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Abstract

An Intelligent Transportation System (ITS) plays a major role in generating fine grained

vehicular traffic information for city wide or larger region. The real time traffic informa-

tion is used to optimize traffic movement in a road network. However, due to the high

cost of deployment and maintenance, limited ITS infrastructure is available in developing

countries like India, and it is difficult to generate real time traffic information at large

scale. Hence, there is a need for cost effective ITS solution.

The cellular network is widely deployed in India covering a major part of the road

network. However, cellular network based positioning data has large location error (250-

500 meters) making it unsuitable for the edge level travel time or speed estimation.

Due to the increasing penetration of GPS enabled vehicles and smart phone users, the

GPS probe data is considered an attractive source for real time travel speed estimation.

However, the low penetration and only specific kinds of vehicles (cars and buses) having

GPS make it inappropriate for developing countries like India. On Indian arterial roads,

two wheelers form approximately 75% of the overall vehicle population.

In this dissertation, we study the problem of generating real time traffic information in

a cost effective manner. There have been a variety of proposals in the literature that use

one or more alternate sources of traffic information and are evaluated for various traffic

conditions. Most of these solutions either use cellular network data alone and report

a high error in the generated traffic information, or use data from other sources with

or without fusion. This dissertation puts forward a novel mechanism of amalgamating

widely available cellular network data, GPS probe data, and the data from limited ITS

infrastructure for generating accurate traffic information.

Consequently, we design a map matching algorithm that processes erroneous vehicle

location data collected using cellular network to generate vehicle trajectories. The vehicle

trajectories are used to compute edge level vehicle flow, space occupancy, and congestion

level data. The simulation results show the feasibility of accurate estimation of the traffic

parameters in real time. We observe the need of additional accurate data sources for edge

level speed estimation in the whole road network. Therefore, two models for selecting

edges for ITS infrastructure deployment are proposed: the COngestion COverage MOdel

(COCOMO) and the Edge COverage MOdel (ECOMO). The COCOMO selects edges
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for ITS infrastructure deployment such that all the congestion levels (A to F) are covered

by infrastructure edges; and the ECOMO finds clusters of similar edges based on their

congestion profile and suggests infrastructure deployment on a few edges in each cluster.

The edges with ITS infrastructure are used to learn the occupancy-speed relationship

which is then spatially extrapolated to infrastructureless edges using GPS probe data

to enable travel speed estimation on all the edges in the road network. The simulation

results show that accurate edge level speed estimation is feasible using the proposed

models. The infrastructure requirement of the COCOMO is constant and is independent

of the number of edges in a road network. To the best of our knowledge, COCOMO

is the only model with such a unique characteristic. The infrastructure requirement of

ECOMO depends upon the diversity in congestion profile of edges. The models permit

incremental infrastructure deployment and aim to maximize coverage using the available

infrastructure units. This characteristic makes the proposed ITS suitable for deployment

in developing countries like India. The robustness of the models is evaluated by disabling

infrastructure on certain edges after deployment and its effect on error in speed estimation

and coverage is observed. The simulation results show that the system can generate

accurate speed estimations for all the edges or congestion levels covered with available

infrastructure.

We design a MapReduce based distributed computing framework for the proposed ITS.

The analysis of computation, communication, and storage requirement of the framework

shows feasibility of large scale deployment of the ITS using available communication and

storage technology.

To evaluate the utility of generated traffic information, an Advanced Traveler Infor-

mation System (ATIS) is developed that uses the real time traffic information for trip

planning and adaptive vehicle routing. The effect of application penetration on traffic

condition (average vehicle trip duration and congestion distribution) in a road network is

evaluated using simulations. The simulation results show that even with a small fraction

of informed commuters, the traffic condition improves significantly. Also the performance

of application with utilizing speed estimation from the proposed models is comparable to

the performance with full deployment of ITS infrastructure.
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Chapter 1

Introduction

1.1 Background

Road transport is the primary mode of transport in India which plays an important role

in conveyance of goods and passengers and linking the centers of production, consumption

and distribution. As per 2007-08 reports, the road network carry more than 56% of total

freight traffic in the country [1].

The sustained economic growth, increasing disposable income, and rising urbanization

has led to rising demand for road transport and personalized mode of transport (cars

and two-wheelers), in particular [2]. The total number of registered motor vehicles has

increased from 55 million in 2001 to 141.8 million in 2011 at the growth rate of 9.9%.

On the other hand, the road network in the country has developed at the rate of 3.4%

during the same period. That is the vehicle population has grown three times faster than

the road network during the period. Eventhough the road network density in India (1.42

km/square km) compares favorably with many countries [3], the road network growth

could not cope up with the explosive growth in vehicle population.

The share of two wheelers in overall vehicle population has increased from 8.8% in year

1951 to about 72% in the year 2011. On the other hand, the fraction of mass transit buses

has reduced from 11% in year 1951 to 1.1% in the year 2011. The limited availability of

mass transit and significant increase in affordable two wheelers along with limited road

infrastructure are the major reasons of increasing traffic congestion in India.

Congestion wastes massive amount of time, fuel and money. As per urban mobility

1
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report, 2011 [4], congestion is a significant problem in America’s 439 urban areas. In 2011,

1.9 billion gallons of fuel was wasted (equivalent to about 2 months of flow in the Alaska

Pipeline) and 4.8 billion hours of extra time was spent in vehicles (equivalent to the time

Americans spend relaxing and thinking in 10 weeks) due to congestion in these areas.

This resulted in $101 billion of delay and fuel cost (the negative effect of uncertain or

longer delivery times, missed meetings, business relocation and other congestion related

effects are not included). The cost to the average commuter was $713 in 2010 compared

to an inflation-adjusted $301 in 1982.

An Intelligent Transportation System (ITS) uses electronics, communication, and

information technology to improve efficiency and safety of the surface transportation [5].

The broad application areas of ITS are as listed below [6]:

• Advanced Traffic Management System (ATMS): The ATMS uses real time traffic

information to predict traffic congestion or detect incident in a road network to

improve efficiency of traffic movement. The traffic information may be used to

control cycle time of adaptive traffic lights, enforce diversions or suggest alternate

routes (to avoid incident region).

• Advanced Traveler Information System (ATIS): The ATIS aims to provide real time

traffic information (location of incident, optimal route for a trip, road conditions,

lane restrictions, etc.) to travelers in real time to enable choice of travel mode,

planning of a trip or to make rerouting decisions during a trip.

• Advanced Vehicle Control System (AVCS): The AVCS is in-vehicle technology that

aims to enhance the driver’s control of a vehicle to make travel safer and efficient.

It includes collision or lane departure warning systems, automatic braking system,

etc.. The autonomous vehicles (e.g. driverless cars) represent the latest advance-

ment in the category.

• Commercial Vehicle Operation (CVO): The private operators of trucks, vans and

taxis track their vehicles in real time to improve productivity of their fleets and

efficiency of their operations.

• The Advanced Public Transportation System (APTS) in urban and rural areas uses

ITS to enhance the accessibility of information to users of public transportation and
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to improve scheduling and utilization of the public transportation vehicles.

The thesis focuses on real time traffic information generation for the ATMS and ATIS.

The traffic parameters of interest include vehicle flow, space occupancy, congestion, and

speed. Vehicle flow is defined as the number of vehicles passing through an edge per

unit time. It is a measure of service rate of an edge in a road network. An edge in a

road network is a directed street connecting a pair of junctions. The space occupancy

of an edge at a given time is defined as the ratio of number of vehicles present on the

edge to the jam count of the edge. The jam count of an edge is defined as the maximum

number of vehicles that can be accommodated on the edge. It is proportional to edge-

length and number of lanes on the edge. In rest of the thesis the terms space occupancy

and occupancy are used synonymously. Congestion is a measure of the comfort level

of drivers while traveling in a road network. It is defined as the way in which vehicles

interact to impede one another’s movement. These interactions and their influence on the

individual journey increase as the demand for road space reaches capacity. The Highway

Capacity Manual (HCM 2000) designates six levels of service (LOS) for a road network:

“A” represents the best operating conditions (from the drivers’ perspective) and “F”

represents the worst (jam condition or unstable traffic regime). Speed or Space Mean

Speed is defined as the mean travel speed of vehicles while traversing an edge of known

length.

The ITS infrastructure consists of traffic sensors (e.g. loop detectors, traffic cameras,

etc.), infrastructure for communicating raw data and aggregated traffic information, com-

putation infrastructure for processing raw data from individual traffic sensors to generate

aggregated traffic information, and traffic control (e.g. adaptive traffic light control, dy-

namic message signs, etc.). The ITS Report of U.S. Department of Transportation [7]

describes the deployment and maintenance cost of ITS infrastructure for various projects.

According to the report, the cost of Closed Circuit Television (CCTV) is $50,000 per cam-

era site. The estimated annual cost of Integrated Corridor Management system on the

I-880 Corridor, San Francisco, California is $7.5 million considering the deployment and

maintenance cost of hardware and software.

The high cost of traffic sensor deployment and maintenance leads to the exploration

of alternative solutions. The cellular network is a widely deployed communication infras-
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tructure worldwide. According to the Telecom Regulatory Authority of India (TRAI)

press release 65/2015 [8], there are over 996 million cellular connections in India and

the cellular teledensity is greater than 78%. In urban areas, the cellular teledensity is

more than 145%. Hence, it is reasonable to assume that every vehicle in a road network

is equipped with a cell phone. The location of all the cellular users are tracked by the

infrastructure for efficient call forwarding. The location error of 100-500 meters is re-

ported in the literature [9] [10] [11] [12]. Several studies have been carried out to assess

feasibility of using noisy location data of vehicles collected from cellular network for edge

level speed or travel time estimation [13] [14] [15]. The results show that estimates are

highly erroneous (mean speed error of 15% or more).

Due to the increasing penetration of GPS enabled vehicles and smart phone users, the

GPS probe data is considered an attractive source for real time travel speed estimation.

The Mobile Century field experiment [16] demonstrated the use of GPS probe vehicles

for generating traffic information. The results showed that 2-3% penetration of GPS

enabled cell phones in the driver population is necessary to generate velocity estimates of

traffic flow. In a similar but large scale study in Singapore [17], GPS enabled taxi probe

data was used to estimate traffic volume information. However, the GPS probe data is

not directly useful in Indian traffic scenario due to two major reasons: first, GPS probe

penetration is low in India and second, GPS is mostly found on cars and public transport

buses, whose movement characteristics are very different than that of two wheelers which

form approximately 75% of the overall vehicle population on Indian arterial roads [18][19].

The researchers have also explored possibility of fusing data from multiple sources to

generate accurate edge level traffic information. Park et al. [20] developed an expanded

neural network model to estimate edge level travel speed using dual loop detector data

and DSRC (Dedicated Short Range Communication) probe vehicle data. In a similar

study [21], the Artificial Neural Network (ANN) technique was used to build a travel

time estimation model with input traffic data coming from GPS-equipped intercity buses,

vehicle detectors along the roadway, and the incident database. Anand et al. [22] used

extended Kalman filter for fusing the vehicle flow data extracted from video and the

travel time data from GPS equipped vehicles to estimate vehicle traffic density. In all the

mentioned studies, the accurate data from multiple sources are fused either to increase

coverage or to derive some traffic parameter for which the measure is not directly available
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from traffic sensors.

We observe that no study in the literature claims to generate accurate edge level

travel time or speed information using cellular network data alone. Most of the efforts

are focused on effective processing of cellular signaling data to reduce location error with

little emphasis on designing algorithms for generating edge level traffic information using

erroneous location estimates. To the best of our knowledge, no study in the literature

has attempted fusion of cellular network data with other sources to improve accuracy of

the generated traffic information.

1.2 Problem Definition

1.2.1 Problem Statement

Design an Intelligent Transportation System (ITS) using cellular network and other avail-

able data sources with minimal additional infrastructure (traffic sensors).

1.2.2 Objectives

• To generate the accurate estimation of edge level traffic information in real time

and examine its utility.

• To design the ITS infrastructure deployment models and evaluate them for infras-

tructure requirement, feasibility of incremental deployment and fault tolerance.

• To design and validate a distributed processing and communication framework for

the proposed ITS to assess feasibility of large scale deployment.

1.2.3 Assumptions

• All the edges in the road network are covered by cellular infrastructure.

• The classification of cellular network users (vehicles or non-vehicles) is already done.

Feasibility of the same is reported in [14] and [23].

• The cellular network provides location estimates periodically for all the vehicles

using active signaling. The analysis of signaling overhead shows that active tracking
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of all the vehicles at the interval of 30 seconds consumes approximately 5% of

location capacity of a cellular carrier [15].

• The GPS probes report their precise positions periodically.

• The ITS infrastructure deployed on an edge provides accurate speed information

for the edge periodically.

• Road network carries heterogeneous traffic similar to the Indian arterial roads with

a large fraction of two wheelers (75%) [18][19].

1.2.4 Outcome

• Design of the proposed multi-modal ITS permitting real time accurate estimation

of edge level traffic information.

• Distributed processing and communication framework for the proposed ITS.

1.3 System Model

Figure 1.1: System Model
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Figure 1.1 shows the system model. It is assumed that the cellular network generates

location estimates of all the vehicles periodically using active signaling. It is a reasonable

assumption considering cellular teledensity in India. If a small fraction of vehicles is not

equipped with a cell phone, the traffic parameter estimation is not affected.

To examine location error in cellular network data, we carried out a localization

experiment on a road stretch of 18 km in Ahmedabad city, India using fingerprinting

approach. The experiment reports mean location error of less than 50 meters in dense

population regions and less than 200 meters in relatively sparse population regions. In

the dense population regions, 6-7 neighbor cells in addition to the main cell are visible

with good signal strength (greater than -80 dbm). In the sparse population regions, 2-3

neighbor cells are visible with signal strength of less than -90 dbm.

To generate the vehicle-edge mapping using erroneous location estimates, we designed

a map matching algorithm that processes a series of location points having maximum

location error of 250-500 meters. The generated vehicle trajectories are used to estimate

edge level vehicle flow, space occupancy and congestion level. Simulation results show

that the mean estimation error of less than 10% is achievable in most of the cases.

We observe that speed estimation using cellular network data alone is erroneous and

there is a need of additional accurate data sources to improve accuracy. To enable the

accurate edge level speed estimation in whole road network, two models of ITS infras-

tructure deployment are proposed: COngestion COverage MOdel (COCOMO) and Edge

COverage MOdel (ECOMO). Both the models use congestion profile of edges to select

edges for ITS infrastructure deployment. The COCOMO aims to cover all six congestion

levels using infrastructure edges. The maximum number of infrastructure units required

to K-cover all the congestion levels are 6 × K. The ECOMO forms clusters of similar

edges using the congestion profile of edges and deploys infrastructure on a few edges in

each cluster to ensure K-coverage of all the edges in a road network.

The infrastructure requirement of COCOMO is independent of the road network size,

whereas that in ECOMO is a function of road network size (as the road network size

increases, the diversity in congestion profiles and hence the infrastructure requirement

increases). The system does not make any assumption about the type of ITS infrastruc-

ture (any sensor providing speed estimation can be used) making it flexible to support

variety of them (e.g. loop detector, video camera, etc.).
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Due to low penetration of GPS probes and deployment on specific kinds of vehicles

(cars and buses), the real time data of GPS probes is not used in the model. Instead,

the average GPS probe speed data is computed and stored for every congestion level for

every edge in a road network. It is used to spatially extrapolate the speed estimation

from infrastructure edges to the infrastructureless edges.

On the edges with ITS infrastructure, the accurate speed information is available

periodically, in addition to the traffic parameters (vehicle flow, space occupancy, and

congestion) estimated using cellular network data. The occupancy-speed relationship

is learned on infrastructure edges using polynomial regression. The aim is to spatially

extrapolate occupancy-speed relationship learned on the infrastructure edges to the other

edges in road network. However, it is observed that the vehicle speed on an edge is affected

by many parameters (in addition to space occupancy). For example vehicle movement

speed and edge length are highly correlated. For similar space occupancy values, the

vehicle movement speed on a shorter-length edge is lower than that on a longer edge.

To incorporate or overcome the effect of these parameters on speed estimation, we use

historical data of GPS probes to spatially extrapolate the occupancy-speed relationship

from infrastructure edges to infrastructureless edges. The simulation results show that

accurate speed estimation with ninety percentile error of 10-22% and 10-13% is achievable

in COCOMO and ECOMO, respectively.

The performance of the infrastructure deployment models is evaluated for limited

infrastructure deployment (to check feasibility of incremental deployment) and for fault

tolerance when a certain fraction of infrastructure is not available. The simulation re-

sults show that the models permit the graceful degradation of service when sufficient

infrastructure is not deployed or is not available due to failure.

To deal with the unavailability of GPS probe data, the COCOMO and ECOMO were

modified to incorporate the effect of static parameters of edges, namely, edge length,

number of lanes, degree of the edge and presence of traffic lights at the junction. The

simulation results show that the modified models have higher infrastructure requirement

and generate less accurate speed estimations (ninety percentile error of 20-25%).

We represent the proposed ITS as a MapReduce based distributed computing frame-

work. The MapReduce framework proposed by Google permits data processing on a large

cluster of commodity machines and is proven to work well under heavy computation load
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condition involving large amount of data [24]. The analysis of computation, communi-

cation and storage requirement of the proposed system shows feasibility of large scale

deployment using the currently available communication and storage technology.

The edge level speed estimations generated by the system has a certain amount of

error. Also, the estimations may not be available on some edges or at some times due to

unavailability of infrastructure. We developed an Advanced Traveler Information System

(ATIS) that uses the real time traffic information generated by the system to suggest

alternate routes to commuters during their trip. Simulation results show that the sys-

tem is effective in reducing average trip duration and congestion in the road network.

Additionally, the performance of ATIS with using speed information from the proposed

models is comparable to the performance with full deployment of the ITS infrastructure.

1.4 Organization of the Thesis

Chapter 2 surveys proposals for Intelligent Transportation System (ITS) design. The

mechanisms for generating real time traffic information using cellular network, GPS

probes, dedicated sensors, and multiple sources are discussed and analyzed. The ITS in-

frastructure requirement of various proposals are examined. The chapter concludes with

remarks on limitation of state of the art and contributions of the thesis. Chapter 3 elabo-

rates design of the proposed ITS. The details of proposed ITS infrastructure deployment

models, namely, COngestion COverage MOdel (COCOMO) and Edge COverage MOdel

(ECOMO) are discussed. The mechanism for estimating real time traffic information by

fusing data from cellular network, GPS probes and dedicated ITS infrastructure is elab-

orated. Chapter 4 studies performance of the proposed ITS using simulations. The ITS

infrastructure requirement and accuracy of traffic information is examined for various

scenarios. Chapter 5 discusses a MapReduce based distributed computing framework for

the propose ITS. The communication and storage requirement of the proposed ITS is

analyzed to evaluate feasibility of large scale deployment. The design of an Advanced

Traveler Information System (ATIS), that consumes traffic information generated by the

proposed ITS, is discussed in chapter 6. The simulation based performance analysis of

the ATIS is elaborated. Finally, the conclusion and future work are written in chapter 7.



Chapter 2

Related Work

The effective functioning of an Advanced Traveler Information System (ATIS) and Ad-

vanced Traffic Management System (ATMS) requires real time traffic information for the

whole road network. The research on traffic information generation is broadly classified

into three categories:

• Traffic information generation using cellular network: The aim of these studies is to

use widely deployed cellular infrastructure for generating meaningful traffic infor-

mation. The problems addressed by these studies include localization and vehicle

tracking, and generating fine-grained or coarse-grained traffic information. The fine-

grained traffic information includes edge level travel time and speed estimation; the

coarse-grained information includes identifying hot spots in a road network, and

observing traffic movement pattern (origin-destination) at different times of day

during week-days and week-ends.

• Traffic information generation using dedicated sensors: These studies use a vari-

ety of sensors for generating fine grained traffic information. The sensors include

loop detectors, traffic cameras, Bluetooth or RF sensors, acoustic sensors, GPS or

Dedicated Short Range Communication (DSRC) probe vehicles, etc.. The perfor-

mance is evaluated in terms of accuracy of the generated traffic information and

cost effectiveness.

• Traffic information generation using multiple sources: These studies combine traffic

data from various sensors to improve coverage, derive some traffic parameter for

which the measurement is not available, or make the solution more cost effective.

10
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2.1 Traffic Information Generation using Cellular Net-

work

2.1.1 Localization

Cellular based localization techniques are broadly classified in two categories [23]: active

techniques generate additional signaling traffic to estimate users’ location, but permits

location tracking of any user terminal independent of its state; passive techniques silently

collect signaling information from one or more points (A interface for location area up-

dates or Abis interface for handover data) in the cellular network with no impact on

offered network load, but the amount and type of retrieved information depend on the

placement of the monitoring points and on the state of the user terminal (more activity

on user terminal permits more information to be collected). Cayford et al. [15] carry

out detailed study of amount of signaling required for generating a reasonably accurate

traffic information using active techniques.

Trevisani et al. [10] and Raja et al. [11] study performance of various location

technologies used in GSM (Global System for Mobile Communication) cellular network

and report that Enhanced Observed Time Difference (E-OTD) has location error of 50-

150 meters independent of cell size. Chen et al. [9] compare performance of centroid

based, finger printing based and Gaussian process based localization algorithm, in the

Downtown area (66 cells per square kilometers) and residential area (26 cells per square

kilometers) with respect to location error, amount of training required, speed of execution,

and storage requirement. They carried out performance analysis using top seven in-range

cells from single or all providers, and all in-range cells from all providers. They reported

the location errors as mentioned in Table 2.1. Varshavsky et al. [12] used fingerprinting

and centroid algorithm for indoor and outdoor localization. They report the median

error of 75 meters and 213 meters with fingerprinting and centroid algorithm respectively.

Mohan et al. [25] observed very dense cell tower deployment in Bangalore city of India

(average inter tower spacing of about 100 meters) and reported the median error of 117m

in location estimate.
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Table 2.1: Performance of Positioning Algorithms: Median Location Error (meters)

Algorithm
Downtown (66 cells/sqkm) Residential(26 cells/sqkm)

Single
provider(7)

Cross
provider(7)

Cross
provider(all)

Single
provider(7)

Cross
provider(7)

Cross
provider(all)

Centroid 232 166 170 760 456 574
Finger-
printing

94 153 245 277 313 297

Gaussian
process

126 87 65 196 147 134

2.1.2 Traffic Information Generation

Valerio et al. [23] [26] analyze mobile hand off related cellular network signaling data

to generate road traffic information. They make the following observations: (1) cellular

signaling pattern is different on week days and weekends; (2) cellular signaling pattern

is different at different times of a day; (3) train users generate different cellular signaling

pattern than car users; (4) in an event of incidence, the signaling notch (high decrease)

followed by a peak occurs. This clearly indicates that the cellular user classification using

hand off or other cellular signaling data is possible.

Bar-Gera [13] processed cellular data of handover events collected on 14km of Ayalon

freeway in Israel with 10 interchanges in both directions during January-March 2005 to

estimate travel times. The cellular based system received observations for about 1-3%

of the total traffic during day time (1000-2000 hrs) and generated 63% valid travel time

estimates for 27 road segments. Cellular data was more noisy (14%) than loop detector

data (5%). The noise was measured as the average absolute relative difference between

travel time estimates for consecutive five minutes intervals. However, the algorithms used

for map matching and travel time estimation are not described in the work.

Calabrese et al. [14] used cellular signaling information available at Abis interface

(handover) and A-interface (location area updates) in the city of Rome. Abis signaling

data was processed in real time to predict user terminals’ position and speed to produce

the traffic map. Received signal power (RXLEV and RXQUAL) and Time Advance (TA)

value were used to estimate the location of active terminals. The location error of 159

meters in urban area, 295 meters in suburban areas, and up to 1457m in the extra urban

area were reported. The error in considering moving user as still and vice-versa was only

3.2%. The travel time estimation error when compared to the readings taken using GPS
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and odometer was 14.88% on bypass roads, 10.08% on primary urban streets, and 17.66%

on secondary urban streets. The A interface signaling was used to generate coercive grain

location information about active or idle users using location area updates.

Traffic Online, Vodafone [27], analyzed signaling information on A interface and Abis

interface to generate traffic information. They claim to generate high quality traffic

information without mentioning methods or algorithms used in signal processing.

Liou et al. compute cell residence time and edge level speed using sparse cellular

handover data [28]. They propose the LinChangHuangfu (LCH) scheme and evaluate

its performance for speed estimation on National Highway 3 in Taiwan. To improve the

accuracy of speed estimation, the road segment filtering (using location area information)

and historical vehicle traces are used. The cellular data of a fifteen minutes period is

aggregated for speed estimation. After bias removal, the mean discrepancy between the

cellular based speed estimation and loop detector data is 7.51%.

Demissie et al. [29] use cellular handover data to generate non-realtime traffic state

information. The study shows that there is correlation between the traffic volume on

a road segment and count of handover in the corresponding cell (correlation coefficient

of 0.76 is reported). The solution uses Multinomial logit and Artificial Neural Network

(ANN) to relate the sparse data of handover to the traffic state on arterial roads. The

performance of the proposed methodology is evaluated using five case study areas of

Lisbon city, Portugal. The accuracy of 78.1% is achieved in traffic state estimation.

Caceres et al. [30] observe that if the cell boundary or location area boundary is

precisely known, the number of vehicles crossing that boundary can be counted just by

counting the number of hand overs (considering the percentage of users making a call at a

given time). This can be used as an induction loop detector, counting number of vehicles

crossing it, provided the cell is sectored and cell boundary or sector boundary maps to a

unique road segment. However the assumption made in the paper, i.e. cell boundary or

location area boundary is precisely known and it maps to a unique road segment, is very

unrealistic.

Cayford et al. at Institute of Transportation Studies, Berkeley conducted a study to

evaluate effect of location accuracy, frequency of location measurements, and number of

locations monitored, on traffic information generation using cellular network [15]. With

location error of 100 meters, a vehicle could be mapped to a correct road for 98.4% of
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all surface streets and 98.9% of all free ways. With the update frequency of 30 seconds

(preferred by all the cellular carriers) and location accuracy of 50 meters, 98.8% of the

road segments could be identified. As the number of locations increases from 1 per

second per square mile to 10 per second per square mile, the percentage of roads covered

increases very rapidly. Above 20 locations per second per square mile, the increase in

the percentage of roads covered declines, and there is little benefit of using more than

40 locations per second per square mile. With network based location technology, the

measurements of 85% of the roads can be generated in every five minutes interval using

approximately 5% location capacity of a cellular carrier. Operating continuously, the

traffic information approaches 97.7% of the road segments, the maximum possible with a

location technology accurate up to 100m using 30 seconds update frequency. The similar

results are observed in handset based location technology. The authors did not consider

location errors larger than 100 meters. The algorithms used for map matching and traffic

estimation are not mentioned in the paper.

NCHRP 70-01 Report, 2007 [31] contains a survey of various projects/studies carried

out on using cellular based data for generating traffic information.

Table 2.2 summarizes the works on the traffic information generation using cellular

network.

2.2 Traffic Information Generation using GPS Probes

The Mobile Century field experiment [16] demonstrated the use of GPS probe vehicles

for generating traffic information on a free way. The data collection was done using 100

GPS probe vehicles over a ten miles road stretch on the I-880 highway, near Union city,

California, for eight hours. The data analysis showed that a 2-3% penetration of GPS

probes is required to get atleast one speed reading for every crossing point on the road

stretch during an aggregation period of five minutes. It was reported that the speed data

collected from GPS probes and loop detectors were not in agreement at few locations due

to bias in data from either source. Zhao et al. [32] analyze the effect of number of GPS

probe samples on edge level speed estimation. The authors use Curve-Fitting Estimation

Model (CFEM) to estimate traffic information using GPS probe data. The experiment

results show that 90% accuracy in speed estimation requires at least 15 GPS points for
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Table 2.2: Traffic Estimation using Cellular Network

Research
work

Traffic
parameters of

interest

Data collection Methodology Accuracy

Bar-Gera,
2007 [13]

travel time 2000 hrs data on
14km of Ayalon free-
way in Israel

A and Abis

interface data
processing

63% travel times
valid (15% noise)

Valerio et
al., 2009
[23] [26]

user classifica-
tion (road-non
road users) and
incident detec-
tion

beltway A23 South-
East and the highway
A2 South from Vi-
enna to Italy

A and Abis

interface data
processing

unique signaling
pattern is observed
for road or non-road
users, and incident

Calabrese
et al.,
2010 [14]

user classifica-
tion and travel
time estimation

100 km2 area of
Rome

A and Abis

interface data
processing

3.2% error in user
classification and
14-18% in travel
time estimation

Liou et
al., 2013
[28]

speed at specific location on
National Highway 3
in Taiwan

Abis interface
data process-
ing

mean error of 7.5%

Demissie
et al.,
2013 [29]

density five areas of Lisbon
City, Portugal

Abis interface
data process-
ing

accuracy of 78.1%

each edge per aggregation period. Minh et al. [35] use Artificial Neural Network (ANN)

and Genetic Algorithm (GA) to overcome low penetration of GPS probes and estimate

vehicle speed and density information. The authors show that at least 25% GPS probe

penetration is required for convergence of the proposed model. The traffic parameters

are estimated with accuracy of more than 90%.

Balan et al. [33] use historical data of GPS taxi probes to estimate travel time and

trip-fare in real time. The authors use data of 250 million taxi trips collected using 15000

taxis for 21 months in Singapore city. The k-nearest neighbor (kNN) technique along with

domain knowledge of peak hour fare and congestion pricing as enforced by the authorities

is used for travel time and fare estimation in real time. The system supports thousands

to millions of queries per second with fare error of less than 1 Singapore dollar and mean

trip duration error of less than 3 minutes.

Zhang et al. propose Path2Go [34], a multimodal traveler information system using

GPS data. The system processes transit and road network information, and real time

GPS data from mobile users, buses and trains to identify mode of user (e.g. walking,

traveling by bus or train, driving, etc.) and enables context aware service. The system
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Table 2.3: Traffic Estimation using GPS Probes

Research
work

Traffic pa-
rameters

of interest

Data collection Methodology Accuracy

Mobile
Century
field
exper-
iment,
2010 [16]

speed data of 100 GPS probes
collected on 10 mile
stretch of I-880 near
Union City, California
for 8 hours

GPS probe data
are processed for
speed estimation;
for user privacy,
virtual trip lines
are used

speed data of GPS
probe and LD does
not match at differ-
ent locations and
times due to bias
in LD data or GPS
probe data

Zhao et
al., 2011
[32]

speed one day data of more
than 16000 GPS
equipped taxis col-
lected in central region
of Shanghai, China

Curve-fitting esti-
mation model

90% accuracy
when number of
GPS data points
are more than 15

Balan et
al., 2011
[33]

trip dura-
tion

data of 250 million
taxi trips collected us-
ing 15000 taxis for 21
months in Singapore

k-nearest neigh-
bor and domain
knowledge

trip duration error
of less than 3 min-
utes

Path2Go,
2011 [34]

travel
mode

data of 1000 users col-
lected over four months
in San Francisco Bay
Area

analysis of road
network data and
GPS traces of
users and public
transport

92% accuracy

Minh et
al., 2012
[35]

speed and
density

data of three locations
on National route no.16,
Japan

Artificial Neural
Network and Ge-
netic algorithm

more than 90% ac-
curacy in speed es-
timation

exploits user itinerary and mode information to conserve battery power by turning off the

GPS and reducing communication to the server. The experiment results show that the

system detects travel mode with 92% accuracy. Nitsche et al. [36] attempts to classify

travel mode among the eight classes (e.g. walk, bicycle, motorcycle, car, train, etc.)

using sensors commonly available in smartphones. The proposed solution uses cellular

signaling and accelerometer data to enable location tracking in case of GPS outage. For

travel mode classification, a probabilistic classifier working on a randomly chosen subset of

features is combined with discrete Hidden Markov Model (HMM). The proposed approach

is evaluated using 355 hours of probe data collected over two months in Vienna, Austria.

Experiment results show that more than 80% of travel modes are identified correctly.

Table 2.3 summarizes the works on the traffic information generation using GPS probe

data.
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2.3 Traffic Information Generation using Dedicated

Sensors

Sen et al. propose “Kyun Queue” [37] using 802.15.4 based RF transceivers for real time

traffic state classification (congested or not congested) and vehicle queue monitoring at

a junction. The system consists of a series of RF transmitter-receiver pairs deployed

across a road. The transmitter continuously transmits beacon packets and the receiver

measures packet reception ratio and signal strength. The authors observe and exploit the

strong correlation between the link metrics and the occupancy level of road between a

pair of sensors to compute the traffic parameters. The system can be used on multi-lane

roads carrying lane sharing heterogeneous traffic observed in developing countries like

India. The experimental data of 16 hours collected on two roads of Mumbai, India show

90% accuracy of traffic state classification. Kassem et al. [38] [39] use 802.11 based RF

transceivers for human-vehicle classification, vehicle counting and speed estimation in a

single-lane set up. The median speed error of 15% is reported based on 45 minutes of

data collected on a 7.5m long single lane road stretch.

Sen et al. [40] [41] used a pair of acoustic sensors deployed on road side to observe

a Doppler shift in the measured frequencies of vehicular honks. The system uses honk

detection and matching to estimate vehicle speed and in turn classify the road traffic

condition as congested or free flowing. The relative speed error of less than 10% is

reported based on 18 hours of data collected on two road stretches of Mumbai, India.

Ali et al. design a multiple-inductive-loop sensor which is suitable for lane sharing

heterogeneous traffic [42]. The loops are connected serially and every loop has unique

resonance frequency and inductance. The change in inductance and resonance frequency

is used to detect and classify vehicles moving over the loops. With automatic or manual

periodic calibration, the loops permit accurate vehicle classification (accuracy more than

95%) and speed estimations (error of less than 1km/hr).

Taghvaeeyan and Rajamani design a portable magnetic sensor system for vehicle

counting, classification, and speed estimation in a lane adjacent to the sensor [43]. The

variations in magnetic field due to vehicle movement are processed using a signal process-

ing algorithm to achieve accurate estimates of traffic parameters (vehicle counting error

of less than 1% and speed estimation error of less than 2.5%). Robustness of the system



2.4 Traffic Information Generation using Multiple Sources 18

is shown by counting number of right turns at an intersection with 95% accuracy.

Levenberg uses a pair of inertial sensors (accelerometers) deployed in a road pave-

ment for vehicle speed estimation [44]. The vehicle speed estimation is done by finding

the cross correlation between accelerometer signals. The estimation error of less than

2km/hr in sixty percent cases and less than 5 km/hr in ninety percent cases is observed.

Stocker et al. design a software system architecture that uses vibration data collected

from accelerometer sensors, digital signal processing, machine learning, and knowledge

representation and reasoning for vehicle detection (vehicle or no vehicle) and classification

(heavy or light vehicle) [45]. The Semantic Sensor Network Ontology (SSNO) is used to

describe sensor data and the Situation Theory Ontology (STO) is used to represent real

world situation or knowledge generated after processing sensor data. The system uses

accelerometers deployed on road side to measure road pavement vibrations generated by

vehicle movement. The precision and recall of vehicle detection are 95% and that of

vehicle classification is more than 80%.

Zoto et al. [46] used two spatially separated Bluetooth sensors to estimate the average

speeds of vehicles traveling in different types of lanes, e.g. express lanes and local lanes,

without knowing the lanes individual vehicles were traveling in.

Table 2.4 summarizes the works on the traffic information generation using dedicated

sensors.

2.4 Traffic Information Generation using Multiple

Sources

Park and Lee [20] process dual loop detector data and Dedicated Short Range Communi-

cation (DSRC) probe data using Bayesian estimator and an expanded neural network for

speed estimation (three levels of speed) on arterial roads in the city of Jeonju in Korea.

Traffic data of two days (total eight hours) are used to validate the models. The link

speed error of less than 10 km/hr is observed. The high error in speed estimation is due

to the small sample of data and discrete levels of speed estimation (only three). In a

similar study, Wie and Lee [21] use Artificial Neural Network (ANN) to forecast travel

time of intercity buses. The authors use data from GPS-equipped intercity buses, vehicle



2.4 Traffic Information Generation using Multiple Sources 19

Table 2.4: Traffic Estimation using Sensors

Research
work

Traffic
sensor(s)

used

Traffic pa-
rameters

of interest

Data collection Methodology Accuracy

Sen et
al.,2010
[40] [41]

acoustic
sensors

traffic
state and
speed

18 hours of data
collected on two
road stretches of
Mumbai, India

Doppler shift
analysis of ve-
hicular honk
frequencies

less than 10%
speed error

Sen et
al.,2012
[37]

802.15.4
based RF
trans-
ceivers

traffic
state and
vehicle
queue

16 hours of data
collected on two
roads of Mum-
bai, India

analysis of packet
reception ra-
tio and signal
strength

90% accuracy in
traffic state clas-
sification

Kassem
et al.,
2012
[38] [39]

802.11
based RF
transceiver

vehicle
count and
speed

45 minutes of
data collected on
7.5 m long single
lane road stretch

SVM, statistical
and curve fitting

speed error of
15%

Ali et
al.,2013
[42]

multiple
Induc-
tion
Loop

vehicle
classifica-
tion and
speed

heterogeneous
traffic data of
less than 500
vehicles

analysis of vari-
ations in induc-
tance and reso-
nance frequency

vehicle classifi-
cation error of
5% and speed
error of less than
1km/hr

Raja-
mani et
al.,2014
[43]

magnetic
sensor

vehicle
count,
classifica-
tion, and
speed

data of 188 vehi-
cles

analyze variations
in magnetic field
due to vehicle
movement

vehicle counting
error of less than
1% and speed es-
timation error of
less than 2.5%

Leven-
berg,
2014[44]

accele-
rometers

speed data of 19 vehi-
cles collected at
three places of
deployment

analysis of cross-
correlation be-
tween accele-
rometer signals

ninety percentile
error of 5km/hr

detectors, and incident database, collected for nine days on 89 km of freeway stretch in

Taiwan. The travel time error of less than 20% is observed in all the cases. Anand et al.

[22] use extended Kalman filter for fusing vehicle flow data manually extracted from a

video and travel time data from GPS equipped vehicles to estimate heterogeneous vehicle

traffic density. The data collection was done for two days (total 5 hours) on IT corridor

in Chennai, India. The mean estimation error of less than 10% is observed. In a city

scale study in Singapore [17], the data from GPS enabled taxi probes and loop detectors

are used to estimate all-vehicle traffic volume information. The one month data of 16000

taxis and 1000 loop detectors is used in the study. The authors relate taxi count data

generated by GPS probes and all-vehicle count data from loop detector using logistic

regression and linear regression, and report an error of less than 10%. To spatially ex-
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Table 2.5: Traffic Estimation using Multiple Sensor Data Fusion

Research
work

Traffic
sensor(s)

used

Traffic
parameters
of interest

Data collection Methodology Accuracy

Park
& Lee,
2004[20]

loop detec-
tors(LD)
and DSRC
probes

speed 8 hours data col-
lected on arterial
roads of Jeonju,
Korea

Bayesian es-
timator and
an expanded
neural network

error of less
than 10 km/hr

Wie
& Lee,
2007[21]

LD, GPS on
buses, inci-
dent data

travel time data of 9 days col-
lected on 89 km of
freeway in Taiwan

Artificial Neu-
ral Network

less than 20%
error

VTrack,
2009[47]

GPS and
WiFi

travel time
and traffic
hot-spot
detection

800 hours of driv-
ing traces gath-
ered from 25 cars
having GPS and
WiFi

Hidden Markov
Model (HMM)
and Viterbi
decoding based
map matching

25% error in
travel time,
80% hotspots
detected accu-
rately

CTrack,
2011[48]

cellular data,
compass, ac-
celerometer

vehicle tra-
jectory

urban driving
traces of 126
hours

two pass HMM more than 75%
of median accu-
racy

Anand
et al.,
2011[22]

video and
GPS

heterogeneous
vehicle traf-
fic density

5 hours data col-
lected on IT corri-
dor, Chennai, In-
dia

extended
Kalman filter

less than 10%
error

Aslam
et al.,
2012[17]

LD and GPS
probes

vehicle
count

one month data
of 16000 taxis and
1000 loop detec-
tors in Singapore

logistic regres-
sion, linear re-
gression

less than 30%
error

Bhaskar
et al.,
2014[49]

LD and
Bluetooth
sensor

speed and
density

3 hours simula-
tion based on real
traffic data

cumulative
plots

more than 90%
accuracy

Nitech
et al.,
2014[36]

cellular data,
accelerome-
ter, GPS

travel mode data of 355 hours
collected in Vi-
enna, Austria

probabilistic
classifier and
discrete HMM

more than 80%
accuracy

trapolate the relationship to edges not having a loop detector, the authors identify similar

edges based on static parameters (Euclidean distance, orientation, number of lanes) and

the difference between taxi count. For edges without loop detector, the all vehicle count

is estimated from taxi count data using the regression model learned on similar edges

having a loop detector. The estimation error of less than 30% is reported.

In VTrack [47], the travel time estimation and traffic hotspot detection using GPS

and WiFi based vehicle trajectory is attempted. The system tolerates GPS outage by

processing inaccurate position samples of WiFi (upto 70 meters location error) using Hid-

den Markov Model (HMM) and Viterbi decoding based map matching technique. The
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authors observe that accurate suggestions for shortest route are feasible even with erro-

neous (25% median error) edge level travel time estimations. In CTrack [48], Thiagarajan

et al. avoid use of battery power consuming sensors like WiFi and GPS, and generate

vehicle movement traces using the cellular network based localization. The authors use

two-pass HMM to process cellular based erroneous location data (175 meters of mean

error). Some common systematic errors in localization are corrected using accelerometer

and magnetic compass data. The real driving traces of 126 hours (1074 miles) in an ur-

ban environment are used to evaluate performance of the system. The experiment results

show that CTrack retrieves over 75% of the users’ drive accurately in the median.

Bhaskar et al. propose a data fusion model to estimate speed and density on traffic

light controlled urban roads using loop detector (point data) and a pair of Bluetooth

sensors (zone data) [49]. The authors observe that Bluetooth sensors provide good esti-

mates of vehicle travel time, but the data is sparse in time and space, whereas the travel

time and density estimations using vehicle count data from loop detectors are erroneous.

The proposed model fuses data from these two complementary sources to estimate travel

time and vehicle density accurately (more than 90% accuracy). The model is validated

using real traffic data and simulations. Bachmann et al. [50] use loop detector data

and vehicle probe data (collected from Bluetooth sensors, DSRC probes, or others) to

evaluate six data fusion techniques such as Bar-Shalom/Campo, Kalman filters, OWA,

Artificial Neural Network, etc. for vehicle speed estimation. The authors simulate a 5 km

road stretch of Highway-400 in Toronto, Canada using Paramics microscopic simulator.

The simulation results show that all the fusion techniques generate statistically better

speed estimates than individual sources. A small fraction of probe vehicles significantly

improves speed estimation (as much as 40%) when loop detector data is highly erroneous,

specifically under congested traffic conditions. As the penetration of probe vehicles in-

creases, the advantage of fusion reduces as the probe data itself accurately represents the

average traffic speed.

Table 2.5 summarizes the works on the traffic information generation using multiple

data sources.
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2.5 Analysis of ITS Infrastructure Requirement

The Sensor Location Problem aims to determine the optimal number and placement of

traffic sensors to ensure coverage of the whole road network for traffic information estima-

tion. The solutions are attempted in the literature using three approaches [51]: first, the

mathematical optimization approach with the objective of maximizing flow coverage or

minimizing sensor requirement, assuming constraints such as flow conservation; second,

the algebraic approach where a system of linear equations based on link-path incidence

or link-node incidence are solved using one step or iterative method; and third, the graph

theory based approach in which the spatial relationship between links and nodes in a

network is exploited to identify a set of critical edges for sensor deployment. L. Bianco

et al. identify the minimum number of nodes in a road network for sensor deployment to

enable the flow volume estimation for all the edges in a road network [52]. The authors

assume that the flow split ratio are available for all the edges incident to a node from

historical data and exploit the conservation of flow principle for estimating flow on all the

edges in a road network. The authors formulate flow estimation problem as a system of

linear equations and deploy sensors on a certain number of nodes to reduce the number

of unknowns in the equations to enable solution. When a sufficient number of sensors

are not available, the system is under specified and the system of linear equations may

have an infinite number of solutions [53]. In that case, the problem becomes bi-level: the

upper level decides the sensor location and the lower level computes best possible flow

estimation for locations of interest. Fie et al. in [54] study the problem in the similar

context and suggest that the sensors should be deployed independent of one another on

the most unstable links carrying a large volume of vehicles and having high variation

(e.g. links upstream of the recurring bottleneck). To identify the edges for sensor de-

ployment, the authors introduce a notion of eigen-volumes and eigen-links to measure

network observability and uncertainty. The authors in [55] extend the study to maximize

information gain and O-D coverage under stochastic traffic conditions (e.g. in presence of

incident and vehicle re-routing). The authors use Greedy Randomized Adaptive Search

Procedure, which is an adaptation of the deterministic procedure proposed in their earlier

study ([54]). The performance of the current sensor location assignment is evaluated by

generating a series of random incidents, and relocation is done in an iterative manner.
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The results show a 13-17% reduction in demand uncertainty. Hu et al. [56] identify min-

imum number of edges for infrastructure deployment using linear algebra based method.

The authors use link-path incidence matrix to identify a subset of edges that form the

basis of the vector space. The solution does not require the flow split ratio or other traf-

fic information. The authors determine infrastructure requirement for various types of

networks and analyze effect of network size, network connectivity, number of O-D pairs

and number of paths on infrastructure requirement. Experiment results show that the

infrastructure requirement varies from 60-80% of number of edges in the road network.

The authors also study the sensor location problem using heterogeneous sensors - active

sensors (license plate recognizer) and passive sensors (vehicle detectors) [51]. The au-

thors identify sensor deployment locations using road network graph analysis, and full

path coverage and flow conservation constraints. The resultant deployment permits O-D

demand estimation with 5-25% error for different road networks.

Park et al. propose a mechanism to deploy additional portable sensors at selective

locations in a road network to reduce the travel time error [57]. The authors assume

that the fixed sensors like loop detectors are already deployed in the road network and

enable estimation of travel time error. Based on this information, the portable sensors

are relocated in a network while considering the relocation expenses and reduction in

error. The simulation results show an error reduction of more than 100% in certain cases.

Zhu et al. propose a mobile sensor (probe) based traffic monitoring system using Par-

ticle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) [58]. A measure

of traffic information acquisition benefits is developed and used to compare the surveil-

lance performance of the proposed system with static sensor deployment. The simulation

results show that the mobile sensors perform better than fixed deployment under all traf-

fic conditions specifically with fewer number of sensors. The advantage of mobile sensors

over fixed sensors decreases with increase in congestion and number of sensors. Under

moderate and heavy congestion, and with more than 15 and 19 sensors, respectively, the

objective function value is lower for mobile sensors than fixed sensors in a road network

with 9 nodes and 28 links.

Table 2.6 summarizes works on ITS infrastructure deployment for traffic information

generation.
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Table 2.6: Summary of Literature Survey - Infrastructure Deployment

Research
work

Traffic
sensors

Traffic
param-
eters of
interest

Methodology Infra. requirement Accuracy

Hu et
al.,2009
[56]

– flow link-path incidence
matrix and lin-
ear algebra based
analysis of network
topology assuming
conservation of flow

60-80% of edges mathematically
accurate flow
estimation

Hu et
al.,2014
[51]

loop
detec-
tor and
license
plate
recog-
nizer

origin-
desti-
nation
flow

analysis of road net-
work, full path cover-
age and flow conser-
vation constraints

65-70% of number of
edges (12 sensors- 4 ac-
tive and 8 passive - in
Fishbone network hav-
ing 18 links; 120 sen-
sors - 48 active and 72
passive - in NCKU net-
work, Taiwan city hav-
ing 154 links)

6.08 % error
in Fishbone
network and
21.46% error in
NCKU network

Zhu
et al.,
2014[58]

mobile
sensor

traffic
infor-
mation
benefit

Particle Swarm
Optimization (PSO)
and Ant Colony Op-
timization (ACO).

35 mobile sensors provide 62% (1.87/3)
of traffic information acquisition bene-
fit in SiouxFall network having 76 links

2.6 Discussion

The following observations are made from the literature survey:

• Due to the large location error in cellular data (50-250 meters on average) [10] [11]

[9] [12] [25], the traffic information estimation using cellular network is erroneous

(the mean error is 14-22%) [14] [29].

• GPS probes provide accurate estimation of traffic information (more than 90%

accuracy) but require sufficient penetration (25% according to [35] and 15 GPS

data points per aggregation period according to [32]). Spatial extrapolation of GPS

probe data to all vehicle data is erroneous (30% error reported in [17]).

• For heterogeneous traffic monitoring, the use of RF transceivers [37], acoustic sen-

sors [40] [37], multiple-inductive-loop sensor [42], magnetic sensor [43], and ac-

celerometer [45] is explored in literature. While dedicated sensors provide accurate

traffic information, their network-wide deployment is costly.
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• Multi-sensor data fusion is carried out using loop detectors, probe data (GPS,

DSRC), WiFi, and Bluetooth sensor data. All these sensors provide accurate traffic

information and data fusion is used to improve coverage of the generated traffic

information, derive some unmeasurable traffic parameter of interest, or to make the

solution cost effective. CTrack [48] is the only study to the best of author’s knowl-

edge that combines cellular network data with other data sources (accelerometer

and magnetic compass) to improve accuracy of vehicle trajectory estimation (75%

median accuracy).

• The works on infrastructure deployment models assume conservation of flow or

availability of turning ratio information for whole road network [52] [56] [51]. These

assumptions are very unrealistic for road network of developing countries like India.

Also, infrastructure deployment is required on 60-80% of edges in the road network

[56] [51].

The present work differs from the literature as follows:

• The erroneous location data of vehicles collected from cellular network are processed

using a novel map matching algorithm and temporal extrapolation to derive vehicle

flow and congestion information in real time. The simulation results show the

estimation error of less than 10% in arterial road network scenarios.

• To enable edge level speed estimation, a set of edges for ITS infrastructure de-

ployment are identified using historical data of congestion. Two models for in-

frastructure deployment, namely, COngestion COverage MOdel (COCOMO) and

Edge COverage MOdel (ECOMO) are proposed. The infrastructure requirement of

COCOMO depends upon the number of congestion levels (six i.e. A to F) and is

independent of the road network size. As ECOMO forms clusters of similar edges

using congestion profile, the infrastructure requirement depends upon diversity in

the congestion profile of edges. Simulation results show that full coverage of a road

network can be assured with infrastructure deployment on less than 30% edges.

• As GPS probe speed data are sparse (due to low penetration) and biased (due to

deployment on certain types of vehicles), they are not used in real time and are
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collected for every congestion level. Historical data of GPS probes are used for spa-

tial extrapolation of speed estimation from infrastructure edges to infrastructureless

edges. Use of GPS probe data improves accuracy of speed estimation significantly.

Simulation results show ninety percentile error of 10-22% and 10-13% for COCOMO

and ECOMO, respectively.

The proposed ITS is also evaluated for feasibility of large scale deployment and the

utility of generated traffic information. Consequently, a MapReduce based [24] distributed

processing framework for the proposed ITS is designed. The computation, communica-

tion, and storage requirement of the framework are analyzed to establish feasibility of

large scale deployment. An Advanced Traveler Information System (ATIS) is designed

using real time traffic information generated by the proposed ITS. The ATIS suggests

trip route and en-route changes to end-users based on real time traffic condition in a road

network. The simulation results show that the average trip duration and congestion in

the road network improves significantly.



Chapter 3

Proposed Approach

3.1 Localization Using Cellular Network Data

To assess location error in the cellular network, we use fingerprinting based localization.

The reason for using this technique is that it does not require access to the cellular infras-

tructure elements and is viable using any GPS enabled smart phone. An Android applica-

tion was developed to collect cellular fingerprint (main cell ID and RSSI value, neighbor

cells and RSSI values) and corresponding GPS coordinates every second. Appendix-1

specifies the format and sample of data records. The data collection was done for 10 days

while moving from Bapunagar area to Nirma university area in Ahmedabad city of India.

The movement stretch is 18 kilometers long and traverses through typical urban roads of

the city. The dataset is published on web [59] and is available for download.

Algorithm 3.1: Localization Using Fingerprinting Approach

Input: a database F containing (C,L) pairs, where C and L specify a cellular
fingerprint and corresponding GPS coordinates, respectively; an input cellular
fingerprint, Ci for which the location is to be computed

Output: location estimate Li for Ci
1: Extract FJ = {(Cj, Lj)} such that the main cell ID of Cj equals the main cell ID of
Ci

2: for all (Cj, Lj) ∈ FJ do
3: Compute Sj, the Cosine similarity between Cj and Ci
4: end for
5: Let FK = {(Ck, Lk)} be the K records having the highest similarity score
6: Li =

∑K
k=1Wk × Lk, where Wk = SkPK

p=1 Sp

For computing location error, the leave-one-out cross validation is used wherein the

27
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nine days data are used as historical data to compute location estimates for the remaining

day data. The localization process is elaborated in Algorithm 3.1. We use cosine similarity

to find the similarity score between a pair of fingerprints. With a given cellular fingerprint

Ci as an input, the set of fingerprints having the same main cell ID, FJ , is extracted from

the historical data set, and cosine similarity between every pair (Ci, Cj),∀Cj ∈ FJ is

calculated. The location estimate is computed as the weighted sum of locations associated

with the K most similar Cj ∈ FJ . K=5 is used in the experiment. The weights are

assigned based on the cosine similarity value. The experiment results show the mean

location error of less than 50 meters in the regions with very dense cell tower deployment

(6-7 neighbor cell towers in addition to the main cell are visible with good signal strength

of approximately -80 dbm). In the regions with relatively sparse cell deployment (2-3

neighbor cells), the mean location error of less than 200 meters is observed.

3.2 Map Matching Algorithm

Figure 3.1: Functioning of the Map Matching Algorithm
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Algorithm 3.2: Map Matching Algorithm

Input: road network topology, series of position estimates for a vehicle taken every
30 seconds, maximum position error εmax

Output: estimated path of a vehicle
1: Let P = (P1, P2, . . . , Pn) be a series of position estimates of a vehicle recorded at

time T = (t1, t2, . . . , tn), respectively, where ti+1 = ti + 30 seconds, ∀i < n.
2: for all Pi ∈ P do
3: Let Ei be the set of edges overlapping with a circle centered at Pi and having

radius εmax. Ei contains all the edges the vehicle may be traversing at time ti.
Each e ∈ Ei is of the form [ID, position], where, ID is a unique identifier of the
edge and position = (x1, y1, x2, y2) represents end points of overlapping region of
the edge.

4: end for
5: for all Pi ∈ P do
6: Pi1 = Pi
7: Select position points Pij , j = 2, . . . , 4 such that the distance between Pij−1

and
Pij is minimum and is greater than 2× εmax.

8: for j = 1, . . . , 3 do
9: Get Eij and Eij+1

for Pij and Pij+1
, respectively.

10: for all (e1, e2) ∈ Eij × Eij+1
do

11: if e1.ID == e2.ID then
12: Determine direction of vehicle movement using e1.postion and e2.position

and compare with direction of the edge.
13: If the directions do not match, discard (e1, e2) from further consideration.
14: Else if minimum distance between the two segments can not be traversed

by a vehicle at maximum speed (Smax), discard (e1, e2) from further
consideration.

15: Else record (e1, e2) for further processing.
16: else if e1.ID 6= e2.ID then
17: Get path from e1 to e2 using the route table generated using Dijkstra’s

shortest path algorithm.
18: If the path can not be traversed by a vehicle at maximum speed, discard

(e1, e2) from further consideration.
19: Else, record (e1, path, e2), for further processing.
20: end if
21: end for
22: end for
23: Generate partial path using (ei, [optional path], ej) information recorded in above

three iterations using concatenation operations.
24: end for
25: Generate full path of a vehicle trip using partial paths generated so far. This

involves concatenation, set intersection and sequencing operations.
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After examining location error in the cellular network, a map matching algorithm

is developed that processes the location estimates of a vehicle generated using cellular

network to compute the vehicle trajectory. The map matching process is described in

Algorithm 3.2. Due to large location error, it is not possible to determine a correct edge

or correct movement-direction of a vehicle using single location point. Hence, a series

of location points are processed to get the direction of vehicle movement. Instead of

mapping the vehicle to a particular edge, we map it to a set of edges and then try to

filter out some of the improbable edges using antecedent or subsequent position estimates.

This mechanism works well except for the location points towards the beginning or end of

the trip. Due to the absence of appropriate antecedent or subsequent position estimates

in these cases, it becomes difficult to determine exact edges. Specifically, it is difficult to

predict whether a vehicle took a U-turn at the beginning or end of its journey. Such cases

are not taken care of by the map matching algorithm and it is assumed that a vehicle does

not take U-turn at the beginning or end of its trip. However, this assumption leads to

the prediction of a truncated path when a vehicle actually takes U-turn at the beginning

or end of its trip.

Figure 3.1 shows functioning of the map matching algorithm. A location point along

with three subsequent location points, separated by at least 2 × εmax from one another,

is processed to estimate partial path traversed by a vehicle. This adds some amount of

overlapped processing of location estimates and gives overlapping partial path. A unique

partial path estimation is computed by considering only common edges which are part

of all the predicted partial paths. This assures the correct edge selection independent

of the amount of location error. The complete path of a vehicle trip is estimated by

concatenating the overlapping partial paths.

Computation complexity of the algorithm is θ(|P | × |E|2), where P is a series of

position estimates for a vehicle and E is the set of edges overlapping with a position

estimate. |P | and |E| represents the number of elements in sets P and E, respectively.

|P | increases with the sampling frequency and |E| increases with the location error.
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3.3 Traffic Parameter Estimation

The map matching algorithm processes a series of position estimates for each vehicle vj

to generate a probable set of edges, Eti,vj , the vehicle may be traversing at time step ti.

It is observed that a vehicle spends more time at the down stream end of an edge than

at the up stream end of an edge. This is due to the fact that vehicles reduce their speed

while approaching a junction, whereas they move with higher speed and acceleration at

the upstream end of an edge. Moreover, at a traffic light controlled junction, vehicles

may be forced to stop for one or more cycle times, further extending time spent at the

downstream end of an edge. Hence, the exit time of a vehicle vj from an edge e, texitvj ,e
,

is approximated as the maximum time at which the vehicle was detected on the edge.

This approximation work well in most of the cases, specifically for traffic light controlled

edges. The vehicle vj’s duration for edge e, Dvj ,e, is adjusted as per the approximated

exit time from the predecessor edge. Let CA,e be the count of vehicles that were detected

on edge e during aggregation period A. Hence,

CA,e = |V | where V = {vj|Dvj ,e overlaps with A} (3.1)

The vehicle flow, fA,e, on edge e during aggregation period A is defined as the count of

vehicles exiting from edge e during aggregation period A. Hence,

fA,e = |V | where V = {vj|texitvj ,e
falls in A} (3.2)

The space occupancy, ρA,e, of edge e at the end of aggregation period A is defined as

ρA,e =
CA,e − fA,e

Je
(3.3)

where (CA,e − fA,e) is the number of vehicles present on edge e at the end of the aggrega-

tion period A, and Je is the jam count on edge e. The jam count of an edge specifies the

maximum number of vehicles that can be accommodated on the edge and is proportional

to the length of the edge and the number of lanes on the edge. In rest of the thesis the

terms space occupancy and occupancy are used synonymously.

To avoid the instantaneous error in the estimation of traffic parameters, we aggregate
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the data for sufficiently large period (aggregation period of 10 minutes) and record the

aggregated information every minute.

3.3.1 Removing Time Lag in Traffic Data

As the map matching algorithm needs to process a series of erroneous position points

before associating a vehicle to an edge, the vehicle flow and space occupancy have a time

lag of about one aggregation period, and can not be used in a real time traffic information

system. To overcome the above limitation, temporal extrapolation of vehicle count and

flow data is required.

Various statistical methods for time series forecast (exponential moving average, Box-

Jenkins, regression, etc.) are compared in [60] and shown that the exponential moving

average gives a reasonably good short range forecast with the least computation and stor-

age requirement. Also, machine learning techniques such as regression, artificial neural

network, genetic algorithm, etc., are used successfully in literature for temporal extrapo-

lation [61]. The machine learning techniques have higher storage requirement in general

as they use historical data for learning model parameters. The regression based mod-

els are the simplest among machine learning techniques and have the least computation

requirement.

Considering the real time processing requirement of vehicle count and flow data, we

choose the simplest and least computation intensive methods from each category, namely,

(1) exponential moving average and (2) polynomial regression, for temporal extrapolation

of traffic data.

In exponential moving average method, the temporally extrapolated flow, f extt+h, is

computed as,

f extt+h = f est∗t + h×Gt, (3.4)

f est∗t = f estt +

(
1− α
α

)
×Gt,

f estt = α× f estt + (1− α)× f estt−1,

Gt = β ×
(
f estt − f estt−1

)
+ (1− β)×Gt−1

where, f estt is estimated flow at time t, h = 10, α = β = 0.125 (chosen as suggested in
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[60] for the extrapolation period). The f estt is smoothed average of estimated flow at time

t and typically lags the most recent changes in flow. Hence the adjustments are made to

bring the average up to date and f est∗t is computed using Gt as suggested in [60]. The Gt

defines the average trend in flow variation at time t.

The regression based extrapolation method learns the relationship between the flow

at time t and t+ h on an edge using historical data:

ft+h,e = a0 + (a1 × ft,e) +
(
a2 × f 2

t,e

)
+ ε (3.5)

where a0, a1, a2 are the regression model parameters and ε is residual. The flow estimation

at time t is provided as input to the regression model of an edge to compute the temporally

extrapolated flow.

3.3.2 Congestion Level Estimation

Congestion level of an edge is estimated using volume to capacity ratio (V/C ratio) [62].

The V/C ratio on edge e during aggregation period A is defined as,

V/CA,e =
fA,e
f cape

(3.6)

Capacity flow on edge e, f cape , is defined as the maximum average flow on edge e over

fifteen minutes time span and is computed using historical vehicle flow data of the edge.

The V/C ratio ranges as reported in [63] for lane sharing heterogeneous traffic are used

to classify the traffic condition on an edge among six congestion levels, A-F (Table 3.1).

Table 3.1: V/C Ratio for Congestion Levels

Congestion Level V/C ratio range

A <0.125
B 0.125 - 0.276
C 0.276-0.479
D 0.479-0.715
E 0.715 - 1.00
F >1.00

To avoid misclassification at the boundary values, range estimates (instead of point

estimates) are used. That is, if V/CA,e is the estimated volume to capacity ratio on
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edge e during aggregation period A, the range estimate for the same is computed as

[(1− ε)× V/CA,e, (1 + ε)× V/CA,e]. If the range estimate of V/C ratio is contained in

the V/C ratio range of single congestion level (Table 3.1), unique congestion level is

estimated; otherwise, two congestion levels are estimated. For example, if estimated V/C

ratio is 0.28 and ε = 0.1, the range estimate of V/C ratio [0.252, 0.308] spans across V/C

ratio ranges of congestion level B and C. So, congestion level BC is returned in this case.

The congestion status on every edge is recorded every minute. Using the historical

data of congestion, the congestion profile of every edge is computed. The congestion

profile of an edge contains information about the percentage of overall time the edge

spends under given congestion level. As there are six congestion levels (A-F) reported in

the literature, the congestion profile of an edge, %ei , is represented as six-tuple:

%ei = (%A, %B, %C , %D, %E, %F )ei (3.7)

The congestion profile of edges is used for selecting edges for ITS infrastructure deploy-

ment and edge level speed estimation as described in section 3.5.

3.3.3 Error in Flow Estimation

Let τ v = [tv1, t
v
2] be the ambiguous period during which a vehicle v is detected on multiple

edges, i.e. edge e and the successor edge, by the map matching algorithm. The span of

ambiguous period, |τ v|, is a function of location error, Lε, and speed of the vehicle, Sv:

|τ v| = 2× Lε

Sv
(3.8)

and, the average span of ambiguous period is,

|τ | = 2× Lε

S
(3.9)

where S is the average speed of vehicles. It is observed that vehicles reduce their speed

while approaching a junction (down stream end of an edge), whereas they move with

higher speed and acceleration at the upstream end of an edge. That is a vehicle spends

the larger fraction of ambiguous period on edge e than on the successor edge. Hence, the
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updated average span of ambiguous period, after discarding its first half, is

|τ | = Lε

S
(3.10)

The ambiguous period of a vehicle v, [tv1, t
v
2] overlaps with an aggregation periodA = [tA1 , t

A
2 ),

in one of the following three ways: (i) tv1 < tA1 < tv2 < tA2 (ii) tA1 ≤ tv1 < tv2 < tA2 , and (iii)

tA1 < tv1 < tA2 < tv2. In case (i) and case (iii), ambiguous period spans across the aggre-

gation period boundary leading to error in flow estimation. In case (ii), the ambiguous

period is contained in the aggregation period and does not cause any error in flow esti-

mation. In the current proposal, the vehicle is assigned to edge e (the predecessor edge)

in case of ambiguity, i.e. it is assumed that the vehicle exited edge e at time tv2. Hence,

case (i) and case (iii) leads to over counting and under counting, respectively, in flow

estimation of the aggregation period. The difference between over count and under count

is the flow error during the aggregation period. tv1 can take any value in [tA1 − |τ v|, tA2 ) for

τ v to overlap with A. Case (i) applies when tv1 ∈ [tA1 − |τ v|, tA1 ). Probability for the same

is,

P1 = P
(
tv1 ∈ [tA1 − |τ v|, tA1 )

)
=
tA1 − (tA1 − |τ v|)
tA2 − (tA1 − |τ v|)

=
|τ v|

tA2 − tA1 + |τ v|
(3.11)

Case (ii) applies when tv1 ∈ [tA1 , t
A
2 − |τ v|). Probability for the same is,

P2 = P
(
tv1 ∈ [tA1 , t

A
2 − |τ v|)

)
=

tA2 − |τ v| − tA1
tA2 − tA1 + |τ v|

(3.12)

Case (iii) applies when tv1 ∈ [tA2 − |τ v|, tA2 ). Probability for the same is,

P3 = P
(
tv1 ∈ [tA2 − |τ v|, tA2 )

)
=
tA2 − (tA2 − |τ v|)
tA2 − (tA1 − |τ v|)

=
|τ v|

tA2 − tA1 + |τ v|
≡ P1 (3.13)

Let actual flow at the beginning and end of the aggregation period A be f 1
A,e and f 3

A,e,

respectively. Then, the flow error on edge e for aggregation period A is,

f εA,e = f 1
A,e × P1 − f 3

A,e × P3 (3.14)

= P1 ×
(
f 1
A,e − f 3

A,e

)
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The equation (3.11) and (3.13) show that flow error decreases with increase in aggregation

period and increases with increase in location error. The equation (3.14) shows, if the

flow variations do not occur during an aggregation period (specifically at the beginning

and end of the aggregation period), flow error is negligible.

Effect of Flow Estimation Error on Temporal Extrapolation of Flow

Let ft be actual flow, f estt be the estimated flow, f εt be the error in flow estimation, and

f extt be the temporally extrapolated flow, at time t. f estt = ft+f εt . According to equation

3.4,

f estt = α× f estt + (1− α)× f estt−1 (3.15)

=
∑
i

α× (1− α)i × ft−i +
∑
i

α× (1− α)i × f εt−i

= ft + f εt

and

Gest
t = β ×

(
f estt − f estt−1

)
+ (1− β)×Gest

t−1 (3.16)

=
∑
i

β × (1− β)i × (ft−i − ft−i−1) +
∑
i

β × (1− β)i
(
f εt−i − f εt−i−1

)
= Gt + fσεt

where fσεt =
∑

i β × (1− β)i
(
f εt−i − f εt−i−1

)
represents the error in trend estimation due

to flow estimation error. Substituting values from equation 3.15 and 3.16 in equation 3.4,

we get

f extt+h = f est∗t + h×Gest
t (3.17)

= f estt +

(
1− α
α

)
×Gest

t + h×Gest
t

= f estt +

(
1− α
α

+ h

)
×Gest

t

= ft + f εt +

(
1− α
α

+ h

)
×
(
Gt + fσεt

)
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Hence, the error in flow extrapolation due to error in flow estimation is

f εt+h = f εt +

(
1− α
α

+ h

)
× fσεt (3.18)

The minimum error in flow extrapolation occurs when fσεt (variation in flow estimation

error with time) is minimal. In that case fσεt ≈ 0, and f εt+h ≈ f εt .

When variations in flow estimation error are high, the second term in equation 3.18

becomes significant and flow extrapolation error increases in a multiplicative manner.

Due to a small extrapolation period (h=10), the variations in flow estimation error are

typically low leading to reasonably accurate flow extrapolation. For example, consider

a traffic light controlled edge where the actual flow observes a zig-zag pattern and the

estimated flow is smoothed out due to large location error. For instance, the temporal

sequence of flow values on an edge is f + ∆f , f −∆f , f + ∆f , and so on, whereas the

estimated flow value is roughly f in all the measurements. Hence, the f εt sequence is ∆f ,

−∆f , ∆f , and so on, and the
(
f εt−i − f εt−i−1

)
sequence is 2×∆f , −2×∆f , 2×∆f , and

so on. Hence, we get

f εt =
∑
i

α× (1− α)i × f εt−i =
α×∆f

2− α

and,

fσεt =
∑
i

β × (1− β)i
(
f εt−i − f εt−i−1

)
=

2× β ×∆f

2− β

Substituting these values along with α = 0.125, β = 0.125, and h = 10 in equation 3.18,

we get f εt+h ≈ 2.33×∆f .

3.4 GPS Probe Data Collection and Use

A small fraction of vehicles in India (specifically cars and public transport buses) are GPS-

enabled. The periodic position updates reported by GPS probes are used to compute

GPS probe speed on an edge during an aggregation period and is recorded every minute.

However, the GPS probe speed data are not directly useful for real time edge level speed

estimation due to the following reasons: first, due to low penetration of GPS probes,

speed estimates are not available for all the aggregation periods and for all the edges;
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and second, GPS is deployed on some fraction of cars and public transport buses which

have very different speed characteristics compared to the two wheelers that form about

75% of the overall vehicle population on Indian arterial roads.

We use GPS probe data as follows: when the GPS probe data is available for an

edge for a given aggregation period, it is recorded along with the congestion level data.

The historical data of GPS probes collected in this manner is used to compute speed

transition value for extrapolating vehicle speed estimation from the infrastructure edge

to the infrastructureless edge and to compute anticipated speed error to be reported to

the end user (discussed in section 3.5.3).

3.5 Edge Level Speed Estimation

As noted earlier, speed estimation using cellular network data alone is erroneous, hence

additional accurate data sources are needed to improve accuracy. This section details the

methodology adopted for selecting edges for ITS infrastructure deployment and edge level

speed estimation. Two models for ITS infrastructure deployment are proposed: COn-

gestion COverage MOdel (COCOMO) and Edge COverage MOdel (ECOMO). Both the

models use congestion profile of edges to select optimal set of edges for ITS infrastructure

deployment.

3.5.1 Infrastructure Deployment using COngestion COverage

MOdel (COCOMO)

The COCOMO aims to cover all the congestion levels occurring in a road network using

infrastructure edges. When a congestion level is observed on an infrastructureless edge,

the infrastructure edge covering the congestion level is used for speed estimation on that

edge.

The congestion profile of an edge is computed using the historical data of congestion

levels observed on the edge. Let the congestion profile of an edge ei be %ei . An edge that

spends sufficient time (typically >25%) under given congestion level is a candidate for

having infrastructure to cover the congestion level. The intuition behind choosing this

criterion for infrastructure edge selection is, an edge that has observed a congestion level
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for a significant fraction of time in the past is likely to observe the same in the future (may

be with slight change in the fraction) even after variations in traffic condition in the region

over a long time scale. Infrastructure edges are selected by computing K-coverset for all

the congestion levels using a greedy approximation algorithm [64]. The methodology is

described in Algorithm 3.3.

Algorithm 3.3: Infrastructure Edge Selection for K-coverage of Congestion levels

Input: a set of candidate edges for having infrastructure, E = {e1, e2, . . . , en}; K; and
congestion profile of all the edges: %ei ,∀ei ∈ E

Output: the set of edges for infrastructure deployment: I
1: Determine the congestion levels covered by every edge ei ∈ E using its congestion

profile %ei .
2: Infrastructure Edge Set I={}
3: Count={cA, ..., cF}, where cj is number of times the congestion level j is covered by

the infrastructure edges so far. Set cj = 0,∀ j = A, . . . , F ;
4: R is set of congestion levels yet to be covered to fulfill K-coverage criteria; set

R={A, . . . , F}
5: repeat
6: Select ei from E such that it covers maximum number of j’s in R.
7: I = I ∪ {ei}; E = E − {ei}
8: For each congestion level j covered by ei, cj = cj + 1
9: For each cj ≥ K, remove j from R.

10: until R={}

K = 3 is used in simulations to ensure availability of three infrastructure edges for

a given congestion level. Here we need to mention that the infrastructure requirement

is independent of the road network size and is determined by K and the number of

congestion levels. The model permits incremental infrastructure deployment. When the

number of ITS infrastructure units, N , is specified, a variation of the Algorithm 3.3 is

used to select N edges for ITS infrastructure deployment (Algorithm 3.4): the algorithm

tries to 1-cover all the congestion levels using minimal infrastructure units, and repeats

the process until all N infrastructure units are deployed.

3.5.2 Infrastructure Deployment using Edge COverage MOdel

(ECOMO)

The ECOMO aims to cover all the edges in a road network using infrastructure edges.

An edge ej is said to be covered by an infrastructure edge ei if %ej is similar to %ei , where
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Algorithm 3.4: Maximal Congestion level Coverage using Limited Infrastructure

Input: a set of candidate edges for having infrastructure, E = {e1, e2, . . . , en}; count
of infrastructure units, N; and congestion profile of all the edges: %ei ,∀ei ∈ E

Output: the set of N edges for infrastructure deployment: I;
1: Determine the congestion levels covered by every edge ei ∈ E using its congestion

profile %ei .
2: Infrastructure Edge Set I={}
3: R is set of congestion levels yet to be covered at current coverage level; set

R={A, . . . , F}
4: while Number of edges in I <N do
5: Select ei from E such that it covers maximum number of j’s in R.
6: I = I ∪ {ei}; E = E − {ei};
7: For each congestion level j covered by ei, remove it from R if it is present
8: If R={}, set R={A, . . . , F}
9: end while

%ei and %ej are congestion profile of ei and ej, respectively. The speed estimation on an

infrastructureless edge is done using the infrastructure edge similar to it. The intuition

behind using this criteria is that the edges with similar congestion profile observe similar

traffic conditions permitting reasonably accurate spatial extrapolation of speed.

The congestion profile of an edge is a 6-tuple specifying percentage of time the edge

spends under each congestion level (A to F) and is computed using the historical data of

congestion levels observed on the edge. As the congestion profile data follows a multino-

mial distribution, the Chi-Square test is found suitable for determining similarity between

a pair of edges. A comprehensive survey of various similarity or distance measures can

be found in [65].

Let the congestion profile of edge ep and edge eq be %ep and %eq , respectively. The

Chi-Square variance is computed as,

χ2 =
F∑
j=A

(
%
ep
j − %

eq
j

)2

%
ep
j

(3.19)

Degree of freedom is 5. If χ2 < χ2
th, the edges are considered similar. χ2

th = 20.0 is

used in simulations. For example, if %ep = (15.0, 30.0, 30.0, 13.0, 10.0, 2.0) and %eq =

(10.0, 25.0, 38.0, 10.0, 12.0, 5.0), the χ2 = 10.23. Hence, edge eq is considered similar to

ep. For every edge ei, the set of similar edges is recorded. Infrastructure edges are selected

by computing K-coverset for all the edges using a greedy approximation algorithm [64].
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The methodology is elaborated in Algorithm 3.5. K = 3 is used in simulations to ensure

availability of three infrastructure edges for every infrastructureless edge.

Algorithm 3.5: Infrastructure Edge Selection for K-coverage of edges

Input: a set of candidate edges for having infrastructure, E = {e1, e2, . . . , en}; K; and
congestion profile of all the edges: %ei ,∀ei ∈ E

Output: the set of edges for infrastructure deployment: I
1: For every edge ei ∈ E, determine the set of edges similar to it using congestion

profiles.
2: Infrastructure Edge Set I={}
3: Count={ce1 , ..., cen}, where cej is number of times the edge ej is covered by the

infrastructure edges so far. Set cej = 0, for j = 1, . . . , n;
4: R is set of edges yet to be covered to fulfill K-coverage criteria; set R={e1, . . . , en}
5: repeat
6: Select ei from E such that it covers maximum number of ej’s in R.
7: I = I ∪ {ei}; E = E − {ei}; R = R − {ei}
8: For each edge ej covered by ei, cej = cej + 1
9: For each cej ≥ K, remove ej from R.

10: until R={}

The infrastructure requirement of ECOMO depends upon the number of edges in a

road network and the traffic profile of edges. When the number of ITS infrastructure

units, N , is specified, a variation of the Algorithm 3.5 is used to select N edges for

infrastructure deployment (Algorithm 3.6): the algorithm tries to 1-cover all the edges

using minimal infrastructure units, and repeats the process until all N infrastructure

units are deployed.

Algorithm 3.6: Maximal Edge Coverage using Limited Infrastructure

Input: a set of candidate edges for having infrastructure, E = {e1, e2, . . . , en}; N; and
congestion profile of all the edges: %ei ,∀ei ∈ E

Output: the set of N edges for infrastructure deployment: I
1: For every edge ei ∈ E, determine the set of edges similar to it using congestion

profiles.
2: Infrastructure Edge Set I={}
3: R is set of edges yet to be covered at current coverage level; set R={e1, . . . , en}
4: while number of edges in I <N do
5: Select ei from E such that it covers maximum number of ej’s in R.
6: I = I ∪ {ei}; E = E − {ei}; ; R = R − {ei}
7: For each edge ej covered by ei, remove it from R if it is present
8: If R={}, set R={e1, . . . , en} - I
9: end while
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3.5.3 Using Infrastructure Edges for Speed Estimation

It is assumed that the infrastructure edges collect correct speed information, in addition

to the flow, space occupancy and congestion information estimated using the cellular

network, every minute. Every infrastructure edge learns occupancy-speed relationship

using historical data.

S = a0 + (a1 × ρ) +
(
a2 × ρ2

)
+ ε (3.20)

where S and ρ are speed and space occupancy, respectively; a0, a1, and a2 are the

regression model parameters; and ε is residual.

In COCOMO, an infrastructure edge learns the occupancy-speed relationship for every

congestion level that it covers. Every infrastructureless edge gets the congestion level and

space occupancy estimation from cellular network every minute. The space occupancy

estimation of current time step is provided as an input to the regression model of the

infrastructure edges associated with the congestion level for speed estimation.

In ECOMO, an infrastructure edge learns a regression model relating occupancy-

speed data spanning across all the congestion levels. Every infrastructureless edge gets

the congestion level and space occupancy estimation from cellular network every minute.

The space occupancy estimation of current time step is provided as an input to the

regression model of infrastructure edges similar to the edge for speed estimation. The

congestion level along with the historical data of GPS probes is used in speed transition

function (discussed next).

It is observed in our simulation results that the space occupancy estimations are biased

in certain cases (for a pair of adjacent edges with and without traffic lights, the traffic

light controlled edge gets under-estimate of space occupancy whereas the edge without

traffic lights gets over-estimate of space occupancy). This leads to a certain amount of

error when spatial extrapolation of speed is done from the infrastructure edge to the

infrastructureless edge. Also, the vehicle speed on an edge is affected by many other

parameters, e.g. edge length, presence of traffic lights at junction, number of connected

edges, etc.. For example, the edge length and edge speed are highly correlated (Pearson’s

correlation coefficient >0.9) for the edges with traffic lights, according to our simulation

results.

Instead of determining all these parameters and incorporating their effect on estimated
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speed, historical data of GPS probe speed are used to compute speed transition function

for a pair of edges for a given congestion level. The following additive speed transition

function is used in this work to extrapolate the speed estimation from infrastructure edge

i to edge j for congestion level c:

δci,j = Sg,cj − S
g,c
i (3.21)

where, Sg,cj is average GPS probe speed on edge j for congestion level c. After applying

speed transition, K speed estimations, Sm,m = 1, . . . , K are available for an edge (due

to K-coverage). The average of the K speed estimations, S, along with the anticipated

error is reported to the end user. The anticipated error, γ, is computed as

γ =

∑K
m=1 |S − Sm|∑K

m=1 Sm
(3.22)

where |S − Sm| specifies the absolute value of the term. When all K infrastructure

edges are not available, historical data of GPS probes is used to compute the anticipated

error. For every infrastructure edge i that is used to estimate speed for edge j for given

congestion level c, the historical data of GPS probe speed on i is transformed to the speed

data on j using δci,j:

Ŝg,cj,p = Sg,ci,p + δci,j, for each gps data point p (3.23)

Then, the anticipated error is computed as,

γ =

∑
(p,q)∈P×Q |Ŝ

g,c
j,p − S

g,c
j,q |

|P | × |Q| × Sg,cj
(3.24)

where P and Q are the set of GPS probe speed data points on edge i and j, respectively;

|P | and |Q| specifies the number of elements in set P and Q, respectively. There is

a slight misuse of notation in the equation as |Ŝg,cj,p − Sg,cj,q | in numerator represents the

absolute value of the term. Note that the calculation of anticipated error is done using

historical data of GPS probes and can be done offline. The actual speed estimation error

depends upon location error and sampling rate of the cellular network data, temporal

extrapolation error of flow and space occupancy data, spatial extrapolation, and speed
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transition error.

Effect of using GPS probe data on speed estimation error: As mentioned earlier,

an additive speed transition function δci,j (3.21) is used to spatially extrapolate speed

estimation from infrastructure edge ei to infrastructureless edge ej for congestion level

c. To examine its effectiveness in reducing speed estimation error, we take an example

where speed estimation is attempted using a biased space occupancy measurement. It is

assumed for simplicity that ei and ej have same static and dynamic parameters except

for the fact that ej has a positive bias in space occupancy estimation i.e. ρ+ ∆ρ, ∆ρ>0

is measured instead of ρ. It is further assumed that the occupancy-speed relationship

observed on edge ei is linear (Figure 3.2(a)). When ρ + ∆ρ is provided as an input to

the occupancy-speed model of ei, the speed estimation S −∆S is returned, showing the

under-estimation of speed. Figure 3.2(b) shows GPS probe speed on edge ei and ej for

space occupancy value ρ+∆ρ. The value of speed transition function is δi,j = Sgj−S
g
i > 0.

The final speed estimation on ej is S −∆S + δi,j, where δi,j compensates for the under-

estimation of speed improving accuracy.

Figure 3.2: Occupancy-Speed Relationship

The above example illustrates the effectiveness of GPS probe speed data in reducing

speed estimation error when the space occupancy estimate on the infrastructureless edge

is biased. Here it needs to be clarified that the speed transition function is used to

compensate for the cumulative speed error introduced by various known or unknown

parameters (such as edge length, presence of traffic lights, etc.) including bias in space

occupancy estimation. If the value of δci,j is closer to the difference between average speed

of all the vehicles on ei and ej for congestion level c, the error in speed estimation is
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minimized.

3.5.4 Error in Speed Estimation due to Space Occupancy Error

To simplify the error analysis, we assume a linear relationship between space occupancy

and speed. A linear regression model learned on an infrastructure edge for occupancy-

speed relationship is:

S = a0 + a1 × ρ (3.25)

where S and ρ are speed and space occupancy, respectively, and a0 and a1 are regression

model parameters. On an infrastructure edge, correct speed, correct space occupancy,

and estimated space occupancy (with measurement errors) are available. It is assumed

that the error in space occupancy estimation is unbiased with mean ερ = 0 and vari-

ance σ2
ερ . A regression model can be learned using correct space occupancy and correct

speed information or estimated space occupancy and correct speed information. On an

infrastructureless edge, only estimated space occupancy is available for speed estimation.

• If correct space occupancy and correct speed information is used to learn occupancy-

speed relationship, then the linear regression model is,

S = a0 + a1 × ρ (3.26)

a0 = S − a1 × ρ

a1 =

∑n
i=1 (ρi − ρ)×

(
si − S

)∑n
i=1 (ρi − ρ)2 =

cov (ρ, S)

σ2
ρ

where ρ and σ2
ρ are mean and variance in space occupancy, and S is mean speed.

The space occupancy estimation on an infrastructureless edge may be biased (with

respect to the space occupancy measurements used for learning the regression model

on infrastructure edge). Let the input occupancy be (ρj + ∆ρj + ερj), where ∆ρj

and ερj are bias and error in the input occupancy, respectively. The speed estima-

tion generated by the model is,

sj = a0 + (ρj + ∆ρj + ερj)× a1 (3.27)

= S − a1 × ρ+ (ρj + ∆ρj + ερj)× a1

= S + (ρj − ρ)× a1 + (∆ρj + ερj)× a1
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where (∆ρj + ερj)× a1 is error in speed estimation due to occupancy error.

• If estimated space occupancy and correct speed information is used to learn occupancy-

speed relationship, then the linear regression model is,

S = a′0 + a′1 × ρ (3.28)

a′0 = S − a′1 × ρ

a′1 = a1 ×

 1

1 +
σ2
ερ

σ2
ρ

 =
a1

1 + q

The speed estimation generated by the model with input occupancy value (ρj + ∆ρj + ερj)

is

s′j = a′0 + (ρj + ∆ρj + ερj)× a′1 (3.29)

= S + (ρj − ρ)× a′1 + (∆ρj + ερj)× a′1

= S + (ρj − ρ)× a′1 +
(∆ρj + ερj)× a1

(1 + q)

where
(∆ρj+ερj)×a1

(1+q)
is error in speed estimation due to space occupancy error.

When speed estimation error of the two regression models is compared using simulations,

it is observed that s′j has less error than sj in about 60% cases. As described earlier,

a speed transition function computed using historical data of GPS probes is used to

compensate for the error in speed estimation introduced by the space occupancy bias and

other parameters. These mechanisms significantly improve accuracy of speed estimation.

3.5.5 Infrastructure Deployment and Speed Estimation when

GPS Probe Data is Not Available

The vehicle speed on an edge is affected not only by space occupancy, but also by many

other parameters, e.g. static parameters of an edge like number of lanes, edge length,

presence of traffic lights, etc., and dynamic parameters like traffic condition on adjacent

edges. The historical data of GPS probes are used to compute a speed transition function,

that amalgamates effect of all these parameters, for extrapolating speed estimation from

infrastructure edges to infrastructureless edges.
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When GPS probe data is not available, spatial extrapolation of speed estimation needs

to consider all the above parameters explicitly. The following four most influential static

parameters of edges are identified that affect the vehicle movement speed on an edge:

number of lanes, edge length, in-degree of the edge, and presence of exit traffic light on

the edge. It is assumed that the information about these static parameters is available

for all the edges in a road network.

The COCOMO is modified as follows to K-cover congestion levels occuring on all

the edges. A congestion level occuring on an edge ej is covered by an infrastructure

edge ei if (i) ei covers the congestion level and (ii) ei is similar to ej as per the static

parameters. The weighted cosine-similarity is used to compute the similarity score of

a pair of edges. A 4-tuple of the static parameters of every edge is extracted from the

digital map: (number of lanes, edge length, in-degree of the edge, presence of exit traffic

lights on the edge). As the range of values for these parameters is different (e.g., number

of lanes varies from 2 to 4, edge length ranges from 500 meters to 1800 meters, in-degree

of edge takes value in the range of 1 to 5, and presence of traffic lights has value of 0 or

1), they are normalized using the maximum value of each parameter for the pair of edges.

For example, if A = (2.0, 1000.0, 3.0, 1.0) and B = (3.0, 800.0, 2.0, 1.0), the corresponding

normalized vectors are Â = (0.67, 1.0, 1.0, 1.0) and B̂ = (1.0, 0.8, 0.67, 1.0).

A different weight is associated with each parameter based on its influence on traffic

movement. The weight 4-tuple used in our simulations is W = (0.1, 0.1, 0.4, 0.4). These

weights were tuned by carrying out a series of simulations. The in-degree of an edge and

presence of traffic lights at the downstream end of an edge were found the most influencing

parameters to the traffic movement on an edge, hence were assigned the highest weight

of 0.4.

The weighted cosine-similarity between vectors Â and B̂, using weight vector W is

defined as

SS(Â, B̂,W ) =

∑n
i ai × bi × wi√∑n

i (a2
i × wi)

√∑n
i (b2

i × wi
(3.30)

Here ai, bi, and wi are elements of vectors Â, B̂, and W , respectively, and n = 4. The

Algorithm 3.7 specifies the procedure for K-covering congestion levels occuring on all the

edges.
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Algorithm 3.7: Infrastructure Edge Selection for K-coverage of Congestion levels
considering Static Parameters of Edges

Input: a set of candidate edges for having infrastructure, E = {e1, e2, . . . , en}; K;
congestion profile of all the edges: %ei ,∀ei ∈ E; and static parameter information for
all the edges

Output: the set of edges for infrastructure deployment: I
1: Determine the set of (edge, congestion level) pairs covered by every edge ei ∈ E

using its congestion profiles %ei and static parameter information for all the edges.
2: Infrastructure Edge Set I={}
3: Count={clj : j ∈ {A, . . . F}, l ∈ E}, where clj is number of times the (l, j) pair is

covered by the infrastructure edges so far. Set clj = 0,∀(l, j) ∈ E × {A, . . . , F};
4: R is set of (edge, congestion level) pairs yet to be covered to fulfill K-coverage

criteria; set R = E × {A, . . . , F}
5: repeat
6: Select ei from E such that it covers maximum number of (l, j) pairs in R.
7: I = I ∪ {ei}; E = E − {ei}; R = R− {(ei, j),∀j ∈ {A, . . . , F}}
8: For each (l, j) pair covered by ei, c

l
j = clj + 1

9: For each clj ≥ K, remove (l, j) from R.
10: until R={}

The speed estimation method is similar with the modified model except for the fact

that the output of the regression model is considered as the final speed estimation (with-

out applying speed transition function). Every infrastructureless edge gets congestion

level and space occupancy estimation from cellular network every minute. The space oc-

cupancy estimation of current time step is provided as an input to the regression model

of the infrastructure edges, that covers the congestion level and are similar to the infras-

tructureless edge, for speed estimation.

The ECOMO requires minor modifications to permit speed estimation without his-

torical data of GPS probes. The Edges are selected for Infrastructure deployment with

the following modification to step-1 of Algorithm 3.5: edge ei covers edge ej only if

• ei and ej are similar according to static parameters

• ei and ej are similar according to congestion profile

The speed estimation method is similar with the modified model except for the fact

that the output of the regression model is considered as the final speed estimation (with-

out applying speed transition function), avoiding the requirement of historical data of

GPS probes.
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It needs to be stated that the effect of dynamic parameters (e.g., traffic condition on

adjacent edges) and bias in space occupancy estimation is not captured using the static

parameters leading to increase in speed estimation error. Also, when sufficient number

of covering infrastructure edges are not present, the anticipated error calculation is not

possible without historical data of GPS probes.



Chapter 4

Simulation

4.1 Introduction

A simulation model enables abstraction of a real system and permits one to focus on

interesting phenomena. At the same time, the results obtained using simulation study

are eloquent and useful only if the simulation model closely represents the real world

scenario. Many traffic simulators are available in the literature (e.g. SUMO, VISSIM,

VanetMobiSim, PARAMICS, etc., to name a few) that permit microscopic traffic simu-

lation [66].

Simulator for Urban MObility (SUMO) is an open source, highly portable, and mi-

croscopic road traffic simulation package designed to handle large simulation scenarios.

SUMO includes many support applications that help in preparing detailed microscopic

traffic simulation model. The road network parameters (e.g., number of lanes, length,

permitted vehicle types, etc.), vehicle parameters (e.g., vehicle type, acceleration, length,

maximum speed, etc.), vehicle route and flow parameters, right of way, traffic lights, etc.,

are highly configurable. Various car following and overtaking models are available as

part of SUMO distribution. A fast openGL based graphical user interface, fast execution

speed, interoperatibility with other applications at run time using Traffic Control Inter-

face (TraCI), and edge level, vehicle level, and detector level outputs are the attractive

features.

A major limitation of SUMO is that it enforces lane discipline (does not allow lane

width sharing) on all vehicle movements. The road network of cities in developing coun-

50
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tries carries heterogeneous traffic [67] and the road space is shared by vehicles of various

kinds, such as two wheelers, auto rickshaws, cars, buses, trucks, to name a few. The pres-

ence of vehicles with narrow widths in the traffic stream greatly increases the capacity

of roads. Narrow vehicles fill-in the lateral and longitudinal gaps between wide vehicles

permitting more efficient utilization of road space than the homogeneous traffic.

To overcome the limitation of SUMO, SiMTraM (Simulation of Mixed Traffic Mobility)

was developed by Transportation Research Group at IIT Bombay by adapting SUMO

version 0.12 [68]. SiMTraM divides the lane width in a configurable number of strips and

associates fixed number of strips with every vehicle type according to the vehicle width.

This enables sharing of lane width by multiple small vehicles. A major known bug in

SiMTraM is, it crashes while running in certain cases, specifically while simulating a large

number of vehicles. Some of these bugs are inherited from SUMO and are already dealt

with in recent versions of SUMO.

Due to limitations of existing simulators, we redeveloped SiMTraM using SUMO ver-

sion 0.17, which was the latest version of SUMO at the time of development, and made

it available as open source to the user community through web [69]. The SUMO-0.17

and upgraded SiMTraM were compared with respect to the edge level vehicle flow, speed

and flow-speed relationship, for various traffic and road network scenarios [70]. The sim-

ulation results show that upgraded SiMTraM permits higher vehicle density with more

realistic vehicle movement speed.

However, the upgraded version of SiMTraM crashes with simulation scenarios involv-

ing city wide large road networks and more than twenty thousand vehicles. Hence, it

was decided to use SUMO with appropriate parameter tuning for the present study. It is

our sincere belief that SiMTraM has potential to support large scale simulations of lane

sharing heterogeneous traffic as it is adapted from SUMO which is known to support

large scale simulations. The task of fixing bugs in SiMTraM is kept as future work.

As per Ahmedabad Mobility Report, 2012 [18][19], the vehicle distribution on Ahmed-

abad city roads consists of 76.23% two wheelers, 5.27% three wheelers, 13.36% four wheel-

ers, and about 5% buses and trucks. A similar vehicle distribution is observed in most

of the cities in India and other Asian countries. Table 4.1 shows vehicle distribution and

other parameters used in all the simulations in this work. The vehicle speed, acceleration,

and minimum gap parameters are tuned and finalized during simulation model validation
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Table 4.1: Vehicle Distribution

Vehicle
type

% of
total

vehicles

Maximum
speed
(m/s)

Accele-
ration
(m/s2)

Length
(m)

Minimum
gap(m)

Static
PCU [71]

2-wheelers-
class1

15 08.75 m/s
(32 km/hr)

2-wheelers-
class2

45 11.11 m/s
(40 km/hr)

1.2 2.0 1.0 0.5

2-wheelers-
class3

15 15.00 m/s
(54 km/hr)

3-wheelers-
class1

1 07.80 m/s
(28 km/hr)

3-wheelers-
class2

3 09.72 m/s
(35 km/hr)

0.7 3.0 2.0 1.5

3-wheelers-
class3

1 11.11 m/s
(40 km/hr)

Car-class1 3 09.72 m/s
(35 km/hr)

4.0

Car-class2 9 11.11 m/s
(40 km/hr)

1.5 4.5 2.5 1.0

Car-class3 3 15.27 m/s
(55 km/hr)

5.0

Bus-class1 3 08.35 m/s
(30 km/hr)

Bus-class2 2 12.50 m/s
(45 km/hr)

0.8 12.0 3.5 3.0

(section 4.2).

The car following and overtaking model in a microscopic traffic simulator formally de-

fine interactions of a vehicle with other vehicles in a road network (how one vehicle follows

another vehicle in an uninterrupted flow, and rules for lane changing and overtaking). The

Krauss car following model [72] available in SUMO is used in all the simulations in this

work. The model is computationally efficient with a small set of equations defining lane

disciplined safe movement and overtaking conditions for a vehicle. The model permits

custom specification of parameters such as acceleration, deceleration, sigma (driver im-

perfection), tau (driver reaction time), and minimum gap for every vehicle type. Olstam

and Tapani [73] present a detailed comparison of car following models used in AIMSUN,

MITSIM, Paramics and VISSIM microscopic simulators.

Table 4.2 shows the simulation scenarios used to examine the performance of the

proposed models. The CG road scenario (S1), 132-feet ring road scenario (S2), and
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Table 4.2: Simulation Scenarios

Scenario
Name

Description Location
error

Vehicle Insertion Rate

CG road
(S1)

a 3.7 km road stretch from
Navrangpura to Shastri Marg on
CG road in Ahmedabad, India
with one traffic light controlled
junction

250m,
500m

1800-4200 veh/hr for peak and
off peak duration of 14 hrs (to-
tal 38400 vehicles)

132 feet
ring
road
(S2)

a 4.8 km road stretch from
Akhabar nagar to Andhajan
Mandal on 132 feet ring road
in Ahmedabad, India with one
traffic light controlled junction

250m,
500m

1800-5800 veh/hr for peak and
off peak duration of 14 hrs (to-
tal 47200 vehicles)

Naroda-
Narol
highway
(S3)

a 17.5 km road stretch from Nar-
oda to Narol on National High-
way 8-c in Ahmedabad, India
with no traffic lights

250m,
500m

Nine merging/diverging flows
with 200-900 veh/hr per flow
for 14 hrs (total 72590 vehicles)

Grid
network
(S4)

a 15km × 15km road network
with road segment length of 1km
each, with traffic lights at each
junction

250m,
500m

2100-4200 veh/hr in seven
merging/diverging flows for
peak and off peak duration of
14 hrs (total 40950 vehicles)

Random
network
(S5)

a 18km × 16km road network
with road segment length of 0.5-
1.5km each, with traffic lights at
each junction

250m,
500m

2400-4800 veh/hr in eight
merging/diverging flows for
peak and off peak duration of
14 hrs (total 46800 vehicles)

Naroda-Narol highway scenario (S3) are validated using real traffic data taken from [74]

(for S1 and S2) and [18] (for S3). The details of simulation model validation are described

in section 4.2. The two city wide large road network scenarios, namely Grid network (S4)

and Random network (S5), generated using NETGEN utility of SUMO, are used for large

scale evaluation of the proposed models. Figure 4.1 shows a snapshot of the road network

scenarios. The road network snapshot for S1, S2 and S3 are extracted from Google maps

and that for S4 and S5 are taken from SUMO. All data processing is done using Python

version 2.7.3 scripts.

4.2 Simulation Model Validation

SUMO supports traffic heterogeneity by permitting different types of vehicles in a road

network. However, it enforces strict lane discipline and does not allow multiple vehicles
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(a) CG Road: S1 (3.7 km) (b) 132 feet Ring Road: S2 (4.8 km)

(c) Naroda-Narol Road: S3 (17.5 km) (d) Grid Network: S4 (15km×15km)

(e) Random Network: S5 (18km×16km)

Figure 4.1: Simulation Scenarios

to share the lane width. As already mentioned, in India and specifically in Ahmedabad

city, more than 75% of vehicles moving in the road network are two-wheelers [18][19] and

they share the lane width.

This section examines feasibility of using SUMO for representing Indian traffic sce-

nario. We claim using the following few representative scenarios that, with proper pa-

rameter tuning, SUMO can approximate lane width sharing Indian traffic.
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4.2.1 CG Road and 132-feet Ring Road Scenario

Varmora et al. [74] conducted traffic surveys on CG Road and 132 feet ring road in

Ahmedabad, India using video camera. CG Road is a 2-lane wide arterial road which

carries heavy traffic, specifically during peak hours. The 132-feet ring road is a 3-lane

wide arterial road which was developed to offload the traffic from core arterial roads

of the city. The data collection was done between Girish coldrink and Jade Blue on

CG road and between Shastri nagar Cross roads and Jaymangal on 132 feet ring road

(indicated with an arrow in Figure 4.1a and 4.1b, respectively). The authors manually

processed the video data to generate traffic flow (Passenger Car Units (PCU)/Hr) and

speed information. Table-4.3 shows the vehicle flow and speed data collected on these

two streets. Aim is to generate the similar vehicle flow-speed relationship using SUMO

simulator.

Table 4.3: Traffic Flow - Speed Data of CG Road and 132-feet Ring Road

CG Road (2-Lane) 132-feet Ring Road (3-lane)
PCU/hr Speed (km/hr) PCU/hr Speed (km/hr)

1000 36.0 1500-2000 42.5
1500-2200 32.5 2500 40.0
2500-2800 30.0 3000-4000 35.0

CG Road network configuration: A 3.7 km road stretch on CG road is simulated

(Figure 4.1a). To generate the similar flow-speed relationship as mentioned in Table-4.3,

we selected the road network parameters and traffic flow parameters as mentioned in

Table-4.4. For simulating a 2-lane wide CG road scenario, we required three heteroge-

neous lanes (one slower lane) in simulation. The reason being, on Indian roads there are a

large fraction of small vehicles and they share the road space more effectively. Also, lane

width sharing increases entropy on the road, leading to lower movement speed. Table-

4.5 shows actual and simulated flow-speed readings on the measurement edge (indicated

with an arrow in Figure 4.1a). When the actual flow increases from 1000 PCU/hr to

2786 PCU/hr, the average vehicle speed decreases from 36 km/hr to 30 km/hr; whereas

in SUMO, when the simulated flow increases from 950 PCU/hr to 2700 PCU/hr, the

average vehicle speed decreases from 34.9 km/hr to 27.8 km/hr. These results show a

good match between the actual and simulated measurements.

132 feet ring road network configuration: A 4.8 km road stretch on 132 feet
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Table 4.4: CG Road Network Simulation Parameters

Parameter Value Remarks

Number of
Lanes

3 Two major-lanes have speed limit of 12 m/s. The third
slower lane has speed limit of 8 m/s. On slower lane
only 2-wheelers and 3-wheelers are permitted.

Number of
Junctions

5 One-traffic-light-controlled junction (GirishColdrink:
cycle time=70 s, green time=31 s)

Vehicle
Generation

1250-4200
veh/hr

Vehicles were generated for three hours as per vehicle
distribution mentioned in Table-4.1

Table 4.5: CG Road Network Simulation Results

Actual Simulated
PCU/hr Speed (km/hr) PCU/hr Speed (km/hr)

1000 36.0 950-1200 34.9 -34.3
1500-2200 32.5 1500-2250 33.3 - 30.8

2500 30.0 2400-2550 30.2-29.3
2786 30.0 2700 27.8

ring road is simulated (Figure 4.1b). To generate the same flow-speed relationship as

mentioned in Table-4.3, we selected the road network parameters and traffic flow param-

eters as mentioned in Table-4.6. For simulating a 3-lane wide 132 feet ring road scenario,

we required four lanes (one slightly slower lane) in simulation. Table-4.7 shows actual

and simulated flow-speed readings on the measurement edge (indicated with an arrow in

Figure 4.1b). When the actual flow increases from 1500 PCU/hr to 4000 PCU/hr, the av-

erage vehicle speed decreases from 42.5 km/hr to 35 km/hr; whereas in SUMO, when the

simulated flow increases from 1350 PCU/hr to 3980 PCU/hr, the average vehicle speed

decreases from 42.1 km/hr to 37.6 km/hr. These results show a good match between the

actual and simulated measurements.

Table 4.6: 132-feet Ring Road Network Simulation Parameters

Parameter Value Remarks

Number of
Lanes

4 Three major-lanes have speed limit of 15.7 m/s. The
fourth lane has speed limit of 13.89 m/s. On this lane
only 2-wheelers and 3-wheelers are permitted.

Number of
Junctions

4 One traffic-light-controlled junction (Shastri junction:
cycle time=72 s, green time=31 s)

Vehicle
Generation

1000-5800
veh/hr

Vehicles were generated for three hours as per vehicle
distribution mentioned in Table-4.1
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Table 4.7: 132-feet Ring Road Network Simulation Results

Actual Simulated
PCU/hr Speed (km/hr) PCU/hr Speed (km/hr)

1500-2200 42.5 1350-2250 42.1 - 40.7
2500 40 2550 40.4

3000-4000 35 2850-3980 39.9-37.6

4.2.2 Naroda-Narol Highway Scenario

The Naroda-Narol road is a 17.5 km road stretch on National Highway 8-c in Ahmedabad,

India (Figure 4.1c). It also carries heavy local traffic during peak hours. There are 8

junctions on the road stretch and all the edges are three lane wide. The flow data at each

junction on the road stretch is taken from [19]. The edge level speed information is not

available for the road stretch. Instead, the Average trip speed information for the whole

road stretch is obtained from [18]. It is 35.4 km/hr during off peak hours and 29 km/hr

during peak hours. The aim is to generate the similar vehicle flow at each junction while

ensuring similar average trip speed for the whole road stretch.

To approximate the actual flow at each edge on the road stretch and to match with the

average trip speed, we selected the road network parameters and traffic flow parameters

as mentioned in Table-4.8. For simulating 3-lane wide Naroda-Narol road scenario, we

required four lanes (one slightly slower lane) in simulation. The set up lead to average

trip speed of 38.8 km/hr in simulation. Table-4.9 shows edge wise actual and simulated

flow. A very good match is observed between the actual and simulated vehicle flow on

all nine edges (average error of 1.03%). The difference in actual average trip speed (35.4

km/hr) and simulated trip speed (38.8 km/hr) is 9.6%.

4.2.3 Discussion

It is observed in simulations that the strict lane discipline enforced by SUMO reduces

the traffic carrying capacity of a road network. Hence, to match with the vehicle flow

of lane width sharing Indian traffic, an additional lane is required in the SUMO road

network. Due to the horizontal movement of vehicles in lane width sharing traffic, the

average vehicle speed in the road network decreases. Hence, the appropriate lane speed

adjustments are required in SUMO road network. As a part of this exercise, the vehicle
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Table 4.8: Naroda-Narol Road Network Simulation Parameters

Parameter Value Remarks

Number of
Lanes

4 Three major-lanes have speed limit of 15.70 m/s. The
fourth lane has the speed limit of 13.89 m/s. On this
lane only 2-wheelers and 3-wheelers are permitted.

Number of
Junctions

8 Three traffic-light-controlled junctions (Virat Nagar:
cycle time=87s, green time=46s; Soni Chal: cy-
cle time=87s, green time=46s; Rabari colony: cycle
time=116s, green time=75s; )

Vehicle
Generation

total
15500

vehicles

as the vehicles were permitted to enter and exit the road
stretch at any junction, nine merging-diverging flows
with 200-900 veh/hr per flow were generated for three
hours as per vehicle distribution mentioned in Table-4.1

Table 4.9: Naroda-Narol Road Network Simulation Results

Edge Id Edge Length
(km)

Actual
PCU/hr

Simulated
PCU/hr

Simulated Edge
Speed (km/hr)

e1 2.9 1526 1525 41.4
e2 2.1 1526 1530 38.2
e3 2.0 2016 1914 37.3
e4 1.8 3049 3039 39.3
e5 1.5 3049 3043 32.1
e6 1.2 3852 3894 37.7
e7 2.0 3560 3507 38.8
e8 1.5 1987 1977 41.2
e9 2.5 1633 1632 41.5

parameters such as maximum speed and acceleration are tuned for use in all the simulation

scenarios (Table 4.1).

An adequate match is observed between actual and simulated traffic parameters in all

three scenarios. The simulation results show that, with appropriate parameter tuning,

SUMO is able to approximate vehicle flow-speed relationship observed in lane width

sharing Indian traffic. Hence, it is concluded that SUMO can be used to simulate lane

width sharing Indian traffic scenarios.

4.3 Performance of the Map Matching Algorithm

Table 4.10 and 4.11 present result of path estimation and trip speed estimation for a

sample of five vehicles for grid network (S4) and random network (S5) scenarios. The
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Table 4.10: Performance of Map Matching Algorithm: Grid Network (S4)

Veh.
Id

Path
Trip Speed

(m/s)
250m Location error 500m Location error
L1∗ L2∗ L3∗ L1∗ L2∗ L3∗

v0 12 edges with no
U-turn

11.76 12/12 12.01 02.13 10/12 11.01 06.38

v1 12 edges with no
U-turn

11.76 12/12 12.01 02.13 10/12 11.01 06.38

v2 5 edges with no
U-turn

10.42 05/05 11.01 05.66 04/05 10.16 02.50

v3 6 edges with U-
turn at one end

12.50 05/06 11.01 11.92 03/06 09.90 20.80

v4 12 edges with
U-turn at one
end

10.81 11/12 10.09 06.66 11/12 10.09 06.66

*L1=accuracy of path estimation defined as ratio of correctly identified edges to total
number of edges on a path, L2=estimated trip speed (m/s), L3= speed error (%)

Table 4.11: Performance of Map Matching Algorithm: Random Network (S5)

Veh.
Id

Path
Trip Speed

(m/s)
250m Location error 500m Location error
L1∗ L2∗ L3∗ L1∗ L2∗ L3∗

v0 16 edges with no
U-turn

10.80 16/16 11.01 01.94 15/16 10.54 02.41

v1 13 edges with no
U-turn

11.03 13/13 11.26 02.09 11/13 10.04 08.98

v2 7 edges with U-
turn at one end

10.26 06/07 09.62 06.23 03/07 06.69 34.80

v3 8 edges with U-
turn at one end

11.49 07/08 10.61 07.65 06/08 09.22 19.76

v4 6 edges with
U-turn at both
ends

11.29 03/06 06.77 40.03 not
found

– –

*L1=accuracy of path estimation defined as ratio of correctly identified edges to total
number of edges on a path, L2=estimated trip speed (m/s), L3= speed error (%)

following observations are made from simulation results: intermediate edges of all the

paths are determined accurately in both the scenarios (S4 and S5) with maximum location

error of 250 meters and 500 meters. Due to conservative selection of edges, the algorithm

has no false positive, i.e. the algorithm never claims an incorrect edge on a path. However,

due to limited overlapping location points at the beginning and the end of a trip, the

algorithm faces difficultly in selecting edges correctly. In that case, it discards one or

more edges from the head and tail of the path and computes a truncated path. The
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number of truncated edges increases with the increase in location error. When a vehicle

takes U-turn at the beginning (or end) of the journey, the algorithm always discards the

first (or last) edge from the estimated path. With the maximum location error of 250

meters, when a vehicle does not take U-turn, the path is estimated with 100% accuracy

in both, S4 and S5, scenarios.

When path estimation is more than 85% accurate, the error in trip speed estimation

is less than 12% in both the scenarios (S4 and S5).

4.4 Estimation of Traffic parameters using Cellular

Network Data

For evaluating the performance of the proposed traffic parameters estimation model, the

following methodology is used: every scenario (Table 4.2) is simulated three times by

changing random seed. To use only steady state data of simulation runs, the data from

the first and the last edge of all the routes, the initial 30 minutes data, and the data

after 14 hrs of simulation are discarded. The aggregation period of 10 minutes (the raw

data of 10 minutes is used to compute traffic parameters) and update period of 1 minute

(traffic parameters are computed every minute) are used.

4.4.1 Vehicle Flow Estimation

Figure 4.2 shows mean error in non-real time flow estimation (before temporal extrap-

olation) and real time flow estimation (after temporal extrapolation using exponential

moving average and regression, each) for all the simulation scenarios with maximum lo-

cation error of 250m and 500m. Figure 4.3 shows percentile error in flow estimation in all

the scenarios. The regression based temporal extrapolation is done using leave-one-out

cross validation technique (historical data of two days is used for learning and one day

data is used for testing). The variations in flow error are denoted by error bars in the

graph (Figure 4.2). The height of an error bar equals the standard deviation in flow error.

The non-real time flow estimation is very accurate in all the scenarios with mean

and ninety percentile error of less than 5%. We identify the following two reasons for

this high accuracy: first, the map-matching algorithm is effective in generating accurate
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Figure 4.2: Mean Flow Error

vehicle trajectories; and second, reasonably large aggregation period (10 minutes) is used

for computing vehicle flow data. Also, a little impact of location error is observed on

flow error. This is due to two reasons: first, the ambiguous period (when a vehicle is

detected on multiple edges) introduced due to location error is comparatively smaller than

the aggregation period (a vehicle traveling at 30 km/hr speed may face the ambiguous

period of one minutes with the maximum error of 500m, in worst case), and second,

the ambiguous period must span across the aggregation period to contribute to the flow

error. Section 3.3.3 contains detailed discussion on effect of location error and aggregation

period on flow estimation error.

The regression based temporal extrapolation is equally accurate with the mean flow

error of less than 5%. This alludes to the fact that regression based extrapolation does

not contribute any error in real time flow estimation. The reason being, the traffic flow

variations during peak hours and off-peak hours in the three days simulation data are

similar, representing recurrent traffic conditions in a road network. The regression model

learnt using the two days flow data fits well when tested using the third day data, leading

to accurate extrapolation of vehicle flow.
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(a) Scenario S1 (b) Scenario S2

(c) Scenario S3 (d) Scenario S4

(e) Scenario S5

Figure 4.3: Percentile Flow Error
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The exponential moving average based temporal extrapolation is relatively erroneous

with mean flow error approaching 10%. It is observed that there is a huge difference

between mean and median flow error (mean flow error is approximately double than the

median flow error) indicating the presence of bias in the flow error. The detailed analysis

revealed some interesting facts. The vehicle flow on edges varies with time and gets more

noticeable transitions from off-peak hour to peak hour and vice versa. The exponential

moving average based temporal extrapolation gives more weightage to recent history to

estimate the vehicle flow after h time steps (h=10 minutes in this case). During steady

flow periods, the extrapolated flow values are in very good agreement with the actual

flow value. During the transition periods, the variations in flow are inflated leading to

increase in flow error. For example, if the vehicle flow has been increasing recently, the

exponential moving average method predicts increase even after the flow stabilizes.

(a) Flow Variations with Regression based Extrapolation(b) Flow Variations with Exponential Moving Average
based Extrapolation

Figure 4.4: Flow Variations on an Edge in Scenario S2

To support the above arguments, Figure 4.4 shows actual and estimated flow (before

and after extrapolation using exponential moving average and regression) on an edge in

132-feet ring road scenario (S2). It can be seen that the actual and estimated flow (before

and after extrapolation) are in good agreement during steady flow periods regardless of

the method used for extrapolation. The regression based extrapolation (Figure 4.4a)

captures flow variations well and makes accurate flow estimation even during transition

periods (peak hours to off-peak hours and vice versa). The exponential moving average

based extrapolation (Figure 4.4b) does not perform well during transition periods and
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the increase or decrease in flow is overshot.

The least flow error among all the simulation scenarios is observed in Naroda-Narol

highway scenario (S3), specifically with exponential moving average based extrapolation

(less than 4%). This is due to two reasons: first, there are no sharp transitions of peak

hour and off peak hour traffic; and second, there are no traffic light controlled junctions

permitting relatively smooth (uninterrupted) traffic movement.

4.4.2 Edge Space Occupancy Estimation

The edge space occupancy is computed using vehicle flow and count data. Figure 4.5

shows mean error in non-real time space occupancy estimation (before temporal extrapo-

lation of flow) and real time space occupancy estimation (after temporal extrapolation of

flow using exponential moving average and regression, each) for all the simulation scenar-

ios with maximum location error of 250m and 500m. Figure 4.6 shows percentile error in

space occupancy estimation in all the scenarios. The variations in space occupancy error

are denoted by error bars in the graph (Figure 4.5). The height of an error bar equals

the standard deviation in space occupancy error.

Figure 4.5: Mean Space Occupancy Error
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(a) Scenario S1 (b) Scenario S2

(c) Scenario S3 (d) Scenario S4

(e) Scenario S5

Figure 4.6: Percentile Space Occupancy Error
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The error in non-real time space occupancy estimation is significantly higher (more

than double) than flow error. This is due to the fact that flow estimates are computed for

an aggregation period (10 minutes) reducing flow error significantly. The space occupancy

estimates, on the other hand, are instantaneous and specify edge space occupancy at the

end of an aggregation period. Except for CG road scenario (S1), the mean and median

error in space occupancy estimation is less than 10%. In S1, the mean and median space

occupancy error is 23% and 18%, respectively, for 250m location error scenario, and more

than 50% and 38%, respectively, for 500m location error scenario. The detailed analysis

of simulation results revealed some interesting facts. S1 has junctions with and without

traffic lights. The vehicles’ movement on traffic light controlled edges is different than the

edges without traffic lights. As the traffic light deployment information is not available

(realistic assumption in India), the map matching algorithm generates erroneous vehicle-

edge mapping. It is observed that the space occupancy estimation is biased. For a pair of

adjacent edges with and without traffic lights, the traffic light controlled edge gets under-

estimate of space occupancy whereas the edge without traffic light gets over-estimate

of space occupancy. It needs to be clarified that the similar effect is not observed in

flow estimation error due to large aggregation period. The Pearson correlation coefficient

between actual space occupancy and estimated space occupancy is more than 0.95 for all

the edges in the road network. This implies that the space occupancy estimation data

can be conveniently used in subsequent stages (e.g. edge level speed estimation) in the

proposed model.

As mentioned earlier, the real time and non-real time space occupancy estimation is

computed using corresponding vehicle flow and count data. The accuracy of non-real

time flow data and real-time flow data computed using regression model are comparable.

Hence, the error in non-real time space occupancy data and real time space occupancy

data computed using regression based flow data are analogous. Due to high error in

real time flow data computed using exponential moving average based extrapolation, the

corresponding space occupancy estimation has high error (about three times higher than

non-real time occupancy estimation error in S2, about two times higher in S3, and about

one and half times higher in S4 and S5).

The least occupancy error among all the simulation scenarios is observed in Naroda-

Narol highway scenario (S3), specifically with exponential moving average based extrap-



4.4 Estimation of Traffic parameters using Cellular Network Data 67

olation (less than 6%). The reason lies in the fact that the flow estimation in the scenario

is very accurate.

4.4.3 Traffic Congestion Estimation

Figure 4.7: Congestion Estimation Accuracy

Traffic condition on an edge during an aggregation period is classified among six con-

gestion levels (A-F). The volume to capacity ratio (V/C ratio) is used to compute con-

gestion level on an edge (section 3.3.2 elaborates the mechanism). Figure 4.7 summarizes

the accuracy of non-real time congestion level estimation (before temporal extrapolation

of flow) and real time congestion level estimation (after temporal extrapolation of flow

using exponential moving average and regression, each) for all the simulation scenarios

with maximum location error of 250m and 500m. The fraction of false positives and false

negatives are also computed for all the scenarios. A classification result is considered false

positive if the estimated congestion level is higher than the actual congestion level on an

edge; similarly, a false negative is recorded if the estimated congestion level is lower than

the actual congestion level.

The non-real time congestion estimation is very accurate in all the scenarios with
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maximum error of 3%. There are two reasons for this high accuracy: first, the vehicle

flow data used for congestion level computation is accurate (mean and ninety percentile

error of less than 5%); and second, to avoid misclassification at the boundary value, range

estimation of the V/C ratio with ε = 0.1 is used (elaborated in section 3.3.2), reducing

false positives and false negatives significantly.

As mentioned earlier, the accuracy of non-real time flow data and real time flow data

computed using regression model are comparable. Hence, the error in non-real time

congestion data and real time congestion data computed using regression based flow data

are analogous, showcasing accurate real time congestion estimation.

Table 4.12: Flow Error and Congestion Level Classification Error with Exponential Mov-
ing Average

Scenario Congestion Error Flow Error

S1 09-10% <09%
S2 14% <12%
S3 04% <04%
S4 05-07% <09%
S5 05-06% <09%

The congestion level estimation using real time flow data computed using exponen-

tial moving average based temporal extrapolation is comparatively more erroneous. The

reason being, the flow error with exponential moving average is higher than the error in

non-real time flow estimation. Table 4.12 shows flow error and congestion level classifica-

tion error with exponential moving average for all the scenarios. The least classification

error of 4% is observed in S3 which has the least flow estimation error of less than 4%

as well. Similarly, the highest congestion level classification error of 14% is observed in

S2 which has the highest flow estimation error of less than 12%. It can be seen that the

error in flow estimation is reflected in congestion level classification accuracy.

4.4.4 Discussion

The simulation results show the feasibility of real time estimation of traffic parameters

using cellular network data. The map matching algorithm generates vehicle trajectories

using which the vehicle flow and count data is computed for all the edges. The real time

vehicle flow estimations are accurate with the mean error of less than 5% for regression
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based extrapolation and less than 10% in most of the cases for exponential moving average

based extrapolation.

It is assumed that all the vehicles are equipped with a cell phone. While it is a

reasonable assumption considering cellular teledensity in urban areas, a small fraction of

vehicles not having cell phone does not affect the overall accuracy of traffic parameter

estimation.

The vehicle flow data are used to compute edge level space occupancy and congestion

level estimation. The error in congestion level classification is affected by the accuracy of

flow estimation. It needs to be emphasized that, even though traffic condition on an edge

is categorized among six congestion levels, the classification error is notably less. This is

considered significant because the proposals in literature attempts to classify the traffic

state into fewer levels and report higher error (for example, in [37], the traffic state on

an edge is classified into two levels (congested and uncongested) and accuracy of 90% is

reported). The historical data of congestion level are used to compute congestion profile

of edges which is further used by the COngestion COverage MOdel (COCOMO) and

Edge COverage MOdel (ECOMO) for selecting edges for ITS infrastructure deployment

(section 3.5.1 and 3.5.2).

The space occupancy error is significantly higher than flow error, but has good corre-

lation with the actual occupancy estimation. The edge space occupancy data along with

the real time congestion level data are subsequently used by the proposed ITS for edge

level speed estimation (section 3.5.3).

4.5 Speed Estimation using COngestion COverage

MOdel (COCOMO)

For these simulations, it is assumed that six percent vehicles (of bus and car types) are

GPS enabled and report their accurate position every second. The collected trajectories

of vehicles are aggregated to compute average speed of GPS probes for every congestion

level for every edge. The historical data of GPS probes collected in this manner are used

to spatial extrapolate speed estimation from an infrastructure edge to corresponding

infrastructureless edge as described in section 3.5.3.
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The COCOMO uses edge level congestion profile computed using cellular data to select

optimal set of edges for ITS infrastructure deployment (section 3.5.1). It aims to provide

K-coverage of all the congestion levels in a road network, that is, for every congestion

level occurring in a road network, there are at least K edges with ITS infrastructure

covering it. K = 3 is used in the simulations. When a congestion level occurs on an

infrastructureless edge, the infrastructure edges covering the congestion level are used

to compute real time speed estimation on the edge (section 3.5.3). The real time space

occupancy estimation of infrastructureless edge is provided as an input to the regression

model of infrastructure edges covering the congestion level. The regression model along

with the speed transition function computed using historical data of GPS probes is used

for real time speed estimation on the edge.

The performance of COCOMO is evaluated using scenarios S4 and S5 only. The reason

being, the other scenarios (S1, S2, and S3) have fewer edges to provide K coverage for all

the congestion levels (S1, S2 and S3 have 4, 4, and 9 edges, respectively). On the other

hand S4 and S5 have sufficiently large number of traffic carrying edges (S4 has 40 edges

and S5 has 52 edges) and are more suitable for evaluating effectiveness of the model in

selecting edges for infrastructure deployment and edge level speed estimation.

4.5.1 ITS Infrastructure Requirement and Speed Estimation

Error

Speed estimation is carried out for all the infrastructureless edges for congestion levels

A-E. As congestion level F represents jam condition (unstable traffic regime), we do not

do any speed estimation for the congestion level, even though infrastructure is deployed

to cover all the congestion levels.

Figure 4.8 summarizes the mean speed error for scenarios S4 and S5 with maximum

location error of 250m and 500m. The real time space occupancy estimation (which

is provided as an input to the speed estimation model) based on real time flow data

computed using exponential moving average and regression based temporal extrapolation,

each, are considered. The number of infrastructure edges required to 3-cover all the

congestion levels is also specified. The variations in speed error are denoted by error bars

in the graph. The height of an error bar equals the standard deviation in speed error.
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Figure 4.8: Mean Speed Error (COCOMO)

(a) Scenario S4 (b) Scenario S5

Figure 4.9: Percentile Speed Error (COCOMO)

Figure 4.9 shows percentile error in real time speed estimation for S4 and S5. Following

are the important observations:

• The mean speed error of 10% and 5.0-7.5% is observed in scenarios S4 and S5,

respectively. The median error of less than 10% is perceived in all the speed esti-

mations (7-9% in S4 and 3.5-6.0% in S5). The ninety percentile error of 16-22%
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Table 4.13: Error in Space Occupancy and COCOMO based Speed Estimation

Scenario
Location

Error

Extra∗-
polation

Occupancy
Error

Mean Speed
Error

S4
250m

E1 15.00% 10.92%
E2 09.90% 09.37%

500m
E1 16.10% 10.32%
E2 11.33% 08.99%

S5
250m

E1 16.27% 04.93%
E2 10.12% 05.40%

500m
E1 18.68% 05.04%
E2 13.35% 07.53%

*E1 and E2 are flow extrapolation using exponential moving
average and regression, respectively

and 10-16% is observed in S4 and S5, respectively.

• The error in space occupancy estimation (Figure 4.5) does not propagate in the

speed estimation. It is due to the following reasons: first, the regression model for

speed estimation is learnt using estimated (erroneous) occupancy information, and

second, most of the occupancy errors are systematic with very high correlation with

the actual space occupancy. Table 4.13 show error in space occupancy and speed

estimation for all the scenarios.

• The speed estimation results do not suggest any specific temporal extrapolation

method for real time flow estimation. In S4, regression based extrapolation gives a

slightly better speed estimation whereas in S5, specifically with 500m location error,

exponential moving average based extrapolation gives better speed estimation. We

reiterate that the regression based flow extrapolation generated better occupancy

estimation (Table 4.13 and Figure 4.5) and congestion level classification (Figure

4.7) in all the cases. But the similar trend is not present in speed estimation.

• To 3-cover all the congestion levels in scenario S4 having 40 edges carrying traffic, 8-

9 infrastructure edges are required, whereas in scenario S5 having 52 edges carrying

traffic, 7-8 infrastructure edges are required.

The simulation results show the feasibility of edge level speed estimation with ITS infras-

tructure deployment on 15-20% edges in a road network. This is considered an important

finding because various proposals in the literature require infrastructure deployment on
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60-80% edges in a road network (section 2.5).

4.5.2 Effect of Unavailability of Infrastructure Edges

This section evaluates fault tolerance characteristics of the COCOMO by observing the

effect of the unavailability of a certain fraction of infrastructure on speed estimation

accuracy and congestion level coverage.

An infrastructure edge may be unavailable for speed estimation for given congestion

level due to infrastructure failure or due to change in traffic pattern after infrastructure

deployment. The unavailable infrastructure edges are treated as infrastructureless edges

for the given congestion level. Speed estimation for all the infrastructureless edges is

carried out using currently available infrastructure edges. The count of unavailable in-

frastructure edges is varied from 1 to 50% of total number of infrastructure edges, to

analyze its effect on speed estimation and coverage of congestion levels. A sample of

a certain number of infrastructure edges is picked and considered as the set of unavail-

able edges. The congestion level coverage and real time speed estimation is done using

remaining infrastructure edges. In order to avoid special cases and to observe the aggre-

gate effect, the process is repeated ten times and average speed error and congestion level

coverage is computed.

Figure 4.10 shows the effect of unavailability of a certain number of infrastructure

edges on speed estimation (mean, median and ninety percentile error) and congestion

level coverage for grid network (S4) and random network (S5). The count of not-covered

congestion levels for a certain number of unavailable infrastructure edges is specified over

ninety percentile speed error plot in the figure. Following are the important observations:

• The congestion level coverage is not much affected by the unavailability of infras-

tructure edges. Due to 3-cover deployment of infrastructure for every congestion

level, most of the congestion levels are covered even with 50% unavailable infras-

tructure, and speed estimation is possible.

• The speed error does not vary according to a specific trend with the count of un-

available infrastructure edges. Inspecting standard deviation in speed error (error

bars in Figure 4.8), and variations in speed error with number of unavailable infras-

tructure edges (Figure 4.10), it is inferred that there is no impact of unavailability
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(a) Scenario S4

(b) Scenario S5

Figure 4.10: Effect of Unavailability of Infrastructure Edges (COCOMO)

of infrastructure edges on speed estimation accuracy. When at least one infrastruc-

ture edge is available to cover a congestion level, speed estimation on all the edges
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experiencing the congestion level is feasible.

The simulation results exhibit fault-tolerance capability of the proposed model. It is

observed that the redundant infrastructure deployment to K-cover congestion levels does

not improve accuracy of speed estimation much. However, it serves two purposes: first,

it increases fault tolerance capability of the model significantly, and second, it enables

computation of anticipated speed error to be reported to the end user.

4.5.3 Effect of Limited Infrastructure Deployment

This set of simulations evaluates COCOMO for feasibility of incremental ITS infrastruc-

ture deployment. The effect of limited infrastructure deployment on speed estimation

accuracy and congestion level coverage is analyzed.

The total ITS infrastructure requirement to 3-cover all the congestion levels in S4

and S5 are known (Figure 4.8). For limited infrastructure deployment, the number of

infrastructure units is varied from 10% to 100% of total infrastructure requirement in

increments of 10%. Given the certain number of ITS infrastructure units, say N , the

algorithm 3.4 is executed to select an optimal set of N infrastructure edges to maximize

congestion level coverage.

Figure 4.11 shows the effect of limited infrastructure deployment on speed estimation

accuracy (mean, median and ninety percentile error) and coverage of congestion levels for

grid network (S4) and random network (S5). The count of not-covered congestion levels

for a certain number of infrastructure units is specified over ninety percentile speed error

plot in the figure. Following are the important observations:

• With three ITS infrastructure units, atleast 1-coverage of all the congestion levels

is achieved in both the scenarios in all cases (maximum location error of 250m and

500m, temporal extrapolation using exponential moving average and regression),

permitting real time speed estimation on all the edges. The additional infrastructure

units improve fault tolerance and enable anticipated error computation.

• When all congestion levels are not covered, high fluctuations in speed estimation

error are observed, specifically in S4. The detailed analysis of simulation results

pointed out two sources of error: the error in congestion level classification and
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(a) Scenario S4

(b) Scenario S5

Figure 4.11: Effect of Limited Infrastructure Deployment (COCOMO)

infrastructure edges generating poor speed estimations. We explain the fact using

speed estimation in 250m location error and exponential moving average based
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extrapolation scenario in S4 (Figure 4.11a). Table 4.14 shows congestion level

coverage and corresponding speed estimation error for the scenario.

With one infrastructure unit, congestion levels C and D are covered. For these

congestion levels, speed estimation error is in a reasonable range (mean speed error

is 6.46% and 10.9% for C and D, respectively). The congestion levels B and E

get speed estimation due to congestion level classification error. Congestion level

classification error for this scenario is 5% as reported in Figure 4.7, however the

error involving B and E is higher (7.88%). When speed estimation is done in these

cases, the significantly high error is observed (mean speed error of 31.50% and

46.10% for B and E, respectively). This is a primary cause of notably high ninety

percentile error (42.21%) in the scenario.

The deployment of second infrastructure unit gets coverage for congestion level B

reducing speed error for it. The ninety percentile error is still high (29.55%) in

the scenario due to high speed error associated with false negatives of congestion

level E.

With three infrastructure units, one coverage for all the congestion levels is achieved.

The speed error measurements in this case are comparable to the 3-Coverage sce-

nario reported in Figure 4.9 and 4.8.

The further increase in infrastructure units affects speed estimation accuracy based

on the quality of speed estimations contributed by the newly selected infrastructure

edge.

• The congestion level classification error does not necessarily result in high error in

speed estimation in all cases. The speed error depends upon the speed difference

between correct and estimated congestion level. The fact is observed in Figure

4.11b for exponential moving average based extrapolation scenario in S5 where the

congestion level classification error does not contribute much to the overall speed

error.

Figure 4.12 compares congestion level coverage (minimum, maximum and average)

of COCOMO and random infrastructure deployment for grid network (S4) and random

network (S5) in all the cases. Figure 4.13 shows details of congestion level coverage of
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Table 4.14: Effect of Congestion Level Coverage on Speed Estimation Error in S4
with 250m Location Error and Exponential Moving Average based Extrapolation

Infra.
Units

Congestion
Level

Coverage
Speed Error (%)

Mean Median
Ninety

Percentile

1

B 0 31.50 02.57 122.25
C 1 06.46 04.44 13.64
D 1 10.90 09.10 18.81
E 0 46.10 43.97 79.62

All – 14.85 07.82 42.21

2

B 1 13.56 13.59 22.22
C 1 06.61 04.64 14.02
D 1 10.90 09.10 18.81
E 0 46.10 43.97 79.62

All – 14.09 09.38 29.55

3

B 1 13.55 13.59 22.22
C 1 06.56 04.62 13.83
D 2 08.84 07.82 15.56
E 1 13.43 13.12 22.74

All – 09.84 08.11 19.57

4

B 2 09.15 08.30 14.17
C 2 08.59 07.06 16.53
D 2 10.25 09.11 17.46
E 1 13.43 13.12 22.74

All – 09.55 08.38 17.03

6

B 2 09.15 08.30 14.17
C 2 09.37 07.26 18.39
D 3 19.64 19.34 33.09
E 2 07.75 06.77 14.97

All – 11.34 08.88 23.17

COCOMO with exponential moving average based flow extrapolation and random de-

ployment for S4 and S5 scenarios. The following methodology is adopted to compute the

congestion level coverage of random deployment: a sample of given size is picked ran-

domly from the set of edges in a road network and considered as the set of infrastructure

edges; the congestion level coverage is computed using this set of edges; in order to avoid

special cases and to observe the aggregate effect, the process is repeated ten times and

average congestion level coverage is computed. Following are the important observations

from this set of simulations:

• The congestion level coverage of COCOMO increases systematically with an in-

crease in ITS infrastructure units ensuring maximal coverage of all the congestion
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(a) Scenario S4 (b) Scenario S5

Figure 4.12: Comparison of Congestion Level Coverage: COCOMO and Random De-
ployment (L1 and L2 are location error of 250m and 500m, respectively; E1 and E2 are
flow extrapolation using exponential moving average and regression, respectively)

levels using available infrastructure.

• As expected, the random deployment fails to ensure maximal coverage of all the

congestion levels. It has high coverage for some congestion levels (max plot in Figure

4.12) and very low coverage of other congestion levels (min plot in the figure). The

reason being, some congestion levels occur more frequently in a road network than

the others.

• In S5 (Figure 4.13c and 4.13d), there are only two edges that spend sufficient time

under the congestion level E and are the only candidates for having the infrastruc-

ture to cover the congestion level. The COCOMO systematically assigns infrastruc-

ture to allow 2-coverage of the congestion level, whereas random deployment face

difficulty in ensuring even 1-coverage of the congestion level.

• To ensure 1-coverage of all the congestion levels in all the scenarios, the COCOMO

requires 3 infrastructure units, whereas the random deployment does not achieve

1-coverage even with 9 infrastructure units (infrastructure requirement to 3-cover

all the congestion levels in COCOMO) in some cases.

Figure 4.14 reiterates the fact and shows that COCOMO requires 2-3 infrastruc-

ture units to reduce the non-coverage of congestion levels to zero, whereas random
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(a) Scenario S4, 250m Location Error (b) Scenario S4, 500m Location Error

(c) Scenario S5, 250m Location Error (d) Scenario S5, 500m Location Error

Figure 4.13: Details of Congestion Level Coverage: COCOMO and Random Deployment

deployment fails to do so.

4.6 Speed Estimation using Edge COverage MOdel

(ECOMO)

The GPS probe data collection and processing is the same in COCOMO and ECOMO. In

this set of simulations, it is assumed that six percent vehicles (of bus and car types) are

GPS enabled and report their accurate position every second. The collected trajectories
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(a) Scenario S4 (b) Scenario S5

Figure 4.14: Non-coverage of Congestion Level: COCOMO and Random Deployment
(L1 and L2 are location error of 250m and 500m, respectively; E1 and E2 are flow
extrapolation using exponential moving average and regression, respectively)

of vehicles are aggregated to compute average speed of GPS probes for every congestion

level for every edge. The historical data of GPS probes collected in this manner are used

to spatial extrapolate speed estimation from an infrastructure edge to corresponding

infrastructureless edge as described in section 3.5.3.

The ECOMO aims to select an optimal set of edges for ITS infrastructure deployment

(section 3.5.2). To accomplish this, it determines a set of similar edges for every edge

in a road network using the congestion profile of edges computed using cellular network

data. The aim is to provide K-coverage for all the edges in a road network, that is, for

every infrastructureless edge in a road network, there should be at least K edges with

ITS infrastructure, similar to it. K = 3 is used in the simulations. The infrastructure

edges similar to an edge are used for speed estimation on the edge (section 3.5.3). The

real time space occupancy estimation of infrastructureless edge is provided as an input

to the regression model of infrastructure edges covering it. The regression model along

with the speed transition function computed using historical data of GPS probes is used

for real time speed estimation on the edge.

The performance of ECOMO is evaluated using all the scenarios, S1 to S5 (Table

4.2). The S1, S2 and S3 have fewer edges to provide 3-coverage for all the edges. Hence,

performance evaluation is done with 1-coverage of edges in these scenarios. The S4 and
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S5 have sufficiently large number of traffic carrying edges (S4 has 40 edges and S5 has 52

edges) and are more suitable for evaluating effectiveness of the model in selecting edges

for infrastructure deployment and edge level speed estimation.

4.6.1 ITS Infrastructure Requirement and Speed Estimation

Error

(a) Mean Speed Error (1-coverage) (b) Mean Speed Error (3-coverage)

Figure 4.15: Mean Speed Error (ECOMO)

Speed estimation is carried out for all the infrastructureless edges for congestion levels

A-E. As congestion level F represents jam condition (unstable traffic regime), we do not

do any speed estimation for the congestion level, even though it is considered while

computing the similarity of edges.

Figure 4.15 summarizes the mean speed error for all the simulation scenarios with

maximum location error of 250m and 500m. The real time space occupancy estimation

(which is provided as an input to the speed estimation model) based on real time flow data

computed using exponential moving average and regression based temporal extrapolation,

each, are considered. The number of infrastructure edges required to K-cover all the

edges (K=1 for S1-S3 and K=3 for S4-S5) is also specified in the figure. The variations in

speed error are denoted by error bars in the graph. The height of an error bar equals the

standard deviation in speed error. Figure 4.16 shows percentile error in real time speed

estimation for all the scenarios. Following are the important observations:
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(a) Scenario S1 (1-coverage) (b) Scenario S2 (1-coverage)

(c) Scenario S3 (1-coverage) (d) Scenario S4 (3-coverage)

(e) Scenario S5 (3-coverage)

Figure 4.16: Percentile Speed Error (ECOMO)
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• The mean speed error of less than 10% is observed in all the scenarios. In the large

scale scenarios, S4 and S5, the mean error of 5-6% and ninety percentile error of

12-13% is perceived.

• In S1, S2 and S3, fluctuations in speed estimation accuracy are observed: the mean,

median and ninety percentile error varies in the range of 2.8 to 9.8%, 1.5 to 10.7%,

and 6.0 to 21.8%, respectively. In these small scale scenarios, the erroneous speed

estimations by even one infrastructure edge significantly affect the overall accuracy.

In S2, there are only two infrastructureless edges for speed estimation. With expo-

nential moving average based flow extrapolation, the congestion level classification

error of 15% is observed (Figure 4.7). This leads to comparatively high ninety per-

centile speed error (20.6%), which in turn increases the mean speed error (9.9%).

In S3, with 250m location error and regression based flow extrapolation, the mean

speed error of 9.1% and ninety percentile error of 18.8% is observed. The congestion

level classification error in the scenario is less than 5% (Figure 4.7). The analysis

revealed the fact that, the high ninety percentile error occurs due to erroneous speed

estimation on one edge (mean error of 21%).

• The error in space occupancy estimation (Figure 4.5) does not propagate in the

speed estimation. It is due to the following reasons: first, the regression model for

speed estimation is learnt using estimated (erroneous) occupancy information, and

second, most of the occupancy errors are systematic with very high correlation with

the actual space occupancy. Table 4.15 show error in space occupancy and speed

estimation for all the scenarios.

• The speed estimation results do not suggest any specific temporal extrapolation

method for real time flow estimation. In S4 and S5, both the extrapolation meth-

ods give comparable accuracy in speed estimation. While S2 has better speed

estimation with exponential moving average, the speed estimation in S3 are better

with regression based extrapolation. We reiterate that the regression based flow

extrapolation generated better space occupancy estimation (Table 4.15 and Figure

4.5) and congestion level classification (Figure 4.7) in all the cases. But the similar

trend is not present in speed estimation.
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Table 4.15: Error in Space Occupancy and ECOMO based Speed Estimation

Scenario
Location

Error

Extra∗-
polation

Occupancy
Error

Mean Speed
Error

S1
250m

E1 33.67% 04.77%
E2 23.08% 02.83%

500m
E1 57.45% 04.25%
E2 50.81% 09.75%

S2
250m

E1 33.47% 09.86%
E2 07.81% 03.98%

500m
E1 34.80% 09.88%
E2 11.19% 04.08%

S3
250m

E1 5.26% 06.97%
E2 02.87% 09.13%

500m
E1 05.34% 06.22%
E2 03.03% 06.50%

S4
250m

E1 15.00% 05.19%
E2 09.90% 05.01%

500m
E1 16.10% 05.78%
E2 11.33% 05.30%

S5
250m

E1 16.27% 05.50%
E2 10.12% 05.22%

500m
E1 18.68% 05.96%
E2 13.35% 05.72%

E1 and E2 are flow extrapolation using exponential moving
average and regression, respectively

• To 3-cover all the edges in scenario S4 having 40 edges carrying traffic, 18 to 22

infrastructure edges are required (about 50% of total number of edges), whereas

in scenario S5 having 52 edges carrying traffic, 16 to 17 infrastructure edges are

required (less than one third of the total number of edges).

The simulation results show the feasibility of accurate edge level speed estimation

in real time with ITS infrastructure deployment on 35-50% edges in a road network.

Here we need to clarify that the ITS infrastructure requirement mentioned above is for

3-coverage of all the edges in a road network. The 1-coverage of an infrastructureless edge

is sufficient to generate real time speed estimations for the edge. As detailed in section

4.6.3 subsequently, 1-coverage of all the edges is achieved with 10 to 12 infrastructure

edges in both the scenarios, S4 and S5. The 3-coverage of edges ensures high availability,

in case of infrastructure failure or change in the traffic profile of edges, and permits

computation of anticipated error to be reported to the end user.

Even for 3-coverage of all the edges, the infrastructure requirement of ECOMO is
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lower than various proposals in literature that requires infrastructure deployment on

60-80% edges in a road network (section 2.5) just to enable estimation of certain traffic

parameter(s).

4.6.2 Effect of Unavailability of Infrastructure Edges

This section evaluates fault tolerance characteristics of the ECOMO using large scale

scenarios, grid network (S4) and random network (S5). The aim is to analyze the effect

of the unavailability of a certain fraction of infrastructure on speed estimation accuracy

and edge coverage. The other scenarios (S1, S2, and S3) have 1-coverage of edges and

can not tolerate faults. That is, unavailability of an infrastructure edge in these scenarios

leads to unavailability of real time speed estimations on the covered edge(s).

An infrastructure edge may be unavailable for speed estimation on an edge due to

infrastructure failure or due to change in traffic pattern after infrastructure deployment.

The unavailable infrastructure edges are treated as infrastructureless edges. Speed esti-

mation for all the infrastructureless edges is carried out using currently available infras-

tructure edges. The count of unavailable infrastructure edges is varied from 1 to 50%

of total number of infrastructure edges, to analyze its effect on speed estimation and

coverage of edges. A sample of a certain number of infrastructure edges is picked and

considered as the set of unavailable edges. The edge coverage and real time speed esti-

mation is done using remaining infrastructure edges. In order to avoid special cases and

to observe the aggregate effect, the process is repeated ten times and average speed error

and edge coverage is computed.

Figure 4.17 shows the effect of unavailability of a certain number of infrastructure

edges on speed estimation (mean, median, and ninety percentile error) and coverage of

edges for S4 and S5. The count of not-covered edges for a certain number of unavailable

infrastructure edges is specified over ninety percentile speed error plot in the figure.

Following are the important observations:

• The unavailability of infrastructure edges has little impact on speed estimation

accuracy, and ninety percentile error of less than 15% is achievable in all the cases.

• The speed error does not vary much or according to a specific trend with a count

of unavailable infrastructure edges. Inspecting standard deviation in speed error
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(a) Scenario S4

(b) Scenario S5

Figure 4.17: Effect of Unavailability of Infrastructure Edges (ECOMO)

(error bars in Figure 4.15b), and variations in speed error with number of unavail-

able infrastructure edges (Figure 4.17), it is inferred that there is no impact of
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unavailability of infrastructure edges on speed estimation accuracy. When at least

one infrastructure edge is available to cover an edge, speed estimation on the edge

is feasible.

• The fraction of not covered edges increases with the number of unavailable infras-

tructure edges, but at a slower rate. With 50% unavailable infrastructure, S4 has

17-23% of not-covered edges, whereas S5 has 13-23% of not-covered edges.

The simulation results exhibit fault-tolerance capability of the proposed model. It is

observed that the redundant infrastructure deployment to K-cover edges does not improve

accuracy of speed estimation much. However, it serves two purposes: first, it increases

fault tolerance capability of the model significantly, and second, it enables computation

of anticipated speed error to be reported to the end user.

4.6.3 Effect of Limited Infrastructure Deployment

This set of simulations evaluates ECOMO for feasibility of incremental ITS infrastructure

deployment. The effect of limited infrastructure deployment on speed estimation accuracy

and edge coverage is analyzed. Only the large scale scenarios (S4 and S5) are used for

this evaluation.

The total ITS infrastructure requirement to 3-cover all the edges in S4 and S5 are

known (Figure 4.15b). For limited infrastructure deployment, the number of infrastruc-

ture units is varied from 10% to 100% of total infrastructure requirement in increments

of 10%. Given the certain number of ITS infrastructure units, say N , the algorithm 3.6

is executed to select an optimal set of N infrastructure edges to maximize edge coverage.

Figure 4.18 shows impact of limited infrastructure deployment on speed estimation

accuracy (mean, median and ninety percentile error) and coverage of edges for grid net-

work (S4) and random network (S5). The fraction of not-covered edges for a certain

number of infrastructure units is specified over ninety percentile speed error plot in the

figure. Following are the important observations:

• The speed error does not vary much or according to a specific trend with the

count of infrastructure edges. Inspecting standard deviation in speed error (error

bars in Figure 4.15b), and variations in speed error with number of infrastructure
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(a) Scenario S4

(b) Scenario S5

Figure 4.18: Effect of Limited Infrastructure Deployment (ECOMO)

edges (Figure 4.18), it is inferred that there is no impact of limited infrastructure

deployment on speed estimation accuracy. When atleast one infrastructure edge is
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available to cover an edge, real time speed estimation on the edge is feasible.

• With 10 to 12 infrastructure units, atleast 1-coverage of all the edges is achieved in

both the scenarios in all cases (maximum location error of 250m and 500m, temporal

extrapolation using exponential moving average and regression), permitting real

time speed estimation on all the edges. The additional infrastructure units improve

fault tolerance and enable anticipated error computation.

(a) Scenario S4, 250m Location Error (b) Scenario S4, 500m Location Error

(c) Scenario S5, 250m Location Error (d) Scenario S5, 500m Location Error

Figure 4.19: Details of Edge Coverage: ECOMO and Random Deployment

Figure 4.19 shows edge coverage details of ECOMO with exponential moving aver-

age based flow extrapolation and random deployment for S4 and S5 scenarios. Figure

4.20 compares edge coverage of ECOMO and random infrastructure deployment for grid



4.6 Speed Estimation using Edge COverage MOdel (ECOMO) 91

(a) Scenario S4 (b) Scenario S5

Figure 4.20: Comparison of Edge Coverage: ECOMO and Random Deployment (L1 and
L2 are location error of 250m and 500m, respectively; E1 and E2 are flow extrapolation
using exponential moving average and regression, respectively)

network (S4) and random network (S5) in all the cases. The following methodology is

adopted to compute edge coverage of random deployment: a sample of given size is picked

randomly from the set of edges in a road network and considered as the set of infras-

tructure edges; the edge coverage is computed using this set of edges; in order to avoid

special cases and to observe the aggregate effect, the process is repeated ten times and

average edge coverage is computed. Following are the important observations from this

set of simulations:

• The edge coverage of ECOMO increases systematically with an increase in ITS

infrastructure units ensuring maximal coverage of all the edges using available in-

frastructure. The model tries to achieve 1-coverage of all the edges with minimal

infrastructure, followed by 2-coverage and 3-coverage of all the edges.

• As expected, the random deployment fails to ensure coverage of all the edges (has

high coverage for some edges and very low coverage of other edges, with some edges

not covered by any infrastructure edge). For example, even with 16-17 infrastruc-

ture units in S5 (the infrastructure requirement to 3-cover all the edges in ECOMO),

there are approximately 20% not-covered edges, whereas more than 50% edges have

> 3-coverage (Figure 4.19c and 4.19d). The reason being, congestion profile of some

edges occurs more frequently than the others in a road network.
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• Figure 4.20 reiterates the fact and shows that ECOMO requires 10-12 infrastructure

units to reduce the non-coverage of edges to zero in S4 and S5. With the same

number of infrastructure units, the random deployment provides 1-coverage for less

than 75% edges. The 1-coverage of all the edges is not achieved even with randomly

deployed 16-20 infrastructure units (the infrastructure requirement to 3-cover all the

edges in ECOMO for S4 and S5).

4.7 Speed Estimation when GPS Probe Data is Not

Available

(a) Scenario S4 (b) Scenario S5

Figure 4.21: Effect of GPS Probe Data on Mean Speed Error (L1 and L2 are location
error of 250m and 500m, respectively; E1 and E2 are flow extrapolation using exponential
moving average and regression, respectively)

This set of simulations evaluates the effect of unavailability of historical GPS probe

data on speed estimation. Also, the effect of considering static parameters of edges on

speed estimation accuracy is examined. As mentioned earlier, the vehicle movement speed

on an edge is affected not only by space occupancy, but also by many other parameters.

For example, the edge length and edge speed are highly correlated (Pearson’s correlation

coefficient >0.9) for edges with traffic lights, according to our simulation results. The

COCOMO and ECOMO use historical data of GPS probe speed to compute a speed

transition function for every pair of edges, (infrastructure edge and associated infras-
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(a) Scenario S4: COCOMO (b) Scenario S4: ECOMO

(c) Scenario S5: COCOMO (d) Scenario S5: ECOMO

Figure 4.22: Effect of GPS Probe Data on Percentile Speed Error

tructureless edge), for every congestion level. The speed transition function is used to

spatially extrapolate speed estimation from the infrastructure edge to the infrastructure-

less edge. Also, GPS probe data is used to compute anticipated speed estimation error,

reported to the user along with the speed estimation, when fewer infrastructure edges for

speed estimation are available (section 3.5.3).

When historical data of GPS probes is not used, the speed estimation without applying

speed transition function is reported to the end user. Figure 4.21 and 4.22 show the

effect of (not) using GPS probe data on mean speed error and percentile speed error,

respectively, for grid network scenario (S4) and random network scenario (S5).

The COCOMO and ECOMO are modified to use static parameters of edges, in addi-
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tion to congestion profile, for infrastructure edge selection (section 3.5.5). Figure 4.21b

show the mean speed error and infrastructure requirement of the modified models for S5.

The figure also compares performance of the modified models against the version of CO-

COMO and ECOMO that (do not) use GPS probe data. It needs to be mentioned that

the grid network scenario (S4) has same static parameters for all the edges. Figure 4.22c

and 4.22d compare percentile speed error of modified models and the COCOMO and

ECOMO that (do not) use GPS probe data. Following are the important observations:

• The mean speed error increases significantly when GPS probe data is not used. In

scenario S4, the mean speed error of 9-11% and 5-6% is observed with COCOMO

and ECOMO, respectively, when GPS probe data is used. Without GPS probe

data, the mean speed error increases to 11.2-14.5% and 7.9-9.6% with COCOMO

and ECOMO, respectively.

In scenario S5, the mean speed error of 5-7.5% and 5-6% is observed with COCOMO

and ECOMO, respectively, when GPS probe data is used. Without GPS probe data,

the mean speed error increases to 13.2-17.4% and 11.6-13.9% with COCOMO and

ECOMO, respectively.

In grid network (S4), all the edges are identical as per static parameters. The reason

for the speed error increase in S4 is that the vehicle movement speed on an edge

is affected by many other parameters (e.g., traffic condition on the adjacent edge)

which is not captured by the models without speed transition function.

In random network (S5), the increase in speed error is higher than S4. The reason

being, the edges in random network are different as per static parameters (specifi-

cally length), leading to difference in vehicle movement speed which is not captured

by the models without the speed transition function.

• The results of ninety percentile error are no different and the speed estimations

without GPS probe data are significantly more erroneous than with GPS probe

data.

• When static parameters of edges are considered in modified COCOMO and ECOMO,

the speed estimation error improves (Figure 4.21b, 4.22c and 4.22d). It is due to the

fact that the modified models are able to capture the effect of static parameters on
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speed estimation. In scenario S5, the mean speed error of 10.4-11.8% and 8.6-11.9%

is observed with modified COCOMO and ECOMO, respectively.

The speed estimation error is still higher than that achieved using GPS probe

data. The reason is, the modified models are unable to apprehend effect of other

parameters (e.g., traffic conditions on the adjacent edges and systematic error in

space occupancy estimation).

• The improvement in mean speed error comes at the cost of higher infrastructure

requirement. The modified COCOMO (that considers static parameters of edges)

requires about three times more infrastructure units than COCOMO (that uses

GPS probe data) for scenario S5 and still has a few (edge, congestion level) pairs

not-covered. The modified ECOMO has about 25% (12-14 edges out of 52) not-

covered edges with similar infrastructure deployment as ECOMO.

• The percentile error plots (Figure 4.22) show some interesting facts. In S4, the me-

dian speed error with and without GPS probe data is comparable in COCOMO and

ECOMO. This is indicative of the fact that on certain edges the vehicle movement

speed is similar and speed transition using GPS probe data is not necessary.

In S5, when GPS probe data is not used, the modified COCOMO and ECOMO

that use static parameters of edges, show better performance upto seventy five

percentile speed error. However, beyond that (eighty to ninety percentile regime)

the performance is unpredictable. In some cases, due to unknown reasons, the

modified models have higher speed error than COCOMO and ECOMO without

speed transition.

The simulation results show that the historical data of GPS probes are extremely useful

to reduce the infrastructure requirement and enable better speed estimation. While the

COCOMO and ECOMO are modified to consider static parameters of edges when GPS

probe data is not available, the infrastructure requirement of the modified models is

significantly high. Also the modified models have higher speed error than COCOMO and

ECOMO. Hence, we conclude that the GPS probe data are very important and integral

part of COCOMO and ECOMO.
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4.8 Comparison of COCOMO and ECOMO

In previous sections (section 4.5, 4.6, and 4.7), the performance of COngestion COv-

erage MOdel (COCOMO) and Edge COverage MOdel (ECOMO) is evaluated for ITS

infrastructure requirement and speed estimation accuracy. We conclude this chapter by

highlighting important features of the models:

• The COCOMO and ECOMO use congestion profile of edges for selecting edges

for ITS infrastructure deployment. The congestion profile of an edge is a 6-tuple

specifying the percentage of overall time an edge observes each congestion level.

The COCOMO aims to cover all the congestion levels occuring in a road network

using ITS infrastructure. It processes congestion profile of edges to determine the

congestion level(s) covered by every edge. An edge spending sufficient time ob-

serving a congestion level is said to cover the congestion level. The edges for ITS

infrastructure deployment are selected to ensure K-coverage of all the congestion

levels. Every infrastructure edge learns a regression model of occupancy-speed re-

lationship for every congestion level that it covers.

For real time speed estimation on an infrastructureless edge, the real time congestion

level and space occupancy information computed using cellular network data are

used. The congestion level is used to select infrastructure edges for speed estimation.

The space occupancy is provided as an input to the regression model learned on the

infrastructure edge for the congestion level. It should be noted that a different set

of infrastructure edges may be used for speed estimation at different times based

on the congestion level observed on the infrastructureless edge.

The ECOMO, on the other hand, processes congestion profile of edges to determine

the set of similar edges for every edge in a road network. The set of edges having

congestion profile similar to an edge are said to be covered by the edge. The

edges for ITS infrastructure deployment are selected to ensure K-coverage of all the

edges in a road network. Every infrastructure edge learns a regression model of the

occupancy-speed relationship.

For real time speed estimation on an infrastructureless edge, the real time space

occupancy information is provided as an input to the regression model of covering



4.8 Comparison of COCOMO and ECOMO 97

infrastructure edges. The set of covering infrastructure edges used for speed esti-

mation on an edge is fixed and does not depend upon the real time congestion level

observed on the edge.

• The infrastructure requirement of ECOMO is higher than that of COCOMO. The

ECOMO uses edge similarity based on congestion profile for infrastructure deploy-

ment. As the number of edges increases in a road network, the diversity in conges-

tion profiles of these edges also increases, leading to increase in the infrastructure

requirement. That is the infrastructure requirement increases with the number of

edges in a road network.

The COCOMO, on the other hand, aims to K-cover all the congestion level. Hence,

the maximum infrastructure requirement is K times the number of congestion levels

(6), independent of the road network size.

• The real time speed estimations with ECOMO are more accurate than COCOMO.

In scenario S4, the mean speed error of 9-11% and 5-6% is observed with COCOMO

and ECOMO, respectively, whereas the ninety percentile error of 16-22% and 10-

13% is perceived with COCOMO and ECOMO, respectively.

The results with scenario S5 are no different wherein the mean speed error of 5-7.5%

and 5-6% is achieved with COCOMO and ECOMO, respectively, and the ninety

percentile error of 10-16% and 10-13% is perceived with COCOMO and ECOMO,

respectively.

While the speed estimations with both the models are reasonably accurate, we

point out the following reason for slightly high error in COCOMO. In COCOMO,

the infrastructure edges for real time speed estimation are picked based on the real

time congestion level observed on an infrastructureless edge. The congestion level

classification error may result in use of an incorrect set of infrastructure edges for

speed estimation, increasing error in the estimation. In ECOMO, on the other

hand, the infrastructure edges to be used for speed estimation on an edge are fixed

and does not depend upon the real time congestion level on the edge.

In chapter 6 it is shown that the speed estimation with accuracy achieved by both

the models is adequate for use by an Advanced Traveler Information System (ATIS).
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• The 1-coverage of congestion levels (in COCOMO) or edges (in ECOMO) is suf-

ficient for network wide real time speed estimation. The redundant infrastructure

deployment does not improve accuracy of speed estimation. However, it improves

fault tolerance capability of the models and enables computation of anticipated

error to be reported to the end users.

• Both the models, COCOMO and ECOMO, permit incremental infrastructure de-

ployment. While COCOMO requires 2-3 infrastructure units to 1-cover all the

congestion levels in scenario S4 and S5, the ECOMO requires 10-12 infrastructure

units to 1-cover all the edges in S4 and S5.

In COCOMO, when fewer infrastructure units (less than that required for 1-coverage)

are deployed, speed estimations on all the edges are affected. The reason is that

the speed estimations are not available for not-covered congestion levels for all

the edges. It should be noted that infrastructure requirement of the model for 1-

coverage of congestion levels is nominal and can be satisfied with a maximum of six

infrastructure units.

In ECOMO, when fewer infrastructure units are deployed, the speed estimations

are available only for the covered edges. When network wide coverage is not needed,

the model permits infrastructure deployment to cover only the edges of interest.



Chapter 5

Distributed Processing and

Communication Framework

5.1 Background

Figure 5.1: Multi-modal Intelligent Transportation System

In chapter 3, the details about various functional components of the proposed Intelli-

gent Transportation System (ITS) are discussed. Figure 5.1 shows a block diagram of the

resulting multi-modal ITS. The Traffic Sensing Layer uses cellular network, GPS probes

99
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and ITS infrastructure for generating raw traffic data. The cellular network tracks all the

vehicles using active signaling and generates erroneous position data periodically. The

GPS probes report their accurate positions periodically. The ITS infrastructure deployed

using COngestion COverage MOdel (COCOMO) or Edge COverage MOdel (ECOMO)

reports edge level speed estimation periodically for all the infrastructure edges.

The Data Processing and Aggregation Layer computes traffic parameters for all the

edges in a road network using the raw traffic data. The Cellular Data Processing involves

execution of the map matching algorithm (section 3.2) to compute the trajectory of all

the vehicles in real time. The vehicle trajectories in turn are used to compute edge level

traffic parameters such as vehicle flow, space occupancy and congestion level (section 3.3).

The trajectory computation is done for every vehicle, whereas the traffic parameters are

computed for every edge in the road network periodically. The system must be scalable

due to the real time processing requirement.

It is assumed that some fraction of vehicles of bus and car types are GPS-enabled and

report their accurate locations periodically to the system. The GPS Probe Data Process-

ing involves computation of a speed transition function for every pair of infrastructure

edge and the corresponding infrastructureless edge. The GPS probe data is also used to

compute anticipated error in speed estimation. The system uses historical data of GPS

probes and there is no real time processing requirement.

The COCOMO and ECOMO determine edges for ITS infrastructure deployment using

the congestion profile of edges. As a part of ITS Data processing, the occupancy-speed

relationship is learned on every infrastructure edge. The process is done offline using

historical data. The learned model is used for real time speed estimation on corresponding

infrastructureless edges. The real time processing is not computationally intensive and

involves execution of regression model and speed transition function.

The Traffic Application Layer uses the real time traffic information generated by the

multi-modal ITS in a variety of traffic applications such as Advanced Traveler Information

System (ATIS) and Advanced Traffic Management System (ATMS).

This chapter addresses issues related to large scale deployment of the proposed multi-

modal ITS. The MapReduce framework proposed by Google [24] is used to model the

ITS. The MapReduce framework permits real time traffic data processing on a large

cluster of commodity machines. It works well under heavy computation load condition
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involving large amount of data. The communication and storage requirement of the model

is analyzed to assess feasibility of deployment.

The chapter is organized as follows: section 5.2 introduces the MapReduce frame-

work; the cellular network data processing using MapReduce framework is discussed in

section 5.3; the MapReduce framework for the GPS probe data processing and the edge

level speed estimation is discussed in section 5.4 and section 5.5, respectively; the major

observations and conclusion are described in section 5.6.

5.2 The MapReduce Framework

The MapReduce framework [24] proposed by Google provides an abstraction layer to

design and implement programs for execution on a large cluster of commodity machines.

The input data set is specified as key-value pairs. The programmer defines a map func-

tion and a reduce function for a distributed application. The map function processes a

unit data element (a key-value pair) to generate a set of intermediate key-value pairs.

The reduce function aggregates intermediate values associated with an intermediate key

to compute the final result. The programs written in this manner are parallelized au-

tomatically and the run time system takes care of parallelization, fault tolerance, data

distribution and load balancing.

Figure 5.2 shows functional block diagram of the MapReduce framework. The data

to be processed is available as [key, value] pairs in a distributed file system (DFS), e.g.

HDFS - Hadoop Distributed File System. The user program specifies a map function and

a reduce function to process the data. After invocation, the master node coordinates the

overall program execution in the distributed environment. It identifies two sets of worker

nodes to execute the map task and the reduce task. The master node also determines

a set of [key, value] pairs to be processed by each worker node. A map worker node

accesses the assigned [key, value] pairs from the DFS and processes each using the user

defined map function. It stores the computed [intermediate key,value] pairs in its local file

system, and reports their location to the master node. The master node communicates

these locations to the reduce worker nodes. A reduce worker node accesses the assigned

[intermediate key, value] pairs from local file system of map worker nodes using remote

procedure calls and processes each using user defined reduce function. The computed
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Figure 5.2: Program Execution under MapReduce Framework

final output is stored in the DFS. The MapReduce operation completes when all worker

nodes complete the assigned task.

In case of a worker node failure, the master node reschedules the task and assigns

the [key, value] pairs to other available node(s). In case of the master node failure, the

program execution is aborted.

In this discussion the following terminology is used: a key-value pair is represented

as [(key), (value)]. When a key or value has a single attribute, the enclosing brackets are

optional.

5.3 Cellular Data Processing using MapReduce Frame-

work

The framework takes as input the periodic position updates of all the vehicles and com-

putes vehicle flow, space occupancy and congestion level data for every edge. Figure 5.3

shows a functional block diagram of the cellular data processing using the MapReduce

framework.
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Figure 5.3: Cellular Data Processing using MapReduce Framework

It is assumed that the periodic position estimates for all the vehicles are available

in the form of [vehicleID, (time stamp, location)] through active signaling in cellular

network. The information is stored in the DFS and is accessible to all the nodes. The

map matching algorithm is associated with the map function and the edge level traffic

parameter computation is associated with the reduce function. The traffic parameters for

every edge are stored as [edgeID, (timePeriod, vehicle flow, space occupancy, congestion

level)] pair in the DFS. The

The MapReduce processing of the cellular data is elaborated in the following:

1. The master node identifies a set of worker nodes, M map worker nodes and R reduce

worker nodes, that execute the map function and the reduce function, respectively.

It also defines two hash functions, the one to map a vehicleID to a unique map

worker node, and the other to map an edgeID to a unique reduce worker node.

2. A map worker receives the [vehicleID, (time stamp, location)] pairs for all the vehi-

cles assigned to it and processes them using the map matching algorithm (section

3.2) to generate the vehicle trajectory in the form of [edgeID, (vehicleID, time

stamp)] pair. It stores the data in its local file system, partitioned into R regions

using edgeID. The locations of these files are communicated to the master, which

then forwards the locations to reduce workers.

3. A reduce worker, after getting these locations, uses remote procedure calls to read
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data of all the edgeIDs assigned to it from local disk of the map workers. The

data is sorted by edgeID so that all occurrences of the same edgeID are grouped

together. Sorting is required because typically many different edgeIDs are assigned

to a reduce worker.

The reduce worker iterates through the set of values for given edgeID and computes

vehicle flow, space occupancy and congestion level information using the method

elaborated in section 3.3. The reduce worker writes [edgeID, (timePeriod, vehicle

flow, space occupancy, congestion level)] pairs to an output file in the distributed file

system. The data can be accessed by any node for further processing by querying

the master node for the location of the data with key, edgeID.

5.3.1 Communication Overhead Analysis

Data communication is required at the following stages of MapReduce processing:

• A cellular network node (i.e. MSC- Mobile Switching Center) generates a location

estimate of a vehicle and stores [vehicleID, (time stamp, location)] pair in the

distributed file system. It is reported in the literature that active tracking of all

the vehicles every 30 seconds is feasible with approximately 5% location capacity

of the cellular carrier [15]. If the MSC and the data server are not collocated, the

additional communication overhead is incurred to store the location estimates in

the DFS. Let Ne be the total number of edges covered by an MSC, fe be the number

of vehicles served by an edge in unit time (vehicle flow), D be the periodicity of

location updates, and S be the size of location record. The data generation rate is,

Ne × fe × S
D

(5.1)

Typically, if an MSC covers 500 edges of a road network (approximately 29 edges),

flow on 2-lane edges is approximately 2500-2800 vehicles per hour and that on

3-lane edges is approximately 3000-4000 vehicles per hour during peak hours (ap-

proximately 212 vehicles per hour), D is 30 seconds, and S is 1 KB (210 bytes), then

less than 256 GB of data is generated every hour. The data is communicated over

network if the MSC and the data server are not collocated. Communication of this



5.4 GPS Data Processing using MapReduce Framework 105

size data is feasible using available communication technology. For example, the

gigabit Ethernet provides bandwidth of few giga bits per second for short distance

communication (tens of kilometers). The optical fiber cables provide bandwidth of

100 tera bits per second over longer distances (hundreds of kilometers). The raw

data is retained in the DFS only for the duration of computing traffic parameters

(vehicle flow, space occupancy, etc.). For a typical data aggregation period of ten

minutes, the storage capacity of less than 50 GB is sufficient.

• A map worker node fetches [vehicleID, (time stamp, location)] information from

the DFS for all the vehicles assigned to it. A reduce worker node fetches [edgeID,

(vehicleID, time stamp)] information from the local file system of map worker nodes

for all the edges assigned to it. The communication overhead is of the same order

as equation 5.1 and is distributed among M map worker nodes and R reduce worker

nodes.

• The reduce worker node writes [edgeID, (timePeriod, vehicle flow, space occupancy,

congestion level)] information in the DFS after every update period. The amount of

data generated by each reduce worker in unit time equals (Ne × S)/(U ×R) bytes,

where U is the update period. If there are 500 edges in a road network, and the

traffic parameter data of 1KB size is recorded every minute, the storage of 720 MB

per day is sufficient (less than 75 GB for keeping three months traffic data).

5.4 GPS Data Processing using MapReduce Frame-

work

The GPS probe vehicles report their position updates periodically which are processed

to compute edge level GPS probe speed. The COCOMO and ECOMO do not use the

GPS probe speed data in real time. Instead, the average GPS probe speed is computed

for all the edges and congestion levels using data collected over few days period (section

3.4). As the processing of GPS probe data is a non-real time task, it can be carried out

when the load is less in the system, e.g. during off peak hours.

It is assumed that periodic position updates of GPS probes are available in the form

of [vehicleID, (time stamp, location)] pair. The information is stored in DFS and is
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accessible to all the nodes. The GPS probe trajectory generation is associated with the

map function and the average GPS probe speed computation is associated with the reduce

function. The MapReduce processing of GPS probe data is elaborated in the following:

• The master node identifies a set of worker nodes, M map worker nodes and R reduce

worker nodes, that execute the map function and the reduce function, respectively.

It also defines two hash functions, the one to map a vehicleID to a unique map

worker node, and the other to map an edgeID to a unique reduce worker node.

The set of worker nodes (and their role) and the hash functions can be the same as

that used in the MapReduce processing of cellular network data. The use of same

hash function and reduce worker nodes decreases communication overhead through

the effective use of caching. As described in subsequent steps, a reduce worker node

fetches the traffic parameters (computed using cellular data processing) of various

edges from DFS. Using the same reduce worker node for cellular and GPS probe

data processing of an edge permits caching of the computed traffic parameters.

• A map worker receives [vehicleID, (time stamp, location)] pairs for all the GPS

probes assigned to it and generates their trajectory as [edgeID, (vehicleID, time

stamp)] pairs. The map matching process is very simple as accurate position esti-

mates are available. The map worker stores the data in its local file system, parti-

tioned into R regions using edgeID. The locations of these files are communicated

to the master, which then forwards the locations to reduce workers.

• A reduce worker, after getting these locations, uses remote procedure calls to read

data of all the edgeIDs assigned to it from the local disk of map workers. The data

is sorted by edgeID to group together all the occurrences of an edgeID.

The reduce worker iterates through the set of values for given edgeID and computes

average GPS probe speed for every time period. It writes [edgeID, (timePeriod,

average speed of GPS probes)] pairs to an output file in the distributed file system.

The following processing is done by a reduce worker node every few days. The

reduce worker fetches [edgeID, (timePeriod, average speed of GPS probes)] and

[edgeID, (timePeriod, congestion level)] information of the most recent N days from

DFS (or from local disk if it is cached) to compute the average speed of GPS probes
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for every congestion level on every edge. It sorts the data by edgeID and congestion

level and iterates through the GPS probe speed values to compute the average. It

writes [edgeID, a 6-tuple of (congestion level, average GPS probe speed)] pairs to

an output file in the distributed file system.

5.4.1 Communication Overhead Analysis

Data communication is required at the following stages of MapReduce processing:

• A GPS probe vehicle periodically communicates [vehicleID, (time stamp, location)]

to a data server. Let Ne be the total number of edges covered by a data server,

fe be the number of vehicles served by an edge every hour (vehicle flow), PG be

the penetration of GPS probes in the vehicle population, D be the periodicity of

location updates, and S be the size of location record. The data generation rate is,

Ne × fe × PG × S
D

(5.2)

Typically, if a data server covers 500 edges of a road network (approximately 29

edges), flow on 2-lane edges is approximately 2500-2800 vehicles per hour and that

on 3-lane edges is approximately 3000-4000 vehicles per hour during peak hours (ap-

proximately 212 vehicles per hour), D is 1 second, penetration of the GPS probes

in vehicle population is 5%, S is 1 KB (210 bytes), then less than 360 GB of data is

generated every hour. While the storage of few tera bytes is available in personal

computers, storage requirement can be significantly reduced with simple compres-

sion techniques. Alternatively, considering the low complexity of GPS data process-

ing, the MapReduce processing of GPS probe data can be done in real time along

with cellular network data. In that case, for an aggregation period of ten minutes,

the storage capacity of less than 60 GB is sufficient.

• A map worker node fetches [vehicleID, (time stamp, location)] information from

the DFS for all the vehicles assigned to it. A reduce worker node fetches [edgeID,

(vehicleID, time stamp)] information from the local file system of map worker nodes

for all the edges assigned to it. The communication overhead is of the same order

as equation 5.2 and is distributed among M map worker nodes and R reduce worker
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nodes.

• The reduce worker node writes [edgeID, (timePeriod, average speed of GPS probes)]

information in the DFS after every update period. The amount of data generated by

each reduce worker in unit time equals (Ne×S)/(U×R) bytes, where U is the update

period. If there are 500 edges in a road network, and the traffic parameter data

of 1KB size is recorded every minute, the storage of 720 MB per day is sufficient

(less than 75 GB for keeping three months traffic data). Note that in a typical

implementation, the edge level traffic parameters computed using cellular network

and GPS probes are stored together and consumes 720 MB per day. A tuple of 1

KB size is sufficient to contain all the traffic parameters.

The following communication overhead is incurred every few days to update average GPS

probe speed associated with a congestion level for every edge. A reduce worker node

fetches [edgeID, (timePeriod, average speed of GPS probes)] and [edgeID, (timePeriod,

congestion level)] information of the most recent N days from DFS. The amount of data

fetched by each reduce worker equals (N × Ne × S)/(U × R) bytes. After computing

the updated values, a reduce worker writes [edgeID, 6-tuple of (congestion level, average

GPS probe speed)] to the DFS. The amount of data communicated by each reduce worker

equals (Ne × S)/R bytes, and is negligible. The process is repeated by a reduce worker

node every few days.

5.5 Speed Estimation using MapReduce Framework

5.5.1 Computing Congestion Profile of Edges

This computation is done offline when the system is lightly loaded. The master node

selects R reduce worker nodes for computing the congestion profile of edges using the N

days’ data. A reduce worker processes the [edgeID,(timePeriod, congestion level)] pairs

to compute congestion profile of the edges assigned to it and stores [edgeID, 6-tuple of

the congestion profile] in DFS. The amount of data fetched by each reduce worker node

from the DFS equals (N × Ne × S)/(U × R) bytes. The total amount of data retrieved

over network equals 7.2 GB for N = 10, Ne = 500, S = 1 KB, and U = 1 minute. The



5.5 Speed Estimation using MapReduce Framework 109

amount of data stored by each reduce worker node to the DFS equals, (Ne×S)/R bytes,

and is negligible.

5.5.2 Infrastructure Edge Selection

This computation is done by the master node centrally to determine a set of edges for

infrastructure deployment. The master node fetches the congestion profile of edges from

DFS (amount of data read equals Ne×S bytes) and selects a set of edges for infrastructure

deployment using the COCOMO (section 3.5.1) or ECOMO (section 3.5.2). Also, the set

of edges or congestion levels covered by each infrastructure edge are determined.

In case of COCOMO, the master node stores [infrastructure edgeID, a set of covered

congestion levels] and [congestion level, set of infrastructure edgeIDs] in the DFS. The

amount of data written to DFS equals (N i
e × S) + (6× S) bytes, where N i

e is number of

infrastructure edges and there are six congestion levels. In case of ECOMO, the master

node stores [infrastructure edgeID, set of covered edges] and [edgeID, set of infrastructure

edgeIDs] in the DFS. The amount of data written to DFS equals (Ne × S) bytes. The

communication overhead of this operation is negligible and is incurred only once during

initial deployment of the system.

The master node also computes a speed transition function using the [edgeID, 6-

tuple of (congestion level, average GPS probe speed)] pairs. The amount of data read

from DFS equals (Ne × S) bytes. As elaborated in section 3.5.3, the speed transition

function is used to spatially extrapolate the speed estimation from an infrastructure edge

to the corresponding infrastructureless edge. The information is stored as [(infrastructure

edgeID, covered edgeID), 6-tuple of (congestion level, speed transition function value)]

in the DFS. The amount of data written to DFS equals (Ne × K × S) bytes assuming

K-coverage of all the edges. The communication overhead for this operation is negligible

and is incurred every time average GPS probe speed data is recomputed.

5.5.3 Learning Occupancy-Speed Relationship

The infrastructure edges generate [edgeID, (time period, aggregate speed)] information

and store in the DFS.

A reduce worker node uses the [edgeID, (time period, space occupancy, congestion
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level)] and [edgeID, (time period, aggregate speed)] information to learn the occupancy-

speed relationship for all the infrastructure edges assigned to it.

In case of COCOMO, the reduce worker sorts the data by edgeID and iterates through

occupancy-speed values to learn the polynomial regression model for every congestion

level covered by the edge. It stores [edgeID, 6-tuple of (congestion level, regression pa-

rameters of occupancy-speed relationship)] information in the DFS.

In case of ECOMO, the reduce worker sorts the data by edgeID and iterates through

occupancy-speed values to learn the polynomial regression model for the edge. It stores

[edgeID, regression parameters of the occupancy-speed relationship] information in the

DFS.

It should be noted that the computation is done offline using data of the most recent

N days and is repeated every few days. Let N i
e be the number of infrastructure edges,

R be the number of reduce worker nodes, U be the periodicity of the edge level data

collection, and S be the size of the data record. The amount of data fetched by each

reduce node equals (N i
e × N × S)/(U × R) bytes. The total amount of data retrieved

over the network is less than 1.5 GB in case of N = 10, N i
e = 100, S = 1 KB, and

U = 1 minute. The amount of data stored by each reduce worker node to the DFS equals

(N i
e × S)/R bytes, and is negligible.

5.5.4 Real time Speed Estimation

This task is done by the reduce worker nodes for every infrastructureless edge after

computing the space occupancy, and congestion level data for the period.

A reduce worker node fetches,

• [edgeID, set of infrastructure edgeIDs],

• [infrastructure edgeID, 6-tuple of (congestion level, regression parameters of occupancy-

speed relationship)] (for COCOMO) or [infrastructure edgeID, regression parame-

ters of occupancy-speed relationship] (for ECOMO), and

• [(infrastructure edgeID, covered edgeID), 6-tuple of (congestion level, speed transi-

tion function value)]
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from the DFS, and computes the speed estimation for the period. It stores speed esti-

mation data along with the other edge level parameters for the period in the DFS. For

efficiency purpose, the reduce worker node caches all of the above information in local

file system and uses it for speed estimation. Hence, no communication cost is incurred

for fetching the data from DFS. The estimated speed for the period is written to the

DFS. The data generation rate is (Ne × S)/(U × R) bytes. The total amount of data

communicated over network by all the reduce worker nodes equals 720 MB for Ne = 500,

S = 1 KB, and U = 1 minute.

5.6 Discussion

The previous sections elaborated a methodology for cellular data processing, GPS probe

data processing and real time speed estimation using the MapReduce framework. The

communication and storage requirement of the framework is analyzed. The vehicle tra-

jectory generation and traffic parameters’ computation (vehicle flow, space occupancy,

congestion level, and speed) using cellular network require real time processing. The

GPS probe data processing to compute edge level GPS probe speed can be done offline

but real time processing is preferred in the interest of reducing storage requirement and

due to the less complex computation requirement. The computation of congestion pro-

file of edges, occupancy-speed relationship on infrastructure edges and speed transition

function is done offline every few days.

In the subsequent discussion, it is assumed that the number of edges (Ne) in the

road network are 500, the number of infrastructure edges (N i
e) are 100, the cellular data

sampling period is 30 seconds and that of GPS probes is 1 second, the aggregation period

is 10 minutes, the update period (U) is 1 minute, and the size of data record (S) is 1 KB.

The raw data of vehicle position collected from cellular network and GPS probes rep-

resent a significant component of the overall communication and storage requirement of

the framework. The real time cellular network data processing requires communication

and storage of less than 50 GB per aggregation period. The GPS probe data, when

processed in real time (preferred), requires communication and storage of about 60 GB

per aggregation period. The specified amount of cellular network data needs to be com-

municated over network only if the MSC and the data server(s) are not collocated. In
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that case a dedicated Ethernet link or a fiber link can be used to carry the data. As the

raw data is in text form, the use of simple data compression techniques can significantly

reduce the communication requirement. The specified amount of GPS probe data comes

to data server(s) from whole road network over Internet. A GPS probe reporting its po-

sition every second communicates 3.6 MB of data during its trip of an hour. The current

wireless communication technology (WiFi or cellular data connection) readily supports

the required data rate. A backbone network connecting the data server(s) to Internet

can easily carry 60 GB of data during an aggregation period (a Gbps link is sufficient).

As the storage for raw data of cellular network and GPS probes is required only for an

aggregation period, the storage capacity of 110 GB is sufficient.

The computation of traffic parameters in real time is carried out in a distributed

manner using the MapReduce framework. The traffic parameters are recorded every

update period for all the edges in a road network. The communication and storage

requirement is 720 MB per day (less than 75 GB for storing three months traffic data).

The computation of congestion profile of edges, speed transition function and occupancy-

speed relationship is done every few days using historical traffic data stored in the DFS. If

traffic data of ten days are used for the computation, the amount of data retrieved equals

7.2 GB. The computed information collectively consumes less than 1 MB of storage space.

The analysis of communication, computation, and storage requirements shows the

feasibility of large scale deployment of the proposed multi-modal ITS.



Chapter 6

Application: Advanced Traveler

Information System

6.1 Background

In the previous chapters a multi-modal Intelligent Transportation System (ITS) is de-

signed that generates edge level traffic information (vehicle flow, congestion, speed) in

real time for the whole road network. The two models, namely COngension COverage

MOdel (COCOMO) and Edge COverage MOdel (ECOMO) are developed for ITS infras-

tructure deployment and edge level speed estimation. The performance of the proposed

ITS is evaluated for quality of generated traffic information (error in traffic parameters’

estimation) and availability of traffic information (spatio-temporal coverage). Also, the

feasibility of large scale deployment of the ITS is established by designing a distributed

computing framework and analyzing computation, communication and storage require-

ment.

The network wide real time traffic information can be used by traffic applications for a

variety of purposes. For example, an Advanced Traveler Information System (ATIS) uses

real time traffic information to help the commuters in trip planning. An Advanced Traffic

Management System (ATMS) uses traffic information for adaptive traffic light control,

enforcing speed limits and lane control, or suggesting diversions to avoid congested regions

in a road network. The Advanced Public Transportation System (APTS) uses real time

traffic information to estimate the arrival time of public transport buses at different

113
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stations and plan trip schedule of buses.

The aim of this chapter is to assess the utility of the real time traffic information

generated by the proposed ITS. As a proof of concept, an Advanced Traveler Information

System (ATIS) is designed that uses the traffic information generated by the proposed

ITS. The traffic information has a certain amount of error, and also, the traffic information

may not be available for a set of congestion levels (COCOMO) or for a fraction of edges

(ECOMO). This chapter analyzes the effect of these parameters and ATIS penetration

on the average trip duration and congestion distribution in a road network.

The chapter is organized as follows: design of the ATIS is discussed in section 6.2;

simulation model of the application is elaborated in section 6.3; section 6.4 discusses

analysis of the simulation results; the chapter is concluded in section 6.5.

6.2 Introduction

With the availability of real time traffic information, the commuters can make informed

decisions to optimize their trips (in terms of travel time, driving comfort, fuel consump-

tion, etc.). An Advanced Traveler Information System (ATIS) has potential to make the

individual commuter and the road network as a whole more productive [75].

Bertini et al. [76] survey various ITS deployments in different parts of the world

and analyze their performance. The authors evaluate freeway and arterial management

systems, traveler information and transit management systems, incident or emergency

management systems, and various crash prevention and safety systems for their deploy-

ment cost and effectiveness in improving the traffic condition. While an ITS deployment

improves traffic condition in general, the authors observe that the quantification of ITS

benefits has not been statically sophisticated. For example, when an ITS claiming certain

cost benefit in one city is deployed in another city, there is no guarantee that the similar

benefits will be achieved.

A large number of ATIS applications that consume real time traffic information gen-

erated by an ITS are reported in the literature. Xiao and Lo [77] develop an ATIS that

processes real time traffic information updates to enable re-routing of vehicles during

their commute. The authors use probabilistic dynamic programming and claim better

performance than deterministic routing specifically for road networks with highly vari-
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able travel times. It is assumed that the penetration of application is low and the overall

network traffic assignment is not affected.

Kumar et al. [78] propose a Geographic Information System (GIS) based ATIS for

Hyderabad city in India. The authors report twelve modules of their system, such as

public transport services (buses, rail, air) in the city, searching facilities in the city, a

distance based shortest path for Origin-Destination pair (O-D pair), etc.. The current

version of the ATIS does not use real time traffic information, but the extension is feasible.

Ben-Elia et al. [79] analyze the effect of traffic information accuracy and travel time

uncertainty on route choice made by ATIS users. The authors show using experiments

that the decrease in accuracy shifts choices from the riskier route (lower mean travel time

with high variation) to the reliable route (higher mean travel time with low variation).

We design an ATIS that uses the real time speed estimations generated using the

proposed models (COCOMO or ECOMO). The proposed models enable real time esti-

mation of edge level traffic parameters (vehicle flow, space occupancy, congestion level,

and speed). However, the generated traffic information has the following properties: (i)

it has a certain amount of error, and (ii) the traffic information may not be available

for some fraction of edges or for some congestion levels due to limited infrastructure

deployment. The application considers the above properties in its design.

The application classifies the road commuters in two categories: the informed com-

muters (intelligent vehicles) receive traffic information updates every minute and adapt

their routes as suggested by the system; and the uninformed commuters (non-intelligent

vehicles) do not receive or process the traffic information updates and always follow the

shortest distance path.

Algorithm 6.1: Route Query Processing by the ATIS Server

Input: a query (s, d), where s specifies current location of the vehicle, and d is the
intended destination, road network topology, G, containing travel time estimation
for all the edges

Output: an optimal route Ps,d from s to d along with travel time estimate Ts,d
1: Ps,d = Dijkstra(s, d, G)

2: Ts,d =
∑

e∈Ps,d
length(e)
speed(e)

The application is simple and less computationally intensive. It does not make any

forecast about the changes in traffic condition in road network due to rerouting of the
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Figure 6.1: Advanced Traveler Information System

Algorithm 6.2: Route Query Response Processing by the ATIS Client

Input: P cur
s,d , T curs,d , P new

s,d , T news,d , gth, where P cur
s,d and T curs,d are current path and

corresponding travel time, respectively, P new
s,d and T news,d are the new path and

corresponding travel travel time received in the query response, gth is the minimum
gain threshold

Output: Ps,d, the path to be followed by the vehicle
1: if T news,d < (1− gth)× T curs,d then
2: Ps,d = P new

s,d

3: Ts,d = T news,d

4: end if

informed commuters, and uses only current traffic state of the road network for comput-

ing and suggesting alternate routes. This simple approach works well because different

vehicles make rerouting decisions at different times: every vehicle selects the most opti-

mal path at the beginning of its trip, and makes rerouting decision when it is about to

reach a junction (about to complete the current edge traversal). Also, a vehicle changes

route only when there is significant gain - travel time improves at least by a fraction of

gth. gth = 0.05 is used in the simulations.

Figure 6.1 shows a schematic diagram of the ATIS. An ATIS client queries the server

with its current position and intended destination. The ATIS server computes an optimal

route for the query using real time traffic information available from the multi-modal

ITS and sends the query response. The Dijkstra’s shortest path algorithm is used to

compute the shortest path with respect to travel time from vehicle’s current position to
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its destination. Algorithm 6.1 and 6.2 show the steps carried out by the ATIS server and

client for a query.

6.3 Simulation

The application is simulated using Simulator for Urban MObility (SUMO) version 0.22

[80]. The Traffic Control Interface (TraCI) of SUMO is used to dynamically change the

route of vehicles. The simulation scenarios are described in Table 6.1. The simulations

are done using city wide large scale scenarios namely, Grid network (S4) and Random

network (S5). The scenarios are same as used in chapter 4 for evaluating accuracy of

traffic parameters computed by the proposed ITS. The heterogeneous traffic dynamics of

peak hours and off peak hours are simulated. The same vehicle distribution as specified

in chapter 4 (Table 4.1) is used. All data processing is done using Python version 2.7.3

scripts.

A set of informed commuters (intelligent vehicles) is randomly selected at the begin-

ning of simulations according to the penetration of ATIS among users. An intelligent

vehicle gets optimal path from the ATIS server at the beginning of its trip. It also re-

ceives and processes route updates from the ATIS server. If an alternate path suggested

by the server has travel time gain more than gth, the vehicle reroutes to the alternate path

from next junction. gth = 0.05 is used in the simulations. The other vehicles (uninformed

commuters) follow the shortest distance path statically assigned to them at the beginning

of the trip.

Simulations are carried out by varying application penetration from 0% to 50% (in

increments of 10%) to evaluate its effect on the average trip duration and congestion

distribution in the road network.

The following speed error model is used in the application: for the congestion levels

or edges covered by infrastructure edges (i.e. periodic speed estimation is available), a

normal random variate N(ε, σε) is generated as the speed error, where ε equals the mean

speed error of the model (COCOMO or ECOMO) and σε is selected such that,

ninety percentile speed error = ε+ 1.65× σε (6.1)
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The speed error values for COCOMO and ECOMO are taken from simulation results in

section 4.5 and 4.6, respectively. A uniform random variate is used to decide whether

the speed error is added to or subtracted from the correct speed. If the uniform random

variable is less than 0.5, the speed error is added to the correct speed, otherwise it is

subtracted.

Due to limited infrastructure deployment, the real time speed estimation may not be

available for a set of congestion levels (COCOMO) or for a fraction of edges (ECOMO).

For edges or congestion levels not covered by infrastructure edges (real time speed esti-

mates are not available), the real time congestion level data along with historical data of

GPS probe speed are used: the average GPS probe speed on the edge for the congestion

level is used as a real time speed estimate.

Table 6.1: Simulation Scenarios

Scenario
Name

Description Location
error

Vehicle Insertion Rate

Grid
Network
(S4)

a 15km × 15km road network
with road segment length of 1km
each, with traffic light at each
junction

250m,
500m

2100-4200 veh/hr in seven
merging/diverging flows for
peak and off peak duration of
14 hrs (total 40950 vehicles)

Random
Network
(S5)

a 18km × 16km road network
with road segment length of 0.5-
1.5km each, with traffic light at
each junction

250m,
500m

2400-4800 veh/hr in eight
merging/diverging flows for
peak and off peak duration of
14 hrs (total 46800 vehicles)

6.4 Analysis of Simulation Results

Simulations are carried out to evaluate the effect of application penetration and speed

estimation error on the average trip duration and congestion distribution in a road net-

work. The metrics are compared for the full deployment model and the proposed models

(COCOMO and ECOMO). In the full deployment model, ITS infrastructure and hence

accurate speed estimation is available for all the edges in the road network.

Figure 6.2a shows the effect of application penetration on average trip duration of

intelligent vehicles, non-intelligent vehicles (uninformed commuters), and all the vehicles

for full deployment model, COCOMO and ECOMO. Figure 6.2b shows the effect of ap-

plication penetration on congestion distribution in the road network, for all the scenarios.
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(a) Effect on Trip Duration

(b) Effect on Congestion Distribution

Figure 6.2: Effect of Application Penetration



6.4 Analysis of Simulation Results 120

Following are the important observations:

• The variations in trip duration and congestion distribution with ATIS penetration

for COCOMO and ECOMO are comparable to the full deployment model. The edge

level speed error has little or no impact on the rerouting decisions of the vehicles.

The reason being, when trip duration is computed by adding the erroneous travel

time estimates on individual edges, a certain fraction of errors cancels out, leading

to accurate trip duration calculation. That is, the accurate trip duration estimation

is available for making rerouting decision in all the scenarios. The results are in

agreement with other works in literature, such as VTrack [47] wherein it is observed

that accurate suggestions for shortest route are feasible even with erroneous (25%

median error) edge level travel time estimations. The ATIS works effectively with

erroneous traffic information and establishes utility of traffic information generated

by the proposed models.

• With low penetration of the ATIS (e.g. 10%), intelligent vehicles get the most

benefit with reduction in trip duration by more than 50% in the grid network (S4),

and more than 45% in the random network (S5). Overall trip duration in the

network (including that of uninformed commuters) also improves with reduction in

trip duration by more than 25% (more than 20% for non-intelligent vehicles) in S4

and S5. This happens because of the fact that as the intelligent vehicles choose

better alternate route to improve their trip, traffic condition on their original route

also become better leading to improved trip duration for non-intelligent vehicles as

well.

• As ATIS penetration increases, benefits to the intelligent vehicles decrease, but still

they achieve reduction in trip duration by more than 40% in S4 and S5.

For ATIS penetration of 30-50%, the average trip duration of intelligent vehicles

and non-intelligent vehicles are comparable. In some of the cases (application pene-

tration of 40-50% in S5), average trip duration of uninformed commuters is slightly

better than that of intelligent vehicles. The careful analysis of simulation traces

revealed some interesting facts. With increase in application penetration beyond

20%, the overall network traffic assignment is affected. As mentioned earlier, the
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ATIS considers only current traffic state for suggesting alternate route to intelli-

gent vehicles. It does not make any forecast about resultant traffic state due to

rerouting of intelligent vehicles. With a large number of intelligent vehicles making

rerouting decisions, the traffic conditions on alternate routes also change which is

not considered by the ATIS while suggesting the alternate route. This results in

intelligent vehicles taking longer time than expected for completing their trip. The

similar observations are reported by other researchers as well (e.g. [75] and [81]).

We do not consider it as a limitation of the ATIS due to two reasons: first, the

information about the fraction of vehicles changing their route based on sugges-

tions from the ATIS is difficult to determine as commuters themselves make a final

decision about the route to be taken for a trip; second, as the ATIS has to respond

to a large number of queries in real time, the use of computation intensive forecast

mechanisms based on machine learning may not be feasible.

• Figure 6.2b summarizes the effect of ATIS penetration on congestion distribution

in a road network for full deployment model, COCOMO and ECOMO. The effect

of application penetration is similar in all the cases. The availability of the traffic

information improves congestion in the road network.

Without ATIS, the road network faces congestion level F (unstable traffic regime)

in about 8% cases (considering time and space) in grid network scenario (S4) and

in 5% cases in random network scenario (S5). With the increase in penetration of

ATIS, the occurrence of congestion level F reduces and reaches zero percent with

application penetration of 40-50%.

The occurrence of congestion level E reduces from 8-9% without ATIS to 0-2% with

ATIS penetration of 40-50%. The traffic condition in road network moves towards

better congestion levels (A-D) as the application penetration increases.

Figure 6.3 shows effect of not covered congestion levels (COCOMO) on trip duration

and congestion level distribution in scenario S4 and S5. A set of not covered congestion

levels is taken from section 4.5.2 where the effect of unavailable ITS infrastructure on

congestion level coverage is analyzed. It is observed that there is little or no impact of

non-coverage of congestion level(s) on trip duration (Figure 6.3a) and congestion distri-
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(a) Effect on Trip Duration

(b) Effect on Congestion Distribution

Figure 6.3: COCOMO: Effect of Not Covered Congestion Levels (subplot title specifies
scenario and not covered congestion level(s))
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bution (Figure 6.3b) and the results are comparable to the scenario when full coverage is

available.

The non-coverage of a congestion level leads to unavailability of real time speed infor-

mation for all the occurrences of the congestion level in a road network. As mentioned

earlier, in all such cases, the corresponding historical data of GPS probe speed is used.

While the GPS probe speed is not a good representative of all vehicle speed on an edge,

it incorporates the effect of current congestion level on vehicle movement speed. As the

real time speed information is available for all the covered congestion levels, the use of

GPS probe speed on few edges does not affect the overall trip duration computation.

Hence, even with few not-covered congestion levels, a reasonably accurate trip duration

estimation is available for making rerouting decision. The historical data of GPS probe

speed combined with real time congestion level serves as a good substitute in case of

unavailability of real time speed estimation.

Another observation made from simulation traces is that when the trip duration of

alternate routes for a trip, each having few edges observing a not-covered congestion level,

are compared, usually the resultant path selection is the same as the case when real time

traffic information is available for all the congestion levels.

Figure 6.4 shows effect of not covered edges (ECOMO) on trip duration and congestion

distribution in scenario S4 and S5. The fraction of not covered edges is varied from 0.00 to

0.20 in increment of 0.10 in scenario S4 and S5. The range is selected based on analysis

in section 4.6.2 where the effect of unavailable ITS infrastructure on edge coverage is

analyzed. It is observed that there is little or no impact of non-coverage of edges on

trip duration (Figure 6.4a) and congestion distribution (Figure 6.4b) and the results are

comparable to the scenario when full coverage is available.

When an edge is not covered through infrastructure edges, the real time speed estima-

tions for the edge are not available. As mentioned earlier, in all such cases, the historical

data of GPS probe speed associated with the real time congestion level on the edge is

used. As the real time speed information is available for all the covered edges, the use

of GPS probe speed on few edges does not affect the overall trip duration computation.

Hence, even with few not-covered edges, a reasonably accurate trip duration estimation

is available for making rerouting decision.

It is also observed from simulation traces that when the trip duration of alternate



6.4 Analysis of Simulation Results 124

(a) Effect on Trip Duration

(b) Effect on Congestion Distribution

Figure 6.4: ECOMO: Effect of Not Covered Edges (subplot title specifies scenario and
fraction of not covered edges
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routes for a trip, each having few not-covered edges, are compared, usually the resultant

path selection is the same as the case when real time traffic information is available for

all the edges.

6.5 Conclusion

This chapter elaborated the design of an Advanced Traveler Information System (ATIS)

using traffic information generated by the proposed models (COCOMO and ECOMO).

Simulation results show that the ATIS improves average trip duration and congestion

in the road network and the performance is comparable to the full deployment of ITS

infrastructure. Hence, we conclude that the useful traffic information can be generated

using limited infrastructure deployment in a road network.

The effect of unavailability of traffic information for a set of congestion levels (CO-

COMO) or a fraction of edges (ECOMO) in a road network on trip duration and con-

gestion distribution is evaluated. Simulation results show that the application tolerates

unavailability of real time speed information and shows improvement in trip duration

and congestion distribution which are comparable to the scenario when all the congestion

levels or edges are covered. The historical data of GPS probe speed combined with real

time congestion level plays an important role in case of unavailability of real time speed

estimation.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Due to urbanization, the vehicular traffic has increased tremendously in the road net-

work. The available road infrastructure is stretched to its capacity, specifically during

peak hours. Due to increased traffic congestion, the average time spent on the road by

commuters has increased significantly. An Intelligent Transportation System (ITS) gen-

erates fine grained vehicular traffic information in real time which can be used to optimize

traffic movement in a road network. It has potential to reduce traffic congestion and make

the commute more efficient and safer.

However, deployment and maintenance of ITS sensors and related infrastructure on all

the edges in a road network is costly. With this reasoning, a variety of alternative sources

have been examined in literature for quality of generated real time traffic information.

The cellular network is widely deployed world wide but has large location error (150-500

meters) reported in the literature. When these location traces are used for generating

vehicle trajectories, the edge level speed estimation has a mean error of more than 15%.

We observe that most of the related work focus on processing of cellular signaling data

(to reduce location error) with very little emphasis on designing algorithms for generating

traffic information.

The GPS probe data are shown to be a feasible source of traffic information for

road networks carrying relatively homogeneous traffic (only four wheelers). However,

in developing countries like India, where the traffic is heterogeneous and dominated by

126



7.1 Conclusion 127

majority of GPS-less two wheelers, the GPS probes data alone is not a viable solution

for generating real time traffic information.

In the literature, a variety of sensors (e.g. video cameras, RF transceivers, acoustic

sensors, accelerometers, etc.) are evaluated for their deployment feasibility and quality

of generated traffic information. However the deployment and maintenance cost of the

dedicated sensors is high and is not feasible for developing countries.

The state of the art also contains works on fusion of traffic data from multiple data

sources to improve accuracy and coverage of the generated traffic information. We observe

that fusion of cellular network data with other data sources is not reported in the literature

to the best of our knowledge. We consider it as a major gap in the literature due to

large scale availability of cellular network and inability of generating accurate traffic

information using cellular network data alone. Based on this observation, the following

goal was set up for this thesis: to generate accurate traffic information in real time with

minimum additional ITS infrastructure while exploiting the large scale availability of

cellular network data and GPS probe data.

As a first step towards fulfilling the goal and to assess the cellular environment in

India, a localization experiment was set up. An Android application was developed to

collect cellular network traces and corresponding GPS location traces. The data collection

was done for ten days on an 18 km long road stretch in Ahmedabad, India. The data

set was processed using fingerprinting based localization algorithm. The mean location

error of less than 50 meters is observed in a region with dense deployment of cellular

infrastructure and less than 200 meters is observed in a region with relatively sparse

deployment of cellular infrastructure.

To generate vehicle trajectories using erroneous location data collected from cellular

network, a map matching algorithm was developed. To our surprise, no map matching

algorithm was found in the literature that processes location data with such high error

presented by cellular network. The map matching algorithm processes a series of location

estimates of a vehicle before associating it to an edge. This enables the accurate vehicle

trajectory generation but also adds a time lag. The vehicle trajectory is used to compute

vehicle flow, space occupancy and congestion estimation. To remove the time lag in the

traffic information and to make it real time, the temporal extrapolation using exponential

moving average and polynomial regression is attempted. The simulation results show
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that polynomial regression based extrapolation is more accurate than exponential moving

average. In both the cases, the mean estimation accuracy of more than 90% is achieved

for all the traffic parameters.

It was observed that edge level speed estimation using cellular network data alone is

highly erroneous and there is need of additional accurate data sources. To enable the

edge level speed estimation in whole road network, two models of ITS infrastructure de-

ployment are proposed: COngestion COverage MOdel (COCOMO) and Edge COverage

MOdel (ECOMO). Both the models exploit the availability of traffic information (con-

gestion profile of edges) from the cellular network to minimize the ITS infrastructure

requirement.

The COCOMO deploys ITS infrastructure on a set of edges to cover all six congestion

levels that can occur in a road network. The infrastructure requirement of the model is

constant and is independent of the number of edges in a road network (to 3-cover all six

congestion levels, the ITS infrastructure deployment on atmost 18 edges is required). To

the best of our knowledge, COCOMO is the only model with such unique characteristic.

The ECOMO forms clusters of similar edges using their congestion profile and de-

ploys ITS infrastructure on few representative edges in each cluster. The model permits

coverage of all the edges with infrastructure on less than 30% edges. We consider this as

a major finding as most of the models proposed in the literature require infrastructure

deployment on 60-80% edges in a road network.

It is assumed that accurate speed estimation is available on all the edges with ITS

infrastructure. To enable speed estimation on all the edges, the occupancy-speed relation-

ship is learned on infrastructure edges using polynomial regression model. The regression

model and historical data of GPS probes are used for speed estimation on infrastruc-

tureless edges. The simulation results show that speed estimation with ninety percentile

error of 10-22% and 10-13% with COCOMO and ECOMO, respectively, is achievable.

The comparison of ITS infrastructure requirement and speed estimation accuracy in CO-

COMO and ECOMO show that, the higher infrastructure requirement of ECOMO is

compensated by better accuracy in speed estimation.

The models are also evaluated for fault tolerance capability and feasibility of incre-

mental ITS infrastructure deployment. Simulation results show that the models permit

speed estimation for an edge or a congestion level when at least one covering infrastructure
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edge is available.

The thesis presents a unique way of fusing traffic data from cellular network, GPS

probes, and ITS infrastructure for accurate edge level speed estimation in real time.

To examine feasibility of large scale deployment, a MapReduce based distributed com-

puting framework is designed for the proposed ITS. The detailed analysis of computation,

communication, and storage requirements show the feasibility of large scale deployment

of the proposed ITS using currently available technology.

An Advanced Traveler Information System (ATIS) is developed to assess the utility

of generated traffic information. The ATIS uses real time traffic information generated

by the proposed models to enable trip planning and suggest route changes during a

trip based on traffic dynamics. The simulation results show that the ATIS improves

average trip duration and congestion in road network significantly. The improvements

are comparable to the scenario when accurate traffic information is available for all the

edges (all the edges are equipped with ITS infrastructure).

The thesis elaborates design of a multi-modal Intelligent Transportation System (ITS)

using cellular network, GPS probes and limited ITS infrastructure. The proposed infras-

tructure deployment models (COCOMO and ECOMO) exploit the availability of cellular

network data and GPS probe data to reduce infrastructure requirement. The models per-

mit incremental infrastructure deployment and try to maximize coverage using available

infrastructure. The system does not make any assumption about traffic sensors and can

support variety of them. These unique characteristics make the proposed ITS suitable

for deployment in developing countries like India.

7.2 Future Work

A set of realistic simulations is used to evaluate performance of the proposed Intelligent

Transportation System (ITS). As a future work and a step towards large scale deployment,

a prototype system can be built and evaluated.

It is assumed that all the vehicles are equipped with a cell phone and are tracked

using cellular infrastructure. As a future work, we aim to evaluate the signaling overhead

incurred in cellular network for tracking all the vehicles. The effect of tracking only a

fraction of the vehicles (to reduce signaling overhead) on accuracy of edge level traffic
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estimation needs to be analyzed. Detecting presence of traffic lights at junctions by

processing historical data of GPS probes can be attempted.

In the proposed ITS, deployment of static (non-moving) ITS infrastructure is assumed.

Recently the interest has been developed in using mobile sensors and certain combina-

tions of static and mobile sensors for traffic monitoring. The proposed infrastructure

deployment models can be extended to consider these new developments.

A data set containing cellular fingerprints along with corresponding GPS location is

not available for city wide or larger region in India or rest of the world. The availability

of such standard data set may enable evaluation of various localization algorithms on

common ground and open up doors for research in location based services (including real

time traffic estimation) using cellular infrastructure. Development of the data set is part

of future research.

In the current work, all the simulations are done using Simulator for Urban Mobility

(SUMO), which enforces lane disciplined traffic movement. Eventhough we could get a

good approximation of lane sharing heterogeneous traffic for the thesis work, there is a

need of traffic simulator that supports lane sharing traffic movement naturally. As an

effort in this direction, the SiMTraM (Simulation of Mixed Traffic Mobility) [68] was

developed by the Transportation Research Group at IIT Bombay by adapting the SUMO

version 0.12. The simulator divides lane width into multiple strips and assigns road space

to vehicles in terms of the number of strips, thereby permitting multiple small vehicles to

share the lane width. We upgraded the SiMTraM [69] for the SUMO version 0.17, but due

to certain unresolved bugs it could not be used in the thesis work. We believe that the

SiMTraM has potential to permit large scale simulations of lane sharing heterogeneous

traffic. We aim to update and publish a better version of SiMTraM as a part of future

work.
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Appendix 1

Cellular Fingerprint Sample Data

<root>

<celldata>

<datetime>26:March:2015:09:10:05</datetime>

<MCC>404</MCC>

<MNC>24</MNC>

<maincellid>1712</maincellid>

<maincellrssi>-61</maincellrssi>

<neighbours>

<item cid="7222" lac="15000" rssi="-93" />

<item cid="7772" lac="15000" rssi="-95" />

<item cid="532" lac="15000" rssi="-97" />

</neighbours>

<latitude>23.1284138</latitude>

<longitude>72.5422372</longitude>

</celldata>

<celldata>

. . .

</celldata>

...

</root>

Description

• The <celldata> tag contains one record of cellular fingerprint and corresponding

GPS coordinates.

• The <datetime> tag specifies time stamp when the data is recorded.
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• The MCC (Mobile Country Code) is 404 for India.

• The MNC (Mobile Network Code) is 24 for the IDEA network.

• The <maincellid> tag stores the identifier of the GSM cell to which the mobile

terminal is registered (the main cell ID).

• The <maincellrssi> tag stores the measure of received signal strength (RSSI) value

in dbm for the main cell ID.

• The <neighbours> tag contains information about the cell ID and corresponding

RSSI value for all the neighbor cells visible at the location. The “lac” attribute

specifies the Location Area Code of the location.

• The <latitude> and <longitude> tags specify the GPS coordinates at the location.
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