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Abstract

Data collection and storage capabilities have increased manifold in last few decades,

leading to information overload. Number of variables used to represent each data ob-

servation is called dimension of the data and dealing with large dimensions is a chal-

lenging task. Images have become a source of such large data which is increasing day

by day with advances in image capturing devices and demand of high resolution im-

ages. Images typically consist of large dimensions and processing that becomes very

difficult even for machines. Dimensionality reduction techniques learn a compact

representation of such data by exploring the properties such as correlation, pairwise

distances, neighborhood structure etc. The idea is to retain these properties in lower

dimensional representation as well, inducing minimum information loss. Early age

techniques of dimensionality reduction preserve the global structure of the data, but,

many a times, local manifold structure is more important than the global Euclidean

structure. This thesis is an attempt to develop robust and powerful dimensionality

reduction technique based on similarity preservation for image data. In particular,

the thesis emphasizes on the dimensionality reduction techniques those are linear in

nature and are based on preserving the local relationship of the image data.

In this work, Locality Preserving Projection (LPP), that preserves the local struc-

ture of data is studied and its various extensions are proposed. LPP works on the

concept that neighboring data points in the high dimensional space should remain

neighbors in the low dimensional space as well. Ambiguities in regions having data

points from different classes close by, less reducibility capacity, data dependent pa-

rameters, ignorance of discriminant information, non-orthogonality of the basis, vec-

torized processing are some of the issues with conventional LPP. Some of the variants

of LPP have been introduced that try to resolve these problems. Discriminant in-

formation, if considered, can play vital role in obtaining separation between different

classes. Variants of LPP, considering not only the local structure, but also the dis-

similarity between the data points are proposed in the first part of the thesis. Data

representation, face and facial expression recognition experiments are performed using

the proposed dimensionality reduction frameworks.

Though, conventional LPP and its variants well preserve the local manifold struc-

ture, the basis vectors learnt are not orthogonal. Having orthonormal basis is ad-

vantageous in many applications and makes data reconstruction much simpler. Or-

thogonal LPP (OLPP), orthogonalizes the basis of LPP in an iterative manner by

selecting basis vector orthogonal to all the previously learnt basis vectors. Apart

from dimensionality reduction and data representation, a new application of OLPP is
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explored in the form of Image Denoising. Recent state of the art approaches for im-

age denoising work on two major hypotheses i.e. non-local self-similarity and sparse

linear approximations of the data. Locality preserving nature of the proposed ap-

proach automatically takes care of self-similarity present in the image and clusters

similar patches in the projection domain. A framework for inferring an orthonormal

set of dictionary vectors using OLPP from the noisy data is presented and denoising

is performed in the transformed domain. OLPP appears to be a natural and suitable

mechanism for the task of image denoising.

Vectorized nature of OLPP requires high dimensional data to be converted to

vector format, hence may lose spatial neighborhood information of raw data. On

the other hand, processing two dimensional data (mainly images) directly, not only

preserves spatial information, but also improves the computational efficiency consid-

erably. Two Dimensional Orthogonal Locality Preserving Projection (2D-OLPP) is

expected to learn the transformation from two dimensional data itself. Like OLPP, a

global image denoising framework using 2D-OLPP is suggested. As the performance

of image denoising is highly dependent on clustering of similar patches, discriminant

information is also considered in the formulation of Two Dimensional Orthogonal

LPDP (2D-OLPDP). This technique is expected to achieve superior clustering of

image patches and thereby enhance the quality of denoising.

Various techniques based on similarity preserving dimensionality reduction pro-

posed during the course of this thesis are applied on face recognition and image

denoising tasks. Extensive experiments for both the applications have been carried

on benchmark databases and show promising results. The face recognition accura-

cies seem to improve over the existing locality preserving dimensionality reduction

approaches, and on the other end, image denoising performance using the proposed

frameworks is at par with or surpasses the state of the art image denoising approaches

with much less computational complexity.
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Chapter 1

Introduction

Advances in data collection and storage capabilities during recent decades have led

to information overload. Traditional statistical methods break down partly because

of the increase in the number of observations, but mostly because of the increase

in the number of variables associated with each observation. Dimension of the data

is the number of variables that are measured for each observation [11]. Analyzing

the data in high dimensional space is a challenging task, generally referred to as the

curse of dimensionality [12]. It becomes difficult to deal with very high dimensional

data, be it classification, recognition or analysis task [13]. Usually, in such a high

dimensional space, only a few data points are meaningful. Also, in many cases, not

all the measured variables are important for understanding the underlying phenomena

of interest [12]. In other words, the distribution of natural/meaningful data points

in high dimensional space is non-uniform and is generally concentrated around some

kind of low dimensional structures.

In recent times, research is going on in this direction to handle to issue of large

dimensional data. The present work is an attempt towards the same direction. One

of the widely used such large data comes from the image databases that are increasing

day by day. A study of handling large data such as images is of demand of recent

days. The thesis addresses a few of such issues by proposing some of the techniques

of image data dimensionality reduction. In particular, this thesis emphasizes on

the dimensionality reduction techniques those are linear in nature and are based

on preserving the local relationship of the data and there by addressing the global

manifold of the image data.

1
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1.1 Overview of Dimensionality Reduction

Dimensionality reduction mitigates the curse of dimensionality and other undesired

properties of high dimensional spaces [14]. As a result, dimensionality reduction facili-

tates, among others, classification, visualization, and compression of high-dimensional

data [15]. In literature, many linear and non-linear dimensionality reduction tech-

niques have been proposed [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. These

techniques try to represent the original high dimensional data in a compact man-

ner keeping the information content intact. A brief overview of some dimensionality

reduction techniques is presented in this chapter.

1.1.1 Linear Dimensionality Reduction Techniques

All the linear dimensionality reduction approaches learn a transformation matrix i.e.

a set of basis vectors, that are used to map the data from original space to the

newly found subspace, hence these approaches are also called domain transformation

techniques. Linear approaches work on the assumption that the data lies on a linear

manifold and hence linear in nature, thus a linear matrix V, that is used to transform

the data into the learned space. The set ofN training data points ofm×n dimension is

represented as X = [x1,x2, · · · ,xN], X being the data matrix. Most of the techniques

can not process data in matrix format, hence require the data to be converted in vector

format. General framework of linear dimensionality reduction techniques is shown in

Figure 1.1. The basis matrix of size N × (mn) is obtained, strongest d (d << mn)

column vectors of which can be selected to project the data in lower dimensional

subspace. Projection of ith data point xi is computed as : yi = VTxi.

Figure 1.1: General framework of linear dimensionality reduction techniques

Principal Component Analysis [16, 17] is one of the most popular linear dimen-

sionality reduction methods. It which finds subspace from the data covariance in-
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formation and preserves the directions of maximum variance. Linear Discriminant

Analysis (LDA) [18], a supervised linear dimensionality reduction approach, max-

imizes inter class variability and minimizes intra-class variability in order to have

better separation between different classes. Another popular linear approach is In-

dependent Component Analysis (ICA) [19] that aims at making the components as

independent as possible. A brief overview of these linear dimensionality reduction

techniques is discussed in this section.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [16], [17] is one of the most widely used linear

dimensionality reduction method which tries to find the basis vectors in the direction

of maximum variance of the given data. To project the set of training images to the

subspace using PCA, the transformation matrix V has to be found. The transforma-

tion can be represented by Y = VTX where Y is the mapping of X in the subspace.

The objective function for that is as follows:

max
m∑
i=1

(yi − y)2 ; y =
1

m

m∑
i=1

yi (1.1)

The vectors that satisfy this objective function are the set of orthonormal vectors

found by considering the eigenvectors of the covariance matrix C associated with

K << N2 largest eigenvalues. The projection is found by solving the eigenvalue

problem: CV = λV.

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [18] aims at maximizing the separability between

the classes i.e. to find the directions that are efficient for discrimination. The aim

is achieved by minimizing the within class scatter and maximizing the between class

scatter of the data points. The objective function of LDA is given below:

max
VTSBV

VTSWV
; (1.2)

SB =
l∑

i=1

ni
(
di − d

) (
di − d

)T
; SW =

l∑
i=1

(
ni∑
j=1

(
xj
i − di

) (
xj
i − di

)T)
(1.3)

here, SB is the between class scatter matrix, SW is the within class scatter matrix, l

is the number of classes in the data set, ni - the number of samples in the ith class,
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d - the mean vector of all the samples, di - mean vector of ith class and xj
i is the

jth sample of ith class. The LDA basis are obtained by solving generalized eigenvalue

problem: SBV = λSWV.

Independent Component Analysis (ICA)

Another much used linear transformation method is Independent Component Anal-

ysis (ICA) [19]. Objective of this dimensionality reduction approach is to minimize

the statistical dependence of components of the representation and capture the es-

sential structure of data. The representation is found so as to make the components

as independent as possible. The maximally independent components S are obtained

as follows:

S = VX (1.4)

where, X is the observed data vector X = (x1,x2, · · · ,xm), V is the transformation

matrix and S, the maximally independent components S = (s1, s2, · · · , sn). Compu-

tational complexity of obtaining these independent components is much higher than

PCA.

I addition to these three benchmark dimensionality reduction approaches, vari-

ous other dimensionality reduction approaches have also been proposed in literature.

Recently, dimensionality reduction approach which works on the idea of preserv-

ing independence between multiple subspaces is proposed in [28]. Furthermore, this

independent subspace structure preservation based approach also proves that for su-

pervised learning, with data having K classes, only 2K dimensions are required for

structure preservation. A unified framework for subspace analysis, the approach, spe-

cially designed for face images, uses a face difference model by decomposing face into

three different components, intrinsic difference, transformation difference and noise

[29]. Unified subspace analysis using some of the most popular subspace methods i.e.

PCA, LDA and Bayesian algorithm is carried out on these face difference components.

The approaches mentioned above, work on the assumption that the data is linear

in nature. Data may not always lie on a linear manifold; many a times, the manifold

on which data lies happens to be non-linear. In such cases, linear dimensionality

reduction methods fail to discover the non-linearity present in the data. Non-linear

dimensionality reduction approaches have been proposed in literature, that try to

unveil the underlying non-linear manifold structure of the data. A brief overview of

these approaches is presented in the next section.
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1.1.2 Non-linear Dimensionality Reduction Techniques

There are many cases where the high dimensional data has perceptually very less

independent degrees of freedom. Also, many a times, the data does not lie on or

near a linear subspace. Given the high dimensional data that actually lies on very

low dimensional manifold; the goal of nonlinear dimensionality reduction is to find

meaningful low dimensional representation that captures the degrees of freedom of

the data. In such cases, linear dimensionality reduction methods may fail because of

the non-linearity present in the actual data. To show the non-linearity of the data,

some data points from Swiss roll and S-shaped surfaces are sampled and shown in

Figure 1.2.

Figure 1.2: Examples of data originally embedded in non-linear subspace : Swiss Roll

(left) and S-shaped (right) dataset

In such cases, to find the underlying low dimensional manifold of the data, non-

linear dimensionality reduction methods have been proposed. Isomap [20] is a non-

linear dimensionality reduction technique that preserves the intrinsic geometry of the

data using geodesic distances between the data points. Like Isomap, Locally Linear

Embedding (LLE) [21] finds a non-linear manifold by stitching small linear neigh-

borhoods. It finds a set of weights that perform local linear interpolations to closely

approximate the data. Laplacian Eigenmaps [22, 23], obtain lower dimensional em-

bedding by drawing correspondence between the graph laplacian, the Laplace Bel-

trami operator, and connections to the heat equations.

Isometric Map (ISOMAP)

Isometric Map [20] is a nonlinear dimensionality reduction technique which preserves

the intrinsic geometry of the data using the geodesic or shortest path distances be-
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tween the data points. For the data lying on a nonlinear manifold, the straight line

Euclidean distance may appear to be very less in cases where the actual geodesic

distances are very high as shown in Figure 1.3 1.

Figure 1.3: Example of Euclidean and Geodesic distances in case of Swiss Roll dataset

Hence, to find the actual geometry of the data, geodesic distances between the

pair of points are found. The objective function of ISOMAP is:

min ‖τ (DG)− τ (Dy)‖L2 (1.5)

here, DG is the matrix containing the shortest path distances between all pairs of

points and Dy is the matrix of Euclidian distances between the projected points.

The shortest path distances give the geodesic distance between the points which

help to find the underlying manifold structure. Multidimensional Scaling (MDS) is

used to find the basis functions of the newly found subspace and out of these, the

k eigenvectors corresponding to the lowest eigenvalues are chosen for reducing the

dimensions. Isomap is locally linear and provides nonlinear aspects when stitched

together.

Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) [21] finds nonlinear manifold by stitching small

linear neighborhood. The basic idea of LLE is to approximate each data points

by a weighted linear combination of its neighbors and to find a low dimensional

configuration of the data points so that the linear approximations are best preserved

[10]. There are three basic steps of LLE algorithm.

1K. Chen, Isometric Feature Mapping, Modelling and Visualization of high dimensional data,

University of Manchester
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Step 1: Defining the neighbors:

Neighbors of all the data points combination of which will provide approximation

to that data point are defined by either K-nearest neighbor approach or using the

ε-neighborhood based on Euclidean distance for each data point.

Step 2: Finding reconstruction weights:

Optimal weights that reconstruct each data point from its neighbors are obtained by

minimizing the reconstruction error:

min

∥∥∥∥∥xi −
k∑
j=1

Wijxnij

∥∥∥∥∥
2

s.t.

k∑
j=1

Wij = 1 (1.6)

where, xi is a data point, Ni = xni1
,xnik

is the neighbor set of xi and Wij is the

weight corresponding to each neighbor of xi.

Step 3: Representation in low dimensional (embedding) space:

Once the weights are found, the task is to map the high dimensional observation xi

to a low dimensional observation yi. This is done by choosing yi that minimizes the

embedding function subject two constraints as given below:

min

∥∥∥∥∥yi −
k∑
j=1

Wijynij

∥∥∥∥∥
2

s.t.
k∑
j=1

yi = 0,
1

N

N∑
i=1

yiyi
T = I (1.7)

As opposed to Step 2, here the weights are known and optimum coordinates are to

be calculated. Eigenvectors of M = (I−W)T (I−W). Eigenvectors corresponding

to the lowest eigenvalues are selected. The algorithm finds global minima of the

reconstruction and embedding weights.

Laplacian Eigenmaps

Laplacian Eigenmaps [22], [23] is another non-linear dimensionality reduction ap-

proach that has locality preserving properties and a natural connection to embedding.

The algorithm for finding the low dimensional embedding of the high dimensional is

proposed by drawing the correspondence between the graph laplacian, the Laplace

Beltrami operator and the connections to the heat equations. Also, the locality

preserving property makes it relatively insensitive to outliers and noise. Lower di-

mensional embeddings of data points xi, yi are obtained by solving the following

generalized eigenvalue solution:

Ly = λDy (1.8)
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here, Dii =
∑

i Sij is a diagonal weight matrix, S is the weight matrix that is obtained

by weighing the neighbors of each data point using the Heat Kernel function i.e.

Sij = e
−‖xi−xj‖2

t and L = D − S is the laplacian matrix. Let y0, · · · ,ym−1 be the

solutions to Equation 1.8, ordered according to their eigenvalues with y0 having the

smallest eigenvalue. The image of xi under the embedding into the lower dimensional

space Rk is given by (y1 (i), · · · ,ym (i)).

Non-linear dimensionality reduction methods do yield impressive results on some

benchmark artificial data sets, as well as on real world data sets. However, their non-

linear property makes them computationally expensive. Moreover, they yield maps

that are defined only on the training data points and do not provide any mechanism

to project new data point in the lower dimensional subspace. The embeddings learnt

using these non-linear approaches are data dependent and change with inclusion or

exclusion of data points. Thus, new or unknown data point can not be projected

on the existing lower dimensional representation of the data in subspace. Hence,

non-linear dimensionality reduction approaches are not suitable for recognition re-

lated applications. To overcome these issues as well as explore the non-linearities of

the data, similarity preserving linear dimensionality reduction approaches have been

proposed.

1.1.3 Similarity Preserving Dimensionality Reduction

Similarity preserving dimensionality reduction approaches try to capture non-linearities

present in the data by preserving neighborhood information of the data points yet

learn a transformation matrix that can be used to map unknown data points in the

projection space, thus linear in nature. Neighborhood Preserving Embedding (NPE)

[24], is a linear approximation of LLE that aims to discover the local structure of

the data manifold. Locality Preserving Projections (LPP) [26, 30], a linear approx-

imation of Laplacian Eigenmaps, evolves around the idea that, data points that are

similar to each other in the original space, should remain close in the newly found

projection space as well. Thus, the aim is to obtain a subspace that detects the data

manifold structure in the best possible way.

Neighborhood Preserving Embedding (NPE)

Neighborhood Preserving Embedding (NPE) [24] and Orthogonal Neighborhood Pre-

serving Projection (ONPP) [25] are linear extensions of LLE. A linear transformation

matrix is obtained which can now be used to project the data in the lower dimensional

subspace. The procedure of learning the transformation matrix is similar to that of
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LLE as explained in Section 1.1.2.

Neighbors of all the data points, combination of which will provide approximation

to that data point, are defined by either K-nearest neighbor approach or using the

ε-neighborhood based on Euclidean distance for each data point. Optimal weights

that reconstruct each data point from its neighbors are obtained by minimizing the

reconstruction error:

min

∥∥∥∥∥xi −
k∑
j=1

Wijxnij

∥∥∥∥∥
2

s.t.

k∑
j=1

Wij = 1 (1.9)

where, xi is a data point, Ni = {xni1
,xnik

} is the neighbor set of xi and Wij is the

weight corresponding to each neighbor of xi.

In case of NPE, the transformation matrix V is computed by solving the following

minimization problem:

min

∥∥∥∥∥yi −
k∑
j=1

Wijynij

∥∥∥∥∥
2

s.t.
k∑
j=1

yi = 0,
1

N

N∑
i=1

yiyi
T = I (1.10)

The constraints imposed here are normalization constrains on the projection data.

The optimization problem results in solving the following generalized eigenvalue prob-

lem:

XMXTV = λXXTV (1.11)

where, M = (I−W)T (I−W). Eigenvectors corresponding to the smallest non-zero

eigenvalues are the strongest. The basis i.e. the transformation matrix obtained

following this procedure is not orthogonal. Many applications require the data to

be converted back in the original space and this becomes easy with orthogonal basis.

ONPP seeks orthogonal transformation matrix, excludes the normalization constraint

imposed in NPE, thus minimizing min
∥∥∥yi −

∑k
j=1Wijynij

∥∥∥2. Solution of the opti-

mization problem results in following eigenvalue solution:

XMXTV = λV (1.12)

In case of ONPP, the eigenvalue solution of Equation 1.12 realizes the transfor-

mation matrix with orthogonal basis vectors.
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Locality Preserving Projection (LPP)

Locality Preserving Projection [26], linear extension of Laplacian Eigenmaps discussed

Section 1.1.2, explores the data non-linearity by preserving the local i.e. neighborhood

of the data. The objective function of LPP aims at projecting similar data point close

by in the projection space thus exploiting the non-linear manifold structure. The

objective function of LPP is as follows:

min
∑
ij

(yi − yj)
2Sij (1.13)

here, yis are projections of the data points xis in the LPP domain using the learned

transformation i.e. basis matrix V i.e. yi = VTxi. S is the similarity matrix, weights

in which are assigned using the Heat Kernel function i.e. Sij = e
−‖xi−xj‖2

t .

Further simplifying, the objective function turns out to be VTXLXTV. Here, V

is the transformation matrix, L = M − S is the Laplacian matrix [31] and Mii =∑
i Sij. A constraint VTXMXTV = I is imposed on the objective function which

incorporates normalization on the data points. The transformation matrix V that

minimizes the objective function under the constraint is given by solution to the

generalized eigenvalue problem[26]:

XLXTV = λXMXTV (1.14)

Thus, various dimensionality reduction approaches aim at representing the high di-

mensional data in much compact way without losing the information content. In this

thesis, similarity preserving dimensionality reduction approaches have been studied

for image data. The main motivation of the the thesis is detailed study of local-

ity preserving projection that preserves the neighborhood similarity in the projec-

tion space. Extensions of LPP have been suggested for robust and powerful per-

formance. Dimensionality reduction and domain transformation has been widely

used in applications such as object recognition, face and facial expression recogni-

tion [19, 16, 26, 6, 32, 9], image restoration like denoising, deblurring, inpainting,

compressive sensing etc. [33, 34, 35, 36, 37]. Different applications of dimensionality

reduction based on similarity preservation have been explored over the course of the

thesis.

1.2 Motivation of the Work

An observed object is often represented by a high dimensional real-valued vector and

each object in this high dimensional space is called a data point. Generally, distri-
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bution of such high dimensional data points in the original space is not uniform and

may seek representation in lower dimensional space. In applications, such as object

recognition, bio-informatics and data mining, high data dimensionality imposes great

burdens on the robust and accurate recognition due to insufficient knowledge about

the data population and limited number of training samples [38]. Dimensionality

reduction thus becomes the most critical module of such recognition systems. The

objective of dimensionality reduction is retaining maximum information required for

classification using a compact representation in the lower dimensional subspace, thus

reducing the computational complexity of the subsequent classification.

A straightforward way to achieve dimensionality reduction is by maximizing the

information carried by data in lower-dimensional subspace as suggested in Principal

Component Analysis (PCA) [17], but it is the discriminative information that plays

role in recognition task. Thus, discriminant analysis such as Linear Discriminant

Analysis (LDA) [18] is preferred over PCA especially for recognition related appli-

cations. These linear approaches work on the assumption that the data is linear in

original space which may not always be the case with high dimensional data. Neigb-

horhood similarity preserving dimensionality reduction techniques such as Locality

Preserving Projection (LPP) [26] and Neighborhood Preserving Embedding (NPE)

[24] try to deal with the non-linearity present in the data. For tasks such as recog-

nition, dependence of such approaches only on a few neighboring data points of the

point of interest may lead to ambiguity as they may consider data points from different

classes as neighbors. Also, it is important to enhance the reducibility capacity of such

similarity preserving approaches and at the same time retain as much information as

possible to achieve faster, accurate and robust performance.

As discussed earlier, both capturing non-linearity by similarity preservation and

discriminant information are equally important for data classification and recognition.

There is a strong need to evolve dimensionality reduction techniques that circumvent

the issues, enhance subsequent data classification and make the system more robust.

Various recognition problems such as face recognition can be addressed using these

approaches.

Face images are represented as high-dimensional pixel arrays. Due to high corre-

lation between the neighboring pixel values, they often belong to intrinsically lower

dimensional manifold. Face recognition is one of the most widely used applications

where dimensionality reduction is applied prior to the recognition task [19, 16, 26, 6,

32, 9]. Also, because of high variations in face images such as pose, expressions, illu-

mination conditions, change in appearance etc, they may lie on a non-linear manifold.

In this work, we are trying to device a dimensionality reduction scheme, that captures
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non-linearities present in the data and achieves maximum separability between data

points from different classes simultaneously.

Apart from classification and recognition tasks, the noise removal aspect of di-

mensionality reduction has been explored in this work. Most of the information is

carried by the coefficients/variable retained in the lower dimensional subspace. All

the other variables with very small coefficient values carry noise or undesired infor-

mation and hence can be eliminated. This phenomenon is known as noise removal

effect of dimensionality reduction [38]. Thus, dimensionality reduction also helps in

eliminating noise from the data.

In early 90s, transformed domain noise elimination approaches (in Fourier, Dis-

crete Cosine and Wavelet domains) [33, 39, 40] became highly popular. These ap-

proaches showed that the information content of the image is mostly present in the

low frequency components whereas noise is carried in the high frequency components.

Thus, by thresholding (making the high frequency components zero), noise can be

suppressed in the transform domain as well.

‘Non-local self similarity’ introduced the concept of using structural similarities

between fixed sized patches from different spatial locations of the image [41, 42] for

eliminating noise. Recent state of the art techniques for image denoising rely on

two statistics of natural images: (1) There exists self-similarity between the patches

from different locations of the same image [41], (2) Image patches can be sparsely

represented by linear transforms i.e. using the linear combinations of the basis vectors

also known as ‘dictionary’. The dictionary could be comprised of the fixed universal

basis [35] or can be adaptively learned from the image patches. State of the art

approaches cluster similar patches for a given reference patch and learn patch/cluster

specific dictionary [34, 43, 37, 44]. However, both the processes are independent and

repeated for each patch/cluster.

The aim of local information preserving schemes is learning a transformation that

projects the similar data points close to each other in the transform/projection do-

main. The basis are adaptively learned by taking care of similarity information for

each data point. Thus, the main aspects of the recent image denoising approaches,

i.e. similarity within the image patches and noise removal in the transform domain

can be handled together. Another motivation of the present work is to build similar-

ity based dimensionality reduction that can be suitable for robust and accurate noise

elimination procedure.
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1.3 Scope and Accomplishments of the Thesis

The scope of this thesis is study and development of dimensionality reduction tech-

niques based on similarity preservation. Locality Preserving Projection (LPP) [26] is a

linear dimensionality reduction technique that tries to explore non-linearities present

in the data by preserving the neighborhood information i.e. similarity between the

data points in the transformed domain as well. Conventional LPP is sensitive to

noise, outliers and depends highly on the parameters for constructing the neighbor-

hood graph and the weight matrix. A few extensions [45, 46, 47, 48] of LPP have

been proposed in literature. This thesis is an attempt to overcome the issues of

the conventional LPP approach towards making it more robust, achieve better dis-

crimination capability, reduce the computational complexity and utilize it in various

pattern recognition and image processing applications.

LPP and its variants, so far have been used in object recognition and data clus-

tering related applications, most celebrated being face recognition. Face recognition

experiments on various benchmark face databases have been conducted. Orthogonal

and two dimensional variants of LPP have been formulated for faster and easier data

processing. Orthogonal property of the basis helps in efficient data reconstruction,

hence apart from recognition, applicability of the proposals can be extended towards

image restoration processes, particularly image denoising. Similarity preservation

property takes care of the non-local self similarity within the image by treating image

patches as data points in the process of learning the basis. The basis vector thus

learned, are tuned as per the clusters of similar patches and can be effectively utilized

for eliminating noise in the transform domain. Hence, both the major hypotheses of

recent state of the art image denoising, discussed in Section 1.2, are consolidated in

similarity preserving transformations. An attempt has been made to establish sim-

ilarity preserving projection as a natural choice for image denoising. Chapter wise

major accomplishments of the thesis are listed down:

(1) Neighborhood of the data points is extended to a moderate distance in order to

enhance the reducibility capacity of LPP as well as to resolve the ambiguities

present in the regions where data points from different classes are close to each

other. Also, based on the class label information, inter-class distance is enhanced

whereas intra-class distance is decreased to achieve better class discrimination

in the projection domain of Extended Supervised Locality Preserving Projection

with Modified Distance (ESLPP-MD). Kernel based variants of LPP try to cap-

ture non-linearity present in the face images in a much better way.

(2) A dimensionality reduction technique, Locality Preserving Discriminant Projec-
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tion (LPDP), is proposed which not only preserves local structure of the data

but also tries to discriminate different classes when projected in the transformed

domain. Improved face recognition performances with much less dimensions on

some of the benchmark face databases have been observed. Kernelization of

LPDP (K-LPDP) shows further improvements by exploring the non-linearities

present in the data.

(3) The basis obtained using LPP and its variants are non-orthogonal. Orthogo-

nalization of extended LPP (OLPP) and its suitability for image denoising are

explored. Similarity preserving property of OLPP automatically takes care of

non-local self similarity while inferring the basis (transformation matrix) and

hence only one global basis is sufficient for entire or a large portion of the im-

age. Proposed amalgamation of sparsity and global dictionary make the current

approach more suitable for image denoising task with reduced computational

complexity.

(4) Vectorized nature of OLPP requires high dimensional data to be converted to

vector format, hence may lose spatial neighborhood information of the raw data.

On the other hand, processing two dimensional data directly, not only preserves

the spatial information, but also improves the computational efficiency consider-

ably. Two Dimensional Orthogonal Locality Preserving Projection (2D-OLPP)

learns the transformation from two dimensional data itself and is used for image

denoising task. A global basis is adequate for the entire image. The proposed

approach outperforms several state of the art image denoising approaches for

gray-scale, color and texture images.

(5) Basis obtained using LPDP are non-orthogonal, also images in matrix format

are required to be converted to vector format before processing. Two Dimen-

sional Orthogonal Locality Preserving Discriminant Projection (2D-OLPDP), an

orthogonal variant of LPDP that directly processes the data in matrix format has

been utilized for image denoising.

1.4 Organization of Thesis Chapters

Image data typically consists of very high dimensions and processing it in its raw

format with such large dimensions is a challenge especially for machines. Looking

at the image, human visual system does not process individual pixels but observe

the image as a whole entity, understanding the correlations present in scene and
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extracting the information. As opposed to this, the machines look at the image just

as a collection of numbers and processing these huge piles of numbers is a difficult task

especially in the era of huge data collection. Correlation within the image, between

nearby pixels or self similar portions of the image, can be explored to represent high

dimensional images with only a few significant coefficients by domain transformation,

generally known as dimensionality reduction. An overview of dimensionality reduction

is presented in Section 1.1.

Out of all, similarity preserving dimensionality techniques try to attain balance

between linear and non-linear dimensionality reduction. Locality preserving projec-

tion (LPP) preserves neighborhood information of each training data point in the

transformed domain thereby giving emphasis on similarity between them. This work

is an attempt to develop robust and powerful dimensionality reduction technique

based on similarity preservation. LPP has been studied and analyzed thoroughly and

based on the observations, in each contributory chapter, similarity preserving dimen-

sionality reduction techniques are proposed and various applications are explored.

Brief overview of the chapters is covered below.

Locality preserving projection and some of its extensions are first discussed in

Chapter 2. These approaches do not have control over projection of non-neighboring

data points in the subspace. Intra-class and inter-class distances can be utilized to

achieve enhanced class discrimination. Extended supervised LPP with modified dis-

tance (ESLPP-MD) is proposed in this chapter which increases or decreases distance

between data points depending on the class labels to achieve more discrimination be-

tween different classes. The performance of such similarity preserving dimensionality

reduction techniques do not guarantee to capture complex non-linearities present in

the data. Kernel based variants are proposed to address this issue, that map the data

to feature space which explores non-linearity. Data representation, face and facial ex-

pression recognition performances are reported on a large set of databases and show

superior performance as compared to other variants of LPP.

ESLPP-MD manipulates distance between data points to achieve better class

discrimination, which in a sense gives false impression of the data points to the basis

learning mechanism. Instead of changing the distances, the objective function itself

can be tuned to learn a transformation which projects the neighboring points from

the same class close to each other and those from different classes far apart in the

subspace. Locality Preserving Discriminant Projection and its kernel based variant

are proposed in Chapter 3. Performance of LPDP is compared with a few other

contemporary approaches on some benchmark databases for face recognition. The

current method seems to perform significantly better.



CHAPTER 1. INTRODUCTION 16

Chapter 4 deals with Orthogonal property of LPP. The transformation matrix

aka. basis learnt using LPP and Extended LPP are not orthogonal which is a desired

property in many applications. Orthogonality of the basis especially makes the re-

construction of data faster and easier. Hence, orthogonalization of ELPP is suggested

in this chapter and applied for an application which requires to represent the data

back in the original domain i.e. image denoising. Recent state of art image denois-

ing techniques work on the concept of exploring self similarity within the image in

the form of image patches and noise elimination in transformed domain. Orthogonal

LPP takes care of both the aspects which is well supported by comparable denoising

performance of OLPP with several state of the art methods for gray-scale and color

images.

All the dimensionality reduction approaches discussed so far process the data in

vector format, thus image matrices are required to be converted in vectors first, caus-

ing loss of spatial neighborhood information. Two Dimensional Orthogonal Locality

Preserving Projection (2D-OLPP) is formulated in Chapter 5 which processes im-

ages in matrix format directly. This not only preserves spatial information, but also

improves the computational efficiency considerably. This approach inherits all the

properties of OLPP, thus suitable for image denoising. Image parches are processes

directly and similarity preserving property groups them in the projection space au-

tomatically and 2D data processing helps in improving the performance of image

denoising outperforming state of the art approaches.

As discussed in Chapter 3, discriminant information, if considered can play piv-

otal role in clustering the data. Two Dimensional Orthogonal extension of LPDP

is proposed in Chapter 6. While learning the basis, along with similarity, this ap-

proach also takes into account the dissimilarity information as well. 2D-OLPDP is

also applied for image denoising in the same way as that of OLPP and 2D-OLPP.

Incorporation of discriminant information while learning the basis clusters the noisy

image patches in a better way thereby expected to enhance the quality of denoising.

The results obtained are very encouraging and appeared to be comparable with the

forerunner approaches of image denoising.

Variants of linear dimensionality reduction based on local similarity are proposed

with varied applications such as face recognition and image denoising. As overall

conclusion of the entire work is presented in Chapter 7 with some of the possible

directions of future work.



Chapter 2

Locality Preserving Projection and

its variants

As discussed in Chapter 1, there is a need for a linear dimensionality reduction ap-

proach, that takes care of the similarity present in the data by preserving closeness

of the data points in the transform domain. Locality Preserving Projection (LPP)

captures the local structure of data with the goal that data points that are similar

to each other in the original domain should remain close in the projection domain

as well. In this chapter, LPP, some observations about LPP and its extensions are

discussed in detail.

2.1 Locality Preserving Projection (LPP)

The non-linear dimensionality reduction methods [20], [21] do yield impressive results

on some benchmark artificial data-sets, as well as on real world data sets. However,

their non-linear property makes them computationally expensive. Moreover, they

yield maps that are defined only on the training data points and how to evaluate the

map on novel test points remains unclear [26]. In many real world problems, local

manifold structure is more important than the global Euclidean structure [30].

Locality reserving Projection (LPP) [26] is a recently proposed linear approach for

dimensionality reduction that tries to capture the non-linear manifold structure of the

data. It finds an embedding that preserves local information and obtains a subspace

that best detects the essential data manifold structure. This is achieved by projecting

similar data points close by in the LPP subspace. In LPP, neighborhood information

is stored in a graph and basis vectors are found using the notion of Laplacian of a

graph. A weighing function assigns weights to the edges of the graph that incurs

17
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heavy penalty if data points are mapped far apart hence giving more emphasis to

nearest neighbors.

LPP is obtained by finding the optimal linear approximations to the eigenfunctions

of the Laplace Beltrami operator on the manifold [26]. The objective function is:

min
∑
ij

(yi − yj)
2Sij (2.1)

here, yi is the projection of ith data point xi in the LPP domain using learned trans-

formation matrix V i.e. yi = VTxi. S is the similarity matrix. It is a symmetric

matrix representing the weights of edges of the adjacency graph. The data points are

considered as the nodes of the graph while existence of edges depends on whether

two nodes are considered as neighbors or not. The procedure of calculating Sij, as

suggested in He et al. [26] consists of two steps:

Constructing the adjacency graph: Let G be the graph having the images

in the training data-set as its nodes. An edge is present between nodes i and j if xi

and xj are neighbors i.e. close to each other. The closeness can be determined in two

different ways.

• ε - neighborhood: The nodes i and j are connected by an edge if ‖xi − xj‖2 <
ε ∈ R. Here the norm is the usual Euclidean norm in Rn.

• k - nearest neighbors: The nodes i and j are connected by an edge if i is

among k-nearest neighbors of j or vice-versa, k ∈ N . Once the adjacency graph

is obtained, LPP will try to optimally preserve the local structure defined by

the adjacency graph.

In case of LPP, for constructing the adjacency graph, K-NN is widely used over

the ε- neighborhood method because of its simplicity and ease of implementa-

tion. Choosing the value of K properly is difficult because of the non-linearity

and variety of the high dimensional data.

Estimation of weights: S is a sparse symmetric matrix of size N × N , where

number of training data point is represented by N , with Sij having the weight of the

edge connecting vertices i-j and 0 if no such edge is present. Again, there are two

variations for weighing the edges.

• No parameter: Sij = 1 if nodes i and j are connected by an edge.

• Heat kernel: Sij = e
−‖xi−xj‖2

t if nodes i and j are connected by an edge, t ∈ R.
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The objective function with this choice of symmetric weights incurs a heavy penalty

if neighboring points xi and xj are mapped far apart. This is an attempt to ensure

that if xi and xj are close then their mappings in the projection space are close as well.

Transformation matrix computation: In order to compute the transformation

matrix V, the objective function can be reduced to the matrix form.

1
2

∑
ij (yi − yj)

2 Sij

= 1
2

∑
ij

(
VTxi −VTxj

)2
Sij

= 1
2

∑
ij

(
VTxi −VTxj

)T (
VTxi −VTxj

)
Sij

= 1
2

∑
ij

(
2VTxiSijxi

TV − 2VTxiSijxj
TV
)

=
∑

i V
TxiMiixi

TV −VTXSXTV

= VTXMXTV −VTXSXTV

= VTX (M− S) XTV

= VTXLXTV

(2.2)

here, V is the transformation matrix, L = M − S is the Laplacian matrix [31] and

Mii =
∑

i Sij, a diagonal matrix which provides a natural measure on the data points.

Here, each data point xi is of dimension m × n. A constraint VTXMXTV = I

is imposed on the objective function which incorporates normalization on the data

points using the volume of the graph G [49], [22]. The transformation matrix V

that minimizes the objective function under the constraint is given by solution to the

generalized eigenvalue problem[26]:

XLXTV = λXMXTV (2.3)

This transformation matrix is then used to project the high dimensional data in

the lower dimensional subspace.

2.1.1 Observations From LPP

Manifold obtained using LPP highly depends on the construction of the similarity

matrix. In case of conventional LPP, in order to obtain the similarity matrix, setting

the values of parameters plays a vital role. First thing to be fixed is the neighborhood

selection approach, as the graph structure is built-up using this information. Another

parameter is the width of the Gaussian kernel that is controlled by t in the heat

kernel approach, which weighs the edges of the graph constructed in the previous

step. Generally, mean of the pair wise distances is used as t but this value does not

necessarily find the optimal underlying manifold for all the data sets.
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The local structure of the data is well preserved by LPP but it pays little or no

attention to the overlapping regions of two or more classes. Many a times it happens

that nearest neighbor of a data point is a data point belonging to the other class.

In such cases, though the points belong to different classes, they could be connected

because of their closeness. One such example is shown in Figure 2.1(a). Here, two

classes are denoted by A and B, a region is shown where the boundaries of two classes

overlap. In this region, data points from both the classes are neighbors.

(a) (b)

Figure 2.1: (a) An example where data points from class A and B are mapped close

by (b) Energy curve for PCA (solid) and LPP (dotted)

In LPP, similarity function e
−‖xi−xj‖2

t is applied to few nearest neighbors of the

data point of interest. Considering only the nearest neighbors may lead to wrong

classification in the region of overlap. LPP preserves local structure of data in the

projection domain thus trying to handle data non-linearity, but may fail if the data

lies on a complex non-linear manifold. LPP suggests project of similar data points

close by but how the dissimilar data points should be mapped in the projection space

is not defined. Discriminant information plays important role in recognition tasks

which gets de-emphasized because of the locality preserving property of LPP.

Another observation is on energy preservation capacity of conventional LPP. Higher

energy preservation ensures better reducibility capacity. Figure 2.1(b) shows energy

curves of PCA and LPP for an experiment. Experiments over a range of data indicate

that considering only half of the dimensions in the PCA space preserves more than

90% energy whereas the same in the LPP space comes out to be only 60%. Though

the figures may vary in accordance with the data, in general, the energy preservation

capacity of LPP remains much less than that of PCA and hence, the reducibility

capacity of LPP needs to be increased.
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LPP processes the data in vector format, hence all the data points are required to

be converted into vectors. Due to vectorization, spatial neighborhood information gets

lost. The vectorization procedure leads to high dimensional data vectors resulting in

high dimensional basis matrix and increase in computational time. Also, most of the

linear dimensionality reduction approaches such as LDA, LPP, NPP often suffer from

small sample size problem i.e. number of data samples is much less than the dimension

of the data [50, 51, 9]. In such cases, the matrices become singular, hence cannot be

processed [9]. The learned LPP basis are obtained by solving generalized eigenvalue

problem and hence the basis are not orthogonal in nature. Non-orthogonality makes

its use difficult not only for reconstruction but also for many other applications.

Several variants of LPP have been proposed in literature to overcome the issues and

device a more robust and parameterless dimensionality reduction approach.

2.2 Existing Variants of LPP

2.2.1 Extended Locality Preserving Projection (ELPP)

Extended Locality Preserving Projection (ELPP) [48] aims at improving the reducibil-

ity capacity as well as resolving ambiguities in the overlapping region. A weighing

scheme has been used that extends the neighborhood of data by considering the data

points that are at a moderate distance from the point of interest along with the near-

est neighbors. Weighing function automatically discards the data points far apart as

it works based on the distance information. In order to exploit the natural grouping

of the data, k-means algorithm is used based on which the neighbors are decided.

The value of k is assumed to be available as a prior information.

Conventional LPP uses k - nearest neighbor or ε neighborhood approach to con-

sider the data points as neighbors. For both the approaches, k and ε remain constant

for all the data points and it is hard to fix these parameters. The training set first

undergoes k-means classification and then if class assigned to the two points is same,

they are connected by an edge. This is an adaptive strategy for the data points to

select the neighbors. Weight is assigned in the similarity matrix S̃ij according to the

newly proposed z-shaped weighing function. Based on the range of values given as

input, weights are assigned to the distances over the complete scale as per Equation

2.4. Plot of the function using different parameters is shown in Figure 2.2. As the

distance between the data points i.e. x increases, weight at that point decreases.

The z-shaped weighing function decreases gradually and its slope can be controlled

as compared to the Heat Kernel function used in conventional LPP which shows rapid
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fall as the distance increases.

Sij =


1; if xij ≤ a

1− 2
(xij−a
b−a

)2
; if a ≤ xij ≤ a+b

2

2
(
xij−b
b−a

)2
; if a+b

2
≤ xij ≤ b

0; otherwise

 (2.4)

here, a and b specify range of values along which the function changes its values and

can be controlled. Between a and b, two functions are used to make the final output

function the z-shaped one. The slope of the function is dependent on the parameters

a and b. a is set to be a very small value and to set the value of b, the natural

clusters found using k-means approach are used. After the k-means clustering step,

data clusters are formed and labels to all the data points are assigned. For each

cluster, maximum pairwise distance between all the data points belonging to that

cluster (referred to as the radius of the cluster) is set to be b. Hence, for each cluster,

b has a unique value depending upon the pairwise distances between the data points

belonging to it. This makes the procedure adaptive according to the data. Thus,

both the processes, selection of neighbors and weight assignment, become adaptive

and data dependent. Parameters are not to be set explicitly. As opposed to the

conventional LPP where only few neighbors are considered, here the data points that

are at a moderate distance from the point of interest are also taken into consideration

and weighed accordingly.

Thus, the Laplacian matrix turns out to be L̃ = M̃ − S̃ [31] where M̃ =
∑

i S̃ij.

The objective function now turns out to be minVTXL̃XTV subject to the constraint

VTXM̃XTV = 1. Eigenvectors of the generalized eigenvalue solution of XL̃XTV =

λXM̃XTV for the basis vectors of the newly found subspace of ELPP.

2.2.2 Supervised Locality Preserving Projection (SLPP)

As described in Section 2.1, LPP is an unsupervised learning method which does not

take into account the class membership information. In practical scenarios, many a

times neighboring data points belong to different classes. According to the objective

function of LPP, if the data points are neighbors i.e. close to each other in the

original space, they should remain close in the reduced space as well even if they do

not belong to same class. In such cases, LPP may lead to wrong classification as it

does not incorporate the class label information. This information can be utilized

to enhance the discriminant analysis as proposed in LDA [18]. It can be said that

the locality preserving property and discriminant ability are significant in learning a
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Figure 2.2: Plot of the z-shaped function with different parameters

new feature subspace [52]. The class information can be combined with the locality

preserving property of LPP to enhance the performance.

Supervised Locality Preserving Projection (SLPP) [52] is a variant of LPP, where

known class labels of data points are used. The neighbors of a point are decided

based on already known class labels i.e. prior information about the original data set

is used to learn the feature subspace. Choosing neighbors in this manner will prevent

the points from two different classes to be projected close by. The objective function

of SLPP is same as LPP only the computation of weight matrix S is different. In

case of LPP, the similarity matrix is computed based only on the nearest neighbors

and is independent of the class information. Whereas, in case of SLPP, two points

are considered to be neighbors only if they belong to same class.

To make the computations simpler, data samples are arranged compactly i.e.

all the samples from same class are arranged together in X which simplifies the

computation of S. As a result, X is changed to be the orderly matrix which is

composed of sub matrices Xsubi of size n ×M , i = 1, 2, ...c, where c is number of

classes. In this way, nearest neighbors for each xj ∈ Xsub1 are sought in Xsub1 only.

For each class, matrix Ssubi is calculated which will then be used for constructing S.

Here, the weight is set to be 1 if two data points belong to the same class otherwise

weight is made 0. Hence, Ssubi turns out to be :

Ssubi =


0 1 · · · 1

1 0 1
...

... 1
. . . 1

1 · · · 1 0
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S is constructed by arranging the Ssubis for all the classes diagonally i.e.

S =


Ssub1

Ssub2

. . .

Ssubc


All other computations for finding the transformation matrix are carried out in

the same manner as that in LPP i.e. the transformation matrix V is found by solving

the generalized eigenvalue problem: XLXTV = λXMXTV.

2.2.3 Other variants

Locality Preserving Projection (LPP) [26], [30] a linear dimensionality reduction ap-

proach, tries to capture the non-linearity present in the data using neighborhood

information. Non-orthonormal basis vectors are obtained using notion of Laplacian

of graph constructed by considering the data points i.e. images as nodes. Orthogo-

nal variant of LPP, Orthogonal Locality Preserving Projection (OLPP) [32] produces

orthogonal basis functions with the aim of having more locality preserving power.

The basis in this case are obtained iteratively, satisfying the orthogonality constraint.

Conventional LPP is sensitive to noise and outliers and depends highly on the param-

eters for constructing the neighborhood graph and weight matrix. A few extensions

[47], [46], [45], [53], [54] have been proposed to overcome these issues.

Robust path based similarity is used in Enhanced Locality Preserving Projection

[46] to obtain robustness against noise and outliers. This semi-supervised dimen-

sionality reduction approach uses pairwise constraints to construct the underlying

graph, consequently resulting in enhanced performance. Parameter free LPP [47] is

developed using Pearson correlation and adaptive neighborhood information. In this

variant of LPP, the parameters are adaptive according to the data and it imposes

the constrain on the projected data to be uncorrelated. Solution schemes have been

devised in [45] to overcome the issues occurring with the conventional LPP because of

small sample size of the data and generalized eigenvalue problem. Many a times, the

smallest eigenvalues of the generalized eigenvalue solution of conventional LPP frame-

work turnout to be zero. Selection of eigenvectors corresponding to zero eigenvalues

may result in same representation of more than one samples in the projection space

[45]. The proposed formulation represents the LPP formulation as a maximization

problem in order to avoid this issue which now selects the eigenvectors corresponding

to the highest eigenvalues as the strongest basis vectors.
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2.3 Extended Supervised LPP with Modified Dis-

tance (ESLPP-MD)

In the formulation of SLPP, all the data points belonging to same class are treated in

the same manner i.e. in the similarity matrix, weight 1 is assigned if the data points

belong to the same class otherwise weight is made 0 without considering the distance

between data points. If the distance information is incorporated along with the class

information, the underlying manifold can be revealed in a better way. The methods

discussed so far concentrate on the neighboring data points coming from same class,

but nothing has been suggested about the neighboring data points from different

classes. An improvement over SLPP is suggested in this section, that tries to focus

these issues. Distance between data points from different classes must be relatively

larger than their actual Euclidean distance as they belong to different classes. The

class information can be incorporated so as to make the distance between two points

belonging to different classes relatively larger than their Euclidean distance. This

could be achieved by shrinking the intra-class distance while expanding the inter-

class distance which will result in better separability between classes. The data

points can be made strong neighbors by shrinking the distance if they belong to same

class, otherwise the distance can be increased so as to make them weak neighbors.

To manipulate the distance according to this, Equation 2.5 is as follows:

dist (xi, xj) =


√

1− e−
d(i,j)2

β ;ci = cj√
e
d(i,j)2

β − α ;ci 6= cj

 (2.5)

here, ci is the class label of xi whereas cj is the class label of xj. Also, d (i, j) =

‖xi − xj‖ is the Euclidean distance between the data points xi and xj. Constant α

is used to adjust the similarity between the points from different classes. It takes the

values between [0, 1]. Parameter β is used to prevent the distance from increasing too

fast when d (i, j) is relatively large. Usually, the average distance between all pairs

of data points is taken as β. The plot of the distance functions defined in Equation

2.5 is shown in Figure 2.3. Here, the dotted line shows the behavior of the function

if the data points belong to different classes and the solid line indicates the same for

data points from the same class. Similar functions have been used to have better

separability in case of Locally Linear Embedding (LLE) [10].

Modifying distances in this manner adds more discriminating power for different

classes. This new distance matrix is used for constructing the weight matrix S̃ij.

In addition to the class information, if the weights assigned in S̃ are based on the
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Figure 2.3: Plot of the distance function for the data points belonging to same class

(solid) and different classes (dotted) [10]

distance as opposed to SLPP where a fixed value is assigned to all the neighboring

data points, it may be more helpful in revealing the underlying manifold. One way

to do so is by using a weighing function to compute the matrix S̃ as in case of LPP.

But, as observed from LPP, to overcome the ambiguity occurring in the overlapping

regions of two or more classes as well as to increase the reducibility capacity, the same

z-shaped weighing function (Equation 2.4) is used which automatically gives emphasis

to the data points at a moderate distance from the point of interest in addition to the

nearest neighbors. The transformation matrix then can be found as in case of ELPP

[48]. This scheme is called Extended Supervised Locality Preserving Projection with

modified distance (ESLPP-MD). Extension in the sense that it tries to assign weights

to the data points which are at a moderate distance from the point of interest, in

addition to the closest neighbors as in the case of LPP. Modified in the sense that it

uses a modified distance between two data points as opposed to Euclidean distance

used in LPP. Note that distance x defined in the function to compute S̃ is actually

”dist” that is defined earlier in Equation 2.5.

The dimensionality reduction approaches discussed so far are vectorized in nature

i.e. they process the data in the vector format only. This requires the images of

size m × n in matrix format to be converted into vectors of size mn × 1. The final

data matrix containing all N training images in vector format turns out to be of

size mn × N . Generally, N << mn, which makes the matrix singular in many

cases. To overcome the problem of singularity, Principle Component Analysis (PCA)

is applied on the data. As suggested in Turk et al. [17], only first N eigenvectors of

the covariance matrix carry the meaningful information rather than mn. Hence, N
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most significant components are chosen to be processed in the LPP formulation, thus

tackling the problem of singularity.

2.3.1 Projection of the data in the similarity preserving sub-

space

In order to visualize the data projected in the subspace of similarity preserving dimen-

sionality reduction approaches discussed in previous section, strongest two and three

dimensional projections of various types of image data are reported. The strongest

dimensions are those corresponding to the smallest non-zero eigenvalues of the gener-

alized eigenvalue solutions. The projection results on MNIST data set of handwritten

digits [55] and video data sets are shown.

MNIST database of hand written digits

The MNIST database of handwritten digits [55] has a training set of 60, 000 exam-

ples, and a test set of 10, 000 examples. It was constructed from NIST’s Special

Database 3 and Special Database 1 which contain images of handwritten digits. The

digits have been size-normalized and centered in fixed-size images of 20 × 20 pixels.

For experimentation purpose, 200 images per digit were selected randomly from the

database.

Digit pairs are chosen to observe the behavior of the approach when there is some

similarity between two digits. As all the images are of handwritten digits, sometimes

because of the way of writing, there may be a lot of similarity between 3 and 8. In

case of 1 and 7 also, structural similarity can be observed. The results of projection

of different digits are shown in Figure 2.4 and Figure 2.5. X-axis (horizontal axis)

represents the direction of the strongest component of the transformation matrix while

Y -axis (vertical axis) represents the 2nd strongest component. The same convention

is used to show the results throughout the thesis. It is to be noted that the digit data

is of 400 dimensions out of which only 2 strongest dimensions are used for projection.

In case of both the digit pairs, LPP seems to be merging the different digits, showing

no separation between different clusters. ELPP isolates the clusters of digits 1 and 7

quite well, but projection of digits 3 and 8 is mixed up. In the 2 dimensional space,

SLPP is also separating the digits but still some ambiguity is present at the boundary

of two classes. ESLPP-MD is able to separate the structurally similar digit pairs in

a much better way. Clear separation between clusters of digits can be observed using

only 2 dimensions. Also, in the projection space, the intrinsic characteristics of a digit

are revealed i.e. thickness and slope of the digit are changing as we move forward on
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the horizontal axis.

(a) (b)

(c) (d)

Figure 2.4: Strongest 2D projection of digits 3 and 8 using (a)LPP (b)ELPP (c)SLPP

(d)ESLPP-MD. Horizontal axis represents the direction of the strongest component

of basis V while vertical axis represents the 2nd strongest component.

Video Database

To evaluate how the algorithm behaves on face data and a person’s varying expres-

sions, the tests are performed on two video datasets. First one is the Interview

database [56] that contains face images of a single person having mainly 3 expres-

sions i.e. Normal, Laughing and Open Mouth. Strongest 2 dimensional projection

of the interview data using LPP, ELPP, SLPP and ESLPP-MD is show in Figure

2.6. The expression sub-manifold is revealed separating the images having different

expressions in a much better way using the current proposal.

A video data-set (DA-IICT video data-set) has also been created in which videos

of around 30 seconds of 11 subjects are recorded. Single video contains four different

expressions of a subject i.e. Angry, Normal, Smiling and Open mouth as shown in
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(a) (b)

(c) (d)

Figure 2.5: Strongest 2D projection of digits 1 and 7 using (a)LPP (b)ELPP (c)SLPP

(d)ESLPP-MD. Horizontal axis represents the direction of the strongest component

of basis V while vertical axis represents the 2nd strongest component.

Figure 2.7. The strongest 3 dimensional projection of the whole Video data-set (i.e.

11 subjects, 4 expressions) using ELPP and ESLPP-MD is shown in Figure 2.8 and

Figure 2.9 respectively. Clear discrimination between projections of face images of

different persons can be observed in the projection space of ESLPP-MD. Also, to

check how different expressions of a person are being projected, projection of some of

the subjects has been enlarged and each expression is represented by a different color.

It can be clearly observed that, the sub manifolds of expression are also significantly

discriminated.

In addition to the projection results, face and facial expression recognition ex-

periments on the the video database are carried out by randomly sampling 50% face

images for training data set and out of the rest of the samples, 3 distinct test data

sets are generated. Results in terms of error rates in percentage for these 3 different

test runs are reported in Table 2.1 for face recognition. Each run is performed on dis-
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(a) (b)

(c) (d)

Figure 2.6: Strongest 2D projection of face images from Interview data set having

three expressions (a)LPP (b)ELPP (c)SLPP (d)ESLPP-MD. Horizontal axis repre-

sents the direction of the strongest component of basis V while vertical axis represents

the 2nd strongest component.

(a) (b) (c) (d)

Figure 2.7: Examples of facial expressions from the Video dataset : (a) angry, (b)

normal, (c) smiling, (d) open mouth respectively.
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Figure 2.8: Strongest 3 dimensional projection using ELPP of all the subjects from

video data-set and some examples of expression discrimination in a person’s manifold.

Each person is represented by a different sign or color in the figure on left whereas for

some persons in the enlarged projection, each expression is represented by different

color. x, y and z axes represent the direction of first three strongest components of

basis V respectively.

tinct test data-set. ESLPP-MD produces 100% face recognition accuracy similar to

all the other competitive approaches. It can be observed that as opposed to the other

competing approaches, ESLPP-MD achieves more than 99% recognition rate using

only three strongest dimensions. For each subject, four different facial expressions

are recorded in the database, hence, facial expression recognition is also performed

to analyze performance of the approaches in recognizing the expression sub-manifold.

The error rates are reported in Table 2.2 with various dimensions for the same runs

as used for face recognition. 85% recognition rate is obtained using the proposed

ESLPP-MD which is comparable to ELPP and SLPP.

2.4 Kernelization of LPP

The data, in its raw form, may not necessarily lie on a linear manifold. The dimen-

sionality reduction approaches that work on the idea of retaining local information try

to capture the non-linearity present in the data by modeling the local neighborhood

information, but may fail if the underlying structure contains complex non-linearities.

One way to capture these non-linearities is by mapping the data in a non-linear fea-

ture space and then apply the dimensionality reduction algorithm on the data [57].
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Figure 2.9: Strongest 3 dimensional projection using ESLPP-MD of all the subjects

from video data-set and some examples of expression discrimination in a person’s

manifold. Each person is represented by a different sign or color (1 sample face image

for corresponding person is shown) in the figure on left whereas for some persons in the

enlarged projection, each expression is represented by different color. x, y and z axes

represent the direction of first three strongest components of basis V respectively.

Table 2.1: Errors (in %) of face recognition on various test runs from the video data

set using nearest neighbor approach. Actual dimensions of the raw data were 10000.
Run #Dime- Approach

nsions LPP ELPP SLPP ESLPP-MD

3 85.22 3.86 15.22 0.45

#1 50 88.18 0.22 0 0.22

500 86.59 0 0 0.22

1000 15.68 0 0 0.22

3 83.63 5 7.27 0.45

#2 50 84.31 0.22 0 0.22

500 83.86 0 0 0.22

1000 14.77 0 0 0.22

3 83.86 5.22 7.5 0.90

#3 50 83.40 0.68 0.45 0.68

500 81.81 0.22 0.22 0.68

1000 14.77 0.22 0.22 0.68
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Table 2.2: Errors (in %) of facial expression recognition on various test runs from the

video data set using nearest neighbor approach. Actual dimensions of the raw data

were 10000.
Run #Dime- Approach

nsions LPP ELPP SLPP ESLPP-MD

3 93.18 33.86 32.95 26.18

#1 50 94.31 16.59 21.36 18.86

500 94.31 15.90 21.13 19.77

1000 28.40 15.90 20.68 15.22

3 91.36 34.09 22.27 33.40

#2 50 91.81 15.90 17.27 21.36

500 90.68 15.90 17.27 18.18

1000 27.5 15.22 16.36 17.72

3 90.22 33.63 32.27 25

#3 50 90.22 17.5 17.27 18.86

500 90 17.72 17.04 15.22

1000 28.40 15.90 17.04 15

Kernel trick, using the kernel functions have been widely used in literature to map

the data in a new feature space such that the data non-linearities can be addressed in

a much better way. Many a times linear separability between multiple classes can be

achieved by kernel mapping. Examples to show projection of the data in the feature

space are reported in Figure 2.10 and Figure 2.11. It can be observed that, in original

space, linear separation between two classes is not possible, but after the mapping in

feature space, two classes are separable using a linear plane.

Figure 2.10: Data points in the original space (left) and representation of the data

points in feature space where two classes can be separated using a hyper-plane (right).

Thus, function φ : Rn → F is used to map the data from the original n-dimensional

space to a non-linear feature space F . Kernelized variants of PCA (K-PCA) [58, 57],
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Figure 2.11: Data points in the original space (left) and representation of the data

points in feature space where two classes can be separated using a hyper-plane (right).

LDA (K-LDA) [59, 60] and LPP (K-LPP) [61] have already been proposed. The

general framework for the kernel based dimensionality reduction approaches is shown

in Figure 2.12. The data is first mapped to a feature space using the kernel trick,

which is nothing but the inner product between the data points in the non-linear

feature space, using the kernel function. Dimensionality reduction procedure, i.e.

learning the transformation matrix that transforms the data from the feature space

to the lower dimensional subspace, is carried out on this kernel matrix. Projected

data points thus tend to have better representation of the non-linear structure.

Figure 2.12: General framework of Kernel based methods

Let the data in the original space be denoted by x1,x2, . . . ,xN, then the data

mapped in the feature space is denoted as φ (x1) , φ (x2) , . . . φ (xN).

k (xi,xj) = 〈φ (xi) , φ (xj)〉 (2.6)

φT (X)φ (X) can be represented by a kernel matrix K which is inner product

between the data points in feature space i.e. k (xi,xj) = 〈φ (xi) , φ (xj)〉. Hence, it can

be said that kernels are nothing but the inner product between the data points in some

space, and even without knowing the non-linear mapping function φ explicitly, the

relationship between two data points in the feature space can be directly determined

using k [61]. Therefore, we are able to use kernel functions for computing these dot
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products without actually performing the map [62, 63] known as the kernel trick.

Thus, mapping the data in the feature space F using function φ is equivalent to

choosing k (the kernel). For some choices of kernels k (xi,xj), it can be shown by

methods of functional analysis that there exists a map φ into some dot product space

F (possibly of infinite dimension) such that k computes the dot product in F [58].

Some of the very popular kernels are as linear kernel, polynomial kernel, Gaussian

kernel etc. [64] mathematical forms of which are as follows:

• Linear Kernel: k (xi,xj) = xi
′ ∗ xj

• Polynomial Kernel: k (xi,xj) = (xi
′ ∗ xj)

d

• Gaussian Kernel : k (xi,xj) = e

−‖xi−xj‖2
2σ2



Using one of these or any other kernel, the data can be mapped to feature space

and then to transformed space using the dimensionality reduction approaches. A

brief overview of kernel based variants of PCA, LDA and LPP is presented before

discussing about the kernelization of ESLPP-MD.

2.4.1 Overview of existing kernel based approaches

Kernel PCA [58, 57]

Principle Component Analysis (PCA) is a linear dimensionality reduction technique

which works on the assumption that the data is also linear in nature. This linearity

assumption may not always be true for the real world databases. Hence, as discussed

earlier in this chapter, to exploit the non-linearity, the data is first mapped to a

non-linear feature space. This technique, known as Kernel PCA (K-PCA), was first

introduced in Schölkopf et al. Assume data mapped in the feature space is denoted

as φ (x1) , φ (x2) , . . . φ (xN) ans centered i.e.
∑N

i=1 φ (x1) = 0. The covariance matrix

in the feature space can be found as follows:

CF =
1

N
φ (xi)φ (xj)

T (2.7)

The eigenvectors of the covariance matrix constitute PCA basis for the training

data. In this case, the basis turn out to be of the feature space in which the data was

mapped i.e. VF = φ (xi) V∀i ∈ 1, 2, · · · , N . Derivation for obtaining K-PCA basis is

reported as follows:
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CFVF = λVF

≡ φ (xi) CFVF = λφ (xi) VF;∀i ∈ 1, 2, · · · , N
≡ K2V = NλKV; k (xi,xj) = 〈φ (xi) , φ (xj)〉
≡ KV = NλV

(2.8)

Thus, using the kernel trick, the computations become much simpler and eigenvectors

of KV = NλVconstitute the K-PCA basis.

Kernel LDA [59, 60]

Similar to Kernel PCA, a non-linear generalization of Linear Discriminant Analysis

is proposed [60]. As per the convention used earlier, function φ : Rn → F is used to

map data in feature space F . The between scatter matrix SBF
and within scatter

matrix SWF
for the data mapped in feature space are represented as follows:

SBF
=
∑c

i=1 ni
(
di

F − dF

) (
di

F − dF

)T
SWF

=
∑c

i=1

(∑ni
j=1

(
φ
(
xi
j

)
− di

F

) (
φ
(
xi
j

)
− di

F

)T) (2.9)

here, c is the number of classes in the data set, ni the number of samples in the ith

class, dF the mean vector of all the samples, di
F mean vector of ith class and φ

(
xi
j

)
is the jth sample of ith class in the feature space. The Fisher discriminant criterion

to be maximized in the feature space F is:

max
VF

TSBF
VF

VF
TSWF

VF

(2.10)

Replacing VF = φ (xi) V and simplifying using the kernel trick, the maximization

function can be rewritten as shown in Equation 2.11. It can be observed that, in case

of K-LDA also, explicit mapping of the data in the feature space is not required.

max
VTSBnewV

VTSWnewV
(2.11)

here, SBnew = (Di −D) (Di −D)T , (Di)j = 1
ni

∑ni
k=1 k

(
xj,x

i
k

)
, (Kj)nm = k

(
xn,x

j
m

)
is the kernel matrix of class j, SWnew =

∑c
j=1 Kj (I− 1ni

) Kj
T , I is the identity matrix

and 1ni
is the matrix with all the entries having value 1/ni.

The K-LDA basis are obtained by solving the generalized eigenvalue problem:

SBnewV = λSWnewV .

Kernel weighted nonlinear discriminant analysis (KWNDA), a variant of K-LDA,

first maps data in a feature space using kernels [65]. To achieve improved class dis-

crimination, weighted between class scatter matrix is introduced. This approach out-
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performs existing kernel discriminant analysis methods in terms of the classification

accuracy.

Kernel LPP [61]

As discussed for kernel based PCA and LDA, for kernel LPP, the basis in the feature

space can be obtained by solving the following generalized eigenvalue problem:

φT (X) Lφ (X) VF = λφT (X) Mφ (X) VF (2.12)

To generalize LPP to the nonlinear case, we formulate it in a way that uses dot

product exclusively [26]. The dot product in the feature space can be represented

using the kernel function: k (xi,xj) = 〈φ (xi) , φ (xj)〉 = φT (xi)φ (xj).

Also, the LPP basis in the feature space can be represented as a linear combination

φ (xi)s as : VF = φ (X) V. Hence, after simplifying, the eigenvalue problem of

Equation 2.12 turns out to be:

KLKV = λKMKV (2.13)

2.4.2 Kernel ESLPP-MD

As suggested in [61], kernelized version of the proposed ESLPP-MD is developed. In

the objective function of ESLPP-MD, we have, min
∑

i,j ‖yi − yj‖2 S̃ij, here as data

is first mapped to the feature space, yi = VF
Tφ (xi). The transformation can be

represented as VF = φ (X) V hence, the objective function turns out to be:

1
2
min

∑
i,j ‖yi − yj‖2 S̃ij

= VF
Tφ (X)

(
M̃− S̃

)
φT (X) VF

= VTφT (X)φ (X)
(
M̃− S̃

)
φT (X)φ (X) V

= VTKL̃KV

(2.14)

here, φ (X)T φ (X) is nothing but the inner product between the data points in the

feature space F and hence can be represented using k (xi,xj) = 〈φ (xi) , φ (xj)〉. k can

be selected from any of the Kernels discussed above. Note that, here S̃ is computed

in the same way as ESLPP-MD. The normalization constraint in the feature space

can be written as VTKM̃KV = 1. Thus, the basis can be computed by solving the

generalized eigenvalue solution as follows:

KL̃KV = λKM̃KV (2.15)
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2.5 Face Recognition

The human face is undoubtedly the most common characteristic used by humans to

recognize other people. Even though extensive research efforts have been made for

Face Recognition in past few years, a system that can be deployed effectively in an

unconstrained environment is yet to be seen. The only system that does seem to

work well in almost all the conditions is the Human Visual System and to replicate

that on a machine is still an open research problem. The current state of art in the

Face Recognition is not yet sufficient for more demanding applications [66]. There

are other biometric technologies such as fingerprint and iris that currently offer better

accuracy but at the same time they require much greater explicit cooperation from

the user.

Face Recognition can be divided in two basic applications: identification and

verification. In a recognition scenario, the matching is one-to-many, i.e. the face to

be identified or recognized is unknown and it is matched against faces of the database

containing known individuals [67]. In the verification (authentication) problem, the

system confirms or rejects the claimed identity of the input face making the mapping

one to one. In both the cases, a database containing face images of known persons is

created which can be called training set. Images of these or other persons are used

as the test images to match against the images in the already existing database.

High end applications of Face Recognition in human computer interaction, law

enforcement and surveillance, information security etc. have made it more appealing

area among researchers. It can be applied without active participation from the sub-

ject which is an added benefit as far as the biometrics are concerned. Face can be used

as a security measure and could replace the identity card or personal identification

number or passwords. Automated face recognition can be applied live to search for

a watch-list of people, or by using surveillance video of a crime to search from the

database of suspects. Another application is Expression Recognition system. It can

be used for medical treatment i.e. to monitor the expressions of patients, emotion

recognition and animations.

The challenges such as pose and expression variation, vastly changing illumination

conditions, change in the appearance of a person over a period of time, scale variability

are still very far from being solved. The approaches of Face Recognition can be

broadly classified into geometric or feature based techniques and template matching

or appearance based techniques [67].

Various methods have been proposed for Face Recognition in literature. There

are computational approaches based on deformable templates which characterize the

human face [68] or facial features such as eyes, nose, mouth [69], [70], [71], [72],
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[73]. Methods based on the search of a significant group of features for example a

couple of eyes and a mouth suitably located constitute a significant group in the

context of a face [74], [72], [75], [76], [77]. Apart from the feature based approaches,

many appearance based approaches have been proposed which work by reducing the

dimensionality of the data and finding the subspace of the manifold [16], [18], [19],

[20], [21], [26], [24], [30] etc.

Face Recognition is one of the most widely used applications where dimensionality

reduction is used and then the desired recognition task is performed. Face images

are represented as high-dimensional pixel arrays and due to high correlation between

the neighboring pixel values; they often belong to an intrinsically low dimensional

manifold. The distribution of data in a high dimensional space is non-uniform and is

generally concentrated around some kind of low dimensional structures [22]. Machine

learning algorithms find it difficult to classify the given data in such a high dimensional

space. Hence the representation of data in a lower dimensional space is highly sought.

Locality Preserving Projection is widely used for face recognition tasks and performs

better than some of the traditional dimensionality reduction approaches such as PCA

and LDA.

In this section, performance of all the variants of LPP discussed in this chapter

are evaluated on some of the widely used benchmark face data-sets. Performances

of ELPP, ESLPP-MD and their respective Kernel based versions K-ELPP and K-

ESLPP-MD are compared with LPP [26, 30], SLPP [52], K-LPP [26] and K-SLPP

[61]. Polynomial kernel with degree 2 is used for all the experiments involving kernel

mapping before applying the dimensionality reduction techniques.

It is to be noted that we have not compared the proposed scheme with feature

based face recognition techniques or any other state of the art face recognition ap-

proaches as the aim of this thesis is to propose a robust and efficient similarity preserv-

ing dimensionality reduction technique. Face recognition is taken up as an application

to showcase the efficiency of the proposal and hence comparisons are reported with

other variants of LPP. Also, a complete face recognition system consists of a combi-

nation of various pre-processing stages to take care of illumination, pose and other

external environmental changes as well as more sophisticated classifiers which boost

the performance resulting in higher accuracy. In this thesis, dimensionality reduction

is directly applied on the raw face data without any pre-processing and the simplest

nearest neighbor classifier, also known as rank one accuracy, is applied for recognition

of new test face. It is a common practice in face recognition area to represent the

recognition performance as a function of rank. Rank shows among how many top

matches is the correct answer [78]. In thesis thesis, all face recognition results are
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reported in terms of rank one error rate (%).

Three database are used for testing i.e. the ORL database [79], the YALE face

database [80] and the AR database [81]. The databases are divided into distinct train-

ing and testing sets and nearest neighbor classifier is used to classify the test samples

in the projection space. Training samples are used to calculate the transformation

matrix that maps the data into the face subspace, test samples are then projected

in the lower dimensional projection space using the same transformation matrix and

test samples are identified with nearest neighbor classifier. In case of kernel based

methods, samples are mapped to the feature space before finding the face subspace.

2.5.1 ORL Database

The ORL database [79] of faces contains 10 different images of 40 subjects. The face

images were captured varying illumination conditions, facial expressions such as open

or closed eyes, smiling or not smiling and facial details such as glasses or no glasses.

The images were cropped and re-sized 64 × 64 with 256 gray levels per pixels. Some of

the sample images from the ORL database are included in Figure 2.13(a). The images

are randomly divided into distinct training and testing subsets. 60% samples are used

for training whereas 40% samples are used for testing. Recognition results in terms of

error rates for LPP, ELPP, SLPP and ESLPP-MD are presented in graphical format

in Figure 2.14 and face recognition errors for their respective Kernelized variants i.e.

K-LPP, K-ELPP, K-SLPP and K-ESLPP-MD are reported in Figure 2.15.

The plot represents error rates for all the competitive methods with varying num-

ber of strongest dimensions used. It can be observed that kernelized versions of all

the methods outperform respective non-kernelized methods at higher dimensions with

less error rate. Also, K-ESLPP-MD outperforms all other approaches across all the

dimensions.

2.5.2 YALE Face Database B

The Yale face database B [80] was constructed at the Yale Center for Computational

Vision and Control. The database contains 5850 images of 10 subjects each seen under

576 viewing conditions (9 poses × 64 illumination conditions). Again the images were

cropped and re-sized to 64 × 64 with 256 gray levels per pixel, some of which are

illustrated in Figure 2.13(b). 60% samples from the dataset are randomly selected

for training and rest of the samples form test set. Recognition results with varied

number of dimensions for ESLPP-MD and other LPP based approaches are reported

in Figure 2.16 and Figure 2.17 shows comparison of kernel methods.
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(a)

(b)

(c)

Figure 2.13: Sample face images from (a) ORL database (b) YALE face database B

(c) AR database
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Figure 2.14: Error Rate (%) vs. Dimensionality Reduction on the ORL database

(Comparison between variants of LPP)

Figure 2.15: Error Rate (%) vs. Dimensionality Reduction on the ORL database

(Comparison between kernelized variants of LPP)
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The error rate for face recognition using is less in case of Extended Supervised LPP

with modified distance (ESLPP-MD) than LPP, ELPP, SLPP. Not only that, ESLPP-

MD performs better than K-LPP and is comparable to K-ELPP. The kernelized

version of ESLPP-MD beats all the approaches with 98% recognition accuracy with

only 30 dimensions.

Figure 2.16: Error Rate (%) vs. Dimensionality Reduction on the YALE face database

B (Comparison between variants of LPP)

2.5.3 AR Database

The AR face database [81] contains 4000 frontal view color images of 100 subjects

with different illumination conditions, facial expressions and occlusions such as scarf

and sunglasses as shown in Figure 2.13(c). These complex changes make the database

more challenging for face recognition problems. Each image of size 40 × 55 is con-

verted to gray scale with 256 gray levels per pixel. 50% samples for each subject are

used for training and rest of them are used for testing from a subset of 60 subjects

from the database. Results of face recognition showing error rates corresponding to

various number of dimensions are illustrated in Figure 2.18 and Figure 2.19.

As can be observed from the plot, ESLPP-MD shows significant improvement in

error rates as compared to LPP, ELPP and SLPP. In case of kernelized versions of the

approaches, K-ELPP, K-SLPP and K-ESLPP-MD produce less than 10% recognition

errors, however performance of K-ESLPP-MD is superior to all the other approaches

with more than 99% accuracy.
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Figure 2.17: Error Rate (%) vs. Dimensionality Reduction on the YALE face database

B (Comparison between kernelized variants of LPP)

Figure 2.18: Error Rate (%) vs. Dimensionality Reduction on the AR face database

(Comparison between variants of LPP)
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Figure 2.19: Error Rate (%) vs. Dimensionality Reduction on the AR face database

(Comparison between kernelized variants of LPP)

2.6 Conclusion

Some variants of LPP are suggested in this chapter to have a more robust projection

of the data with much less dimensions resulting in better data discrimination. Ex-

tending neighborhood by considering moderately distant data points and weighing

in a z-shaped, monotonically decreasing fashion not only resolves problems in the

overlapping regions of two or more classes to a certain extent, but also enhances the

reducibility power of Extended LPP (ELPP). In case of recognition scenarios, class

labels of the training data points are already available (supervised) that are incorpo-

rated to enhance class discrimination. This information is used to make data points

from same class as strong neighbors whereas mapping data points from different

classes far apart by reducing and increasing the distance between them respectively.

Projection and recognition results using ESLPP with modified distance (ESLPP-

MD) are encouraging and show improved class discrimination ability with only a

few strongest dimensions. The approach used here is also revealing the expression

sub-manifold of a person, boosting the facial expression recognition performance. Sig-

nificant improvement in the recognition rate on complex database such as AR shows

ability of ESLPP-MD to capture illumination and appearance changes as well as oc-

clusions such as faces occluded by scarf and eyes occluded by glasses. Use of kernels

to map the data in feature space before applying dimensionality reduction helps in

capturing the non-linearity present in the data. Usually, kernel based versions of
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LPP perform better than the non-kernelized ones but ESLPP-MD is comparable to

Kernel-SLPP. Moreover, the proposed kernelized version of ESLPP-MD outperforms

all other techniques. Less than 8% errors across all the test databases are achieved

with K-ESLPP-MD with only 20 most significant dimensions.

ESLPP-MD manipulates distance between data points to achieve better class dis-

crimination, which in a sense gives false impression of the data points to the basis

learning mechanism. However, shrinking and diverging the distance according to class

labels of data points shows better class discrimination of training data points, un-

known data points may face difficulty in classification when projected on the learned

basis. Thus, evolving the objective function itself to achieve better class discrimina-

tion may turn out to be a better solution.

Dimensionality reduction techniques do not always guarantee enhanced perfor-

mance with increase in number of dimensions used to represent the data. This may

be due to redundant information getting added with more number of dimensions.

However, in this thesis, we have not studied the redundancy pattern of the dimen-

sions and experiments have also not been carried out for the same. Hence, number

of dimensions that produce the best results may depend on the databases used and

their complexity.

Also, it is to be noted that, the emphasis of this thesis is on dimensionality re-

duction approaches and their usability for various challenges. For face recognition,

dimensionality reduction techniques are directly applied on the raw face images from

different databases and nearest neighbor (rank one) classifier, which is the simplest

classifier, is used to classify the test image in the reduced dimensions. Most of the

benchmark face recognition techniques are designed with various pre-processing stages

along with more robust classifiers to deal with the face images captured in uncon-

strained environment. Hence, experiments of such databases have not been per-

formed. Also, as main scope of the thesis is not to resolve face recognition issues, but

to devise more robust dimensionality reduction approaches, study of benchmark face

recognition systems has not been carried out.



Chapter 3

Locality Preserving Discriminant

Projection

Locality Preserving Projection (LPP) and its variants try to capture the non-linearity

present in the data by preserving the neighborhood information in the transformed

domain as well. In case of the supervised variants of LPP [52], class information

is incorporated while learning the projection matrix. All these techniques aim at

projecting the data points having same class labels nearby, without paying atten-

tion to the data points belonging to different classes. As discussed in Section 1.2, it

is the discriminant property of the data that plays major role in recognition prob-

lems. To achieve better class discrimination, data points from different classes should

be mapped far apart. We tried to achieve this by shrinking or diverging the dis-

tance between data pints depending on the class labels making them strong and week

neighbors respectively in the previous proposal ESLPP-MD. Instead of changing the

distances, the objective function itself can be tuned to learn a transformation which

projects the neighboring points from the same class close to each other and those

from different classes far apart in the subspace. In this chapter, an approach that

incorporates the discriminant information as well, along with the local structure is

proposed. The new objective function is a combination of minimization and maxi-

mization functions with the goal of projecting similar data points belonging to same

class close by, and dissimilar data points from different classes far apart, achieving

better discrimination. Before discussing the proposed approach, an overview of some

of the approaches that utilize discriminant information while learning the basis for

dimensionality reduction is presented.

47
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3.1 Overview of Discriminant Approaches

One of the first works in dimensionality reduction that considered the discriminant

information to achieve better separation between classes is Linear Discriminant Anal-

ysis (LDA) [18]. LDA takes into consideration the class labels of the training data

points. It tries to maximize between class scatter and minimize within class scat-

ter, thus achieving more discrimination between data points from different classes.

Formulation of LDA has been discussed in detail in Chapter 1. LDA is a global di-

mensionality reduction approach and does not pay attention to local structure of the

data. Various dimensionality reduction approaches have been proposed in literature

that use the discriminant information yet are local in nature [1, 2, 3, 4, 5, 82]. A brief

overview of some such approaches is discussed here.

3.1.1 Discriminant LPP [1]

As discussed earlier, LPP well preserves the local structure of the data but it seems to

de-emphasize the discriminant information which may play vital role in recognition

tasks. Discriminant LPP (DLPP) [1] is proposed by adding the discrimination infor-

mation in LPP with an aim to improve the recognition performance. The objective

function of DLPP is as follows:

min

∑c
k=1

∑ni
i,j=1

(
yk
i − yk

j

)2
W k
ij∑c

i,j=1 (mi −mj)
2Bij

(3.1)

here, c is number of classes in the data, yi = VTxi is projection of data point xi

using the learned basis V, mi = VTdi is mean vector of each class in the projection

domain, W k
ij and Bij are the weight matrices weight in which are assigned using the

Heat Kernel function as suggested in formulation of LPP [26].

The problem now reduces to solving a generalized eigenvalue problem as follows:

XLXTV = λDHDTV (3.2)

Laplacian matrices L and H are found in the same manner as that of LPP. Compu-

tation of H is carried out from the mean vectors of each class D = [d1,d2, · · · ,dc].

3.1.2 Discriminant LPP with maximum margin criterion [2,

3, 4]

Various approaches have been proposed in literature that combine the ideas of local-

ity preserving projection (LPP) and maximum margin criterion (MMC) [83]. It is
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well known that MMC is a method proposed to maximize trace of difference between

within class and between class scatter matrices from which LDA can be derived by

incorporating some constraints. However, MMC has the same weakness as LDA that

both of them neglect the locality information [4]. Thus, the objective function LPP

is combined with MCC to achieve better class discrimination. Discriminant LPP

with MMC (DLPP/MMC) on this idea has been proposed in [2, 3, 4]. To formulate

DLPP/MMC, in addition to the minimization criterion of LPP, a maximization cri-

terion as per MMC has also been added, thus the objective function now turns out

to be:

minVTXLXTV &maxVT (SB − αSW) V

such thatVTXMXTV = I
(3.3)

here, M and L are defined in the same manner as that of LPP [26], α is rescaling

factor which is generally set to be 1, SB =
∑c

i=1 ni
(
di − d

) (
di − d

)T
and SW =∑c

i=1

(∑ni
j=1

(
xi
j − di

) (
xi
j − di

)T)
are between class and within class scatter matrices

respectively, c is number of classes in the data set, ni - number of samples in the ith

class, d - mean vector of all the samples, di - mean vector of ith class and xi
j is the jth

sample of ith class. After simplifying, the problem reduces to a generalized eigenvalue

problem solving which gives DLPP/MMC basis:

(
XLXT − (SB − αSW)

)
V = λXMXTV (3.4)

3.1.3 Locality Preserved Maximum Information Projection

[5]

Locality Preserved Maximum Information Projection (LPMIP) works on the idea

of preserving the local information while maximizing the out-of-locality information

of the samples simultaneously [5]. A trade of between local and global information

is achieved by uing a regularization factor α. The objective function of LPMIP is

defined as follows:

max α
n∑
i=1

∑
j /∈O(i;ε)

(yi − yj)
2Wij − (1− α)

n∑
i=1

∑
j∈O(i;ε)

(yi − yj)
2Wij (3.5)

here, Wij is the weight between ith and jth data point which is obtained using the

Heat Kernel function as that of LPP [26], O (i; ε) denotes collection of data points

falling withing the the ε neighborhood of the ith data points xi.
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LPMIP basis can be obtained directly by solving an eigenvalue problem as the is

no constraint involved.

XMXTV = λV (3.6)

here, M = αL̃ − L. L̃ and L are the Laplacian matrices obtained from the two

parts of the objective function in Equation 3.5 respectively on the lines of LPP [26].

Detailed derivation can be traces from [5]. As opposed to the locality preserving

approaches, the eigenvectors corresponding to the largest eigenvalues of the solution

are the strongest.

3.2 Locality Preserving Discriminant Projection

Locality Preserving Discriminant Projection (LPDP) is formulated, that not only

preserves the local structure of the data, but also tries to separate distinct classes in

the projection domain. Instead of manipulating the distances between data points, an

objective function which is a combination of minimization and maximization problems

suggested. The function to minimize the distance between two data points in the

projection space if they belong to same class, and maximize it if they come from

different classes is proposed. First part of the objective function as shown in Equation

3.7, tries to minimize the distance between two data points belonging to same class

in the projection space by assigning higher weights in the similarity matrix whereas

heavy penalty in the form of lower weights is assigned if they are from different classes.

Note that same objective function is used in all variants of LPP.

argmin
∑
ij

(yi − yj)
2Sij (3.7)

here, yi is projection of the data point xi in the newly found LPDP projection space

using the transformation matrix V i.e. yi = VTxi. Sij is the similarity matrix in

which the weight according to the z-shaped weighing function [48] is assigned based

on the Euclidean distance between them. The weight is assigned only if the data

points belong to same class. Plot of the z-shaped weighing function with different

parameters is shown in Figure 3.1.

Sij =



1; if dij ≤ a

1− 2
(
dij−a
b−a

)2
; if a ≤ dij ≤ a+b

2

2
(
dij−b
b−a

)2
; if a+b

2
≤ dij ≤ b

0; otherwise


(3.8)
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Figure 3.1: Plot Z-shaped function with different parameters

Here, dij represents the Euclidean distance ‖xi − xj‖2 between xi and xj. a and b

specify the range along which the function changes its values and can be controlled.

Between a and b two functions are used to make the final output function the z-

shaped one. The slope of the function is dependent on the parameters a and b. a

is set to be a very small value and to set the value of b, for each class, maximum

pairwise distance of all the data points belonging to that class is used. Hence, for

each class, b has a unique value depending upon pairwise distance between the data

points belonging to it. All the data points belonging to a particular class have same

value of b. This makes the procedure adaptive according to the data. Thus, selection

of neighbors and weight, both the processes become adaptive and data dependent.

Parameters are not to be set explicitly.

Replacing yi with VTxi in Equation 3.7, the minimization problem turns out to

be:

1
2

∑
ij(yi − yj)

2Sij
= 1

2

∑
ij(V

Txi −VTxj)
2Sij

= 1
2

∑
ij(V

Txi −VTxj)(V
Txi −VTxj)

TSij
= 1

2

∑
ij(2VTxiSijxiV − 2VTxiSijxjV)

= VTXMSXTV −VTXSXTV

= VTX(MS − S)XTV = VTXLSXTV

(3.9)

MS =
∑

i Sij is a diagonal matrix and LS = MS − S is the Laplacian matrix.
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The main contribution of the present work is the second part as mentioned below.

This maximization problem is combined with the first part to make the objective

function for locality preserving discriminant approach. Second part of the objective

function in Equation 3.10 involves maximization problem in order to ensure that the

data points from different classes should be mapped apart from each other. Here,

mirror image of the z-shaped weighing function i.e. s-shaped function is used for

weighing. Plot of the s-shaped weighing function is shown in Figure 3.2. If the data

points belong to different classes, only then the weight according to the distance

between them is assigned. The farther the points are in the original space, the higher

is the weight assigned. As mentioned earlier, this is to ensure the separability between

distinct classes.

argmax
∑
ij

(yi − yj)
2Dij (3.10)

Here, Dij is the dis-similarity matrix, weight in which is assigned according to the

s-shaped weighing function (Equation 3.11).

Dij =



0; if dij ≤ a

2
(
dij−b
b−a

)2
; if a ≤ dij ≤ a+b

2

1− 2
(
dij−a
b−a

)2
; if a+b

2
≤ dij ≤ b

1; otherwise


(3.11)

Figure 3.2: Plot S-shaped function with different parameters

As shown in Equation 3.9, the maximization problem in matrix format can be

represented as:
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1
2

∑
ij(yi − yj)

2Dij

= 1
2

∑
ij(V

Txi −VTxj)
2Dij

= 1
2

∑
ij(V

Txi −VTxj)(V
Txi −VTxj)

TDij

= 1
2

∑
ij(2VTxiDijxiV − 2VTxiDijxjV)

= VTXMDXTV −VTXDXTV

= VTX(MD −D)XTV = VTXLDXTV

(3.12)

here, LD = MD − D and MD =
∑

ij Dij. The maximization problem can be con-

verted to a minimization problem in order to express both the objective functions

together. Experiments were carried out taking convex combination of both the ob-

jective functions to be minimized i.e. λ
[(

VTXLSXTV
)]
− (1− λ)

[
VTXLDXTV

]
.

It has been observed that assigning equal weights to both the parts produces the best

results. Thus, the final optimization problem used is as follows:

argminVTXLSXTV −VTXLDXTV (3.13)

In order to negate the arbitrary scaling, data normalization constraint is imposed as

follows:

YYT = 1⇒ VTXXTV = 1 (3.14)

Hence, the final optimization problem turns out to be:

argminVTXXTV=1 VTXLSXTV −VTXLDXTV (3.15)

The optimized solution is obtained by using the Lagrange’s multiplier approach.

L = VTXLSXTV −VTXLDXTV − λ
(
VTXXTV − 1

)
Equating the partial derivatives of L with respect to λ and V to zero, we obtain:

∂L
∂V

= 0⇒ 2XLSXTV − 2XLDXTV − 2λXXTV = 0

⇒ XLSXTV −XLDXTV = λXXTV

Thus, the transformation matrix V that solves the optimization problem is ob-

tained from the following generalized eigenvalue problem:

(XLSXT −XLDXT)V = λXXTV (3.16)

The data matrix X thus transformed (Equation 3.16) ensures that points which are

neighbors and belong to the same class would also be neighbors where as neighboring

points not belonging to same class would be projected apart.
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3.2.1 Difference between LPDP and other Discriminant ap-

proaches

Though, the proposed dimensionality reduction approach LPDP works on the similar

concept of preserving the local structure and separating different classes as that of the

discriminant approaches discussed earlier, there are considerable differences between

the existing ones and the current proposal. The locality preserving property that

all these techniques have in common is the locality preserving property inherited

from LPP [26] i.e. similar data points should be projected close by in the projection

space. It is the way of adding the discriminant information that is different in all the

competitive approaches.

DLPP [1] discussed in Section 3.1.1, aims at achieving maximum class separa-

tion by maximizing the distance between means of different classes. Based on the

mean vectors of respective classes, discrimination in the projection space is attained.

DLPP/MMC [2, 3, 4] explained in Section 3.1.2 uses maximum margin criterion by

maximizing the difference the between class and withing class variances. The between

class and within class matrices are obtained in the same manner as that of LDA [18].

The dimensionality reduction approach that is closest to the current proposal is

LPMIP [5] described in Section 3.1.3. This method tries to preserve maximum in-

formation in the projection space by maximizing the distance between data points

that do not belong within ε neighborhood while minimizig the distance between data

points which are neighbors. Weighing is performed using the Heat kernel function

as done for LPP. Though LPDP shares similar objective like LPMIP, there are con-

siderable differences between both the approaches. LPDP imposes a normalization

constraint on the data points in the projection domain which is ignored by LPMIP.

It has been reported in [49, 22, 8] that ignoring the normalization constraint results

in decrease in the performance of the dimensionality reduction techniques. Also, this

constraint is very stringent, relaxing which affects the basis computation and hence

it is very important to impose it while learning the basis. LPMIP uses Heat kernel

function to weight the data points in both the parts. It has been discussed in Section

2 that in the Heat kernel function, width of the kernel is controlled by t. Generally,

mean of the pair wise distances is used as t but this value does not necessarily find

the optimal underlying manifold for all data sets. The proposed LPDP formulation

uses z-shaped (Equation 3.8) and s-shaped (Equation 3.11) weighing functions which

automatically tune the parameters based on the data and hence are more suitable.

It has been reported in [5] that, LPMIP pays very little emphasis (between 0.001

to 0.0001) to non-neighbor data points, giving more emphasis to local structure [5].

In case of LPDP, equal emphasis is given to both local structure preservation and
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discrimination criterion which has been established experimentally as it produces the

best results.

In addition to comparing these techniques theoretically, extensive face recognition

experiments using DLPP/MMC, LPMIP and LPDP along with some locality pre-

serving dimensionality reduction techniques have been reported later in this chapter

in Figure 3.11.

3.2.2 Projection of the video database using LPDP

As discussed in Section 2.3.1, strongest two and three dimensional projections of im-

age data are shown to visualize effectiveness of the proposed dimensionality reduction

schemes. Video database consisting face images of subjects with four different facial

expressions (angry, normal, smile and open mouth) is used to report the projection

results in Section 2.3.1. Frames of the face images are extracted and re-sized to 100

× 100 thus having 10,000 dimensions. To show the class discriminating ability of the

approach, strongest three dimensional projection of individuals from the video data

set are shown in Figure 3.3. Face images of different persons are denoted by different

color or sign along with the corresponding sample face image. As the data contains

four different facial expressions, expression sub-manifolds of the projected data are

enlarged for some persons. It can be observed that using only three strongest dimen-

sions, the approach not only discriminates different persons, but also discriminates

various expressions of a person.

In addition to the projection results, face and facial expression recognition ex-

periments on the the video database are carried out by randomly sampling 50% face

images for training data set and out of the rest of the samples, 3 distinct test data sets

are generated. Results in terms on error rates in percentage for 3 different test runs

are reported in Table 3.1 for face recognition. Each run is performed on a distinct

test data-set. It can be observed that, the performance of LPDP is comparable to

the other approaches with all the approaches giving almost 100% accuracy. As the

database contains various expressions of the subject, facial expression recognition is

also performed in order to analyze the performance of the approaches in recognizing

the expression sub-manifold. The error rates are reported in Table 3.2 with various

dimensions for the same runs as used for face recognition. LPDP clearly outperforms

the other approaches with the average recognition rate of 87% whereas the average

recognition rates for LPP, ELPP, SLPP and ESLPP-MD are 71.9%, 84.3%, 84.9%

and 84% respectively. This experiment clearly shows the discrimination power of the

proposed LPDP scheme.
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Figure 3.3: Strongest 3 dimensional projection using LPDP of all the subjects from

video data-set and some examples of expression discrimination in a person’s manifold.

Each person is represented by a different sign or color (1 sample face image for

corresponding person is shown) in the figure on left whereas for some persons in the

enlarged projection, each expression is represented by different color. x, y and z axes

represent the direction of first three strongest components of basis V respectively.

Table 3.1: Errors (in %) of face recognition on various test runs from the video data

set using nearest neighbor approach. Actual dimensions of the raw data were 10000.
Run #Dime- Approach

nsions LPP ELPP SLPP ESLPP-MD LPDP

3 85.22 3.86 15.22 0.45 4.5

#1 50 88.18 0.22 0 0.22 0.2

500 86.59 0 0 0.22 0

1000 15.68 0 0 0.22 0

3 83.63 5 7.27 0.45 4

#2 50 84.31 0.22 0 0.22 0

500 83.86 0 0 0.22 0

1000 14.77 0 0 0.22 0

3 83.86 5.22 7.5 0.90 4.5

#3 50 83.40 0.68 0.45 0.68 0.9

500 81.81 0.22 0.22 0.68 0.68

1000 14.77 0.22 0.22 0.68 0.45
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Table 3.2: Errors (in %) of facial expression recognition on various test runs from the

video data set using nearest neighbor approach. Actual dimensions of the raw data

were 10000.
Run #Dime- Approach

nsions LPP ELPP SLPP ESLPP-MD LPDP

3 93.18 33.86 32.95 26.18 28

#1 50 94.31 16.59 21.36 18.86 16.75

500 94.31 15.90 21.13 19.77 15.25

1000 28.40 15.90 20.68 15.22 13

3 91.36 34.09 22.27 33.40 25.25

#2 50 91.81 15.90 17.27 21.36 15.25

500 90.68 15.90 17.27 18.18 13.75

1000 27.5 15.22 16.36 17.72 12.75

3 90.22 33.63 32.27 25 27.25

#3 50 90.22 17.5 17.27 18.86 18.75

500 90 17.72 17.04 15.22 16

1000 28.40 15.90 17.04 15 13.5

3.3 Kernelization of LPDP

As discussed in Section 2.4, data in its raw form may not lie on a linear manifold

and hence linear dimensionality reduction approaches may fail to reveal the data non-

linearity. To exploit the non-linearity of the data and achieve better discrimination,

data points are first transformed in a non-linear feature space and then the dimension-

ality reduction approach is applied. Extensions of PCA [58, 57], LDA [59, 60], LPP

[61] for the kernel based variants have been proposed in literature. Details about the

process of kernelization, its advantages and kernel based variants of PCA, LDA, LPP

and ESLPP-MD are discussed in Section 2.4. As the current proposal LPDP is also a

linear dimensionality reduction approach, complex non-linear structures may be diffi-

cult to discriminate. Hence, kernelized extension of Locality Preserving Discriminant

Projection (K-LPDP) is proposed. Formulation and derivation of the kernelization of

locality preserving discriminant projection (K-LPDP) are discussed here. The map-

ping of a data point from mn-dimensional space to a non-linear feature space F is

denoted as φ : Rn → F where φ is the mapping function. Hence, the data points

in original space {x1,x2, · · · ,xN} get mapped to {φ (x1) , φ (x2) , · · · , φ (xN)}. The

dimensionality reduction approaches are applied on these mappings as opposed to the

data in the original space.

Before applying dimensionality reduction, the kernel based approaches first map

the data in a feature space as discussed in Section 2.4. For kernelized version of
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LPDP, the objective function and constraint can be rewritten as:

minVF
Tφ (X) [LS − LD]φT (X) VF

subject to VF
Tφ (X)φT (X) VF = I (3.17)

here, VF is the transformation matrix learned from the data represented in the

feature space F , thus, VF = φ (X) V. Replacing VF in the form of V, optimization

problem becomes:

minVTφT (X)φ (X) [LS − LD]φT (X)φ (X) V

subject to VTφT (X)φ (X)φT (X)φ (X) V = I (3.18)

φT (X)φ (X) can be represented by a kernel matrix K which is inner product

between the data points in feature space i.e. k (xi,xj) = 〈φ (xi) , φ (xj)〉. Thus,

relationship of the data points in the feature space can be obtained without knowledge

about the mapping function φ, using the kernel trick as discussed in Section 2.4. The

optimization problem in Equation 3.18 can be reformulated using the Kernel matrix

K. Thus, the transformation matrix can be obtained from the solution of the following

generalized eigen value problem:

K (LS − LD) KV = λKKV (3.19)

Some of the very popular kernels are as linear kernel, polynomial kernel, Gaussian

kernel etc. which have been listed in Section 2.4. One of these or any other kernel

can be used to map the data in kernel space. Comparison of the proposed approach

with some of the other kernel based dimensionality reduction approaches is carried

out for face recognition in the next section.

3.4 Experimental Results

As reported earlier, face recognition is the most widely used application of dimen-

sionality reduction. Also, as the class labels of the training face samples are generally

known, better discrimination between face images of different persons can be achieved

by using the discriminant information along with the local neighborhood information.

Face recognition using LPDP and K-LPDP has been performed on some benchmark

face databases and the results are compared with LPP, ELPP, SLPP, ESLPP-MD

and their respective kernel based variants. Out of different kernel functions used
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for the experimentation purpose, Gaussian kernel produced the best results, hence

all the experiments of the kernel based variants reported in this thesis are carried

out with the Gaussian kernel. The face recognition experiments are performed using

nearest neighbor classifier and reported in terms of rank one error rate. In addition

to the local approaches, LPDP is also compared with other discriminant approaches

DLPP/MMC [2, 3, 4] and LPMIP [5].

3.4.1 Face database description

Face recognition experiments are performed on some of the benchmark face databases.

Before reporting the face recognition performance, a brief overview of the databases

used in presented.

ORL Database

The ORL face database [79] 1 contains face images with different illumination and

facial expressions of 40 subjects, samples of which are shown in Figure 2.13. Face

images are cropped and re-sized to 64 × 64, thus the data lies in 4096 dimensional

space. The 60% training and 40% testing samples selected randomly from the ORL

database for face recognition experiments.

The YALE face database B

The Yale face database B [80] contains 5850 images of 10 subjects each seen under 576

viewing conditions (9 poses × 64 illumination conditions). The changes in pose and

illumination conditions makes it a difficult data-set for face recognition tasks. Some

sample images from the database are shown in Figure 2.13. Again, the database has

been randomly partitioned in 60% training and 40% training samples, each lying in

4096 dimensional space.

Japanese Female Facial Expression Database (JAFFE)

Japanese Female Facial Expression Database (JAFFE) [84] contains 213 images of 7

facial expressions (6 basic facial expressions + 1 neutral) posed by 10 Japanese female

models. Few images from the JAFFE database are shown in Figure 3.4. 50% samples

are randomly sampled for training and the rest are used for testing.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 3.4: Sample face images from JAFFE database

3.4.2 LPDP vs. K-LPDP

As it is reported that kernelization procedure helps in exploiting the non-linear man-

ifold of the data and hence it is expected to enhance the recognition accuracy, ker-

nelized version of LPDP is also compared with conventional LPDP approach to show

the advantage of using the kernel mapping.

Face recognition results using LPDP and K-LPDP on both ORL and YALE face

database B are reported in Table 3.3 for dimensions ranging from 10 to 90. It can

be observed that the kernelized version outperforms conventional LPDP across al-

most all the dimensions. 97.5% face recognition accuracy for the ORL face database

and 96.97% for the YALE face database B using the kernelized LPDP approach is

achieved as opposed to 95% and 92.12% using the conventional LPDP approach re-

spectively. Improved performance after mapping the data in the kernel space shows

the significance of kernelization procedure in unveiling the non-linearity of the data.

Table 3.3: Results (Errors in %) of face recognition using LPDP and K-LPDP on the

ORL database and YALE face database B with varying dimensions.
Error Rate %

# Dimensions ORL Face database YALE face database B

LPDP K-LPDP LPDP K-LPDP

10 12 12 13.94 3.03

20 10 12.5 11.52 4.24

30 10.5 12.5 9.7 4.24

40 7.5 13 9.7 3.64

50 7 12 8.48 3.64

60 6 5 8.48 3.64

70 6 3 7.88 3.64

80 5 2.5 7.88 3.64

90 5 2.5 7.88 3.64
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3.4.3 Performance analysis of LPDP and other locality pre-

serving techniques

Face recognition performance of the proposed dimensionality reduction technique is

compared with LPP[26, 30], SLPP [52], ELPP [48] and ESLPP-MD (proposed in

Chapter 2) on all three face databases. The kernel based variant of LPDP i.e. K-

LPDP is also compared with K-LPP [26], K-SLPP [61], K-ELPP and K-ESLPP-MD.

The error rates for LPP, ELPP, SLPP, ESLPP-MD and LPDP using nearest neigh-

bor classifier on ORL database are reported in Figure 3.5. Significant improvement

in the performance can be observed for LPDP with least error rates across all the

dimensions. Moreover, the kernelized variants of these dimensionality reduction ap-

proaches are also compared and the error rates for the ORL database are reported in

Figure 3.6. Performance of K-ESLPP-MD discussed in Section 2.3 is on par with that

of K-LPDP. However, it can be observed that, for both the databases, the proposed

approach achieves more than 97% face recognition accuracy, out performing other

competing approaches.

Figure 3.5: Error Rate (%) vs. Number of dimensions for the ORL database (Com-

parison with variants of LPP)

To show the discriminant ability of the proposed approach, strongest two dimen-

sional projections of similar-looking faces of two persons from the YALE face database

using all the competitive approaches are shown in Figure 3.7. Horizontal axis rep-

resents the strongest component of the projection matrix whereas the vertical axis
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Figure 3.6: Error Rate (%) vs. Number of dimensions for the ORL database (Com-

parison with kernelized variants of LPP)

represents the next strongest component. Clear discrimination between faces of two

persons can be observed using just strongest two dimensions using both ESLPP-MD

and LPDP.

Face recognition experiments with varied number of dimensions on the YALE

face database B are reported in Figure 3.8. For lower dimensions, the proposed

approach performs better, but as the dimensions increase, the performance of LPDP

is comparable to ESLPP-MD. Comparison of K-LPDP is also performed with other

kernel based variants results of which are shown in Figure 3.9. The current proposal

outperforms all the other variants showing better discrimination capability, achieving

more than 96% recognition accuracy.

Face recognition experiments on an expression database i.e. JAFFE database are

reported in Figure 3.10. All the compared approaches report less than 10% error

rates with LPDP giving the least i.e. 1% error rate, whereas SLPP and ESLPP have

only 3% and 2% errors. As the error rates for face recognition are very less in case

of the JAFFE database, with LPDP giving almost 99% accuracy, experiments using

the kernel based variants have not been performed.
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(a) (b)

(c) (d)

(e)

Figure 3.7: Strongest two dimensional projection of face images having some similar

properties from the YALE face database. (a)LPP (b)ELPP (c)SLPP (d)ESLPP-MD

(e) LPDP Horizontal axis represents the direction of the strongest component of basis

V while vertical axis represents the 2nd strongest component.
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Figure 3.8: Error Rate (%) vs. Number of dimensions for the YALE database (Com-

parison with variants of LPP)

Figure 3.9: Error Rate (%) vs. Number of dimensions for the YALE database (Com-

parison with kernelized variants of LPP)
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Figure 3.10: Error Rate (%) vs. Number of dimensions for the JAFFE database

(Comparison with variants of LPP)

3.4.4 Performance analysis of LPDP and discriminant tech-

niques

Proposed LPDP is a dimensionality reduction approach that takes into consideration

both the local structure of the data and at the same time emphasizes on separating

different classes. To have a complete performance analysis of LPDP, it is important

to report comparison with other techniques working on similar idea such as DLPP

[1], DLPP/MMC [2, 3, 4], LPMIP [5] etc. DLPP/MMC and LPMIP are reported to

be performing better that DLPP and hence face recognition results using these two

techniques are compared with LPDP. Also, it is to be noted that the kernel based

variants of DLPP/MMC and LPMIP are not available and hence their comparison

with K-LPDP is not reported. It can be observed that LPDP consistently outperforms

both DLPP/MMC and LPMIP on all three face databases used for experimentation

with only 70− 80 strongest dimensions producing best results.

3.5 Conclusion

A dimensionality reduction technique, locality preserving discriminant projection,

that not only preserves the local geometry of the data but also discriminates data

points from different classes in the newly found subspace is proposed. Face and fa-
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(a)

(b)

(c)

Figure 3.11: Error Rate (%) vs. Number of dimensions for (a) ORL database (b)

YALE face database B (c) JAFFE database (Comparison with other discriminant

techniques)
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cial expression recognition using the face images thus projected in this subspace are

performed. It has been observed that the proposed approach significantly improves

the performance of face recognition on the used benchmark face databases. In ad-

dition to discriminating face images of different persons, the LPDP discriminates

various expressions of the same person as well. LPDP tries to maximize the sepa-

rability between classes while preserving the neighborhood information of the data

points in the projection space. Kernelization of LPDP is also proposed with the

aim of capturing complex non-linear changes present in the face images and thereby

enhance the face recognition performance. Notable improvement is observed in the

recognition accuracy using K-LPDP over the conventional non-kernelized LPDP. The

proposed approach is also compared with the kernelized variants of other local struc-

ture preserving approaches. Higher recognition performances are achieved on both

the databases using proposed K-LPDP.



Chapter 4

Orthogonalization of Extended

LPP

Locality Preserving Projection (LPP), as discussed earlier in detail, is a linear trans-

formation approach that preserves the local structure (neighborhood information of

the data) in the transformed domain as well [26]. The transformation matrix i.e.

basis learned by LPP are not orthogonal in nature. Non-orthogonality of LPP makes

it difficult to reconstruct the data. Also, having orthonormal basis is advantageous in

many applications especially in image denoising as there is a need to revert back from

the transform domain and project the data in the original space (i.e. spatial domain).

In case of orthogonal basis V, V−1 = VT , hence computation of the inverse of the

basis matrix is no longer required. Orthogonal variant of LPP and its application to

image denoising task is discussed in this chapter.

4.1 Orthogonal Locality Preserving Projection

Orthogonal Locality Preserving Projection (OLPP) [32] was introduced to orthogo-

nalize the basis of LPP. The objective function ensuring the basis to be orthogonal

thus becomes,

arg min
V

VTXLXTV (4.1)

subject to the constraints

VTXMXTV = I; vm
Tvk = 0,∀m = {1, 2, ......, k − 1} (4.2)

here, weight matrix S, Laplacian matrix L and M are found in the same manner

as that in LPP [26]. Weights in S are assigned using the heat kernel function as

68



CHAPTER 4. ORTHOGONALIZATION OF EXTENDED LPP 69

Sij = e−
‖xi−xj‖2

t if xi belongs to k nearest neighbors (k-NN) of xj.

The basis vectors vk,∀k are found in the iterative manner ensuring that the vector

learnt is orthogonal to all the previously found basis vectors. v1 is the eigenvector

associated with the smallest non-zero eigenvalue of Z(1) =
(
XMXT

)−1
XLXT . Rest

of the basis vectors, vk, ∀k are computed as follows:

Z(k) =
{

I−
(
XMXT

)−1
V(k−1) [U(k−1)]−1 [V(k−1)]T}Z(1) (4.3)

vk is the eigenvector associated with the smallest eigenvalue of Z(k).

V(k−1) = [v1, . . . ,vk−1] ; U(k−1) =
[
V(k−1)]T (XMXT

)−1
V(k−1) (4.4)

The basis matrix V thus found is orthonormal.

4.1.1 Variants of OLPP

The fundamental requirement for the basis vectors to be orthogonal is VTV = I.

Hence, in order to have orthogonal basis vectors, the constraint VTV = I should

be satisfied. A new orthogonalization of LPP (NOLPP) is proposed, where we in-

troduce the orthogonalization constraint while minimizing the objective function of

conventional LPP as opposed to the normalization constraint VTXMXTV = 1. The

minimization problem now reduces to the eigenvalue solution of XLXTV = λV. The

solution is no more the generalized eigenvalue problem and produces orthonormal

basis vectors directly in the first step, hence is computationally efficient.

Selection of t in the weight matrix S according to the heat kernel function plays

a major role while obtaining the basis V which makes it a very crucial and difficult

task as it highly depends on the data [47, 46]. Various extensions have been proposed

in the literature that try to find optimal dictionary vectors [47, 46, 48, 45]. Weighing

as suggested in Section 2.2.1 using the z-shaped weighing function can be performed.

Sij =



1; if dij ≤ a

1− 2
(
dij−a
b−a

)2
; if a ≤ dij ≤ a+b

2

2
(
dij−b
b−a

)2
; if a+b

2
≤ dij ≤ b

0; otherwise


(4.5)

here, a and b specify range along which the function changes its values and can be

controlled. dij represents the distance between two data points. OLPP basis learned

using the z-shaped weighing function are used to perform all the experiments reported

in this thesis.
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4.2 Image Denoising : A New Application

LPP and its variants have been mostly used for object recognition and dimensionality

reduction related applications [26, 32, 9] so far. A new application of LPP has been

explored for image denoising. The overview of image denoising approaches is discussed

first before going into the details of the proposed OLPP based image denoising.

4.2.1 Overview of Image Denoising

Noise in images gets produced during the acquisition process by the sensors, the

circuitry of a scanner or a digital camera and is unavoidable. It is not part of the object

or scene being imaged. To get the original clean image, denoising has to be performed.

Hence, denoising becomes an integral part of image generation process if clean image

is desired. Most algorithms that convert image sensor data to a digital image, need

to incorporate noise removal/reduction processes. Thus, it can be regarded as an

important task in the computational imaging community. Gaussian noise is one of

the most common form of noise which arises during image acquisition because of

poor illumination or high temperature. Other noises such as salt-and-pepper noise,

photographic grain noise, shot noise, quantization noise, anisotropic noise etc. are

caused during the formation of digital image [85].

Redundancy present in natural images has been explored in many image processing

applications, be it various image restoration techniques or dimensionality reduction

techniques. High correlation among the neighboring pixels of the image is one of

the first properties that was used for image denoising tasks with the spatial domain

filters. These techniques used pixel based local correlations. Concept of “non-local self

similarity” showed structural similarities between fixed sized patches from different

spatial locations of the image [41, 42]. To model the redundancies of the image,

linear transformations such as Fourier Transform, Discrete Cosine Transform, Wavelet

transform, Block DCT [35], having well-known universal basis are used.

In recent times, there has been great advancement in the performance of image

restoration techniques - especially denoising. The state of the art techniques rely

on two major hypotheses that hold true for natural images: (1) image patches from

distant locations are often structurally similar (“non-local self-similarity”) [42, 41],

and (2) image patches can be accurately expressed as a sparse linear combinations

of using the linear combinations of basis vectors. Collection of these basis vectors of

same or different linear transforms is known as ’dictionary’. This “dictionary” could

be a well-known universal basis such as Fourier, DCT, or wavelet (or over-complete

extensions of the same) [35, 39], or it could be trained offline on a set of representative
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images [36]. However, some of the best methods in today’s literature actually infer

the dictionaries in situ, directly from the patches of the noisy or blurry image. Some

techniques such as K-Singular Value Decomposition (KSVD) (‘K’ denotes number of

clusters) [44] and its variants [86] learn a single over-complete dictionary for the entire

image. Techniques such as clustering based sparse representations (CSR) [37] perform

clustering in the space of patches followed by the inference of a single dictionary

per cluster. On the other hand, some techniques use principal components analysis

(PCA) [87, 34] to learn spatially varying orthonormal set of basis - one per patch in

the noisy image, constructed from group of patches that are similar to it. Independent

Component Analysis (ICA) [43] is also used to adaptively learn the dictionaries from

the input noisy images.

The sparse codes (the coefficients of the linear combination of dictionary vectors)

are inferred in an alternating fashion with the dictionary, in methods such as [44]. In

case of orthonormal bases (either the universal bases or those learned in situ), the

sparse codes of the noisy patches are manipulated using hard or soft thresholding [35]

or Wiener filtering [35, 34, 87] to obtain the restored image. In recent literature, there

is much interest in imposing dependencies between the sparse codes corresponding

to different patches, either based on spatial proximity or some notion of structural

similarity. For instance, the well-known BM3D technique creates a 3D stack of sim-

ilar patches, projects it onto a 3D basis (tensor product of 2D-DCT and 1D-Haar).

Collaborative filtering is performed using hard thresholding on the transformed co-

efficients followed by basis inversion, thereby allowing for a coupled update of the

coefficients [35].

Local Pixel Grouping based denoising using PCA (LPG-PCA) [34], [87] learn a

set of orthonormal PCA basis for each patch of the image from group of patches

similar to it. CSR [37] performs clustering operation on the noisy patches, learns

separate PCA bases for each cluster, and then minimizes a criterion for the proximity

of the coefficients of patches belonging to any given cluster. The Bayesian dictionary

learning framework developed in [88] imposes the prior belief that (spatially) nearby

patches should be expressible as sparse linear combinations of similar subsets of

columns from a (possibly over-complete) dictionary. In [36, 89], structurally similar

patches are grouped together into a matrix, and restoration is performed by penalizing

a matrix norm (such as the trace-norm) subject to a hard constraint derived from

the likelihood. K-SVD [44] and its variants learn an over-complete dictionary for

the entire noisy image and sparse linear combinations of the dictionary vectors are

selected for each patch. Global image denoising [90], learns the dictionary from the

informative parts of the image in such a way that each pixel is estimated from all
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the pixels from the image. Noise elimination is performed by means of shrinkage

of the filter eigenvectors. Expected Patch Log Likelihood (EPLL) [91] is maximized

to find a reconstructed image in which every patch is likely under the prior while

keeping the image still close to corrupted image. EPLL uses GMM for learning

the dictionary. GMM is used for learning the dictionary and noisy coefficients are

denoised by structured sparse estimation [92].

Another set of image denoising methods, that have evolved recently are based on

deep learning and deep neural networks. The noisy image is given as input and the

network is trained to predict the clean or original output. Denoising auto encoders

and Convolutional Neural Networks (CNNs) are being widely used to address the

image denoising task. Multiple (deep) layers of Denoising Auto-encoder (DA) are

employed to build a deep neural network for image denoising and inpainting tasks

[93]. A new training scheme that trains the DA to reconstruct the clean image from

corresponding noisy observation is proposed. For every subsequent layer, hidden layer

activations from the previous layer of both the noisy and clean input are calculated to

be applied as the training. Xu et al. [94] perform the task of image restoration using

deep CNNs by establishing the connection between traditional optimization-based

schemes and neural network architecture. The proposed image de-convolution using

CNNs is based on separable kernels. Enhanced restoration performances are obtained

by initializing the network with separable kernel inversion and outlier rejection. Deep

learning based image denoising scheme proposed in [95], uses the de-convolutional

layers to obtain the clean images from the noisy ones in addition to the convolutional

layers. The corresponding convolutional and de-convolutional layers are connected

directly, skipping the intermediate layers, which help in retaining the image details.

The convolutional layers act as the feature extractor, which capture the abstraction

of image contents while eliminating noise. De-convolutional layers are then used to

recover the image details. Though, the deep learning based approaches are becoming

popular recently, the focus of this work is to explore the applicability of domain

transformation techniques for image denoising, and hence, the proposed denoising

framework has not been compared with these techniques.

In the domain transformation based image denoising approaches discussed so far,

a dictionary is obtained for each patch or a cluster of similar patches after grouping

together structurally similar patches. Also, in most of the non-local self similarity

based approaches, a smaller search neighborhood is defined for grouping the similar

patches together or maximum number of patches to be grouped together are fixed. An

OLPP based denoising scheme is proposed in this chapter that uses a global dictionary

from all overlapping patches extracted from the entire image. The proposed denoising



CHAPTER 4. ORTHOGONALIZATION OF EXTENDED LPP 73

scheme using OLPP and its suitability for image denoising are discussed later in this

section.

4.2.2 State of the art denoising approaches

Recent state of the art techniques rely on two major hypotheses that hold true for

natural images: (1) image patches from distant locations are often structurally sim-

ilar (“non-local self-similarity”) [42, 41], and (2) image patches can be accurately

expressed as a sparse linear combinations of using the linear combinations of basis

vectors. Some image denoising techniques working on this principle are discussed in

this section.

Local Pixel grouping - Principle Component Analysis (LPG-PCA) [34, 87]

Local Pixel Grouping (LPG) refers to finding similar patches to the reference patch.

For each reference patch from the noisy input image, PCA basis are learnt from

group of patches similar to it. As PCA works on vector data, all the patches are

first converted to vector format and then processed. Linear minimum mean square

estimation is used to update the patch coefficients in the PCA domain and inverse

transformation is used to map the patch back in spatial domain. LPG-PCA is a two

stage procedure, denoising image after the first stage is again denoised following the

same procedure.

Block Matching 3D (BM3D) [35]

Like LPG-PCA, BM3D is also a two stage procedure. In the first stage, reference

patch and its similar patches are grouped together and arranged in a 3D stack. The

stack is projected onto 3D transform basis typically 3D DCT, or tensor product of 2D

DCT and 1D Haar wavelets. The 3D transform coefficients are manipulated usually

by hard thresholding. All the patches in the entire stack are reconstructed using an

inverse 3D transform. This is repeated for every patch in the image and multiple

answers appearing at any pixel are averaged. In the second stage, the output image

of the first step is used to compute patch similarities which is more robust than

computing the similarities in the noisy image. Patches from the first-stage denoised

image are then appropriately assembled into a stack. Corresponding patches from

the noisy image are assembled into a second stack. 3D transform coefficients of the

second stack are denoised using Wiener filter update rule and inverse 3D transform

is used to get back in the original domain. Patch aggregation is performed to obtain

the final output image.
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Clustering based Sparse Representation (CSR) [37]

Instead of grouping together similar patches for each patch from the noisy image,

CSR performs clustering operation on all the patches extracted from the noisy image.

A separate PCA basis is learned from each cluster, all the patches of the cluster are

projected in the PCA domain and a criterion for the proximity of the coefficients

of patches belonging to any given cluster is minimized to eliminate noise. Observa-

tion of these coefficients suggests that they are not randomly distributed and their

location uncertainty is related to non-local self similarity of the image, which im-

plies the possibility of achieving higher sparsity by exploiting such location related

constraint. Inverse transform followed by aggregation is performed to obtained the

denoised image.

Expected Patch Log Likelihood (EPLL) [91]

Expected Patch Log Likelihood (EPLL) is maximized to find a reconstructed image

in which every patch is likely under the prior while keeping the image still close to

corrupted image. A finite gaussian mixture model is used for learning the dictionary

and noisy coefficients are denoised by structured sparse estimation. Dictionary is

learned from a large image data base as opposed to many of the patch based methods

where dictionary is learnt from the corrupted image itself. Patches of the noisy input

image are assumed to be sampled from mixture of finite gaussians. Given a noisy

patch, mixing weights for each of the component are calculated and the component

having highest mixing weight is selected. Thus, notion of sparsity automatically

comes as only one of many components of gaussian mixture is active for a patch.

Optimization based on MAP rule is carried out to eliminate noise.

A summery of these image denoising state of the art approaches, respective domain

transformation methods and coefficient update rules used in the transformed domain

to eliminate noise is reported in Table 4.1.

4.2.3 OLPP for Image Denoising

In all the methods that work on the principle of non-local similarity for image restora-

tion tasks [42, 87, 34, 35, 37, 36, 89], all possible patches of fixed size are extracted

from the input image from which similar patches of a given reference patch are to

be grouped together. Thereafter, an orthonormal basis is inferred for each patch and

shrinkage is performed on the coefficients obtained when the patch is projected on

that basis. One of the major motivating factors for using OLPP is its property of

inherently preserving neighborhood information. Here, by neighborhood, we explic-
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Table 4.1: State of the art approaches for image denoising, respective domain trans-

formation methods and coefficient update rules used in the transformed domain to

eliminate noise.
Image denoising Domain transformation Coefficient update

approach technique rule

LPG-PCA PCA Linear minimum mean

square error estimation

BM3D 2D-DCT & 1D Haar Hard thresholding &

Wiener filter update

EPLL GMM Optimization based on MAP rule

Proximity of coefficients

CSR PCA of the patches belonging to

same cluster is minimized

itly refer to patch similarity. Due to this locality preserving property, similar patches

are automatically taken into consideration while formation of basis (in the form of

weights in matrix S as explained in Section chap4:variantsOLPP). Hence, a global

or semi-global basis is learned for a whole image or a large window at once and the

same basis is used for all the overlapping patches present. This allows us to employ

one single orthonormal basis for an entire sub-image as opposed to spatially varying

orthonormal bases [87], [34]. Most importantly, since an entire set of patches from

a large sub-image is represented by a single orthonormal basis, the OLPP method

is truly non-local in nature. Coefficients of all the patches in the OLPP domain are

obtained by projecting the patches on the OLPP basis. Noise elimination is per-

formed by manipulating the coefficients of the patches in the OLPP domain. In the

transform domain, higher magnitude coefficients are the ones that carry information

about the true clean image. Hence, by suppressing the lower magnitude coefficients,

noise elimination can be performed and the original image can be obtained from the

noisy one.

As the basis obtained using OLPP are orthogonal, standard shrinkage rules for

orthogonal transforms can be applied. The basic noisy image formation model is

Iη = I + η where I is the original image, η is i.i.d. Gaussian noise with standard

deviation σ and Iη is the noisy image. The model in transformed domain using basis

V can be expressed as, IηV = IV + ηV. Let {xi}Ni=1 be a collection of N patches of

size l × l from Iη. The coefficients of the ith patch in the transformed domain are

represented as xivk = vT
k xi. The shrinkage rules on the coefficients are defined as

follows:

a. Hard Thresholding: x̃ivk = xivk ◦ (|xivk | ≥ σ
√

2 log l2)
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b. Soft Thresholding : x̃ivk = sign(xivk)max(0, |xivk | − σ
√

2 log l2)

c. Wiener Update (squared L2 norm): x̃ivk =
σ2
vk

σ2+σ2
vk

xivk where σ2
vk

= 1
N

∑N
i=1(xivk)

2

The filtered coefficients are transformed back to the spatial domain and the

patches are aggregated to get back the clean image. Comparison of the existing

approaches with the proposed approach for denoising is shown in Figure 4.1 to give

clear insight of the advantage of the proposal.

4.2.4 Suitability of OLPP for Image denoising

The proposed image denoising procedure along with the initial set of results geared

towards gaining a better understanding of the performance of OLPP and its suitability

for image denoising are presented in this section. In all experiments using OLPP, we

divide the noisy image into overlapping patches of size 6 × 6. Also, Wiener filter

update rule is used to filter the coefficients in the OLPP domain as it produces best

results.

OLPP: Granularity

Given any noisy reference patch xr, we can collect together patches {xi}Pi=1 that are

structurally similar to it, where the similarity is quantified based on knowledge of the

standard deviation of noise σ. Basically, any patch xi for which ‖xr − xi‖2 ≤ 2.7σl2

(here, patches are of size l× l), is considered similar to xr [96]. These similar patches

are assigned weight according to the function in Equation 4.5 while constructing

the OLPP basis. The parameter “b” of Equation 4.5 for constructing the similarity

matrix S automatically takes care of the similar patches, hence reducing the task

of explicitly finding the similar patches for each patch while constructing the global

orthonormal basis. This makes the present proposal computationally efficient without

compromising the performance of denoising.

Instead of working on each patch and repeating the procedure for all the patches,

we divide the image into large-sized windows (e.g. an image of size 512 × 512 is

divided into windows of size 128 × 128) and learn a single OLPP basis using all the

patches within this window. Such a window-based approach saves computational cost

considerably, and has been employed in mixture-model learning for image restoration,

in prior work such as [92]. After computation of the orthogonal basis, the patch

coefficients are computed, and they are modified using the Wiener update rule. The

patches are then reconstructed from the modified coefficients. Multiple candidate
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Figure 4.1: Comparison of existing denoising approaches, such as LPG-PCA, BM3D,

CSR vs. proposed orthogonal locality preserving projection (OLPP) based denoising

approach. (a) Similar patches of a given reference patch from the image are grouped

together, a set of orthonormal basis is inferred for each patch from the grouped

patches, shrinkage is performed on the coefficients of the patch in respective projection

domain and the modified patches are transformed back to the spatial domain. This

process is repeated for every patch (BM3D, LPG-PCA) or a cluster of patches (CSR)

and aggregation is performed to obtain the denoised image. (b) A global OLPP basis

that takes care of the similarity between the patches is learnt for the entire image

or a large portion of the image, shrinkage in the form of Wiener filter update rule is

applied on the patches projected in the OLPP domain followed by inverse transform

to project the patches back in the spatial domain. Patches are aggregated to acquire

denoised image.
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values for a single pixel location (since overlapping patches were being used) are

averaged to produce a final restored image.

The computation time reduced to∼5 minutes using window based global approach

versus ∼3 hours using the conventional approach of learning basis for each patch of

an image of size 512× 512 on machines of same configuration.

OLPP, PCA, DCT and Random Orthogonal Basis

We performed an experiment to measure the locality preserving nature of the learnt

OLPP bases in comparison to PCA, DCT and a randomly chosen orthogonal basis.

The locality preserving property of an orthogonal basis V ∈ O(l2,R) is quantified by

the value of E(vk) =
vTkXLXTvk
vTkXMXTvk

(i.e. the generalized eigenvalue in vTk XLXTvk =

vTk XMXTvk of OLPP) for each k ∈ {1, ..., l2}. These values, obtained from denoising

experiments on a 128× 128 texture image with a patch size of 6× 6, are plotted (in

descending order) in Figure 4.2 for all the aforementioned bases. As OLPP seeks

to minimize the value of E(vk), it can be seen that these values computed from the

OLPP basis are smaller than those computed from other bases.

Another experiment is performed to evaluate the patch-wise denoising perfor-

mance for OLPP and PCA basis. All 6× 6 patches of 120× 120 image are considered

for comparison. Basis of OLPP and PCA are learnt from the clean (original) as well

as noisy image with σ = 20 for natural and textured gray scale images. Here, the

reconstruction error of denoised patch using respective approaches i.e. OLPP and

PCA (one basis for the entire image i.e. global) is computed with respect to the

clean patch. Table 4.2 contains the number of patches having higher reconstruction

error after denoising using PCA based denoising as compared to OLPP. On an av-

erage, more than 65% of the patches have higher reconstruction error using global

PCA basis, which shows higher reconstruction and hence restoration (here, denoising)

accuracy of OLPP.

In the next experiment, PCA and OLPP coefficients of all the overlapping patches

of size 5 × 5 from portions of size 128 × 128 of ‘Barbara’ image are arranged in

image form in Figure 4.3. Here, each image represents one coefficient of all the

patches i.e. first image of Figure 4.3 shows first coefficient value of all the patches

and so on. For PCA, the basis were arranged in increasing order of the eigenvalues

whereas while computing OLPP basis, no such arrangement of basis was performed

which leads to non-uniform arrangement of the coefficients. As we are not truncating

any of the coefficients, this arrangement of coefficients does not play any role in

denoising experiments and their performance. We are only showing the basis for

visual inspection if possible. Also note that the PCA basis found here are local
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Table 4.2: Patch-wise denoising performance is evaluated by calculating the recon-

struction error with reference to corresponding clean patch. Percentage (%) of patches

having higher reconstruction error using PCA based denoising approach than the

OLPP based approach for 120×120 image. Basis are learnt from clean (original) and

noisy image using both the approaches.
Image # Patches

Clean Noisy

Lena 78.51 74.9

Airplane 77.05 80.43

Brick Wall 62.07 62.32

whereas those using OLPP are global.

Figure 4.2: Plot of the values of E(vk) for OLPP (solid), PCA (dashed), DCT (dash

dotted) and random orthogonal (dotted) bases respectively

Comparison with New OLPP Basis

A new orthogonalization of Locality Preserving Projection (NOLPP) is introduced

by relaxing the normalization constraint which makes procedure of obtaining orthog-

onal LPP basis computationally more efficient. However, we realized that the con-

straint that we relaxed is very stringent, relaxing which affects the basis computation.

Though, in some cases, improvement in the performance over other state-of-the-art

approaches is achieved using this approach, conventional OLPP with the normal-

ization constraint performs consistently better specially in case of natural images.

Comparison of denoising results using NOLPP and OLPP on two natural images
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Figure 4.3: Coefficient-wise plot for all the overlapping patches of a 128×128 portion

of barbara image using OLPP (Left) and PCA (Right) basis

is shown in Figure 4.4. It can be observed that the current proposal using OLPP

performs better than the NOLPP bases approach visually as well as quantitatively.

4.2.5 Time Complexity Analysis

The cost, as far as time complexity is concerned, appears to be much less in case of

OLPP as compared to state of the art methods. Assuming total number of overlapping

patches in the image is N , average number of patches similar to the reference patch

is by P , average time required to search similar patches for each reference patch is

Ts, time taken to generate the Laplacian matrix L for N patches is NTL and size

of each patch is l × l. In approaches that require the patch (in matrix format) to

be transformed into vector format, size of each representative vector turns out to be

l2 × 1.

In PCA based approaches [34, 87], for each reference patch, similar patches are

grouped together and covariance matrix of dimensions l2 × l2 is computed, eigenvec-

tors of which form the transformation matrix. Thus, the time complexity becomes

O(N [Ts + Pl4 + l6]). Note that computation of eigenvectors of an l × l matrix takes

O(l3) time. BM3D [35] stacks similar patches of the reference patch and performs 2D

and 1D transforms on patches of that stack. The 2D transforms lead to O(Pl3) com-

plexity whereas for 1D it is O(P 2l2). As the procedure is repeated for all overlapping
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Figure 4.4: From left to right, top to bottom (first row): Original ‘Lena’ image, noisy

image with white Gaussian noise (σ = 30), results (PSNR, SSIM) of denoising using

NOLPP (29.91, 0.78) and OLPP (30.38, 0.81). (second row) Original ‘Mandrill’

image, noisy image with white Gaussian noise (σ = 30), results (PSNR, SSIM) of

denoising using NOLPP (24.61, 0.71) and OLPP (24.64, 0.72).

patches, overall time complexity turns out to be O(N [Ts + Pl3 + P 2l2]).

In case of OLPP where patches are considered in vector format, O(NTL) time is

required to compute the Laplacian matrix and O(l6) for the transformation matrix

i.e. basis matrix, as the global basis is computed only once for the whole image.

Thus, overall time complexity is O(NTL + l6). Thus, the proposed approach is faster

than other state of the art image denoising approaches. Time complexities of the

approaches discussed above are summarized in Table 4.3.

Table 4.3: Summary of time complexities of denoising approaches. N : Number of

patches, l × l: size of a patch, Ts: average time required to search similar patches

of the reference patch, P : average number of similar patches, NTL: time taken to

generate the Laplacian matrix L for N patches.
Technique Time Complexity

LPG-PCA O(N [Ts + Pl4 + l6])

BM3D O(N [Ts + Pl3 + P 2l2])

OLPP O(NTL + l6)
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4.2.6 Noise level estimation

In this thesis, we are denoising images corrupted with i.i.d. Gaussian noise with

zero mean and σ standard deviation i.e. N (0, σ). All the approaches that are being

compared assume that standard deviation of noise (σ) i.e. the noise level, is known.

In practical scenarios, value of σ might not be available, hence methods for estimating

σ can be used prior to denoising. Donoho and Johnstone [33] derived value of σ from

the finest scale empirical wavelet coefficient of the given input data. Highest sub-

band of a Daubechies 2 wavelet transform was used in [97] to estimate noise variance.

This approach is also used in [98] and [34] to estimate the noise level. Another set

of approaches use homogeneous regions of image to estimate noise variance/standard

deviation [99]. Methods proposed in [100] used local statistics of image to estimate

noise level. Noise level estimation based on principal component analysis has been

recently proposed in [101]. Several other approaches have also been proposed in

literature to estimate noise level from given noisy image.

4.2.7 Evaluation Measures

After denoising the noisy image, apart from visual comparison, in order to compare

the results of different approaches as well as to check the quality of denoised image,

evaluation measures are required. Various evaluation measures are present in litera-

ture that are used to examine the quality of the denoised image. Here are the measure

for performance evaluation.

PSNR: Peak Signal to Noise Ratio

Peak signal-to-noise ratio (PSNR), is the ratio between the maximum possible power

of a signal and the power of corrupting noise represented in decibels (db). It is most

commonly used quality measure between the original image and the reconstructed

denoised image. The higher the value of PSNR, the better the quality of denoised

image.

Let Iη be the original image of size M×N and J be is its noise-free approximation

(i.e. the denoised image).

MeanSquareError(MSE) =
1

MN

M∑
i=1

N∑
j=1

(
Iη(i, j)− Ĵ(i, j)

)
PSNR = 10log10

(
L2

MSE

)
(4.6)
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where L is maximum intensity level present in the image Iη and MSE is same as

defined above.

SSIM: Structural Similarity Index Measure

Structural Similarity Index Measure (SSIM) [102] is another widely used image qual-

ity measure given the original clean image. Natural images have high dependencies

between the neighboring pixels which carry important information about the struc-

ture of the objects in the image in visual sense. This measure compares the changes

in the structural information in local patterns of pixel intensities.

SSIM local(x, y) =
(2µxµy + ε1)(2σxy + ε2)

(µ2
x + µ2

y + ε1)(σ2
x + σ2

y + ε2)

SSIM =
1

M

M∑
j=1

SSIM local(xj, yj) (4.7)

where ε1, ε2 ensure stability when either (µ2
x + µ2

y) or (σ2
x + σ2

y) us close to zero. The

SSIM local is defined over a local window centred at (x, y) and average over such

windows gives a single measure SSIM for entire image.

4.3 Experiments

Image denoising experiments on natural and textured gray-scale as well as color im-

age databases are performed. Gray scale image denoising is performed on the Lansel

database of natural images (airplane, barbara, boats, couple, elaine, fingerprint, gold-

hill, house, man, mandrill, peppers, stream, zelda) and UIUC texture database [103]

(100 texture images with 17 different textures). Color image databases i.e. Kodak

database 1 and Brodatz color texture database 2 are used.

We have compared the performance of OLPP against that of popular state of

the art approaches for which code was publicly available - BM3D (stage 1 and stage

2) [35], expected patch log-likelihood model (EPLL) [91], LPG-PCA (stage 1 and

stage 2) [87], and the clustering based sparse representation (CSR) from [37]. For

each competing method, we use author-specified parameter settings for the sake of

fairness.

1Kodak Image Database: http://r0k.us/graphics/kodak/
2Color Brodatz Texture database: http://multibandtexture.recherche.usherbrooke.ca/

colored_brodatz_more.html

http://r0k.us/graphics/kodak/
http://multibandtexture.recherche.usherbrooke.ca/colored_brodatz_more.html
http://multibandtexture.recherche.usherbrooke.ca/colored_brodatz_more.html
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4.3.1 Texture Preservation Property

We believe that the dependencies imposed by the OLPP method enhance the preser-

vation of finer textural features during denoising, in comparison with approaches like

PCA which do not impose such a dependency. To provide evidence for this, we per-

formed extensive experiments on a database of 100 texture images from UIUC. These

texture images consisted of 17 different texture categories such as bark, water, carpet,

wood, etc. The average PSNR and SSIM values for some categories are reported in

Figures 4.7 and 4.8 for OLPP and all competing methods, for 3 different noise levels,

i.e. σ ∈ {20, 30, 40}. The results are shown in graphical format for better visual

comparison. For each method, the resultant value is shown using different symbol.

Note that the results are not continuous, just for better visual comparison, results of

all the methods are joined by a line for each noise level. As the methods LPG-PCA

and BM3D work in two stages, results for both stages are reported. In most of the

cases, the OLPP method was able to perform better in terms of PSNR, SSIM as well

as subjective visual quality with better preservation of textural details at higher noise

levels. Both LPG-PCA and BM3D tend to smooth out the finer textures. In fact,

BM3D uses a tensor product of DCT and Haar wavelet bases, the latter of which is

akin to performing diffusion filtering which can erase subtle textures [104]. Though

EPLL performed very well in most cases, it also produced some undesired spiky arti-

facts as can be observed clearly. Iterative behavior of both EPLL and CSR methods

increase their time complexity in comparison to the proposed approach. Though, the

proposed approach is not outperforming CSR, the results are comparable with much

less computational and time complexities. Examples of reconstruction for texture

databases are shown in Figure 4.5 and 4.6. Sharp edges and minute textural details

can be observed by zooming in the images. Average PSNR and SSIM values for the

UIUC texture databases are reported in Table 4.4.

Table 4.4: Average denoising results for the entire UIUC Texture Database containing

100 images (σ ∈ {20, 30, 40})
Denoising Approach σ = 20 σ = 30 σ = 40

PSNR SSIM PSNR SSIM PSNR SSIM

LPG-PCA 28.25 0.807 26.24 0.722 24.96 0.654

BM3D 28.58 0.819 26.74 0.747 25.49 0.686

EPLL 28.46 0.824 26.58 0.746 25.37 0.669

CSR 28.54 0.817 26.75 0.748 25.57 0.683

OLPP 28.67 0.829 26.79 0.757 25.56 0.696
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Figure 4.5: From left to right, top to bottom: Original texture image (‘Bark’), noisy

image with white Gaussian noise (σ = 30), Results (PSNR, SSIM) of denoising using

LPG-PCA (23.48, 0.700), BM3D (23.69, 0.71), EPLL (18.19, 0.32), OLPP (23.98,

0.746), CSR (23.7, 0.71).
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Figure 4.6: Denoising experiment on a texture image (‘Wood’). From left to right, top

to bottom: Original image, noisy image (σ = 40), results (PSNR, SSIM) of denoising

using LPG-PCA (24.73, 0.659), BM3D (25.26, 0.686), EPLL (24.94, 0.656), OLPP

(25.23, 0.695) and CSR (25.41, 0.691) based denoising.
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(a) Legends

Figure 4.7: Denoising results for some images from UIUC Texture Database. Hori-

zontal axis represent various methods of denoising and vertical axis represents PSNR

(in db) and SSIM values. Results are shown for three noise levels as indicated in

Figure 4.7(a)
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(a) Legends

Figure 4.8: Denoising results for some images from UIUC Texture Database. Hori-

zontal axis represent various methods of denoising and vertical axis represents PSNR

(in db) and SSIM values. Results are shown for three noise levels as indicated in

Figure 4.8(a)
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4.3.2 Results on Natural Images (Grayscale)

Denoising experiments are also performed on the ‘Lansel database’ of natural im-

ages. Results of denoising a natural image ‘Stream’ are shown in Figure 4.9 for noise

level σ = 40. The average results for the whole database are reported in Table 4.5.

Denoising results on some natural images are reported in graphical format for three

noise levels σ = 20, 30, 40 in Figure 4.10 and 4.11 using LPG-PCA, BM3D, EPLL,

CSR and OLPP based denoising methods. The proposed method preserves the finer

details of the images and produces PSNR/SSIM values comparable to the state of

the art, but it has a tendency to slightly under-smooth the homogeneous regions of

the image.

Table 4.5: Average denoising results for all the images from Lansel Database (σ ∈
{20, 30, 40})

Denoising Approach σ = 20 σ = 30 σ = 40

PSNR SSIM PSNR SSIM PSNR SSIM

LPG-PCA 30.42 0.834 28.48 0.78 27.08 0.73

BM3D 30.78 0.84 29.03 0.796 27.66 0.754

EPLL 30.46 0.839 28.6 0.788 27.48 0.747

CSR 30.69 0.841 28.9 0.793 27.76 0.755

OLPP 30.45 0.838 28.52 0.787 27.2 0.743

4.3.3 Results on Color Images

Extensive experiments on two color image databases are reported - (1) a portion of the

Brodatz color texture database (first 28 images), and (2) all 24 images of the Kodak

image database. For the OLPP method, we used patches of size 6×6×3 represented

as vectors of length 108. This allows for easy coupled updates of the RGB values at

a pixel. The competing methods were BM3D (which uses a decorrelated color space

- YCbCr) and LPG-PCA (which denoises the R, G, B channels independently). We

did not perform comparisons with EPLL and CSR for which no color denoising code

is available. Besides producing better PSNR and SSIM values, one can again notice

the superior texture preservation property of OLPP over BM3D. This can also be

seen in a sample result for the Kodak database shown in Figure 4.12. Some of the

results (PSNR, SSIM) for the Brodatz database are presented in Figures 4.14 with

the average PSNR and SSIM values for all the images in Table 4.6.

Experiments were also performed on all 24 images of the Kodak database for

OLPP, BM3D (stage 2) [35] and LPG-PCA (stage 2) [87]. We did not compare with

EPLL (by Zoran and Weiss) [91] or CSR (by Dong et al ) [41] because the available
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Figure 4.9: Denoising experiment on a natural image (‘Stream’). From left to right,

top to bottom: Original image, noisy image (σ = 40), LPG-PCA (23.83, 0.5944),

BM3D (24.29, 0.6260), EPLL (24.41, 0.6309), OLPP (24.36, 0.6438) and CSR (24.30,

0.6218).
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(a) Legends

Figure 4.10: Denoising results for some images from Lansel database of gray-scale

natural images. Horizontal axis represent various methods of denoising and vertical

axis represents PSNR (in db) and SSIM values. Results are shown for three noise

levels as indicated in Figure 4.10(a)
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(a) Legends

Figure 4.11: Denoising results for some images from Lansel database of gray-scale

natural images. Horizontal axis represent various methods of denoising and vertical

axis represents PSNR (in db) and SSIM values. Results are shown for three noise

levels as indicated by legends in Figure 4.11(a)
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Figure 4.12: Denoising experiment on a color image from Kodak Database. Left to

right, top to bottom: Original image, noisy image (σ = 40), denoising using LPG-

PCA (PSNR: 23.97, SSIM: 0.6286), BM3D (24.94, 0.6833), and OLPP (24.90, 0.7159).

Zoomed-in portions of the images (in same order).
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Figure 4.13: Denoising experiments for color texture. Left to right, top to bottom:

original texture image, degraded image with white Gaussian noise (σ = 30), Results

(PSNR, SSIM) of denoising using LPG-PCA (24.02, 0.648), BM3D (24.02, 0.627),

OLPP (24.34, 0.677).
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(a) Legends

Figure 4.14: Denoising results for some images from Bordatz Color Texture Database.

Horizontal axis represent various methods of denoising and vertical axis represents

PSNR (in db) and SSIM values. Results are shown for three noise levels as indicated

in 4.14(a)
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Table 4.6: Average denoising results on 28 images of Brodatz Color Texture Database

(σ ∈ {30, 40, 50})
Noise level LPG-PCA BM3D OLPP

PSNR SSIM PSNR SSIM PSNR SSIM

σ = 30 26.62 0.816 27.28 0.866 27.82 0.876

σ = 40 24.92 0.75 25.67 0.817 26.53 0.841

σ = 50 23.52 0.68 25.18 0.795 25.4 0.802

code for these two methods did not handle color images separately. Graphical results

for image quality measures PSNR and SSIM [105] for some of the images from the

database are shown in Figure 4.15 for three noise levels - σ ∈ {30; 40; 50}. For some

images, the OLPP method did not compare favorably with BM3D in terms of PSNR

(SSIM results were much better). In some homogeneous portions of the image, the

performance of OLPP needs improvement (in a subjective sense). Average results

using PSNR and SSIM measures for all the 24 images of the Kodak database are

reported in Table 4.7.

Table 4.7: Average denoising results on all images from Kodak database (σ ∈
{30, 40, 50})

Noise level LPG-PCA BM3D OLPP

PSNR SSIM PSNR SSIM PSNR SSIM

σ = 30 28.32 0.72 30.2 0.839 29.51 0.825

σ = 40 26.63 0.628 28.51 0.783 28.16 0.776

σ = 50 25.36 0.556 27.9 0.761 27.1 0.732

4.4 Conclusion

In this chapter, we presented a new technique for image denoising which imposes

the prior belief that similar patches from the noisy image should map onto similar

transform coefficients, and explicitly learns an orthonormal basis to optimize for this

criterion. The proposed technique is simple to understand and affords easy, efficient

implementation. We demonstrate the excellent performance of this technique, espe-

cially with regard to texture preservation, on a large set of experiments across varied

noise levels. The finer details present in the image are restored very efficiently. Also,

in case of color images, superior texture preservation is achieved. This is so, even

when we learn a single basis for large-sized windows from the image. This leads to

an edge of the present method over other existing techniques where basis are learnt

for each single patch.
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(a) Legends

Figure 4.15: Denoising results for some images from Kodak database of color natural

images. Horizontal axis represent various methods of denoising and vertical axis

represents the PSNR (in db) and SSIM values. Results are shown for three noise

levels as indicated in Figure 4.15(a).
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LPG-PCA groups together similar patches of the patch under consideration and

learns PCA basis for all such overlapping patches in the image. It is a two stage

procedure and in both the stages, similar computations are performed. Noise removal

is carried out in the transformed domain. It is to be noted that the proposed technique

outperforms both the stages of LPG-PCA in almost all the results reported even with

the global OLPP basis which reduces the computational time to a large extent.

BM3D though does not learn the basis for each stack of similar patches as it uses

2D-DCT and 1D-Haar transforms, it tends to smooth out textural details due to the

diffusion process in the Haar wavelet basis. Due to this property, BM3D looses some

of the textural information which can be observed visually. Also, higher SSIM values

are obtained for most of the texture images, both gray-scale and color, using current

proposal.

EPLL is an iterative procedure of denoising, basis of which resemble PCA ba-

sis. The approach works well in the structural regions but produces spiky artifacts.

Though the PSNR/SSIM values of the restored images are good, visual inspection

clearly shows the undesired spikes. The proposed technique does not totally outper-

form the CSR approach, in most of the cases it is better than or comparable in terms

of PSNR/SSIM values. Also, the iterative behavior of CSR makes it computationally

more expensive as compared to one stage performance of the present OLPP approach.

The method has been tested on noise levels σ ranging from 10 to 60. The strength

of the current proposal is to suppress even the higher noise levels and that is why

the same is reported. The proposal is working well on lower noise levels also. It

is also noticed that there is considerable scope for improving the performance of

this technique in the homogeneous regions of an image. The approach can also be

adapted for various noise levels for single image as only the filtering process in the

transformed domain is dependent on the noise level. So, using the same dictionary

(global), the filtering of coefficients can be carried out depending upon the noise level

of the particular part/portion i.e. signal dependent noise. This problem is not being

addressed in this work, as our aim was to show the strength of OLPP as a denoising

tool. A proper noise (signal dependent/independent) estimation technique can be

added as a component. Besides working towards this, other directions for future work

include combining the sparsity criterion with the basis learning and applications of

this framework to other image processing tasks such as deblurring and inpainting.



Chapter 5

Two Dimensional Orthogonal

Locality Preserving Projection

The dimensionality reduction approaches discussed so far such as PCA, LDA, LLE,

ISOMAP, LPP as well as the ones proposed in the thesis i.e. ESLPP-MD, LPDP,

OLPP and its extensions are vectorized in nature. Each data point in matrix format

such as image, is required to be converted to the vector format before processing.

Due to vectorization, spatial neighborhood information gets lost. The vectorization

procedure leads to high dimensional data vectors resulting in high dimensional basis

matrix and increase in computational time. Also, most of the linear dimensionality

reduction approaches such as LDA, LPP, NPP often suffer from small sample size

problem i.e. number of data samples is much less than the dimension of the data

[50, 51, 9]. In such cases, the matrices become singular, hence cannot be processed

[9]. To overcome the issue, PCA is applied on raw data to reduce the dimensions of

the data after which the other dimensionality reduction procedure is applied. Two

dimensional variants of PCA, LDA, LPP, NPP etc. have been proposed in literature

[6, 9, 8] that directly process the data points in matrix format. These approaches are

not only computationally more efficient but also enhance the performances of their

one dimensional counterparts [6, 9, 8]. The two dimensional variants also overcome

the problem of singularity implicitly, thus pre-processing of the data using PCA is

no longer required. Brief discussion about some of the popular two dimensional

dimensionality reduction approaches is carried out.

99
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5.1 Overview of Two Dimensional (2D) Dimen-

sionality Reduction Approaches

5.1.1 Two Dimensional PCA (2D-PCA) [6]

Conventional Principle Component Analysis (PCA) requires conversion of image data

to the vector format leading to high dimensional image vector space which makes the

covariance matrix computation difficult [6]. Alternate approach using SVD has been

suggested that obtains the eigenvectors without actually generating the covariance

matrix. It is reported in Yang et al. [6] that obtaining the basis vectors in this

manner does not guarantee accuracy and may differ from the ones obtained from the

covariance matrix. A two dimensional extension of PCA (2D-PCA) directly processes

the images in 2D matrix format. The covariance matrix is thus formed from the

original image matrices which is much smaller in size than the one formed using

conventional PCA. Smaller covariance matrix results in faster computation of the

basis matrix. The procedure for obtaining 2D-PCA basis is discussed below.

Let us consider we have N data points X1, X2, · · · , XN , that are images of m× n
dimensions. As per the principle of PCA, a set of basis V is to be obtained such that

the scatter of the resulting projected images gets maximized. The eigen vectors of

the image covariance matrix satisfy this criteria. Image covariance matrix C can be

obtained as follows:

C =
1

N

N∑
i=1

(
Xi − X̄

)T (
Xi − X̄

)
(5.1)

here, Xi is the ith training sample and X̄ denotes average of all the training samples.

Eigenvectors of C form the basis matrix V of 2D-PCA. Mathematical justification

for the same can be traced from [6].

5.1.2 Two Dimensional LDA (2D-LDA) [7]

Linear Discriminant Analysis (LDA) has been widely used for various applications

dealing with the high dimensional data. As discussed earlier, to take care of the small

sample size problem, dimensionality reduction using PCA has to be performed before

LDA. This results in higher time and space complexities. Two dimensional LDA

(2D-LDA) [7] directly processes images in matrix format with the aim of maximizing

between class scatter SB and minimizing within class scatter SW. Projection of

ith image Xi on the learned 2D-LDA basis V, denoted by Yi, can be obtained as
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Yi = VXi. As this is a supervised approach, class labels of all the data points are

known. Number of training samples is denoted by N , X̄ denotes mean of all the

training samples, number of classes is denoted by L, number of samples ith class Li
is NLi and mean of each class is denoted by X̄i. The 2D-LDA basis are obtained by

solving the following generalized eigenvalue problem:

SBV = λSWV (5.2)

here,

SB =
L∑
i=1

NLi

[(
X̄i −X

)
V
] [(

X̄i −X
)

V
]T

SW =
L∑
i=1

∑
Xk∈Li

[(
Xk − X̄i

)
V
] [(

Xk − X̄i

)
V
]T

The eigenvectors corresponding to the highest eigenvalues form the optimum basis.

5.1.3 Two Dimensional NPP (2D-NPP) [8]

Like PCA and LDA, a two dimensional extension of Neighborhood Preserving Pro-

jection (NPP) is also proposed on the lines of LLE [21] that each data points and its

k nearest neighbors lie on or close to a locally linear patch on a manifold [8]. Thus,

NPP tries to reconstruct each data point in such a way that the reconstruction errors

are minimized. Yi = VTXi is the projection of ith image Xi on the learned 2D-NPP

basis. The affinity matrix W, each component wij of which represents the optimal

reconstruction weight between each data point Xi and its neighbor Xj, is computed

in the same manner as that of NPP as discussed in Chapter 1. The basis vectors of

2D-NPP are obtained by solving the following generalized eigenvalue solution:

X
[(

I−WT
)

(I−W)⊗ In
]
XTV = λXXTV (5.3)

here, ⊗ is the Kronecker product operator. As we are solving the problem of error

minimization, the eigenvectors corresponding to the lowest non-zero eigenvalues are

strongest.

5.1.4 Two Dimensional LPP (2D-LPP) [9]

Two Dimensional Locality Preserving Projection (2D-LPP) [9] works on the idea of

preserving local information of the data. As in case of LPP, the data points close to

each other in the original domain are intended to be projected close to each other
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in the projection domain thus keeping the proximity of the data intact. To process

the images as it is in matrix format, arrangement of the data points i.e. images

in the data matrix X is changed. All the training images are arranged in column

X =
[
X1

T ,X2
T , · · · ,XN

T
]
. Weights in the similarity matrix S are assigned using

the Heat-Kernel function and the Laplacian matrix is also obtained in the same

manner as that of LPP (refer Chapter 1 for details). The basis matrix V is obtained

by solving the following generalized eigenvalue problem:

XT (L⊗ Im) XV = λXT (M⊗ Im) XV (5.4)

It is to be noted that the basis matrix thus obtained in much smaller in size

resulting in faster computation. Due to 2D data processing, the spatial neighborhood

information of the image remains intact resulting in enhanced performance over LPP.

As discussed for 2D-LDA and 2D-NPP, 2D-LPP also overcomes the problem of under-

sampled data.

It has been reported that 2D-PCA, 2D-LDA, 2D-NPP and 2D-LPP all outperform

their one dimensional counterparts. Apart from the approaches discussed here, some

other two dimensional extensions of the dimensionality reduction techniques have

also been proposed in literature [106, 50, 51, 107]. In this chapter, we formulate Two

Dimensional Orthogonal Locality Preserving Projection (2D-OLPP). The approach

directly processes images in two dimensional (2D) format i.e. matrix format, hence the

overhead of transforming them in vectors gets reduced and the spatial neighborhood

information remains intact. Due to 2D data processing, the basis matrix turns out to

be much more compact than the one obtained by OLPP, reducing the time and space

complexities of the algorithm considerably. Orthogonal nature makes the approach

easier to be used in many applications that require orthogonal basis.

5.2 Two Dimensional Orthogonal Locality Preserv-

ing Projection

As discussed earlier, it is advantageous to process two dimensional data directly. Two

dimensional extensions of PCA, LPP and NPP proposed in [6, 9, 8] respectively, di-

rectly process the data matrix and have shown improvement in the performance over

their one dimensional (1D) counterparts. 2D-LPP/MSD [107], an extension of LPP

motivated by the idea of maximum scatter difference, maximizes the difference of

between-class scatter and within-class scatter. The approach is supervised in nature

and the basis vectors obtained are also non-orthogonal, hence it is not suitable for
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image denoising. In case of 2D-LPP and 2D-NPP also, the basis found are not or-

thogonal. Orthogonal basis in both the cases can be directly obtained by ignoring the

normalization constraint of the data [8]. However, the results show drastic decrease

in the performance of these algorithms, which demonstrates a strong need for the

normalization constraint (VTXvMXvTV = 1), especially in case of two dimensional

data processing [8]. Hence, it is important to retain this constraint while obtaining

the orthogonal basis. With this aim in mind, two dimensional orthogonal locality

preserving projection (2D-OLPP) is formulated and derived mathematically.

Let us consider we haveN data pointsX1, X2, · · · , XN , that are images of m×n di-

mensions sampled from an mn-dimensional space. In case of OLPP, two-dimensional

data points are first converted to vector format to form a data matrix. The data ma-

trix X is formed by arranging the data points in columns i.e. Xv = [Xv
1 , X

v
2 , · · · , Xv

N ]

where Xv
i s represent vector forms of the corresponding 2-dimensional images Xi. The

data matrix thus turns out to be of mn×N dimensions. Also, by converting the 2-

dimensional images in vector form, the spatial neighborhood information is lost.

In this thesis, we are suggesting 2-dimensional OLPP which directly works on

2-dimensional images. The data matrix X of dimensions (mN × n) is formed by

arranging all the image matrices in row format X = [X1;X2; · · · ;XN ]. As per the

formulation of LPP, the aim is to preserve the local structure of the data. Hence, the

objective function remains same as that of LPP and OLPP:

min
∑
ij

(Yi −Yj)
2Sij (5.5)

Here, Yi is the projection of Xi in the projection space using the transformation

matrix V = [v1,v2, · · · ,vk] where vis are orthogonal basis vectors. Given V and Xi,

Yi is found as follows:

Yi = XiV (5.6)

Here, S is a symmetric weight matrix that represents the weights assigned to the

edges of the adjacency graph G. The two step procedure of constructing the weight

matrix is as follows:

Constructing the adjacency graph:

In the adjacency graph G of N nodes, all the images are represented by nodes i.e. ith
node corresponds to the image Xi. Two nodes Xi and Xj are joined by an edge if

they are neighbors. In general, the neighborhood is decided using k-nearest neighbor

approach or the ε neighborhood. In both the cases, it is not clear how to select the
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values of k or ε. Also, a little or no attention in paid in the overlapping regions of

the two or more classes. Many a times it happens that nearest neighbor of a data

point is a data point belonging to the other class. In such cases, though the points

belong to different classes, they could be connected because of their closeness. Hence,

in order to have exploit natural grouping of the data, a semi-supervised approach is

used to establish the neighborhood/adjacency. k-means clustering is performed on

the data. Now, two data points Xi and Xj are considered neighbors if they belong to

the same class according to the clustering performed earlier and are joined by an edge.

Selection of weights:

Here, the weight matrix S, Laplacian matrix L and M are found in the same manner

as that in ELPP [48]. Weights in the matrix S are assigned in a monotonically de-

creasing z-shaped fashion. Based on the range of values given as input, weights are

assigned to the distances over the complete scale as per Equation 5.7. As the distance

between the data points increases, weight at that point decreases.

Sij =


1; if x ≤ a

1− 2
(
x−a
b−a

)2
; if a ≤ x ≤ a+b

2

2
(
x−b
b−a

)2
; if a+b

2
≤ x ≤ b

0; otherwise

 (5.7)

Here, a and b specify the range of values along which the function changes its

values and can be controlled. Up to a, the value of function is kept constant (1)

while after b, the value is set to 0. Between a and b two functions are used making

the final output function the Z-shaped one. The slope of the function is dependent

on the parameters a and b. Here, x represents the Euclidean distance between two

data points i.e. x = ‖Xi −Xj‖. As opposed to the conventional LPP where only few

neighbors are considered, here the data points that are at a moderate distance from

the point of interest are also taken into consideration and weighed accordingly.

After simplifying, the objective function turns out to be:

arg min
∑
ij

(Yi −Yj)
2Sij = arg min

∑
ij

(XiV −XiV)2Sij

= arg minVTXT (L⊗ Im) XV (5.8)

subject to the constraint,

VTXT (M⊗ Im) XV = 1 (5.9)
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where, L = M − S is the Laplacian matrix and Mii =
∑

j Sij. Im is the identity

matrix of size m×m and ⊗ is the Kronecker product operator. As, we need to obtain

orthogonal basis matrix, all the basis vectors should be orthogonal to each other.

Hence, one more constraint is to be added.

vT
i vk = 0,∀i = {1, 2, · · · , k − 1} (5.10)

For the first eigenvector v1, the problems reduces to minimize Equation 5.8 subject

to Equation 5.9 and hence v1 is the eigenvector corresponding to the smallest non-zero

eigenvalue of the following generalized eigenvalue solution:

XT (L⊗ Im) XV = λXT (M⊗ Im) XV (5.11)

For rest of the basis vectors vis, the problem now formulates to minimizing Equa-

tion 5.8 subject to constraints in Equation 5.9 and Equation 5.10. Using Lagrange’s

multiplier approach to solve the minimization problem,

C(K) = vT
k XT (L⊗ Im) Xvk − λ

[
vT
k XT (M⊗ Im) Xvk − 1

]
− µ1v

T
k v1 − µ2v

T
k v2 − · · · − µk−1vT

k vk−1

For optimizing the minimization problem, by equating partial derivatives of C(K)

with respect to λ, µi and vk to zero.

∂C(K)

∂λ
= 0⇒ VTXT (M⊗ Im) XV = 1

∂C(K)

∂µi
= 0⇒ vT

k vi = 0

∂C(K)

∂vk

= 0⇒ 2XT (L⊗ Im) Xvk − 2λXT (M⊗ Im) Xvk

− µ1v1 − µ2v2 − · · · − µk−1vk−1 = 0 (5.12)

Multiplying Equation 5.12 by vT
k , we get

2vT
k XT (L⊗ Im) Xvk − 2λvT

k XT (M⊗ Im) Xvk = 0

⇒ λ =
vT
k XT (L⊗ Im) Xvk

vT
k XT (M⊗ Im) Xvk

(5.13)
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From the above value of λ and Equation 5.11, it can be observed that λ is the

equation to be minimized. Since,
[
XT (M⊗ Im) X

]
is positive definite and non-

singular [26], [108], its inverse exists. Now, multiplying Equation 5.12 successively by

vT
i

[
XT (M⊗ Im) X

]−1
; ∀i = 1, 2, · · · , k − 1, we get a set of (k − 1) equations:

µ1v
T
i

[
XT (M⊗ Im) X

]−1
v1+

· · ·+ µk−1v
T
i

[
XT (M⊗ Im) X

]−1
vk−1

= 2vT
i

[
XT (M⊗ Im) X

]−1 [
XT (L⊗ Im) X

]
vk

(5.14)

Converting the set (k-1) of equations stated in Equation 5.14 in matrix format,

we get,

U(k−1)µ(k−1) = 2
[
V(k−1)]T [XT (M⊗ Im) X

]−1 [
XT (L⊗ Im) X

]
vk (5.15)

where,

V(k−1) =
[
v1,v2, . . . ,v(k−1)

]
µ(k−1) =

[
µ1, µ2, . . . , µ(k−1)

]
U(k−1) =

[
V(k−1)]T [XT (M⊗ Im) X

]−1
V(k−1)

From Equation 5.15, µ(k−1) can be obtained by multiplying the equation with[
U(k−1)]−1
µ(k−1) = 2

[
U(k−1)]−1 [V(k−1)]T [XT (M⊗ Im) X

]−1 [
XT (L⊗ Im) X

]
vk (5.16)

Multiplying Equation 5.12 by
[
XT (M⊗ Im) X

]−1
:

2
[
XT (M⊗ Im) X

]−1 [
XT (L⊗ Im) X

]
vk

− 2λvk −
[
XT (M⊗ Im) X

]−1
V(k−1)µ(k−1) = 0

Replacing µ(k−1) with the value found in Equation 5.16 we get,

2
[
XT (M⊗ Im) X

]−1 [
XT (L⊗ Im) X

]
vk

− 2λvk − 2
[
XT (M⊗ Im) X

]−1
V(k−1) [U(k−1)]−1 [V(k−1)]T[

XT (M⊗ Im) X
]−1 [

XT (L⊗ Im) X
]
vk = 0 (5.17)

A =
[
XT (M⊗ Im) X

]−1
V(k−1) [U(k−1)]−1 [V(k−1)]T
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⇒ {I−A}
[
XT (M⊗ Im) X

]−1 [
XT (L⊗ Im) X

]
vk = λvk

As stated before, λ is the criterion to be minimized and hence, vk turn out to be

eigen vectors of the following:

Z(k) = {I− A}
[
XT (M⊗ Im) X

]−1 [
XT (L⊗ Im) X

]
(5.18)

This is an iterative procedure, and in each iteration vk is the eigenvector associated

with the smallest non-zero eigenvalue of Z(k).

The main advantage of performing 2D-OLPP instead of the conventional 1D-

OLPP is computational efficiency. In case of OLPP (1D), the basis matrix turns out

to be of mn ×mn i.e. it takes mn iterations to build the complete basis matrix V,

whereas for 2D-OLPP, dimensions of V are n × n. Hence it takes only n iterations

to compute V which makes 2D-OLPP computationally more efficient. Also, due to

the compact data arrangement, the space complexity reduces. The time complexity

analysis is discussed in detail in the next section.

5.3 2D-OLPP for Image Denoising

As discussed in Section 4.2.1, recent state of the art techniques for image denoising

rely on two statistics of natural images: (1) There exists self-similarity between the

patches from different locations of the same image [41], (2) Image patches can be

sparsely represented by linear combinations of the basis vectors. The OLPP based

image denoising approach uses the principle of similarity preservation and thus main-

tains structural similarity while learning the basis, but it requires the patches to be

converted in vector format and works on a large window of the image at a time, in-

stead of the whole image. The proposed 2D-OLPP approach is also applied for image

denoising. In 2D-OLPP, patches from the entire input image are considered as it is

(in matrix format) and weighed according to their structural similarity during the ba-

sis learning process. Hence, a global dictionary is learnt from the noisy input image,

which remarkably reduces the computational complexity of the approach, and at the

same time implements the underlying idea of non-local self similarity in dictionary

learning process.

Suitability of 2D-OLPP for image denoising, parameter selection and noise re-

moval process in the transformed domain are discussed in this section followed by

experiments on some of the benchmark databases for image denoising in the next

Section.
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5.3.1 Incorporating non-local self similarity

The basis learning procedure of 2D-OLPP automatically takes care of non-local self

similarity i.e. the patches that share more structural similarity are assigned higher

weights using the z-shaped weighing function while constructing weight matrix S.

Similarity between patches is measured by Euclidean distance. The reference patch,

some of its structurally similar patches from the entire image, their euclidean distances

from the reference patch and respective weights are shown in Table 5.1. In Figure

5.1, the reference patch is shown using blue boundary in the original image. Three

of its similar patches i.e. patch #1780, patch #4059 and patch #692 are shown with

red boundary. Though patch #692 is local neighbor of the reference patch, patches

#1780 and #4059 are structurally more similar to it and hence are assigned higher

weights.

Table 5.1: Reference patch, some of its structurally similar patches from the entire

image, their euclidean distances from the reference patch and respective weights.
Patch # Reference 1780 3191 4059 1021 692 8291

Patch (150)

Patch

Image

Euclidean 0 109.749 128.768 139.309 188.155 164.213 173.465

Distance

Weight 0 0.931 0.905 0.889 0.798 0.846 0.828

Figure 5.1: Reference patch from ‘Lena’ image and some of its similar patches from

the whole image.



CHAPTER 5. 2D-OLPP 109

5.3.2 Sparsity

Although, the number of basis vectors in case of 2D-OLPP for an m × n image

reduces from mn to n, the coefficients in the 2D-OLPP domain are still sparse. To

demonstrate the sparseness, coefficient plots using each of the n basis vectors are

shown in Figure 5.2 for a 120× 120 portion of ‘Lena’ image. All 12× 12 overlapping

patches are used for learning the basis. Sparsity in the coefficients can still be observed

in case of 2D-OLPP with only 12 basis vectors as compared to 144 for OLPP or PCA

(all the approaches that work in vector format). As it is not possible to show all 144

OLPP basis vectors for 12× 12 patches, coefficient plots considering all 6× 6 patches

from the same image are presented in Figure 5.3.

Figure 5.2: Coefficient-wise plot for all the 12×12 overlapping patches of a 120×120

portion of ‘Lena’ image using 2D-OLPP

5.3.3 Time complexity analysis

The cost, as far as time complexity is concerned, appears to be much less in case of

2D-OLPP as compared to state of the art methods. Time complexities of some of the

state of the art approaches has been discussed in detail in Section 4.2.5. The time

complexity analysis of the proposed 2D-OLPP based denoising approach is derived

here. Total number of overlapping patches in the image is represented by N , average

number of patches similar to the reference patch is P , average time required to search

similar patches for each reference patch is Ts, time taken to generate the Laplacian

matrix L for N patches is NTL and size of each patch is l × l. In approaches that

require the patch (in matrix format) to be transformed into vector format, size of

each representative vector turns out to be l2 × 1.

In case of OLPP where patches are considered in vector format, O(NTL) time is

required to compute the Laplacian matrix and O(l6) for the transformation matrix
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Figure 5.3: Coefficient-wise plot for all the 6× 6 overlapping patches of a 128× 128

portion of ‘Lena’ image using OLPP
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i.e. basis matrix, as the global basis is computed only once for the whole image.

Thus, overall time complexity is O(NTL + l6). Because of 2D patch processing in the

proposed approach, the eigen decomposition problem reduces to l × l matrix instead

of l2 × l2 and hence requires O(l3) time which leads to O(NTL + l3) complexity.

Thus, the proposed approach is faster than other state of the art image denoising

approaches. Time complexities of the state of the art approaches discussed in Section

4.2.5 along with that of the current proposal are summarized in Table 5.2.

Table 5.2: Summary of time complexities of denoising approaches. N : Number of

patches, l × l: size of a patch, Ts: average time required to search similar patches

of the reference patch, P : average number of similar patches, NTL: time taken to

generate the Laplacian matrix L for N patches.
Technique Time Complexity

LPG-PCA O(N [Ts + Pl4 + l6])

BM3D O(N [Ts + Pl3 + P 2l2])

OLPP O(NTL + l6)

2D-OLPP O(NTL + l3)

5.3.4 Selection of patch size

An important parameter in the denoising procedure is patch size. All the reported

experiments use fixed patch size i.e. 12 × 12. Denoising experiments with different

patch sizes ranging from 6 × 6 to 22 × 22 were carried out on the Lansel database

of natural images. Average denoising results in terms of PSNR and SSIM values

for various patch sizes are reported in Table 5.3. Though the performances of some

of the patch sizes are not significantly different, patches with 12 × 12 size produce

best PSNR and SSIM results. This performance has remained consistent across other

databases, hence we have used patch-size 12×12 for the experiments reported in this

chapter.

Table 5.3: Average denoising results for all the images from Lansel Database (σ = 20)

using the proposed approach with various patch sizes
Patch size 6 8 10 12 15 20 22

PSNR 31.19 31.68 31.80 31.93 31.77 31.68 31.58

SSIM 0.822 0.859 0.867 0.873 0.872 0.871 0.868

5.3.5 Noise Removal

Experiments carried out so far suggest that the proposed 2D-OLPP can be effectively

applied for image denoising tasks. Noisy image formation model in spatial domain is
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represented as Iη = I+η and in transformed domain, using basis matrix V, the model

turns out to be IηV = IV + ηV . Here, η ∈ N (0, σ) i.e. i.i.d. Gaussian noise with zero

mean and σ standard deviation. A data matrix X consisting of all the patches Xi

from the noisy input image Iη, is constructed as discussed in Section 5.2. The basis

matrix V is learnt following the iterative procedure and patch Xi in spatial domain is

transformed to Xiv in the 2D-OLPP domain. Coefficients of patches in transformed

domain are altered to eliminate the noise.

Given that V is an orthonormal basis, some of the standard forms of eliminating

noise i.e. shrinkage rules can be directly used. Some of the most popular shrinkage

rules are hard thresholding, soft thresholding [33], [35] and Wiener filter update rule

(1D) [35, 34, 87] have already been discussed in Chapter 4. The rule to update the co-

efficients in the transformed domain using Wiener filter is given as X̃ivk =
σ2
vk

σ2+σ2
vk

Xivk

where Xivk represents kth coefficient of the Xiv. Here, σ is the standard deviation of

noise. For a particular coefficient position k, σ2
vk

is computed by considering the kth

coefficients from all the similar patches of the reference patch.

The Wiener filter update rule is modified for two dimensional (2D) patches. In-

stead of using only one coefficient across patches for estimating variance at a particular

coefficient position, coefficients falling in 3×3 window around the coefficient of interest

are used. Median of the variance of the particular window is used to compute the up-

date rule i.e. σ2
vknew

= median
[
σ2
vk
∈ Nk

]
where Nk defines the neighboring window

of the kth coefficient position. Note that, similar concept of median is the simplest

form of filter for data denoising. Experiments have been performed to compare the

proposed modified Wiener filter (2D-Wie) update rule with the other shrinkage rules

such as hard thresholding (HardT) and conventional Wiener filter update (1D-Wie)

in the 2D-OLPP denoising framework. Average PSNR and SSIM results for Lansel

database reported in Table 5.4 show improvement over the other shrinkage rules.

Table 5.4: Average denoising results for Lansel database for different noise removal

(filtering) techniques
Filter σ = 20 σ = 30 σ = 40

Type PSNR SSIM PSNR SSIM PSNR SSIM

HardT 29.47 0.801 28.02 0.737 26.66 0.673

1D-Wie 31.67 0.855 29.89 0.795 28.63 0.732

2D-Wie 31.69 0.872 30.65 0.821 29.43 0.762

Denoising experiments on a large set of natural and texture databases on both

gray-scale and color images are included in the next section.
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5.4 Experiments

Algorithmic comparison of the proposed 2D-OLPP denoising with general framework

of non-local self similarity based transformed domain image denoising approaches is

shown in Figure 5.4. Basis vectors obtained using PCA are shown in the general

framework in Figure 5.4(a). As it is 1D processing, patches are converted to vector

format because of which size of the basis turns out to be l2 × l2 where l × l is the

patch size. First step involves grouping together similar patches and learning the local

dictionary. Generally grouping is carried out based on the Euclidean distance between

patches and defining a threshold either based on distance or number of patches. For

LPG-PCA, this process is repeated for all the overlapping patches whereas for CSR,

new set of PCA basis are generated for each cluster of patches. BM3D uses fixed

2D-DCT and 1D-Haar basis on the grouped patches. As it uses 2D transform, patch

to vector conversion is not required. Coefficients of the patches in the respective

transform domain are modified by applying one of the shrinkage rules discussed in

5.3.5 to eliminate noise. Denoised patch is transformed back to the spatial domain

and is placed back at its original position after aggregation.

OLPP based denoising approach, being a global one, learns the basis only once

for a large portion of image. Due to its one dimensional processing, the patches

are required to be converted into vector format making the size of the dictionary

l2 × l2. The proposed approach directly uses image patches in matrix format for

dictionary learning. For patches of size l × l, basis i.e. 2D-OLPP dictionary turns

out to be of size l × l only as shown in Figure 5.4(b). Also, the basis learning

process itself takes care of similarity between patches as per the objective of 2D-

OLPP, i.e. patches that are similar in spatial domain should remain close and have

similar coefficients in the transformed domain as well. Hence, there is no need to

explicitly group similar patches and a global dictionary is sufficient. Coefficients of

patches in the 2D-OLPP domain are altered using modified Wiener filter update rule

for 2D patch processing and inverse transform is performed to map denoised patches

back to the spatial domain. Final restored image is obtained by averaging multiple

candidate values for a particular pixel position.

A global 2D-OLPP basis for the entire image is learned using all the overlapping

patches of size 12 × 12. For a given reference patch Yr, any patch Yi for which

‖Yr −Yi‖ ≤ 1.7σl is considered structurally similar and hence neighbor [96], where

l is the patch size. Weight, according to Equation 5.7, is assigned to patches that

are similar to the reference patch while constructing the 2D-OLPP basis. Parameter

‘b’ of Equation 5.7 is assigned value 1.7σl for constructing weight matrix W. This

automatically takes care of similar patches, hence explicit search for similar patches
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of each patch is not required.

The proposed approach is compared with some of the state of the art approaches.

Publicly available codes with the author specified parameter values are used for all

the competing approaches to ensure unbiased comparison. As discussed in Chapter 4,

all the approaches that are being compared assume that standard deviation of noise

(σ) i.e. the noise level, is known, which may not always be the case. Some already

available noise estimation approaches have been discussed in Section 4.2.6. All the

experiments are performed in MATLAB R2012b environment on Lenovo Z510 with

Intel core i7 windows 8 laptop. Restored image quality evaluation measures Peak

Signal to Noise Ratio (PSNR) in terms of decibel (db) scale and Structural Similarity

Index Measure (SSIM) [102] are used.

Apart from the existing approaches, to have fair comparison between the dictio-

nary learning schemes and to establish the claim that locality preserving property

plays an important role for the global basis to be suffice for the entire image, exper-

iments using PCA in the global dictionary learning framework have also been per-

formed. Instead of grouping together similar patches (as in some of the PCA based

state of the art approaches), only one global PCA basis is learnt from all possible

overlapping patches of the image to be denoised. Denoising procedure as explained

for the proposed approach is followed.

Average denoising results for various databases using the Global PCA based de-

noising approach along with the other state of the art approaches are reported. Image

denoising experiments on some of the benchmark gray-scale and color image databases

are reported along with results of noise to noise test and method noise comparison

for various approaches.

5.4.1 Gray-scale Image Denoising

Experiments on both natural and textured gray-scale images are performed. The pro-

posed approach is compared with some of the state of the art denoising approaches i.e.

principal component analysis with local pixel grouping (LPG-PCA) [87], block match-

ing 3D (BM3D) [35], expected patch log-likelihood (EPLL) [91], clustering based

sparse representation (CSR) [37] and OLPP based denoising discussed in Chapter 4.

For natural images, the Lansel database containing 13 widely used images for

denoising (airplane, barbara, boats, couple, elaine, fingerprint, goldhill, house, man,

mandrill, peppers, stream, zelda) is used. Noisy images with additive white Gaus-

sian noise i.e. N (0, σ) having three noise levels σ ∈ {20, 30, 40} are considered for

experimentation. A portion from ‘Barabara’ image containing face part of the image,

noisy image with σ = 30 and denoising results using various approaches are shown
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(a) Framework for non-local self similarity based transformed domain image denoising.

(b) Framework for the proposed 2D-OLPP based image denoising.

Figure 5.4: Algorithmic comparison of the denoising approaches. All the patches are

assumed to be of fixed size l × l. (a) First step is to group together similar patches for a

given reference patch. In case of 1D processing, the patches are converted to vector format

before learning the dictionary which increases the size of dictionary i.e. number of basis

vectors to be learned. In case of 1D data processing, l × l 2D patch is required to be

converted to l2× 1 sized vector, thus l2 basis vectors are to be learned. The noisy reference

patch is then projected on these basis vectors, coefficients in the transform are filtered to

eliminate noise and inverse transformation is performed to get back to the spatial domain.

This process is repeated for all overlapping patches as separate dictionary for all/cluster

of patches is learned. (b) In case of the proposed denoising approach, only one global

dictionary is sufficient for the entire image. Due to 2D data processing, the basis learnt are

much compact i.e. l as explained in Section 5.2. All the noisy patches are then projected on

the same global basis, coefficients are modified using the modified Wiener filter update rule

(refer Section 5.3.5), patches are transformed back to the spatial domain and aggregated.



CHAPTER 5. 2D-OLPP 116

in Figure 5.5. It can be observed that features of the face are nicely preserved us-

ing the proposed approach. Another denoising experiment on a portion of ‘Lena’

image with similar set of results is shown in Figure 5.6. LPG-PCA performs well

in homogeneous regions of the image but oversmooths finer textural details. BM3D

tends to over sharpen some of the edges (lips and shoulder portions of Lena image).

BM3D also smooths out finer textures as it uses a tensor product of DCT and Haar

wavelet basis, the latter of which is akin to performing diffusion filtering which can

erase subtle textures [104]. EPLL restores textural details but sometimes produces

spiky artifacts in the denoised image which can be clearly observed by zooming in.

CSR based denoising approach produces small blocky artifacts specially in smooth

(homogeneous) regions which are not present in outputs produced by the proposed

approach. It is observed that the proposed approach outperforms all other approaches

visually as well as quantitatively. It is to be noted that the proposed approach is able

to preserve the finer textural details even at higher noise levels.

2D-OLPP is a two-dimensional extension of OLPP. It is not only computationally

more efficient as compared to OLPP (as discussed in Section 5.3.3) but also processing

two dimensional patches directly improves the denoising performance. In the process

of matrix to vector conversion, neighborhood information of a pixel is not retained.

This may not play any role in maintaining the similarity criterion, but while learn-

ing the basis, neighbors of a pixel turn out to be informative. It seems that finer

textural details are restored well by the OLPP based approach but it undersmooths

the homogeneous regions, hence performance of OLPP degrades for natural images.

Artifacts are visible specially on the skin portions of both the ‘Barbara’ and ‘Lena’

images (denoised) using OLPP based method. 2D-OLPP overcomes these limitations

and produces superior results both quantitatively and visually.

The PSNR and SSIM values for some of the images are reported in Figure 5.7

for 3 noise levels σ ∈ {20, 30, 40} using various denoising approaches. The results

are shown in graphical format for better visual comprehension. For each noise level,

the resultant value is shown using a different symbol. Note that the results are not

continuous, results of all the methods are joined by a line for each noise level for ease

of comparison.

In order to show fine structure preservation property, experiments are performed

on the UIUC Texture database (http://www-cvr.ai.uiuc.edu/ponce_grp/data/

index.html#texture) containing 100 images of 17 different textures such as bark,

brick, wood, carpet, wall etc. Average PSNR and SSIM values for some of the textures

(by averaging all the images having same texture) are reported in Figure 5.9 and 5.10

for 3 different noise levels σ ∈ {20, 30, 40}. It can be observed that for both the gray-

http://www-cvr.ai.uiuc.edu/ponce_grp/data/index.html#texture
http://www-cvr.ai.uiuc.edu/ponce_grp/data/index.html#texture
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Figure 5.5: Denoising experiment on a part of natural image (‘Barbara’). Left to

right, top to bottom: Clean Image, Noisy image (σ = 30), LPG-PCA(28.39, 0.843),

BM3D(28.93, 0.857), EPLL(27.44, 0.816), CSR(28.78, 0.850), OLPP(27.45, 0.821),

2D-OLPP(30.32, 0.875).
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Figure 5.6: Denoising experiment on a portion of ‘Lena’ image. Left to right,

top to bottom: Clean image, noisy image (σ = 30), LPG-PCA(31.73, 0.847),

BM3D(32.38, 0.851), EPLL(31.78, 0.831), CSR(32.36, 0.850), OLPP(31.42, 0.820),

2D-OLPP(33.49, 0.842).
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(a) Legends

Figure 5.7: Denoising results for some images from Lansel database of gray-scale

natural images. Horizontal axis represent various methods of denoising and vertical

axis represents PSNR (in db) and SSIM values. Results are shown for three noise

levels as indicated in Figure 5.7(a)
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(a) Legends

Figure 5.8: Denoising results for some images from Lansel database of gray-scale

natural images. Horizontal axis represent various methods of denoising and vertical

axis represents PSNR (in db) and SSIM. Results are shown for three noise levels as

indicated in Figure 5.8(a)
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Table 5.5: Average denoising results for all the images from gray-scale databases: the

Lansel Database and the UIUC Texture database (σ ∈ {20, 30, 40})
Database Denoising Approach σ = 20 σ = 30 σ = 40

PSNR SSIM PSNR SSIM PSNR SSIM

Global PCA 30.31 0.829 28.32 0.767 26.92 0.710

LPG-PCA 30.42 0.834 28.48 0.78 27.08 0.73

BM3D 30.78 0.84 29.03 0.796 27.66 0.754

Lansel EPLL 30.46 0.839 28.60 0.788 27.48 0.747

CSR 30.69 0.841 28.90 0.793 27.76 0.755

OLPP 30.45 0.838 28.52 0.787 27.20 0.743

2D-OLPP 31.68 0.872 30.65 0.821 29.43 0.762

Global PCA 28.44 0.829 26.59 0.756 25.27 0.693

LPG-PCA 28.25 0.807 26.24 0.722 24.96 0.654

BM3D 28.58 0.819 26.74 0.747 25.49 0.686

UIUC Texture EPLL 28.46 0.824 26.58 0.746 25.37 0.669

CSR 28.54 0.817 26.75 0.748 25.57 0.683

OLPP 28.67 0.829 26.79 0.757 25.56 0.696

2D-OLPP 29.20 0.843 27.91 0.789 26.92 0.739

scale image databases, the proposed approach outperforms all the approaches both

in terms of PSNR and SSIM values. Average results for all 100 images from UIUC

texture database are reported in Table 5.5. For both natural and texture databases, it

can be observed that both the similarity preserving transformed domain approaches,

i.e. OLPP and 2D-OLPP outperform the denoising results obtained using global PCA

in the same framework, which shows the impact of locality preserving property while

learning the basis.

5.4.2 Color Image Denoising

The proposed denoising approach is also applied for color image denoising. As the

codes for EPLL and CSR approaches were not available for color images, comparison

of the proposed approach with global PCA, LPG-PCA, BM3D and OLPP is reported.

BM3D uses decorrelated color space YCbCr for the denoising purpose. Noise removal

is performed only in the Y-channel of the image while Cb and Cr channels are kept as

it is and after denoising the Y-channel, the image is transformed back to the original

RGB color space. Thus, the information in Cb and Cr channels is ignored completely.

On the other hand LPG-PCA denoises R, G and B channels independently, treating

each of them as a separate gray-scale image. In this case, the dependency or correla-

tion between the R, G, B channels is lost. In case of global PCA and OLPP, denoising

is performed by converting the 3D patch in vector format.

In order to preserve the dependencies between R, G, B channels as well as to
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(a) Legends

Figure 5.9: Denoising results for some images from UIUC Texture Database. Hori-

zontal axis represent various methods of denoising and vertical axis represents PSNR

(in db) and SSIM values. Results are shown for three noise levels as indicated in

Figure 5.9(a)
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(a) Legends

Figure 5.10: Denoising results for some images from UIUC Texture Database. Hori-

zontal axis represent various methods of denoising and vertical axis represents PSNR

(in db) and SSIM values. Results are shown for three noise levels as indicated in

Figure 5.10(a)
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process the 3D block/patch altogether, matricization, also known as unfolding of

the 3-dimensional block, formally called 3D tensor [109], is carried out. As we have

R, G and B- 3 channels, the 3-dimensional array is reordered into 3-mode matrices

using the unfolding process. Each mode is denoised using the proposed technique and

folded back to form the 3D block. Due to the 3-mode unfolding, resultant 3 folds are

averaged to produce the final denoised block. The process of unfolding is described

below.

A tensor is a multidimensional array and order/mode of a tensor is the number of

dimensions [109], [110]. For an n-order tensor X ∈ RI1×I2×···×IN , mode-n unfolding

is denoted by X(n). The tensor element (i1, i2, . . . , iN) gets mapped to the matrix

element (in, j). Value of j is computed as follows (refer [109] for details):

j = 1 +
N∑

k=1,k 6=n

(ik − 1)Jk; Jk =
k−1∏

m=1,m 6=n

Im (5.19)

For better understanding of the unfolding procedure, an example showing unfold-

ing X(1),X(2),X(3) of a third-order tensor X are shown in Figure 5.12.

Figure 5.11: Mode-1, 2 and 3 unfolding of a third-order tensor

Figure 5.12: An example showing Mode-1, 2 and 3 unfolding of a third-order tensor

Two color image data sets namely the Kodak image database (http://r0k.us/

graphics/kodak/) containing 24 natural images and first 28 images of the Bro-

datz color texture database (http://multibandtexture.recherche.usherbrooke.

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
http://multibandtexture.recherche.usherbrooke.ca/colored _brodatz_more.html
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ca/colored_brodatz_more.html) are used for experimentation. 12 × 12 × 3 image

patches are used for denoising process. To establish the unfolding based approach

for color image denoising, experiments have been conducted using both YCbCr and

separate RGB channels based denoising in the 2D-OLPP based framework. Average

results using YCbCR, separate RGB and proposed unfolding for some of the images

from Kodak database with noise level (σ = 20) in terms of (PSNR, SSIM) are (29.59,

0.420), (29.39, 0.753) and (34.84, 0.828) respectively. It can be observed that, in the

proposed 2D-OLPP denoising framework, unfolding based processing of color images

is surpassing the other schemes, and hence all the experiments have been performed

using the unfolding based procedure.

Denoising experiment on a color image from the Kodak database is shown in

Figure 5.13. The resultant PSNR and SSIM values clearly indicate superiority of the

proposed approach over LPG-PCA, BM3D and OLPP. Smoothness achieved in the

denoised image using BM3D in homogeneous regions is better but it also smooths

edges in those regions. Some undesired textures get generated while restoring the

image in case of both LPG-PCA and BM3D. As mentioned earlier, restored image

using OLPP is under-smoothed and contains some blob-like artifacts.

PSNR and SSIM values for some of the images from the Kodak database and

Brodatz color texture database are reported in graphical format in Figure 5.14 and

Figure 5.15 for 3 different noise levels σ ∈ {30, 40, 50}, along with the average results

for all the images in Table 5.6. Proposed denoising scheme beats the other approaches

with a margin of almost 1db (PSNR) for all the three noise levels in case of the Kodak

database.
Table 5.6: Average denoising results for color image databases: the Kodak database

and the Brodatz texture database (σ ∈ {30, 40, 50})
Database Denoising Approach σ = 30 σ = 40 σ = 50

PSNR SSIM PSNR SSIM PSNR SSIM

Global PCA 28.56 0.757 26.89 0.700 25.62 0.649

LPG-PCA 28.32 0.72 26.63 0.628 25.36 0.556

Kodak BM3D 30.20 0.839 28.51 0.783 27.90 0.761

OLPP 29.51 0.825 28.16 0.776 27.10 0.732

2D-OLPP 31.34 0.842 29.84 0.806 28.85 0.790

Global PCA 24.37 0.766 22.82 0.720 21.80 0.690

LPG-PCA 26.62 0.816 24.92 0.750 23.52 0.680

Brodatz color texture BM3D 27.28 0.866 25.67 0.817 25.18 0.795

OLPP 27.82 0.876 26.53 0.841 25.40 0.803

2D-OLPP 27.55 0.868 26.37 0.834 25.61 0.808

http://multibandtexture.recherche.usherbrooke.ca/colored _brodatz_more.html
http://multibandtexture.recherche.usherbrooke.ca/colored _brodatz_more.html
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Figure 5.13: Denoising experiment on a color image from the Kodak database. Left to

right, top to bottom: Clean image, noisy image (σ = 50), LPG-PCA (26.96, 0.487),

BM3D (29.91, 0.749), OLPP (28.80, 0.699), 2D-OLPP (31.67, 0.765).
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(a) Legends

Figure 5.14: Denoising results for images from Kodak database of color natural im-

ages. Horizontal axis represent various methods of denoising and vertical axis rep-

resents PSNR (in db) and SSIM values. Results are shown for three noise levels as

indicated in Figure 5.14(a).
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(a) Legends

Figure 5.15: Denoising results for some images from Bordatz Color Texture database.

Horizontal axis represent various methods of denoising and vertical axis represents

PSNR (in db) and SSIM values. Results are shown for three noise levels as indicated

in 5.15(a)
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5.4.3 The noise test

As suggested in [111], one of the way to characterize artifact free approaches is to

check how the approach behaves on white noise image. Given a white noise image as

input of the denoising approach, it should get transformed into white noise as only

white noise is free from structure [112]. This is called the noise-to-noise criterion.

Hence, if the output still remains white noise with same or lower variance, it will not

have any artifacts in the denoised image. To test the noise-to-noise criterion, on the

proposed 2D-OLPP based approach, a white noise image (N (o, σ), σ = 40) was given

as input. The resultant image along with the input image is shown in Figure 5.16.

The proposed approach transforms white noise into white noise and hence satisfies

the noise-to-noise criterion.

Figure 5.16: Noise-to-noise criterion: white noise image (N(0, σ), σ = 40) (left),

output of the proposed 2D-OLPP approach (right)

Method noise, also known as the residual image, is defined as the difference be-

tween a noisy image and its denoised version [41], [111]. It is one of the most powerful

visual evaluation measures for denoising approaches. Ideally it should look like pure

noise (white noise). Many denoising approaches remove image information (mainly

the edges and fine textures) while eliminating noise. Method noise shows what part

of noisy image has been removed by denoising process. Hence, the more method noise

resembles white noise, lesser information content has been removed while denoising

and the better is the denoising approach. Method noise for ‘Lena’ image using differ-

ent denoising approaches is shown in Figure 5.17. All the prominent edges/features

are clearly visible in method noise produced by the LPG-PCA approach. BM3D

and EPLL both have tendency to smooth out sharp edges, which is evident from the

residual images as most prominent edges of the respective images are present. Still,

method noise is reduced considerably in both the approaches. In comparison with

LPG-PCA, method noise is lesser in case of CSR, but structure of the original image

is present in the residual image. Residual image produced from the denoised image

using OLPP is close to noise, but the structural details can be observed by zooming

in. We request the readers to zoom in the pdf to have better view. For 2D-OLPP,

method noise for ‘Lena’ image completely resembles white noise and no structural
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details are present.

Figure 5.17: Method noise comparison on a natural image (‘Lena’). Left to right, top

to bottom: clean image, LPG-PCA, BM3D, EPLL, CSR, OLPP, 2D-OLPP.

5.5 Conclusions

Formulation of Two Dimensional Orthogonal Locality Preserving Projection (2D-

OLPP) along with its application to image denoising is presented in this chapter. For

denoising, 2D-OLPP processes two-dimensional image patches directly that preserves

the spatial information. Computational complexity of 2D-OLPP is derived and it

has been shown that it is significantly lesser than the other denoising algorithms. In

contrast to the state of the art algorithms for denoising where basis are computed for
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each image patch, a global basis is sufficient for the entire image in 2D-OLPP. The

approach is tested extensively on several benchmark data sets. The results obtained

are very encouraging and appeared to be comparable with the forerunner approaches

of image denoising. Finer textural details are well preserved even at higher noise

levels. The proposed approach can further be extended for image deblurring and

inpainting tasks.



Chapter 6

Two Dimensional Orthogonal

Locality Preserving Discriminant

Projection

6.1 Two Dimensional Orthogonal Locality Preserv-

ing Discriminant Projection

For better clustering of data, it is important to explore the information that dis-

criminates dissimilar data points. So, along with preserving similarity information,

separating the dissimilar data or or data belonging to different classes (in case of

supervised approach), is always advantageous. Locality Preserving Discriminant Pro-

jection (LPDP), discussed in Chapter 3 is evolved on this idea.

LPP and LPDP are vectorized in nature, hence two dimensional data points (rep-

resented in matrix format) can not be processed directly and have to be converted to

the vector format beforehand. This process not only adds computational complexity

and overhead of matrix to vector conversion, but the neighborhood information of

the pixels is also lost. As discussed in Section 4.2.1, neighboring pixels are highly

correlated, disruption of which may cause information loss. One can take care of

the neighbors while rearranging the matrices in vectors, which will again increase the

computational complexity. Hence, it is always advantageous to process the matrices

directly. Also, as both LPP and LPDP solve generalized eigenvalue problem, the

basis obtained are non-orthogonal in nature. In many applications in image process-

ing, attaining the data back in the original format is a requirement. In such cases

orthogonal basis are beneficial as for orthogonal matrices VT = V−1 due to which

the inverse transformation becomes much simpler. Orthogonal basis for LPP and

132
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LPDP can be obtained directly if the normalization constraint is ignored as discussed

in Section 4.1.1 and [8]. It has been observed that the arbitrary scaling in the data

needs to be normalized, ignoring which may adversely affect the performance [8].

Two Dimensional Orthogonal Locality Preserving Projection (2D-OLPDP) that

processes the data points in matrix format and learns orthogonal basis is proposed in

this chapter. The basis are tuned in such a way that structurally similar data points

get mapped close to each other, while the ones that are not similar get mapped far

apart from each other in the projection space. Thus, better clustering of the data

points is obtained.

6.1.1 Mathematical Formulation of 2D-OLPDP

Two Dimensional Orthogonal Locality Preserving Projection (2D-OLPDP) is derived

here which directly processes the data in matrix form and obtains orthogonal basis.

The objective of proposed approach is same as LPDP i.e. obtain maximum separabil-

ity between dissimilar data keeping the local structure intact. Hence, the mapping of

data points directly depends on the structural similarity between them. The objective

function of 2D-OLPDP ensures that, data points, when projected in the 2D-OLPDP

subspace, get clustered in such a way that structurally similar data points are mapped

close by and dissimilar data points are mapped apart from each other. The objective

function for 2D-OLPDP, modified for the matrix operation is as follows:

min
∑
ij

(Yi −Yj)
2Sij & max

∑
ij

(Yi −Yj)
2Dij (6.1)

here, Yi = XiV represents projection of the Xi
th data point in matrix format in the

2D-OLPDP domain using basis V. The similarity and dissimilarity matrices S, D

are computed the same way as explained in LPDP (refer Chapter 3). N training

data points Xis are arranged by stacking in row form as X = [X1; X2; · · · ; XN],

thus forming the data matrix of size mN×n. The objective function in the simplified

matrix format after combining the both the minimization and maximization problems

can be represented as:

argminVTXT {(Ls − LD)⊗ Im}XV (6.2)

here, LS = MS − S, LD = MD −D and MS =
∑

i Sij, MD =
∑

ij Dij are diagonal

matrices. Details can be traced back from Chapter 3.

To take care of the arbitrary scaling, normalization constraint on the projected

data is imposed:
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YTY = I⇒ VTXTXV = I (6.3)

In addition to the normalization constraint, to obtain the basis vectors that are

orthogonal, orthogonalization constraint on the learned basis vectors is also added.

vTv = I; vT
i vk = 0;∀i ∈ {1, 2, . . . , k − 1} (6.4)

As it is not possible to obtain all the basis vectors that minimize the objective

function satisfying both the constraints in one step, iterative procedure is followed.

In this approach, each iteration produces one basis vector that is orthonormal to all

the previously obtained vectors.

The very first basis vector v1 is obtained by solving the optimization problem

stated in Equation 6.2 with just the normalization constraint i.e. Equation 6.3. Hence,

v1 turns out to be the eigenvector corresponding to the smallest non-zero eigenvalue

of the generalized eigenvalue solution represented in Equation 6.5:

XT {(LS − LD)⊗ Im}XTV = λXTXV (6.5)

After obtaining the first basis vector, rest of them are computed by taking into

consideration both the normalization and orthogonalization constraints. The problem

now formulates to minimizing Equation 6.2 subject to constraints in Equations 6.3

and 6.4. Using Lagrange’s multiplier approach to solve the minimization problem,

C(K) = vT
k XT {(LS − LD)⊗ Im}Xvk

− λ
[
vT
k XTXvk − 1

]
− µ1v

T
k v1 − µ2v

T
k v2 − · · · − µk−1vT

k vk−1

For optimizing the minimization problem, by equating partial derivatives of C(K)

with respect to λ, µi and vk to zero:

∂C(K)

∂λ
= 0⇒ VTXTXV = I

∂C(K)

∂µi
= 0⇒ vT

k vi = 0

∂C(K)

∂vk

= 0⇒ 2XT {(LS − LD)⊗ Im}Xvk

− 2λXTXvk

− µ1v1 − µ2v2 − · · · − µk−1vk−1 = 0 (6.6)
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Multiplying Equation 6.6 by vT
k , we can obtain λ:

⇒ λ =
vT
k XT {(LS − LD)⊗ Im}Xvk

vT
k XTXvk

(6.7)

From the above value of λ and Equation 6.5, it can be observed that λ is to be

minimized. Since,
[
XTX

]
is positive definite and non-singular [26], its inverse exists.

Now, multiplying Equation 6.6 successively by vT
i

[
XTX

]−1
; ∀i = 1, 2, · · · , k−1, we

get a set of (k − 1) equations:

µ1v
T
i

[
XTX

]−1
v1+

· · ·+ µk−1v
T
i

[
XTX

]−1
vk−1

= 2vT
i

[
XTX

]−1 [
XT {(LS − LD)⊗ Im}X

]
vk

(6.8)

Converting the set of (k-1) equations stated in Equation 6.8 in matrix format, we

get,

U(k−1)µ(k−1) = 2
[
V(k−1)]T [XTX

]−1 [
XT {(LS − LD)⊗ Im}X

]
vk (6.9)

where,
V(k−1) =

[
v1,v2, . . . ,v(k−1)

]
µ(k−1) =

[
µ1, µ2, . . . , µ(k−1)

]
U(k−1) =

[
V(k−1)]T [XTX

]−1
V(k−1)

From Equation 6.9, µ(k−1) can be obtained by multiplying the equation with[
U(k−1)]−1:
µ(k−1) = 2

[
U(k−1)]−1 [V(k−1)]T [XTX

]−1 [
XT {(LS − LD)⊗ Im}X

]
vk (6.10)

Multiplying Equation 6.6 by
[
XTX

]−1
and replacing µ(k−1) with the value found

in Equation 6.10 we get,

2
[
XTX

]−1 [
XT {(LS − LD)⊗ Im}X

]
vk − 2λvk

− 2
[
XTX

]−1
V(k−1) [U(k−1)]−1 [V(k−1)]T[

XTX
]−1 [

XT {(LS − LD)⊗ Im}X
]
vk = 0 (6.11)

A =
[
XTX

]−1
V(k−1) [U(k−1)]−1 [V(k−1)]T

⇒ {I−A}
[
XTX

]−1 [
XT {(LS − LD)⊗ Im}X

]
vk = λvk

As stated before, λ is the criterion to be minimized and hence, vk turn out to be

eigen vectors of the following:

Z(k) = {I− A}
[
XTX

]−1 [
XT {(LSLD)⊗ Im}X

]
(6.12)
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This is an iterative procedure, each iteration of which computes vk, the eigenvector

associated with the smallest non-zero eigenvalue of Z(k). The basis vectors thus

found are orthogonal to each other, preserve similarity information in the transformed

domain and also try to discriminate dissimilar data points. The current proposal,

2D-OLPDP has been used for image denoising in the same manner as OLPP and

2D-OLPP.

The proposed formulation is expected to achieve better patch grouping, as it will

also incorporate the dissimilarity information while learning. Structurally different

group of patches get projected far apart from each other in the projection space

(transformed domain), hence prominent clusters of patches are attained. Experiments

to support the claim have been reported in the next section.

6.2 Image Denoising using 2D-OLPDP

The proposed domain transformation technique is applied for image denoising task.

Images go through various processing steps which may introduce undesired distortions

called noise. It is always desired to have as clean an image as possible and hence

denoising is performed to obtain a noise free image.

As discussed in Section 4.2.1, current state of the art image denoising approaches

are based on patch based transform domain techniques. Image denoising in the trans-

form domain works on the assumption that original signal can be represented as a

linear combination of only a few basis vectors i.e. not all the basis vectors are re-

quired to represent the signal and hence the signal can be sparsely represented. Also,

in the transform domain, the higher magnitude coefficients are the ones that carry

information about the true clean image. Hence, by surpassing the lower magnitude

coefficients, noise elimination can be performed and the original image can be ob-

tained from the noisy one.

Here, noise elimination process is carried out in the proposed 2D-OLPDP domain.

The proposed denoising algorithm is outlined as follows:

6.2.1 Algorithm : Image Denoising

Algorithm 1. Input: Noisy Image (In), patch size (l×l), noise standard deviation

(σ)

Output: Denoised Image (În)

a.Extract all the overlapping patches of size p× p from the noisy image In.
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b.Learn a global 2D-OLPDP basis V considering all the extracted patches.

c.Transform the patches using the obtained basis to the 2D-OLPDP domain i.e.

Yi = XiV

d.Eliminate noise by applying the modified Wiener filter update rule on the

coefficients of the patches in the 2D-OLPDP domain.

e.Inverse transform the denoised patches X̃i = ỸiV
T

f.Aggregate the patches in the spatial domain to regenerate the image.

end

As outlined in the algorithm, the input arguments are noisy image In, size of the

patches to be extracted from the noisy image l × l and level of noise σ in the input

image. Patch size selection plays very important role in the denoising process as very

small patch size may result in a very large pool of data points to learn the basis and the

basis matrix also turns out to be too small. The basis matrix in case of 2D-OLPDP

is of size l × l, which is the same as the patch size. Too large patch size may reduce

the effect of self similarity within the image as the size of the patch increases, number

of similar patches to the reference patch within the image decreases. We performed

experiments using various patch sizes and based on the best denoising results using

the patches of size 12 × 12, all the experiments reported here are performed using

patches of size 12× 12.

The other input variable is the noise level of the image to be denoised. As discussed

in previous chapters, we assume the standard deviation of the noise to be known

beforehand. In practical scenarios, this information may not always be available and

in such cases, noise estimation approaches discussed in in Section 4.2.6 can be used.

In the process of learning 2D-OLPDP basis, structurally similar patches are as-

signed higher weights in the similarity criteria in order to keep them closer in the

transform domain. Similarity of patches with other patches from the noisy image

is decided based on a threshold proposed in [96]. If the Euclidean distance of the

reference patch from any other patch is less than 1.7σp2, where the patch is of size

p × p, they are considered to be similar and weighed accordingly by the similarity

function. To achieve better discrimination between dissimilar patches and eventually

better clustering of patches in the transform domain, the patches that are not similar

are projected far apart. In order to do so, higher weights are assigned to such patches

in the dissimilarity matrix. For dissimilarity measure again, Euclidean distance be-

tween the patches is considered. The farthest patch is assigned highest weight in the

dissimilarity matrix.
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Noise elimination is performed by manipulating the coefficients of the patches in

the 2D-OLPDP domain. In order to attenuate the noise, standard forms for orthogo-

nal transforms can be used such as soft thresholding [33], hard thresholding [35] and

Wiener filter update rule (1D) [35, 34, 87]. In this work, noise in the transformed

domain is suppressed using the modified Wiener filter update rule proposed in Section

5.3.5. According to this rule, instead of obtaining the update coefficient weight based

only on one coefficient location, a small 3 × 3 window of nearby pixel locations is

considered, median of which is selected as the new update weight.

The patches, thus denoised are transformed back to the spatial domain. As all the

overlapping patches are considered while constructing the image back in the spatial

domain, aggregation is performed for all the pixel positions.

6.2.2 Automatic clustering of patches

In Section 6.1 and 6.2.1, it has been mentioned that the proposed two dimensional

basis learning procedure i.e. 2D-OLPDP naturally clusters the data points in the

transformed domain. Locality preserving property tries to keep structurally similar

patches close by in the transform domain whereas discrimination property maps the

dissimilar patches far apart, resulting in better clustering. A small experiment is

reported to justify the argument. Strongest three dimensional projection of some

of the patches extracted from portions of ‘Lena’ and ‘Barbara’ image is shown in

Figure 6.1. Each color and symbol denotes a different set of similar patches. It can

be observed that in both the cases, similar patches are projected close to each other.

Some of the sample patches are shown near the corresponding cluster. In the 2D-

OLPDP domain, distinct clusters of structurally similar patches show the property

of grouping, and hence, explicit grouping of the patches is no longer required.

6.2.3 Complexity Analysis

Besides analyzing the effectiveness of the proposed image denoising scheme quanti-

tatively in terms of image quality evaluation measures, it is also important to study

the computational efficiency of the same. As discussed in Section 6.1, similarity

and dissimilarity matrices S and D are to be built in order to learn the basis that

achieve better separation between clusters of structurally unlike patches. Time taken

to compute S and D for a set of M such patches is denoted by NTLs and NTLd respec-

tively. Processing the patches in the matrix format results in considerably smaller

basis matrix of size l × l thus reducing the operations to O(l3). The overall com-

putational complexity of the 2D-OLPDP based denoising approach turns out to be
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Figure 6.1: Strongest three dimensional projection of patches extracted from ’Lena’

and ’Barbara’ images. The patches automatically get clustered when projected on

2D-OLPDP basis.

O(NTLs +NTLd + l3). 2D-OLPP takes care of preserving structurally similar patches

but does not pay attention to the discriminant information while learning, hence its

computational complexity is O(NTLs + l3). It can be observed that incorporation of

discriminant information while learning adds some extra computations to the current

proposal as compared to 2D-OLPP, but at the same time, it provides better clustering

of patches in the transformed domain resulting in improved image denoising.

Detailed discussion about 2D-OLPP and OLPP can be found in Section 5.3.3

and Section 4.2.5 along with the complexity analysis of some other state of the art

approaches. Computational complexities are listed in Table 6.1 for reference. It is

to be noted that the proposed 2D-OLPDP based approach is more efficient than the

other state of the art image denoising methods. The symbols used to denote the

complexities are described as: N : Number of patches, l × l: size of a patch, Ts:

average time required to search similar patches of the reference patch, P : average

number of similar patches, NTLs : time taken to generate the similarity matrix S for

N patches, NTLd : time taken to generate the dissimilarity matrix D for N patches.

6.3 Experiments

Image denoising experiments on both gray scale and color image databases are per-

formed as reported in Chapters 4 and 5. Results are compared with several trans-

formed domain image denoising techniques namely, block matching 3D (BM3D) [35],

local pixel grouping based principle component analysis (LPGPCA) [87], clustering
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Table 6.1: Summary of computational complexities of state of the art denoising ap-

proaches. N : Number of patches, l × l: size of a patch, Ts: average time required to

search similar patches of the reference patch, P : average number of similar patches,

NTLs : time taken to generate the similarity matrix S for N patches, NTLd : time

taken to generate the dissimilarity matrix D for N patches.
Technique Time Complexity

Technique Time Complexity

LPG-PCA O(N [Ts + Pl4 + l6])

BM3D O(N [Ts + Pl3 + P 2l2])

OLPP O(NTL + l6)

2D-OLPP O(NTL + l3)

2D-OLPSP O(NTL + TD + l3)

based sparse representation (CSR) [37], expected patch log-likelihood (EPLL) [91],

OLPP based denoising discussed in Chapter 4 and image denoising using 2D-OLPP

proposed in 5. Codes provided by the authors are used to report the results of the

competing image denoising approaches. Quality of the denoised image is evaluated

using Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure

(SSIM) [102].

6.3.1 Gray scale Image Denoising

Same databases for image denoising, as used in previous chapters, the Lansel database

of gray scale natural iamges and the UIUC texture database [103] are used for per-

forming the experiments. Denoised images using recent state of the art image de-

noising approaches are reported in Figures 6.2, 6.3 and 6.4. A cropped portion from

the ‘Barbara’ image having both smooth as well as the textured regions is shown in

Figure 6.2. The proposed approach surpasses or is comparable to all other denois-

ing approaches. Face part of the ‘Elaine’ image is reported in Figure 6.3. Superior

restoration of the hair texture using the proposed approach can be observed. All

the competing approaches except 2D-OLPP tend to smooth out the hair. Though

denoised images using 2D-OLPP and 2D-OLPDP are visually very similar, both the

quality evaluation measures show improvement in the performance.

Figure 6.4 shows restoration of noisy ‘Airplane’ image (noise level σ = 40) along

with zoomed portion of a small portion from the image containing some digits marked

by a box in the original image. In the restored image using LPG-PCA, the digits are

not clearly visible and blurring around the boundaries of the digits can observed. The

smooth i.e. homogeneous portions of the zoomed part are restored very well by both
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BM3D and EPLL but the digits are mixed up and not readable. CSR produces best

result so far, as most of the digits in the denoised image are readable. The results

obtained using OLPP based approach are not that encouraging whereas processing

two dimensional patches directly turns out to be beneficial in case of 2D-OLPP as the

resultant denoised image is comparable to the one produced using CSR. The restored

digits are blurred yet visible. Output using the proposed 2D-OLPDP based denoising

scheme produces sharper edges and the blurring effects are less as compared to all

the approaches discussed so far. Still some blocky effects can be observed in the

homogeneous region which show scope of improvement in such cases. BM3D clearly

out performs the other compared methods as far as the homogeneous regions are

considered. However, the overall denoising performance of the proposed approach is

surpassing other schemes both visually as well as qualitatively.

PSNR and SSIM values for some of the images from Lansel database are reported

in Figure 6.5 and 6.6 for 3 noise levels σ ∈ {20, 30, 40} using various denoising ap-

proaches. The results are shown in graphical format for better visual comprehension.

For each noise level, the resultant value is shown using a different symbol. Note that

the results are not continuous, results of all the methods are joined by a line for each

noise level for ease of comparison.

Average denoising results for both the gray scale databases comparing state of

the art denoising approaches along with OLPP, 2D-OLPP and 2D-OLPDP based

denoising approaches proposed in this work are reported in Table 6.2. Improvement

in the performance of the current proposal over the other competitive approaches can

be noticed.

6.3.2 Color Image Denoising

Along with gray scale images, denoising experiments on color image databases have

also been performed. Color image denoising experiments are performed on Kodak

[113] and Brodatz texture database [114]. Color images are processed in the same

manner as discussed in 5. On 3D blocks comprised of R, G and B channels, the

matricization procedure is carried out to preserve the dependency between all three

channels, each unfolded block is denoised separately and the results are averaged to

obtain the final output image. Denoising results on a texture image from Brodatz

database are shown in Figure 6.9. Comparison of the proposed approach with LPG-

PCA, BM3D, OLPP and 2D-OLPP based denoising methods on some images from

both Kodak database and Brodatz color texture database are reported in Figure 6.10

and Figure 6.11 respectively. Average denoising results for Kodak database and a part

of Brodatz texture database in terms of PSNR (in db) and SSIM values is included
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Figure 6.2: Denoising experiment on a part of natural image (‘Barbara’). Left to

right, top to bottom: Clean image, noisy image (σ = 30), LPG-PCA(29.17, 0.879),

BM3D(29.56, 0.880), EPLL(27.07, 0.844), CSR(29.86, 0.889), OLPP(28.02, 0.841),

2D-OLPP(28.28, 0.820), 2D-OLPDP(30.00, 0.879).
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Figure 6.3: Denoising experiment on a part of natural image (‘Elaine’). Left to

right, top to bottom: Clean image, noisy image (σ = 30), LPG-PCA(28.81, 0.678),

BM3D(29.17, 0.688), EPLL(28.77, 0.678), CSR(29.79, 0.682), OLPP(28.86, 0.692),

2D-OLPP(31.22, 0.774), 2D-OLPDP(31.50, 0.784).
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Figure 6.4: Denoising experiment a natural image (‘Airplane’), a small part from

the image is also zoomed to show the restoration of finer texture. Left to right,

top to bottom: Clean image, noisy image (σ = 40), LPG-PCA(32.23, 0.894),

BM3D(32.55, 0.898), EPLL(32.45, 0.897), CSR(32.68, 0.899), OLPP(32.18, 0.882),

2D-OLPP(32.42, 0.88), 2D-OLPDP(33.46, 0.895).
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(a) Legends

Figure 6.5: Denoising results for some images from Lansel database of gray-scale

natural images. Horizontal axis represent various methods of denoising and vertical

axis represents PSNR (in db) and SSIM values. Results are shown for three noise

levels as indicated in Figure 6.5(a)
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(a) Legends

Figure 6.6: Denoising results for some images from Lansel database of gray-scale

natural images. Horizontal axis represent various methods of denoising and vertical

axis represents PSNR (in db) and SSIM values for all the images. Results are shown

for three noise levels as indicated in Figure 6.6(a)
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(a) Legends

Figure 6.7: Denoising results for some images from UIUC Texture Database. Hori-

zontal axis represent various methods of denoising and vertical axis represents PSNR

(in db) and SSIM values. Results are shown for three noise levels as indicated in

Figure 6.7(a)
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(a) Legends

Figure 6.8: Denoising results for some image from UIUC Texture Database. Horizon-

tal axis represent various methods of denoising and vertical axis represents PSNR (in

db) and SSIM values. Results are shown for three noise levels as indicated in Figure

6.8(a)
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Table 6.2: Average denoising results for all the images from gray-scale databases: the

Lansel Database and the UIUC Texture database (σ ∈ {20, 30, 40})
Database Denoising Approach σ = 20 σ = 30 σ = 40

PSNR SSIM PSNR SSIM PSNR SSIM

LPG-PCA 30.42 0.834 28.48 0.78 27.08 0.73

BM3D 30.78 0.84 29.03 0.796 27.66 0.754

Lansel EPLL 30.46 0.839 28.60 0.788 27.48 0.747

CSR 30.69 0.841 28.90 0.793 27.76 0.755

OLPP 30.45 0.838 28.52 0.787 27.20 0.743

2D-OLPP 31.68 0.872 30.65 0.821 29.43 0.762

2D-OLPDP 31.61 0.860 31.37 0.821 30.33 0.824

LPG-PCA 28.25 0.807 26.24 0.722 24.96 0.654

BM3D 28.58 0.819 26.74 0.747 25.49 0.686

UIUC Texture EPLL 28.46 0.824 26.58 0.746 25.37 0.669

CSR 28.54 0.817 26.75 0.748 25.57 0.683

OLPP 28.67 0.829 26.79 0.757 25.56 0.696

2D-OLPP 29.20 0.843 27.91 0.789 26.92 0.739

2D-OLPDP 29.39 0.845 27.88 0.786 26.96 0.743

in Table 6.3. It can be observed that for Brodatz texture database, denoising results

are comparable to the other approaches. For Kodak database, the PSNR values are

comparable but the SSIM values seem to drop. Decline in SSIM values might be

because of the roughness present in the denoised color images.

Table 6.3: Average denoising results for color image databases: the Kodak database

and the Brodatz texture database (σ ∈ {30, 40, 50})
Database Denoising Approach σ = 30 σ = 40 σ = 50

PSNR SSIM PSNR SSIM PSNR SSIM

LPG-PCA 28.32 0.72 26.63 0.628 25.36 0.556

Kodak BM3D 30.20 0.839 28.51 0.783 27.90 0.761

OLPP 29.51 0.825 28.16 0.776 27.10 0.732

2D-OLPP 31.34 0.842 29.84 0.806 28.85 0.790

2D-OLPDP 30.74 0.810 29.44 0.748 28.35 0.685

LPG-PCA 26.62 0.816 24.92 0.750 23.52 0.680

Brodatz color BM3D 27.28 0.866 25.67 0.817 25.18 0.795

texture OLPP 27.82 0.876 26.53 0.841 25.40 0.803

2D-OLPP 27.55 0.868 26.37 0.834 25.61 0.808

2D-OLPDP 27.78 0.852 26.65 0.812 25.74 0.795
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Figure 6.9: Denoising experiment on a color texture image. Left to right, top to

bottom: Clean image, noisy image (σ = 50), LPG-PCA(25.92, 0.627), BM3D(29.58,

0.815), OLPP(29.25, 0.796), 2D-OLPP(29.89, 0.776), 2D-OLPDP(30.13, 0.787).
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(a) Legends

Figure 6.10: Denoising results for some images from Kodak database of color natural

images. Horizontal axis represent various methods of denoising and vertical axis

represents PSNR (in db) and SSIM values. Results are shown for three noise levels

as indicated in Figure 6.10(a).
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(a) Legends

Figure 6.11: Denoising results for some images from Bordatz Color Texture database.

Horizontal axis represent various methods of denoising and vertical axis represents

PSNR (in db) and SSIM values. Results are shown for three noise levels as indicated

in 6.11(a)
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6.3.3 Method noise comparison

As discussed in Section 5.4.3, method noise or residual image is the most powerful

evaluation measure for image denoising approaches. It shows the difference between

a noisy image and its denoised version [41], [111] thus indicating the information from

the image that has been eliminated along with the noise. Hence, method noise should

resemble white noise. In addition to method noise for Lena image produced by all

the competing denoising schemes reported in Figure 5.17 in Section 5.4.3, method

noise using the current proposal 2D-OLPDP is also reported in Figure 6.12. It can be

observed that 2D-OLPP and 2D-OLPDP both do not eliminate structural information

while denoising and the residual image looks like white noise.

Method noise for a portion of image from ‘Goldhill’ from the Lansel database

using various image denoising approaches is also reported in Figure 6.13. As in case

of ‘Lena’, most of the prominent edges of the ‘Goldhill’ image have been removed in

the method noise produced using LPG-PCA. BM3D, EPLL and CSR perform better

in terms of preserving the edges of the original image. The residual images produced

from the denoised images using OLPP and 2D-OLPP have very little structure spe-

cially window portions from the input image visible. All other parts of the residual

image visible look similar to white noise. Method noise produced using 2D-OLPDP

resembles noise and no structural information can be observed.

6.3.4 Comparison with denoising bound

As discussed at various places during the course of this thesis, image denoising is an

age old problem and research has been carried out for decades to eliminate noise and

obtain noise free images. With the extent of research carried out in this domain, a

pertinent question arises that whether there is a theoretical limit to performance of

image denoising approaches [115]? A lower bound on the Mean Square Error (MSE)

of the denoised result according to the noise level of the image to be denoised has

been suggested in [115]. Given the noise free original image, the proposed approach

computes how well a noisy image can be denoised in terms of MSE. The image

is first clustered into geometrically heterogeneous patches and analysis of denoising

performance is carried out independently for each such cluster of similar patches. The

MSE bounds for each of these clusters are aggregated to obtain MSE lower bound

for the entire image. It has been shown that despite the phenomenal recent progress

in the quality of denoising algorithms, some room for improvement still remains for

a wide class of general images, and at certain signal-to-noise levels. Here, we have

compared MSE obtained using various state of the art denoising approaches with the
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Figure 6.12: Method noise comparison on a natural image (‘Lena’). Left to right,

top to botom: Clean image, LPG-PCA, BM3D, EPLL, CSR, OLPP, 2D-OLPP and

2D-OLPDP.



CHAPTER 6. 2D-OLPDP 155

Figure 6.13: Method noise comparison on a natural image (‘Goldhill’). Left to right,

top to bottom: Clean image, LPG-PCA, BM3D, EPLL, CSR, OLPP, 2D-OLPP and

2D-OLPDP. N : Number of patches, l×l: size of a patch, Ts: average time required to

search similar patches of the reference patch, P : average number of similar patches,

NTLs : time taken to generate the similarity matrix S for N patches, NTLd : time

taken to generate the dissimilarity matrix D for N patches.
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MSE lower bound on ‘Lena’ and ‘Barbara’ images. The MSE values using various

denoising approaches along with the bound calculated using the available online code

with author specified parameters are reported in Table 6.4. It can be observed that

the mean square error obtained using the 2D-OLPDP based denoising approach is

very close to the MSE bounds for all the noise levels and are considerably less than

that of other state of the art image denoising methods.

Table 6.4: The lower bounds for Mean Square Error (MSE) of the denoised image

on three noise levels (σ ∈ {20, 30, 40}) on ‘Lena’ and ‘Barbara’ image along with the

MSE values produced using different image denoising approaches.
Image Denoising Approach σ = 20 σ = 30 σ = 40

MSE Bound 14.89 24.60 34.25

LPG-PCA 35.70 55.26 79.40

BM3D 32.84 48.81 68.30

Lena EPLL 36.18 54.74 71.91

CSR 33.35 50.90 67.19

OLPP 37.78 59.67 85.78

2D-OLPP 24.74 35.61 50.83

2D-OLPDP 19.71 27.34 35.22

MSE Bound 37.20 63.68 89.93

LPG-PCA 46.92 77.94 114.43

BM3D 43.68 68.08 103.66

Barbara EPLL 69.30 113.91 160.60

CSR 42.87 69.17 94.45

OLPP 54.54 89.74 130.24

2D-OLPP 41.80 67.20 93.66

2D-OLPDP 42.00 66.50 92.12

6.4 Conclusion

The proposed domain transformation technique considers both similarity and dissimi-

larity between the patches extracted from the image while learning the basis. The aim

is to learn the basis such that in the projection space, structurally similar patches get

projected close by whereas dissimilar patches far apart from each other thus achiev-

ing better clustering of the patches. Due to automatic clustering of patches, only one

basis for the image to be denoised are adequate. Two dimensional data processing

also assures faster basis learning. Image denoising experiments are carried out on

some of the benchmark databases and compared with state of the art techniques as

well as OLPP and 2D-OLPP based methods which work on the similar principle.



CHAPTER 6. 2D-OLPDP 157

Projection of patches in the 2D-OLPDP domain shows distinct clusters of patches

from the image. Image denoising performance of the proposed approach is superior

to that of the state of the art approaches. The results are on par with the 2D-OLPP

based denoising, however, smaller structural details get restored very well using the

current proposal.



Chapter 7

Conclusions and Future Work

Advances in imaging technologies have resulted in high resolution image acquisition

requiring more pixels to represent the image. Handling such high dimensions of

images for various image processing, pattern recognition related applications is very

challenging, hence dimensionality reduction is applied before processing the images.

This thesis emphasizes on the dimensionality reduction techniques based on local

structure preservation, which ensures mapping of similar data points close by in the

lower dimensional subspace.

This work is an attempt to develop more robust and efficient dimensionality re-

duction techniques for image data. Discriminant information is combined with simi-

larity preservation property to achieve better separation between distinct clusters of

data points. Orthogonalization and matricization procedures are formulated to allow

faster reconstruction and reduced computational complexity. Applications such as

face recognition and image denoising are addressed using the proposed dimensional-

ity reduction variants.

The work accomplished in the thesis is summarized in this chapter followed by

some discussion on possibilities of extension in future.

7.1 Contributions

Image data typically consists of very high dimensions and processing such large data

is a challenge. Dimensionality reduction is the technique of representing the data

with much less dimensions without losing the information carried by it. Many a

times, local neighborhood structure of the data reveals the underlying manifold of

the data in a much better way that the global euclidean structure. In this work,

we have explored similarity preserving dimensionality reduction methods and applied

158
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them to various applications.

Preserving the similarity present in data in the reduced dimensions helps in cap-

turing the data non-linearity. Data classification and recognition related applications

also require discriminant property of the data to be retained. Dimensionality reduc-

tion approaches that take care of both, local information preservation and discrimi-

nant property of the data while learning the basis are suggested. Extended Locality

Preserving Projection with Modified Distance (ESLPP-MD), a supervised approach

utilizes the class labels of the data points to achieve better class discrimination by

shrinking or diverging the pairwise distances depending upon whether they belong

to same class or not. ESLPP-MD achieves class discrimination by manipulating the

distances, which clusters the data very well, but may suffer ambiguities for unknown

data points. A more robust technique is proposed in which the objective function

itself ensures maximum separation between classes by projecting similar data points

close by whereas dissimilar data points far apart in the learnt Locality Preserving

Discriminant Projection (LPDP) space.

Projection and recognition experiments performed on face data are encouraging

and show enhanced class discrimination ability with only a few strongest dimensions.

Improvement in face recognition performance on some challenging face databases has

been observed. Kernelization of these linear approaches aims at further exploring

non-linear structure of data, which is supported by improved recognition accuracies

over the non-kernelized counterparts.

Non-orthogonality of dimensionality reduction approaches restricts their use for

applications that require reconstruction of data back to the original space. Orthog-

onal ELPP imposes a prior belief that similar data points should map onto similar

transform coefficients, and explicitly learns an orthonormal basis to optimize for this

criterion. This orthogonal formulation for basis learning makes it suitable for image

denoising. Excellent performance of this technique, at par with or surpassing the

state of the art approaches, especially with regard to texture preservation is achieved.

This is so, even when we learn a single basis for large-sized windows from the image.

This leads to an edge of the present method over state of the art techniques where

bases are learnt for each patch. However, there is considerable scope for improving

the performance of this technique in the homogeneous regions of an image.

All higher dimensional data points used for learning are required to be converted

into vector format due to vectorized nature of LPP, OLPP and other approaches,

which not only increases the computational complexity, but also causes loss of spatial

neighborhood information. Two Dimensional Orthogonal Locality Preserving Pro-

jection (2D-OLPP) processes data in matrix format making it faster and efficient. A
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global basis is sufficient for entire image to be denoised. The approach appears to

be comparable with the forerunner approaches of image denoising. Finer structural

details as well as homogeneous regions of the denoised image are restored well, both

visually as well as quantitatively. Discriminant information is always advantageous for

data clustering and classification. Two Dimensional Orthogonal extension of LPDP

is formulated and applied for image denoising. Similar patch clustering within the

image has improved resulting in enhanced denoising performance.

The summery of contributions of the thesis is listed below:

• Local information preservation and class separation properties are combined in

the proposed dimensionality reduction approaches. Enhanced class separation

results in superior projection and face recognition results.

• Face images having vast expression, illumination and pose changes may not

necessarily lie on a linear manifold. Kernel functions are used to map the data

in feature space to explore the non-linear manifold of the data before pursuing

dimensionality reduction leading to improved recognition accuracies over the

non-kernelized counterparts.

• Orthogonalization of Extended LPP basis is suggested assuring faster and effi-

cient data reconstruction. Basis thus learnt are orthogonal in nature and project

structurally similar data points close to each other, thereby makes it suitable

for image denoising. Patches extracted from the noisy image are treated as data

points and a global OLPP basis is learnt for the entire image. Image denoising

performance of the proposed approach is on par with or surpasses the state of

the art methods, especially with regard to texture preservation.

• Two Dimensional OLPP processes data in matrix format directly, which not

only preserves spatial neighborhood information, but also improves the com-

putational efficiency considerably. The results obtained are very encouraging

and are comparable with the state of the art approaches of image denoising.

Finer structural details as well as homogeneous regions of the denoised image

are restored well, both visually as well as quantitatively.

• Two Dimensional Orthogonal LPDP (2D-OLPDP) takes into account the dis-

similarity between patches along with the similarity while learning the basis

directly. Discriminant information improves patch clustering within image re-

sulting in enhanced denoising performance.
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7.2 Overall conclusion

An attempt is made in this thesis to build dimensionality reduction techniques based

on similarity preservation. Neighborhood information, revealing the local structure

of the data is utilized while learning the basis for domain transformation. These tech-

niques are suitable for applications where local information preservation is desirable.

Similarity preserving dimensionality reduction has been applied to face recognition

and image denoising in this work.

In addition to local structure, discriminant information, if considered, can play

pivotal role in achieving superior class separation. Extended Supervised Locality Pre-

serving Projection with Modified Distance (ESLPP-MD) changes distance between

data points based on the class label information to achieve better class separation.

Enhanced face recognition performance as compared to the other locality preserv-

ing approaches is observed. Manipulating distances in this manner assures better

class discrimination ability of training data points but unknown data points may face

difficulty in classification. To overcome this issue, Locality Preserving Discriminant

Projection (LPDP) is proposed with an objective function which itself takes care

of projecting similar data points close by and dissimilar data points from different

classes far apart. This method seems to be performing on par with or surpassing

ESLPP-MD and other locality preserving as well as discriminant approaches. Kernel

based variants of these approaches improve face recognition accuracies even further.

Dimensionality reduction techniques do not always guarantee enhanced perfor-

mance with increase in number of dimensions used to represent the data. This may

be due to redundant information getting added with more number of dimensions.

However, in this thesis, we have not studied the redundancy pattern of the dimen-

sions and experiments have also not been carried out for the same. Also, the emphasis

of this thesis is on dimensionality reduction approaches and their usability for various

challenges. For face recognition, proposed dimensionality reduction techniques are

directly applied on the raw face images from different databases and nearest neighbor

(rank one) classifier is used to classify the test image in the reduced dimensions. Most

of the benchmark face recognition techniques are designed with various pre-processing

stages along with more robust classifiers to deal with the face images captured in

unconstrained environment. As main scope of the thesis is not to resolve face recog-

nition issues, but to devise more robust dimensionality reduction approaches, study

of benchmark face recognition systems has not been carried out.

The basis obtained using dimensionality reduction approaches based on LPP are

non-orthogonal. Orthogonalization of Extended LPP basis (OLPP) is suggested in

Chapter 4. Similarity preserving property of OLPP makes it suitable for image denois-
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ing which seeks to explore non-local self similarity between the noisy image patches.

Due to locality preserving property, similar patches get clustered when projected on

OLPP basis, thus a global basis is sufficient for the entire image. Noise elimination

is performed in the transformed domain. OLPP based image denoising technique

demonstrates excellent performance, especially with regard to texture preservation,

on a large set of experiments across varied noise levels. The finer details present in

the image are restored very efficiently. However, we have noticed that there is con-

siderable scope of improving performance of this technique as it undersmooths the

homogeneous regions of the image.

Two Dimensional OLPP (2D-OLPP) directly processes the images in matrix for-

mat, thus reducing the computational complexity of the approach considerably. It

also retains the spatial neighborhood information which gets lost due to vectorization

of data points in all the previously discussed approaches. 2D-OLPP based image

denoising shows significant improvement in the performance of denoising natural im-

ages as homogeneous regions are restored well along with the structural details. The

results are encouraging and comparable to the state of the art methods of image

denoising. In addition to preserving the neighborhood information, Two dimensional

Orthogonal LPDP (2D-OLPDP) also takes into account the dissimilarity between the

noisy image patches to attain superior clustering of the patches in the projection do-

main. The results of 2D-OLPDP based denoising are on par with that of 2D-OLPP,

however, smaller structural details get restored very well using the current proposal.

7.3 Future Work

The scope of this thesis lies in proposing a robust and efficient similarity preserving

dimensionality reduction technique. Face recognition is taken up as an application to

showcase the efficiency of the proposal. In this work, dimensionality reduction tech-

niques are applied on raw face images as it is and the simplest classifier, i.e. nearest

neighbor classifier is used to recognize the class of unknown data points (Chapter

2 and 3). A complete face recognition system consists of a combination of various

pre-processing stages to take care of illumination, pose and other external environ-

mental changes as well as more sophisticated classifiers which boost the performance

resulting in higher accuracy. Research can be further extended to build a complete

face recognition system.

Another application that is explored in this thesis is Image Denoising. The locality

preserving property of the learnt basis takes care of projecting similar patches close

to each other in the projection space thus clustering structurally similar patches
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automatically (Chapter 4, 5, 6). To ensure such grouping, weights in the similarity

matrix are assigned based on the distance between the patches. Patch similarity

measure proposed by Rajwade et al. [96] is used throughout this thesis which is based

on the Euclidean distance between patches. Patch similarity measure considering

correlations and structural patterns between the patches can be developed. This

could result in enhanced clustering of patches further improving the image denoising

performance.

In Chapter 5, dimensionality reduction technique which processes the images in

matrix format is proposed. In this 2D-OLPP approach, the data is no longer required

to be converted to vector format before processing. This technique can be further

extended for tensorized data i.e. to deal with the data in 3 or more dimensional

format.

Though the dimensionality reduction techniques proposed during the course of

this thesis are applied for face recognition and image denoising, their usage is not

limited to them. Applicability of the proposals can be extended for numerous ap-

plications. Other image restoration techniques such as image deblurring, inpainting,

super resolution etc. can be solved using the locality preserving dimensionality reduc-

tion approaches. It is to be noted that patch based transformed domain approaches

have already been applied for such applications [92], [91]. Hence, similarity pre-

serving dimensionality reduction approaches are expected to perform well for these

applications.

An application that has been explored widely in last few decades is Content Based

Image Retrieval (CBIR). As the proposed approaches have property of projecting

similar data points close to each other in the projection space, it could well be used

for image retrieval task. The images having similar structures are expected to get

projected nearer thus making image retrieval possible. Instead of directly using the

images for retrieval, patch based similarity within different images can be investigated

to obtain more robustness. The modern CBIR design requires similarity measures

invariant of rotation, translation, shift and illumination. Such variants of some of the

dimensionality reduction techniques i.e. PCA and LDA have already been proposed

in literature. More robust versions of the current proposals of LPP, to handle such

variations, can be explored in future.

Dimensionality reduction approaches, that have been discussed so far, have an

objective function to be optimized to obtain the basis/transformation matrix that is

used to project the data in the reduced dimensional space, mainly preserving desired

properties of the raw high dimensional data. Depending on the objective function,

the basis are obtained from the data in a pre-determined manner, thus, training and
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learning from the data is not performed as in case of neural network based approaches.

Deep learning has emerged as a very successful area of research, in which the deep

network gets trained from the data itself to obtain the desired output. Many differ-

ent problems/applications are being tackled using the deep networks, dimensionality

reduction being one of them. Auto-encoders are used as dimensionality reduction

tools, wherein the loss function at the output layer is made similar to that of the

objective functions of the well known dimensionality reduction approaches, letting

neural network learn the basis. Hence, depending upon the loss function, the basis

are learned using deep network architecture, which can give freedom of learning the

non-linearity of the data as well. In particular, the objective function of LPP, which

assures projection of similar data points close by in the LPP domain, can be used as

the loss function for training the deep network.

Another direction of work could be combining the dimensionality reduction and

deep learning frameworks to boost the performance. One way could be, feeding the

reduced dimensional data using the proposed dimensionality reduction techniques as

input to the deep learning framework, instead of the high dimensional raw data. The

basis learned using dimensionality reduction approaches are adapted according to

the training data, thus another way of combining dimensionality reduction with deep

learning could be using the trained basis as the filters to the initial input layers of the

network. Hence, instead of learning the filters to be used for CNN, the basis obtained

using the proposed approach can directly be used as filters.
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