first neighbour in the sorted neighbour

list till no further packet can be transmitted to that neighbour. Then, it tries second

neighbour and so on. To explore the possibility of packet transmission to a neighbour, the

node sends coefficient matrices of all generations present in its forwarding buffer to the

neighbour. From these matrices and based on its own received coefficient matrices, the

neighbour derives the number of independent packets of different generations the node

can transmit to it and sends this information to the node. The node sends all packets of

one generation before switching to next generation. The node decides the order in which

generations should be sent as per following forwarding policy.

• The node first sends packets of existing generations at the neighbour. In that, the

generation for which minimum number of packets are to be transmitted is selected

first.

• Then, it sends packets of generations for which the neighbour is a gateway node;

i.e. the neighbour is a gateway node of communities of these generations. In that,

the generation which is the oldest in the node’s buffer is selected first. We consider

creation time of a generation as the creation time of the last packet added in the

generation.

• Then, it sends packets of generations for which it is a gateway node and its current

community is different from generations’ communities. In that, the oldest genera-

tion in the node’s buffer is selected first.

• Then, it sends packets of the oldest of remaining generations.

As, a packet is sent only if it is useful to a neighbour, only one transmission per packet

is done for each receiver in the network.

5.2.6 Packet Reception and Purging

When a node receives a packet, it stores it in its ‘received’ buffer if it is independent of

other received packets of the generation and adds its coefficients in ‘received’ coefficient
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matrix of the generation. Packets of a generation are dropped from ‘received’ buffer once

they are decoded.

The node adds the packet to ‘forwarding’ buffer with buffering probability (Pb). Oth-

erwise, it just linearly combines the received packet with each of the existing packets of

the generation in ‘forwarding’ buffer, but does not add the packet in ‘forwarding’ buffer.

In network coding, it is beneficial to linearly combine a packet with each of the existing

packets of the generation before dropping it.

Coefficient matrices of a generation along with all the packets of the generation in

‘received’ buffer and ‘forwarding’ buffer are purged after Time to Live (TTL). For main-

taining creation time of a generation and for purging a generation after TTL, we assume

that nodes in the network are loosely time synchronized.

If ‘forwarding buffer’ of a node gets full, a packet of the oldest generation in the buffer

is dropped from the buffer. But, before dropping, it is linearly combined with each of the

existing packets of the generation.

5.2.7 Complexity Analysis

In our protocol, CAVS, when two nodes come in contact, they exchange coefficient matri-

ces of generations they have in their forwarding buffer. This involves the communication

overhead of O(G2). Further, a coefficient vector is also included in the header of each

data packet for which the communication overhead is O(G).

In Epidemic routing, when two nodes come in contact, each node sends a data packet

identification to the neighbour node. The neighbour node then intimates the sender

whether it has already received that data packet or not. If the data packet is not already

received then the sender sends it. Otherwise, the sender tries for another packet. So,

the communication overhead is O(p) where p is the number of packets in the node’s

forwarding buffer.

Computational Complexity

In CAVS, primarily, computational complexity is in encoding and decoding operations

of linear network coding. For packet size k, encoding involves the computational cost of

O(kG). For decoding, the cost is O(kG3). For Epidemic routing, the computational cost
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Table 5.2: Simulation parameters
Number of nodes 200
Simulation area 41000 meters x 41000 meters

Communication range 40 meters
Packet/Bundle size 10 KB

Buffer size 600 KB
Buffering probability (Pb) 0.3

Inter-packet arrival time (T ) 220 seconds
Maximum generation size (G) 16

Percentage of nodes as hubs in each community 8%
Percentage of nodes as gateways in each community 20%

Total number of hubs in the network 19
Total number of gateways in the network 24

TTL 400 minutes
Cell size in CAHM 40 meters

Cell multiplier m in CAHM 4

is negligible.

5.3 Simulation Results

We evaluate Community Aware Viral Spread (CAVS) protocol using Community Aware

Heterogeneous Human Mobility (CAHM) model proposed in chapter 2 which incorporates

properties of human mobility derived from real-world mobility traces as well as from social

network theory. We have implemented CAVS protocol in ONE simulator. We compare

packet delivery ratio and average packet delivery delay of CAVS and Epidemic routing

protocols. We define packet delivery ratio as the ratio of the average number of packets

received by each node to the total number of packets sent by all nodes. Similarly, we define

average delivery delay as the average of delivery delays of all packets received by all nodes

in the network. Simulation parameters are as per Table 5.2 unless otherwise mentioned.

The speed of nodes varies based on distance to be traveled from one location to other.

The parameters are chosen to represent an application scenario in which all devices of the

network in a city transmit sensed environmental conditions of their surrounding places

periodically to all other users of the network. All readings are taken once network reached

steady state. With a random seed, CAHM generated 14 overlapping communities for 200

nodes.
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Figure 5.2: Packet delivery ratio vs. Inter-packet arrival time
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Figure 5.3: Average packet delivery delay vs. Inter-packet arrival time
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As shown in Fig. 5.2 and Fig. 5.3, packet delivery ratio and average packet delivery

delay of both CAVS protocol and Epidemic routing protocol are similar when the traffic

is high. But, as traffic decreases, the performance of CAVS is increasingly better than

Epidemic routing. It is because, through the use of network coding as well as hub and

gateway nodes, CAVS moves packets faster and reaches more number of remote and less

connected nodes as compared to Epidemic routing. But, in high traffic scenario, packets

get dropped before they can be delivered to remote and less connected nodes because of

buffer overflow (Fig. 5.4). Further, delivering packets to nearby well-connected nodes

take similar time in both protocols. So, the performance of CAVS and Epidemic routing

is similar when the traffic is high. For inter-packet arrival time of 220 seconds, packet

delivery ratio and average packet delivery delay of CAVS is 58% more and 41% less than

Epidemic routing respectively. As seen in Fig. 5.3, average packet delivery delay of both

protocols increase with a decrease in traffic. It is because, when traffic is high, packet

delivery ratio is less as seen in Fig. 5.2; i.e. packets are only delivered to nearby nodes

before getting dropped due to buffer overflow and delivering packets to nearby nodes

takes considerably less time as compared to remote nodes.

Fig. 5.5 and Fig. 5.6 show the performance of CAVS, CAVS (without hubs and

gateways) and Epidemic routing for different buffering probability (Pb) values. For all

three protocols, with an increase in Pb, packet delivery ratio increases and average packet

delivery delay decreases as expected. As Epidemic routing is optimal without resource

constraints, CAVS matches Epidemic routing performance for Pb = 1. But, with high

Pb, buffer occupancy tends to be high as each node buffers all the packets it receives

for forwarding (Fig. 5.7). So, the goal is to operate with as low Pb as possible without

compromising on the performance significantly. CAVS gives acceptable performance for

Pb value as low as 0.3. With a decrease in Pb, the performance of CAVS gets increasingly

better than Epidemic routing. For Pb = 0.1, packet delivery ratio and average packet

delivery delay of CAVS is 122% more and 22% less than Epidemic routing respectively.

Starting from Pb = 0.1, the rate of increase in packet delivery ratio and the rate of

decrease in average packet delivery delay in CAVS and Epidemic routing protocols are

high till Pb = 0.3. So, we recommend operating the protocol with Pb = 0.3 approximately.

The large performance difference between CAVS and CAVS (without hubs and gateways)

for lower Pb values shows that hub and gateway nodes play very significant role in the
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Figure 5.4: Total number of dropped packets and Buffer occupancy percentage vs. Inter-
packet arrival time
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Figure 5.6: Average packet delivery delay vs. Buffering probability (Pb)
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Figure 5.8: Packet delivery ratio vs. Popular nodes’ percentage

performance improvement of CAVS protocol.

Fig. 5.8 shows the packet delivery ratio of CAVS with i) both hubs and gateways,

ii) only gateways, and iii) only hubs. With only gateways, packet delivery ratio is better

than CAVS with only hubs and is similar to CAVS with both hubs and gateways. It

shows that gateway nodes play a greater role in the performance improvement of CAVS

as compared to hub nodes. But, only the nodes with membership in more than one

community can work as gateway nodes and such nodes in the network are limited. In

our simulation scenario, these are 27% of total nodes. As seen in the figure, to increase

popular nodes’ percentage further, CAVS can use more and more hub nodes along with all

possible gateway nodes. With an increase in popular nodes’ percentage, packet delivery

ratio improves. But, the improvement in performance beyond 20% of total nodes as

popular nodes is not significant.

As shown in Fig. 5.9, packet delivery ratio is almost independent of the maximum

generation size (G). But, as per Fig. 5.10, there is a 12% improvement in average packet

delivery delay with G = 16 as compared to average packet delivery delay with G = 2.

Also, after G = 16, it remains almost constant. So, we recommend setting maximum



5.3 Simulation Results 76

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35

P
a
c
k
e
t 
d
e
liv

e
ry

 r
a
ti
o

Maximum generation size

CAVS

Figure 5.9: Packet delivery ratio vs. Maximum generation size (G)
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generation size G = 16 approximately.

5.3.1 Modeling Viral Spread as SI (Susceptible Infected) Epi-

demic Model

An epidemic model is used to describe and analyze the transmission of communicable

disease through individuals. Let S be susceptible, I be Infected, β be contact rate, P be

infection probability, and N be population size. Then, as per SI (Susceptible Infected)

model[70],

dS

dt
= −βPSI

N
dI

dt
=
βPSI

N

(5.2)

Our protocol can also be modeled as SI epidemic model. For a packet, S represents

nodes which haven’t received a packet, β represents average contact rate between nodes,

P represents buffering probability, and N represents the number of nodes. Using the

model, we have calculated the time to deliver the packet to 95% of nodes with different

forwarding probabilities. As shown in Fig. 5.11, the rate of decrease in delivery time

with an increase in forwarding factor is high till buffering probability Pb = 0.3. Beyond

that, with an increase in Pb, the rate of decrease in delivery time is low. The result is in

conformance with the results obtained through simulation.

5.4 Conclusion

Many-to-all broadcast in MSN can be useful to a variety of applications in MSN such as

message broadcast, news spread, traffic updates etc. It is also useful for routing as many

routing protocols require flooding of control messages. We propose Community Aware

Viral Spread (CAVS) protocol for MSN.

We simulate CAVS with realistic mobility model (CAHM) which models properties

of human mobility and compare it with modified Epidemic routing. Simulation results

show that CAVS gives acceptable performance for Pb value as low as 0.3 as compared to

Pb = 1. Also, with a decrease in Pb, the performance of CAVS gets increasingly better
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Figure 5.11: Time to deliver a packet to 95% of all nodes vs. Buffering probability (Pb)
as per SI epidemic model

than Epidemic routing. For Pb = 0.1, packet delivery ratio and average packet delivery

delay of CAVS is 122% more and 22% less than Epidemic routing respectively. Starting

from Pb = 0.1, the rate of increase in packet delivery ratio and the rate of decrease

in average packet delivery delay in CAVS and Epidemic routing protocols are high till

Pb = 0.3. So, we recommend operating the protocol with Pb = 0.3 approximately. The

large performance difference between CAVS and CAVS (without hubs and gateways)

for lower Pb values shows that hub and gateway nodes play very significant role in the

performance improvement of CAVS protocol.

Results also show that gateway nodes play greater role in the performance improve-

ment of CAVS as compared to hub nodes and improvement in packet delivery ratio and

average packet delivery delay beyond 20% of total nodes as popular nodes is not signif-

icant. So, we recommend using 20% of total nodes in the network as hub and gateway

nodes. Further, packet delivery ratio is almost independent of the maximum generation

size (G). But, there is a 12% improvement in average packet delivery delay with G = 16

as compared to average packet delivery delay with G = 2. Also, after G = 16, it remains
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almost constant. So, we recommend setting maximum generation size G = 16 approx-

imately. With recommended values of buffering probability (Pb), maximum generation

size (G), and percentage of total nodes as popular nodes, packet delivery ratio and av-

erage packet delivery delay of CAVS is 58% more and 41% less than Epidemic routing

respectively.

We model CAVS protocol as SI (Susceptible Infected) epidemic model and show that

optimal buffering probability found through simulation is in conformance with the optimal

buffering probability calculated using the model.



Chapter 6

Scalable Micro-blogging in Mobile

Social Network

Micro-blogging, particularly Twitter, is very popular among Internet users. Users post

small, 140 characters long, messages called tweets. These tweets are about their status,

opinions, news, events, emergency situations, traffic updates, advertisements etc. Users

tag their tweets based on its content which is called hashtag. Each user receives tweets

from users she is following. One can follow a user but not a topic in the system. A user

does not get all tweets, with hashtags she is interested in, on her timeline because a huge

number of tweets are generated for a hashtag across the Internet. User gets tweets with

a hashtag only when she searches for it.

Micro-blogging can be a very promising application for Mobile Social Network (MSN)

in which small messages posted by users can be opportunistically pushed in the network

without using any infrastructure. In MSN, location-based communities are formed; e.g.

students of a same class, workers of a same department etc. Users of these communi-

ties have similar interests[41]. Further, co-located users are also interested in temporal

events taking place in the vicinity; e.g. a cricket match between teams of two college

departments. Because of these spatiotemporal properties of user interests and generated

messages, messages can be pushed to users up to a limited distance and for a limited

time without overwhelming them. So, users can receive messages in which they are in-

terested without having to identify and follow other users with similar interests. Such an

approach can be very much scalable as message filtering is done at the network protocol

80
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level itself as opposed to the conventional approach where it is done at the end points

of the network. It also eliminates the need to maintain a large amount of data at server

machines. As server farms consume a huge amount of energy[42], it is useful to not to

use infrastructure even though the bandwidth requirement of the application is limited.

Based on these observations, we propose a distributed and scalable micro-blogging

protocol which exploits community structure and heterogeneous popularity of nodes. For

performance analysis of the protocol through simulation, we also propose three novel

models for generating user interest profiles synthetically resembling real-world scenario.

In the following section 6.1, we survey relevant literature. We present our protocol

in section 6.2. In section 6.3, we propose models to generate user interest profiles syn-

thetically. Section 6.4 discusses simulation results. We conclude the chapter in section

6.5.

6.1 Literature Survey

Content dissemination protocols based on publish/subscribe model are similar to our

application. Socio-aware overlay[27] is based on non-overlapping community structure. It

takes advantage of only hub nodes but not gateway nodes and actual routing between hub

nodes of different communities is left to any standard unicast protocol. Further, modeling

of user interest profile is not considered and there is no consideration for scalability.

Socialcast[41] and ContentPlace[29] calculate a utility function and based on that decide

where to place each message. We rely on hub and gateway nodes for all messages instead

of detailed information exchange and calculation for each message.

MoP-2-MoP[71] is a micro-blogging protocol for MSN which focuses on privacy, anonymity,

and censorship resistance. It does not aim to deliver messages efficiently and employs

flooding to disseminate messages. Allen et al. in [4] have also proposed a micro-blogging

protocol for MSN named as ‘Uttering’. We compare the performance of our protocol with

‘Uttering’ protocol as it aims to deliver messages to interested users efficiently which is

also our objective. So, we describe ‘Uttering’ in some detail in the following sub-section.
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6.1.1 Overview of ‘Uttering’ Protocol

In ‘Uttering’, nodes exchange their users’ interest profiles with each other opportunisti-

cally. The user interest profile is defined as a set of tags in which a user is interested,

along with the level of interest in each tag. Each node identifies set of nodes with in-

terest profiles ‘similar’ to its own interest profile as friend nodes and set of nodes with

frequent contacts as familiar nodes. Friend nodes also exchange aggregate interest profile

of their own friends with each other. Each node calculates push profile for each of its

friend nodes based on friend node’s interest profile and aggregate interest profile of friend

node’s friends. Each node also calculates community profile which is the aggregation of

all push profiles it has calculated for its friends.

In ‘Uttering’, authors have proposed different forwarding protocol variants. Here, we

describe the variant with the best performance as per their results. They call this variant

as ‘Protocol B’. In this variant, upon an encounter, a message is pushed to a friend node

only if in the push profile calculated by the node for the friend node, interest in the

tag of the message is non-zero. In the protocol, the maximum number of messages that

can be pushed upon each encounter is restricted. So, the next message to be pushed is

probabilistically selected using a roulette wheel selection based on the relative interest

values stored in the push profile. Similarly, messages are also pushed to a familiar node

based on the community profile. To a stranger node, randomly chosen messages are

pushed till the maximum message limit is reached.

6.2 The Proposed Scalable Micro-blogging Protocol

When two nodes come in contact, each node pushes to the other node messages with tags

in which the other node is interested in. Users can specify their interests or they can be

derived from their posts. To increase chances of delivery to interested nodes, all messages

of a community are also forwarded to the hub and gateway nodes of the community.

Hub nodes help in spreading messages in the community while gateway nodes help in

spreading messages to other communities.

Nodes share their interest profiles with community members including hub nodes of

the community. Hub and gateway nodes share and accumulate aggregate interest profiles
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of communities. Control message overhead of the protocol is limited as control messages

are exchanged predominantly only within a community. Further, control messages across

communities are restricted by sharing aggregate interest profiles of a limited number of

communities with only hub and gateway nodes.

Based on aggregate interest profiles, the threshold distance is estimated up to which

interest is relatively high in the message. Message forwarding is restricted based on the

threshold distance. Messages in which a neighbour node is not interested are forwarded

only if it is a hub or a gateway node. So, the forwarding overhead of the protocol is

limited. Hence, the protocol is highly scalable and it scales with community size rather

than with the size of the network.

Salient features of our protocol are following.

• We exploit social properties of humans such as overlapping community structure

and heterogeneous popularity of nodes for micro-blogging.

• We limit control message overhead such that it is independent of the number of

communities and network size.

• We limit forwarding overhead by forwarding messages to only hub and gateway

nodes, that too based on distance.

The following sub-sections describe the protocol in detail. We also compare each

aspect of the protocol with the relevant part of the ‘Uttering’ protocol.

6.2.1 Network Model

Nodes in the network form overlapping community structure. Each community is associ-

ated with a place (office, home, park etc.). The location of the place is chosen randomly.

A node can be part of multiple communities. A node moves between different locations

within a place when it is in a community. The number of different locations in a commu-

nity that a node visits depends on its popularity in the community. A node visits places

associated with those communities in which it is a member. A node moves within a place

more frequently while between places, it moves less frequently. The nodes in the network

find such overlapping community structure using Distributed Overlapping Community

Detection (DOCD) mechanism proposed in chapter 3. The network is typically sparse
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and there is generally no contemporaneous path between source and destination. Due

to this, we use opportunistic forwarding where packets are exchanged opportunistically

when two nodes come within communication range of each other.

‘Uttering’ does not explicitly find community structure. But in ‘Uttering’, each node

maintains its community as a set of its friend nodes as well as friend nodes’ friends; i.e.

for a node, the community is set of nodes having similar interests. So, each node has its

own notion of community. Further, the community is found based on interest similarity

instead of location similarity.

6.2.2 Hub and Gateway Nodes

Locally popular (hub) nodes of a community come in contact with more number of nodes

in the community than rest of the nodes of the community. Similarly, globally popular

(gateway) nodes of a community visit multiple communities and come in contact with

more number of nodes in the entire network than rest of the nodes of the community. We

use methods described in chapter 4 to identify hub and gateway nodes from overlapping

community structure itself without doing message flooding or forwarding of accumulated

encounter information from other nodes. These methods order nodes of a community

based on their suitability as hub or gateway node. From the ordered list of candidate

hub nodes, we choose a fraction of most suitable nodes as hub nodes of the community.

Similarly from the ordered list of candidate gateway nodes, a fraction of most suitable

nodes are chosen as gateway nodes of the community.

‘Uttering’ does not identify hub and gateway nodes in the network. Rather, it relies

on friend nodes, familiar nodes and stranger nodes to forward messages in the network

so that messages can reach interested nodes.

6.2.3 Control Messaging

Let set of tags in which node n is interested be Sn. Then, user interest profile for node

n is defined as Pn = {P n
i : i ∈ Sn, 0 < P n

i ≤ 1} where P n
i is level of interest of

node n in tag i. Also, set of nodes of community J interested in tag i is defined as

CJ
i = {n : n ∈ J, i ∈ Sn}. Further, aggregate interest profile of community J is defined



6.2 The Proposed Scalable Micro-blogging Protocol 85

as IJ = {IJi : i ∈
⋃
n∈J Sn} where

IJi =

∑
n∈CJ

i
P n
i∣∣CJ

i

∣∣ (6.1)

When two nodes of a community encounter each other the first time, they exchange

their user interest profiles. Upon subsequent encounters, they exchange change in interest

profile since last encounter. If a node encounters a hub node, it also sends accumulated

interest profiles of previously encountered nodes to the hub node. Hub nodes calculate

average interest in each tag along with the number of nodes of the community interested

in the tag. It is called aggregate interest profile of the community.

Hub and gateway nodes of the network exchange and accumulate aggregate interest

profiles of communities when they encounter each other. A substantial change in the

aggregate interest profile of a community is also propagated by community hub nodes to

other hub and gateway nodes. To keep amount of state information maintained at hub

and gateway nodes independent of number of communities and network size, for each tag,

aggregate interest is stored only for given number of communities in which interest for

the tag is relatively high. This also reduces the amount of control information exchanged

between hub and gateway nodes of the network.

In ‘Uttering’, nodes exchange their user interest profile when they encounter the first

time. If two nodes have similar interests then they identify each other as friends. Upon

each encounter, friend nodes also exchange aggregate interest profiles of their own friends.

In ‘Uttering’, each node exchanges its interest profile with all the nodes it encounters

from the entire network. In our protocol, only community members exchange individual

interest profiles. Further, in ‘Uttering’, each node transmits aggregate interest profile of

its friends to each of its friends and it also needs to maintain aggregate interest profiles

received from each of its friends. In our protocol, only single aggregate interest profile

per community is maintained and exchanged between hub and gateway nodes of the

network only. Further, for each tag, hub and gateway nodes store aggregate interest of

only given number of communities in which interest for the tag is relatively high. So,

control message overhead in terms of storage and transmission is substantially less in our

protocol as compared to ‘Uttering’.
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6.2.4 Threshold Distance Calculation

Threshold distance (D) for a tag from a community is the distance up to which messages

originated from the community with the tag are forwarded to gateway nodes of the

network with probability 1. Hub nodes of each community calculate threshold distance

for each tag of the community from accumulated aggregate interest profiles.

Each hub node calculates distances from its community to all other communities and

sort communities based on their distances in increasing order. Let NJ
i =

∣∣CJ
i

∣∣ be number

of nodes of community J interested in tag i, DJ
i be threshold distance for tag i from

community J and M be number of communities. Then,

FL
i =

∑K=L
K=1 I

K
i ∗NK

i∑K=M
K=1 IKi ∗NK

i

, L = 1, 2, ...,M (6.2)

Here L = 1 represents the community of the hub node, L = 2 represents the nearest

community and so on. FL
i represents the ratio of aggregate interest in tag i till community

L to total aggregate interest in tag i. Then, threshold distance (DJ
i ) is the distance of

community L such that FL
i > Ith where Ith represents threshold interest which is a

protocol parameter. So, the threshold distance (D) covers communities such that their

normalized cumulative interest in a tag is greater than threshold interest (Ith) which is

between 0 and 1.

‘Uttering’ does not estimate distance up to which interest in the message is high.

Instead, at the time of the creation of the message only, distance limit for the message is

specified.

6.2.5 Probabilistic Forwarding

Actual messages are forwarded opportunistically when a node comes in contact with

another node. If the neighbour node is neither hub nor gateway of the current community

then only messages of interest to the neighbour node are forwarded to it. Else, all messages

of the current community are forwarded. If a node is a gateway node of any community

and the neighbour is either hub or gateway node of current community then messages

of other communities are forwarded as follows: If the distance of the current node from

the community J of a message with tag i is less than threshold distance DJ
i , then the

message is forwarded. Else, it is forwarded probabilistically where probability decreases
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with distance. This forwarding rule restricts forwarding of the message based on interest

in the message, thereby making the protocol efficient and scalable.

We assume that a node will be able to send all messages needed to be sent as per

protocol to a neighbour node upon each encounter based on the fact that in micro-

blogging, message size is very small and average contact period is sufficient to send all

messages over Wifi. We also do not consider limited buffer case because of small message

size.

In ‘Uttering’, each node relies on its own friend nodes and familiar nodes for efficient

message forwarding. A node also forwards randomly selected messages to a stranger node.

These nodes are not necessarily popular nodes of the network. Instead, our protocol relies

on hub nodes for efficient forwarding within a community and gateway nodes for efficient

forwarding between communities. As these are popular nodes of the network, they are

far more effective for message forwarding then forwarding nodes of ‘Uttering’. Further, in

‘Uttering’, a message may be pushed to different sets of friend nodes and familiar nodes

of different nodes. So, forwarding overhead of the protocol is quite high. In our protocol,

we forward a message to a node, even though it is not interested in it, only if the node

is either hub or gateway node. Further, we can precisely control the number of hub and

gateway nodes in the network. So, the forwarding overhead of our protocol is very much

limited.

6.3 User Interest Profile Generation

From the analysis of Twitter data, it is shown in [72] that a large number of users

are interested in a small number of tags. Further, users with similar interests are co-

located [41] and interest in a topic decreases with distance. Based on these properties,

we propose three novel models to synthetically generate user interest profiles to evaluate

the performance of micro-blogging protocols in MSN through simulation.

A user is interested in a subset of all tags with different interest levels in each tag.

List of tags along with interest levels in each tag is called user interest profile. A user

generates messages as per her interest profile and is also interested in receiving messages

as per this profile. We propose following three models for generating user interest profiles

synthetically.
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6.3.1 Random Model

A given number of tags are randomly assigned to each user irrespective of its community

membership from the set of all tags such that the number of users per tag follows Zipf[73]

distribution. So, users interested in a tag are spread across different communities existing

at different locations. The model represents interests which are not local.

User interest levels in tags assigned to her are Zipf distributed with a random expo-

nent. In this model, we do not maintain any correlation between the level of interest of

users in a tag with the number of users interested in the tag.

6.3.2 Community-based Model

In this model, users interested in a tag are predominantly part of few communities only

and only few users from remaining communities are interested in the tag. The model

represents interests which are local. It is more realistic than the one proposed in [4]

where the set of tags of each community is independent of other sets.

To generate user interest profiles based on this model, we shuffle set of all tags with

different random seeds for each community. Then, tags to individual users in a commu-

nity are assigned using Zipf random variate from the shuffled sequence of tags for the

community. As Zipf returns lower index values with high probability, tags at lower index

values in the shuffled sequence are assigned to a high number of users in a community.

As different, but overlapping, sets of tags are at lower index values in shuffled sequences

of different communities, this method generates desired profiles.

6.3.3 Distance Aware Community-based Model

It is an extension of the community-based model. Let the density be the percentage of

users in a community interested in a tag. In this model, for each tag in a community,

density in other communities should be either proportional to the distance from the com-

munity or more than that. If it is less than required in a community then an appropriate

number of additional users are assigned the tag in that community. For brevity, we

subsequently call the model as the distance-based model.
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Table 6.1: Simulation parameters
Number of nodes 200
Simulation area 41000 meters x 41000 meters

Number of total tags 400
Number of tags of each node 30

Zipf exponent for tag popularity for random model 0.5
Zipf exponent for tag popularity for other two models 2

Zipf exponent for user interest levels in tags Randomly chosen
between 0 and 2

Threshold interest Ith for threshold distance calculation 1
Zipf exponent for density in distance-based model 1

Percentage nodes of each community as hubs 20%
Percentage nodes of each community as gateways 20%

Communication range 40 meters
Message size 154 Bytes

Inter-packet arrival time 140 seconds
TTL 400 minutes

6.4 Simulation Results

To evaluate the performance, we have implemented our micro-blogging protocol in ONE

simulator. We evaluate our protocol using Community Aware Heterogeneous Human Mo-

bility (CAHM) model proposed in chapter 2 which moves nodes in the simulation as per

our network model. For comparison, we have also implemented ‘Uttering’ protocol pro-

posed in [4] for micro-blogging in MSN. We measure and compare ‘efficiency’ and ‘spread

index’ of our protocol with ‘Uttering’. Efficiency is defined as the ratio of total number

of useful messages received by all nodes to the total number of messages transmitted

by all nodes. Spread index is defined as the ratio of total number of users who have

received useful messages to the total number of users who were interested in those mes-

sages. Spread index and efficiency measures are same as ‘recall’ and ‘precision’ measures

used for the performance measurement of ‘Uttering’ in [4]. Simulation parameters are as

per Table 6.1 unless otherwise mentioned. All readings are taken once network reached

steady state. With a random seed, CAHM generated 14 overlapping communities for 200

nodes. In ‘Uttering’, we restrict the number of messages to be sent per encounter to 10

messages as done in [4].

As shown in Table 6.2, our protocol significantly outperforms ‘Uttering’ for all types

of user interest profiles. Spread index of our protocol is better than existing protocol



6.4 Simulation Results 90

Table 6.2: Comparison with ‘Uttering’
Model Spread index Efficiency

Our Approach ‘Uttering’ Our Approach ‘Uttering’
Random 0.71 0.29 0.30 0.13

Community-based 0.82 0.50 0.48 0.31
Distance-based 0.81 0.66 0.57 0.32
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(Uttering) by 18-59% and efficiency is better than ‘Uttering’ by 35-56% for different user

interest profile models. Spread index of our protocol is better because ‘Uttering’ relies

on other ordinary non-interested nodes to reach interested nodes while we rely on hub

and gateway nodes for the same. Efficiency of our protocol is better because we forward

messages to neighbour node, even if it is not interested in the message, only if it is hub

or gateway node and hub and gateway nodes are only small percentage of total nodes.

To see the effect of the threshold distance, we disable probabilistic forwarding. Vari-

ants with and without probabilistic forwarding are referred as ‘Probabilistic’ and ‘Abso-

lute’ variants respectively. As shown in Fig. 6.1, as threshold interest increases in ‘Ab-

solute’ variant, spread index increases and efficiency decreases as expected for all types

of user interest profiles. Further, the performance is far better for community-based and

distance-based interest profiles as compared to random interest profile. It is because, in

these profiles, nodes interested in a tag are co-located while, in random interest profile,

nodes interested in a tag are spread across communities.

As shown in Fig. 6.2, as the percentage of nodes acting as hub and gateway nodes

increases, spread index increases and efficiency decreases substantially. So, depending on
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the network traffic, number of hub and gateway nodes should be chosen. Further, with

less number of hub and gateway nodes, load balancing can be done by rotating the hub

and gateway responsibility among eligible nodes. The result is for ‘Absolute’ variant but

the behaviour remains the same for ‘Probabilistic’ variant also.

Fig. 6.3 shows the effect of storing aggregate interests in a tag of only a limited

number of communities at hub and gateway nodes, on the performance. As seen in

the figure, for a tag, out of 14 possible entries for 14 communities, entries of only 2

communities which have highest interest in the tag are sufficient. As for more than 2

entries, the performance does not change; i.e. the amount of control information needed

in our protocol is independent of the number of communities and network size.

Fig. 6.4 shows comparison of ‘Probabilistic’ and ‘Absolute’ variants with different

threshold interest values for distance-based user interest profile model. For lower thresh-

old interest values, ‘Probabilistic’ variant has better spread index but less efficiency as

compared to ‘Absolute’ variant. The difference between spread indexes as well as efficien-

cies of both variants is negligible for higher threshold interest values. It is expected as,

with increase in threshold interest, number of interested nodes not covered by ‘Absolute’

variant (which can be covered by ‘Probabilistic’ variant only) decreases. For community-

based and random user interest profile models also, the results are similar.

6.5 Conclusion

Micro-blogging can be a very promising application for MSN because of spatiotemporal

properties of user interests and generated messages. Users can follow their interests and

receive messages of their interests without getting overwhelmed, instead of having to

identify and follow users with similar interests. We propose a micro-blogging protocol

for MSN exploiting its overlapping community structure and heterogeneously popular

nodes. The protocol restricts message forwarding based on distance and keeps a constant

amount of state information. The protocol is scalable and efficient as message filtering is

done at the network protocol level itself as opposed to the conventional approach where

it is done at the end points of the network. It also eliminates the need to maintain a large

amount of data at server machines. As server farms consume a huge amount of energy,

it is useful to not to use infrastructure even though the bandwidth requirement of the
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application is limited. We also propose three models to generate user interest profiles

synthetically out of which Distance Aware Community-based model is most realistic.

Simulation results show that spread index of our protocol is better than existing protocol

(Uttering) by 18-59% and efficiency is better than ‘Uttering’ by 35-56% for different user

interest profile models. Simulation results also show that keeping only a constant amount

of state information does not degrade the performance of our protocol.



Chapter 7

Conclusion

Peer-to-peer opportunistic communication between mobile devices carried by humans

without using any infrastructure is largely unexploited. This network paradigm is known

as Mobile Social Network (MSN). Message broadcast, news spread, traffic updates, micro-

blogging, and peer-to-peer file sharing are some of the applications which can run on such

type of networks. In this thesis, we first propose a realistic mobility model for MSN for

reliable performance analysis through simulation. Then, we introduce mechanisms for de-

tecting overlapping community structure and for identification of hub and gateway nodes.

Finally, we propose protocols for message broadcast and micro-blogging applications in

MSN.

To analyze the performance of routing protocols aiming to exploit human movement

behaviour through simulation, it is essential to design realistic mobility models which can

mimic human mobility patterns as closely as possible. Several real-world mobility traces

have established that human mobility is not random. So, traditional mobility models

such as Random Way Point (RWP) and Brownian Motion (BM) should not be used for

reliable analysis of protocol performance in MSN through simulation. Various character-

istics of human mobility are derived from mobility traces and from social network theory

in the literature. No existing mobility model, except HHW, generates community struc-

ture synthetically incorporating these characteristics and without using Social Network

Models such as Caveman model. We propose Community Aware Heterogeneous Human

Mobility (CAHM) model with four modifications in HHW: incorporation of Levy walk

nature of human mobility, treatment of number of cells and number of nodes in a com-
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munity as separate parameters, calculation of speed based on distance to be traveled and

power-law pause time. Simulation results demonstrate that CAHM successfully gener-

ates flight lengths with power-law distribution while in HHW flight lengths are uniformly

distributed. Further, movement of individuals in CAHM is as per rational human be-

haviour of preference of nearby locations over far-away locations while in HHW it is not.

The results also establish that CAHM generates desired heterogeneous local popularity

of nodes while HHW generates too many highly popular nodes.

We also analyze the effect of mobility models on the performance of routing protocols

in MSN. Simulation results confirm that exploiting community structure and heteroge-

neous node popularity significantly improves performance. The results also show that due

to less realistic mobility models, simulation significantly underestimates the performance

of protocols. The packet delivery ratio of Epidemic routing and BUBBLE Rap routing

increases by 21-28% with CAHM as compared to HHW in our simulation setup. The

result shows that additional properties of human mobility incorporated in our mobility

model such as heterogeneous popularity of nodes as observed in mobility traces, Levy

walk nature of human mobility, speed as a function of distance, and power-law pause

time have significant impact on the performance of routing protocols.

Routing protocols in MSN can exploit overlapping community structure formed by

humans for efficient forwarding. This structure can also be used to identify hub and

gateway nodes of a community without doing message flooding. Nodes in MSN need to

detect overlapping community structure in a decentralized manner. There is no mecha-

nism available in the literature for the same. We modify existing distributed algorithm

SIMPLE to detect overlapping community structure and propose Distributed Overlapping

Community Detection (DOCD) mechanism. Simulation results show that DOCD detects

overlapping community structure with 75-80% accuracy. Further, it is evident from the

results that the performance of DOCD is good if the value of the initial threshold distance

(dth) is kept low, and it is not sensitive to the familiarity threshold parameter.

Our analysis of overlapping community structure establishes that small communities

are transient. As per simulation results, the threshold for the same is around 10% of

total number of nodes in the network. Further, a higher fraction of hub and gateway

nodes remain present in larger communities with less standard deviation as compared

to smaller communities. Also, the fraction of gateway nodes present in a community is
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much lower than the fraction of hub nodes present. These results give important insights

for designing better forwarding protocols for MSN.

Hub and gateway nodes of a community can play very important role in the efficient

dissemination of information in MSN. Existing methods to detect hub and gateway nodes

require either flooding of messages or forwarding of not only node’s encounter information

but also accumulated encounter information from other nodes. So, the performance of

these methods does not scale with network size or community size. We identify hub and

gateway nodes from the overlapping community structure itself without doing message

flooding or forwarding of accumulated encounter information from other nodes. We pro-

pose Markov chain-based methods to identify hub and gateway nodes of a community.

The methods involve exchange of independently calculated popularity values of a node

with community members only. So, the communication cost (as well as the computa-

tional cost) of the method is O(C3) only, where C denotes maximum community size;

i.e. the performance of Markov chain-based methods scales with the number of nodes

in the network. While, for the baseline method, the communication cost (as well as

the computational cost) is O(n3), where n is the number of nodes in the network. To

validate Markov chain-based methods, we also propose two simulation-based approaches

to identify hub nodes and another two simulation-based approaches to identify gateway

nodes. We compare ordered lists of hub and gateway nodes generated by Markov chain-

based methods with ordered lists generated by these methods. Simulation results show

that these ordered lists are highly correlated, i.e. Markov chain-based methods correctly

identify hub and gateway nodes.

Many-to-all broadcast in MSN can be useful to a variety of applications in MSN

such as message broadcast, news spread, traffic updates etc. It is also useful for routing

as many routing protocols require flooding of control messages. We propose Community

Aware Viral Spread (CAVS) protocol for MSN. We simulate CAVS with realistic mobility

model (CAHM) which models properties of human mobility and compare it with modified

Epidemic routing. Simulation results show that CAVS gives acceptable performance for

Pb value as low as 0.3 as compared to Pb = 1. Also, with a decrease in Pb, the performance

of CAVS gets increasingly better than Epidemic routing. For Pb = 0.1, packet delivery

ratio and average packet delivery delay of CAVS is 122% more and 22% less than Epidemic

routing respectively. Starting from Pb = 0.1, the rate of increase in packet delivery
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ratio and the rate of decrease in average packet delivery delay in CAVS and Epidemic

routing protocols are high till Pb = 0.3. So, we recommend operating the protocol with

Pb = 0.3 approximately. The large performance difference between CAVS and CAVS

(without hubs and gateways) for lower Pb values shows that hub and gateway nodes play

very significant role in the performance improvement of CAVS protocol. Results also

show that gateway nodes play greater role in the performance improvement of CAVS as

compared to hub nodes and improvement in packet delivery ratio and average packet

delivery delay beyond 20% of total nodes as popular nodes is not significant. So, we

recommend using 20% of total nodes in the network as hub and gateway nodes. Further,

packet delivery ratio is almost independent of the maximum generation size (G). But,

there is a 12% improvement in average packet delivery delay with G = 16 as compared

to average packet delivery delay with G = 2. Also, after G = 16, it remains almost

constant. So, we recommend setting maximum generation size G = 16 approximately.

With recommended values of buffering probability (Pb), maximum generation size (G),

and percentage of total nodes as popular nodes, packet delivery ratio and average packet

delivery delay of CAVS is 58% more and 41% less than Epidemic routing respectively.

We model CAVS protocol as SI (Susceptible Infected) epidemic model and show that

optimal buffering probability found through simulation is in conformance with the optimal

buffering probability calculated using the model.

Micro-blogging can be a very promising application for MSN because of spatiotempo-

ral properties of user interests and generated messages. Users can follow their interests

and receive messages of their interests without getting overwhelmed, instead of having to

identify and follow users with similar interests. We propose a micro-blogging protocol for

MSN exploiting its overlapping community structure and heterogeneously popular nodes.

The protocol restricts message forwarding based on distance and keeps a constant amount

of state information. The protocol is scalable and efficient as message filtering is done at

the network protocol level itself as opposed to the conventional approach where it is done

at the end points of the network. It also eliminates the need to maintain a large amount

of data at server machines. As server farms consume a huge amount of energy, it is useful

to not to use infrastructure even though the bandwidth requirement of the application

is limited. We also propose three models to generate user interest profiles synthetically

out of which Distance Aware Community-based model is most realistic. Simulation re-
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sults show that spread index of our protocol is better than existing protocol (Uttering)

by 18-59% and efficiency is better than ‘Uttering’ by 35-56% for different user interest

profile models. Simulation results also show that keeping only a constant amount of state

information does not degrade the performance of our protocol.



Chapter 8

Future Work

Successful peer-to-peer communication in Mobile Social Network (MSN) requires that

devices in the network must cooperate in forwarding messages of other devices. But, as

resources such as computing power, bandwidth, and battery power are limited, there is

enough motivation for a device in MSN to be selfish. Even if we assume that a non-selfish

application is supplied by single developer so that no device can act selfishly by modifying

the protocol, it is possible for a device to be selfish by switching off communication

interfaces like Wifi, Bluetooth, and data connection when device does not need them.

We intend to explore possibilities to enforce cooperation in our viral spread and micro-

blogging protocols when communication interfaces are switched off selfishly. Further, in

our viral spread and micro-blogging protocols, we identify some of the nodes as hub and

gateway nodes based on their local and global popularity respectively. These devices do

more work as compared to other nodes for efficient forwarding. We intend to incorporate

incentive mechanisms in our protocols for these nodes.
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