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Abstract 

Automatic Speaker Verification (ASV) systems are vulnerable to speech synthesis 

and voice conversion techniques due to spoofing attacks. Recently, to encourage the 

development of anti-spoofing measures or countermeasures for Spoofed Speech 

Detection (SSD) task, a standardized dataset was provided at the ‘ASV spoof 2015 

challenge’ held at INTERSPEECH 2015. In the present work, using a traditional 

Gaussian Mixture Model (GMM)-based classification system, novel countermeasures 

are proposed considering three vital aspects of speech production mechanism, i.e., 

excitation source, vocal tract system (i.e., filter) and Source-Filter (S-F) interaction.  

Considering our relatively best performance at the ASV spoof challenge, we first 

discuss system-based features that include proposed Cochlear Filter Cepstral 

Coefficients and Instantaneous Frequency (CFCCIF) features. These use the 

envelope and average IF of each subband along with the transient information. The 

transient variations estimated by the symmetric difference (CFCCIFS) gave better 

discrimination. Within the framework of system-based features, the Subband 

Autoencoder (SBAE) feature set that embeds subband processing in the Autoencoder 

architecture is used. For source-based features, knowing that an actual vocal fold 

movement is absent in machine-generated speech, fundamental frequency (F0) 

contour and Strength of Excitation (SoE) are used as features. Next, as spoofed 

speech is easily predicted if generated by a simplified model or difficult to predict 

due to artifacts, we propose the use of prediction-based methods. This includes the 

Linear Prediction (LP), Long-Term Prediction (LTP) and Non-Linear Prediction 

(NLP) techniques. Lastly, the Fujisaki Model is used to analyze the prosodic 

differences in terms of accent and phrase between natural and spoofed speech. In 

addition to independently using source or system features, the time-varying 

dependencies or the S-F interaction features are considered. This includes exploring 

features based on the residual information of the glottal excitation source and its 

fitted Liljencrants-Fant (LF) model, both in time-domain and frequency-domain for 

the SSD task.  

Overall, the system-based features worked well for unknown attacks, especially 

the vocoder-independent spoof. On the other hand, source-based features when used 
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with the system-based features performed well for vocoder-based spoofs. Hence, the 

score-level fusion of system and source-based features significantly reduced the % 

Equal Error Rate (EER). The S-F interaction features were found to perform well for 

vocoder-based spoofs and were robust to signal degradation conditions as well. The 

performance of all features has been evaluated for the known, unknown, same and 

different type of attacks. Amongst the countermeasures existing in the literature, 

majority of them specifically model the artifacts introduced while synthesis or 

conversion. In the present work, we propose features that are characteristics of 

natural speech and difficult to incorporate into machine-generated speech. Finally, 

the features are also evaluated on the Blizzard Challenge 2012 and Blizzard 

Challenge 2014 database to study the channel mismatch effects in the SSD task. 

Although significant research is done to detect spoofed speech, the problem is yet to 

be completely solved for unit-selection synthesis, signal degradation and channel 

mismatch conditions.  
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             Chapter 1.

Introduction 

1.1 Introduction 

Speech is a natural and powerful form of communication between individuals. It is 

very natural to produce and it is an inherent attribute or identity of an individual 

[1]. Speech is a signal in which the speech samples are changing dynamically over a 

period of time. It can be used as an adequate biometric modality, especially due to its 

remote access and convenience. Traditionally, from the deployment perspective, to 

facilitate the machines for authentication, biometrics such as fingerprints, face, iris, 

handwriting (such as signature), etc. are generally used for identification and 

verification tasks [2]. However, humans can identify and discriminate amongst 

speakers using the acoustic cues from the speech signal. In reality, humans by 

nature use face and voice biometrics jointly to identify an individual. The Automatic 

Speaker Verification (ASV) technology uses speaker-specific information from the 

speech signal for authentication, wherein the ASV system either accepts or rejects a 

claimed speaker’s identity [3]. Increased use of ASV systems as a biometric has 

demanded or questioned its reliability under spoofing scenarios. That is, the ASV 

systems must be secure or robust against an adversary, generally referred to as an 

impostor who might try to deceive the voice biometric system by claiming as another 

user. The claim by the impostor can be done either by impersonation (or mimicry), 

replay or manipulating and generating speech signal artificially (such as synthetic 

speech or voiced converted speech).  

Spoofing attacks are also known as presentation attacks as per the International 

Organization for Standardization (ISO) and the International Electrotechnical 

Commission (IEC) standardization [4]. According to the ISO/IEC, presentation 

attacks refer to “Presentation to the biometric data capture subsystem with the goal 

of interfering with the operation of the biometric system. Presentation attacks can be 

implemented through a number of methods (for example, artifact, mutilations, 

replay, etc.). The biometric systems may not be able to differentiate between 
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biometric presentation attacks with the goal of interfering with the systems 

operation and non-conformant presentations” [4]. The measures or systems that can 

detect the spoofing attacks (i.e., presentation attacks) from normal presentations are 

known as presentation attack measures or anti-spoofing measures or 

countermeasures. Presentation attack detection is also similar to liveness detection, 

i.e., “measurement and analysis of anatomical characteristics or involuntary or 

voluntary reactions, in order to determine if a biometric sample is being captured 

from a living subject present at the point of capture”. Liveness detection methods are 

a subset of presentation attack detection methods [4].  

This thesis proposes suitable measures (i.e., countermeasures or anti-spoofing 

measures) to detect whether the claimed speech is genuine speech or from an 

impostor representing spoofed speech. The Spoofed Speech Detection (SSD) task is 

certainly important due to the fact that the interest in biometric applications has 

grown significantly and hence, the biometric system should be able to detect 

malicious attacks. The ASV systems can aid in access control to physical facilities, 

computer-related web services or telephone resetting of passwords, etc. The assured 

performance of ASV system is needed for use in telephone banking transactions, 

electronic banking, and e-commerce. Users generally remember keywords known as 

passwords to access a particular utility. Using the same password is risky and also, 

it can be forgotten or stolen. This brings into the need of text-independent biometric 

systems to address this problem. Evidently, this can happen only if the biometric 

system is accurate with very low Equal Error Rates (EER) and also reliable to 

impostor attacks as well. An EER is an operating point where the False Acceptance 

Rate (FAR) and False Rejection Rate (FRR) is equal (which will be discussed in 

detail in Chapter 3). Thus, in this thesis, we propose the design of features or 

countermeasures for a spoof detector system that can identify natural vs. spoofed 

speech. The features should enhance differences between natural and spoofed 

speeches and should be independent of differences within the natural speech due to 

the size and shape of the vocal tract, larynx size, etc. In this thesis work, distinctive 

features are proposed to design a spoof detector system that can be used in future 

along with the ASV system for secure speaker authentication task.  
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1.2 Architecture of the ASV Systems 

The Automatic Speaker Recognition (ASpR) can be operated in two modes, namely, 

Speaker Identification (SID) and Speaker Verification (SV). In the identification 

task, the system tries to identify who the test speaker is from the available set of 

speakers. On the other hand, in the verification task, the system verifies if the 

claimed identity is a true (genuine speaker) or from an impostor. Furthermore, ASpR 

can be further classified into text-dependent, vocabulary-dependent (or text-

prompted) or text-independent systems [5]. In text-dependent case, the speaker 

utters only a specific text to be identified or verified. Such a system has an 

advantage of higher accuracy as the dependency due to varying text is reduced. 

Vocabulary-dependent systems are at a slightly higher-level where the speech is 

limited to a specific-domain such as digits, alphabets, etc. and the test phrase can be 

selected as a combination of the limited vocabulary. This kind of text-prompted SV 

was one of the first approaches to alleviate spoofing attacks [6]. The other extreme 

end includes a text-independent system that includes no bound on the text used for 

the ASpR system. As compared to the text-dependent case, the text-independent is 

more secure as text-dependent systems can be fooled easily if the test utterance is 

known. The text-independent systems are also flexible in terms of changing the test 

phrase for preventive measures against impostor attacks.  

For the machines, the task of identification and verification can be viewed as a 

pattern recognition problem. In SID, the task is to classify patterns (in the form of 

feature vectors of the speech signal) in the test to one of the previously known 

patterns. For SV, the sample pattern of an unknown pattern together with the 

claimed identity is given. The task is to determine whether the sample pattern is 

sufficiently similar to the reference pattern associated with the claimed identity in 

order to accept or reject the claim. The application of SID is limited in the sense that 

the decision of identification can be made only if the test speaker is enrolled in the 

system, i.e., the specific speaker has been used to train the SID system. On the other 

hand, verification requires validating a speaker among the large group of speakers 

that may be unknown to the system. In speaker forensics, it is common to first 

perform an identification process to create a list of "best matches" and then perform 

a series of verification processes to determine a conclusive match. In addition, the 
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term voice comparison is much appropriate rather than voice recognition in speaker 

forensics applications [7]. 

 

Figure 1.1: The speaker recognition systems (a) Speaker Identification (SID) and (b) Speaker 

Verification (SV). After [5]. 

As shown in Figure 1.1, features extracted from the input speech signal are given 

to the SID and SV systems [5]. These features can be either high-level, medium-level 

or low-level features. The high-level features include idiosyncrasies, diction, etc. 

which are peculiar to an individual. These features capture information such as the 

socio-economic background of the speaker. The medium-level features include 

prosodic, rhythm and intonation features. On the other hand, low-level cues are 

related to acoustic measurements that are directly related to the speaker’s 

physiological characteristics (in particular, the size and shape of the vocal tract). 

While humans use all cues to verify a speaker, the recognition systems work well for 

low-level acoustic features (due to the practical difficulty of collecting hours of speech 

data from every speaker to extract meaningful high-level and medium-level 

features). The low-level features capture the physiological attributes of the speaker. 

As the vocal tract shape and size consists of most of the information of the speaker, 

spectral features depicting the resonances in the vocal tract are used. This spectral 

…
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representation includes passing speech through a set of subband filters of frequency 

ranges similar to that of the subband processing in the human ear (e.g., Mel-scale 

filterbank). These features are very well known in speech processing literature and 

are referred to as Mel Frequency Cepstral Coefficients (MFCC) [8]. In the 

identification systems, to create a statistical model, each speaker is considered as a 

random source generating the observed feature vector. Given the feature vectors, a 

statistical model such as Gaussian Mixture Model (GMM) is built for each speaker in 

the identification system. As shown in Figure 1.1 (a), in identification task, for a 

given test utterance, the speaker model with the maximum likelihood is considered 

as the speaker model of the test identity. On the other hand, for verification task as 

shown in Figure 1.1 (b), if the likelihood ratio of the test speaker or the claimant is 

greater than a certain threshold, the identity claim is accepted otherwise it is 

rejected. Thus, the entire speaker recognition technology can be summarized of voice 

recording (i.e., data collection and corpus design [9]), feature extraction, pattern 

matching (model training and likelihood estimation) and decision making. Research 

in ASpR has increased many folds with the advancement in various feature 

extraction techniques, use of Gaussian Mixture Model-Universal Background Model 

(GMM-UBM) modeling approaches, GMM supervectors, Support Vector Machine 

(SVM), i-vector, GMM with Joint Factor Analysis (JFA) [10] and Probabilistic Linear 

Discriminant Analysis (PLDA) [11]. The research challenges includes microphone 

errors (time-varying microphone placement), speaker variability (e.g., the vocal tract 

resonances may change with age and hence, alter the models, health conditions such 

as cold may change the voice quality of the speaker), intersession and microphone 

variability, robustness in presence of channel noise and most importantly robustness 

to spoofing attacks by the impostors.  

1.3 Spoofing in ASV Systems 

In 1976, an excellent review work by Rosenberg on ASV discussed the inclination 

towards verification systems than identification systems [3]. It states that SV is a 

more tractable problem where only a single comparison to a reference pattern is 

required which is faster and less complex. Hence, it makes the SV systems useful for 

several practical or commercial applications. The same review paper then discusses 

an important issue of impersonation by humans or the mimic resistance capacity of 
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verification systems (Section III-E, pp. 480 [3]). The mimic resistance is the property 

of the verification systems to resist determined mimics. Mimics can be based on 

physiological characteristics such as identical twins, or it can be based on behavior 

or learned characteristics such as professional mimics. Hence, the issue of dealing 

with mimics is essential as end applications of ASV systems are usually the ones 

including computer log-in, telephone-based banking transactions, access to restricted 

buildings, personal identification, etc. which would be at high risk if the verification 

systems can be defrauded. More literature and work in professional mimics can be 

found in [9], [12], [13], [14].  

Generally, the ASV systems are evaluated on zero-effort attacks. Zero-effort 

impostors are casual impostors where no effort is made to mimic or produce a speech 

as that of the enrolled speaker. With zero-effort impostors, current ASV systems can 

achieve very high accuracy and significantly low EER. It has been reported that with 

current techniques such as JFA [10] and PLDA [11] very low % EER is obtained for 

the ASV task. Hence, research has progressed in ASpR field in terms of overcoming 

the performance degradation due to microphone variability, intersession variability, 

speaker variability, recording conditions, etc. However, ASV systems should be 

robust to both zero-effort impostor trials and deliberate-effort spoofing attacks. The 

zero-effort case is an unrealistic scenario, as there is no advantage in mimicking a 

person without knowing anything about him or her. In a realistic scenario, an 

impostor has information about the target speaker. Thus, verification systems must 

be robust to both zero-effort attacks and deliberate-effort spoofing attacks as well. It 

must identify or discriminate between a natural speech from a true claimant and an 

impostor speech trying to mimic any target on its own or by utilizing available 

techniques of cut-paste, synthesis or voice conversion to sound like any of the 

intended target speaker.  

1.4 Motivation for Spoof Detection Problem 

Research in general spoof detection task is relatively well established with several 

competitive evaluations having been held for other biometric modalities such as face 

[15], fingerprint [16] and iris [17] recognition. In case of voice biometrics, the lack of 

availability of statistically meaningful standard datasets, protocol and metrics were 

initially a hindrance to study of spoofing and evaluating the performance of anti-
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spoofing measures on a generalized platform. An initial attempt to create a base for 

standardization in the evaluation of countermeasures for spoofing was carried out 

with the organization of a Special Session at INTERSPEECH 2013 entitled, 

‘Spoofing and Countermeasures for Automatic Speaker Verification’, wherein, mimic, 

replay, synthesis and voice conversion attacks were considered [18]. However, the 

various countermeasures proposed in [18] used prior knowledge of specific spoofing 

attack without any standard datasets, protocols or metric to measure and alleviate 

the possible threat of spoofing. Impersonation and replay attacks may be highly 

vulnerable when used as a spoof. However, they have their limitations in the context 

of developing countermeasures (which will be discussed in Chapter 2). Among the 

various spoofing methods, spoofs due to Synthetic Speech (SS) and Voice Converted 

Speech (VCS) are easily available and can be generated for any given text and for 

any speaker. With respect to this, recently the Spoofing and Anti-Spoofing (SAS) 

corpus has been developed providing a generalized dataset with Text-To-Speech 

(TTS) synthesis and voice conversion attacks for various spoofing algorithms on a 

large set of speakers [19]. Using a subset of the SAS database, very recently, the 

‘ASV spoof 2015 challenge’ was organized as a special session of INTERSPEECH 

2015 [20]. For this challenge, the task was to design an ASV-independent standalone 

detector that could classify natural and spoofed speech for both known and unknown 

attacks. The final results in terms of % EER were returned by the organizers of the 

challenge for both attack-dependent (i.e., known) and attack-independent (i.e., 

unknown) case. Thus, as shown in Figure 1.2, there exists a need for an independent 

or standalone detector for natural vs. spoofed speech prior (or post) to the ASV 

systems. In this thesis, we work towards developing suitable features to classify 

natural and spoofed speech and hence, can be used as countermeasures to alleviate 

possible spoofing attacks in voice biometrics. 

 

 

Figure 1.2: Spoofing on ASV system and the need for natural vs. spoofed speech detector. 
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At the challenge, for SS and VCS spoof detection, phase-based features (both Fourier 

transform and analytic or instantaneous) were used extensively. This was due to the 

fact that state-of-the-art SS and VCS generation techniques use vocoder which lacks 

phase information. These countermeasures gave almost 0.00 % EER for known 

attacks. However, many of these approaches at times failed for unknown vocoder 

spoofs and in fact failed for unknown vocoder-independent spoofing attacks. 

Therefore, the research needs to be directed such that the countermeasures are 

effective in real-life scenarios, where the type of spoofing will not be known at all. 

To detect natural vs. machine-generated speech, it is essential to use cues that 

are specific to the natural speech and absent in the machine-generated speech. The 

human speech mechanism has two main components, i.e., the vocal tract system and 

input to the vocal tract, i.e., excitation source. The acoustic speech output is a result 

of combination of a source of sound energy (e.g., the larynx) modulated by a transfer 

(filter) function determined by the shape of the vocal tract. This model is often 

referred to as the “source-filter theory of speech production” [21]. The source-filter 

theory describes speech production as a two-stage process involving the generation of 

a sound source, with its own spectral shape and spectral fine structure, which is then 

shaped or filtered by the resonant properties of the vocal tract system. Therefore, it 

is crucial to study the characteristics of the natural and spoofed speech signal from 

the excitation source and system point of view. The study of source and system 

characteristics separately assumes a linear speech production mechanism where the 

source and system can be independent. However, the actual speech production 

mechanism is a nonlinear phenomenon. Therefore, in this work, three basic aspects 

of speech, i.e., excitation source, vocal tract system (i.e., filter) and the Source-Filter 

(S-F) interaction or coupling information are explored. We believe that it is essential 

to study the independent contributions of the system-based and the source-based 

features for the SSD task. In addition, during natural speech production, neither 

source excitation nor vocal tract system alone is important, rather how they interact 

or couple is also essential which motivates for the use of S-F interaction features as 

well. Thus, as a foundation for the development of features, we use features that are 

derived from the understanding of the natural speech production mechanism and 

hence, these features will not be specific to the spoofed speech rather they are 

expected to be discriminative w.r.t natural vs. spoofed speech. 
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The threat of spoofing attacks has restricted the use of ASV systems for security 

applications like telephone banking, access to restricted areas/buildings, etc. Now 

that a generalized dataset is made publicly available [20], there has been a keen 

research interest in addressing this research issue. Simultaneously, it has been 

argued that low-technology spoofing attacks such as replay are more vulnerable and 

available even for intruders without speech processing knowledge. However, there 

was no standard dataset to evaluate the performance of the countermeasures for 

replay until the recent ASV spoof 2017 challenge [22]. Moreover, replay attack is 

feasible with text-dependent systems where the keyword is known. On the other 

hand, tools are readily available to generate synthetic or converted speech without 

requiring much higher levels of expertise. Thus, exploring suitable countermeasures 

for spoof detection of SS and VCS is also highly essential. Detecting spoofed speech 

not only aids to have secure ASV systems, but also, has various other applications as 

discussed in the next sub-Section.  

1.5 Applications of Spoofed Speech Detection (SSD) 

The problem of detecting spoofed speech is highly essential and needs to be 

addressed. Few of the applications of SSD are: 

• Spoof detection is necessary for the security of ASV systems. Reliable ASV 

systems are essential for telephone banking, personal identification and 

computer logins, etc.  

• It can be used for liveliness detection in speaker forensics, where it is 

essential to know if the speech recording is from the actual suspect or an 

attempt is made to indulge the suspect by making an unauthorized access. 

• Based on the countermeasures proposed, lacunas or artifacts in the spoofed 

speech can be studied to investigate reasons of quality degradation in the 

spoofed speech. 

• Based on the above, the countermeasures could be used as objective measures 

for the evaluation of speech synthesis and voice conversion systems so as to 

investigate how much the synthetic speech is close to natural speech or how 

much the voice converted speech is similar to the target speaker’s speech. 

• Depending on the countermeasures, the differences between actual human 

speech production model and the simplified model can be studied. These can 
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then be used in improving SS and VCS generation algorithms for improved 

naturalness and speaker similarity. However, improving naturalness in the 

SS and VCS may also affect the performance of the proposed spoof detection 

system, which further needs to be improved. 

The detection of SS speech is essential because any random text can be generated for 

any speaker and in VCS spoof, any speaker can be targeted (i.e., even from male-to-

female and vice-versa is possible).  

1.6 Contributions from the Thesis 

The main focus or approach of the thesis is the development of suitable features for 

SSD task. In this thesis, three basic aspects of speech production mechanism, i.e., 

excitation source, vocal tract system (i.e., filter) and the S-F interaction features are 

explored to design countermeasures for SSD task. The brief details about the various 

features proposed are shown in Figure 1.3 (where the dotted blocks indicate the 

features used in the literature for SSD task).  

1.6.1 Source-based Features 

For excitation source features, we propose the following feature sets which when 

combined with the system-based features, decreased the % EER of the SSD system. 

• Fundamental frequency (F0) contour and Strength of Excitation 

(SoE) features: When the vocal folds vibrate, there exists a correlation 

between the F0 contour and SoE at the glottal excitation source and at the 

speech signal. This correlation is found to be more for natural speech than 

machine-generated speech. Moreover, natural speech has variations within 

the F0 contour and SoE depending on the speaker and speech characteristics 

which may not be the case for spoofed speech.  

• Prediction-based features: Here, we propose the use of Linear Prediction 

(LP), Long-Term Prediction (LTP) and Non-Linear Prediction (NLP) features. 

The idea is that the spoofed speech is too easy to predict if a simplified 

acoustic model generates it and it is too difficult to predict if there are 

artifacts present in the speech signal. The nonlinearity in speech is an 

attribute of natural speech production mechanism and hence, LP-NLP 

combination provided better discriminative features as compared to existing 

LP-LTP approach.  



Chapter 1: Introduction 

11 

 

 

Figure 1.3: Classification tree of various features used as countermeasures (dotted boxes 

indicates approaches used in literature and rest indicates the contributions in the thesis). 

• Prosodic features derived from the Fujisaki model: Humans use the 

prosodic cues from speech to identify naturalness in the speech signal. Thus, 

the accent and phrase parameters from Fujisaki model assists in using the 

higher-level information to distinguish the two classes. Hence, Fujisaki model 

has been explored for adding prosodic features in the synthesized speech to 

improve the naturalness of TTS generated voice [23]. However, in this thesis 

work, we attempt to utilize it for a counter problem (in particular, to detect 

lack of prosodic features in the spoofed speech). 

1.6.2 System-based Features 

For system features, we explore the underlying idea that the human ear processes 

speech in subbands (due to the signal processing abstraction of the cochlea, i.e., 

vibration of basilar membrane in a specific region for a specific tone). Moreover, the 

human speech production system does not produce speech in a frame-by-frame 

pattern (rather in a continuum which implicitly captures the naturalness in speech 
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production mechanism) while feature extraction in SS and VCS is generally at 

frame-level. Hence, dynamic variations across frames are significant for SSD task. 

With respect to this, cochlear-based features and Deep Neural Network (DNN)-based 

features are proposed:  

• Subband Envelope and Instantaneous Frequency features: Instead of 

the MFCC feature set, the cochlear filter representation, i.e., Cochlear Filter 

Cepstral Coefficients (CFCC) features which mimic the auditory system more 

efficiently are used and also modified to derive new features set for SSD task. 

In particular, the envelope of the output of the cochlear filter is combined 

with the average IF to give CFCCIF features. The basic idea is that the 

envelope of each output of the cochlear filter and its analytic phase are 

important features used by the auditory levels for speech perception (Chap. 8, 

pp. 403 [21]). Moreover, to capture transient information or the variation 

across frames, the derivative operation is used. The resultant feature detected 

even non-vocoder spoofed speech (to a certain extent), and it performed best 

on an average for known and unknown attacks at the ASV spoof 2015 

challenge. 

• Subband Autoencoder (SBAE)-based features: A new architecture of 

Autoencoder (AE) is explored that embeds the subband processing in Human 

Auditory System (HAS). This data-driven approach is used to learn features 

from the speech spectrum. The SBAE features are found to capture more 

dynamic information across the frames of the speech spectrum. As a result, 

the vocoder-independent spoofs were detected well. 

1.6.3 Source-Filter (S-F) Interaction-based Features 

Next, we explore the fact that the nonlinear S-F interaction is an attribute of the 

natural speech production mechanism and it is highly complex to build or mimic 

such nonlinear interaction while synthesizing speech artificially. Based on this, we 

propose using the following features for the SSD task:  

• Shape and residual energy-based features in the time-domain: The L2 

norm of residual signal (gr(t)) between the glottal flow derivative waveform 

(ġ(t)) and its fitted Liljencrants-Fant (LF) model (gc(t)) along with the shape 

features from the fitted model, in the closed, open and return phases of the 
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glottis are considered as features. With fewer feature dimensions, not only did 

the features work well for vocoder-based spoof speech, but also, the features 

performed well in noisy and signal degradation conditions.  

• Residual energy-based features in the frequency-domain: In the 

frequency-domain, the Mel representation of residual gr(t) and the residue or 

difference of the spectrogram (as well as the Mel-warped spectrogram) of the 

estimated ġ(t) and gc(t) is found to have complementary information than 

time-domain features for the SSD task.  

Finally, all the features have been evaluated under unknown attacks such as speech 

generated by various algorithms in the Blizzard Challenge 2012 database [24]. 

Similar evaluation has also been carried out on Hindi and Gujarati language using 

the Blizzard Challenge 2014 database with both vocoder-dependent and vocoder-

independent synthetic speech [25]. This helps to evaluate the performance of the 

features for completely unknown attacks and also for channel mismatch conditions.   

1.7 Organization of the Thesis 

The organization of the thesis is shown in Figure 1.4 and is discussed in detail below: 

Chapter 2 discusses the literature survey on spoofing attacks for voice biometrics. 

Various spoofing attacks are discussed with special emphasis or focus on Hidden 

Markov Model (HMM)-based speech synthesis and voice conversion attacks. A 

detailed review about the methods identifying the vulnerability of spoofing attacks 

on ASV is presented. This is followed by discussing of various countermeasures 

existing in the literature with ASV systems and without ASV systems (i.e., as a 

standalone spoof detector). The several issues with the stand-alone detectors are also 

briefly discussed. 

Chapter 3 deals with the spoofing techniques and the general architecture of the 

spoof detection system. The speech synthesis and voice conversion techniques are 

discussed in detail. Next, in the spoofed speech detection architecture, the databases 

used for the study, classification system and the performance measures are 

discussed. With respect to the database, details about the spoofing algorithms in the 

ASV spoof database and Blizzard challenge data are discussed. The details about the 

TTS building procedure for Gujarati language both using the Unit Selection 

Synthesis (USS) and HMM-based TTS Synthesis System (HTS) framework are 
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provided as part of the Blizzard challenge database. The brief details about Gaussian 

Mixture Model (GMM)-based classification system and the performance measures in 

terms of Equal Error Rate (EER) and Detection Error Trade-off (DET) curve are 

discussed. 

       

Figure 1.4: Organization of the thesis. 

Chapter 4 discusses the various system-level features for SSD task. This includes 

the MFCC features, CFCC features and the proposed CFCCIF and CFCCIFS feature 

sets. Furthermore, a data-driven approach is used to learn features from the speech 

spectrum using SBAE. The experimental results of all the features are presented 

and discussed. 

Chapter 5 discusses the various source features used in the study. This includes F0, 

SoE and their dynamic variations. The algorithms used to extract F0 and SoE from 

the speech are also discussed. In addition, features derived from various prediction 

techniques such as LP, LTP and NLP for SSD task are presented. Furthermore, the 

Fujisaki model is studied in detail and the prosodic differences between the natural 

and synthetic speech are analyzed. 
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Chapter 6 discusses several S-F interaction features that are peculiar to the natural 

speech signal. The procedure for estimating the glottal excitation source and the LF-

model are discussed. Followed by this is the development of various time-domain and 

frequency-domain features and their performance for the SSD task.  

Chapter 7 concludes and summarizes the work done in the thesis. The contributions 

in the thesis are presented. The Chapter also discusses the applications, limitations 

of the present work and future research directions for the task of anti-spoofing 

presented in the thesis.  

1.8 Chapter Summary 

This Chapter gave an outline of the basic ASV system and introduced the problem of 

spoofing. The motivation and need of anti-spoofing measures are discussed and an 

overview of the countermeasures proposed in the thesis for spoofed speech detection 

is provided. The next Chapter discusses in detail the development of various spoofing 

types and the countermeasures proposed in the literature to overcome the spoofing 

attacks. The limitations of the measures existing in the literature along with current 

research issues in this area are discussed. In the next Chapter, a selected 

chronological literature search in the proposed area of study is presented to address 

the problem of spoofing and identify new directions for research.  
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                 Chapter 2.

Literature Survey 

2.1 Introduction 

This Chapter discusses the literature survey on the Spoofed Speech Detection (SSD) 

problem. Various possible spoofing attacks are discussed along with their pros and 

cons to be considered when dealing with the SSD task. Evolution of the vulnerability 

of Automatic Speaker Verification (ASV) system to speech synthesis and voice 

conversion attacks is presented. The anti-spoofing measures existing in the 

literature both with and without ASV system are discussed. This Chapter brings out 

briefly the research issues in the current approaches for the SSD task, majority of 

which will be addressed in this thesis work.  

2.2 Spoofing Attacks  

Impostor speech can be generated by humans themselves or artificially by using 

computers. Impostor due to humans is a case of impersonation (or that of mimicking) 

or that of identical twins. On the other hand, impostor attack through machines can 

be due to replay, speech synthesis and voice conversion techniques as well. A brief 

discussion on these attacks in voice biometrics is discussed in this sub-Section and 

shown in Figure 2.1.  

2.2.1 Mimics 

Mimics can be due to physiological characteristics that are observed in identical twins 

or due to behavior or learned characteristics or features such as professional mimics. 

An ASV system must have high mimic resistance capability to distinguish between a 

mimic and a natural speech from a genuine speaker. Spoof detection by mimic is a 

difficult task especially in the case of identical twins, as the twins are likely to have 

nearly similar (if not identical) vocal tract shape and size. Therefore, it will be 

difficult to distinguish the two voices. On the other hand, for professional mimics, 

the prosodic characteristics can be mimicked. However, the actual vocal tract 
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structure of source speaker cannot be made identical to that of target speaker [14]. 

Mimicking is a straightforward spoof that can hamper the security of ASV systems 

without prior knowledge of any speech processing technology or computer-aided 

techniques. However, several reasons exist, that refrain their use as a spoofing 

attack and related research works based on physiological characteristics. Firstly, in 

the case of mimics, to create a spoof, a twin is needed and this is a very rare case. 

Secondly, in the case of impersonation, some impostor speakers have a natural 

ability to be confused with or sound like other speakers. Likewise, few target 

speakers may be easily impersonated than the others. Thus, spoofing and anti-

spoofing are dependent on the selection of target speaker’s characteristics. The 

survey reported in [26], reports inconsistency in the findings of the vulnerability of 

mimic attacks on various ASV systems. This may be due to the reason that the 

studies are carried out on small datasets with different speakers. Hence, in this 

thesis, we do not consider mimics for developing anti-spoofing measures. 

 

Figure 2.1: Types of spoofing attacks on voice biometrics. 

2.2.2 Replay 

Replay is a type of spoofing attack where an impostor tries to use pre-recorded 

speech samples that are collected from selected target speaker to access his or her 

biometric system illegally. The recordings can be over a period of time and cut and 

concatenated (pasted) as per the required phrase or segment that is the intended 

password or a keyword. This kind of spoof is highly unsafe because if the speech 

recordings are of high quality, then they will be exactly similar to the real speech 

signal. In addition, due to the availability of high-quality and inexpensive recording 

devices, such as smartphones, replay attack is very accessible. Moreover, the 
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attacker does not need any advanced technical knowledge or the expertise on 

computer-aided techniques. This type of spoof is vulnerable to text-dependent ASV 

systems [26]. However, the attacker must have proximity to the target to get the 

recording which is not always the case. Approaches have been made to detect replay 

speech played back through handheld devices [27]. Due to the severity of this 

spoofing attack, research in this direction is carried out with visual aids as well [28]. 

In considering speech alone, there are various assumptions that can be made while 

detecting replay attacks [28]. In this work, we do not consider this extreme case of a 

spoofing attack. We use the fact that computer-aided technologies are also equally 

unsafe for the security of ASV systems. Later, we consider the case of unit-selection 

synthesis attack which is also a cut-paste computer generated approach (where 

speech sound units are selected by minimizing the cost of joining units).  

2.2.3 Speech Synthesis 

Speech synthesis technology is also referred to as Text-to-Speech (TTS) synthesis 

technique. The TTS technology aims at generating intelligible and natural-sounding 

machine-generated speech for a given input text. The TTS technology has a wide 

range of applications, i.e., development of tools for the visually impaired and as 

communication aids for the speech impaired, e-book reading, for in-car navigation 

systems, storytelling application, singing speech synthesizers, spoken dialogue 

systems, and in speech-to-speech translation systems. General speech synthesis 

systems have two main components, i.e., text analysis (front-end) and the speech 

waveform generation (back-end). In the text analysis component, the input text is 

converted into a linguistic form that consists of components such as phonemes. Next, 

in the waveform generation component, the speech waveforms are generated from 

the produced linguistic representation. Considering the waveform generation process 

in detail, there are four major approaches that were developed over the decades. 

Initially, in the 1970’s, the formant synthesizers were developed that used 

handcrafted acoustic rules such as vocal tract area functions, articulatory 

parameters, formant resonances, etc. for each phoneme segment [29]. Later in the 

1980s, instead of manually crafting rules, the use of pre-recorded speech 

concatenation approach was used. This started with a small database of phoneme 

units called ‘diphones’ and these are concatenated according to the given phoneme 

sequence through signal processing techniques [30]- [31]. Later in the 1990s, larger 
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speech databases were collected and appropriate speech sound units were selected 

for concatenation. These units were selected based on linguistic contexts, intonation, 

syllable position, the first and last position of the word or the phrase, accent, etc. 

This approach is referred to as Unit Selection Synthesis (USS) and is known to be 

more natural-sounding speech than speech generated by diphone-based synthesis 

systems [32]. In the late 1990s, the approach of Statistical Parametric Speech 

Synthesis (SPSS) was introduced [33]- [34]. In this approach, the Hidden Markov 

Model (HMM) is used to model several acoustic parameters from speech. HMMs take 

into consideration the knowledge of phoneme sequences and various contexts of the 

linguistic specification (i.e., sequential information using a statistical model that 

describes the production of speech signal). The acoustic parameters that are 

generated from HMMs and selected based on the linguistic specification are given to 

a vocoder (which is a simplified speech production model represented by vocal tract 

and excitation source parameters) to generate required speech waveform. The HMM-

based speech synthesizers can not only learn models from relatively less speaker-

specific data, but also possibly adapt to the background models for new speakers 

[35]- [36]. The initial three approaches, formant synthesis, diphone synthesis and 

unit-selection synthesis are not much likely to be effective in ASV spoofing. This is 

because formant synthesis does not offer synthesis of speaker-specific formant 

characteristics whereas di-phone or unit-selection approach requires a large speaker-

specific database. The database must cover all the diphones and also several 

instances of the diphone resulting in a large amount of speaker-specific data along 

with appropriate labeling of the speech data (which is a very laborious task and 

time-consuming even for a single speaker). Furthermore, to develop the statistically 

meaningful database for SSD task, a large number of voices (i.e., from different 

speakers) are required, which was possible in HTS and not feasible in case of USS 

synthesis (due to the tedious task of labeling of speech sound units). Thus, the use of 

HMM-based speech synthesis was generally preferred as a possible candidate for 

spoofing over other TTS techniques. However, with the development of open-source 

speech synthesis systems like MARY (Modular Architecture for Research on speech 

sYnthesis [37]) it has been possible to develop TTS systems for large number of 

speakers and hence, the use of USS-based spoofing attacks can really fool a 

biometric system. It should be noted that USS-based spoofing attacks are highly 

speaker-specific and if used as a spoof can really fool a biometric system. 
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2.2.4 Voice Conversion 

Voice conversion technique aims to change the speech of a given source speaker so 

that it may sound-like or resemble in some sense that of another speaker called as 

target speaker [38]. Application of voice conversion includes voice editing and 

dubbing (to preserve the voice of speakers), medical applications (such as voice 

restoration and interfaces for speech pathologies). Unlike TTS, which takes the text 

as input, the voice conversion system takes natural speech signal as an input signal. 

Typically, voice conversion technique involves both timbre and prosody conversion. 

Timbre relates to spectral envelope of the speech signal. Thus, in voice conversion, 

spectral mapping from source to target speaker is to be carried out. On the other 

hand, prosody conversion relates to converting prosodic features, such as the 

fundamental frequency (F0) and duration. Considering spectral mapping, the 

approaches include vector quantization, statistical parametric approaches, frequency 

warping, unit-selection and neural network-based techniques. The initial approach 

included spectral mapping based on vector quantization that included a mapping 

codebook from source-to-target feature pairs [39]- [40]. The popular statistical 

parametric approach in the literature includes using Gaussian Mixture Model 

(GMM)-based voice conversion. The GMMs can be trained on source features [41] or 

the joint density of both source and target speakers’ features [42]. The data is 

converted by a function that is a weighted sum of local regression functions. Next, 

the frequency warping method includes developing a warping function between the 

source and target speech spectra. The frequency warped source spectrum on 

combining with GMM-based converted spectrum is known to reduce the effect of 

over-smoothing [43]. This technique gives a good quality voice, however, the speaker 

similarity may not be as close to the target due to difficulty in preserving shape and 

the -3 dB bandwidth of the formants. To overcome this issue, many warping 

functions have also been introduced in the literature [44]. As in TTS synthesis, unit-

selection in voice conversion is also studied to directly utilize the target speaker’s 

speech segments for conversion [45]- [46]. Approaches based on neural networks also 

exists to model the nonlinear relationships between the source and the target 

speakers [47]- [48]. In addition to spectral information, the speech prosody 

information (which is a medium-level or speaker-specific feature) is also important to 

identify the speakers. The F0, intonation and duration are generally used as prosodic 
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features. Various approaches exist to convert a source speaker’s F0 contour to that of 

the target speaker [49]- [50] whereas phoneme or syllable duration conversion 

approaches were reported in [51]- [52]. Voice conversion technology is likely to be 

effective in attacking ASV systems. Spectral mapping techniques shift an impostor’s 

spectral characteristics to match that of a specific target speaker and hence, present 

a threat to ASV systems which generally use spectral features only. Meanwhile, 

prosody conversion can manipulate an attacker’s prosodic characteristics to mimic 

those of a target speaker and thus, they present a risk to those ASV systems which 

use prosodic features for ASV task [26].  

Therefore, various algorithms exist to generate both SS and VCS. Hence, the 

anti-spoofing measures need to be tested on various SS and VCS algorithms to check 

the performance or anti-spoofing capabilities of the countermeasures. With respect to 

this, to provide a large statistically meaningful database for evaluating the 

countermeasures, the ASV spoof 2015 database was introduced with spoofed 

speeches from three speech synthesis and seven voice conversion generation 

algorithms [20]. The details about the database and the techniques of spoofed speech 

generation are discussed in Chapter 3.  

To get initial insights to the differences between natural and spoofed speech, we 

observe their Short-Time Fourier Transform (STFT) representation as in Figure 2.2. 

The STFT of the speech is taken as follows,  

 ( , ) ( ) ( ) ,j n

n

S m s n w n m e
ωω

∞
−

=−∞

= −∑      (2.1) 

where s(n) is the speech signal and w(n) is the analysis Hanning window. Next, the 

power spectrum is computed. Both the narrowband and wideband spectrograms are 

observed with a frame window of 25 ms and 5 ms, respectively. In Figure 2.2, for the 

same text, Panel I, Panel II, Panel III and Panel IV corresponds to natural speech, 

vocoder-based SS, vocoder-based VCS and USS-based speech, respectively. It is 

observed from the Figure 2.2, that it is very difficult to distinguish between the 

natural and spoof speeches from the narrowband spectrogram. Even for the 

wideband spectrogram, not many differences are visible, except for the very low 

frequencies energies present in the silence regions at the start and end of the 

utterance. These energies may be due to the microphone or the recording device and 
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hence, they are absent in SS and VCS. In the case of USS-based speech, such low 

frequency energies are present due to the fact that USS-based speech is made from 

the concatenation of natural pre-recorded speech sound units. However, this 

difference may not be useful for classification of natural and spoofed speech. This is 

because, in real case scenarios, the spoofed speech will be played via some recording 

device to the biometric system. Hence, this difference may not be prevalent between 

the natural and spoofed speech. Thus, spectrographic analysis does not show 

significant differences for natural vs. spoofed speech and hence, there is a need of 

developing anti-spoofing measures to distinguish between the two speech signals. 

 

Figure 2.2: The spectrographic analysis of natural vs. spoofed speech: (a) speech signal, (b) 

narrowband spectrogram and (c) wideband spectrogram. Panel I: Natural speech, Panel II: 

vocoder-based SS, Panel III: vocoder-based VCS and Panel IV: USS-based speech.  

2.3 Vulnerability of ASV Systems to Spoofed Speech 

During the 1990’s, the computer-aided voice conversion techniques were more 

popular than speech synthesis due to the fact that the quality of the synthetic speech 

was not good enough and also not adapted to any arbitrary speaker. Hence, earlier 

work includes demonstrating the vulnerability of ASV systems against VCS spoof 

rather than SS. In 1998, the first study considering attack due to converted speech 

was reported for HMM-based ASV system [53]. In this work, an analysis and 

synthesis technique of Harmonic plus Noise Model (HNM) is used to obtain the 

speaker transformation. It was observed that the quality of HMM-based 

transformation was more efficient than GMM-based voice transformation. With an 
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HMM-based transformation attack, the baseline EER of ASV increased from 4.19 % 

to 23.09 %. Followed by this, the sensitivity of GMM-based ASV to VCS spoof was 

studied [54]. For the ASV system trained on 138 speakers of the YOHO database, 

the % EER increased from 1.45 % to 86 %. If the EER threshold was varied to obtain 

a False Rejection Rate (FRR) of 25 %, the False Acceptance Rate (FRR) was still 34.6 

%, which was sufficiently high. Simultaneously, the improvement in HMM-based 

synthesis techniques [55] and initial work of using speaker adaptation techniques 

[56], initiated the need to consider the effect of SS as an impostor to ASV system.  

In 1999, Masuko et al. carried the first work to recognize the vulnerability of 

text-prompted HMM-based ASV systems against SS impostor attacks [57]. The 

HMM-based synthesis with speaker adaptation technique to convert into a target’s 

voice was used to spoof the ASV system [55], [58]. Baseline ASV with 0.00 % EER 

reached above 70 % EER after spoofing. Simultaneously, Lindberg et al., [59] studied 

the effect on FAR for various spoofing types for a male and a female speaker. An 

ASV system with a baseline EER of 5.6 % under human impostor, after spoofing 

with concatenated speech, re-synthesized speech and di-phone-based synthesis 

systems gave a FAR of 94.75 %, 8.75 % and 38.9 %, respectively. Thus, in addition to 

HMM-based SS spoofs, speech generated by concatenation of speech sound units is 

more prone to affect the ASV systems. Thus, USS or concatenation approach is also 

very effective as an impostor attack and thus, one of the most challenging spoofs to 

detect. However, initially, speaker adaptation with USS was not well researched to 

use it as a generalized spoofing attack. Due to the recent development of HMM-

based speech synthesis [35]- [60] and voice conversion techniques [13]- [41] along 

with its generalization for any speaker using adapted HMM-based systems [36], 

several studies demonstrated the vulnerability of the ASV systems to SS and VCS 

attacks. In fact, it has been observed that ASV systems are more vulnerable to VCS 

attacks than SS attacks. The VCS spoof has shown to drastically increase the % EER 

for GMM-based ASV systems [61]- [62]. For Joint Factor Analysis (JFA)-based ASV 

systems [63] and i-vector-based ASV systems [64], the FAR has increased more than 

5-folds. A detailed summary of effect for SS and VCS attacks on ASV system can be 

found in [26].  
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2.4 ASV-independent Spoof Detection 

The design of stand-alone detector is considered as an independent research problem 

(for example, as in the ASV spoof 2015 challenge [20]). The basic task is to detect 

natural and spoofed speech (generated by any spoofing algorithm, i.e., either speech 

synthesis or voice conversion). In this Section, we emphasize and discuss the 

countermeasures that have been proposed for the detection task (both for clean and 

signal degradation conditions). The countermeasures are basically divided into two 

types based on their design, i.e., for known attacks and unknown attacks. A brief 

representation of the entire literature search is also shown in Figure 2.3.  

2.4.1 Countermeasures for Known Attacks 

Table 2.1 shows the summary of the various countermeasures, along with details of 

the database used while testing, type of spoof, classifier details and detection 

accuracy or EER. In [65], the authors propose using time stability and pattern of the 

F0 contour to discriminate between natural and HMM-based synthetic speech. It was 

observed that for 100 utterances of a male speaker, the time stability was more for 

SS speech than natural speech signal. Next, measures such as, peak, lower half, the 

upper half and half bandwidth are extracted from the F0 pattern. A dynamic 

programming distance factor is used between the enrolled natural speech of the ASV 

system and the tested SS or natural speech. This distance is more for the SS and 

hence, can be useful for discriminating SS and natural speech. However, the 

experiments of time-stability and pitch pattern analysis were done on less number of 

speakers, i.e., 1 male (100 utterances) and 5 male (20 utterances). On the similar 

lines of using statistics derived from F0, in [66], image processing approach was used 

to extract Mean Pitch Stability (MPS) and MPS range (MPSr) features from F0 and 

an additional jitter feature was utilized. A GMM-based classifier was trained on the 

National Institute of Standards and Technology (NIST) 2002 and Blizzard Challenge 

2008-2011/Festival built-in voices for natural and spoofed utterances. The evaluation 

was carried out by using natural and SS from the Switchboard and Wall Street 

Journal (WSJ) corpus, respectively. The accuracy of detecting SS was observed to be 

96 % which was better than 88 % obtained by Relative Phase Shift (RPS) used by the 

authors in [67]. The F0 patterns generated for SPSS approach tend to be over-

smoothed and USS approach exhibited jumps at the concatenation points.  
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Table 2.1: A summary of the various countermeasures used for SS and VCS spoof detection 

on known attacks 

Study 
Evaluation 

Corpus 
Spoof Type Features Classifier 

Accuracy 

(in %) 

EER 

(in %) 

Ogihara, et al. 1 (Male) 
HMM-SS 

Time Stability - 90 - 

(2005) [65] 100 utterances Pitch Pattern - 99 - 

De Leon, et al. 
(2012) [66] 

Switchboard/ 

WSJ/RM 
HMM-SS 

MPS, MPSr, 

Jitter  
GMM 96 - 

Z. Wu, et al. 

(2012) [68] 

NIST 2006 

GMM-VCS MFCC 

512-GMM 

- 16.80 

GMM-VCS Cos-phase - 6.60 

GMM-VCS MGDF-phase - 9.13 

USS-VCS MFCC - 15.35 

USS-VCS Cos-phase - 3.93 

USS-VCS MGDF-phase - 4.60 

Z. Wu, et al. 

(2013) [69] 

WSJ0+WSJ1 VCS 

MFCC 

512-GMM 

- 10.98 

MGDF-phase - 1.25 

MM - 19.29 

PM - 13.71 

J. Sanchez, et al. 
(2015) [70]  

WSJ HMM-SS 
MFCC   16.03 

RPS 512-GMM - 1.22 

Note: ‘-‘ indicates that the details are not available     

 

Next, an approach to detecting GMM-based converted speech and unit-selection-

based converted speech data is used in [68]. The NIST 2006 SRE corpus is used with 

100 sessions of speech to train the system and 1500 sessions of natural speech, 1000 

sessions of GMM-VCS, 1000 sessions of USS-VCS for testing. Cosine normalization 

of phase spectrum (Cos-phase), i.e., the Discrete Cosine Transform (DCT) of the 

cosine of unwrapped phase spectrum is used as features in addition to DCT of the 

frequency derivative of the Modified Group Delay Function (MGDF). An average 

EER of 5.265 % and 6.865 % using the Cos-phase and MGDF-phase features is 

obtained, respectively. The EER obtained by state-of-the-art MFCC features is 

relatively higher than the phase-based features. One of the reasons is that both the 

GMM-VCS and USS-VCS spoof introduces phase artifacts in phase spectrum which 

is captured by Cos-phase and MGDF-phase features. On the other hand, Fourier 

transform phase features are completely ignored in MFCC. A similar approach to 

using phase-based features was made in [69], using a supervector of Magnitude 

Modulation (MM) and phase modulation (PM) features. The MM and PM features 

were derived from 50 frames (1 frame = 25 ms) window of the power spectrum of 

speech and the MGDF-phase spectrogram, respectively. Thus, these features 

constitute the long-term features as compared to the MFCC and MGDF-phase 

features which are short-term features extracted at 25 ms frame length. As seen 

from Table 2.1, the MGDF-phase features gave very low 1.25 % EER. When these 
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features were fused at score-level with each other, it was observed that the 

combination of MGDF-phase function with MM and PM gave % EER of 0.98 and 

0.89, respectively. This shows that long-term temporal features have complementary 

information than short-term spectral features which was observed by their score-

level fusion. The work aimed to prove that artifacts are introduced during the frame-

by-frame operation in speech analysis and synthesis process which can be explored 

for SSD task. The study reported in [70], continued comprehensive evaluation using 

RPS and MFCC to develop a standalone SS detector. The RPS and MFCC features 

were evaluated on different conditions such as cross-vocoder testing and multi-

vocoder testing. A 3-vocoder model was proposed that obtained 1.2 % and 16.03 % 

EER on the test set with RPS and MFCC features, respectively. Thus, the SS were 

easily detected by RPS than using the MFCC feature sets. To consider the unknown 

case, the features were tested on the Blizzard Challenge 2011 and Blizzard 

Challenge 2012 databases.  

2.4.2 Countermeasures for Unknown Attacks 

For the unknown case, the majority of the work started with the development of 

Spoofing and Anti-Spoofing (SAS) database and the ASV spoof 2015 challenge 

dataset [19]- [20]. Details of the challenge database are given in the next Chapter. At 

the challenge, a generalized and statistically meaningful dataset was provided and 

the results in % EER on the evaluation data were returned by the organizers. Table 

2.2 shows the summary of the various countermeasures used for unknown attacks on 

the ASV spoof challenge database. As S10 is a vocoder-independent spoof, its % EER 

is reported separately. The effect of the individual attacks on % EER and % FAR of 

ASV systems are reported in [19]. 

In [71], the authors use supervectors derived from the magnitude and phase 

information in the frequency-domain to detect spoofed speech. That is, they use the 

Local Binary Patterns (LBP) features jointly with the DCT of MGD-features and 

Cos-phase features. It is obtained that MGD-features and Cos-phase features, when 

fused with previously proposed LBP features, an EER of 0.058 %, is obtained on the 

development set and the details of the results on evaluation set are shown in Table 

2.2. The results are quite well for vocoder-based spoofs which is not the case for the 

vocoder-independent S10 spoof. This is due to the fact that no vocoder is used in an 
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S10 spoof, which does not bring any texture changes with LBP features and also the 

phase information is preserved to a great extent. Similarly, in [72], several features 

including Log-Magnitude Spectrum (LMS), residual LMS, Group Delay (GD), MGD, 

Instantaneous Frequency (IF), Baseband Phase Difference (BPD) and Pitch 

Synchronous Phase (PSP) were all fused at score-level to achieve the best EER of 

almost 0.00 % on S1-S9 spoof and due to similar reasons explained above, S10 spoof 

remained almost undetected with 26.1 % EER. In [73], in addition to MGD features, 

relative phase information extracted from the Fourier spectrum of speech is used to 

detect human and spoofed speech. The EER reduced from 1.74 % for MFCC to 0.83 % 

for MGD and 0.013 % for relative phase alone. The % EER reported for S10 spoof 

was as high as 37.068 %. Similarly in [74], the RPS was used as features where the 

EER of unknown attacks was very high with 8.883 %. The RPS features along with 

MGD phase was again explored in [75] where it was considered for a generalized 

spoofing scenario by testing the RPS feature set on the Blizzard 2012 Database. 

In addition to phase-based features, Linear Prediction (LP)-based features were 

also explored [76]. The basic idea behind using prediction-based features is that 

spoofed speech is either easily predicted (if generated by a simple acoustic model) or 

either very difficult to predict (due to artifacts in the speech signal as in 

concatenated speech synthesis). Various features were derived based the LP residual 

and the Long-Term Prediction (LTP) residual. This approach was a novel way of 

considering spoofing attack detection. However, various issues were observed and 

the average % EER reported was around 11.6 %. In addition, in [77], LP residual 

was used giving 8.9 % EER on unknown attacks. However, the performance was not 

better than other phase-based approaches as shown in Table 2.2.  

In addition to using various features for spoof detection, the use of various 

pattern classifiers was also explored. This includes i-vector-based systems [78], Deep 

Neural Networks (DNN)-based representation [79], use of DNN and Support Vector 

Machine (SVM) classifier [80] for spoof detection. In [79], a supervised DNN was 

trained using filterbank features on the training data of the challenge database. The 

combination of several features such as MFCCs, Mel Cepstral Coefficients (MCCs), 

Band Aperiodicity (BAP) and F0 was used in this work. This approach was able to 

achieve an average EER of about 0.058 % on known attacks and 5 % on unknown 

attacks. In [80], DNN-based classifiers were used for spoof detection using LFCCs  



ASV-independent Spoof Detection 

28 

 

Table 2.2: A summary of the various countermeasures used for SS and VCS spoof detection 

on the ASV spoof 2015 challenge database with the details of the feature sets used, classifiers 

and % EER for the known, unknown attacks and S10 spoof on the evaluation set  

Study Feature Sets Classifier 
EER (%)  

Known Unknown Average S10 

Liu, et al. 
(2015) [71] 

Supervectors from MGD, 

Cos-phase. 

Fused with LBP features 

GMM 

SVM 
0.358 6.078 3.218 28.58 

Xiao, et al. 
(2015) [72] 

LMS, residual LMS, GD, 

MGD, IF, BPD, PSP 
GMM 0.003 5.231 2.617 26.1 

Wang, et al. 
(2015)  [73] 

Relative Phase Information GMM 0.005 7.447 3.726 37.07 

Sanchez, et al. 
(2015)  [74] 

RPS GMM 0.21 8.883 4.547 40.00 

A. Janicki [76] LP and LTP Logistic 6.1 17.1 11.616 - 

Alam, et al. 
(2015) [77] 

Cos-phase, MGD,  

Product Spectrum,  

LP residual 

GMM 0.041 5.347 2.694 26.392 

Patel, et. al 
(2015) [81] 

MFCC+ CFCCIF GMM 0.408 2.013 1.211 8.49 

Weng, et al. 
(2015) [78] 

i-vector framework (MFCC, 

MFCC-PPP 

(phoneme posterior 

probability) 

KNN 

PLDA 

SVM 

0.405 6.247 3.326 29.66 

Chen, et. al 

(2015) [79] 

Residual Log Magnitude 

Spectrum (RLMS), GD 

DNN 

GMM 
0.058 4.998 2.528 22 

Villalba, et al. 
(2015) [80] 

Fusion DNN (Spectrum+ 

RPS) 
DNN 0.025 8.168 4.097 40.71 

Novoselov, et 
al. (2015) [82] 

MFCC, MFPC, Cos-phase, 

MWPC 
SVM 0.008 3.922 1.965 19.57 

Sahidullah, 

 et al.  
(2015) [83] 

Short-term power spectrum,  

short-term phase 

GMM 

SVM 

0.22 

3.43 

3.87 

16.76 

2.045 

10.095 

- 

- 

Tian, et al. 
(2016) [84] 

HD, HF, dynamic (LMS, 

RLMS,IF,BPD,GD,MGD) 
NN 0.124 5.224 2.62 26.10 

Zhang, et al. 
(2016) [85] 

TEO, PMVDR DNN 0.67 6.04 3.35 27.94 

Patel, et al. 
(2016) [86] 

F0 and SoE 

(MFCC+CFCCIF) 
GMM 0.34 1.66 1.00 6.64 

Alam, et al. 
(2016) [87] 

DFB, DMCC, DLPCC and 

DPSCC 
DNN 1.16 3.21 2.18 12.86 

Massimiliano 

et al.  
(2016) [88]  

Constant Q Cepstral 

Coefficients (CQCCs) 
GMM 0.048 0.462 0.255 1.065 

Soni, et al. 
(2016) [89] 

SBAE + MFCC GMM 0.502 1.83 1.16 7.283 

Bhavsar, et al. 
(2016) [90] 

LP and NLP GMM 0.25 5.00 2.632 23.71 

Patel, et. al 
(2016) [91] 

MFCC + CFCCIFS GMM 0.354 1.49 0.922 5.7 

Qian, et. al 
(2016) [92]  

DNN-based deep features, 

BLSTM-based deep 

features 

LDA 

SVM 
0.00 2.160 1.080 10.7 

Patel, et. al 
(2017) [93] 

S-F interaction features + 

MFCC 
GMM 0.256 4.119 2.18 19.31 

Note: ‘-‘ indicates that the details are not available     

 

 



Chapter 2: Literature Survey 

29 

 

and RPS feature set. This approach achieved 0.025 % EER on vocoded speech 

(known attacks). However, an EER of 40 % was observed on vocoder-independent 

spoof (unknown attacks). 

Very recently, the use of Mel Wavelet Packet Coefficients (MWPC) was explored 

for SSD task [82]. On the development set, these features performed better than 

MFCC, Mel Frequency Principal Coefficients (MFPC) and Cos-phase features. 

However, on the evaluation set, MWPC did not perform better for unknown attacks. 

In this work, the use of SVM and Deep Belief Network (DBN) was used as a 

classifier with SVM performing better than DBN. Simultaneously in [83], a 

comparison of various features was presented and it was observed that spectral 

information in the high-frequency region, dynamic information in speech and 

detailed information related to subband characteristics of speech are considerably 

more useful in detecting spoofed speech. A similar study was reported very recently 

in [84], concluding that higher-dimensional, high-frequency regions and dynamic 

temporal information of LMS, RLMS, IF, BPD, GD, and MGD feature sets proposed 

in [72] were significant for SSD task. Very recently, in [85] the nonlinearity property 

in the speech was explored using the Teager Energy Operator (TEO) and by using 

Perceptual Minimum Variance Distortionless Response (PMVDR) using both GMM 

and DNN classifier. They observed that using large training data as required in 

DNNs does capture some information on the development set. However, not much 

improvement is observed on the evaluation set as spoofing attack can be unknown 

and not also present in the training data. Using the TEO and PMVDR features 

jointly an EER of 0.67 % was obtained for known attacks and 6.04 % for unknown 

attacks and with 27.94 % EER for S10 spoof which is a unit-selection vocoder-

independent spoof.  

In [87], another approach with DNN-based classification system was presented 

where Delta Filterbank spectra (DFB), Delta plus double delta Mel Frequency 

Cepstral Coefficients (DMCC), Delta plus double delta Linear Prediction Cepstral 

Coefficients (DLPCC) and Product Spectrum-based Cepstral Coefficients (DPSCC) 

features were used. A DNN is trained on the spoofing challenge training and for each 

feature, posteriors and Bottleneck Features (BNF) are generated. The DFB-BNF, 

DMCC-BNF, DLPCC-BNF, DPSCC-BNF and DPSCC-DNN systems gave 0.013 %, 

0.007 %, 0.0 %, 0.022 %, and 1.00 % EER, respectively, on the S1-S9 spoofing attacks 
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and 32.28 %, 33 %, 32.69 %, 21.47 % and 12.86 % EER for S10 spoof, respectively. 

Very recently [92], to incorporate deep learning into spoofing detection outputs from 

the hidden layer of various deep models are employed as deep features for spoofing 

detection. The DNN-based frame-level and Recurrent Neural Networks (RNN)-based 

sequence-level feature extraction framework are explored. The EER of the best deep 

feature system achieves nearly 0.0 % for all vocoder-based S1 to S9, and gets 1.1 % 

on S1-S10, which is very promising performance in ASVspoof2015 Challenge task. 

 

Figure 2.3: Summary of literature of SS and VCS spoof detection 

Very recently, the authors in [88] proposed feature set based on Constant Q Cepstral 

Coefficients (CQCCs) which ensure a constant Q factor across the entire spectrum 

resulting in a higher frequency resolution at lower frequencies while providing a 

higher temporal resolution at higher frequencies. This reflects more closely the 
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human perception system. This work has reported the least EER of 1.0 % on the S10 

spoof. It is demonstrated that the performance of SSD system is more dependent on 

the particular features used rather than on the particular classifier.  

2.4.3 Countermeasure for Signal Degradation Conditions 

Amongst the several approaches used for spoofed speech detection, the results are 

evaluated under clean condition. To mimic the real life scenario, the research has 

been directed towards evaluating the performance of countermeasures under noisy 

environments. Table 2.3 presents a summary of the work done for spoof detection in 

noisy environments.  

Table 2.3: A summary of the various countermeasures used for spoof detection under noisy 

conditions on the ASV spoof 2015 challenge database 

Study Type of Noise SNR (dB) Feature Sets Classifier 

Tian, et al.  
(2016) [94] 

White, Babble,  

Volvo, Street, Cafe 
20, 10, 0 LMS RLMS IF BPD GD, MGD MLP 

Tian, et al.  
(2016)  [95] 

White, Babble,  

Volvo, Street, Cafe, 

reverberation  

20, 10, 0 LMS RLMS IF BPD GD, MGD MLP 

Hanilci, et al.  
(2016) [96] 

White, Babble, Car 20, 10, 0  
MFCC, IMFCC, SCMC,  

MHEC, RPS MGD, Cos-Phase 
GMM, PLDA 

Patel, et al. 
(2017) [93] 

White, Babble, Car 20, 10, 0 S-F interaction features GMM 

 

In [94], a preliminary investigation of spoofing detection under additive noisy 

conditions with Multilayer Perceptron (MLP) classifier and features as in [72] is 

presented. It describes an initial noisy database developed by artificially adding 

background noises at different Signal-to-Noise Ratio (SNR) to the ASVspoof 

challenge 2015 database. The work shows for a model trained on clean data, the 

system performance degrades significantly in noisy conditions. They conclude that 

the systems performance differs with the type of noise. The phase-based features 

were found to be more noise robust than the magnitude-based features. In an 

extended study, reverberation noise with different reverberation time is considered 

[95]. It is observed that the reverberation noise does not affect the performance of 

the SSD system to a large extent. In [96], on the similar grounds, using seven 

acoustic feature sets (i.e., 4 spectral magnitude and 3 spectral phase related 

features), it was observed that the countermeasures break down even at relatively 

high SNRs and fail to generalize for spoof detection even with speech enhancement. 

A simple GMM back-end was found to be relatively best. Although the performance 
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of features depends on the type of noise, on an average, the MFCCs and Subband 

Spectral Centroid Magnitude Coefficients (SCMCs) performed best. The details of S-

F interaction features shown in Table 2.3 are given in the next sub-Section. 

2.4.4 Contributions in the Thesis in Relation to the Literature 

This sub-Section discusses the contribution in the thesis relative to the literature (as 

shown by dotted regions in Figure 2.3). To compare the performance of the features 

proposed in this thesis, the results shown in Table 2.2 are reported for spoof-

dependent threshold. In this case, the EER is estimated for natural vs. each of the 

spoofing algorithm and then the average EER is taken as the mean of all the EERs. 

However, in the rest of the thesis for the ASV spoof challenge database we use 

threshold independent approach to estimate the EER (as discussed in Chapter 3). 

This is a much realistic case and it has also been used and accepted as a 

performance measure in the recent ASV spoof 2017 challenge [22].  

For the challenge, as discussed in Chapter 4 of the thesis, the Cochlear Filter 

Cepstral Coefficients plus Instantaneous Frequency (CFCCIF) features were 

proposed with 0.4 % EER for the known attacks and the relatively best EER of 2.013 

% for unknown attacks [81]. Further improvements were observed on using 

CFCCIFS that gave an average EER is 0.922 % with 5.7 % for the S10 spoof which is 

an improvement over the MFCC-CFCCIF system [91]. Thereafter, on the lines of 

using DNN-based approach, an Autoencoder (AE) network that embeds the subband 

processing of the human ear, i.e., Subband Autoencoder (SBAE)-based features is 

used for the SSD task [89]. These features after fusion with MFCC gave very less 

EER of 7.28 % for the S10 spoof (details of this approach is given in Chapter 4). In 

[86], a source-based approach was presented that used F0 and Strength of Exciation 

(SoE) features along with score-level fusion with MFCC and CFCCIF features to 

achieve as low as 6.6 % EER for S10 spoof. Other source-based approch includes a 

modification to the existing LP-LTP approach [76] that uses Non-Linear Prediction 

(NLP) to detect spoofed speech [90] (details of these approaches are presented in 

Chapter 5). In [93], the use of S-F interaction based features was proposed for the 

spoof speech detection task. This makes use of the residual difference between the 

estimated glottal flow waveform and it’s fitted LF-model. The residual is represented 

in both time and frequency domain. As shown in Table 2.2, the S-F interaction 
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features with MFCC obtain an EER of 0.25 % for known and 4.119 % for unknown 

attacks. The time-domain residual and shape features were found to be robust to 

signal degradation conditions and gave promising results than MFCC. The time-

domain features are at much lower frequency as a result of which the degradation 

due to high frequency component is less. It is observed that the frequency-domain 

features are highly sensitive to noise and hence, not suitable for spoof detection in 

noisy conditions (details of this approach is given in Chapter 6). 

2.5 Countermeasures in Conjunction with ASV Systems 

To prevent the impostor from deceiving the ASV systems, research has been directed 

in developing countermeasures and jointly using it with the ASV systems to detect 

SS or VCS spoofed speech. In the joint ASV and spoofing detection approach, a 

baseline ASV system is developed with a certain % EER. Thereafter, the zero-effort 

impostors are replaced with the spoofed speech and the % FAR is noted at the % 

EER of the baseline ASV system. The countermeasures are then used with the ASV 

system to achieve lower % FAR than that obtained with spoofing. Table 2.4 shows 

the summary of ASV performance integrated with spoofing countermeasures.  

Most approaches available in the literature to detect synthetic speech rely on 

detecting and dealing with artifacts specific to the synthesis or spoofing algorithm. 

Generally, countermeasures are designed based on the observation that the 

synthetic speech tends to have less dynamic variation in the speech parameters than 

those of natural speech signal. In [97], use of Intraframe Differences (IFD) as a 

discriminative feature was proposed. The reason behind this is that in the HMM-

based speech synthesis system, the speech parameter sequence is generated to 

maximize the output probability and hence, the variation in likelihood will be less 

than that of the natural speech signal. Without any prior synthetic speech 

discrimination, the FAR was as high as 86 % which reduced to 0.69 % by using IFD 

features. This method detects well HMM-based synthetic speech generated using 

[98]. In [99], higher-order Mel Cepstral Coefficients (MCEPs) are used to detect 

HMM-based synthetic speech. The variance of 14th to 24th order coefficients was used 

as a discriminative system. The higher-order cepstral coefficients are smoothed 

during HMM model parameter training and synthesis process. Therefore, the higher- 

order coefficient of synthetic speech reveals less variance than that of the natural 
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Table 2.4: A summary of the various countermeasures used for SS and VCS spoof detection 

jointly with the ASV systems prior or post verification  

Study 
# of 

Speakers 

ASV 

System 

Spoof 

Type 

Before 

Spoofing 
After Spoofing With CMs 

% EER %EER %FAR %EER %FAR 

Satoh, et al. 
(2001) [97] 

20 GMM HMM-SS 0.46 27.1 86.4 - 0.69 

Chen, et al. 
(2010)  [99] 

14 GMM-UBM HMM-SS 6.10 - 99.2 0.00 - 

De Leon, et al. 
(2012) [100] 

WSJ 

283 

GMM-UBM HMM-SS 0.28 - 86 - 2.5 

SVM HMM-SS 0.00 - 81 - 2.5 

Wu, et al. 
(2012) [101] 

NIST ‘06 

504 

GMM-JFA 
GMM-VCS 

3.24 
7.61 17.36 - 0.00 

USS-VCS 11.58 32.54 - 1.64 

PLDA 
GMM-VCS 

2.99 
6.77 19.29 - 0.00 

USS-VC 11.18 41.25 - 1.71 

Alegre, et al. 
(2012)  [102] 

NIST ‘04 

201 

FA_m1 Artificial 4.80 64.2 - 0.00 - 

FA_m2 Artificial 4.20 57.7 - 0.00 - 

Alegre, et al. 
(2013) [103] 

NIST’06 

298 
GMM-UBM 

VCS 

6.00 

- 77 - 6.2 

SS - 82 - 0.8 

Artificial - 91 - 0.0 

Alegre, et al. 
(2013)  [104] 

NIST’06 

298 
GMM-UBM 

VCS 

3.00 

22 55 - 4.10 

SS 10.4 11 - 0.00 

Artificial 7.6 4.8 - 0.00 

Z. Wu, et al. 
(2015) [105] 

NIST ’06 PLDA 
VCS(GMM) 

0.55 - ~14.17 - 
0.00 

VCS (FS) 1.42 

Dhanush et al. 
(2017) [106] 

SAS 
i-vector  

JFA 
S1-S10 - 27.68 - 

5.4 

4.98 
- 

CMs=Countermeasures,  ‘-‘ indicates that the details are not available 

 

speech signal. However, this method also uses the prior knowledge that the spoofing 

attack might be from the HMM-based system and thus, the HMM parameters will 

already be smoothed leading to less variance. In an earlier work [67], experiments 

were carried using the WSJ corpus that consists of 283 speakers and using GMM-

UBM and SVM  using Gaussian supervector-based ASV systems. Using a state-of-

the-art HMM-based speech synthesizer, the FAR was shown to increase from 0.35 % 

to 92 % and 96 % for the GMM-UBM and SVM systems, respectively. In this work, 

after the verification process, classification of SS speech is performed using the RPS 

feature set. The RPS feature detected natural and SS with an accuracy of 95 % and 

88 %, respectively. In an extended work reported in [100], with better ASV systems 

and using SS detection prior to verification, it was observed that with RPS features 

even after spoofing the FAR of the ASV systems were as low as 2.5 %. The use of 

RPS is generally due to the acoustic differences between vocoders used in generating 

speech and natural speech. It should be noted that the approaches considered in the 

detection of HMM-based SS were based on the prior knowledge of a specific HMM-
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based speech synthesis system. The same countermeasures may not generalize well 

to other spoofing attacks generated with other algorithms. 

Considering the countermeasures developed for voice conversion spoof, an initial 

work was carried out using the standard NIST database [101]. In this work, state-of-

the-art ASV systems based on GMM-JFA and PLDA are considered with % EER of 

3.24 and 2.99, respectively. The authors use their previous work where they consider 

the fact that for both the GMM-VCS and USS-VCS, the phase information is lost in 

the vocoder during the synthesis step [68]. Hence, phase-based features would be 

effective in detecting the voice converted speech. In [68], the DCT of the MGDF, i.e., 

MGDF-phase is used as features. With MGD-phase features, it was observed in [101] 

that after spoofing, the % FAR of the GMM-JFA and PLDA system reduces from 17-

19 % to 0.00 % for GMM-VCS spoof and from 31-43 % to 1.6-1.7 % for USS-VCS 

spoof, respectively. 

Major work in the development of countermeasures for voice conversion speech 

was carried out by F. Alegre [102]- [104]. The artificial signal attack shown in Table 

2.4 is a modified of the voice conversion algorithm [102]- [104]. The work in [102] 

uses a GMM-UBM system and Factor Analysis (FA) system developed using Linear 

Frequency Cepstral Coefficients (LFCCs) with static and delta features (m1) and 

static, delta and delta-delta features (m2). For the FA-based ASV systems developed 

with m1 and m2 features, on spoofing with VCS, the % EER increase to as large as 

64.2 % and 57.7 %, respectively. In this work, it is observed that adding dynamic 

(i.e., transitional) features makes the ASV system more robust. Here, anti-spoofing 

measures based on higher-level features and voice quality assessment features were 

used which decreased the % EER to 27 % and 0.00 %, respectively. For GMM-UBM 

baseline systems, similar results are reported using countermeasures. Thereafter, in 

[103] F. Alegre et al. proposed a novel countermeasure using LBP that is based on 

the hypothesis that process involved in generating the spoofed speech might have 

tampered the spectro-temporal texture as present in natural speech. An LBP 

operator is a 3x3 kernel that assigns a binary code to each pixel based on the 

intensity of the surrounding pixels. The LBP analysis applied on cepstrogram 

(concatenated LFCC) into a textrogram [26]. The LBP countermeasure is based on 

concatenated histogram from the pixel values across each row in the textrogram. The 

histograms are normalized and concatenated to form a supervector and feature set 
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for spoof detection. With LBP features, the % FAR for ASV system dropped down to 

0.8 % from 82 % for SS spoof and to 6.2 % from 77 % for VCS spoof. The LBP features 

were used in [104] with an SVM-based classifier and better ASV system with 3 % 

EER as compared to 6 % in [103]. After using LBP-based countermeasures, the FAR 

was reduced to 0.00 % for SS spoof and 4.10 % for VCS spoof. It should be noted that 

rather than being designed for a particular spoof, the LBP is a more generalized 

countermeasure.  

Recently, VCS anti-spoofing was performed using back-end models jointly with 

SV in the i-vector space [105]. This work focuses on both matched and mismatched 

conditions (i.e., known and unknown conditions of spoofing attacks). The authors 

proposed the use of speaker verification jointly with the anti-spoofing in the i-vector 

space, which allows possible integration of the two without using any fusion 

techniques. The detection was carried out on the NIST 2006 speaker recognition 

evaluation set. The % FAR after using countermeasures was as low as 10 times than 

that before using the countermeasures. In [107], two approaches of integrating the 

ASV system and the countermeasure, i.e., cascaded and parallel are reported. The 

fusion of several countermeasures is considered to offer better spoof detection. The 

cascaded combination of ASV and countermeasures greatly reduces the FAR 

whereas the FRR relatively unaffected. The parallel integration of ASV and 

countermeasures gives better performance when subjected to spoofing attacks. 

However, the performance deteriorates in the absence of spoofing [107]. Several 

results are obtained on the ASV spoof challenge database separately for male and 

female speakers and using different ASV systems and countermeasures. Recently, a 

factor modeling approach has been proposed, where the spoof variability subspace 

and speaker variability subspace are jointly trained [106]. The i-vector and JFA 

methods are used.  The score-level fusion of ASV system and spoof detection system 

is considered which gives better performance than standalone ASV systems. On the 

SAS database for the S1-S10 spoof, an average of 8.41 % EER is reported by score-

level fusion than the 21.85 % EER obtained by the standalone ASV system. The use 

of i-vector and JFA methods decreases the EER to 5.4 % and 4.98 %, respectively.  

The studies presented in this Section indicate that there exist various counter-

measures in the literature to detect SS and VCS attacks. These countermeasures are 

evaluted by considering the effect on % EER or % FAR before and after spoofing. 
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Most of the countermeasures when used with ASV systems showed improvement in 

performance even in presence of spoofing. Initially, most of these countermeasures 

were designed and tested for known attacks, however, the research has been directed 

to unknown attacks due to the availability of ASV spoof challenge and SAS database. 

The development of countermeasures in conjunction with the ASV system is the 

immediate application of spoof detection task and is an upcoming research area. 

2.6 Research Issues in SSD Task 

Based on the literature presented in this Chapter about spoofing attacks (with and 

without ASV systems for known and unknown attacks), various research issues or 

gaps in understanding of the SSD task can be bought out. The major research issues 

prior to the development of the SAS database and the ASV spoof challenge were the 

designing of the features given that the type of attack is known. Other research 

issues are as follows: 

• Generally, vocoder-based spoofs are considered in the spoofing database, 

which is not the case always. With the development of phase-aware vocoders 

(such as AHOCODER [108]), the phase-based features need modification. 

Thus, features other than phase-based needs to be explored. 

• Majority of the features such as group delay-based features are generally 

motivated by other speech processing applications such as speech recognition, 

formant estimation, epoch extraction, etc. However, in this case, the features 

need to be designed specifically for the SSD task.  

• Either system-based features or source-based features are generally used 

without directly using the source-system interactions that indeed is a vital 

part of the human speech production mechanism.  

• Generally, for spoof detection, the FAR is considered. However, the features 

should have lower FRR when used with ASV systems to provide better user 

convenience by lesser rejections of genuine trials. 

• Limited work is carried to evaluate the performance of the features in terms 

of robustness to signal degradation and channel mismatch conditions. 

• Very few studies consider the real case scenario wherein only natural speech 

will be available and corresponding spoofed speech needs to be generated to 

build models for spoofed speech. 
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Considering the various research issues that exist in spoof speech detection task, 

in this thesis, we address the issue of tackling unknown vocoder-based spoof with 

less % EER. With the development of features that consider the differences between 

natural and spoofed speech in terms of speech production mechanism, the detection 

of non-vocoder spoof has also been done to a great extent. Both the source-based and 

system-based features that explore the speech production are considered. We explore 

the features derived from the nonlinear interaction between the source and system 

to obtain better detection performance. The S-F interaction-based features gave 

promising results under signal degradation or noisy conditions. In addition, we 

conduct preliminary experiments to evaluate the performance of the 

countermeasures to channel mismatch conditions. The features considered in this 

work obtain less % FAR and % FRR, enabling its use both as a stand-alone detector 

and with the ASV systems. 

2.7 Chapter Summary 

This Chapter described details of the various spoofing attacks, motivation and 

literature towards choosing SS and VCS spoof detection for the security of the ASV 

systems. The literature shows that previous studies were generally based on known 

attack detection, however, with the ASV spoof challenge database, the work in 

unknown spoof detection has matured. The various issues with current approaches 

are discussed that needs to be addressed in near future. In the next Chapter, the 

spoofing techniques and spoof detection system along with the various databases 

used in this thesis, classification system and the performance measures for the 

evaluation of countermeasures in the SSD system is discussed.   
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                Chapter 3.

Spoofing Techniques and Spoof 

Detection System 

3.1 Introduction 

This Chapter discusses the two main spoofing techniques used in this study, i.e., 

speech syntheis and voice conversion. The technical details for developing Text-to-

Speech (TTS) systems and voice conversion system are discussed along with the 

different aspects of Synthetic Speech (SS) and Voice Converted Speech (VCS) that 

contributes to unnaturalness in the speech signals. The main motivation behind this 

is to understand and analyze the differences between natural vs. spoofed speech. 

Next, the overall arhictecture of the spoof speech detection system along with each of 

the individual blocks are discussed. This includes the various databases that have 

been used in this study, i.e., the ASV spoof 2015 challenge database, two evaluations 

of the Blizzard Challenge, one in English (Blizzard Challenge 2012) and another in 

Indian Languages (Blizzard Challenge 2014). Thereafter, as a part of the 

architecture, the GMM-based classification system is discussed along with Detection 

Error Tradeoff (DET) curve and Equal Error Rate (EER) as performance measures.  

3.2 Details of Spoofing Techniques 

In this Section, we present a brief overview of the two machine-generated spoofing 

techniques used in this study, i.e., TTS synthesis and voice conversion. 

3.2.1 Text-to-Speech (TTS) Synthesis 

Speech synthesis is generally referred to as TTS synthesis technique to generate 

intelligible and natural-sounding speech for any given input text. The two main TTS 

techniques include the Unit Selection Synthesis (USS) and Statistical Parametric 

Speech Synthesis (SPSS) approach using Hidden Markov Models (HMMs). Recent 

advances are also made in the field of using DNN [109] and RNNs [110] for speech 
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synthesis. However, the available standard databases use the USS and HMM-based 

techniques and hence, we discuss their brief details in the next sub-Section. 

3.2.1.1 Unit-Selection Synthesis (USS) 

The USS system is developed by the Festival framework as shown in Figure 3.1. A 

detailed documentation of the development of USS-based TTS system can be found 

in [111]. This system has the following modules: 

Text Processing: The text processing module includes handling the input text or 

processing the text collected from several online sources. The collected text is cleaned 

and several non-standard symbols, words, punctuations marks, abbreviations, tags, 

smileys, etc. are removed or converted to their standard form.  

Phonetic Analysis: The phonetic analysis refers to the generation of a sequence of 

speech sound units from the text. This can make use of a dictionary as in the case of 

English, where the mapping from orthography to pronunciation is not always 

straightforward. In addition, language rules, i.e., Letter-to-Sound (LTS) rules can 

also be used as done in Indian languages. 

Prosodic Analysis: Prosodic analysis includes using intonation and duration 

modeling for the given text [112].  

Speech Generation: The speech generation can be done using rule-based, 

concatenative or by using a statistical approach. In general, the Festival framework 

uses phoneme as the basic speech sound unit [111], which can be modified to other 

speech sound units as well. In cluster unit-selection, speech sound units can be 

clustered based on acoustic distance. Each of the speech sound units in the data is 

clustered into similar acoustic groups based on the information at synthesis time, 

i.e., phonetic context, prosodic features and other higher-level features such as the 

position of a word, stress, accent, etc. To cluster units, an acoustic measure is defined 

in [32], [113] from acoustic features such as Mel Frequency Cepstral Coefficients 

(MFCC), fundamental frequency (F0), and delta cepstrum. The acoustic distance 

between the two units belonging to the same class and of different frame length is 

defined by a weighted Mahalanobis distance metric [113]. This measure gives the 

mean weighted distance between units with the shorter unit interpolated to the 

longer unit. In this context, Classification and Regression Trees (CART) are used to 

represent the clusters in Festival framework. The CART decision tree for each type  
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Figure 3.1: Block diagram of USS-based TTS synthesis system using the Festival framework. 

Adapted from [114]. 

of speech sound unit minimizes the distance of the sub-clusters at that point in a 

tree. The leaves of this decision tree are the list of candidate units which may be 

picked during concatenation, i.e., every acoustic unit in the database is associated 

with its symbolic context. Figure 3.2 shows an example of the decision tree for 

mapping context to units. The CART trees can be built based on a different feature of 

speech unit such as the position of speech unit in word, phrase, sentence, context of 

the speech unit, type of speech unit, etc. The questions are split based on the context 

of the current and neighboring units. Acoustic observations at the resulting leaves 

(i.e., context-dependent units) are the basic synthesis units for an input context. At 

run time, the symbolic context is extracted from the input text, the tree is traversed 

and once a leaf is reached, the members are extracted as the candidates. 

 

Figure 3.2: Illustration of a decision tree considering left and right context. After [114]. 

During synthesis, it is required that the best sequence of units from all the 

possibilities in the database is selected and concatenated. The selection comprises of 

two parts, namely, 

• To find units in the database which best match this target unit,  

• To find units which join together smoothly. 
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In the USS framework, to search for the best possible sequence, Hunt and Black 

suggested a concept of a target cost T(ui,st), i.e., how closely a database unit, ui, is 

associated with the desired target unit, st, and a join cost J(ut,ut+1), i.e., how 

effectively two adjacently selected units are joined together. For each of the target 

unit in the database, the selection algorithm initially considers a list of candidate 

units, i.e., ��. The candidate units which minimizes the sum of target cost and join 

cost is then selected as the final choice. The candidate speech units Û are searched 

that minimizes the following expression [32]: 
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The waveforms of these speech sound units are then concatenated to produce 

synthetic speech. A Viterbi search is used to estimate the optimal path to obtain the 

lowest possible cost. The input text utterance is first parsed into a sequence of 

largest speech sound units (i.e., first syllable and then phone) present in the list of 

available units. Even with a large database, all the possible units in a language 

cannot be covered and only the unit present in the speech database is accessible for 

synthesis. Therefore, to synthesize all possible text, one instance of each sound unit 

must be available. However, unlike the number of phones, the numbers of larger 

units are not fixed. Therefore, in order to synthesize missing units, it is possible to 

substitute the missing unit with that of a similar unit. For example, if diphone /d-ih/ 

were missing, it could be replaced by a similar diphone of /d-iy/. This substitution 

may be perceived by the listener or may even result in recognizing a wrong word. An 

alternative to this is known as unit back-off where new units are made from the 

existing units. Instead of unit substitution, the second half part of /t-ih/ could be 

used with first part of /d-iy/ to create /d-ih/. That is, using the half-phone case [115].  

The Festival framework uses pronunciation rules for converting the text into a 

sequence of speech sound units. After obtaining the units from the parser, the 

linguistic analysis module generates phonetic and related contextual features linked 

with each unit. If the prosodic model is built during voice building, then the target 

prosody is generated for the text by the prosodic analysis module. The synthesis 

generation stage is briefly described here. The detailed description including speech 

prosody modification can be found in [114].  
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3.2.1.2 Hidden Markov Model (HMM)-based Speech Synthesis System (HTS) 

This HTS synthesis framework is divided into training part and synthesis part as 

shown in Figure 3.3. Brief descriptions of these blocks are given as follows [116]. 

 

Figure 3.3: Basic block diagram of HMM-based TTS synthesis system. Adapted from [116]. 

Training part: The spectral and excitation parameters are extracted from speech 

database. The MFCC along with their dynamic features are generally taken as 

spectral (i.e., vocal tract system) parameters and log(F0) and it’s dynamic features are 

taken as excitation (i.e., speech source) parameters. These features are modeled by 

context-dependent HMMs in a unified framework [33]. 

Synthesis part: Given a test sentence which is to be synthesized, its corresponding 

utterance is converted to context-dependent phoneme sequence. According to the 

phoneme sequence, utterance HMM is constructed by concatenating context-

dependent HMMs followed by determination of state duration of HMMs. Thereafter, 

using speech parameter generation algorithm, spectrum and excitation parameters 

are generated [117]. Finally, the speech waveform is generated using Mel Log 

Spectrum Approximation (MLSA) filter [118].  

3.2.2 Voice Conversion 

Voice conversion technique modifies the speech spoken by one speaker (i.e., source 

speaker) to give an impression that it was spoken by another speaker (i.e., the target 

speaker) [38]. Majority of the existing voice conversion systems deal with converting 

the spectral features of the source to match that of the target. However, prosodic 
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features, such as F0 dynamics and rhythm, also contain cues of speaker identity. 

Similar to HMM-based speech synthesis, the voice conversion framework is also 

divided into training part and synthesis part as shown in Figure 3.4.  

 

Figure 3.4: Basic block diagram of the voice conversion framework. Adapted from [119]. 

Training part: In the training part, the system is given a parallel speech (text-

dependent) or non-parallel speech utterances (text-independent) from the source and 

target speaker. Popular speech representations are based on the source-system 

model where the glottal airflow acts as an excitation signal in the form of the pulse 

train (for voiced sounds, the glottis closes quasi-periodically) and noisy signal (for 

unvoiced sounds). The voiced excitation is characterized by an F0 that is determined 

by the oscillation frequency of the vocal folds. The vocal tract acts a resonator cavity 

(having its resonances at formant frequencies) and does the job of spectral coloring of 

the excitation source. For the voice conversion task, features such as Linear 

Prediction Coefficients (LPC), Line Spectral Pair (LSP), Mel Cepstral Coefficients 

(MCC), Speech Transformation and Representation using Adaptive Interpolation 

weiGHted specTrum (STRAIGHT) analysis/synthesis framework, etc. are used [119]. 

In this phase, acoustic features are extracted both from source and target speakers. 

The acoustic representation of the utterances is usually at the frame-level. The 

representation are said to be local if they refer to a feature of a single frame (e.g., 

instantaneous pitch, energy, and spectral envelope) and global if they relate to an 

entire utterance or model of the speaker (means and standard deviations of F0 or 

energy measurements, or estimates of the glottal pulse and vocal tract) [120]. Using 

the aligned features, a mapping function is learned by training the model.  

Synthesis part: In this phase, the extracted speech parameters of source speaker 

are mapped to get target-like speech parameters. This phase is controlled by a 
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conversion rule obtained by a training phase. The modified parameters are used to 

reconstruct the new speech which shall have the characteristics of the target voice as 

well. Here, we discussed very briefly the voice conversion framework. The detailed 

description of the same using various algorithms will be discussed in Section 3.4.1. 

3.2.3 Evaluation of Speech Quality 

To maintain naturalness and intelligibility is the main objective of any speech 

synthesis or voice conversion technique. The voice quality evaluation of synthesized 

or converted speech is mainly done by subjective and objective measures. Next, we 

briefly discuss these measures to show that there are various approaches to study 

how the degradation in speech synthesis and voice converted speech are evaluated. 

This will possibly assist in using this knowledge for the design of countermeasures.  

3.2.3.1 Subjective Evaluations  

The subjective evaluation includes listening tests samples (by at least 20-25 subjects) 

where the synthetic or converted speech is scored by the listeners (subjects) to judge 

the naturalness, intelligibility or speaker similarity.  

Mean Opinion Score (MOS): The MOS score evaluation is used both in TTS and 

voice conversion. In the MOS test, subjects rate the synthesized speech on a scale of 

1 to 5 to evaluate naturalness. As suggested in ITU-T P.85 [121], score 1 stands for 

bad quality and 5 means excellent quality. The mean of all opinions from all the 

subjects is considered as the score for a given TTS system. Other factors that can be 

considered for evaluation are intelligibility, pleasantness, listening effort, 

articulation, pronunciation, speaking rate, overall impression, etc. [121].  

Degradation MOS (DMOS): In DMOS the voice quality is evaluated with reference 

to the original natural speech signal. The subjective score obtained for synthesized 

speech is normalized to that of the natural speech signal. This subjective MOS is 

called as degradation MOS (DMOS). The listeners compare the synthetic speech 

quality with the reference natural speech to assess the degree of degradation. Hence, 

DMOS measures voice quality relative to the natural speech signal.   

Semantically Unpredictable Sentences (SUS): It is used to evaluate the 

intelligibility of TTS system at word-level and sentence-level. The SUS test 

sentences are syntactically normal and semantically abnormal (with no semantic 
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dependencies between words to contribute what is emphasized at word-level). For 

example, “He is in a notebook with shoes”. The listeners write whatever is heard in 

the sentence. In SUS test, the intelligibility of words without the sentence context is 

tested and this test avoids listeners to write an expected word. A general algorithm 

that discusses the process of SUS tests is given in [122]. 

Preference Tests: In these tests, subjects decide among systems depending on the 

questions asked. For example, “which system do you prefer in naturalness?” or 

“which system do you prefer in intelligibility?” Examples of such tests include AB 

tests and ABX tests. In AB test, during the listening task, a pair of stimuli of two 

different systems A and B is presented and subjects are asked to give preference. In 

ABX test, one reference stimuli X (corresponding to natural speech signal) and a pair 

of stimuli A and B are presented and subjects are asked to judge which of A or B is 

closest to X in terms of naturalness, etc. 

In [123], instead of evaluating the quality of TTS systems, the human listening 

tests were carried out for the spoof detection task (detailed discussion of this is 

presented in Section 7.2.4). Several issues exist in subjective tests, such as the time 

and cost involved in running listening tests, availability of volunteers for listening 

tests (there may be a need to hire paid subjects). For meaningful statistics, more 

subjects are required which is difficult, time-consuming and also very costly. An 

important issue is that these tests are not always reproducible, i.e., the results may 

not be similar when the same test is repeated with the same listener. This is 

because, there exist varying cognitive factors such as listener’s attention, personal 

feelings, not knowing the objective of the test, listening environment, not listening to 

the entire sentence, listeners’ mood, etc. Current TTS and voice conversion systems 

are flexible in generating voices, therefore, every time a new voice is generated; the 

entire listening tests needs to be repeated again. The listening tests may not 

contribute much about technical details like missing attributes and lacking features 

in the speech signal and hence, the use of objective measures is also considered.  

3.2.3.2 Objective Evaluations 

Objective tests are used for simplicity and cost effectiveness. They have more 

shortcomings than subjective measures. In fact, they correlate less with subjective 

measures. Objective measures offer a measurement of voice quality by using 
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relevant speech signal processing algorithms. The dictionary meaning of objective is 

“not influenced by personal feelings or opinions” or “based on facts”. Objective 

evaluations, unlike individual personal opinion, give a consistent evaluation. It also 

does not require time and cost for evaluation. However, there is no universally 

accepted objective measure for evaluation of naturalness and intelligibility. 

Generally, distance-based measures are used both in TTS and voice conversion.  

Distance-based Measures: The Mel Cepstral Distortion (MCD) is generally used 

for speech quality assessment with respect to the natural speech signal [124]. The 

extracted speech features of reference and test utterances with different duration are 

aligned by Dynamic Time Warping (DTW) at frame-level [125]. The MCD between 

the Mel-cepstra of synthetic or voice converted speech and the natural reference 

speech for (N-dimension of the coefficients) is a Euclidean distance given by [124]: 
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where MCx(i,k) and MCy(i,k) are the ith coefficients of natural and test speech, 

respectively. There exist other likelihood measures which include using HMM 

models instead of TTS systems. However, these are not found to work well and are 

known to be of limited use [126]. It is to be noted that, the distance estimated 

between machine-generated speech and natural speech is not the perceptual distance 

that we perceive as listeners.  

Measures of Speech Prosody: Prosodic features are difficult to incorporate into 

any system and hence, prosodic-based objective measures would be highly effective. 

Prosody features include F0 and its statistics, durational features, etc. For HTS-

based systems, the quality of F0 is measured by Root Mean Square Error (RMSE) of 

log(F0) generated by HTS system and natural speech signal. This measure checks 

variations that govern naturalness of speech. Other prosodic features include 

Peakedness Ratio (number of segments having pitch changes with reference to 

threshold), Drop Ratio (relative number of declining F0 contributing positively to 

perceived naturalness) and Variability Ratio (mean derivative of F0 per voiced 

segments gives temporal variations in F0 over time) [126], [127].  

Natural speech has different acoustic and prosodic properties than synthetic or 

converted speech and hence, using objective measures based on these properties are 
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found to be useful. Thus, countermeasures for spoof detection can be proposed on 

these lines to identify the differences that contributed to the loss of naturalness and 

intelligibility in a synthesized speech. It is not clear how to define naturalness of 

speech signal, so both source and system features can be explored for distinguishing 

the naturalness of machine-generated speech from that of the natural speech signal.  

3.3 Unnaturalness in TTS and Voice Converted Speech 

It is known that the both TTS and voice conversion techniques lack naturalness. 

There are several factors that may contribute to the unnaturalness in machine-

generated speech, a few of them are discussed in the next sub-Section. 

3.3.1 Unnaturalness in USS-based TTS Synthesis System 

Generally, USS-based TTS systems are known to be highly natural due to the direct 

concatenation of natural speech sound units. However, at times, the USS-based 

speech sound highly unintelligible due to several issues as mentioned below: 

• Labelling of speech sound units: Labeling is a crucial step in USS voice 

building. Manual labeling requires a huge amount of time and efforts. In 

addition, manual labeling is very subjective. Automated labeling tools are 

available, however, not accurate enough. It is observed in [128], that fricative, 

trills and nasal sounds are highly prone to labeling errors. That is, the high 

energy of fricative sounds and the transient-like energy of trills sounds tend 

to give spurious or miss boundaries during speech segmentation task. Hence, 

the labeling will be inaccurate and this will severely affect the quality (in 

terms of overlapping sounds) of the unit-selection TTS voice.  

• The discontinuity at the joints: Due to the concatenation of speech sound 

units (such as phoneme, diphone, syllable, etc.), the synthesized speech may 

have glitches due to abrupt joints. Although the speech sound units are 

selected as per minimum cost criteria, the joint needs to be smoothed in order 

to avoid glitches while hearing.  

• Linear phase mismatches at the joints: As the concatenated speech sound 

units are recorded at various sessions, linear phase mismatches (both due to 

the excitation source and vocal tract system) may occur in USS voices which 

may be perceived during listening [129].  
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• Lack of text-dependent speech prosody: In the Festival framework, 

various parameter tuning can be carried out for the articulatory position, etc. 

which might affect the voice quality. The prosody in the text is also an 

important input parameter which if not interpreted correctly will affect the 

units that are chosen for joining the speech sound units. 

3.3.2 Unnaturalness in HMM-based TTS Synthesis System  

The biggest known drawback of HTS-based speech is that it is of buzzy and muffled 

quality. The various factors that may cause quality degradation are as follows [130]: 

• Vocoder quality (parameterization and excitation): Previously, the 

vocoder in HTS was Mel cepstral vocoder with pulse or noise excitation which 

is way too simple than the actual speech production mechanism and hence, 

the synthesized speech sounds buzzy. However, with the development of 

HNM model, mixed excitation source and use of spectral envelope and 

STRAIGHT spectra, much improvement in the quality is observed.  

• Modeling accuracy: It has been observed that there are inconsistencies in 

the training and synthesis procedures, i.e., the relation between the static 

and dynamic features are ignored in the training stage, while they are 

considered in the synthesis stage. In addition, with the development of 

Hidden Semi-Markov Model (HSMM), the inconsistency in the state duration 

modeling is being eliminated.  

• Over-smoothing: The HTS synthesis is prone to over-smoothing of spectral 

parameter trajectories. The Maximum Likelihood (ML) parameter generation 

provides smooth trajectories and thus, the utterance-level variance of each 

parameter trajectory is significantly reduced compared to the original 

recordings, resulting in muffled speech. To eliminate this, several approaches 

like post-filtering to the enhance formant contours are used. In addition, the 

use of Global Variance (GV) is explored.  

3.3.3 Unnaturalness in Voice Conversion System 

For voice conversion, successful identity conversion is important. However, for 

spoofing, we are interested in naturalness which is at times deteriorated due to 

following reasons [131]:  
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• Overfitting: In GMM-based voice conversion, the overfitting can be due to 

training phase or when the mapping function (to convert source speaker’s 

voice to that of target speaker) is estimated. There have been several 

approaches such as GMM with diagonal covariance matrices and Partial 

Least Squares (PLS) for regression estimation. 

• Over-smoothing: The over-smoothing problem can occur both in time and in 

the frequency-domain. In the time-domain, the converted feature trajectory is 

much smoothened than the original target feature trajectory. Even in voice 

conversion, GV can be used to compensate for the reduced variance of the 

converted speech. In the frequency-domain, over-smoothing causes loss in 

finer details of the spectrum and broadening of the formants (i.e., larger -3dB 

bandwidth) and can be eliminated by post-filtering or combining the 

frequency warped source spectrum with the GMM-based converted spectrum 

to improve the quality of speech [131].  

• Time-independent mapping: The GMM-based method converts each frame 

individually and hence, losses the temporal correlation between consecutive 

frames causing discontinuities in feature trajectories and resulting in 

degraded speech quality. Approaches like ML estimation of the spectral 

parameter trajectory are proposed where the static source and target feature 

vectors are extended with first-order deltas and a joint-density GMM is 

estimated and while synthesis both converted mean and covariance matrices 

are used to generate the target trajectory.  

Amongst all the factors considered here for unnaturalness in TTS and voice 

conversion techniques, a basic reason is that it is not possible to exactly mimic the 

speech production mechanism while synthesizing speech. The use of signal 

processing techniques to generate excitation and spectral parameters will leave some 

artifacts in the spoofed speech, which are again different for different spoofing 

algorithms. As discussed in Section 2.5, the use of IFD feature [97] and features 

based on variance of higher-order MCEPs [99] explore the fact that over-smoothing 

is an artifact of the synthetic speech and hence, can be used for the SSD task. Other 

approaches such as using linear prediction based techniques, explore the idea that 

spoofed speech is easily predicted (if generated by a simple linear acoustic model) or 

difficult to predict (due to discontinuity at joints of natural speech units in USS-
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based speech) [76]. This analysis illustrates the need to identify a common artifact in 

the machine-generated speech which will aid in SSD task. 

3.4 Architecture of the Spoof Speech Detection System 

The general SSD system can be divided into database, feature extraction, 

classification and decision making as shown in Figure 3.5. Next, we describe each of 

the standard databases that are used in this study for the spoof detection task. The 

details of the databases and the approach used to develop the spoofing material are 

discussed in detail. Thereafter, the approach used for classification system and the 

methodology of decision making is discussed in the next Sub-Sections.  

 

Figure 3.5: General architecture of spoof detection system used in this thesis. 

3.4.1 Details of Databases 

In this thesis, the ASV spoof 2015 challenge and Blizzard Challenge datasets are 

used. The ASV spoof 2015 challenge database consists of both known and unknown 

attacks [20]. The Blizzard Challenge 2012 database is in English language [24] and 

Blizzard Challenge 2014 database consists of Gujarati and Hindi language [25]. This 

dataset is used to evaluate the robustness of the features to channel mismatch case 

and observe the case of language dependency as well.  

3.4.1.1 ASV Spoof 2015 Challenge Database 

This dataset was provided for the ASV spoof 2015 challenge held at INTERSPEECH 

2015 [20]. The ASV spoof challenge dataset is the subset of the Spoofing and Anti-
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Spoofing (SAS) corpus which is the first such generalized and statistically 

meaningful dataset containing various spoofing attacks [19]. The database includes 

both speech synthesis and voice conversion spoofing attacks, which are the most 

accessible and highly effective spoofing approaches [26]. In the challenge database, 3 

out of 10 spoofing algorithms were based on synthesis techniques and remaining 7 

using voice conversion techniques. The speech synthesis spoofing set was developed 

using the SPSS and unit-selection synthesis approach. The voice conversion spoofing 

sets were created using one publicly available open source toolkit and 6 state-of-the-

art voice conversion techniques. The dataset is divided into three sets, i.e., training, 

development and evaluation set. For the challenge, the task was to create a detector 

that could detect both known and unknown attacks. Therefore, the training and 

development set consists of 5 spoofing algorithms from S1-S5 (i.e., known attacks) 

and the evaluation set has 10 spoofing algorithms from S1-S10 (i.e., both known and 

unknown attacks). There are in total 106 speakers in the database and the speakers 

in each set are exclusive. The details of the number of speakers and the number of 

utterances in the ASV spoof challenge database are shown in Table 3.1.   

Table 3.1: Summary of utterances used in training, development and evaluation sets of the 

ASVspoof 2015 challenge database [20] 

Dataset Hours 
No. of Speakers No. of Utterances 

Male Female Genuine Spoofed 

Training (S1-S5) 15 10 15 3750 12625 

Development (S1-S5) 48 15 20 3497 49875 

Evaluation (S1-S10) 170 20 26 9404 184000 

 

The SS spoofs were generated from two sets of data, i.e., Part A and Part B 

consisting of 20 and 40 utterances to train the systems, respectively. In all the 

spoofing (S) algorithms, unless specified, STRAIGHT was used during analysis to 

extract 24-D MCCs, 25 Band Aperiodicities (BAPs), and F0 features [132]. In all 

voice conversion techniques, unless specified, F0 was converted by global linear 

transformation (simple mean-variance normalization). The brief details of the 

various algorithms are provided below [20]. 

S1 (VCS): It is a simplified Frame Selection (FS)-based voice conversion algorithm, 

in which the converted speech is generated by selecting target speech frames. It is a 

simplified version of exemplar-based unit-selection [46], using a single frame as an 

exemplar and without a concatenation (join) cost. The MFCC vectors are mapped 
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from a source speaker to the target speaker. These mapped MFCC vectors are then 

used to select actual frames from the speech database of the target speaker. From 

the selected frames, LPCs are extracted and the speech is synthesized by analysis-

synthesis framework.   

S2 (VCS): It is a simple voice conversion technique. The excitation F0 was converted 

by a global linear transformation (simple mean-variance normalization). The BAPs 

were copied, without undergoing any conversion. The first coefficient of the source 

speaker’s MCC (c1) was converted by a linear transformation [133]. This is the 

simplest voice conversion method since it only changes the overall slope of the 

spectral envelope and not any other speaker-specific features. 

S3 (SS): This is an HTS system based on the SPSS approach as in [35] and with 

speaker adaptation framework as described in [36]. During speech analysis and 

average voice training phase, STRAIGHT vocoder was used to extract 60-D Bark 

Cepstral coefficients, log (F0) and 25-D BAPs [132]. The HSMMs are trained on a 

large multi-speaker voice bank corpus to simultaneously model acoustic features and 

duration. For adaptation, speech data from Part A was used. To synthesize speech, 

acoustic feature parameters are generated from adapted HSMMs using a parameter 

generation algorithm that uses GV. The excitation signal is generated using mixed 

excitation and Pitch-Synchronous Overlap and Add (PSOLA) and STRAIGHT 

vocoder was used to create the final synthetic speech waveform.  

S4 (SS): This system is the same as S3, except that speech data from Part B was 

used to train the system.  

S5 (VCS): This voice conversion technique is implemented with publicly-available 

open-source Festvox system [134]. The algorithm uses a joint density GMM with ML 

parameter estimation [135]. The Part A set of parallel training data is used and 

settings of the toolkit are set to default with 32-Gaussian components. This uses a 

MLSA vocoder for speech generation [133].  

S6 (VCS): This voice conversion technique is similar to S5 with some enhancements. 

The algorithm uses a joint density GMM with ML parameter generation using GV 

[135]. The Part A set of parallel training data is used considering MCC feature set. 

As in S5 generation approach, 32 components GMM were chosen.  
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S7 (VCS): This spoof is similar to S6 spoof. However, it uses LSP rather than MCC 

for spectrum representation.  

S8 (VCS): This is a Tensor-based arbitrary Voice Conversion (TVC) system [136]. To 

construct the speaker space, the Japanese dataset was used and only the MCC were 

converted, without altering other features. 

S9 (VCS): This system uses Kernel Partial Least Square (KPLS) regression [137], 

trained on the Part A data with 300 reference vectors and Gaussian kernels were 

used to derive kernel features. In addition, 50 latent components were used in the 

PLS model. Dynamic kernel features were not included, for simplicity.  

S10 (SS): It is a vocoder-independent USS-based algorithm implemented using the 

open source Modular Architecture for Research on speech sYnthesis (MARY) Text-

To-Speech (MARY TTS) system [138] that uses Festival framework [111]. As 

described earlier in Section 3.2.1.1, the USS framework consists of text pre-

processing, linguistic analysis and annotation (i.e., part of speech (PoS) tagging, G2P 

conversion, etc.) and cluster unit-selection with diphone synthesis.  

Thus, to summarize, the S3, S4, and S10 are SS spoof and remaining are VCS 

spoofs. The S5 VCS spoof uses MLSA filter [133] and other spoofs use STRAIGHT 

vocoder [132] (except S10). The S10 spoof is vocoder-independent and does not use 

any vocoder for speech synthesis. For speech synthesis, the development set 

consisted of vocoder-dependent spoof while during testing, the vocoder-independent 

spoof was considered. This was not the case for voice conversion attacks. However, 

the spoofs in the training were only based on MCC and then tested for LSP-based 

conversion technique. Hence, S7 and S10 would possibly be difficult to detect than 

other spoofs in the evaluation set.  

3.4.1.2 Blizzard Challenge Database 

To compare the effectiveness of various research techniques in building corpus-based 

speech synthesizers on the same data, the Blizzard Challenge has been planned 

annually since the year 2005. The basic challenge is to build a TTS system and 

submit the given set of test sentences for evaluation. The submitted test sentences 

are evaluated through listening tests carried on the natural utterances used as a 

reference and the corresponding synthesized versions [139]. The approaches used in 

Blizzard challenge are diverse and includes, SPSS, USS and even a hybrid model of 
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the two. Thus, evaluating the performance of the countermeasures on Blizzard 

challenge dataset will test the robustness of the features on completely unknown 

algorithms and for speakers which are definitely not present in the training set. In 

addition, the Blizzard database has completely different recording conditions than 

that of the ASV spoof challenge database, and hence, it will aid to study the 

robustness of the features to channel mismatch case. An overview of the Blizzard 

Challenge and the technologies used for TTS is presented in [140]. We consider in 

this study the latest evaluation of only English language at Blizzard Challenge and 

the only Indian languages version of the Blizzard series. The wave files for various 

submissions at the Blizzard Challenge can be downloaded from [141].  

3.4.1.2.1 Blizzard Challenge 2012 Dataset 

For the Blizzard Challenge 2012, a single-speaker corpus was used, created from 

audiobook recordings on the Librivox website [24]. A Festival-based unit-selection 

system B was used as a benchmark. There were 9 teams that participated in the 

challenge. Therefore, we have 11 systems, i.e., from A to K under consideration. In 

particular, system A contains natural speech signals whereas systems B, G, F and I 

were built using unit-selection method. Systems E, H, K were built using statistical 

methods. Systems C and D were built using hybrid and J was built using the 

diphone-based method. Each system has two categories, namely, 60 paragraphs and 

100 sentences. In this work, we use 100 read sentences from each system.  

 

Figure 3.6: The MOS of various systems at the Blizzard Challenge 2012. Adapted from [24]. 
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The naturalness of the systems can be known from the MOS obtained from the 

listeners. Figure 3.6 shows the MOS scores of various systems at the Blizzard 

Challenge 2012. The natural system A has an MOS score of 5. It is observed that on 

an average, the USS systems are more natural sounding than HMM-based speech 

synthesis systems. As shown in Figure 3.6, systems D, J, E and K have MOS 1 ≤ 2. 

3.4.1.3 Development of Gujarati Database 

The Gujarati speech data is collected as a part of sponsored consortium project by 

Department of Electronics and Information Technology (DeitY), New Delhi, India, 

namely, “Development of Text-to-Speech Synthesis in Indian Languages-Phase II”. 

The main use of TTS systems was for the visually challenged and for those having 

the cerebral palsy disorder. The steps in the development of TTS for the Gujarati 

language are discussed next. 

3.4.1.3.1 Text Corpus Collection 

About 200000+ words were collected from sources such as newspaper articles, 

magazines, stories, essays, etc. comprising of 5651 unique syllables. To reduce the 

text data and still maintain high syllable coverage, text optimization was carried out 

to cover as many syllables as possible with a minimum number of repetitions.  

• The text is divided into lines containing around 10 words. 

• For each line, a score is calculated based upon the number of “new syllables” 

in the line and the “frequency” of those syllables. The syllabification script is 

used for this purpose. A “new syllable” means that the syllable has not 

already been selected by the optimization process in the optimized text. 

• After each of the iteration, top 300 lines were appended to a file which would 

contain optimized text. 

• Above process is repeated iteratively till all the lines are covered in the 

optimized text. 

The optimized text has the highest scoring lines at the top and lowest scoring lines 

at the bottom. Figure 3.7 shows the relation between number of unique syllables 

(i.e., without repetition) and the number of lines. The number of syllables saturates 

after some lines, and this helps in deciding the text data and the number of hours of 

actual speech that can be used for recording based on the syllable coverage required. 
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Figure 3.7: Accumulation of unique syllables for Gujarati language for the optimized corpus.  

3.4.1.3.2 Voice Artist Selection and Recording 

The task of voice artist selection was carried by contacting various radio stations in 

Ahmedabad, Gujarat State, India. The test speech samples were collected from 10 

female and 5 male native voice over artists. The candidates have been explained the 

purpose of the recordings and the use of voices after TTS system development. As 

the TTS synthesis systems were meant for visually challenged and for those with the 

cerebral palsy disorder, the voices after synthesis should be soothing and should not 

cause long-term irritation or discomfort upon hearing. Therefore, the speakers have 

been chosen appropriately after performing enough signal processing experiments on 

the test speech samples from voice over artists. Thus, the voice over artists for 

speech recording were selected based on MOS evaluations obtained on the pitch, 

tempo and shrillness factor. The shrillness factor is evaluated by a visually 

challenged subject in terms of the Softness (SF) of the voice. 

The test voice samples were altered in terms of pitch and tempo. The speech 

waveform after pitch and tempo changes were saved separately and played for MOS 

evaluation. The score was calculated based on the average of the pitch and tempo 

changes. Here, pitch change (by 15 %) is less as compared to tempo change (by 50 %) 

based on the observation from a visually challenged subject using NonVisual 

Desktop Access (NVDA) screen reader that they use fewer pitch changes while 

listening (especially decrease in pitch). It is the slow and high speed that matters 

before and after getting used to the TTS system voice, respectively. After considering 

pitch and tempo changes, the priority was considered. In the case of priority, a 

particular factor was given 50 % priority and the remaining factors were assigned 25 

% priority each. The softness was evaluated to know the comfort during the long-
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term hearing. The MOS score for the above parameters was given by listening test at 

a scale of 1 (i.e., very poor) to 5 (i.e., excellent). Here, MOS is taken from 11 subjects 

(9+2=11, 9 male and 2 female who are university graduates without any background 

in speech signal processing area). For the MOS evaluation in Table 3.2, the age of 

the female speakers varied from 25 to 40 years. It can be seen that Speaker 2 (with 

an age of 35) has outperformed all the other speakers in all the tests. The Speaker 5 

and Speaker 9 have better MOS for PC. However, the difference is not significant 

and can be neglected considering the better performance in rest of the factors 

(especially in softness). Hence, Speaker 2 was selected for speech data recording. 

Table 3.2: Average MOS for female artist selection from 11 subjects. Adapted from [128] 

Female Artist PC (+15%) TC (+50%) TC (-50%) S PP (+50%) TP (+50%) TP (-50%) SF 

1 3.72 2.72 1.81 2.75 2.99 2.74 2.52 4.00 

2 3.75 2.88 2.78 3.14 3.29 3.07 3.05 4.05 

3 3.72 2.27 1.54 2.51 2.81 2.45 2.27 2.25 

4 3.27 2.36 1.72 2.45 2.65 2.43 2.27 3.00 

5 4.00 2.45 1.8 2.75 3.06 2.68 2.51 2.50 

6 2.45 2.00 1.27 1.91 2.04 1.93 1.75 1.75 

7 3.36 2.18 1.27 2.27 2.54 2.25 2.02 2.00 

8 3.63 2.36 1.81 2.60 2.85 2.54 2.40 2.85 

9 3.9 2.45 2.00 2.78 3.06 2.70 2.59 3.65 

10 3.75 2.63 2.62 3.00 3.18 2.91 2.91 3.20 

*PC=Pitch Change, TC=Tempo Change, S=Score, PP=Pitch Priority, TP=Tempo Priority, SF=Softness. 

Table 3.3: Average MOS for male artist selection from 11 subjects. Adapted from [128] 

Female 

Artist 
PC (+15%) TC (+50%) TC (-50%) S PP (+50%) TP (+50%) TP (-50%) SF 

1 3.82 3.6 2.35 3.26 3.40 3.34 3.03 2.95 

2 4.00 3.41 2.1 3.17 3.38 3.23 2.90 2.9 

3 3.33 3.08 1.7 2.70 2.86 2.79 2.45 2.1 

4 1.7 3.80 2.4 2.63 2.40 2.90 2.56 3.0 

5 4.05 3.75 2.3 3.37 3.54 3.46 3.1 2.85 

*PC=Pitch Change, TC=Tempo Change, S=Score, PP=Pitch Priority, TP=Tempo Priority, SF=Softness 

 

The analysis done on the male test speakers and the MOS evaluated are shown in 

Table 3.3. The male Speaker 5 has the best MOS in tempo and pitch changes as well 

as the pitch and tempo priorities. However, taking into consideration the shrillness 

factor, the MOS (given by a visually challenged subject) was less. This is because the 

voice was not soothing and not appropriate for long-term hearing. In addition, 

considering the age factor, the Speaker 5 had an age around 50 years as compared to 

the remaining speakers who were between 25-35 years of age. Therefore, Speaker 1 

was selected for recording. Each female session lasted for approximately 3.5 hours 

and the male session lasted for 2.5 hours. The wavefile of each session was cut and 

saved one-by-one according to the text and the wave files (with same name tags). The 
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cutting of wavefiles was done at the DA-IICT, Speech Research Lab. There was 

enough silence between the lines which aided the splitting task. The raw files were 

recorded at 48 kHz and downsampled at 16 kHz by using chmod command in Linux, 

the channel was mono with 16-bits resolution. 

3.4.1.3.3 Unit-Selection Synthesis (USS) in Gujarati 

For USS system building, it is necessary to decide the basic speech sound unit on 

which the system is to be built. For Indian languages, syllables are best suited as the 

basic unit because Indian languages are syllable centered or syllable-timed [142]. A 

syllable is a unit having a vowel at the nucleus surrounded by none or more 

consonants. It is typically of the form C*VC*, where C is a consonant, V is a vowel 

and C* indicates none or more consonant present. The syllable consists of the onset, 

rime and coda. The onset and coda can consist of consonants while the rime consists 

of the vowel. Once the speech sound unit is defined for a language, the Letter-to-

Sound (LTS) rules need to be identified prior to speech data labeling. The LTS rules 

indicate how the written text has to be spoken. The LTS rules for Gujarati are very 

similar to LTS rules of Hindi [142] and are discussed in [143]. For the both Hindi 

and Gujarati language, the written and spoken form has close correspondence. 

However, inherent vowel (i.e., short /a/) associated with each consonant is not always 

spoken depending on the context. This is referred to as schwa deletion or Inherent 

Vowel Suppression (IVS). For example, the word pala (meaning ‘moment’ in English) 

is mapped to sounds /p/ /a/ /l/, ignoring the vowel associated with /l/. The rules 

to determine IVS of a consonant character are derived from Hindi (an Indian 

language). The details of these rules in Gujarati are provided in [142]- [143]. 

Based on LTS rules, the syllabification rules are required to break the words into 

syllables. By analyzing several words, it is observed that the syllabification rules of 

Gujarati are similar to syllabification rules of Hindi [142]. Once the syllables are 

identified using the LTS and syllabification rules, the text and corresponding 

particular part of speech segment needs to be aligned. This is done by DONLabel 

labeling tool (based on minimum-phase Group Delay (GD) segmentation method) 

developed by IIT Madras for Indian languages [144]. In the DONLabel tool, the 

Window Scale Factor (WSF) needs to be set for each utterance such that the 

syllables get distributed to complete corresponding speech utterance. Thereafter, 
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manual adjustments are done for accurate labeling. Figure 3.8 shows the labeling 

done by DONLabel tool after manual adjustments. Although, we use the DONLabel 

tool for labeling the speech data followed by manual corrections, there are 

approaches proposed whereby automatic segmentation can be done to reduce the 

manual efforts. It has been shown that by using approaches like Gaussian-based 

segmentation method for automatic segmentation of speech at syllable-level, the 

Percentage of Correctness (PoC) prior to manual adjustments is better than the 

minimum phase GD-based segmentation method [145]. 

 

Figure 3.8: The DONLabel labeling tool for Gujarati after manually correcting the labels. 

After [143]. 

In the USS approach, only the speech sound units that are present in the speech 

corpus are available for synthesis. To synthesize all possible input text, at least one 

instance of each syllable must be present in the speech corpus. However, it is 

practically very difficult to cover all the syllables of a language. As phones are fixed 

and small in number, if a syllable is not present during synthesis, then syllables are 

split into phones and phones are concatenated to synthesized speech. In short, a 

fallback mechanism is implemented to build a system that can synthesize every 

incoming text. The detailed description of the USS system building in other Indian 

languages using Festival framework [111] is presented in [146]. 
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3.4.1.3.4 Hidden Markov Model (HMM)-based Speech Synthesis in Gujarati 

The HMM-based synthesis framework gives a general setup for context modeling 

and is easily adapted to other languages [147], [148]. To build an HTS system, we 

require a mapping from Gujarati UTF-8 character to common roman scripts. To that 

effect, the mapping was modified for the Gujarati language from [149]. For HTS 

voice building, the text needs to be converted into unicode characters, the sentence is 

converted into an array of words and words are converted into the syllables. From 

each syllable pairs, three characters are taken as unicode characters for the Gujarati 

language having a length of 3 characters. In addition, schwa deletion and anuswara 

rules are also included.  

If an HTS system has to be developed at syllable-level or word-level, then a large 

number of models are required to model the system. Therefore, for HTS, it is 

appropriate to build the system at phoneme-level. There are 49 phonemes in the 

Gujarati language. Hence, we can build system at phoneme-level with very less 

amount of speech data as compared to syllable-level. We use phoneme as the basic 

speech sound units for building HTS in the Gujarati language. Phoneme-based 

labeling was done using forced Viterbi alignment as well as Spectral Transition 

Measure (STM)-based method [150]. Except context-dependent modeling, every 

block diagram of HTS is language-independent. However, the contextual information 

is language-dependent [151]. The HMM framework provides a general framework for 

sufficient context modeling that can easily be adapted to other languages. For the 

phonemic representation of Gujarati language, a set of 49 phonemes were taken that 

are broadly classified into silence (i.e., SIL), 36 consonants and 12 vowels. In order to 

build context-dependent HMMs, we require different groups of phonemes. For the 

Gujarati language, to do classification, we use International Phonetic Alphabet 

(IPA) chart of Gujarati language for consonants and vowels as in [152]. Some 

examples of classification of phonemes used for question set preparation are:  

• Front Vowel: {*-i+*,*-ii+*,*-ee+*,*-ae+*} 

• Affricates Consonants: {*-c+*,*-ch+*,*-j+*,*-jh+*} 

• Fricatives: {*-ph+*,*-sx+*,*-sh+*,*-s+*,*-h+*} 

In this way, several classifications of Gujarati phonemes has been done. In order to 

build HTS in Gujarati language, 105-dimensional MFCCs per frame, 3-dimensional 

log(F0) and the penta-phone contextual factor is considered [153]. Once the HTS is 
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developed, both subjective and objective evaluations can be considered to test the 

naturalness and speech intelligibility.  

3.4.1.3.5 Blizzard Challenge 2014 Dataset 

The Blizzard Challenge 2014 is entirely dedicated to building TTS voices in Indian 

languages [25]. The six Indian languages included in the challenge were Hindi, 

Tamil, Telugu, Gujarati, Rajasthani and Assamese. For each language, 2 hours of 

data sampled at 16 kHz was provided for the challenge. The data was recorded by 

professional speakers in a high-quality studio environment. Only the speech data 

and the text were provided in UTF-8 format. The participants could use any 

information such as phonesets or labels from other resources. There were 9 

participants in the challenge and each was supposed to build one system in each 

language. Therefore, we have 9 systems for each language under consideration, i.e., 

from A to I and K. In particular, system A consists of natural speech signals, system 

C, D, E and K uses HMM-based synthesis technique, D used a hybrid approach for 

Hindi language, systems G and J use USS-approach and system F uses an HMM-

DNN approach. The H and I systems use alternate USS and HTS for 3 languages. 

The baseline system B for each language was build using the speaker-independent 

HTS-2.2 + STRAIGHT scripts2. The data was labeled at the phone-level using the 

HMM labeling script (EHMM) in FestVox3 [25]. For LTS, a set of simple naive first-

order approximations were used for each language. From the Blizzard Challenge 

2014 database, we consider two languages, Gujarati and its lexically similar 

counterpart, i.e., Hindi. The MOS scores for Gujarati and Hindi for the Blizzard 

challenge submission are given in Figure 3.9. Out of the submissions B to J, the 

systems in Gujarati are C to H and submissions in Hindi are B to H and K. The 

wavefiles are not available for the remaining systems in the Blizzard database. It is 

observed that from Figure 3.9 that the almost all systems in Gujarati had a MOS 

score > 2 (except I), while for Hindi, systems B, H and I had a MOS score from 1 ≤ 2.  

Once the database is fixed and features are extracted, it is required to train a 

classifier and test the accuracy with a standard measure. With respect to this, we 

discuss the GMM classifier and the performance measures that are used in the task 

of spoof detection. 
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Figure 3.9: The MOS of various systems at the Blizzard Challenge 2014 for (a) Gujarati 

language and (b) Hindi language. Adapted from [25]. 

3.4.2 Gaussian Mixture Model-based Classification System 

A Gaussian Mixture Model (GMM) is a probability density function represented as a 

weighted sum of Gaussian component densities. A GMM with M component 

densities is given by the following equation [154], 

   
1

( | ) ( | , ),
M

i i i

i

p x w g xλ µ
=

= Σ∑      (3.3) 

where x is a D-dimensional feature vector, wi are the mixture weights with Σwi=1 and 

g(x|µi,Σi), i=1 ,…, M, are the component Gaussian densities. Each component density 

is a D-variate Gaussian function of the form [154], 
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where µi is the mean vector and Σi is the covariance matrix for the ith Gaussian. 

These parameters are represented by the notation, λ={wi,µi,Σi}. The GMM considers 

the data as the results of the linear combination of several generative Gaussian 

models. There are several techniques available for estimating the parameters of a 

GMM. The most popular and well-established method is an ML estimation. One of 

the most important ML estimation approach is the Expectation Maximization (EM) 

algorithm. The EM algorithm uses an E-step (to estimate the distribution of the 

hidden variable given the data and the current value of parameters) and M-step (to 

maximize the joint distribution of the data and hidden variable) [155]. In this thesis, 



Architecture of the Spoof Speech Detection System 

64 

 

we use the GMM to model classes corresponding to natural and spoofed speech 

(using speech from training dataset). It was observed in Chapter 2 that most of the 

studies use GMM as a simple two-class classifier for the SSD task. Few approaches 

have also used SVM [83] and DNN-based [85] classifiers for classification. It was 

observed in these studies that using the same feature sets, the GMM-based 

classification system performed well than other classifiers especially on the 

evaluation set consisting of unknown attacks.  

In this study, the GMM is built on the training set of the ASV spoof challenge 

dataset. The GMM for natural speech (λnat) is built using entire training dataset of 

3750 genuine (i.e., natural) utterances. Similarly, GMM for spoofed speech (λspoof) is 

built with 12625 spoofed training utterances. Final scores on a test sequence Y are 

represented in terms of Log-Likelihood Ratio (LLR) obtained from the likelihood 

values of natural and spoofed speech model. The decision of the test speech being 

human or spoofed is based on the LLR, i.e., 

 log  (  ( | )) log  (  ( | )),
nat spoof

LLR p Y p Yλ λ= −                       (3.5) 

where p(Y|λnat) and p(Y|λspoof) are the likelihood scores from the GMM for the 

natural speech and spoofed speech, respectively. To utilize possible complementary 

information in the various proposed features, we use the score-level fusion of various 

features. Considering two features, the combination at score-level is done as follows: 

 
 1  2(1 ) ,combine f feature set f feature setLLk LLk LLkα α= − +            (3.6) 

where LLk feature set1 and LLkfeature set2 are log-likelihood scores of the feature set 1 and 

 feature set 2, respectively. Parameter αf decides the weights for score-level fusion. 

Considering the fusion of three features, the combined likelihood is given as, 

1  set1 2  set 2 3  set 3.combine feature feature featureLLk LLk LLk LLkα α α= + +   (3.7) 

The fusion factors in eq. (3.6) and eq. (3.7) are selected such that the sum of all the 

α’s are one, i.e., 
3

1.=∑ i

i

a . This will assist to know the relative contribution of the 

features during the score-level fusion. It is to be noted that in this work, for the 

training part, the GMM models, i.e., the λnat and λspoof are built only once using the 

training set of the ASV spoof database. However, the testing is done on three sets, 
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i.e., evaluation set (S1-S10 spoofs) of the ASV spoof challenge, the Blizzard 

Challenge 2012 dataset and Blizzard Challenge 2014 dataset.  

 

Figure 3.10: An example of likelihood scores for natural and impostor speech. 

Figure 3.10 shows an example of possible likelihood score distribution for natural 

speech and impostor speech. The frequency of the impostor likelihood is more 

because the number of impostors is generally more as in the case of ASV spoof 

challenge dataset or can be similar as in Blizzard data.  It is observed that impostor 

scores and genuine scores overlap with each other resulting in error in classification, 

equivalent to the area under the overlap. The point where the two scores overlap is 

the threshold score value at which minimum classification error occurs. 

Motivation of Score-Level Fusion 

In this thesis, we consider score-level fusion instead of feature-level fusion. This is 

because with the feature-level fusion, the dimension of the resultant feature vector 

will increase and it was observed to be a strain on the GMM modeling in terms of 

computation. In addition, it is also difficult to identify the contribution of the 

individual feature set out of the fused features sets in improving or degrading the 

performance. However, in the case of score-level fusion, the fusion weight parameter 

αf gives the contribution of the feature sets towards the performance of the system. 

In addition, the feature-level fusion is possible only if the features are extracted from 

the same duration of the analysis window, which is not the case always. For 

example, the spectral features are generally extracted from 20-30 ms of the window 

while prosodic features are extracted from the larger window of 100-200 ms to 

capture the suprasegmental information. Hence, in these cases, the feature-level 

fusion is not performed and hence, we opted for score-level fusion. 
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3.4.3 Performance Measures 

In evaluating a binary classifier, two types of errors exist, namely, False Acceptance 

(FA) and False Rejection (FR). A standalone detector system could falsely reject a 

genuine trial (a false rejection) to the ASV system or falsely accept a spoof or 

impostor trial (a false acceptance) and allow it to pass through an ASV system. The 

possible outcomes of an SSD are shown in Table 3.4.  

Table 3.4: The confusion matrix of decision trials in an SSD task 

Actual Observations (Sn) 
Predicted Observations (Pn)  

Natural Spoofed Total 

Natural True Positive (TP) False Reject (FR) AP 

Spoofed False Accept (FA) True Negative (TN) AN 

AP=Actual Positive, AN= Actual Negative  

 

The error rates are expressed as False Acceptance Rate (FAR), i.e., ratio of FA to 

actual number of positives (natural) and False Rejection Rate (FRR), i.e., ratio of FR 

to actual number of negatives (spoofed), i.e.,  

    and  .
FA FR

FAR FRR
TP FR FA TN

= =
+ +

    (3.8) 

The plot of FAR and FRR with respect to the scores ordered in ascending order is 

shown in Figure 3.11 (a). There is a trade-off between FAR and FRR and both are 

found to be of equal value around a particular score value (threshold value, i.e., 

thEER). The value of the error at which the FAR and FRR are equal is known as the 

Equal Error Rate (EER) which is used as a performance measure [156].  

Detection Error Tradeoff (DET) Curve 

The DET curve is a graphical interpretation of the performance of the classification 

system for various features using the FRR and the FAR [157]. It gives uniform 

treatment to both FRR and FAR for evaluation of system performance. The DET 

curve is a plot of FRR on the vertical-axis and the FAR on the horizontal-axis at 

various threshold levels. In the DET curve, the operating point where FAR and FRR 

becomes equal is referred to as EER. It serves as a boundary between the output of 

positive and negative classes. Figure 3.11 (b) shows an example of the DET curve 

with the interpretation of various regions in the DET curve. The deviation of the 

operating point from the EER emphasizes any one of the two errors (i.e., FAR or 



Chapter 3: Spoofing Techniques and Spoof Detection System 

67 

FRR). In the case of SSD task, the deviation to the vertical-axis provides better 

security as the FAR is low. However, the FRR will be high which is not intended for 

ASV systems (will cause user inconvenience as genuine speakers will be rejected). 

Figure 3.11 are hypothetical plots to provide a pictorial representation of the ideal 

scores and DET curve. The plots with the real data under consideration will be 

observed in the following Chapters. 

 

Figure 3.11: (a) The FAR and FRR with respect to the scores ordered in ascending order and 

(b) the DET plot of FAR vs. FRR as varying thresholds [157]. 

In [20], the approach used to estimate the average % EER comprises of estimating 

the EER individually for each of the spoofing algorithm and then averaging all the 

EERs. This is shown as Approach 1 in Figure 3.12.  

 

Figure 3.12: Evaluation scheme for computation of the average EER. 
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However, with such an approach different thresholds are obtained for each of the 

spoofing algorithms. In the real case for a completely unknown attack, an SSD 

system should have a fixed threshold below which the speech should be detected as 

spoofed. Hence, in our study, instead of using EERs estimated from several 

threshold values, we estimate a universal EER (average EER) assuming only two 

classes of natural and spoofed speech (as shown by Approach 2 in Figure 3.12). 

Based on this EER, the individual EERs are obtained by identifying if the likelihood 

scores for a particular spoof (from a specific spoofing algorithm) was greater than or 

less the threshold. This can be interpreted as breaking down FAR values for each 

attack. However, they sum up to the final EER, and hence, the same nomenclature 

of Individual EER is used in this thesis. The Approach 2 is a much realistic case and 

it has also been used and accepted as a performance measure in the recent ASV 

spoof 2017 challenge [22]. In fact, the result of pooled EER is also shown in one of 

the recent works were it has been observed that using one threshold for all detection 

types, is more realistic for real applications and building a robust spoofing detection 

system in the real scenario is still a difficult task [92].  

3.5 Chapter Summary 

This Chapter presented the details of the TTS and voice conversion framework. The 

details of the ASV spoof challenge database and the Blizzard Challenge databases 

along with the spoofing algorithms are provided. The general architecture of the 

spoof detection system to be used in this thesis is discussed. In the following 

Chapters, the various approaches or anti-spoofing techniques based on excitation 

source, vocal tract as a system (i.e., filter) and source-filter interaction will be 

presented. Considering the best performing system at the ASV spoof 2015 challenge, 

in the next Chapter, we first discuss the spectral features or the system-based 

features proposed in this thesis to identify the cues responsible for unnaturalness in 

synthetic or converted speech for the SSD task.  

 



 

69 

          Chapter 4.

System-based Features 

4.1 Introduction 

This Chapter presents the development of system-based features for the Spoofed 

Speech Detection (SSD) task. It was observed in the previous Chapter that there are 

several reasons due to which the Synthetic Speech (SS) and Voice Converted Speech 

(VCS) can sound unnatural. For generating speech an approximate model is used for 

the spectral representation which cannot capture all the complexities of the vocal 

tract system. Hence, there will be significant differences between system-based 

features for natural and machine-generated speech. Moreover, these spectral 

parameters are extracted and processed framewise while the human speech 

production is a continuum process. Hence, the variations across frames are also 

essential. Thus, in this Chapter, we explore the traditional Mel Frequency Cepstral 

Coefficients (MFCC) and propose novel Cochlear Filter Cepstral Coefficients plus 

Instantaneous Frequency (CFCCIF) for the SSD task. In addition, Subband 

Autoencoder (SBAE), i.e., an AE architecture modified to incorporate the human 

perception mechanism is used for the detecting natural and spoofed speech. 

4.2 The Perception Information 

For humans, machine-generated speech may sound natural or unnatural based on 

its quality. Likewise, machines cannot always detect the unnaturalness in the 

speech signal and hence, may confuse synthetic speech as natural and vice-a-versa. 

It has been observed that humans outperform detection systems in identifying 

certain kinds of spoofs [123]. Thus, it is essential to exploit and embed the perception 

mechanism occurring in the ear into the features used for the SSD task. The features 

(discussed in this Chapter) use some knowledge of the perception mechanism in the 

ear to generate a feature-level representation. As far as the perception mechanism in 

the human ear is concerned, the cochlea stands out to be the most vital organ. Brief 

information of the internal structure of the ear is presented in Figure 4.1 (a). 
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Figure 4.1: (a) Anatomy of the human ear. Adapted from [158], (b) range of frequencies in 

cochlea (20 Hz - 20 kHz). Adapted from [159], (c) the uncoiled cochlea. After [21] and (d) the 

signal processing abstraction of the cochlear filters. After [21]. 

The ear is divided into the outer, middle and inner ear. The inner ear consists of 

a coiled snail-like structure called the cochlea. Within the cochlea runs the Basilar 

Membrane (BM) and along the BM are present several Inner Hair Cells (IHC). 

Several short hair structures are located on the IHC that deflects when the BM in 

the human cochlea vibrates at different regions depending on the frequency of the 
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incoming sounds. Depending on the region of BM and the hair cells that vibrate, 

different nerves are fired informing the brain about the presence of certain 

frequencies. 

As seen in Figure 4.1 (b), the base region excites to high frequency and gradually 

decreasing to low frequency towards the apex regions. As the BM vibrates around a 

particular region for a particular tone of sound, we can interpret human cochlea as 

bank of subband filters spaced from oval window, i.e., stapes (base) to scala vestibule 

(apex) whose impulse response are understood to be as that of bandpass frequency 

response fine tuned to a particular frequency band. A signal processing abstraction 

to the hair cell excitation to a particular frequency is very well explained in (Chap. 8, 

pp.402 [21]) and demonstrated in Figure 4.1 (d). It can be seen from Figure 4.1 (d) 

that a particular region on the BM can be represented as a Linear Time-Invariant 

(LTI) bandpass filter tuned to a particular frequency. This filter has a constant Q, 

i.e., ratio of the center frequency to the bandwidth of the filter is a constant. Thus, 

the bandwidth of the filter decreases as the frequency increases from the oval 

window towards the scala vestibule.  

These signal processing abstractions were introduced in MFCC-based features 

having center frequencies at a Mel scale and symmetrical triangular filterbanks. 

Ideally, these filters are found to be asymmetric with a steeper response at the right 

than at the left in (Chap. 8, pp. 398 [21]). Similar abstraction has been incorporated 

in CFCC-based feature representation. In addition to the bandpass representation, 

the output of each cochlear filter is considered as amplitude and frequency 

modulated wave. It is known that the envelope of each output of the cochlear filter, 

its Instantaneous Frequency (IF) and analytic phase are important features used by 

auditory levels for speech perception (Chap. 8, pp. 403 [21]). Earlier in [160], an 

auditory-based distortion measure was used to find the perceptual dissimilarity 

between speech segments and improve the quality of synthesized speech by selecting 

speech sound units based on the auditory distortion measures. Next, considering few 

applications of IF, it has been shown that the short-time IF spectrum contributes to 

the speech intelligibility as much as the short-time magnitude spectrum [161]. In 

[162], the subband IF is used with the envelope from subband filter outputs for 

speech recognition task. Thus, features derived from analytic phase may be 

complementary to that of the features derived from magnitude spectrum. Therefore, 
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in the later Sections of this Chapter, we propose using IF information with the 

envelope at the output of each subband filters to detect human vs. spoofed speech. 

Prior work shows that countermeasures are designed based on the observation 

different dynamic variation in the speech parameters of SS and natural speech 

signal [97]. In [97], use of frame differences as a discriminative feature was used due 

to the fact that in the HMM-based speech synthesis, the speech parameter sequence 

is generated to maximize the output probability and hence, the variation in 

likelihood will be less as compared to natural speech. In [99], higher-order MCEP of 

SS revealed less variance than that of natural speech signal. This is because, the 

higher-order MCEP are smoothed during HMM model parameter training and 

synthesis. Next, as the feature extraction process in SS and VC speech generation is 

framewise, we use derivative operation to capture transient variations across the 

frames to assist in the SSD task. The use of derivative enhanced the high frequency 

regions in the representations which is a possible reason for improved performance. 

In the CFCCIF features, we propose capturing variations across frames to detect 

natural vs. spoofed speech. The key idea here is that the human speech production 

system does not produce speech in a frame-by-frame pattern while feature extraction 

in speech synthesis and voice conversion is generally at frame-level. Thus, using a 

derivative operation to capture variations across features will assist in the SSD task. 

In addition, the subband processing has also been incorporated in AE framework 

to develop SBAE architecture for spoof detection task. It was observed that the 

SBAE features learned the variations across frames which are generally more in 

machine-generated speech than in normal speech which resulted in better spoof 

detection. The human perception mechanism is a highly complex process and 

incorporating these in the development of features will aid in extracting the features 

that match more closely with the perception for hearing. 

4.3 Mel Frequency Cepstral Coefficients (MFCC) 

The MFCC introduced by Davis and Mermelstein in the 1980's [8] has been widely 

used since then as state-of-the-art features in several speech processing applications 

such as speech recognition, speaker and language recognition, speech synthesis, 

emotion recognition, etc. Speech signal represents the continuously changing 

movement in the vocal tract system over a short time and thus, depending on the 
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type of information needed, the speech signal is framed and processed. The brief 

representation of the feature extraction process in MFCC is shown in Figure 4.2. 

 

Figure 4.2: Schematic diagram of the MFCC feature extraction process. After [8]. 

Once the speech is framed, the next step is to calculate the power spectrum of each 

frame. The resulting power spectrum with varying frequencies is passed through 

various subband filters as in the human ear. These frequencies are centered 

according to the Mel scale. The Mel scale relates perceived frequency, or pitch (which 

is a perceived pitch, i.e., a perception phenomenon) [21], [163], of a pure tone to its 

actual measured frequency. It takes a set or range of frequencies (f) at linear scale 

and converts it into a logarithmic scale by the relation [164], 

 10( ) 2595log (1 / 700).M f f= +     (4.1) 

The Mel filterbank is a set of symmetric triangular subband filters. As the 

frequencies get higher, the subband filters are wider. Thus, the power spectrum is 

passed through several Mel subbands to get filterbank energies. In MFCC or any 

other spectral features, the subband energy is computed. Once filterbank energies 

are obtained, the logarithm is taken. The final step is to compute the DCT of the log 

filterbank energies. As the filterbanks are all overlapping, they are correlated with 

each other. The DCT decorrelates the energies and allows choosing few initial values 

of the DCT known as static MFCC features for speech processing applications. 

The MFCC feature vector describes only the power spectral envelope of a single 

frame. However, speech is known to have information present in the dynamics of the 

trajectories of the MFCC over time. Using (or appending) the delta (velocity), i.e., the 

dynamic information of the MFCC feature vector of each frame along the static 

features, is known to capture better information than static alone. However, this 

may vary with the application. The delta-delta (acceleration) coefficients are also 

used as additional dynamic features along with the static and the delta features. 
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4.4 Cochlear Filter Cepstral Coefficients (CFCC) 

The subband in Mel filterbank is a triangularly-shaped symmetric filter. However, it 

has been shown that the filters in the inner ear called as a cochlear filter are rather 

asymmetric (Chap. 8, pp. 398 [21]). Therefore, the use of auditory-based filters in 

place of triangular filters will aid in capturing additional perceptual information as 

compared to MFCC. With respect to this, we discuss the Auditory Transform (AT) 

developed in [165] which is a set of subband filters designed in such a way so as to 

depict the hearing mechanisms in the ear. The parameter extraction procedure for 

auditory-based cepstral coefficients, consists of series of cochlear filterbank based on 

the AT, the hair cell function of the BM, nerve spike density representation, 

nonlinearity  (loudness function) and DCT [166] as shown in Figure 4.3. The CFCC 

features had been used for robust speaker identification [166], classification of 

fricatives sounds [167], etc. Following sub-Section describes briefly the AT and the 

procedure to estimate CFCC features. 

 

Figure 4.3: Schematic diagram of the CFCC feature extraction process. After [166]. 

4.4.1 Auditory Transform (AT) 

The AT has well defined wavelet properties with a well-defined inverse transform 

[165]. It converts the time-domain signal into a set of filterbank outputs with 

frequency responses similar to those in the BM of the cochlea.  

 

Figure 4.4: Auditory transform as LTI filtering of speech. After [168]. 

The AT process can be considered as a LTI filtering process as in Figure 4.4. Let s(t) 

be the speech signal and cochlear filter be ψ(t) then the AT of s(t) (i.e., W(a,b)), w.r.t. 

ψ(t) as the impulse response of BM in the cochlea is defined as [165]- [166]. 
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,( , ) ( )* ( ),a bW a b s t tψ=                                                       (4.2) 

,( , ) ( ) ( ) ,a bW a b s t dτ ψ τ τ

+∞
∗

−∞

= −∫     (4.3) 

where 
,

1
( ) .a b

t b
t

aa
ψ ψ

 − =   
 In eq. (4.2), * indicates convolution operation, a ∈ R+ and 

b ∈ R, s(t) and ψ(t) belongs to Hilbert space L2(R) (i.e., space of finite energy signal) 

and W(a,b) represents traveling waves in the BM. The factor ‘a’ is the scale or 

dilation parameter, which allows changing the center frequency (fc) while factor ‘b’ is 

the time shift or translation parameter. It should be known that the fc of the cochlear 

filter is also called as the Characteristic Frequency (CF) [163]. The energy remains 

equal for all a and b. Therefore,  

2 2

,| ( ) | | ( ) | .a b t t dtψ ψ
+∞ +∞

−∞ −∞
=∫ ∫         (4.4) 

The cochlear filter is defined as [166], 

 
,

1
( ) = exp 2 cos 2 ( ).a b L L

t b t b t b
t f f u t b

a a aa

α

ψ π β π θ
        − − −       − × + −                   

   (4.5) 

Parameters α and β determine the shape and width of cochlear filter, respectively 

and θ is selected such that the following admissibility condition for mother wavelet 

(i.e., ψ(t)) is satisfied [168]: 

 
0

( ) 0 ( ) 0.t dt
ω

ψ ψ ω
+∞

=−∞
= ⇒ =∫     (4.6) 

Thus, ∃ a number Cψ such that, 
2

0

| ( ) |
C d
ψ

ψ ω
ω

ω

+∞

= <∞∫ (Theorem 4.3, pp. 81, [168]). 

This means that the mother wavelet ψ(t)  is a bandpass filter. That is, wavelet ψ(t) 

has a zero dc value and hence, it is a bandpass filter. The value of a can be derived 

from the center frequency (fc) and lowest frequency (fL) of the cochlear filterbank, i.e.,  

 .L

c

f
a

f
=        (4.7) 

For the ith subband filter, its corresponding value of a, i.e., {ai} is pre-calculated for 

the required fc of the cochlear subband filters at band number i∈[1,NF], where NF is 

the total number of subband filters. An example of 14 filters with α=3 and for 

β=0.035 and β=0.35 for different value fc equally space on a linear scale till 8 kHz is 
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shown in Figure 4.5. It is observed from the linear scale that the bandwidth of the 

filter is high at the higher frequencies than at the lower frequencies. The 

asymmetricity of the cochlear filter can be viewed much better in the log-scale than 

in the linear scale. 

 

Figure 4.5: Responses of 14 cochlear subband filters on a linear scale with (a) α=3 and 

β=0.035 and (b) α=3 and β=0.35. After [166]. 

4.4.2 Other Operations 

Once filtering process is done by the cochlea in the ear, the IHC acts as a transducer 

for the movements of BM. As motion of the hair cell is only in the positive direction, 

the following nonlinear function of hair cell describes this motion [166], i.e., 

 
2( , ) ( ( , )) ;         ( , ),h a b W a b W a b= ∀     (4.8) 

where W(a,b) is the filterbank output or a subband signal. The hair cell output of 

each filterbank is converted into a representation of the nerve spike density, i.e., 

 

11
( , ) ( , ),      1, ,2 ,....;  ,  ,

l d

b l

S i j h i b l L L i j
d

+ −

=

= = ∀∑    (4.9) 

where d is the window length, i is the ith subband, j is the frame count and L is the 

window shift duration. The output of the above is further applied for scales of 

loudness functions such as logarithm or cubic root nonlinearity. Finally, DCT is 

applied to decorrelate the features.  

4.5 Cochlear Filter Cepstral Coefficients plus Instantaneous 

Frequency (CFCCIF)  

4.5.1 Procedure of Extraction of CFCCIF 

This  Section  presents  the  proposed  variant of CFCC features that uses both the  
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envelope and average IF from the subbands to give the Cochlear Filter Cepstral 

Coefficients plus Instantaneous Frequency (CFCCIF) features.  

4.5.1.1 Average Instantaneous Frequency (AIF) Estimation 

In CFCC, the nerve spike density performs averaging operation on each subband 

signal which in turn removes the Temporal Fine Structure (TFS) or fast temporal 

modulations as shown in Figure 4.6 (c) [169]. Hence, CFCC does not incorporate TFS 

information. Furthermore, at every CF of the cochlear filter (i.e., the center 

frequency of the cochlear filter, fc as in eq. (4.7)), rapid phase shift of the travelling 

wave occurs at every fc from base to apex [163]. We believe that this rapid change is 

being captured by the derivative of instantaneous (analytic) phase (which is referred 

to as IF) of corresponding subband signal. For the SSD task, in vocoder-dependent 

spoofs, the phase information is generally lost. On the other hand, for vocoder-

independent speech, the phase mismatch and temporal discontinuity occur due to 

joining or concatenation of the speech sound units. Hence, we propose to use IF for 

every subband along with the envelope representation obtained in the CFCC 

framework for the SSD task. 

 

Figure 4.6: For a subband around (a) fc=550 Hz and (b) fc=1100 Hz, Panel I: the slow 

modulations that roughly correlate with the different syllable length segments of the 

utterance, Panel II: modulations due to interharmonic interactions occur at a rate that 

reflects the fundamental frequency (F0) of the signal and Panel III: fast temporal 

modulations due to the frequency component driving this subband around fc.  After [169].  
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Hence, for the IF estimation, let xi(t) be the signal for the ith subband. For the real 

signal xi(t), its complex analytic representation is given by,   

 ( ) ( ) ( ),
i ia i hx t x t jx t= +           (4.10) 

where ( )
ihx t  is the Hilbert transform of the signal xi(t), given by the inverse Fourier 

transform of ( ),
ihX ω  where, 
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          (4.11) 

Thus, the amplitude (Hilbert) envelope of xi(t) and the instantaneous phase for the ith 

subband is given as,  

2 2 1 ( )
| ( ) | ( ) ( )  and  ( ) tan

( )
i

i i

h

a i h i
i

x t
x t x t x t t

x t
φ −  = + =   

.   (4.12) 

Therefore, for the ith subband, the IF derived from derivative of unwrapped 

instantaneous phase ϕi(t), is given as: 

( )( ) .i i

d
IF t

dt
φ=         (4.13) 

Next, similar to nerve spike density estimation, the framewise average IF for each ith 

subband is obtained as,  
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=

= = ∀∑          (4.14) 

where d is the window length, j is the frame count and L is the window shift 

duration.  

4.5.1.2 The CFCCIF and CFCCIFS Representation 

For each subband, the envelope (estimated in eq. (4.9)) needs to be combined with 

the average IF (estimate in eq. (4.14)). In particular, for each of the ith subband, 

using eq. (4.9) and eq. (4.14), we have, 

 ( , ) ( , ) ( , ),z i t S i t AIF i t= ⋅     (4.15) 

where z(i,t) is the representation obtained after multiplying subband envelope and 

average IF features for the ith subband. In [162], the subband IF was used explicitly 

by concatenating it with the envelope from subband filter outputs for the task of 

speech recognition. However, with this, the feature dimension increases to twice. In 

[170], multiplication of envelope and fine structures estimated from the Hilbert 
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transform of bandpass filtered signal was carried out. This was done to investigate 

the relative perceptual importance by Chimaera synthesis [170]. Therefore, we use 

multiplication of both envelope and average IF features to preserve the relevant 

information at the same feature dimension. Further, the multiplication operation 

will suppress the random IF estimated in silence regions by the low amplitude 

values of the envelope structure.  

4.5.1.3 The Difference Operation 

As in traditional MFCC and CFCC operation, the output of the filterbank is applied 

for nonlinearity (logarithmic) operation followed by DCT to obtain feature 

representation. Instead of directly using the representation obtained by multiplying 

the S(i,j) and AIF(i,j), the change across frames is computed via a derivative 

operation. Thus, differentiating eq. (4.15) partially w.r.t t on both the sides, we get, 

 
( ( , )) ( , ) ( , )

( , ) ( , ) ,
z i t S i t AIF i t

AIF i t S i t
t t t

∂ ∂ ∂
∴ = +

∂ ∂ ∂
      (4.16) 

Thus, the derivative of z(i,t) representation is the sum of changes in nerve spike 

density weighted by average IF and the changes in average IF weighted by the nerve 

spike density. The efficiency of the proposed features lies in exploiting the dynamic 

information via derivative operation for the present problem of SSD task. The basic 

idea is that the human speech production is a continuum process, with relatively 

fewer changes in the amplitude and frequency across any speech sound unit (unless 

there is an abrupt transition from one speech sound unit to another). However, in 

generating either the SS or the VCS, the features are extracted and processed 

framewise. Thus, to capture the transient information, the change in the envelope 

(by CFCC) and average IF between consecutive frames is estimated through the 

derivative operation. Therefore, we explore the transient information by simple one-

point derivative (backward and forward difference) and by the symmetric difference. 

It was observed that both backward and forward derivative gave similar information 

and hence, only the backward difference is considered hereafter. In the present work, 

to capture both past and future context information at a particular time instant, we 

use the symmetric difference to estimate the change in CFCCIF features across the 

frames. The symmetric difference is used as follows,  
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( ( , )) [ , 1] [ , 1]
,

2

z i t z i n z i n

t

∂ + − −
∴ ≈

∂
       (4.17) 

where z(i,t) is given as per eq. (4.15). Using symmetric difference which uses both 

past and present sample amplitude and frequency information smoothens out 

abruptness due to one sample differentiation and also intuitively represents the fact 

that both past and future context information are essential for perceiving the 

transient information at a particular instant. The significance of such context was 

also observed for syllable boundary detection using STM and the listening test [171]. 

4.5.1.4 Other Operations 

Next, the derivative operation is followed by considering the absolute value followed 

by the logarithm nonlinearity (this is repeated for all the subbands, i.e., i∈[1,28]�. 

Finally, DCT is applied framewise. These features obtained using backward 

difference are known as CFCCIF features and those obtained with a symmetric 

difference are known as CFCCIFS features. The complete architecture of the CFCC 

and CFCCIFS features is shown in Figure 4.7. 

 

Figure 4.7: Schematic diagram of the CFCC, CFCCIF and proposed CFCCIFS feature 

extraction process. (Adapted from [91]).  

4.5.2 Effectiveness of Derivative Operation 

The efficiency of the proposed features lies in exploiting the dynamic information via 

derivative operation for the present problem of natural vs. spoof speech detection. 

The type of dynamic information that is captured depends on the shape of the 

cochlear filter shape. Therefore, we study the effect of the envelope and the phase 

features using a case of a wide bandwidth with α=3 and β =0.35 and a narrow 

bandwidth cochlear filter with α =3 and β =0.035. Figure 4.8 shows the case for a 

wide bandwidth cochlear filter. In particular, Panel I, Panel II, Panel III and Panel 
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IV considers the analysis of natural speech, vocoder-based SS and vocoder-based 

VCS and unit-selection-based speech (MARY TTS), respectively, with the same text 

material. The vocoder-based SS and VCS correspond to the utterances from the S3 

and S7 spoofs of the SAS database [19], respectively. Figure 4.8 (a) shows the speech 

waveform, Figure 4.8 (b) and Figure 4.8 (c) shows the subband energy representation 

of MFCC and CFCC, respectively. Figure 4.8 (d) shows subband energy 

representation obtained on multiplying envelope and average IF (i.e., without the 

derivative operation as in eq. (4.15)), Figure 4.8 (e) and Figure 4.8 (f) shows the 

subband energy representation of CFCCIF and CFCCIFS using backward and 

symmetric difference operation, respectively. 

 

Figure 4.8: Panel I: Natural speech, Panel II: vocoder-based SS, Panel III: vocoder-based VCS 

and Panel IV: USS-based MARY TTS: (a) speech signal waveform of the utterance /It’s nice to 

hear/ from the SAS database [19], the subband energy representation of (b) MFCC (c) CFCC 

(d) multiplication of CFCC and IF (without the derivative operation) (e) CFCCIF (using one-

point backward derivative) [81] and (f) CFCCIFS (using symmetric difference operation). 

The cochlear filter parameters are α=3 and β=0.35. Dotted regions show differences in 

natural and the spoofed speech signal.  

As observed in Figure 4.8 (b) and Figure 4.8 (c), there exists fewer pitch (i.e., 

fundamental frequency F0) harmonics (due to wider bandwidth) and computational 

noise (due to filtering of the entire signal rather than estimating FFT frame wise) in 

the spectra from the auditory transform (CFCC) than MFCC representation [166]. 

The representation in Figure 4.8 (d) obtained by multiplication of envelope and 
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average IF features (without the derivative operation as in eq. (4.15)) is different 

from Figure 4.8 (c) is the sense that the high-frequency regions are enhanced by 

CFCCIF features. It is observed in Panel I and Panel III that VCS is observed to 

match the characteristics of the natural speaker more than SS (the speaker-specific 

information is retained especially in high-frequency regions [172]). However, it is 

necessary to bring out the information about natural and spoofed speech. Next, the 

proposed CFCCIF features are shown in Figure 4.8 (e) of all the panels [81]. After 

taking the derivative, features corresponding to natural and spoofed speech have 

been visible. As the natural speech production mechanism is a continuum and 

almost constant process at least for a particular speech sound unit, taking the 

derivative will minimize the energy (as shown by oval regions in Panel I). On the 

other hand, for SS speech in the similar region, the energy is not minimized even 

after derivative operation (as shown by oval regions in Panel II), i.e., the speech 

synthesis generation process was rather discontinuous as compared to the natural 

speech signal. For VCS, such direct differences were not observed. However, for VCS, 

the energy intensity is less (as shown by dotted squares in Panel III) than that of the 

natural speech throughout the speech utterance (as shown by dotted squares in 

Panel I). Similar inferences were observed for few other utterances of the SAS 

database [19]. Thus, by using symmetric difference, the subband energy 

representation becomes smoother and in fact, the difference between natural and 

spoofed speech (i.e., SS and VCS) is much more prominent.  

Next, we study the effect of the envelope and the average IF features using a 

narrow -3 dB bandwidth (i.e., high quality (Q) factor) cochlear filter with α=3 and 

β=0.035. Narrower filters are needed for efficient IF estimation (in order to avoid 

ambiguity in IF estimation). Moreover, in the early auditory processing model of 

Shamma [163], [169], high quality cochlear subband filter responds only to 

frequencies near the center frequencies, and hence, are found to produce more 

regular (i.e., periodic) synchronized responses even independent of input stimuli 

(such as noise, harmonic sequence or impulse) [163]. The spectrum of the AT is 

known to preserve the formant information with fewer pitch harmonics (i.e., F0) and 

computational noise [166]. As observed in Figure 4.9 (c), the formant characteristics 

are enhanced more in natural speech than the vocoder-based SS and VCS.  
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Figure 4.9: Panel I: Natural speech, Panel II: vocoder-based SS, Panel III: vocoder-based VCS 

and Panel IV: USS-based MARY TTS: (a) speech signal waveform of the utterance /It’s nice to 

hear/ from the SAS database [19], the subband energy representation of (b) MFCC (c) CFCC 

(d) multiplication of CFCC and IF (without the derivative operation) (e) CFCCIF (using one-

point backward derivative) [81] and (f) CFCCIFS (using symmetric difference operation). 

The cochlear filter parameters are α=3 and β=0.035. Dotted regions show differences in 

natural and the spoofed speech signal. (Adapted from [91]). 

The higher formants are attributes of the natural speech and it is difficult to 

incorporate it in the machine-generated speech. In the case of USS-based speech, the 

formant information is intact due to the concatenation of natural speech sound units. 

However, this depends on the sound units that are picked for concatenation. In 

Figure 4.9 (d), the representation obtained by multiplication of envelope and average 

IF features (without derivative) is similar to Figure 4.9 (c) except that the frequency 

regions are enhanced due to the embedded IF information. For spoofed speech in 

Panel II and Panel III, the high frequency regions are enhanced after multiplication 

with average IF. Next, the CFCCIF filterbank representation as in [81] is shown in 

Figure 4.9 (e) for all the panels. After taking derivative, the features corresponding 

to natural and spoofed speech have been more discriminative. For natural speech, 

the dynamic variations of the envelope and average IF across the frames were more 

visible along all the filterbanks as compared to that of the SS and VCS. 

Furthermore, by using symmetric difference, the subband energy representation is 

smoother and in fact, the difference between natural and spoofed speech (i.e., SS and 
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VC) is much more prominent. Therefore, from embedding the average IF information 

to taking the derivative, the high frequency regions have significantly enhanced as 

shown by dotted regions in Figure 4.9. In a very recent study, it has been observed 

that high-frequency regions indeed are essential for spoof detection [83], [84]. In the 

case of natural speech, the energy variations are more and along the entire 

utterance. This is not the case for spoofed speech, especially for vocoder-based 

speech. The dotted squares show a region of sound \s\ for all the utterances. The 

envelope and IF representation are significant in this area as compared to the 

CFCCIF representation in Figure 4.9 (d) without the derivative operation. The use of 

symmetric difference has considered both the past and the future samples for the 

derivative operation. This not only makes the representation smoother, but also 

intuitively represents the fact that both past and future context information are 

essential for perceiving the transient information at a particular instant.  

4.5.3 Experimental Results 

4.5.3.1 Parameterization 

The MFCC, CFCC, CFCCIF and CFCCIFS features are extracted from 25 ms of the 

frame with a shift of 50 % between frames. Both static (s) (without 0th energy 

coefficient) and dynamic features, i.e., delta (∆) and delta-delta (∆∆) for all the 

feature sets are extracted. Thus, three different dimensions (D) of the feature vector, 

i.e., D1: 12-D static features, D2: 24-D (12 static + 12-∆), D3: 36-D (12 static + 12-∆ + 

12-∆∆) are considered. In addition, to estimate the dynamic features, various 

analysis window intervals are considered for the derivative operation to know the 

best possible window size for SSD task. In addition, the individual contribution of 

the dynamic features is also analyzed. The parameters of CFCC, CFCCIF and 

CFCCIFS are fixed to α=3 and β=0.035 through experiments. These values of α and β 

give a narrow shape to the auditory filters which help to capture better spoof-specific 

features. In the next sub-Section, the experimental results on the ASVspoof 2015 

challenge database and Blizzard 2012 and 2014 databases are demonstrated. The 

results of the ASV spoof 2015 challenge database are presented in [91]. Details of the 

GMM-based classification system and the performance measures to be used were 

described in Chapter 3.  
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4.5.3.2 Results on the Development Set of ASVspoof challenge Database 

Choice of number of subband filters: The experiments related to the choice of a 

number of subbands for Mel filterbank and cochlear filterbank are presented here. 

As observed in Figure 4.10 that overall the % EER decreases from D1 to D3 feature 

vector. The MFCC feature set gave high % EER for less number of subband filters as 

compared to the CFCC, CFCCIF and CFCCIFS. The % EER of the features do not 

vary much after 25 subband filters especially for D3 feature vector. Thus, instead of 

using a large number of subband filters, we use slightly greater than 25, i.e., 28 

subband filters for all the four feature sets.  

 

Figure 4.10: Effect of a various number of subband filters on the % EER for MFCC, CFCC, 

CFCCIF and CFCCIFS feature sets using the D1, D2 and D3 feature vectors. 

The effectiveness of pre-emphasis on speech signal: To study the dependence 

of the features on pre-emphasizing the speech signal, the % EER was obtained with 

pre-emphasis (P) and using no pre-emphasis (nP) for MFCC, CFCC, CFCCIF and 

CFCCIFS features sets as shown in Figure 4.11. The MFCC features have a 

sensitive dependence to pre-emphasis, i.e., for nP, its % EER increases significantly 

for all sets of feature vectors. On the other hand, the % EER of CFCC-based features 

(with P or nP) are almost constant for all feature sets. In fact, on an average, CFCC, 

CFCCIF and CFCCIFS feature sets perform better without pre-emphasis. Thus, the 

performance of the cochlear filter-based features is not significantly dependent on 

pre-emphasis. This is due to embedded bandpass filtering (i.e., due to admissibility 

condition of the cochlear filter, i.e., mother wavelet function ψ(t)  as in eq. (4.6) [81]). 

Thus, for all the experiments, MFCC is used with pre-emphasis filter (i.e., 1-0.97z-1) 

and cochlear filter-based features are used without explicit use of pre-emphasis 

filter. 
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Figure 4.11: Effect of pre-emphasis on % EER for MFCC, CFCC, CFCCIF and CFCCIFS 

feature sets using the D1, D2 and D3 feature vectors (P=pre-emphasis with a pre-emphasis 

factor of (apre=0.97) and nP=no pre-emphasis on speech signal).  

Effectiveness of derivative operation in CFCCIF: As discussed in Section 4.5.1, 

the derivative operation (shown by dashed region in Figure 4.7) before taking log and 

DCT indeed facilitates the SSD task. As observed in Table 4.1, the % EER is less 

with the derivative operation. In fact, using derivative in time-domain gives less % 

EER with just D2 (static+∆) feature vector. For higher-dimensional feature vector 

(D3), no difference is found in % EER with and without derivative. The difference is 

not observed in the EER, however, the likelihood scores are different and the 

changes/improvements are observed during fusion. Also for consistency across all the 

feature sets, we use D3 feature vector.  

Table 4.1: EER (in %) for CFCCIF feature set with and without derivative 

 
Feature Vector 

D1 D2 D3 

Without Derivative 4.318 2.4878 1.5156 

With Derivative 2.287 1.4012 1.5156 

 

Effect of window size to estimate dynamic features: A recent work in [83], has 

shown that the dynamic features alone can contribute effectively to the detection 

process and achieve almost similar or less % EER than the static features. Along 

similar lines, Table 4.2 shows the individual contribution of 12-D ∆ and 12-D ∆∆ 

features and combined effect of the 24-D ∆+∆2 features for all the four feature sets 

considered in the present work. The dynamic features are estimated for four analysis 

frames (2n0+1), i.e., with n0=1 (w1), with n0=2 (w2), with n0=3 (w3) and with n0=4 

(w4) corresponding to 18.75 ms, 31.25 ms, 43. 75 ms and 68.25 ms, respectively, for a 

Fs of 16 kHz. It is observed that the dynamic features alone are effective for MFCC 

D1_P D1_nP D2_P D2_nP D3_P D3_nP

MFCC 3.26 4.00 2.17 2.66 1.60 2.80

CFCC 4.75 4.55 2.66 2.60 1.37 1.54

CFCCIF 2.32 2.29 1.43 1.40 1.63 1.52

CFCCIFS 2.06 1.89 1.03 1.06 1.20 1.23
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and CFCC only when a w1 frame window is used. Likewise, CFCCIF and CFCCIFS 

perform well for the w2 frame window. For larger frame window (i.e., w3 and w4), 

the % EER increases significantly. This change is rather more for MFCC and CFCC 

features than that of the CFCCIF and CFCCIFS features as evident from the 

average values. Thus, it is observed that the performance of MFCC and CFCC 

feature sets are more dependent on the window size as compared to the CFCCIF and 

CFCCIFS feature sets. 

Table 4.2: EER (in %) for 12-D ∆, 12-D ∆∆ and 24-D ∆+∆2 feature vectors for all feature sets 

No. of Frames 

Feature Sets 

MFCC  CFCC  CFCCIF  CFCCIFS  

∆ ∆2 ∆+∆2 ∆ ∆2 ∆+∆2 ∆ ∆2 ∆+∆2 ∆ ∆2 ∆+∆2 

w1 3.77 4.69 3.09 1.54 0.77 1.00 2.69 5.78 1.77 2.37 5.49 1.40 

w2 5.83 6.23 5.72 5.18 3.75 4.55 2.83 3.17 2.12 2.23 2.80 1.54 

w3 7.09 7.35 7.15 8.98 7.58 8.15 4.38 4.23 3.63 3.03 2.86 2.40 

w4 8.15 8.49 8.84 11.41 10.21 10.69 7.06 5.78 5.63 4.58 4.03 3.66 

Average 6.21 6.69 6.20 6.78 5.58 6.10 4.24 4.7 3.29 3.05 3.80 2.25 

 

It is observed from Table 4.2 that with the ∆ + ∆2 features used together, the % EER 

improves than using dynamic features alone. The complementary information in ∆ 

and ∆2 features were added when used jointly. For the cochlear filter-based features, 

namely, CFCC, CFCCIF and CFCCIFS features, the performance was even better 

than the static features. From Table 4.2, it was observed that the % EER for only ∆2 

features for CFCCIF and CFCCIFS features were more than 5 % with a w1 frame 

window. However, when combined along with their ∆ features, the % EER went down 

to 1.77 % and 1.40 % for CFCCIF and CFCCIFS, respectively. For CFCC with ∆2 

features, the EER is as low as 0.77 %, however, this is not consistent across window 

lengths and hence not considered as the best representation. From Table 4.2, it can 

be concluded that w1 is the best window for all the features to obtain relatively least 

% EER. Using this case, the combined effect of static, ∆ and ∆∆ features are studied 

as shown by shaded cells in Table 4.3. It is observed that with the 36-D feature 

vector (i.e., static+∆+∆2), the % EER of MFCC reduced to 1.6 % as compared to using 

only static or only dynamic features alone. The CFCCIF and CFCCIFS gave least % 

EER with D2 feature vector due to reasons discussed in Table 4.1. 

Results of score-level fusion: The fusion of MFCC with either CFCC or CFCCIF 

or with CFCCIFS is considered and shown in Table 4.3. It is observed that the best 

% EER on the development set is obtained with a fusion weight, αf  = 0.4 for CFCC 
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and αf = 0.6 for CFCCIF and CFCCIFS. Thus, CFCCIF and CFCCIFS feature set on 

score-level fusion added more complementary information in reducing the % EER 

than MFCC alone. The fusion of proposed CFCCIFS and MFCC using D3 feature 

vector gave the least % EER of 0.66 amongst all combinations. In fact, scores 

obtained from MFCC and CFCCIF with αf=0.6, i.e., with an EER of 0.83 % was 

submitted at the ASVspoof 2015 challenge which was found to be relatively the best 

performing system among all the 16 submissions [20]. Thus, the MFCC-CFCCIFS 

system performs much better detection than the MFCC-CFCCIF-based SSD system. 

Table 4.3: EER (in %) for score-level fusion of MFCC with CFCC, CFCCIF and CFCCIFS 

feature sets using D1, D2 and D3 feature vectors at various fusion factors αf on the 

development set 

Feature  

Set 1 

Fusion Factor (αf) Feature   

Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC: D1 3.26 2.86 2.66 2.52 2.43 2.57 2.72 3.03 3.55 3.97 4.55 CFCC: D1 

MFCC: D2 2.17 1.83 1.54 1.4 1.32 1.32 1.46 1.63 1.89 2.23 2.6 CFCC: D2 

MFCC: D3 1.60 1.32 1.14 0.97 0.89 0.89 0.92 1.00 1.17 1.34 1.54 CFCC: D3 

MFCC: D1 3.26 2.72 2.4 2.03 1.77 1.6 1.52 1.57 1.72 1.92 2.29 CFCCIF: D1 

MFCC: D2 2.17 1.83 1.46 1.23 1.03 0.97 0.89 0.89 0.97 1.14 1.4 CFCCIF: D2 

MFCC: D3 1.60 1.37 1.14 1.00 0.86 0.83 0.83 0.92 1.03 1.17 1.52 CFCCIF: D3 

MFCC: D1 3.26 2.69 2.29 1.89 1.6 1.43 1.37 1.37 1.46 1.6 1.89 CFCCIFS: D1 

MFCC: D2 2.17 1.74 1.37 1.09 0.89 0.8 0.71 0.74 0.77 0.92 1.06 CFCCIFS: D2 

MFCC: D3 1.60 1.29 1.06 0.92 0.77 0.66 0.66 0.71 0.8 0.92 1.23 CFCCIFS: D3 

Score-level fusion is carried as per eq. (3.6) 

 

Dependency on spoofing algorithms: To check the discriminative property of the 

proposed feature set in terms of the dependency of the spoofing algorithm, the 

systems were trained on individual spoofs and tested on all the spoofs of the 

development set. The development set consists of SS and VCS spoofs which are 

further generated by different algorithms. Instead of considering the known and 

unknown attacks, we further break unknown attacks into two categories of ‘same 

type’ and ‘different type’. However, the case of “same type” and “different type” of 

conditions is completely different than the “known” and “unknown” case mentioned 

for the ASV spoof database. For example, for training with S1 VC spoof: testing with 

speech from S1 algorithm itself is ‘known’, testing with speech from another VC-

based algorithm (i.e., S2 and S5) is ‘same type’ and testing with speech from any SS-

based spoofing algorithm (i.e., S3 and S4) is ‘different type’. Average of the same type 

and different type constitutes ‘unknown’ attacks.  
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Figure 4.12: The % EER for known, same and different type of attacks when trained with 

individual spoofs S1, S2, S3, S4 and S5 for MFCC, CFCC, CFCCIF and CFCCIFS feature sets 

using different feature vectors (i.e., D1, D2, D3) and tested on the development dataset. 

From Figure 4.12, it is observed that each of the features works well for known 

attacks (shown by black solid line). The SS spoofs S3 and S4 obtained 0.0 % EER 

when tested with itself. For VCS spoof, when tested by itself, the % EER decreased 

with MFCC, CFCC, CFCCIF and CFCCIFS feature sets with the D3 feature vector. 

Next, for the ‘same type’ of attacks, SS spoofs (S3 and S4) performed the best to 

detect each other. However, VC-based S1 and S2 that uses STRAIGHT vocoder 

identified VC-based S5 spoof generated using MLSA vocoder with an average 10.7 % 

and 8.7 % EER and detected each other with 3.4 % (S2) and 0.12 % (S1) EER, 

respectively. On the other hand, S5 spoof detected S1 with 2.4 % and S2 with 5.53 % 

EER. Thereafter, for ‘different type’ of spoof, VCS spoof detected synthetic speech to 

a certain extent, i.e., STRAIGHT-based S1 and S2 VCS method detected 

STRAIGHT-based S3 and S4 quite well with CFCCIF and CFCCIFS features. 

However, S5 VCS spoof could not detect SS spoof well. Likewise, the SS spoof, when 

tested with VCS, gave very large % EER. For MFCC, around 50 % EER is observed 

which decreases to around 20 % for CFCCIFS features. The % EER increases for D3 

feature vector on testing with a different type of spoof, especially for MFCC. On the 

whole, the trend showed decrease in EER from MFCC to CFCCIFS features.  

It was observed that, VCS spoof detected SS spoof to a certain extent. However, 

SS trained models could not detect VCS spoofs (this is also indicative in Table 4.4). 

Figure 4.13 shows the true (dotted) and false (solid) scores distribution of the testing 

data when trained only with S1 VCS spoof (top panel) and S3 SS spoof (bottom 

panel). The scores are shown for D1 features vector of MFCC, CFCC, CFCCIF and 

CFCCIFS. While training with VCS spoof alone, features for synthetic speech could 

probably be captured and hence, the SS were detected in the testing phase which can 
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be observed from the single distribution of the false scores. Therefore, as models 

trained on VCS detected both SS and VCS, there is a single distribution of false 

scores. However, the models trained on SS could not detect VCS, resulting in an M-

like distribution of false scores. The part of the M-shaped distribution that is 

overlapping with the true scores (dotted line) is likely due to scores from the VCS 

used in testing. The SS spoof model had been trained with features specific to it and 

hence, could not detect VCS resulting in large overlapping regions leading to 

increased % EER. The SS spoof model had been trained with features specific to it 

and hence, could not detect VCS resulting in large overlapping regions leading to 

increased % EER. Amongst all the feature sets considered here, CFCCIFS had the 

least overlap between true and false score distribution resulting in low % EER and 

better performance. 

 

Figure 4.13: The distribution (i.e., normalized histogram) for true scores (dotted line) and 

false scores (solid line) for 12-D static features extracted from MFCC (green), CFCC (red), 

CFCCIF (cyan) and CFCCIFS (magenta) when trained with S1 VCS spoof (top panel) and S3 

SS spoof (bottom panel).  

Table 4.4 shows % EER of known and unknown attacks when trained with 

individual spoofs and tested on the development set. The VCS spoofs gave less % 

EER for unknown attacks as it detected SS spoof to a certain extent. On the other 

hand, SS spoof gave very high % EER, i.e., > 30 % with MFCC and > 10 % with 

CFCCIFS. The shaded cells show best performance of known (Kn) and unknown 

attacks (Ukn) attacks. 
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Table 4.4: EER (in %) for known and unknown attacks when trained on individual spoofs 

and tested on the development set 

 Feature sets 

 
MFCC CFCC CFCCIF CFCCIFS 

Train Dim. Kn Ukn Kn Ukn Kn Ukn Kn Ukn 

S1 

(VC) 

D1 0.40 5.48 0.17 8.8 0.08 4.62 0.05 3.97 

D2 0.03 6.96 0.06 6.57 0.02 3.71 0.02 3.25 

D3 0.00 23.48 0.01 10.83 0.03 4.63 0.01 4.59 

S2 

(VC) 

D1 8.39 7.45 3.31 6.63 0.98 3.08 1.14 3.04 

D2 2.49 10.11 2.45 4.34 0.43 2.41 0.51 1.90 

D3 0.76 17.51 1.06 3.56 0.36 1.74 0.36 2.10 

S3 

(SS) 

D1 0.00 34.21 0.00 22.06 0.00 14.35 0.00 12.93 

D2 0.00 38.93 0.00 25.06 0.00 16.37 0.00 14.83 

D3 0.00 44.65 0.00 26.61 0.00 17.32 0.00 17.94 

S4 

(SS) 

D1 0.00 34.65 0.00 22.95 0.00 14.8 0.00 13.19 

D2 0.00 38.97 0.00 24.66 0.00 16.69 0.00 15.51 

D3 0.00 45.19 0.00 25.74 0.00 17.62 0.00 18.23 

S5 

(VC) 

D1 4.22 9.46 5.91 3.43 0.49 3.66 0.28 4.79 

D2 0.60 9.06 0.89 2.89 0.08 3.30 0.04 3.83 

D3 0.12 9.34 0.21 3.56 0.01 4.19 0.03 4.92 

Kn=known, Ukn=Unknown 

4.5.3.3 Results on the Evaluation Set of ASVspoof challenge Database 

On the development set, it was observed that instead of using static or dynamic 

features alone, their combination (i.e., D3 feature vector) gives less % EER. In 

addition, score-level fusion of MFCC and cochlear filter-based features one at a time, 

i.e., MFCC with CFCC (or CFCCIF or CFCCIFS) features gave the least % EER.  

Table 4.5: EER (in %) for score-level fusion of MFCC with CFCC, CFCCIF and CFCCIFS 

feature sets using D1, D2 and D3 feature vectors at various fusion factors αf on the 

evaluation dataset 

Feature  

Set 1 

Fusion Factor (αf) Feature  

Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC: D1 5.5 4.86 4.49 4.21 4.09 4.03 4.02 4.15 4.33 4.64 4.98 CFCC: D1 

MFCC: D2 5.49 4.23 3.67 3.19 2.81 2.58 2.45 2.4 2.45 2.58 2.78 CFCC: D2 

MFCC: D3 4.26 3.19 2.67 2.26 1.99 1.79 1.69 1.62 1.61 1.63 1.74 CFCC: D3 

MFCC: D1 5.5 4.92 4.46 4.04 3.74 3.51 3.35 3.23 3.16 3.19 3.37 CFCCIF: D1 

MFCC: D2 5.49 4.52 3.96 3.53 3.13 2.79 2.55 2.38 2.3 2.28 2.34 CFCCIF: D2 

MFCC: D3 4.26 3.46 2.99 2.66 2.39 2.19 2.03 1.91 1.87 1.91 2.07 CFCCIF: D3 

MFCC: D1 5.5 4.84 4.31 3.84 3.46 3.17 2.98 2.85 2.74 2.74 2.81 CFCCIFS: D1 

MFCC: D2 5.49 4.41 3.74 3.24 2.81 2.45 2.13 1.91 1.8 1.75 1.81 CFCCIFS: D2 

MFCC: D3 4.26 3.36 2.79 2.41 2.06 1.8 1.6 1.49 1.45 1.48 1.6 CFCCIFS: D3 

Score-level fusion is carried as per eq. (3.6) 

Results of score-level fusion: Table 4.5 shows the results in % EER on the 

evaluation data after fusion of MFCC features with CFCC (or CFCCIF or CFCCIFS) 

sets using D1, D2 and D3 feature vectors. Table 4.5 shows that score-level fusion of 
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D3 feature vector gave best results for all the features. Unlike the case of 

development set, where the best % EER was obtained at αf =0.4 for CFCC and αf =0.6 

for CFCCIF and CFCCIFS, for the evaluation set, the fusion factor changes to αf 

=0.8, due to the presence of unknown attacks. With αf =0.8, the cochlear-based 

features contribute more in reducing the % EER in the case of unknown attacks. In 

fact, the 1.6 % EER of the D3 feature vector for CFCCIFS alone is almost equal to 

the least EER of 1.45 % after fusion. 

Results on individual attacks: The attack-dependent % EER for the individual 

spoofs of the evaluation set using all the four feature vectors (i.e., MFCC, CFCC, 

CFCCIF, and CFCCIFS) are shown in Table 4.6.  

Table 4.6: EER (in %) in terms of individual attacks, average known attacks, average 

unknown attacks, average with and without S10 spoof for MFCC, CFCC, CFCCIF and 

CFCCIFS feature sets using all the feature vectors and for the score-level fusion of MFCC 

with CFCC, CFCCIF and CFCCIFS feature sets (using D3 feature vector) at selected αf  on 

the evaluation dataset 

Feature 

Vectors 
Feature Sets 

Individual Spoofs  
Average 

Known Unknown 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn Ukn 
w/o 

S10 
Avg. 

 
MFCC 0.1 3.8 0.0 0.0 4.5 3.6 0.4 0.0 1.0 41.5 1.7 9.3 1.48 5.5 

D1 CFCC 0.1 2.6 0.0 0.0 11.3 4.8 0.4 0.1 1.2 29.2 2.8 7.1 2.27 5.0 

(s) CFCCIF 0.0 0.5 0.0 0.0 3.3 1.3 0.1 0.2 0.2 28.2 0.8 6.0 0.62 3.4 

 
CFCCIFS 0.0 0.5 0.0 0.0 2.6 1.0 0.1 0.2 0.2 23.5 0.6 5.0 0.51 2.8 

 
MFCC 0.0 1.6 0.0 0.0 1.6 1.8 0.1 0.0 0.0 49.6 0.7 10.3 0.56 5.5 

D2 CFCC 0.1 2.5 0.0 0.0 5.0 2.5 0.3 0.1 0.6 16.8 1.5 4.0 1.23 2.8 

(s+∆) CFCCIF 0.0 0.2 0.0 0.0 1.5 0.7 0.1 0.4 0.1 20.5 0.4 4.3 0.33 2.3 

 
CFCCIFS 0.0 0.2 0.0 0.0 1.3 0.5 0.1 0.5 0.1 15.4 0.3 3.3 0.3 1.8 

 
MFCC 0.0 1.0 0.0 0.0 0.8 0.9 0.1 0.0 0.0 39.7 0.4 8.2 0.31 4.3 

D3 CFCC 0.0 1.4 0.0 0.0 2.3 1.0 0.1 0.1 0.2 12.3 0.8 2.7 0.57 1.7 

(s+∆+∆∆) CFCCIF 0.0 0.7 0.0 0.0 2.2 1.0 0.2 0.9 0.3 15.4 0.6 3.6 0.59 2.1 

 
CFCCIFS 0.0 0.5 0.0 0.0 1.7 0.7 0.1 1.0 0.2 11.7 0.5 2.7 0.47 1.6 

D3 

αf=0.8 

MFCC+CFCC 0.0 0.7 0.0 0.0 1.3 0.7 0.1 0.0 0.1 13.1 0.4 2.8 0.33 1.6 

MFCC+CFCCIF 0.0 0.4 0.0 0.0 1.0 0.5 0.0 0.1 0.0 16.7 0.3 3.5 0.22 1.9 

MFCC+CFCCIFS 0.0 0.2 0.0 0.0 0.7 0.3 0.0 0.1 0.0 13.0 0.2 2.7 0.16 1.4 

Score-level fusion is carried as per eq. (3.6), Kn=known, Ukn= Unknown, w/o  S10=Average without S10, Avg. = Average of S1-S10  

 

It is observed that when trained with VCS and SS jointly, the known and unknown 

attacks are detected quite well (except S10). For D3 feature vector, MFCC features 

achieved least 0.37 % EER for known attacks. However, it achieved very high 40 % 

EER for S10 which increased the average EER to 4.26 %. The CFCCIFS feature set 

gave 0.45 % for known attacks and lowest EER of 2.73 % on unknown attacks with 

11.7 % EER for S10 spoof. The CFCC feature set also obtained less % EER for S10 

spoof. However, its % EER for other spoofs was more than that of CFCCIF and 

CFCCIFS. Amongst known attacks, S2 and S5 spoof were difficult to detect and for 
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unknown attacks, the vocoder-independent S10 spoof was toughest, followed by S6, 

S9, S8, and S7. Overall, CFCCIFS feature set works quite well for known attacks 

and detected unknown spoofed speech even if a similar type was not available during 

training. 

Figure 4.14 shows the % EER for known and unknown attacks with D3 

feature vector at various fusion factors when MFCC is fused with either CFCC or 

CFCCIF or CFCCIFS. While MFCC features, when used alone, gave least % EER for 

known attacks, the cochlear filter-based features gave least % EER for unknown 

attacks even without fusion with MFCC. Thus, some contribution of MFCC is 

required for best performance with known attacks. Table 4.6 shows the % EER for 

optimum αf of 0.8 for cochlear-based features. Amongst all score-level fusions, 

MFCC+CFCCIFS combination performs relatively best. 

 

Figure 4.14: The % EER of known attacks (solid line) and unknown attacks (dashed line) for 

D3 feature vector on fusion of MFCC with CFCC (blue), CFCCIF (green) and CFCCIFS (red).  

Discussion on the DET curves: The DET curves for MFCC, CFCC, CFCCIF and 

CFCCIFS feature sets, when used alone, are shown in Figure 4.15 (a). It is observed 

that the FRR of MFCC was very high for a given FAR which is not suitable for ASV 

systems. From MFCC to CFCC, there is a significant decrease in FRR (as shown in 

Figure 4.15 (a) by dotted region) which further reduces for CFCCIFS.  Figure 4.15 (b) 

shows DET curves for CFCC, CFCCIF and CFCCIFS after fusion with MFCC for αf 

=0.8. A clear improvement in both FRR and FAR is observed with MFCC+CFCCIFS 

than with CFCC and CFCCIF. The results of score-level fusion of MFCC+CFCCIF 

with αf =0.6 was submitted at the ASVspoof 2015 challenge (as decided from the 

Fusion factor αf
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results on development set). However, here MFCC+CFCCIFS gives better % EER 

and the best performance amongst all the other fusion combinations. 

 

Figure 4.15: DET curves on the evaluation set for (a) MFCC, CFCC, CFCCIF and CFCCIFS 

feature sets used alone (b) score-level fusion of MFCC and CFCC, MFCC and CFCCIF and 

MFCC and CFCCIFS with αf =0.8.  

Dependency on spoofing algorithms: Just as in the case of development set, the 

testing of the entire evaluation data is carried out when trained on individual S1, 

S2, S3, S4 and S5 spoofs. For the development set, known and same types of spoofs 

were easily identified. However, for ‘different type’ of spoof on training with VCS 

spoofs, the SS spoofs were identified while the reverse case was not true. The same 

analysis is continued here using ‘same type’ and ‘different type’ of spoofed speech. 

The S10 spoof is considered separately as it is non-vocoder type and its performance 

highly affects the average % EER. The interpretations for ‘known type’ remains 

similar as discussed for Figure 4.12 (and hence, not shown here again).  

Figure 4.16 shows that as in the development set, the trend is similar, i.e., for the 

‘same type’ of spoofs, SS identified its same type with almost 0.00 % EER. The VCS 

spoof identified its same type quite well and the % EER decreased from MFCC to 

CFCCIFS features. On the other hand, for ‘different type’ of spoof, VCS spoofs gave 

less % EER when tested on SS attacks as compared to SS spoof that gave very high 

% EER on testing with VCS spoof. Overall, on training with S1, S2 and S5 (VCS 

spoof), MFCC feature set gave an EER of 4.71 %, 4.57 % and 2.12 % and CFCCIFS 

gave an average EER of 1.43 %, 1.00 % and 2.10 % for all vocoder-based (S1-S9) 

spoofs averaged over all dimensions. This analysis was independent of S10 spoof. 
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Figure 4.16: The % EER for same type, different type and S10 attacks when trained with 

individual spoofs S1, S2, S3, S4 and S5 for MFCC, CFCC, CFCCIF and CFCCIFS feature sets 

using different vectors (i.e., D1, D2, D3) and tested on the evaluation dataset. 

Considering S10 separately, VCS spoofs (S1, S2 and S5) when tested with S10, 

gave large % EER for MFCC feature set, i.e., the detection rate were around 20-70 % 

with MFCC. The % EER gradually decreased to 15-25 % when CFCCIFS features 

are used with D3 feature vector. Interestingly, when trained on S1 spoof with 

CFCCIFS using D3 feature vector, as low as 2.6 % EER is achieved. Similarly, on 

testing with SS trained models, S10 gave as low as 3 % with MFCC using D1 feature 

set which increased to 10-50 % when other features were used. For MFCC, the % 

EER increases from D1 to D3 feature vector, while the pattern of EER for cochlear 

filter-based features is found to be random. On listening to MARY TTS speech 

utterances (S10 spoof) from SAS database [19], they were found to be unintelligible 

[123]. Thus, it should be possible to identify this kind of spoofed speech. However, 

the modeling needs to be done appropriately and techniques to deal with vocoder-

independent speech needs to be explored further. On the whole, the proposed 

CFCCIFS feature set performed better due to the use of auditory filterbank than 

triangular filterbank and due to the notion that human speech production system 

produces speech in continuum manner rather in a frame-by-frame pattern which 

when embedded in CFCCIFS gives better spoof detection results. 

4.5.3.4 Results on the Blizzard Challenge 2012 Database 

The Blizzard Challenge 2012 database consists of unknown spoofing algorithms of 

both HTS and USS system. In this case, the systems are trained on the ASV spoof 

database and tested on the Blizzard Challenge 2012 database. The % EER was 

obtained using A (100 utterances of natural speech signal) and one spoofed system 

from B-K (100 utterances each). The results of detection are shown in Table 4.7. 
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As observed from Table 4.7, the % EER by using cochlear-based features are 

much better than MFCC. The system B was the benchmark system and was found to 

be toughest to detect with minimum EER obtained of 45 % with CFCC features. It is 

to be noted that for the Blizzard Challenge 2012 evaluation, the CFCCIF/CFCCIFS 

features did not always perform best as in the case of ASV spoof database. As in 

Figure 3.6, systems D (hybrid), E (statistical), J (diphone) and K (statistical) had an 

MOS score of ≤ 2. The minimum % EER obtained for these attacks are 23, 2, 41 and 

6. A low % EER was observed for statistical-based spoofing attacks. The systems C 

(hybrid), F (USS) and I (USS) had an MOS >3 and were detected with an EER of 26 

%, 9 % and 31 %, respectively. Thus, there was no exact correlation between the % 

EER of the features and the MOS scores for the Blizzard dataset.  

Table 4.7: EER (in %) for MFCC, CFCC, CFCCIF and CFCCIFS feature sets using D1, D2 and 

D3 feature vectors on training with the ASV spoof data and testing with the Blizzard 

Challenge 2012 database 

Blizzard 2012 Systems 

Feature Sets 

MFCC CFCC CFCCIF CFCCIFS 

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 

USS B 98 77 67 48 47 45 51 47 58 53 53 50 

Hybrid C 40 46 47 37 28 26 33 31 31 36 33 23 

Hybrid D* 65 66 42 36 42 47 29 35 41 23 34 36 

HMM E* 44 82 61 12 6 11 3 3 11 2 2 8 

USS F 22 24 15 22 17 20 9 12 30 11 14 13 

USS G 8 29 27 11 7 11 5 6 25 5 6 10 

HMM H 12 38 3 1 1 3 3 3 2 1 2 2 

USS I 98 97 69 34 31 31 46 48 49 42 45 45 

Diphone J* 64 69 69 45 41 41 58 53 59 61 59 53 

HMM K* 92 67 73 30 33 42 13 6 37 7 12 20 

* systems with lower MOS from 1 ≤ 2 

 

4.5.3.5 Results on the Blizzard Challenge 2014 Database 

The results for testing on Blizzard Challenge 2014 database for Gujarati and Hindi 

languages are shown in Table 4.8 and Table 4.9, respectively. For the Gujarati 

language, the least % EER was obtained using MFCC features with D3 feature set. 

The % EER was very high for all cochlear-based features. For MFCC, the HMM-

based systems gave less % EER (as training is done on vocoder-based spoofs) and 

USS-based G system gave a high EER of 34 %. None of the cochlear-based features 

could perform better than MFCC features.  
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Table 4.8: EER (in %) for MFCC, CFCC, CFCCIF and CFCCIFS feature sets using D1, D2 and 

D3 feature vectors on training with the ASV spoof data and testing with the Blizzard 

Challenge 2014 database for the Gujarati language 

Blizzard 2014 
Gujarati 

Systems 

Feature Sets 

MFCC CFCC CFCCIF CFCCIFS 

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 

HMM C 37 13 4 38 35 35 87 90 65 82 82 59 

HMM D 67 6 1 18 18 14 94 90 65 88 88 39 

HMM E 13 21 4 82 51 44 100 90 100 99 99 71 

HMM-DNN F 75 23 6 97 73 73 99 90 99 98 98 78 

USS G 67 48 34 84 85 84 100 98 89 99 99 87 

HMM H 55 24 24 86 58 62 100 87 87 100 95 54 

* wavefiles for baseline system B and system I are not available 

Table 4.9: EER (in %) for MFCC, CFCC, CFCCIF and CFCCIFS feature sets using D1, D2 and 

D3 feature vectors on training with the ASV spoof data and testing with the Blizzard 

Challenge 2014 database for the Hindi language 

Blizzard 2014 
Hindi 

Systems 

Feature Sets 

MFCC CFCC CFCCIF CFCCIFS 

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 

HMM B* 19 5 14 87 68 49 80 63 79 84 82 63 

HMM C 7 4 6 20 14 10 12 4 16 14 12 12 

Hybrid D 39 25 62 77 70 67 70 62 70 76 70 63 

HMM E 6 5 7 72 40 15 75 43 86 73 65 27 

HMM-DNN F 32 7 19 75 60 46 72 52 55 82 68 40 

USS G 51 52 52 34 26 28 27 26 24 31 27 24 

HMM H* 10 11 30 42 13 2 15 0 38 14 2 0 

HMM K 72 8 32 38 15 4 20 6 16 29 22 2 

* systems with lower MOS from 1 ≤ 2 (wavefiles for system I are not available) 

 

For Hindi, similar to Blizzard Challenge 2012 dataset, no consistency was 

observed with respect to a definite feature giving better results for all the systems 

considered here. However, it was observed that HMM systems were definitely 

detected with EER around < 11 %. The hybrid system D achieved the least EER of 

25 % with MFCC and USS-based system G achieved an EER of 24 % with CFCCIFS 

features. It can be observed from the analysis of Blizzard Challenge data both in 

English and other languages that there is an inconsistency of features in detecting 

spoofing attacks. On the whole, HMM-based systems were easily detected than the 

USS synthesis systems. However, this observation is not uniform as in the case of 

Blizzard Challenge 2012 database, the USS-based systems F and G were detected 

with lower % EER. Hence, there is a need for generalized countermeasures. 
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4.6 Subband Autoencoder (SBAE) 

4.6.1 Introduction to Autoencoder (AE) 

The Autoencoder (AE) is such a network which uses Deep Neural Network (DNN) or 

Restricted Boltzmann Machine (RBM) to extract low-dimensional information from 

high-dimensional raw data [173]. The AEs have been used in various applications 

such as de-noising front-end for Automatic Speech Recognition (ASR) task, in finding 

a mapping between noisy and clean speech spectrum for noise reduction in ASR 

system, speech enhancement task and speech coding. Very recently, the AEs have 

been used for noise reduction in SV system. The deep AE has also been used for 

noise aware training for noisy ASR. Features learned by deep AE were also used for 

SPSS using DNN. Figure 4.17 shows the basic architecture of AE.  

 

Figure 4.17: Architecture of the Autoencoder (AE). Adapted from [173]. 

Despite the various properties, AE features are not popular as acoustic features 

in most of the speech technology applications. The inability to control the form of the 

representation which is learned by AE leads some researchers to criticize them as 

uninterruptable black boxes [174]. To overcome this limitation, many variants of the 

AE have been proposed. A new architecture called transforming AE was used to 

detect acoustic events in speech signal for the ASR task. Phone recognition task was 

done using mean-covariance RBM [174]. In [175], authors proposed an architecture 

of AE in which decoding block was constrained for stretching and compressing 

frequency-domain for ASR task.  
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4.6.2 Subband Autoencoder (SBAE) 

In this thesis, a modified architecture of AE, i.e., Subband Autoencoder (SBAE) is 

used for feature extraction from the speech spectrum. Proposed architecture uses 

domain-specific knowledge about speech processing and incorporates it in the 

architecture of AE. Inspired by Human Auditory System (HAS), speech is generally 

processed in subbands. Therefore, in SBAE, the connectivity of units in traditional 

AE is restricted in such a way that each unit in first hidden layer captures the 

information of a particular band of the speech spectrum. This property of our 

architecture makes it more suitable for several speech technology applications. The 

features extracted by SBAE are used for the present task of spoof detection. The 

main difference between proposed SBAE architecture and existing architecture of 

AE is the connectivity of neurons or units immediately after the input layer [173]. 

This architecture of the SBAE is shown in Figure 4.18.  

      

Figure 4.18: Architecture of the Subband Autoencoder (SBAE). After [89]. 

In AE, each unit in the layer immediately after input layer is connected with all the 

units of the previous layer. While in the case of proposed SBAE, the connectivity is 

restricted. In the proposed SBAE architecture, each unit of the first hidden layer is 

connected with a particular frequency band of input spectrogram. Hence, each unit 

in the first layer will encode the information about that particular frequency band 

with which it is connected. The decoding structure is same as that of traditional AE 

with full connectivity [173]. The band structure of restricted connectivity for neurons 

is same as Mel filterbank, implying one neuron in the first layer is connected with 
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the frequencies of one Mel filterbank. This architecture closely resembles to HAS 

and provides more meaningful information than AE in the case of the speech signal. 

Mathematically, operation of the subband layer can be represented as follows: 

 
1( ),

j ij j

i

a f W x= ×∑       (4.18) 

where aj  is jth subband feature, xj is short-time power corresponding to jth filterbank 

and Wij are weights corresponding to jth subband feature, f is the nonlinear activation 

function of the neuron. The functionality of preceding layers of SBAE is same as of 

traditional AE [173]. The input to the SBAE is the linearly scaled spectrogram and 

the input is log-compressed. Proposed SBAE architecture can be trained by back-

propagation similarly as an AE. The learnt aj can be used as low-dimensional 

features for several other speech technology applications. 

4.6.3 Analysis of SBAE on Spoofed Speech 

To observe the effect of SBAE features for the SSD task, the SBAE representation is 

observed for natural and various types of spoofed speech as shown in Figure 4.19. 

 

Figure 4.19: (a) Speech signal waveform, (b) Mel filterbank energies and (c) SBAE features 

energies for Panel I: natural speech, Panel II: vocoder-based VCS, Panel III: vocoder-based 

SS and Panel IV: USS-based MARY TTS. 

It can be observed that both MFCC and SBAE features show variations for natural 

and different types of spoofs. Hence, both of these features can be used for spoof 

detection task. Moreover, both feature sets are invertible, implying speech spectrum 

can be reconstructed using both features (while it may not be strictly necessary for 

classification problem). To quantify reconstruction ability of both the features, 
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average Log Spectral Distortion (LSD) between original spectrum P(ω) and 

reconstructed spectrum P̂(ω) was calculated as follows: 
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For 50 natural utterances of ASVspoof 2015 database, the LSD in the case of 

proposed SBAE features was 5.01 dB and using Mel filterbank energies it was 9.04 

dB. As observed in Figure 4.19, the proposed features do not show many variations 

in low-frequency regions for natural speech and also for different conditions of 

spoofing attacks. It is also observed that the proposed features are more sensitive to 

small variations in the spectrum due to nonlinear processing. This effect can be seen 

by observing features of two consecutive frames in Figure 4.19. Unlike Mel 

filterbank energies, proposed features vary more for consecutive frames (in time-

domain). Thus, SBAE features may capture more dynamic information of speech 

spectrum. Similar findings for AE features were observed in [176].  

The most important property of SBAE feature for spoof detection can be seen in 

Figure 4.20 (a) and Figure 4.20 (c) which shows variance of SBAE features and the 

Mel filterbank energies for natural utterances and utterance synthesized using USS 

(S10 system in ASV spoof challenge database). The USS-based spoof is proven to be 

the most difficult to detect amongst all the synthesis techniques. The reason behind 

this is that USS system uses different units of natural speech and concatenates the 

units to generate output speech signal according to text input. Since USS systems 

use segments of natural utterance, they sound very natural (though not always 

intelligible) and difficult to discriminate from natural utterances. Due to this reason, 

state-of-the-art features such as MFCC, which works very well on another kind of 

attacks such as VCS and HMM-based SS, gives poor results on synthetic speech 

generated by USS systems [9]. This effect is visible in Figure 4.20 (a) and Figure 

4.20 (c). The variance of higher-order Mel filterbank energies is almost similar in the 

case of natural speech and USS-based speech. However, the Mel filterbank energies 

show different variance for another kind of speech such as VCS (Figure 4.20 (b)) and 

SS (Figure 4.20 (d)). On the other hand, higher order SBAE features show different 

variance for all the types of spoofed speech. The difference between the variance of 

natural speech and speech synthesized by USS is clearly visible. Hence, SBAE 
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features may work better than MFCCs in the case of USS speech. Moreover, due to 

the very high and low variance of the SBAE features for different types of spoof, by 

including their dynamic variations as countermeasure, the performance is likely to 

be improved than using only static information. 

 

Figure 4.20: Variance of higher-order Mel filterbank energies (FBEs) and SBAE features for 

(a) natural speech, (b) vocoder-based VCS, (c) USS-based MARY TTS speech and (d) vocoder-

based SS. 

4.6.4 Experimental Results 

4.6.4.1 Parameterization for SBAE features  

For feature extraction of SBAE, the speech signals were divided into frames with 25 

ms duration and 50 % overlap. The STRAIGHT spectrum was used for feature 

extraction using SBAE [132]. The configuration of the network was 513-40-250-513, 

implying 513 units in the input layer, 40 units in subband layer, 250 units in the 

second layer and 513 units in the output layer. Input and output data were 

normalized between 0-1 for training. The SBAE trained on training data was used 

for feature extraction from validation and evaluation datasets. Here, 40 units in 

subband layer give 40 subband features. To compare the performance of proposed 

features with the 12-D MFCC and with 12-D cochlear filter features, the 40-D SBAE 

features were converted to 12-D features by the following process. As it can be 

observed from Figure 4.19, not all 40 SBAE features vary significantly for different 

types of speech. The SBAE features corresponding to lower bands have almost 

constant values for the natural and spoofed speech. The SBAE features for first 16 



Chapter 4: System-based Features 

103 

 

subbands were removed and features corresponding to rest of the 24 subbands were 

used. Hence, SBAE features corresponding to higher subbands are considered for 

discrimination task. For further dimensionality reduction, the average value of two 

consecutive subband features was taken and 24 subbands were converted to 12 

subbands. Hence, by this method, 12-D feature vector was generated for comparison. 

As a similarity check, our preliminary experiments suggested that EERs on 

development set using 40-D features and reduced 12-D features were almost similar. 

4.6.4.2 Results on the Development Set of ASVspoof challenge Database 

The results on the development set for MFCC and SBAE are shown in Table 4.10. It 

is observed that on using static feature vector, the SBAE features gave an EER of 

5.38 % which is more than MFCC, CFCC, CFCCIF and CFCCIFS feature sets. On 

using the ∆ features with the static features, for SBAE the EER is almost similar to 

MFCC and CFCC, i.e., 2.37 %, 2.17 %, and 2.60 %, respectively. Further with the use 

of ∆∆ features, the EER of SBAE reduces to 1.49 % which is better than MFCC, 

CFCC and CFCCIF features alone. Thus, dynamic features capture more spectral 

variation than only static features which reduces the % EER for SBAE features. 

Table 4.10: EER (in %) for score-level fusion of SBAE with MFCC, CFCC, CFCCIF and 

CFCCIFS feature sets using D1, D2 and D3 feature vectors at various fusion factors αf  on the 

development set 

Feature  

Set 1 

Fusion Factor (αf) Feature  

Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

SBAE: D1 5.38 4.38 3.69 3.23 2.89 2.72 2.60 2.72 2.86 3.06 3.26 MFCC: D1 

SBAE: D2 2.37 1.86 1.54 1.37 1.37 1.40 1.46 1.57 1.72 1.92 2.17 MFCC: D2 

SBAE: D3 1.49 1.06 0.83 0.71 0.71 0.77 0.86 1.00 1.14 1.34 1.60 MFCC: D3 

SBAE: D1 5.38 4.46 3.83 3.43 3.17 3.20 3.35 3.60 3.95 4.23 4.55 CFCC: D1 

SBAE: D2 2.37 1.86 1.52 1.40 1.37 1.46 1.63 1.77 2.03 2.34 2.60 CFCC: D2 

SBAE: D3 1.49 1.09 0.86 0.77 0.83 0.86 0.97 1.03 1.20 1.37 1.54 CFCC: D3 

SBAE: D1 5.38 4.46 3.66 2.86 2.32 2.09 1.97 1.92 2.03 2.09 2.29 CFCCIF: D1 

SBAE: D2 2.37 1.77 1.34 1.12 0.97 1.00 1.00 1.06 1.14 1.23 1.40 CFCCIF: D2 

SBAE: D3 1.49 1.12 0.94 0.77 0.77 0.83 0.94 1.06 1.14 1.29 1.52 CFCCIF: D3 

SBAE: D1 5.38 4.35 3.46 2.55 2.03 1.74 1.69 1.69 1.74 1.77 1.89 CFCCIFS: D1 

SBAE: D2 2.37 1.72 1.29 1.00 0.80 0.80 0.86 0.86 0.92 0.94 1.06 CFCCIFS: D2 

SBAE: D3 1.49 1.06 0.86 0.69 0.63 0.69 0.74 0.80 0.89 1.03 1.23 CFCCIFS: D3 

Score-level fusion is carried as per eq. (3.6) 

Results of score-level fusion: The results of score-level fusion of SBAE features 

with other system-based features are shown in Table 4.10. On the other hand, when 

traditional 36-D AE features were used an EER of 7.9 % was obtained. Hence, in this 

work, we do not consider AE features for further analysis. It is observed that with a 
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fusion factor of around αf = 0.3 or 0.4 the EER achieved was 0.71 % which is almost 

half as compared to using MFCC and SBAE features alone. Thus, SBAE features 

captured complementary information as compared to MFCC features. Similar results 

were observed for CFCC and CFCCIF features as well. For CFCCIFS features, the 

lowest EER of 0.63 % is obtained on score-level fusion with SBAE features. However, 

this decrease is due to efficient spoof detection by CFCCIFS features. Therefore, 

from the development set a fusion factor of αf = 0.3 for MFCC αf = 0.4 for the 

cochlear-based features can be considered optimum for score-level fusion. 

Dependency on spoofing algorithms: As discussed in Section 4.5.3.2, to evaluate 

the spoof dependency, the SBAE features are evaluated for known type, same type 

and different type of attacks. As shown in Figure 4.21, similar to the cochlear-based 

features, the % EER decreases for known type of attacks with the dynamic features.  

 

Figure 4.21: The % EER for known, same and different type of attacks when trained with 

individual spoofs S1, S2, S3, S4 and S5 for SBAE feature set using different feature vectors 

(i.e., D1, D2, D3) and tested on the development dataset. 

For the same type of attacks, the SS spoof identifies SS with 0.00 % EER. For VCS, 

the % EER decreases with the use of dynamic features. The S5 spoof identifies S1 

and S2 much better than S1 and S2 could identify S5. The S5 spoof uses MLSA 

vocoder and S1 and S2 use STARIGHT vocoder. For the different type of spoof, it 

was observed that as in the case of cochlear-based features, the VCS could identify 

SS, however, the SS could not identify VCS spoof. In addition, it is observed that for 

different type of attacks, the % EER increases with the dynamic information of 

features. This was also observed in MFCC and cochlear-based feature sets. 

Therefore, for system-based features, the dynamic information in the feature vector 

is not able to capture information about different type of attacks. 
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4.6.4.3 Results on the Evaluation Set of ASVspoof challenge Database 

The results of the development set were based on known attacks, this is because the 

development set has same type of spoof as used in the training. However, the anti-

spoofing ability of the countermeasure depends on the performance in presence of 

unknown spoofing attacks. To that effect, the performance of the features is tested 

on the evaluation set which consists of unknown vocoder-based spoof and one 

vocoder-independent spoof. The results in % EER for SBAE features are shown in 

Table 4.11. It is observed that the presence of dynamic features improves the 

performance significantly for SBAE features from an average 9.08 % EER with static 

features to 2.49 % with the D3 feature vector. Considering the results obtained in 

Section 4.5.3.3, for known attacks (S1-S5) the EER of MFCC, CFCC, CFCCIF, 

CFCCIFS and SBAE features are 0.37 %, 0.8 %, 0.6 %, 0.5, and 1.06 %, respectively, 

using D3 feature vector. That is, among all the features MFCC works best for known 

attacks. Likewise for the unknown attacks, the performance was 10.3 %, 4.0 %, 4.3 

%, 3.3 % and 3.92 % for MFCC, CFCC, CFCCIF, CFCCIFS and SBAE features, 

respectively, using D3 feature vector. The very high % EER of MFCC is due to the 

fact that it could not identify S10 spoof (~40 % EER) as compared to the rest of the 

features (11-15 % EER). However, MFCC is shown to have best EER for known 

attacks. Therefore, considering the fusion factors obtained from the development set, 

the SBAE features are fused at score-level with other system-based features as 

shown in Table 4.11.  

Results of score-level fusion: Considering score-level fusion of SBAE with MFCC 

and the cochlear-based features, the average results and the performance with 

respect to the individual attacks is shown in Table 4.11. The individual average EER 

using D3 feature vector for SBAE, MFCC, CFCC, CFCCIF, CFCCIFS on the 

evaluation data is 2.48 %, 4.25 %, 1.765 %, 2.095 % and 1.6 %, respectively. On 

fusing SBAE and MFCC features, the average % EER reduces to 1.93 %. On fusion, 

the performance of known attacks improves due to MFCC and that of the unknown 

due to SBAE features. Likewise, on fusing with cochlear-based features at αf = 0.4 

the average EER was around 1.2 to 1.5 %. As compared to fusion with MFCC, the 

score-level fusion of SBAE with cochlear-based features improved the performance of 

unknown attacks, especially for S10 for which the EER reduced from around 15 % 

for SBAE and 11.7 % for CFCCIFS (Table 4.6) to 8.97 %. The case of using equal 
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contribution of both feature set was used as shown in Table 4.11 with αf = 0.5. Such a 

combination improved the performance of known attacks with only 0.25 % EER. 

However, at the cost of large % EER for S10 spoof. For cochlear-based features, their 

additional contribution was better for known attacks. The performance degraded 

slightly for S10 spoof, however, this degradation was minor and did not affect much 

the average % EER. The overall best average % EER was 1.226 obtained by fusion of 

SBAE with CFCCIFS which is 50 % improvement over SBAE and 23 % improvement 

over CFCCIFS features. Thus, on an average, the CFCCIFS perform better over rest 

of the system-based features. 

Table 4.11: EER (in %) in terms of individual attacks, average known attacks, average 

unknown attacks, average with and without S10 spoof for SBAE along with their score-level 

fusion with MFCC, CFCC, CFCCIF and CFCCIFS feature sets using D3 feature vector at 

selected αf on the evaluation set 

Feature Sets 

Individual Attacks 
Average 

Known Unknown 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn Ukn w/o S10 Avg. 

SBAE: D1 0.41 4.71 0.00 0.00 14.60 10.38 0.39 0.34 3.05 56.96 3.94 14.22 11.85 9.084 

SBAE: D2 0.04 3.04 0.00 0.00 3.57 4.07 0.23 0.26 1.01 34.88 1.33 8.09 6.74 4.710 

SBAE: D3 0.03 2.99 0.00 0.00 2.26 2.97 0.11 0.52 0.91 15.09 1.06 3.92 3.27 2.488 

αf=0.3               

SBAE+MFCC 0.01 0.93 0.00 0.00 0.82 0.88 0.05 0.02 0.13 16.52 0.35 3.52 2.93 1.935 

αf=0.4               

SBAE+CFCC 0.01 1.21 0.00 0.00 1.49 1.08 0.06 0.03 0.18 9.30 0.54 2.13 1.77 1.335 

SBAE+CFCCIF 0.02 1.21 0.00 0.00 1.49 1.27 0.06 0.16 0.34 10.63 0.54 2.49 2.08 1.518 

SBAE+CFCCIFS 0.00 0.95 0.00 0.00 1.24 1.00 0.05 0.20 0.27 8.96 0.44 2.09 1.75 1.267 

αf=0.5               

SBAE+MFCC 0.00 0.67 0.00 0.00 0.60 0.57 0.04 0.00 0.06 20.87 0.25 4.31 3.59 2.28 

SBAE+CFCC 0.01 1.07 0.00 0.00 1.49 0.93 0.07 0.01 0.16 9.58 0.52 2.15 1.79 1.333 

SBAE+CFCCIF 0.01 0.96 0.00 0.00 1.43 1.13 0.05 0.13 0.23 11.04 0.48 2.52 2.10 1.498 

SBAE+CFCCIFS 0.00 0.71 0.00 0.00 1.23 0.82 0.04 0.17 0.21 9.08 0.39 2.07 1.72 1.22 

Score-level fusion is carried as per eq. (3.6), Kn=known, Ukn= Unknown, w/o  S10=Average without S10, Avg. = Average of S1-S10 

Dependency on spoofing algorithms: On the evaluation set, we present the 

results on the same type, different type and on S10 spoof separately. For known 

attacks, the results were similar to that observed in the development set, i.e., these 

attacks were identified very well. For the same type of attack, as seen in the 

development set, the both SS and VCS identified speech generated by similar 

algorithms. For the different type of attacks, again similar to the development set, 

the VCS spoof identified vocoder-based SS very well. However, the S3 and S4 spoofs 

could not identify VCS spoof that well and the % EER increased with the increase in 

dynamic information of the features. We consider here the S10 spoof separately as it 

is a vocoder-independent spoof and the training is carried on the vocoder-based 



Chapter 4: System-based Features 

107 

speech. The observations for S10 spoof on training with SS are very much similar to 

the MFCC and cochlear-based features. That is, the % EER does not decrease with 

the use of dynamic information and it is as high as 40 %. On the other hand, for 

VCS, the % EER decreased for S10 on using the dynamic information. On training 

with S1, the EER is even below 10 %. Thus, appropriate modeling can be done to 

detect S10 spoof as well.  

 

Figure 4.22: The % EER for same type, different type and S10 attack when trained with 

individual spoofs S1, S2, S3, S4 and S5 for SBAE feature set using different vectors (i.e., D1, 

D2, D3) and tested on the evaluation dataset.  

Discussion on the DET curves: The DET curves for the MFCC, SBAE and their 

score-level fusion is shown in Figure 4.23. The DET curve for CFCC and CFCCIFS 

curves were shown in Figure 4.15. It can be observed from Figure 4.23 (a) that the  

 
Figure 4.23: The DET curve on the evaluation set for (a) MFCC, SBAE and score-level fusion 

of MFCC and SBAE feature sets at αf=0.3 (b) the score-level fusion on SBAE and MFCC as in 

(a) and SBAE with cochlear-based features at αf=0.5. 
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MFCC had large FRR than SBAE features and slightly better FAR than SBAE at 

low FRR. However, on fusing both MFCC and SBAE at score-level, the DET curve 

shows better performance at all operating points of the DET curve which indicates 

that the SBAE features captured complementary information to that of the MFCC 

features alone. Considering the fusion of SBAE and MFCC features as in Figure 4.23 

(a), it is observed in Figure 4.23 (b) that the fusion of SBAE with CFCCIFS gave 

better performance along all the operating points. 

4.6.4.4 Results on the Blizzard Challenge 2012 Database 

The results of the performance of the SBAE features on the Blizzard Challenge 2012 

dataset are shown in Table 4.12. It was observed on the results of the ASV spoof 

dataset that the SBAE features showed improvement in the % EER when the 

dynamic features were used. However, in the case of completely unknown scenarios 

of channel mismatch, neither static nor the dynamic SBAE features contribute much 

in detecting the spoofs. Only HMM-based system E was observed to be detected with 

9 % EER using static features. However, for this % EER increased on using the 

dynamic information. On the evaluation set of the ASV spoof challenge, the S10 

performance for SBAE was found to be much better as compared to MFCC. However, 

in the case of Blizzard Challenge 2012 database, the EER for the USS systems was > 

40 %. For the case for MFCC as shown in Table 4.7, the results for SBAE are also 

random without any trend either for USS or HMM-based speech. Just as MFCC, the 

performance of SBAE features also varies with the use of dynamic features. This 

shows that on using the system-based features trained on ASV spoof data the 

detection of statistical and USS-based spoofs may not apply.  

4.6.4.5 Results on the Blizzard Challenge 2014 Database 

For the Blizzard Challenge 2014 database, the performance of SBAE features is 

shown in Table 4.12. For the Gujarati language, the HMM-based systems (D and H) 

where classified with < 10 % EER while the other HMM-based systems (C, E and F) 

still had a large % ERR of 10-50 %. For USS-based system G the performance 

improved significantly with the use of dynamic information. In comparison to the 

SBAE features, the MFCC features show significant decrease in the EER (as shown 

in Table 4.8). For Hindi, almost all HMM-based systems (except E) gave less % EER 

and the performance of USS-based system G degraded with the increase in dynamic 
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information. Surprisingly, HMM-DNN-based system of Gujarati achieved an EER of 

47 % while the Hindi system achieved an EER of 5 %. The consistency of reduction in 

EER with the dynamic features was not found in the case of SBAE features when 

evaluated on the ASV spoof challenge database. However, the SBAE features did 

achieve less % EER for HMM-based speech, which was not the case with MFCC or 

other cochlear-based features. Thus, these features could not detect extremely 

unknown attacking scenario and also the features are dependent on the language to 

a certain extent. However, this could not be justified in the experimental results.  

Table 4.12: EER (in %) for SBAE feature set using D1, D2 and D3 feature vectors on training 

with the ASV spoof data and testing with Blizzard Challenge databases 

Blizzard 2012 Blizzard 2014 Blizzard 2014 

English 
SBAE 

Gujarati 
SBAE 

Hindi 
SBAE 

D1 D2 D3 D1 D2 D3 D1 D2 D3 

USS B 44 44 40 C HMM 61 32 45 B* HMM 17 2 1 

Hybrid C 39 35 38 D HMM 9 48 1 C HMM 5 0 1 

Hybrid D* 48 69 73 E HMM 59 85 91 D Hybrid 26 4 4 

HMM E* 9 10 23 F HMM-DNN 79 47 68 E HMM 67 22 30 

USS F 70 63 62 G USS 84 16 4 F HMM-DNN 16 5 6 

USS G 23 79 79 H HMM 45 8 18 G USS 37 43 52 

HMM H 14 44 52      H* HMM 32 21 13 

USS I 36 58 40      K HMM 3 0 0 

Diphone J* 56 30 38           

HMM K* 43 59 60           

* systems with lower MOS from 1 ≤ 2 (wavefiles for Gujarati system B and system I and Hindi system I are not available) 

4.7 Chapter Summary 

This Chapter presented the novel combination of envelope and average IF in the 

CFCC framework and explored a proposed SBAE feature for the task of spoof 

detection. All the feature sets gave promising results on the ASV spoof 2015 

database and especially on the unknown attacks. However, the countermeasures 

were not robust to the extreme unknown case as that of the systems in the Blizzard 

challenge datasets. The contribution of the dynamic features significantly depended 

on the type of spoof and the channel variations as well. These inferences were drawn 

from system-based features with no component involved explicitly from excitation 

source-based features. The lack of source information is also a reason for 

unnaturalness in the spoofed speech. Hence, the next Chapter presents several 

excitation source features for the SSD task. 
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          Chapter 5.

Source-based Features 

5.1 Introduction 

In this Chapter, we explore fundamental frequency (F0) and its various dynamics 

along with the Strength of Excitation (SoE) as various excitation source features for 

the SSD task. Next, the use of prediction analysis of speech is also carried out. The 

features derived from Linear Prediction (LP), Long-Term Prediction (LTP) and Non-

Linear Prediction (NLP) residual acts as source features for the Spoofed Speech 

Detection (SSD) task. In addition, we explore the very well-known source-based 

speech prosody model, i.e., Fujisaki Model to derive features that capture prosodic 

information in spoofed speech. The source-based features on its own do not 

contribute to the SSD task. Therefore, these features are fused at score-level with 

system-based features as discussed in the previous Chapter 4. The combination of 

source and system features enhances the performance of the SSD system. 

5.2 Fundamental Frequency (Fo) and Strength of Excitation (SoE) 

5.2.1 Source Parameter Extraction 

The speech signal is not exactly periodic signal [s(n)≠s(n+kN), where k∈Z and N is 

the fundamental period], however, short segments of speech are known to exhibit 

quasi-periodic nature. Hence, rather than having a particular F0 value, the speech 

utterance has a time-varying F0 contour. The F0 contour of the speech signal actually 

correlates to the frequency of vibration of the vocal folds. As the vocal folds vibrate, 

the sudden closure of the folds excites the vocal tract system to generate the speech 

signal as the output. Thus, the speech production mechanism can be approximated 

as a Linear Time-Invariant (LTI) system, given by the following representation [21], 

[ ]( ) ( ) ( ) ( ) ( )
d d

s t A g t h t A g t h t
dt dt

 
≈ ∗ = ∗ 

 
,    (5.1)

 
 

          ( ) ( ) ( ),s t Ag t h t∴ = ∗ɺ      (5.2)
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where * is the convolution operation, A is the gain that controls loudness, s(t) is the 

speech signal, ġ(t) is glottal flow derivative waveform and h(t) is the impulse 

response of the vocal tract system [21]. The derivative effect caused by lip radiation 

(generally modeled as a first-order differentiator) is considered with source g(t) to 

give a glottal flow derivative waveform ġ(t) that excites the vocal tract as a system 

[177]. As the vocal folds vibrate, the g(t) shows increase and decrease in the amount 

of air that passes through the glottis (as shown in Figure 5.1 (a)). There is a cycle-to-

cycle variation in the amount of airflow that passes through the folds and duration 

for which the air passes (when the folds open and close). The duration of one cycle of 

opening and closing of the vocal fold or the duration from one Glottal Closure Instant 

(GCI) to another corresponds to a pitch period (i.e., To) and the inverse of the time-

varying pitch period over various cycles constitutes F0 contour of the speech signal. 

 

Figure 5.1: (a) The glottal flow waveform (g(t)) and (b) glottal flow derivative waveform (ġ(t)) 

The F0 contour is known to be the source representation of the speech signal. It 

carries both linguistic and non-linguistic information embedded in speech. The 

voiced speech of a typical adult male will have an F0 from 85-180 Hz, and that of a 

typical adult female from 165-255 Hz [178]. The vocal folds are heavier for male than 

for female and hence, they take more time to open and close (in the case of males) 

which increases the pitch period (T0) and decreases the fundamental frequency (F0) 

[21]. In the case of children and infants, the folds are lighter in mass resulting in 

high pitch (F0). The change in length of the vocal folds is also responsible for changes 

in the pitch (F0). Due to these and several other factors, the rate at which the glottis 

closes varies. This rate of sudden closure results in impulse-like excitation as 

observed in the ġ(t). The amplitude of the negative peaks of ġ(t) is known as the SoE 

with which the glottis closes suddenly.  

0.15 0.16 0.17 0.18 0.19 0.2 0.21

0.15 0.16 0.17 0.18 0.19 0.2 0.21

-1

0

1

0.15 0.16 0.17 0.18 0.19 0.2 0.21

-0.2

-0.1

0

g(
t)

ġ(
t)

Time (sec)

Glottal Closure Instant (GCI)

SoE

T0 T0

F0=1/T0

(a)

(b)



Fundamental Frequency (Fo) and Strength of Excitation (SoE) 

112 

 

5.2.2 Basis of using F0 and SoEs 

Humans vary their vocal fold movements and SoE at the glottis depending on the 

type of utterance and the situation which can affect the F0 contour and the SoE of 

the speech signal. Therefore, there is some correlation or similarity between the SoE 

estimated at the glottis and that estimated from the speech. In addition, these SoEs 

are also correlated in some manner to the F0 (as shown later in Figure 5.5). In the 

case of machine-generated speech, there is no true glottal closure phenomenon 

during generation of the speech signal (especially, for the HTS-based Synthetic 

Speech (SS) and Voice Converted Speech (VCS)). There are various approaches used 

to provide excitation source in a vocoder during speech generation. This can be 

similar to mixed excitation model in which both periodic and aperiodic components 

are used during the production of speech sounds. While using excitation information, 

it is necessary to adapt the periodic waveform according to the speaker’s F0 range to 

sound like the intended speaker. In addition to the F0, the SoE of the periodic 

waveform, or the envelope of the periodic waveform, i.e., the excitation source will 

also affect the speech quality in some sense. In the case of natural speech, the SoE at 

the glottis estimated by negative peaks of the ġ(t) and the SoE estimated from 

speech are found to correlate with each other [179]. Such an analysis for spoofed 

speech or synthetically generated speech does not exist. Hence, in this study, we 

initially assume that for vocoded speech a correlation between the SoE at the input 

to the vocal tract may not exist. To quantify this, we study the effect for vocoded 

speech and understand the correlation between the F0 and SoE as well. Thus, we 

have the F0 contour estimated from the speech signal at the GCIs, and at those GCI 

locations, the SoE is estimated from speech (referred to as SoE1) and the SoE is 

estimated from ġ(t) (referred to as SoE2).  

5.2.3 F0 and SoE Extraction from Speech 

To estimate the F0 contour, the location of the sudden closure of the glottis or the 

GCIs needs to be estimated. Once the GCI locations are estimated, the reciprocal of 

difference in time between two GCI’s constitutes the F0 contour. In this thesis, we 

use the Zero Frequency (ZF) filtering method to estimate GCI locations. The main 

motivation to use ZF filtering approach is that it estimates both F0 and SoE in the 

same framework. Recently, in [180]- [181], the authors propose an approach to 
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estimate the F0 and SoE in the same framework. However, this uses thresholding 

and may not be accurate enough and hence, we use the ZF-filtering approach. The 

ZF filter is a digital second order resonator with complex conjugate poles 

0 0

1 2 1 and   *
j j

p re p p re
ω ω−= = =  near the unit circle. The Z-domain system function of 

the resonator is given as, 
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In eq. (5.3), when the poles are near to the unit circle (i.e., r →1) and makes an angle 

of ωo with the positive direction of X-axis, then the resonant frequency ωr  is given as,  
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In eq. (5.4) when r →1, the resonant frequency ωr equals to the pole angle ωo on the 

unit circle. As the ZF filter resonates at 0-Hz, the pole angle ω0 ≈ ωr ≈ 0 and hence, 

1 2* ,p p r= = and eq. (5.3) can be written as,  
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Using the above response to filter the speech signal removes the high-frequency 

components and leaves the low-frequency components along with the d.c. bias. To 

remove the bias, trend removal is carried out on the ZF filtered signal y[n] over an 

analysis window to get a sinusoidal-like signal y[n], i.e., 

 1 1

1
[ ] [ ] [ ],

2 1

N

m N

y n y n y n m
N =−

= − +
+
∑      (5.6) 

where 2N+1 is the samples corresponding to the trend removal window. Thus, the 

ZF filtered signal consists of both ZF filtering and trend removal process. The ZF 

filtering is based on the concept that the effect of an impulse is spread uniformly 

across all the frequencies including the zero frequency. For speech signals, the 

excitation is impulse-like and hence, the output of ZF filter will give an estimate of 

the epoch locations (i.e., GCIs). A detailed description of the ZF filtering approach is 

given in [182]. Therefore, to estimate the GCI locations, the ZF filtering is performed 

on the speech signal and the negative-to-positive zero-crossings of the filtered signal 

are hypothesized as an estimate of GCIs [182]. The slope of ZF filtered signal at 
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negative-to-positive zero-crossings gives a measure of the strength of glottal closure, 

i.e., SoE [179]. Figure 5.2 shows an illustration of the F0 and SoE estimated from the 

speech signal using the ZF filtered signal. It is observed that for the given speech 

signal, the F0 and SoE follow a nearly similar pattern. That is, there is some 

correlation between the F0 and SoE for the natural speech signal. Therefore, we 

explore such correlations between spoofed speeches for the SSD task.  

 

Figure 5.2: (a) Voiced regions of a speech signal (b) ZF filtered signal (c) F0 contour from GCI 

locations (negative-to-positive zero-crossings of (b)) and (d) SoE at GCIs (slope at negative-

to-positive zero-crossings of (b)). 

5.2.4 Estimation of Glottal Flow Waveform (g(t)) 

To obtain an initial estimate of the g(t), we use the Iterative Adaptive Inverse 

Filtering (IAIF) method to decompose speech into its glottal source signal and vocal 

tract system [183]. The block diagram of IAIF method is shown in Figure 5.3 [184].  

 

Figure 5.3: Block diagram of the IAIF method. Adapted from [184]. 
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In the IAIF method, the effect of the vocal tract system and lip radiation is canceled 

from the speech signal to give an estimate of g(t). The key motivation for using the 

IAIF method is that there is no need of the ground truth (such as electroglottograph 

(EGG)) and it is computationally efficient and completely automatic. To obtain an 

initial estimate of the glottal flow, the values of Linear Prediction Coefficients (LPC) 

are taken as oi=1 and oi=2 for the first and second iteration, respectively. In both 

iterations, to obtain the resonances of the vocal tract, the pole order p=20 is 

considered for an Fs=16 kHz (due to the relationship between sampling frequency Fs 

and length of vocal tract [185]). From estimated g(t), its derivative is considered to 

obtain ġ(t), which can be further used to estimate the SoE from ġ(t). 

Estimation of SoE from g(t): Once the g(t) is estimated from the speech signal, its 

derivative is computed and the amplitude of the negative peak of the ġ(t) at each 

GCIs is hypothesized as the SoE as shown in Figure 5.1 (a). The following sub-

Sections discuss the detailed analysis and extended results to that presented in [86]. 

5.2.5 Analysis of F0, SoE1 and SoE2 on Spoofed Speech 

In this Section, we observe the differences between natural and spoofed speech for 

F0, SoE1, and SoE2. Figure 5.4 shows the F0 and SoE1 derived from speech and  

 

Figure 5.4: Panel I: Natural speech and Panel II: vocoder-based SS: (a) speech signal \It’s 

nice to hear\, (b) F0 contour estimated by ZF filtering (c) normalized SoE1 at GCIs estimated 

by ZF filtering and (d) the ġ(t) (red) and normalized SoE2 estimated from ġ(t) at GCIs 

estimated from ZF filtering (dotted blue). Adapted from [86]. 
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SoE2 derived from the ġ(t) for a natural speech (Panel I) and HMM-based SS spoof 

(Panel II) from the SAS database [19]. In Figure 5.4 (d), only the negative part of the 

ġ(t) is plotted and the magnitude of ġ(t) at the GCI is indicated as SoE2 in Figure 5.4 

(d). As shown by the dotted regions in Figure 5.4, there exist variations in excitation 

source features for natural and SS speech. The F0 contour of natural speech had 

more variations as compared to that of the SS speech (i.e., more dynamic information 

of the F0 contour of natural speech as compared to the SS speech in Figure 5.4). 

These variations were even observed in the SoE estimated from speech and the ġ(t). 

For this particular case of spoofed speech, the variations were less in F0, SoE1 and 

SoE2 as compared to natural speech. Similar variations were observed over several 

utterances for vocoder-based SS and VCS spoof. 

 

Figure 5.5: Scatterplots for (a) F0 vs. SoE1 (b) SoE1 vs. SoE2 and (c) SoE2 vs. F0 for the natural 

and vocoder-based SS utterance in Panel I and Panel II, respectively (from Figure 5.4). 

Adapted from [86]. 

The relation between source-based features for natural and SS spoof in Figure 

5.4 is shown by scatter plot of F0, SoE1, and SoE2 at GCIs in Figure 5.5. The 

correlation coefficients (for the speeches shown in Figure 5.4) between F0 vs. SoE1, 

SoE1 vs. SoE2 and SoE2 vs. F0 are 0.51, 0.73 and 0.51 for natural speech and 0.34, 

0.645 and 0.45 for SS speech, respectively. Thus, it is observed that correlations vary 

for natural and SS speech. Although a direct relationship amongst F0, SoE1 and 

SoE2 cannot be specified for different spoofing algorithms, there do exist differences 

in natural and spoofed speech due to the excitation source characteristics. This will 

be verified by using F0, SoE1 and SoE2 and their dynamics as discriminative 

features for SSD task. 
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5.2.6 Experimental Results 

5.2.6.1 Parameterization 

The source features, i.e., F0, SoE1, and SoE2 are extracted at GCIs estimated by ZF 

and IAIF method, respectively, using a frame size of 25 ms and with a frame shift of 

50 % (after discarded the unvoiced regions). The F0, SoE1, and SoE2 give a 3-

dimension (3-D) static feature vector, i.e., Ds for each GCI location. The dynamics of 

the F0, SoE1, and SoE2 features are also considered by taking their first derivative, 

i.e., velocity, (d1: ∆F0, ∆SoE1, and ∆SoE2) and appended to the Ds to get 6-D feature 

vector (D1=Ds+d1). This was done till 5th order derivative (i.e., acceleration, jerk, 

jounce, crackle) to get D2, D3, D4, and D5, corresponding to 9-D, 12-D, 15-D and 18-

D feature vectors, respectively. For using system-based information, the score-level 

fusion of 36-D system-based MFCC, CFCC, CFCCIFS and SBAE feature vectors 

comprising of static and dynamic information (i.e., 12-static+12-∆ +12-∆∆) are used.  

5.2.6.2 Results on the Development Set of ASVspoof challenge Database 

Effect of source features and their dynamics: The source-based features and 

their dynamics are lesser in dimensions. Therefore, the effect of these source 

features is studied by evaluating the % EER of the detector for various number of 

mixture components in GMM (as shown in Figure 5.6). The testing is done on the 

development set for the models trained on the training data. 

 

Figure 5.6: The % EER obtained on the development set when the static and various 

dynamics, i.e., velocity, acceleration, jerk, jounce and crackle of F0, SoE1 and SoE2 are 

considered. Adapted from [86]. 

It is observed from Figure 5.6 that the % EER on the development set decreases 

significantly when the dynamic information is added to the static features. The 



Fundamental Frequency (Fo) and Strength of Excitation (SoE) 

118 

 

decrease in % EER is significant with the increase in the number of mixture models 

in GMM. The EER for Ds, D1, D2, D3, D4 and D5 are 24.8 %, 16.1 %, 13.6 %, 12.7 %, 

12.6 %, and 13.4 %, respectively, on using 128 mixtures. With higher-order 

derivative than the jerk (D3), the decrease is not significant and also increases 

slightly. Thus, the D3 feature vector with 128 mixture GMM can be considered. 

To observe the effect of F0, SoE1 and SoE2, the % EER with F0, SoE1 and SoE2 

used individually up to third order derivative (i.e., 12-D) was estimated. Next, the 

performance of using only two features at a time is also studied. It is observed from 

Table 5.1 that individually for F0, SoE1 and SoE2 features, the % EER is very high 

~27 %. On a feature-level fusion of the D3 feature vector of F0 features with two 

SoEs one at a time, the % EER increased. However, on combining the two SoEs with 

the F0, the % EER decreased significantly (indicating that the SoEs capture 

complementary information). As indicated in Section 5.2.2, while synthesizing or 

converting speech, the information of F0 is provided whereas the SoE is not explicitly 

provided and hence, the use of SoEs gave better performance for the SSD task. 

However, the EER is not less than 12.7 % that was obtained when all the three 

features are used (as shown in Figure 5.6). Thus, all F0, SoE1, and SoE2 features are 

essential for detecting spoofed speech. 

Table 5.1: EER (in %) for F0, SoE1 and SoE2 feature set used alone and when combined with 

each other using D3 feature set. Adapted from [86] 

Individual Feature Set % EER Feature-level Fusion % EER 

D3: F0 27.94 D3: F0 & SoE1 45.98 

D3: SoE1 25.54 D3: F0 & SoE2 43.92 

D3: SoE2 27.68 D3: SoE1 & SoE2 18.82 

 

Fusion with the system-based features: The score-level fusion of source-based 

features with the various system-based features is shown in Table 5.2. It was 

observed that the % EER of source-based features when used alone, did not decrease 

much after D3 feature vector. However, on fusing with the system-based features, 

the % EER decreased for D4 and D5 feature vector as well.  It was observed that for 

αf = 0.8 for all system-based features, the % EER of the after score-level fusion is 

minimum. The MFCC, CFCC, CFCCIF, CFCCIFS and SBAE features achieved the 

best % EER of 0.94, 0.80, 0.66, 0.54 and 1.12 with D5, D5, D4, D5 and D2 features 

vectors of F0, SoE1 and SoE2. It is observed that on score-level fusion, the % EER of 

system-based features reduced to almost half (except SBAE). The least EER among 
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these combinations is 0.54 % which is less than that submitted for the ASVspoof 

2015 challenge (i.e., 0.83 % with the fusion of MFCC and CFCCIF). Thus, 

considering the best feature vector as D5 with a fusion factor of αf = 0.8 for source-

based features, the % EER is obtained on the evaluations set. 

Table 5.2: EER (in %) for F0, SoE1, and SoE2 features using all feature vectors and their 

score-level fusion with system-based feature sets (using D3 feature vector) at various fusion 

factors αf  on the development set 

Feature  

Set 1 

Fusion Factor (αf) Feature 

 Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Ds 24.88 9.87 5.46 3.43 2.14 1.66 1.40 1.40 1.46 1.52 1.60 

MFCC 

12s+∆+∆∆ 

D1 16.13 8.32 4.92 3.15 1.94 1.43 1.17 1.20 1.32 1.43 1.60 

D2 13.70 7.84 4.86 3.03 1.83 1.26 1.06 1.09 1.17 1.34 1.60 

D3 12.78 7.55 4.98 3.17 1.92 1.26 1.06 1.03 1.09 1.29 1.60 

D4 12.70 7.95 5.49 3.57 2.26 1.49 1.09 0.97 1.03 1.29 1.60 

D5 13.44 8.95 6.35 4.18 2.83 1.77 1.20 1.03 0.94 1.20 1.60 

             Ds 24.88 9.24 4.66 2.77 1.97 1.52 1.26 1.29 1.37 1.43 1.54 

CFCC 

12s+∆+∆∆ 

D1 16.13 7.95 4.43 2.55 1.77 1.34 1.03 1.00 1.12 1.34 1.54 

D2 13.70 7.49 4.26 2.77 1.69 1.14 0.89 0.86 0.97 1.23 1.54 

D3 12.78 7.38 4.43 2.83 1.74 1.29 0.92 0.86 0.83 1.14 1.54 

D4 12.70 7.75 4.95 3.03 1.92 1.34 1.00 0.86 0.80 1.06 1.54 

D5 13.44 8.86 5.95 3.66 2.37 1.54 1.14 0.86 0.80 1.03 1.54 

             Ds 24.88 12.01 6.03 3.52 2.40 1.69 1.20 1.17 1.20 1.34 1.52 

CFCCIF 

12s+∆+∆∆ 

D1 16.13 9.55 5.58 3.26 2.20 1.46 1.03 0.89 0.97 1.23 1.52 

D2 13.70 8.78 5.29 3.29 2.14 1.29 0.89 0.71 0.80 1.12 1.52 

D3 12.78 8.58 5.55 3.46 2.17 1.52 1.06 0.77 0.71 1.00 1.52 

D4 12.70 8.98 5.98 3.92 2.26 1.77 1.20 0.74 0.66 0.94 1.52 

D5 13.44 10.09 7.21 4.80 3.15 2.00 1.26 0.89 0.69 0.89 1.52 

             Ds 24.88 11.27 5.43 3.03 2.00 1.37 1.03 0.92 0.92 1.06 1.23 

CFCCIFS 

12s+∆+∆∆ 

D1 16.13 9.21 5.03 2.89 1.94 1.12 0.80 0.69 0.83 0.94 1.23 

D2 13.70 8.46 4.95 3.00 1.77 1.06 0.66 0.57 0.74 0.86 1.23 

D3 12.78 8.32 5.03 3.12 1.94 1.14 0.77 0.66 0.60 0.83 1.23 

D4 12.70 8.75 5.55 3.52 2.03 1.37 0.83 0.66 0.57 0.80 1.23 

D5 13.44 9.87 6.78 4.26 2.69 1.60 1.00 0.71 0.54 0.74 1.23 

             Ds 24.88 11.07 6.69 4.23 3.03 2.26 1.69 1.43 1.34 1.40 1.49 

SBAE 

12s+∆+∆∆ 

D1 16.13 9.38 6.15 4.15 2.92 2.06 1.52 1.29 1.23 1.32 1.49 

D2 13.70 8.58 5.86 3.95 2.77 1.94 1.46 1.23 1.12 1.23 1.49 

D3 12.78 8.41 6.03 4.20 2.97 2.06 1.52 1.34 1.14 1.23 1.49 

D4 12.70 8.81 6.41 4.52 3.06 2.23 1.80 1.40 1.17 1.20 1.49 

D5 13.44 9.67 7.43 5.43 3.77 2.75 1.97 1.49 1.26 1.20 1.49 

Score-level fusion is carried as per eq. (3.6)  

 

Dependency on spoofing algorithms: To check the discriminative property of the 

proposed feature set in terms of the dependency to the spoofing algorithm, the 

systems were trained on individual spoofs and tested on all the spoofs of the 

development set. As discussed earlier, we further split unknown attacks into two 

categories, namely, ‘same type’ and ‘different type’. For example, for S1 VCS spoof: 

testing with S1 itself is ‘known’, testing with its similar kind (i.e., VCS, S2 and S5) is 

the ‘same type’ and testing with a different class (i.e., SS, S3, and S4) is ‘different 

type’. Average of the same type and different type constitutes ‘unknown’ attacks. 
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Figure 5.7: The % EER for known, same and different type of attacks when trained with 

individual spoofs S1, S2, S3, S4 and S5 for F0, SoE1, and SoE2 feature set using its various 

dynamics and tested on the development dataset. 

As shown in Figure 5.7, when tested on individual spoofs, the trend is similar for all 

spoofs except S2. Excluding S2 from the discussion, for the known type of attacks, 

the % EER decreases with the increase in the dynamic information of F0, SoE1, and 

SoE2 features. That is, the D5 feature vector works well to classify the natural vs. 

spoofed speech for models are trained on one spoof and tested on the same spoof. 

Next, considering the ‘same type’ of attacks in testing, it is observed that with the 

increase in dynamic information of F0, SoE1, and SoE2 features even for the same 

type of  attacks, the % EER is very high for the VCS case. In other words, S2 and S5 

spoof when tested on system trained by S1, then a high % EER was noted. Unlike 

the case of known attacks, the % EER did not decrease gradually with the use of 

dynamic information. For the SS spoof, the S3 and S4 attacks are developed with the 

same algorithm and the difference which exists between them is the amount of data 

used for training. Therefore, for the SS spoofs on testing with its same type, the % 

EER is almost similar to the known case. Thereafter, for the ‘different type’ of 

attacks, the % EER is high for all S1-S5 attacks. However, the % EER decreases 

with the increase in dynamic information in the speech signal. The S2 spoofing 

attack shows a different behavior for known and same type of attacks as compared to 

other spoofing algorithms. On testing with itself, the S2 spoof could not detect itself, 

i.e., a very high 30 % EER was obtained even with the D5 feature vector. For the 

same type of attacks (i.e., VCS), the % EER was found to increase with the increase 

in the dynamic information. On the other hand, the S2 spoof could identify SS spoofs 

better than the other VCS spoofs (S1 and S5). The results for source-based features 
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on the known and unknown attack are not as promising as compared to the system-

based features. However, complementary spoof-specific information in the features 

can be observed due to dynamic variability between natural and spoofed speech. 

5.2.6.3 Results on the Evaluation Set of ASVspoof challenge Database 

The results of the evaluation set for source-based features and score-level fusion 

with system-based features are shown in Table 5.3. It is known from results of the 

development set that Ds-D2 feature vectors does not contribute much to the decrease 

in EER. The % EER decreases from Ds to D4 and increases slightly for the D5 

feature vector. In this case, the performance of S10 spoof was decreasing. However, 

the % EER of other vocoder-based spoof increased, giving high average % EER.  

Table 5.3: EER (in %) in terms of individual attacks, average known attacks, average 

unknown attacks, average with and without S10 spoof for the F0, SoE1, and SoE2 feature set 

using Ds to D5 feature vectors and score-level fusion of D3-D5 feature vectors with the 

system-based feature set (using D3 feature vector) at selected αf on the evaluation set 

Feature Sets 

Individual Attacks 
Average 

Known Attacks Unknown Attacks 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn Ukn 
w/o  

S10 
Avg 

Ds 16.40 57.46 25.30 24.10 10.10 19.80 16.50 13.84 24.13 56.63 26.67 26.18 23.07 26.43 

D1 2.66 55.76 11.40 10.80 2.82 8.59 7.11 5.86 10.25 61.29 16.69 18.62 12.81 17.65 

D2 0.07 54.96 8.13 7.95 0.90 3.40 2.68 1.82 4.23 56.55 14.40 13.74 9.35 14.07 

D3 0.01 53.90 6.35 6.34 0.23 1.58 0.86 0.58 2.99 51.25 13.37 11.45 8.09 12.41 

D4 0.01 54.84 7.54 8.07 0.20 1.91 0.63 0.71 3.70 40.96 14.13 9.58 8.62 11.85 

D5 0.01 54.59 9.34 10.05 0.14 1.39 0.76 0.78 4.03 39.81 14.82 9.35 9.01 12.09 

MFCC 0.01 1.04 0.00 0.00 0.86 0.94 0.05 0.00 0.09 37.80 0.38 7.78 0.31 4.08 

CFCC 0.00 1.40 0.00 0.00 2.30 1.00 0.10 0.10 0.20 12.30 0.74 2.74 0.57 1.74 

CFCCIF 0.03 0.72 0.00 0.00 2.24 0.98 0.16 0.88 0.29 15.42 0.60 3.55 0.59 2.07 

CFCCIFS 0.00 0.50 0.00 0.00 1.70 0.70 0.10 1.00 0.20 11.70 0.44 2.74 0.47 1.59 

SBAE 0.03 2.99 0.00 0.00 2.26 2.97 0.11 0.52 0.91 15.09 1.06 3.92 1.09 2.49 

D3+MFCC 0.00 0.72 0.00 0.00 0.19 0.30 0.02 0.00 0.03 34.47 0.18 6.96 0.14 3.57 

D4+MFCC 0.00 0.68 0.00 0.00 0.11 0.24 0.02 0.00 0.02 33.03 0.16 6.66 0.12 3.41 

D5+MFCC 0.00 0.69 0.00 0.00 0.08 0.20 0.02 0.00 0.02 32.32 0.15 6.51 0.11 3.33 

D3+CFCC 0.00 1.13 0.00 0.00 0.68 0.45 0.08 0.02 0.12 11.51 0.36 2.43 0.28 1.40 

D4+CFCC 0.00 1.23 0.00 0.00 0.56 0.41 0.07 0.02 0.10 11.74 0.36 2.47 0.27 1.41 

D5+CFCC 0.00 1.20 0.00 0.00 0.45 0.35 0.07 0.02 0.08 11.74 0.33 2.45 0.24 1.39 

D3+CFCCIF 0.00 0.73 0.00 0.00 0.40 0.31 0.05 0.36 0.08 15.15 0.23 3.19 0.21 1.71 

D4+CFCCIF 0.00 0.68 0.00 0.00 0.28 0.27 0.03 0.30 0.06 15.02 0.19 3.14 0.18 1.66 

D5+CFCCIF 0.00 0.99 0.00 0.00 0.20 0.23 0.03 0.25 0.07 15.48 0.24 3.21 0.20 1.73 

D3+CFCCIFS 0.00 0.43 0.00 0.00 0.29 0.18 0.04 0.42 0.05 11.29 0.14 2.40 0.16 1.27 

D4+CFCCIFS 0.00 0.46 0.00 0.00 0.18 0.16 0.03 0.33 0.05 11.37 0.13 2.39 0.13 1.26 

D5+CFCCIFS 0.00 0.55 0.00 0.00 0.13 0.11 0.03 0.24 0.07 11.70 0.13 2.43 0.13 1.28 

D3+SBAE 0.01 2.76 0.00 0.00 0.52 1.23 0.07 0.22 0.44 14.41 0.66 3.27 0.58 1.97 

D4+SBAE 0.01 2.88 0.00 0.00 0.38 1.15 0.05 0.18 0.43 14.59 0.65 3.28 0.56 1.97 

D5+SBAE 0.00 3.08 0.00 0.00 0.26 0.97 0.05 0.14 0.41 14.52 0.67 3.22 0.55 1.94 

Score-level fusion is carried as per eq. (3.6), Kn=known, Ukn= Unknown, w/o  S10=Average without S10, Avg. = Average of S1-S10 

 

We consider score-level fusion for D3-D5 with system-based features at αf = 0.8 (i.e., 

the weight of fusion αf is optimized w.r.t the performance of the SSD system). For 

fusion with MFCC, the average % EER decreases from D3 to D5 feature set. For 

CFCC and SBAE features, the % EER is almost constant using any of D3 to D5 
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feature vector. For CFCCIF and CFCCIFS, the same pattern is observed and both 

gave better EER of 1.66 % and 1.26 % with D4 feature vector, respectively. Thus, F0, 

SoE1 and SoE2 features contribute to decrease in % EER than using the system-

based features alone. 

Dependency on spoofing algorithms:  Just as in the case of development set, the 

testing of the entire evaluation data is carried out when trained on individual S1, 

S2, S3, S4 and S5 spoofs. For the development set, known and same types of spoofs 

were easily identified. As shown in Figure 5.8, when trained on individual spoofs, the 

trend is similar for all the spoofs just as the case in development set. The known case 

is not shown here because it was similar to that of the development set, i.e., for the 

known type of attacks, the % EER decreases with the increase in the dynamic 

information of F0, SoE1, and SoE2 features. The S3 and S4 detected itself with ~ 2 % 

EER while the S1 and S5 detected itself with ~ 0 % EER and S5 with ~ 30 % EER. 

Next, considering the ‘same type’ of attacks, S3 and S4 detected each other with an 

EER of ~ 2 %. On the other hand, the S1 spoof detected S2 with 50 % EER, S5 with 

0.5 % EER and S6 to S9 within 4-8 % EER. Likewise, S5 detected S1 with almost 0 

% EER, S6-S9 with 1-5 % EER and S2 with ~50 % EER. Therefore, the S2 spoof 

tends to increase the average % EER for the same type of attack when trained on S1 

and S5. Thereafter, for the ‘different type’ of attacks, the EER (50 % - 70 %) is high 

for all S1-S5 attacks (except S2). However, the % EER decreases with the increase in 

dynamic information in speech. On the other hand, the S2 spoof could identify SS 

spoofs better (~18 % EER) than the other VCS spoofs (S1 and S5) with > 60 % EER 

and other S6-S9 spoofs with 15-25 % EER. Hence, the S2 spoof does not detect its 

same type as good as S1 and S5. The model trained on S2 spoof detected S3-S4 much 

better and hence, the average of different attack is less for S2. Now, considering the 

testing results of S10 vocoder-independent spoof separately, it is observed that the 

S10 spoof was detected with S1 and S5 with ~ 35 % EER. In addition, the % EER 

decreased with the increase in dynamic information. On the other hand, for training 

with the S2, S3 and S4 spoof, the EER increases with the dynamic information and 

reaches to about 60 %. The S2 spoof was generated by transforming the first 

coefficient of the source speaker’s MCC (c1) by a linear transformation to that of the 

target speaker. In [123], the S2 spoof had less spoof detection error rate and was 
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more close to natural. However, its effect on the F0, SoE1, and SoE2 features that led 

to this different behavior could not be identified.  

 

Figure 5.8: The % EER for the same type, different type and S10 attack when trained with 

individual spoofs S1, S2, S3, S4 and S5 for F0, SoE1, and SoE2 feature set using its various 

dynamics and tested on the evaluation dataset. 

Discussion on the DET curves: The DET curves for source-based features using 

D5 feature vector, MFCC, CFCC, CFCCIF and SBAE features is shown in Figure 5.9 

(a). It is seen that source-based features (D5) had high % FRR and % FAR. On the 

other hand, CFCC, CFCCIFS and SBAE features had significantly low % FRR than 

MFCC. On score-level fusion with the source-based features, the % FRR reduces 

further which contributes to the decrease in % EER (as shown in Figure 5.9 (b)). The 

fusion of D5 source-based features with CFCCIFS gives relatively best performance 

than the other system-based features. 

 

Figure 5.9: DET curves on the evaluation set for (a) D5 source-based feature (green), MFCC 

(magenta), CFCC (blue), CFCCIFS (red) and SBAE (black)), (b) score-level fusion D5 with 

MFCC (magenta), D5 with CFCC (blue), D5 with CFCCIFS (red) and D5 with SBAE (black)  

all at αf = 0.8. 
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5.2.6.4 Results on the Blizzard Challenge 2012 Database 

The results of the source-based features from Ds to D5 are shown in Table 5.4 where 

it is observed that the % EER reduces from Ds to D5 for all the systems from B to K. 

Table 5.4: EER (in %) for F0, SoE1 and SoE2 feature set using Ds to D5 feature vectors on 

training with the ASV spoof data and testing with the Blizzard Challenge 2012 database 

Blizzard 2012  Systems 
Feature Sets 

Ds D1 D2 D3 D4 D5 

USS B 39 34 36 32 33 30 

Hybrid C 55 61 57 54 55 49 

Hybrid D* 61 56 33 16 13 6 

HMM E* 9 10 5 3 3 1 

USS F 61 59 50 44 40 38 

USS G 33 24 17 11 10 8 

HMM H 47 37 26 19 17 12 

USS I 48 45 38 30 30 24 

Diphone J* 47 40 30 17 16 10 

HMM K* 8 7 3 1 0 0 

*systems with lower MOS from 1 ≤ 2 

 

The decrease in % EER is more significant for systems with lower MOS. Both system 

C and D are hybrid systems, yet the EER are significantly different. For USS-based 

systems B, F, G and I, the % EER is 30, 38, 8 and 24, respectively, using the D5 

feature vector. For the HMM-based systems E, H and K, the % EER are significantly 

less than either USS-based speech or hybrid systems. The relative improvement in 

USS-based systems B, F, G and I from Ds to D5 feature vector is 23.07 %, 37.70 %, 

65.21 % and 50.00 %. These improvements are less as compared to the statistical-

based methods E, H and K with a relative improvement of 88.88 %, 74.46 % and 100 

%, respectively. Even the diphone-based J system showed a relative improvement by 

78.72 % decrease in EER. Thus, for the Blizzard Challenge 2012 database, the 

prosody-based derived from dynamic variation of F0, SoE1, and SoE2 features gave 

best % EER with D5 feature vector. Therefore, the source-based features can aid in 

detecting vocoder-based spoofs, indicating that the F0 and SoEs features carry 

crucial differences between natural and spoof speeches.  

5.2.6.5 Results on the Blizzard Challenge 2014 Database 

The results on the Gujarati language are similar to that of the Blizzard Challenge 

2012 database with the % EER decreasing from Ds to D5. The % EER for all the 

systems showed significant improvement in the performance. For HMM-based 
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system D, the decrease was only from 32 % to 15 % using D3 feature vector. For 

system F, the % EER is as low as 0 % for the HMM-DNN-based system.  

Table 5.5: EER (in %) for F0, SoE1 and SoE2 feature set using Ds to D5 feature vectors on 

training with the ASV spoof data and testing with the Blizzard Challenge 2014 database for 

the Gujarati language 

Blizzard 2014  Gujarati Systems 
Feature Sets 

Ds D1 D2 D3 D4 D5 

HMM C 57 44 26 9 10 6 

HMM D 32 25 19 15 19 24 

HMM E 70 55 30 12 12 12 

HMM-DNN F 49 34 6 0 1 0 

USS G 65 60 46 19 13 9 

HMM H 29 30 13 4 3 3 

* wavefiles for baseline system B and system I are not available 

 

Table 5.6: EER (in %) for F0, SoE1 and SoE2 feature set using Ds to D5 feature vectors on 

training with the ASV spoof data and testing with the Blizzard Challenge 2014 database for 

the Hindi language 

Blizzard 2014  Hindi Systems 
Feature Sets 

Ds D1 D2 D3 D4 D5 

HMM B* 56 28 20 14 12 16 

HMM C 22 10 5 6 5 5 

Hybrid D 47 40 35 32 28 28 

HMM E 46 15 6 4 4 4 

HMM-DNN F 33 14 4 3 3 3 

USS G 26 12 7 4 4 4 

HMM H* 2 0 1 0 0 0 

HMM K 9 6 4 6 5 7 

* systems with lower MOS from 1 ≤ 2 (wavefiles for system I are not available)  

Similar observations are found for the % EER estimated on the Hindi language. 

Except for hybrid approach-based system D, the % EER of all the systems decreased 

significantly from Ds to D5 feature vector. The HMM-based system B has low MOS, 

however, with Ds feature vector an EER of 56 % is obtained. On using the dynamic 

information, the EER reduced to as low as 12 %. It is to be noted that, on an average, 

the results obtained by the source-based F0, SoE1, and SoE2 features are better than 

that obtained by MFCC, CFCC, CFCCIF, CFCCIFS feature sets. Thus, the source-

based features, especially, the dynamic information is highly essential in capturing 

the synthetic nature of the spoofed speech and hence, improving the performance of 

the SSD system. Moreover, it should be observed that for the Blizzard Challenge 

2012 database, the prosody-based features gave best % EER with D5 feature vector. 

However, for the Blizzard Challenge 2014 database, the best % EER was not always 

for the D5 feature vector. This may be due to the fact that the prosodic features are 

language-dependent and the dynamic information in source-based features varies 
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with the language. The dynamic information is essential for the SSD task, however, 

the amount and nature of dynamics can be dependent on various parameters.   

5.2.7 Summary 

The main aim of this Section was to showcase that there are dynamic variations in 

the parameters that are extracted from the speech signal. The importance of 

variations in F0 is known in the literature. However, in the presented work, we 

explored the dynamic variation in the SoE1, and SoE2 features that are derived from 

speech and the excitation source, ġ(t), as well. In the case of natural human speech 

production mechanism, there is a movement of the vocal folds that actually affects 

the F0 and the amplitude of speech. Such a representation is absent in computer 

generated speech (especially, vocoder-based speech). The source-based features on its 

own cannot significantly reduce the performance of SSD systems. However, fusion 

with the system-based features assisted in reducing the % EER for vocoder-based 

spoofing attacks. In addition, for the case of completely unknown attacks, the source-

based features also showed a consistent decrease in the % EER with the dynamic 

information (for almost all the systems of the Blizzard dataset).  

5.3 Prediction Techniques of Speech for SSD task 

Historically, the idea of Linear Prediction (LP) and all-pole modeling of the system 

was used in system identification and control literature [186] and then it was 

brought to the field of speech signal processing [185], [187]. This Section presents 

the various prediction techniques that have been used in this thesis for the SSD 

task. The motivation behind using prediction analysis is that the speech signal can 

be considered to have two types of correlation, i.e., short-term and long-term. The 

short-term correlation occurs over the interval of the vocal tract impulse response 

within a pitch period (i.e., T0) while the long-term correlation occurs across 

consecutive pitch periods [21]. The first work to explore prediction-based features 

explicitly for SSD was carried out in [76]. The basic motivation behind this was that 

the SS and VCS are quite likely to be either very easily predicted (if generated with 

a simplified acoustic model) or very difficult to predict (if artifacts are present in the 

signal as in the case of joints for USS-based speech). Hence, the combination of LP 

followed by LTP (i.e., LP-LTP) will first predict the short-term correlations and then 
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the long-term correlations. In the case of the natural speech signal, as the 

dependencies are more between the samples, both LP prediction error and LTP 

prediction error may be high as compared to that of spoofed speech. Hence, the 

energies along with their ratios and further derived features will be different for 

natural and spoofed speeches which can be used as countermeasures as in [76]. 

In this work, we propose using NLP in place of both LP and LTP to obtain better 

prediction. Using NLP instead of LTP at the second stage will also reduce the error. 

However, this is true for the short-term case and not for the long-term. On the other 

hand, using NLP in place of LP (i.e., before LTP) will reduce the NLP error and 

hence, the ratio between NLP and LTP residual energy will not be too diverse to 

have better discriminative properties. We study all these cases in the next sub-

Section and discuss its suitability for the present task of detecting spoofed speech.  

5.3.1 Linear Prediction (LP) of Speech 

The speech signal is produced by the convolution of the excitation source and time-

varying vocal tract system components. This excitation source and vocal tract system 

components are to be separated, in principle, from the speech signal to study them 

independently for several speech analysis applications such as pitch (F0) detection 

and formant estimation, etc. Next, the LP analysis is discussed in brief [188]. For a 

speech signal s(n) of length N, the predicted signal ŝ(n) can be represented using p 

predictor memory element as follows, 

1
ˆ( ) ( ),

p

k
k

s n a s n k
=

=− −∑     (5.7) 

where ak’s are the LP coefficients (LPC), and the prediction error )(neLP
 or the LP 

residual can be computed (from eq. (5.7)) as, 

1

ˆ( ) ( ) ( ) ( ) ( ).

p

LP k

k

e n s n s n s n a s n k
=

= − = + −∑    (5.8) 

It can be said that the prediction coefficients, {ak} where k∈[1,p] are able to efficiently 

model the speech signal within a particular frame based on the prediction gain Gp 

and it is defined as [76], 

,x
p

e

E
G

E
=      (5.9) 
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where Ex and Ee are the short-time energy (mean squared value) of original speech 

and predicted error signal, respectively. If Gp is high, the prediction of speech 

samples is better. The methods for obtaining the optimal predictor coefficients are 

based on minimizing the l2
 energy of LP residual signal and it is given by, 

1

2

0

| ( ) | .
N

LP

n

E e n

−

=

=∑     (5.10) 

The LP analysis has been used extensively for estimating the pitch period or epochs 

or GCIs of the given speech given segment [189], formant frequency and bandwidth 

estimation [190], etc. It is extensively used for speech coding purposes both in time-

domain [191] as well as in the frequency-domain [192].  

5.3.2 Long-Term Prediction (LTP) of Speech 

Due to nonlinear interaction of the source and the vocal tract system, the LP 

residual has high-intensity peaks (pitch pulses) at the GCIs. This is due to the 

nonlinear interaction of the source due to impulse-like excitation and the vocal tract 

system. The speech samples around the GCIs are a result of this nonlinear 

interaction which cannot be predicted by the LP technique. The basic idea of LTP is 

to remove the pitch pulses in the LP residual that are correlated and predictable 

over consecutive pitch periods, i.e.,  

[ ] [ ]0 ,LP LPe n b e n T≈ ⋅ −
              

(5.11) 

where b is the scale factor and T0 is the pitch period that can be calculated from the 

autocorrelation function of s(n). The long-term predictor is of the form, 

 ( ) 1 ,
p

B z bz
−= −                   (5.12) 

where bz-p is the long-term predictor in the z-domain. The output of the long-term 

prediction error filter is,  

0[ ] [ ] [ ].LTP LP LPe n e n b e n T= − ⋅ −     (5.13) 

In LP analysis, the present sample is predicted based on the correlation of the p 

immediate past sample. On the other hand, in LTP, a current sample is predicted 

based on the correlation of a sample s(n) at the nth instant, with the similar samples 

which are a pitch period T0 away from the sample s(n) as shown in Figure 5.10  

(Chap. 8 [193]). Thus, LTP operates on vectors rather than on individual samples. In 
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this case, a vector of samples can also be predicted using another vector of samples 

from the signal’s history. The best matching vector is subtracted from LP residual 

error (eLP(n)) resulting in LTP residual signal (eLTP(n)). The LTP works efficiently 

with quasi-periodic voiced speech signals. The prediction error and prediction gain 

are calculated similarly as in the case of LP analysis.   

 

Figure 5.10: Schematic of the short-term correlation of a sample with p immediate past 

samples and the long-term correlation with the samples which are a pitch period 'To' away. 

After [193]. 

5.3.2.1 Calculations of LTP Parameters 

The parameter extraction procedure for LTP is explained as in [194]. Considering a 

speech signal, the LP residual (eLP) can be obtained as per eq. (5.8). A particular 

frame size of 25 ms of the short-term LP residual signal (eLP is denoted as d in this 

Section) is further processed in shorter sub-segments (of 5 ms, i.e., 40 samples for an 

Fs=8 kHz). Therefore, if the eLP frame is processed in m sub-segments, the sample 

related to the mth sub-segment of the residual signal can be denoted as ( )
m

d k k+ with 

00, ,3;  * 40 and 0, ,39mm k k m k= … = + = …  and 
0k  denotes the first sample value of the 

current frame. In these calculations, for each sub-segments, a long-term correlation 

lag ,  ( 0, 3),mN m = …  and gain factor is to be determined. These parameters for each 

sub-segment are implemented in following three steps [194].  

• Step 1: Find the cross-correlation, Rm(l), using current sub-segment of the 

short-term residual ( ),  ( 0, ,39)md k i i+ = …  and previous samples of the 

reconstructed short-term residual signal '( ),  ( :120, , 1)md k i i+ = − … −  

39

0

( ) ( ) '( )
m m m

t

R l d k i d k i l
=

= + ⋅ + −∑ ,       (5.14) 
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where 00, ,3; *40 and 40, ,120.mm k k m l= … = + = … To find the above cross-correlation, 

consider the lags l greater than or equal to 40 and less than or equal to 120, i.e., we 

can choose this l from the sample outside the current sub-segment and not delayed 

by more than two sub-segments. 

• Step 2:  Find the position Nm where the maximum peak of cross-correlation 

function occurs within this interval: 

 ( ) [ ( )],                    40, ,  120,   0,...,3m m mR N max R l l m= = … =         (5.15) 

• Step 3: Evaluate the gain factor, bm, according to  

( )
,

( )

m m
m

m m

R N
b

S N
=

     (5.16)

 

where 
39

2

0

( ) ' ( )
m m m m

i

S N d k i N
=

= + −∑ , for m=0,...,3.  

In the above procedure, the short-term residual signal 
0( )d k k+  where 0,...,159k =  is 

processed by sub-segment of 40 samples. From each of the sub-segment of short-term 

residual samples (denoted here as )( md k k+ ), an estimate ''( ,  () 0,...,39)mk k kd + =  of 

the signal is subtracted to get the long-term residual signal ,  (( ) 0,...,39),LTP me k k k+ =   

( ) ( ) "( )LTP m m me k k d k k d k k+ = + − + .    (5.17) 

The estimated samples "( )md k k+ are computed from the earlier reconstructed short-

term residual samples 'd , adjusted to the current sub-segment LTP lag 'mN  and 

weighted with the gain factor 'mb of the LTP sub-segment, 

"( ) ' )''(m m m md k k b d k k N+ = ⋅ + − ,
    (5.18)

 

where 
00,...,3; 0,...39; * 40.mm k k k m= = = +  The LTP technique is widely used in speech 

coding (e.g., in GSM 06.10) or in narrowband and wideband adaptive multi-rate 

coders. Both LP and LTP analysis consider the linear combination of the speech 

samples which may be either short-term combination or long-term combination, 

respectively. However, in a speech signal, the sequences of samples are non-linearly 

correlated with each other. Hence, we study the NLP analysis of speech and explore 

its possible use in the SSD task. 
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5.3.3 Non-Linear Prediction (NLP) of Speech Signal 

The set of Volterra functionals is complete (i.e., every Cauchy sequence converges to 

a limit point which belongs to the same function space). It means that every 

continuous functional of a signal x(t) can be approximated with arbitrary precision as 

a sum of a finite number of Volterra functions in x(t). This result was a 

generalization of the Weierstrass-Stone theorem (i.e., every continuous function of a 

variable x(t) can be approximated with arbitrary precision as the sum of a finite 

number of polynomials in x(t)) [195]. To perform the nonlinear prediction of speech, 

consider a dynamical system with input data series x(n) and the output y(n) at time 

instant (n=1,2,…,N), in multiples of sampling time τ. A power series expansion such 

as the Taylor series expansion may be used to describe the output of the system as, 

0
( ) ( ).p

pp
y t c x t

∞

=
=∑      (5.19) 

A nonlinear system with k memory terms can be then represented by means of an 

extension of eq. (5.7). This extension, known as the Volterra series expansion, which 

relates the input and output of the system is used. For a dynamical system, a closed-

loop version of the Volterra series is used in which the output y(n) feeds back as a 

delayed input (i.e., x(n)≡y(n)). Therefore, we analyze the univariate time series by 

using a discrete VW series of degree d and predictor memory k to calculate the 

predicted time series ŷ(n) given by:  

2

0 1 2 1 2 1
ˆ( ) ( 1) ( 2) .... ( ) ( 1) ( 1) ( 2) ( ) ,d

k k k M
y n a a y n a y n a y n k a y n a y n y n a y n k+ + −= + − + − + + − + − + − × − + −

 

1

0

ˆ( ) ( ),
M

m m
m

y n a z n
−

=
∴ =∑     (5.20) 

where the functional basis {zm(n)} is composed of all the distinct combinations of the 

embedding space coordinates up to degree d with a total dimension M=(k+d)!/k!d!  

[196]. Thus, each model is parameterized by k and d corresponding to the predictor 

memory and the degree of nonlinearity in the model, respectively. The coefficients 

am’s in eq. (5.20) are estimated by Korenberg’s fast algorithm using Gram-Schmidt 

procedure from the linear and nonlinear autocorrelation of the data-series itself 

[196]. From eq. (5.7) and eq. (5.20), for NLP model, s(n)=y(n) and ŝ(n)=ŷ(n). 

Therefore, NLP residual, eNLP is given by [197], 

ˆ( ) ( ) ( ).
NLP

e n y n y n= −      (5.21) 
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The NLP has been used in several applications such as speaker recognition and 

estimation of epochs or GCIs from the speech signal [198]. The use of NLP in speech 

analysis-by-synthesis [199] and speech coding [200] also been explored.  

5.3.4 Prediction Analysis of Natural and Spoofed Speech 

The LP and NLP techniques use short-term dependencies in the past samples of a 

speech segment to predict the current sample. On the other hand, LTP uses long-

term dependencies in the speech signal (i.e., past samples T0 pitch period away from 

the current samples) to predict the speech sample. To show which of the three 

prediction techniques are efficient, we compare the LP, LTP, and NLP residuals as 

in Figure 5.11. It is observed that the NLP residual had less energy than LTP and 

LP residual. This was observed over several such voiced regions.  

 

Figure 5.11: Comparison between LP, LTP and NLP (a) LP residual (b) LTP and (c) NLP 

residual for voiced speech. 

To further statistically quantify it, the average l2 norm is estimated for all residuals 

over 100 natural utterances of the D1 speaker of the ASVspoof 2015 challenge 

database. For LP analysis d=1 and for NLP d=2 is considered. To keep the number of 

coefficients constant for LP and NLP analysis, p=2, 14, 20 are considered and 

corresponding to k=1, 4, 5, giving a total of 3, 15 and 21 coefficients, respectively. 

The average l
2 energy as in eq. (5.10) is shown in Table 5.7. From this result, we 

conclude that the energy of prediction error decreases for NLP as compared to LP 

and LTP for the same number of coefficients. Similar analysis between LP and NLP 

using the l2 norm of residual signal over several utterances has been shown in [197]. 
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Table 5.7: Average l2 norm energy of LP, LTP and NLP residual signal over 100 utterances 

Feature set 
Total no. of coefficients in prediction 

3 15 21 

LP residual 12.3 6.42 6.18 

LTP residual 10.5 5.52 5.26 

NLP residual 10.5 3.63 3.16 

5.3.5 Countermeasures for Spoofed Speech Detection 

In this Section, we discuss the features that are presented in [76] based on LP-LTP 

combination and use them to propose the NLP-LTP and LP-LTP combination. All the 

three combinations are shown in Figure 5.12. 

 

Figure 5.12:  Schematic of the various prediction techniques combinations for detecting 

spoofed speech (a) LP-LTP (After [76]), (b) LP-NLP (After [90]) and (c) NLP-LTP.  

5.3.5.1 LP-LTP Combination 

The LP-LTP combination as proposed in [76] is shown in Figure 5.12 (a). The speech 

signal s(n) is predicted using LP and thereafter, the LP residual is obtained as in eq. 

(5.8), i.e., the predicted values are subtracted from the original samples. The 

resulting LP residual is processed further to the next block of LTP that operates on 

vectors of samples rather than on individual samples. When the best matching 

vector is found, it is subtracted from the signal, resulting in LTP prediction error 

signal, eLTP. The present LP-LTP approach is different from that in [76] in the sense 

that here we carry LP and LTP analysis at the frame-level. It is known that the LP 
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residual is intelligible on hearing, i.e., there is still sufficient dependency and 

correlation between the sequence of samples in the LP residual that is further 

captured by LTP. In addition, the LP residual error is known to have peaks at GCIs 

due to nonlinear interaction. The nonlinear interaction is due to the various 

aerodynamic aspect of speech production. Thus, the LP residual has primary pitch 

pulses that can be removed or minimized by LTP. Based on this architecture, 

features are proposed for spoof detections as described below [76]: 

• m1: MeanLPerr: mean energy of the LP error, i.e., mean energy of eLP, 

• m2: MeanLTPerr: mean energy of the LTP error, i.e., mean energy of eLTP, 

• m3: MaxLTPerr: maximum energy of the LTP error, eLTP, 

• m4: MeanLTPgain: mean LTP gain (i.e., mean ratio of energies of the LP and 

LTP errors, mean Gp as in eq. (5.9)), 

• m5: MaxLTPgain: maximum of the Gp for LTP,  

• m6: MeanErrLen: mean length of segments with eLTP  above threshold (θ), 

• m7: MaxErrLen: maximum length of segments with eLTP above θ, 

• m8: MeanNoErrLen: mean length of segments with eLTP equal or below θ, 

• m9: MaxNoErrLen: maximum length of segments with eLTP  equal or below θ, 

• m10: EnergyLP: total energy of LP residual, eLP, 

• m11: EnergyLTP: total energy of LTP residual, eLTP. 

• m12: ErrChangeRate: LTP threshold crossing rate (counted per 20 ms frame), 

 

Figure 5.13: Histogram of the various spoofing countermeasures (m1-m12) of the LP-LTP-

based combination (a) meanLPerr (b) MeanLTPerr (c) MaxLTPerr (d) MeanLTPgain (e) 

MaxLTPgain (f) MeanErrLen (g) MaxErrLen (h) MeanNoErrLen (i) MaxNoErrLen (j) 

EnergyLP (k) EnergyLTP and (l) ErrChangeRate. 

0 0.2 0.4 0.6 0.8
0

0.5

1

(a)
0 0.02 0.04 0.06 0.08

0

0.5

1

(b)
0 0.5 1 1.5 2

0

0.5

1

(c)

4 6 8 10
0

0.5

1

(d)

1 2 3 4
0

0.5

1

(e)
2 2.5 3 3.5 4

0

0.5

1

(f)
0 10 20 30

0

0.5

1

(g)
0 20 40 60 80

0

0.5

1

(h)

0 1000 2000 3000
0

0.5

1

(i)

0 5 10 15 20
0

0.5

1

(j)

0 5 10 15 20
0

0.5

1

(k)

0 0.005 0.01 0.015 0.02
0

0.5

1

(l)

 

 
Natural

Synthet ic

N
o
rm

a
li

z
e
d
 f

re
q

u
e
n

cy
 c

o
u

n
t 

  
  

→



Chapter 5: Source-based Features 

 

135 

 

As compared to the features in [76], features m10-m11 are added in the present work 

to include the total energy value than just mean energy. The distribution of LP-LTP, 

LP-NLP and NLP-LTP-based feature sets using 3750 natural utterances (green) and 

12652 spoofing utterances (red) of the training set of ASVspoof challenge dataset is 

shown in Figure 5.13, Figure 5.14 and Figure 5.15, respectively. It is observed in 

Figure 5.13 that there exists less overlap between the histogram of natural speech 

and spoofed speech showing better discriminating properties. It is observed that 

distribution of features like MeanErrLen, MaxErrLen, MeanNoErrLen and 

ErrChangeRate is different for natural and spoofed speech. 

5.3.5.2 LP-NLP Combination 

The schematic of LP-NLP combination is shown in Figure 5.12 (b). This architecture 

is similar to LP-LTP in the sense that the long-term prediction which reduces the 

error of the resultant LP residual is replaced by NLP for which also the resultant 

error is less than LP analysis. The difference lies in the fact that LTP captures long-

term linear dependencies in the speech signal while NLP captures short-term 

nonlinear dependencies. The NLP is carried on the LP residual rather than the 

speech signal to fit in the LTP framework as discussed in Section 5.3.5.1.   

 

Figure 5.14: Histogram of the various spoofing countermeasures (m1-m12) of the LP-NLP-

based combination (a) meanLPerr (b) MeanNLPerr (c) MaxNLPerr (d) MeanNLPgain (e) 

MaxNLPgain (f) MeanErrLen (g) MaxErrLen (h) MeanNoErrLen (i) MaxNoErrLen (j) 

EnergyLP (k) EnergyNLP and (l) ErrChangeRate.  

0 0.1 0.2 0.3 0.4
0

0.5

1

(a)

0 0.05 0.1 0.15 0.2
0

0.5

1

(b)
0 0.5 1 1.5

0

0.5

1

(c)
1 1.5 2 2.5 3

0

0.5

1

(d)

1 2 3 4
0

0.5

1

(e)
2 2.2 2.4 2.6 2.8

0

0.5

1

(f)

0 5 10 15 20
0

0.5

1

(g)
0 50 100 150

0

0.5

1

(h)

0 1000 2000 3000
0

0.5

1

(i)
0 10 20 30

0

0.5

1

(j)
0 5 10 15

0

0.5

1

(k)
0 0.05 0.1 0.15 0.2

0

0.5

1

(l)

 

 

Natural

Synthet ic

N
o
rm

a
li

z
e
d

 f
re

q
u

e
n

cy
 c

o
u

n
t 

  
  

→



Prediction Techniques of Speech for SSD task 

136 

 

The countermeasures proposed in the form of m1-m12 are similar except that the 

LTP is replaced by the NLP. These countermeasures are proposed in [90]. It is 

observed in Figure 5.14 that MaxErrLen, MeanNoErrLen and ErrChangeRate were 

more discriminating for natural and spoofed speeches than the other features. These 

features were similar to that of the LP-LTP combination. 

5.3.5.3 NLP-LTP Combination 

The schematic of NLP-LTP combination is shown in Figure 5.12 (c). This 

architecture is similar to LP-LTP in the sense that the long-term prediction is 

applied to the residual obtained by short-term prediction. However, the short-term 

prediction by NLP is better than LP as it captures the nonlinear dependencies in the 

speech samples. This may prove to be a drawback, as both NLP and LTP provide 

better prediction and hence, the ratios of energy or the features from this 

combination may not be significantly different for natural and spoofed speech. The 

countermeasures proposed in the form of m1-m12 are similar except that the LP 

residual is replaced by the NLP residual.  

 

Figure 5.15: Histogram of the various spoofing countermeasures m1-m12 of the NLP-LTP-

based combination (a) meanNLPerr (b) MeanLTPerr (c) MaxLTPerr (d) MeanLTPgain (e) 

MaxLTPgain (f) MeanErrLen (g) MaxErrLen (h) MeanNoErrLen (i) MaxNoErrLen (j) 

EnergyNLP (k) EnergyLTP and (l) ErrChangeRate.  
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might not show a significant reduction in the % EER. However, as shown in Figure 

5.13 (d), the MeanLTPgain shows some discrimination, which is not the case of LP-

LTP and LP-NLP combination. Therefore, the individual performance of the features 

might not be significant. However, a fusion of the NLP-LTP combination might add 

complementary information to the LP-LTP and LP-NLP combination. 

5.3.6 Experimental Results 

5.3.6.1 Parameterization 

For LP analysis, the pole order p=20 is considered (due to the relationship between 

sampling frequency Fs and length of vocal tract [185]). For LP-LTP and NLP-LTP 

combination a frame length of 25 ms is chosen to predict using LP and NLP. Then 

LP and NLP residual is calculated after subtracting predicted signal (obtained using 

the estimated coefficients) from the original speech signal. For LP-LTP and LP-NLP 

combination, the LP residual is framed at 5 ms window. Furthermore, for NLP, k=5 

and d=2 is considered in eq. (5.20). The LP-LTP, LP-NLP and NLP-LTP features 

form a 12-dimension (12-D) feature vector of m1 to m12 for the entire speech signal. 

The entire analysis is done for voiced regions. For ErrChangeRate feature in all the 

combinations, the threshold value is set to θ=0.02 [76]. For further representation, 

LP-LTP, LP-NLP and NLP-LTP feature sets are abbreviated as M1, M2 and M3, 

respectively. In [76], the features are extracted by processing sample-by-sample on 

the speech signal whereas in our work we consider the traditional frame-level 

processing for faster computation and to facilitate comparison with frame-based 

system features that are discussed in Chapter 4. 

5.3.6.2 Results on the Development Set of ASVspoof challenge Database 

The results in EER on the development set for the M1, M2, and M3 feature sets are 

shown in Table 5.8. As shown in Table 5.8, the % EER of M1, M2 and M3 on 

development set are 4.77, 9.17 and 13.89, respectively. As discussed in Section 

5.3.5.3, due to better prediction by both NLP and LTP, this combination (i.e., M3) 

gives high % EER. It is observed that the best score-level fusion of the features with 

each other occurs at αf =0.3.  
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Fusion with system-based features: The best fusion of M1 and M2, M1 and M3 

and M2 and M3 at αf =0.3 are then fused at score-level with the 36-D (12s+12-∆+12-

∆∆) system-based MFCC, CFCC, CFCCIFS and SBAE feature sets as in Table 5.9. 

Table 5.8: EER (in %) for M1, M2 and M3 feature set along with their score-level fusion at 

various fusion factor αf  on the development set 

Feature  

Set 1 

Fusion Factor (αf) Feature 

Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M1 4.77 4.14 3.71 3.60 3.60 3.83 4.28 4.97 5.77 7.32 9.17 M2 

M1 4.77 4.26 3.91 3.88 4.17 4.8 5.83 7.23 9.09 11.32 13.89 M3 

M2  9.17 8.6 8.12 7.94 8.20 8.57 9.17 9.92 11 12.43 13.89 M3 

Score-level fusion is carried as per eq. (3.6) 

Table 5.9: EER (in %) for score-level fusion of best combination of M1-M2, M1-M3 and M2-M3 

with system-based feature sets (using D3 feature vector) at various fusion factors αf on the 

development set 

Feature  

Set 1 
Fusion Factor (αf) Feature 

Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

best (M1-M2) 3.60 3.32 3.03 2.77 2.46 2.14 1.72 1.34 0.92 0.57 1.60 MFCC 

best (M1-M2) 3.60 3.37 3.06 2.77 2.52 2.17 1.92 1.34 1.03 0.66 1.54 CFCC 

best (M1-M2) 3.60 3.40 3.15 2.89 2.63 2.43 1.94 1.49 1.06 0.51 1.23 CFCCIFS 

best (M1-M2) 3.60 3.40 3.17 2.89 2.66 2.37 2.03 1.60 1.14 0.57 1.49 SBAE 

best (M1-M3) 3.89 3.63 3.29 3.06 2.66 2.32 1.89 1.46 1.03 0.63 1.60 MFCC 

best (M1-M3) 3.89 3.63 3.37 3.09 2.77 2.37 2.03 1.54 1.06 0.69 1.54 CFCC 

best (M1-M3) 3.89 3.72 3.43 3.23 2.97 2.60 2.17 1.69 1.12 0.57 1.23 CFCCIFS 

best (M1-M3) 3.89 3.72 3.46 3.17 2.92 2.63 2.23 1.72 1.17 0.69 1.49 SBAE 

best (M2-M3) 7.95 7.66 7.21 6.66 5.83 5.12 4.23 3.26 2.23 1.26 1.60 MFCC 

best (M2-M3) 7.95 7.64 7.15 6.69 6.06 5.12 4.32 3.35 2.46 1.37 1.54 CFCC 

best (M2-M3) 7.95 7.72 7.43 6.95 6.35 5.69 4.72 3.69 2.63 1.26 1.23 CFCCIFS 

best (M2-M3) 7.95 7.66 7.26 6.81 6.23 5.55 4.63 3.75 2.46 1.29 1.49 SBAE 

Score-level fusion is carried as per eq. (3.6) 

It is observed from Table 5.9 that at αf = 0.9, i.e., 10 % of excitation source-based 

features and 90 % of system-based features, the performance of system-based 

features is reduced even more than 50 % on using the best combination of M1-M2 

features and best combination of M1-M3 features. On the other hand, the decrease in 

% EER of system-based features with the M2-M3 combination is relatively less. The 

least EER is 0.51 % obtained by fusion of best (M1-M2) with CFCCIFS feature set.   

Dependency on spoofing algorithms: Figure 5.16 shows the spoof dependency of 

the prediction-based features. It is observed that for the known attacks, the M1 

feature set gave the least % EER as compared to M2 and M3 that could not identify 

the known type that well. For the same type of attacks, considering VCS, the % EER 
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is least for M2 combination indicating that the linear and nonlinear combination is 

useful for spoof detection. Hence, for VCS, it may be possible that the nonlinearity 

might be absent during the speech generation process. The SS spoof could identify its 

similar type as good as the known case. Next, for the different type of attacks, for 

VCS spoof, the detection was much better from M1 to M3. However, on training with 

the SS speech, M2 and M3 did not predict the different type of spoof (i.e., VCS) as 

well as with the M1 combination. Thus, for the known case and the same type of 

attacks, the M1 and M2 techniques perform well respectively. However, for the 

different type of attacks, the performance of the features depends on the type of 

spoofed speech (SS or VCS) that is used in training.  

 

Figure 5.16: The % EER on known, same and different type of attacks when trained with 

individual spoofs S1, S2, S3, S4 and S5 for prediction-based M1, M2 and M3 feature sets and 

tested on the development dataset.  

Discussion on the DET curves: The DET curves for the M1, M2 and M3 feature 

sets and their score-level fusion at αf =0.3 are shown in Figure 5.17(a).  

 

Figure 5.17: DET curves on the development set for (a) M1, M2 and M3 feature sets and their 

best score-level fusion and (b) the best score-level fusion of M1 and M2 with the system-

based features.  
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It is observed that the best % EER is due to the M1 and M2 combination (i.e., best 

(M1-M2)), which is better than all the feature sets along the entire DET curve. The 

performance of FRR for a particular value of FAR is better after fusion with M2 

feature set. The DET curve for score-level fusion of best (M1-M2) with the system-

based features at αf=0.9 is shown in Figure 5.17(b). The improvement in both 

system-based features and the best combination of M1-M2 after their score-level 

fusion is observed. The DET curve for M1 and M2 combination after fusion with 

CFCCIFS shows the best performance in terms of % EER and also along FRR. 

5.3.6.3 Results on the Evaluation Set of ASVspoof challenge Database 

The results on the evaluation set are reported in Table 5.10. The M1, M2 and M3 

feature sets report an EER of 10.91 %, 14.14 % and 18.73 %, respectively. The fusion 

of the M1, M2 and M3 features among itself shows that the best achieved EER is 

9.73 % with the fusion of M1 and M2. The other combinations did not perform better 

than this combination. On the development set, the best fusion factor for score-level 

fusion of M1 and M2, M1 and M3, and M2 and M3 obtained was αf=0.3, which on the 

evaluation set was observed to be 0.4, 0.3 and 0.2, respectively. This slight change in 

Table 5.10: EER (in %) for score-level fusion of best combination of M1-M2, M1-M3 and M2-M3 

with system-based feature sets (using D3 feature vector) at various fusion factors αf on the 

evaluation set 

Feature  

Set 1 

Fusion Factor (αf) Feature  

Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M1 10.91 10.44 10.05 9.83 9.73 9.84 10.12 10.65 11.47 12.65 14.14 M2 

M1 10.91 10.65 10.49 10.45 10.54 10.97 11.67 12.88 14.47 16.51 18.73 M3 

M2 14.14 13.68 13.41 13.83 13.53 13.89 14.44 15.14 16.16 17.38 18.73 M3 

best (M1-M2) 9.73 9.52 9.32 9.05 8.76 8.4 8.03 7.53 6.62 5.12 4.26 MFCC 

best (M1-M2) 9.73 8.86 8.25 7.74 7.28 6.80 6.16 5.36 4.13 2.41 1.74 CFCC 

best (M1-M2) 9.73 9.16 8.62 8.10 7.63 7.09 6.49 5.68 4.63 2.87 1.60 CFCCIFS 

best (M1-M2) 9.73 9.54 9.33 9.07 8.77 8.39 7.84 7.06 5.70 3.56 2.49 SBAE 

best (M1-M3) 10.45 10.24 9.96 9.65 9.3 8.91 8.41 7.81 6.87 5.38 4.26 MFCC 

best (M1-M3) 10.45 9.57 8.86 8.31 7.80 7.20 6.51 5.67 4.34 2.49 1.74 CFCC 

best (M1-M3) 10.45 9.90 9.27 8.72 8.15 7.56 6.91 6.04 4.82 2.90 1.60 CFCCIFS 

best (M1-M3) 10.45 10.26 10.01 9.72 9.37 8.86 8.21 7.38 6.01 3.81 2.49 SBAE 

best (M2-M3) 13.41 12.99 12.53 11.98 11.34 10.52 9.57 8.44 7.13 5.41 4.26 MFCC 

best (M2-M3) 13.41 12.53 11.78 11.03 10.19 9.18 8.09 6.72 5.05 2.88 1.74 CFCC 

best (M2-M3) 13.41 12.83 12.19 11.52 10.76 9.91 8.87 7.53 5.72 3.37 1.60 CFCCIFS 

best (M2-M3) 13.41 13.04 12.61 12.11 11.52 10.71 9.69 8.29 6.45 3.88 2.49 SBAE 

Score-level fusion is carried as per eq. (3.6) 
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the fusion factors is due to the presence of unknown attacks in the evaluation data 

set. The results of score-level fusion of the best fusion of M1-M2, M1-M3, M2-M3 

with the system-based features at various αf is shown in Table 5.10. It is observed 

that even after fusion with the prediction-based features, the system-based features 

do not show any improvement in the % EER. These results are not consistent with 

the results obtained in the development set, where a significant improvement was 

observed over the system-based features. The reason behind this is that the 

evaluation set consists of both vocoder-dependent and vocoder independent S10 spoof 

(which is made by concatenating speech sound units directly). Hence, it is necessary 

to observe the results in % EER with and without S10 spoof. 

The best fusion factors for M1-M2, M1-M3 and M2-M3 combination are 0.4, 0.3 

and 0.2, respectively (as shown in Table 5.10). These best combination of source 

features are fused at αf = 0.9 with the system-based features. Using these fusion 

factors, the % EER for only vocoder-based speech (without S10) and with S10 spoof 

on the evaluation set is shown in Table 5.11.  

Table 5.11: EER (in %) in terms of individual attacks, average known attacks, average 

unknown attacks, average with and without S10 spoof for M1, M2 and M3 feature sets, their 

best fusion combination and score-level fusion with the system-based feature sets (using D3 

feature vector) at selected αf on the evaluation set 

Feature Sets 

Individual Attacks 
Average 

Known Attacks Unknown Attacks 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn. Ukn. w/o S10 Avg. 

M1 5.74 4.13 0.02 0.02 1.45 2.55 7.49 0.04 0.95 86.66 2.27 19.54 2.49 10.91 

M2 9.07 7.70 1.67 1.45 4.55 10.68 24.50 0.97 3.27 77.59 4.89 23.40 7.09 14.14 

M3 19.33 18.29 0.64 0.73 5.68 26.70 40.15 0.39 2.42 72.63 8.93 28.46 12.70 18.70 

best(M1-M2) 2.67 1.82 0.00 0.00 0.48 0.97 6.99 0.02 0.48 83.87 0.99 18.47 1.49 9.73 

best(M1-M3) 4.09 2.98 0.01 0.01 0.63 1.77 9.57 0.01 0.47 84.83 1.54 19.33 2.17 10.44 

best(M2-M3) 7.68 6.45 0.55 0.50 3.02 10.16 25.33 0.42 1.75 78.01 3.64 23.13 6.21 13.39 

best(M1-M2)+ 

MFCC 
0.00 0.04 0.00 0.00 0.02 0.02 0.01 0.00 0.01 51.11 0.01 10.23 0.01 5.12 

best(M1-M3)+ 

MFCC 
0.00 0.05 0.01 0.01 0.04 0.06 0.05 0.00 0.01 53.48 0.02 10.72 0.03 5.37 

best(M2-M3)+ 

MFCC 
0.00 0.20 0.00 0.00 0.11 0.26 0.11 0.00 0.01 53.37 0.06 10.75 0.08 5.40 

best(M1-M2)+ 

CFCC 
0.01 0.16 0.00 0.00 0.13 0.11 0.15 0.00 0.05 23.52 0.06 4.77 0.07 2.41 

best(M1-M3)+ 

CFCC 
0.01 0.26 0.01 0.01 0.10 0.16 0.25 0.00 0.03 24.02 0.08 4.89 0.09 2.48 

best(M2-M3)+ 

CFCC 
0.05 0.57 0.00 0.00 0.52 0.70 0.54 0.02 0.05 26.32 0.23 5.52 0.27 2.88 

best(M1-M2)+ 

CFCCIFS 
0.02 0.08 0.00 0.00 0.07 0.07 0.19 0.00 0.02 28.22 0.03 5.70 0.05 2.87 

best(M1-M3)+ 

CFCCIFS 
0.02 0.14 0.01 0.01 0.05 0.11 0.34 0.00 0.02 28.29 0.04 5.75 0.08 2.90 

best(M2-M3)+ 

CFCCIFS 
0.03 0.33 0.00 0.00 0.36 0.59 1.17 0.09 0.05 31.03 0.14 6.59 0.29 3.36 

best(M1-M2)+ 

SBAE 
0.01 0.18 0.00 0.00 0.08 0.17 0.14 0.00 0.05 35.03 0.06 7.08 0.07 3.57 

best(M1-M3)+ 

SBAE 
0.02 0.32 0.01 0.01 0.07 0.27 0.28 0.00 0.05 36.98 0.08 7.52 0.11 3.80 

best(M2-M3)+ 

SBAE 
0.02 0.49 0.00 0.00 0.27 0.72 0.46 0.00 0.10 36.68 0.16 7.59 0.23 3.88 

Score-level fusion is carried as per eq. (3.6), Kn=known, Ukn= Unknown, w/o  S10=Average without S10, Avg. = Average of S1-S10 
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As reported in Chapter 4, the % EER of known attacks using MFCC, CFCC, 

CFCCIFS and SBAE features is 0.4 %, 0.8 %, 0.5 % and 1.0 %. After score-level 

fusion with best combination of M1 and M2, the % EER of system-based features 

decreases to 0.01 %, 0.06 %, 0.03 % and 0.06 %, respectively. Likewise the average 

EER without S10 was 0.31 %, 0.56 %, 0.46 % and 1.08 %, respectively, for MFCC, 

CFCC, CFCCIFS and SBAE features which decreases to 0.01 %, 0.07 %, 0.05 % and 

0.07 %, respectively, on using the score-level fusion of best combination of M1 and 

M2 with the system-based features. The MFCC features performed best for known 

attacks and hence, in this case, the fusion with MFCC serves as a better 

distinguishing feature for vocoder-based spoofs. This performance of the score-level 

fusion of prediction-based features and system-based features turns out to perform 

better than the F0, SoE1 and SoE2 features along with the dynamics (as discussed in 

Section 5.2.6.3) for the vocoder-based spoofs. For S10 spoof, the % EER of the M1, 

M2 and M3 features used individually or by their best combination was found to be 

very high (~ 70 % to 80 %). Even after the fusion with system-based features, the % 

EER of S10 spoof does not decrease, therefore, the average % EER turns out to be 

very high. 

Dependency on spoofing algorithms: Figure 5.18 shows the spoof dependency of 

the prediction-based features on the evaluation set. As in several earlier examples, 

on the evaluation set, we show the analyses of the same type, different type and S10 

attack. The analyses of the known type are similar to that obtained on the 

development set and hence, not shown here. For the same type of attacks, the % 

EER is almost same for SS spoof using any of the M1, M2 or M3 combination of the 

feature set. On the other hand, for VCS spoof, its same type, i.e., VCS can be 

detected best using the M1 combination. The % EER increases with M2 and M3 

feature set signifying that the same type of spoof detection by VCS training is well 

modeled using the linear and long-term prediction. For different type of attacks, for 

VCS spoof, the detection of SS spoof is much better using the NLP information 

embedded in the M2 and M3 feature set. The EER while detecting the SS spoof is 

11.5 %, 7.5 % and 2.03 % on training with S1, S2 and S5 spoof, respectively, using 

M3 combination. For the SS speech, the detection of VCS was not well using the 

NLP-based information and hence, the % EER increased for the M2 and M3 feature 

set. Considering S10 spoof separately, the % EER on training with any of the 
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available spoofs (SS or VCS) decreases with the information about the nonlinear and 

long-term prediction aspects of the speech signal. It was observed that with the use 

of NLP and LTP combination (i.e., M3), lower EER is obtained as compared to M1 

and M2. The best EER obtained for the S10 spoof is ~ 65 % which is very high and 

hence, the prediction-based features may not be effective to detect these spoofs. 

 

Figure 5.18: The % EER for the same type, different type and S10 attack when trained with 

individual spoofs S1, S2, S3, S4 and S5 for prediction-based M1, M2 and M3 feature sets and 

tested on the evaluation dataset. 

5.3.6.4 Results on the Blizzard Challenge 2012 Database 

The results for the Blizzard Challenge 2012 database for the prediction-based M1, 

M2 and M3 features are shown in Table 5.12. The results on this database are 

contrary to that obtained on the ASV spoof challenge data. That is, the performance 

of M1 features is not better than that of M2 or M3. Unlike the F0, SoE1 and SoE2 

features, the prediction-based features did not generalize even amongst the unit-

selection and statistical-based synthesis techniques.  

5.3.6.5 Results on the Blizzard Challenge 2014 Database 

The results for the Blizzard Challenge 2014 database for the prediction-based M1, 

M2 and M3 features are shown in Table 5.13. For the Gujarati dataset, the M3 

features performed significantly well than M1 and M2 for all systems. For Hindi 

systems, HMM-based systems were identified well by M1 features and USS system 

by M3 features. Thus, the features do not generalize well for detecting unknown 

spoof which can be modified and explored further. 
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Table 5.12: EER (in %) for M1, M2 and M3 feature sets on training with the ASV spoof data 

and testing with the Blizzard Challenge 2012 database 

Blizzard 2012 Systems 
Feature Sets 

M1 M2 M3 

USS B 56 53 54 

Hybrid C 54 49 46 

Hybrid D* 55 37 67 

HMM E* 10 41 5 

USS F 63 46 81 

USS G 73 39 84 

HMM H 42 42 18 

USS I 49 28 6 

Diphone J* 27 45 34 

HMM K* 43 51 42 

* systems with lower MOS from 1 ≤ 2 

 

Table 5.13: EER (in %) for M1, M2 and M3 feature sets on training with the ASV spoof data 

and testing with the Blizzard Challenge 2014 database 

Blizzard 

2014 

Gujarati 

systems  

Feature Sets Blizzard 

2014 

Hindi 

systems 

Features Sets 

M1 M2 M3 M1 M2 M3 

HMM C 21 63 2 HMM B* 13 23 54 

HMM D 13 45 2 HMM C 18 28 65 

HMM E 34 59 2 Hybrid D 66 50 82 

HMM-DNN F 42 50 7 HMM E 62 33 61 

USS G 29 68 2 HMM-DNN F 62 36 23 

HMM H 47 55 13 USS G 38 39 29 

     HMM H* 10 10 57 

     HMM K 18 32 77 

* systems with lower MOS from 1 ≤ 2 (wavefiles for Gujarati system B and system I and Hindi system I are not available) 

 

5.3.7 Summary 

This Section discusses the various prediction schemes that can be used for the SSD 

task. The basic idea is that the natural speech has nonlinear dependencies between 

the sequences of samples. Hence, the use of nonlinear prediction techniques will aid 

in the detection of spoofed speech. On the ASV spoof data, the linear and long-term 

prediction features were found to perform better. In the case of the spoof dependency 

or the channel mismatch cases, where the training is done on one type of data and 

testing is done on the other type of speech, the nonlinear prediction features were 

found to have complementary information as compared to the linear and the long-

term prediction features. However, the % EER was very high and the results were 

not consistent on the Blizzard datasets. These features could be modified for being 

used as more generalized countermeasures.  
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5.4 The Fujisaki Model 

The Fujisaki model also known as the command-response model, is a prosodic model 

that represents F0 contour in terms of the phrase and accent parameters as a result 

of the translation and rotation motion of the cricoids muscles, respectively [201]. The 

F0 contour is known to be the result of movements of intrinsic muscles in the larynx 

[202]- [203] and Fujisaki model represents these movements. It is known that the F0 

carries linguistic and non-linguistic information and hence, the parameters of the 

Fujisaki Model that represents the movement of the muscles will also represent this 

information [202]. Here, we study variations in F0 contour (in terms of Fujisaki 

model parameters) of natural and synthesized speech to study the source-based 

discriminative features between the two speech recordings. In the case of mimicry, 

an imitator tries to vary his or her F0 contour so that the shape of the F0 contour 

matches with the target speaker’s F0 contour [14]. However, speech synthesis 

technologies are not so human-like to perform such close matching to the F0 contour 

of the natural speech signal. In other words, the natural speech is uttered with 

appropriate breaks and accent variations, which is not the case for synthetic speech. 

Therefore, we investigate the Fujisaki model parameters of natural and synthetic 

speech for discriminating these two speech recordings. 

5.4.1 Physiological Interpretation  

The movement of the thyroid cartilage relative to the cricoid cartilage has two 

degrees of freedom, namely,  

• Horizontal movement due to pars oblique of the cricothyroid (CT) muscles and,  

• Rotational movement due to activity of pars recta around the cricothyroid joint 

 

Figure 5.19: The role of pars obliqua and pars recta of the cricothyroid muscle in translating 

and rotating the thyroid cartilage. Adapted from [201]. 
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The movement of the pars oblique and pars recta is shown in Figure 5.19. Therefore, 

an instant activity of the pars oblique of the CT contributing to the thyroid 

translation causes a change in x1(t) while the sudden increase or decrease in the 

activity of the pars recta of CT, contributing to the thyroid rotation causes a change 

in x2(t). Due to these two movements, the Fujisaki model is considered as a 

superposition of the phrase component (yp) and accent component (ya). The two 

contributions are superimposed with a constant value Fb (i.e., the minimum value of 

the speaker’s F0, which is known to be speaker-specific) to give a particular model 

generated F0 contour. The various properties of Fujisaki model make it suitable for 

applications such as, F0 contour analysis of various languages [203], language identi-

fication [204] and most importantly as a prosody model in speech synthesis [23]. 

5.4.2 Stress-Strain Relationship of Skeletal Muscles 

It is shown that there exists a good linear relationship between the tension (stress) 

and the stiffness of the human vocal muscle, represented by the following differential 

equation [201],  

,
dT

a bT
dl

= +              (5.22) 

where T is the tension, l indicates muscle length, and a is the stiffness at T=0. On 

solving eq. (5.22) with an integrating factor of ( ) ,bl
I l e

−= we get,  

.bl bla
e T e c

b

− −−
= +      (5.23)  

To estimate the constant c, substitute l=lo and T=To, therefore,  

( ) .o o obl bl bl

o o

a a
c e T e T e

b b

− − −= + = +     (5.24) 

Now, substituting c in the general solution eq. (5.24), we get,  

( )
( ) ,ob l l

o

a a
T T e

b b

−= + −      (5.25)  

where T0 indicates the static tension applied to the vocal folds. When T0 >>a/b, eq. 

(5.25) can be approximated by, 

                       
( ) exp( ),ob l l bx

o o oT T e T e T bx
−= = =      (5.26) 

where x indicates a change in vocal fold length from l0 to l, when T0 changes to T. 

The fundamental frequency (F0) of vibration of an elastic membrane is given by, 



Chapter 5: Source-based Features 

 

147 

 

,
o o

T
F c

ρ
=            (5.27) 

where ρ is the density per unit area of the membrane and c0 is a constant inversely 

proportional to the size of the membrane, /2      .bxo o
o o

o

F T T
F c e

c ρ ρ
∴ = ⇒ =  

Taking log (.) on both sides, log( ) log( )
2

o
o o

T bx
F c

ρ
= + , 

 log( ) log( ) .
2

o b

bx
F F∴ = +     (5.28)  

The constant term written as Fb indicates the existence of baseline value of F0 

contour (i.e., the minimum value of the speaker’s F0). Fb is constant as long as the 

speaker has same speaking style and emotional state [203]. A time-varying 

component is added to Fb in log (F0)-domain. Thus, eq. (5.28) shows log (F0) changes 

only with x, i.e., log (F0) changes with the change in length of the muscles (x=l-lo). It 

is suggested that the change in length of the muscles have two movements. In 

particular, the horizontal translation due to the activity of pars oblique of the CT 

muscle and rotation around the CT joint due to pars recta of the CT muscle [201]- 

[202], i.e.,  

1 2log( ) log( ) { ( ) ( )}.
2

o b

b
F F x t x t= + +                  (5.29) 

Phrase Component: The phrase component models the pitch baseline, accounts for 

phrase wise slow overall declination line and it is characterized by a fast rise 

followed by a slower fall. The input to this model (xp) is composed of Dirac impulses, 

namely, phrase commands, located at the onsets of phrase activities. The phrase 

control mechanism is characterized by, 

2 -
( ) ( ),

t

ph t te u t
αα=      (5.30) 

where α [2;4] s-1 is its natural angular frequency and hp(t) is the impulse response of 

the phrase control mechanism as shown in Figure 5.20. 

Accent Component: It models smaller-scale prosodic variations and accounts for 

accent variations. The input (xa) to this model is composed of rectangular pulses, 

namely, accent commands. The accent control mechanisms, are characterized by, 
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 ( ) [1 (1 t)]e ] ( ),t

ag t u t
ββ −= − +                         5.31 

where β[19;21] s-1 is its natural angular frequency and ga(t) is the step response of 

the accent control mechanism as shown in Figure 5.21. 

 

Figure 5.20: Impulse response of the phrase control mechanism. 

 

Figure 5.21: Step response (left) and the impulse response (right) of the accent control 

mechanism. 

After obtaining the phrase and accent components, the entire F0 contour of the 

utterance in the log-domain as in eq. (5.29) can be expressed as, 

0log( ( )) log( ) ( ) ( ),b p aF t F y t y t= + +     (5.32) 

, , , , ,

1 1

 ( ) ( ) ( ) ( ) [ ( ) ( )],
Np Na

p a p k p p k a k a a k a a k

k k

y t y t y t A h t t A g t t g t t
= =

′ ′′= + = − + − − −∑ ∑   (5.33) 

where Np and Na are the number of phrase and accent events; Ap,k and tp,k are the 

magnitude and timing of the kth phrase command; Aa,k, 
,a k

t′ and 
,a k

t′′ are the magnitude, 

onset time and the end time of kth accent command, respectively. The complete 

representation of the Fujisaki model is shown in Figure 5.22 where the nonlinear 

system for glottal airflow effects has been ignored [202].  
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Figure 5.22: The Fujisaki model or functional command response model for generating F0 

contour. After [201], [202]. 

5.4.3 Extraction of Model Parameters 

5.4.3.1 F0 Extraction 

Extracting prosodic events from speech requires estimating F0 contour of speech. As 

discussed in Section 5.2.3, the ZF method is used to estimate the F0 contour [182]. 

The epoch locations, i.e., the GCIs are obtained from the negative-to-positive zero-

crossings of the ZF filtered signal. Thereafter, the F0 contour is obtained from the 

GCI locations. Fujisaki model requires a continuous contour and it deals with 

macroprosody only. Hence, two tasks are performed before modeling the F0 contour, 

namely, intermediate values for unvoiced speech regions and short pauses are 

interpolated in the F0 contour and microprosodic variations due to individual speech 

sounds units (such as plosive, fricatives, etc.) are smoothed out. Here, a linear fit is 

used during interpolation and then the F0 contour has been smoothed prior to 

parameter estimation. Figure 5.23 shows the F0 contour extracted from ZF filtering 

algorithm where the unvoiced regions are interpolated with a linear fit. 

 

Figure 5.23: (a) A speech utterance (Fs=16 kHz) and (b) original F0 contour (black) and 

linearly interpolated F0 contour (green). 
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5.4.3.2 Phrase and Accent Command Extraction 

The processed F0 contour is then used to estimate the phrase and accent events. The 

detection of phrase events or phrase boundaries is based upon the work reported in 

in [205]. The F0 contour is lowpass filtered and the negative-to-positive transition of 

the derivative of the filtered F0 contour is taken as phrase boundaries. The strength 

of the phrase boundary was estimated by the slope of the line at the negative-to-

positive crossings. Accent commands parameter extraction is based on the work 

carried out in [206]. The procedure is to detect the largest maximum and the 

smallest minimum for each interval where the sign of the derivative of F0 remains 

same. A pair of maximum and minimum corresponds to the onset and the offset of an 

accent command. An example of the Fujisaki parameters extracted from a speech 

utterance at 16 kHz is shown in Figure 5.24. It is observed that model generated 

contour approximates smooth version of original F0 contour.  

 

Figure 5.24: (a) Speech signal, (b) phrase commands (blue) and phrase components (dashed), 

(c) accent commands (blue) and accent components (dashed) and (d) original F0 contour and 

model generated F0 contour (dashed). Adapted from [207].  

5.4.4 Estimation of the Vocal Fold Length 

In this Section, we present our work on estimating the vocal fold length from the 

Fujisaki model and the SoE. This work is presented as a possible application of the 

Fujisaki model and is not applied for the present problem of spoof detection. The 

length of the vocal folds for male, female is found to be in the range of 17-25 mm, 

12.5-17.5 mm, respectively [178], [208]. For infants, this range is approximately 6-8 

mm and at birth the membranous length of the vocal folds (actually vibrating part) 
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is around 2 mm. The location of the vocal folds makes the length estimation task 

even more challenging. Estimating the actual vocal fold length from the speech 

signal is difficult as the length of the folds changes while opening and closing.  

5.4.4.1 Relation between L, F0 and Stress 

If we assume the vocal folds as 'ideal strings' with uniform properties, then the 

corresponding F0 as per eq. (5.27) is given by [178],  

1
,

2
Fo

L

σ

ρ
=      (5.34)  

where L is the length of the vocal folds, σ is the longitudinal stress and ρ is the tissue 

density. Thus, knowing F0, σ and ρ could give an estimate of the length of the vocal 

folds. There are two aspects to be considered here. First, F0 is not constant along an 

utterance rather it varies. It is known from Fujisaki model that the F0 contour is the 

result of the movement of intrinsic muscles in the larynx [202]- [203]. This gives a 

representation of the F0 contour in log-domain as the superposition of two mutually 

independent contributions that occurs due to the independent movement of the 

thyroid cartilage and muscular reaction times [201]- [202]. Thus, the F0 contour is 

the superposition of phrase components and accent components with a constant 

value Fb (minimum value of the speaker’s F0). Here, we use the model generated F0 

contour by Fujisaki model to get the F0 contour. Second, the stress (σ) at the vocal 

folds also varies depending on various factors like presence of vowels or consonants, 

behavior/emotions of the speaker (e.g., angry and shouted speech will result in more 

stress on the vocal folds), prominence (focus or stress on one particular word affects 

neighboring words), etc. [209]. Therefore, to estimate stress (i.e., the force with 

which vocal folds close suddenly during the return phase), we estimate the strength 

with which the vocal folds close during the return phase of each glottal cycle. The 

locations of the sudden closure of vocal folds are the location of the impulses that 

excite the vocal tract as a system. However, the force with which the fold closes 

generates impulses with varying amplitude to excite the system. We use the ZF 

method to obtain the GCIs [182] and SoE is obtained by estimating the slope of the 

ZF filtered signal at GCI instants [179]. Thus, by the model generated F0 contour 

and the SoE for an utterance, we obtain the running estimate of the vocal fold 

length. 
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5.4.4.2 Mathematical Derivation 

Taking log (.) on both sides of eq. (5.34), we get, 

0 0

1 1 1
log log log log log .

2 2 2
F F

L L

σ σ

ρ ρ

    
= ⇒ = +          

  (5.35) 

Simplifying eq. (5.28) of Fujisaki model and taking T0=σo, we get, 

2 0
0 0

1 1
log log( ) .

2 2
F c bx

σ

ρ
= +     (5.36)  

Equating the eq. (5.35) with eq. (5.36) of log (F0), we get, 

     2 0
0

1 1 1 1
log log log( ) ,

2 2 2 2
c bx

L

σσ

ρ ρ

  
+ = +   

   
    (5.37) 
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1 1 1 1 1 1
   log log ,    log ,

2 2 2 2 2
bx bx

c L c L

σ σ

σ σ
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    (5.38) 
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e
c L

σ

σ
∴ =      (5.39) 

Now, by the Fujisaki Model, the constant term Fb is  

0
0

,
b

F c
σ

ρ
=

 

0 0  .bc Fσ ρ⇒ =     (5.40)
 

Using 
0 0 bc Fσ ρ= in eq. (5.39), we get, 
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ρ
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2
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b

L

e F

σ

ρ
∴ =      (5.41) 

This gives the equation of length (L) of the vocal folds in eq. (5.41). The length L is 

directly related to stress along the folds. The term bx/2 is a summation of phrase and 

accent components (from eq. (5.28) and eq. (5.32)), Fb is constant for an utterance 

and ρ is assumed constant with a value 1 gm/cm3. Figure 5.25 shows block diagram 

representation of the proposed method for estimating the length of the vocal fold 

from the speech signal.  
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Figure 5.25: The block diagram of the proposed method for vocal fold length (L) estimation. 

Adapted from [210]. 

The procedure for estimating L is as follows: 

• Estimate GCI locations and obtain the F0 contour, 

• Pre-process the F0 contour as in Section 5.4.3.1 and estimate xp  and xa, 

• Pass the phrase commands (xp) and accent commands (xa) through hp and ga, 

to get phrase components (yp) and accent components (ya), respectively. 

• Estimate the following:  

o Fb (minimum value of F0 contour), 

o Obtain the SoE and find ,SOEσ =  

o exp ( 2) exp (( ( ) ( ))).p abx y t y t= +  

• Finally, using ρ=1 gm/cm3 in eq. (5.41) gives a running estimate of the vocal 

fold length. 

The SI units of parameters in the eq. (5.41) are as follows, 

 
2 2 /   /   / ,Stress Force Area mass acceleration Area kg ms m

−= = × = ×       (5.42) 

Density=mass/volume=kg/m3, Fb=Hz, b has unit length-1 and x is change in length. 

Thus, exp(bx/2) is constant. Therefore,  
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To study the length estimated from eq. (5.41), we initially take an utterance from the 

CMU-ARCTIC database [211] for male and female speakers. There are two ways in 

which the length is estimated. First, by directly using eq. (5.41) (L1) and second 

assuming that length changes only during voicing and remain constant during 

unvoicing, i.e., we assume length at unvoiced regions as an average value of length 

during voiced regions, i.e., replace length at the unvoiced regions by mean of length 

at the voiced regions (L2). Hence, for unvoiced sounds, the length of vocal folds is 

assumed to be constant. Figure 5.26-5.27, shows an example of estimation of L on 
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same speech utterance for male and female speaker, respectively. The red bars in the 

Figure 5.26(a)-5.27(a) show voiced regions. Figure 5.26(b)-5.27(b) is the F0 contour 

obtained by Fujisaki model and Figure 5.26(c)-5.27(c) is the SoE of speech utterance 

in Figure 5.26(a)-5.27(a), respectively.  

 

Figure 5.26: (a) Speech signal for a male speaker, (b) model generated F0 contour, (c) SoE 

and (d) estimated vocal fold length (blue dotted) and length by replacing unvoiced regions 

by mean of length in voiced regions (red continuous). Adapted from [210]. 

 

Figure 5.27: (a) Speech signal for a female speaker, (b) model generated F0 contour, (c) SoE 

and (d) estimated vocal fold length (blue dotted) and length by replacing unvoiced regions 

by mean of length in voiced regions (red continuous). Adapted from [210]. 

In Figure 5.26(d)-5.27(d), the dotted line is an estimate of the vocal fold length by 

using eq. (5.41), i.e., L1, while the red continuous line is the length obtained after 

replacing the unvoiced regions by the mean of length in the voiced regions (L2). A 

similar analysis is carried out to estimate the vocal fold length of an infant as well. 

Figure 5.28 shows the length estimated for cry of an infant at birth. For cry, the 

unvoiced regions hardly occur as cry is mostly due to vibration of the vocal folds. The 
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average length for male, female and infants after replacing the unvoiced regions by 

mean of length of voiced regions (L2) was 18 mm, 10 mm and 2 mm, respectively. 

 

Figure 5.28: (a) Infant cry, (b) model generated F0 contour, (c) SoE and (d) estimated vocal 

fold length (blue dotted) and length by replacing unvoiced regions by mean of length in 

voiced regions (red continuous). 

Few experiments were carried out on all speakers (2 female and 5 male) from the 

CMU-ARCTIC database [211]. As shown in Table 5.14, there is a difference of about 

1-4 mm between the estimated average lengths from L1 and L2 method. In the case 

of female speech, the average estimated length falls in the required range. However, 

for rms, ksp and jmk male speakers, the estimated length was high. It was observed 

that the SoE in the case of these speakers was high. Therefore, it might be possible 

that the present approach of estimating SoE might not be feasible for all speakers. 

In addition, all the utterances were sampled at 8 kHz as SoE was very high for 

higher sampling frequency. 

Table 5.14: The vocal fold length estimated for 2 female and 5 male speakers of CMU-ARCTIC 

database. Adapted from [210] 

M
e
th

o
d

 

Length of folds in mm 

Female Male 

slt clb bdl Rms ksp awb Jmk 

L1 15.5 20.6 16.1 35.1 27.8 20.1 56.3 

L2 14.3 19.1 15.2 32.9 26.0 18.5 52.1 

 

Thus, the proposed method captures variations in vocal fold length along an 

utterance and also the mean value can be a good estimate of the actual vocal fold 

length. However, there was no ground truth available and not all estimated lengths 

were in range. In this Section, we presented an approach to estimate the length of 

the vocal folds. However, the estimated length is at times larger than the intended 
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range and hence, the vocal fold measure is not used further for natural vs. spoofed 

speech analysis. Instead, we use the parameters derived from the Fujisaki model to 

analyze the natural vs. spoofed speech.  

5.4.5 Fujisaki Model Parameters for Analysis of Spoofed Speech 

Using the Fujisaki model parameters directly as features is not possible due to the 

varying lengths of the commands and components. In this Section, we discuss our 

initial work using the Fujisaki model parameters for analysis of natural and 

synthetic speech in the Gujarati language [207].  Figure 5.29 shows the spectrogram 

for natural speech, USS and HTS-based synthesized speech for the same utterance. 

The spectrogram of USS-based synthesized speech is similar to the natural speech in 

terms of speaker characteristics. However, there are breaks in the spectrogram 

representing discontinuity in the formant contour (dotted oval showing abruptness 

due to concatenation). These breaks may also occur in natural speech however, the 

frequency of their occurrences in USS-based speech is relatively more due to 

concatenation of speech sound units. The spectrogram of HTS-based speech shows 

loss in intelligibility and the formant structure do not appear to be preserved in 

HTS-based speech (dotted squares).  

 

Figure 5.29 (a) Speech Signal, (b) spectrogram of (a), (c) USS-based speech, (d) spectrogram 

of (c), (e) HTS-based speech and (f) spectrogram of (e).  

We quantify the difference in various spectrograms by the Itakura–Saito distance 

measure. It measures perceptual difference between an original spectrum P(⍵) and its 
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approximation P̂(ω). We consider synthetic speech to be an approximation to the 

natural speech. The utterances were time-aligned using DTW and the LPCs were 

extracted from the speech signal for every 20 ms speech frame with a frame shift of 

10 ms for computation of IS distance, given by [212],  

 

1

( ) ( )1ˆ( ( ), ( )) log 1 ,
ˆ ˆ( ) ( )

N

m m
IS

m m m

P P
D P P

N P P

ω ω
ω ω

ω ω=

  
= − −      
∑     (5.44) 

where N is the number of speech frames. Table 5.15 shows that the IS distance is 

relatively less between natural and USS speech as compared to HTS speech because 

IS distance measures spectral characteristics reliant on the size and shape of the 

vocal tract of the individual. 

Table 5.15: Average IS distance between natural and synthetic speech over 100 utterances 

for male speaker and female speaker. 

DIS 
USS HTS 

Male Female Male Female 

IS 11.675754 9.2565341 14.994685 18.448603 

 

Initially, the analysis of the Fujisaki Model parameters was carried out on a small 

set of 100 utterances of natural, USS and HTS system for a male speaker and female 

speaker. Same text material is used for both natural and synthetic speech. The 

analysis was done using the parameters generated from the model generated F0 

contour in log-domain, i.e., Fb, xp, yp, xa and ya. The results of the analysis in terms of 

mean and standard deviation is presented in Table 5.15 and detailed descriptions 

are given in the following Sections. The present analysis is done on the utterances 

using the same text and later we extend the analysis to classification task on a 

generalized non-parallel and statistically meaningful dataset.  

5.4.5.1 Minimum Value of F0 Contour (Fb) 

In the representation of Fujisaki model, Fb is the baseline value of F0 contour. It is a 

constant term co(To/σ)1/2 as long as the speaker maintains same speaking style and 

emotional state [203]. The Fb value for female speaker is higher than male speaker 

for natural, USS and HTS voices (as in Table 5.16). For USS, the speech sound units 

are concatenated using units from the same speaker. Therefore, the mean value of Fb 

is nearly same to the natural speech. However, as the units are concatenated from 

several sessions of recording, there exists more variability in the Fb (more standard 
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deviation (sd)). More the professional artists are consistent in recording, lesser would 

be the variation in Fb. For HTS, the mean Fb will be close to the natural speech if 

naturalness in HTS speech is preserved. Other direct inferences for sd could not be 

drawn and hence, phrase and accents components are used for further analysis. 

Table 5.16: The distribution (in terms of the mean and standard deviation (sd) for 100 

utterances (natural, USS and HTS) for a male and female speaker) of the minimum value of 

F0 contour (Fb), phrase components (yp) and accent components (ya). Adapted from [207]. 

Parameters of 

MModel 

Natural USS HTS 

Male Female Male Female Male Female 

Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd 

Fb 64.79 6.045 123.1 19.37 67.7 8.788 131.9 22.31 65.51 10.02 92.69 14.13 

yp 0.115 0.105 0.389 0.272 0.148 0.108 0.314 0.229 0.179 0.128 0.245 0.196 

ya 0.339 0.250 0.375 0.281 0.279 0.199 0.340 0.231 0.290 0.165 0.426 0.312 

 

5.4.5.2 Phrase Commands and Phrase Components 

The instant when the cricoid muscles undergo a translation motion, an impulse is 

generated corresponding to phrase breaks which occur naturally during speech 

production. Such prosodic breaks are not more prominent in synthetic speech. Figure 

5.30 shows the number of breaks in the natural and the synthetic speeches. In USS, 

silences were present in synthetic speech as per the text punctuations, whereas 

during natural speech production, prosody is automatically generated as per the 

nature of the utterance, context, etc. Therefore, USS synthesized speech is expected 

to have less or equivalent number of phrase breaks as compared to the natural 

speech as seen in Figure 5.30. For HTS male and female, the number of phrase 

breaks increases.  Next, impulses due to phrase commands are passed through 2nd 

order phrase control mechanism, to produce the phrase components. The USS 

synthesized speeches have similar means and sd for phrase components to that of  

 

Figure 5.30: Number of phrase breaks in natural, USS and HTS speech. Adapted from [207].   

natural utterances (as in Table 5.16). In HTS, for the number of phrase breaks was 

more. However, their strength was less due to the fact that these breaks were due to 
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phrase pauses decided from the text and not due to an actual change in translational 

motion of the cricoid muscles. Hence, the mean value of phrase component is less. 

5.4.5.3 Accent Commands and Accent Components 

The accent parameters of the Fujisaki model capture the variations in the speech 

which includes the stress that is applied to a particular word, syllable, etc. 

Especially for interrogative and exclamatory types of sentences, the accent 

parameters vary significantly. In the case of USS speech, due to concatenation, the 

natural variation due to stress on a syllable, word etc. may not always be present. 

Hence, the synthetic speech sounds monotonous while listening and this brings a 

possibility for the accent commands and components to vary less than natural speech 

signal. Thus, for USS synthesized speech, the mean and sd of the accent components 

was less than the natural speeches (as shown in Table 5.16). In the case of HTS, any 

uniform pattern for the accent parameters was not found for either male or female. 

5.4.5.4 Statistical Analysis of Results 

The scatter plots for 100 USS and 100 HTS synthesized utterances formed by the 

mean of accent and phrase components are shown in Figure 5.31. The clusters for 

USS and natural speech are different in size and shape than HTS and natural 

speech. In particular, clusters for USS synthesized and natural speech are found to 

be more overlapping and it is difficult to identify a boundary for these two classes. 

On the other hand, for HTS speech (especially, female voice), the two classes are 

relatively better separable. Thus, the female voice in HTS lacks relatively the 

prosodic features as that of the natural voice. 

To know the difference in the distribution of the parameters for the natural and 

synthetic voices, we performed the Student’s t-test to investigate if the two sets of 

synthetic voices are significantly different from natural. It is seen from Table 5.17 

that the null hypothesis for all the synthetic voices is rejected with very less 

probability (<than 0.0001) in most cases. Hence, the natural and synthetic systems 

(USS and HTS) have diverse means, which is effective while training statistical 

models like GMM, etc. This shows that the phrase and accent parameters could 

prove a good set of features to distinguish natural and synthetic speech. 
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Figure 5.31: Clusters of accent and phrase components for (a) natural vs. USS (male), (b) 

natural vs. HTS (male), (c) natural vs. USS (female) and (d) natural vs. HTS (female). Adapted 

from [207]. 

Table 5.17: Probability of rejecting the null hypothesis for phrase and accent parameters in 

USS and HTS. Adapted from [207]. 

System 
USS HTS 

Phrase Accent Phrase Accent 

Male <0.0001 <0.0001 <0.0001 <0.0001 

Female <0.0001 0.018 <0.0001 0.0002 

 

For both USS and HTS, it was observed that phrase command could serve as an 

important feature to distinguish between natural and synthetic speech. For HTS 

speech, phrase components could be effective. Results of t-test show that the null 

hypothesis is rejected in all the cases, which is effective while training statistical 

models for classification problem on large dataset as discussed next. 

5.4.6 Experimental Results 

The design of features from the Fujisaki model parameters is a difficult task as the 

information of the prosodic phrase breaks and accent components lies in the location 

of their occurrence and is usually observed when the utterances are parallel. 

Therefore, it is generally not so easy and rather challenging to generalize these 
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features for the non-parallel utterances. In this Section, we develop a feature vector 

comprising of the F0 and the estimated phrase and accent parameters. This feature 

set is then evaluated on the ASV spoof challenge database and the Blizzard datasets.  

5.4.6.1 Parameterization 

In the estimation of the phrase and accent parameters, first, the F0 is estimated from 

the ZF filtering method using a frame size of 25 ms and a 50 % overlap. The phrase 

and accent components are estimated as discussed in Section 5.4.3.2. In addition to 

the F0 estimated from the ZF method, we consider the model generated F0 contour 

generated from the phrase and the accent components as well. The extraction of 

features from the phrase and accent commands is difficult as these are available at 

only particular instant or for a fixed duration of time, respectively. These time 

instants are different for different speech utterances. Therefore, we use the phrase 

and accent components as features. To form a feature vector, we take the F0 

generated by ZF method, the model generated F0 (MF0), the phrase components (yp) 

and the accent components (ya). In addition, we obtain the dynamic variations across 

these time-varying representations to form an 8-D feature vector comprising of F0, 

∆F0, MF0, ∆MF0, yp, ∆yp, ya and ∆ya for the SSD task.  

5.4.6.2 Results on the Development Set of ASVspoof challenge Database 

Due to the small feature dimension, we consider an initial experiment to estimate 

the % EER of Fujisaki model-based features for various Gaussian mixture 

components. The mixture components are varied from 2, 4, 8, 16, 32, 64 and 128. It is 

observed that the general trend is a decrease in EER with the increase in the 

mixture components. As observed in Figure 5.32, the least EER of 41.19 % is 

obtained for 128 mixture components. Hence, as in all the previous experiments to 

maintain uniformity as well, we use 128 mixture components in this work. 
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Figure 5.32: The % EER obtained on the development set for the Fujisaki model-based 

features at varying number of Gaussian mixture components.  

Next, we obtain the performance of the Fujisaki model-based features on the 

development set of the ASV spoof challenge database. As observed in Table 5.18, the 

average % EER obtained using 128 mixture components is very high around 41.493 

%. It should be noted that that the development set consists of only vocoder-based 

spoofs and for such a case, this % EER obtained is very high. We also attempt to 

perform a score-level fusion of the Fujisaki model features and the system-based 

MFCC, CFCC, CFCCIFS and SBAE features to find out possible complementary 

information. However, as shown in Table 5.18, even for score-level fusion with any 

weight factor, the system-based features do not show any significant improvement as 

that obtained with the F0, SoE1, SoE2 and prediction-based features. Hence, this 

proposed feature vector needs to be modified in an efficient manner as to make them 

useful for the SSD task.  

Table 5.18: EER (in %) for score-level fusion of Fujisaki model-based feature set with the 

system-based feature sets (using D3 feature vector) at various fusion factors αf on the 

development set 

Feature 

Set 1 

Fusion Factor (αf) Feature 

Set 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fujisaki 

Model 

Features 

41.493 15.613 7.807 4.461 3.117 2.373 1.945 1.716 1.630 1.630 1.601 MFCC 

41.493 14.984 7.292 4.118 2.717 2.116 1.687 1.544 1.487 1.516 1.544 CFCC 

41.493 20.103 8.693 4.432 2.717 1.859 1.487 1.344 1.258 1.201 1.230 CFCCIFS 

41.493 17.215 9.580 5.633 3.632 2.602 2.002 1.659 1.544 1.487 1.487 SBAE 

Score-level fusion is carried as per eq. (3.6) 

Dependency on spoofing algorithms: Figure 5.33(a) shows the spoof dependency 

of the Fujisaki model-based features on the development set. It is observed that the 

trend is similar to that observed in F0, SoE1 and SoE2 features, i.e., except S2, the 

other spoofs when used alone in training gave less % EER for known and the same 
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type of attacks. However, for the known and same type of attacks, the EER is > 15 % 

which is very high as compared to that obtained by other source-based features. The 

lack of the feature set to model the spoof-specific characteristics is evident from the 

high % EER. For different type of spoofs, the detection is very poor resulting in very 

high ~70 % EER. The S2 spoof showed a rather opposite behavior which needs to be 

investigated further. 

 

Figure 5.33: The % EER on known, same type, different type and S10 attack when trained 

with individual spoofs S1, S2, S3, S4 and S5 for Fujisaki model-based feature set and tested 

on the (a) development set and (b) evaluation dataset. 

5.4.6.3 Results on the Evaluation Set of ASVspoof challenge Database 

The results on the evaluation set for the features estimated from the Fujisaki model 

is shown in Table 5.19. The EER with 8-D Fujisaki model-based feature set was 

43.11 %. The individual % EER for S1 spoof was the least with 27.42 % while for S1-

S9 the EER is between 40-50 %. It is observed that even after the score-level fusion 

with the system-based features, the % EER does not decrease and hence, in the 

current form, the feature set do not capture significant spoof-specific characteristics. 

Table 5.19: EER (in %) for score-level fusion of Fujisaki model-based feature set with the 

system-based feature sets (using D3 feature vector) at various fusion factors αf on the 

evaluation set 

Feature 

Set 1 

Fusion Factor (αf) Feature 

Set 2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fujisaki 

Model 

Features 

43.11 18.89 10.05 6.68 5.22 4.66 4.41 4.26 4.25 4.23 4.264 MFCC 

43.11 17.45 7.72 4.15 2.80 2.20 1.88 1.77 1.74 1.74 1.755 CFCC 

43.11 22.22 10.30 5.17 3.11 2.19 1.79 1.66 1.62 1.61 1.606 CFCCIFS 

43.11 22.18 12.04 7.06 4.71 3.40 2.83 2.58 2.47 2.46 2.488 SBAE 
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Dependency on spoofing algorithms: Figure 5.33(b) shows the spoof-dependency 

of the Fujisaki model-based features on the evaluation set. It is observed that SS 

spoof could identify its same type with around 15 % EER, its different type, i.e., VCS 

and S10 spoof with ~ 60 % EER. On the other hand, for the training with VCS spoof, 

no uniform conclusion could be drawn. Hence, the features using the prosodic 

information need to be further investigated to derive significant conclusions.  

5.4.6.4 Results on the Blizzard Challenge 2012 Database 

The results of the performance of the Fujisaki model-based features on the Blizzard 

Challenge 2012 and Blizzard Challenge 2014 database are shown in Table 5.20. It is 

observed that unlike the other source-based features, the prosodic information in 

terms of phrase and accent did not show any significant differences even for the unit-

selection or HMM-based speech synthesis systems. For Blizzard 2012 dataset, the % 

EER for USS-based speech and HMM-based speech was ~40-50 %. The hybrid and 

diphone systems showed more EER of around ~60 %. For Blizzard 2014 dataset, the 

% EER for all Gujarati systems was > 60 %. Similar observations were obtained for 

the Hindi language as well.  

Table 5.20: EER (in %) for Fujisaki model-based features sets on training with the ASV spoof 

data and testing with the Blizzard Challenge databases  

Blizzard  

2012 

English  

Systems 
% EER 

Blizzard 

2014 

Gujarati 

systems 
% EER 

Blizzard 

2014 

Hindi 

systems 
% EER 

USS B 43 HMM C 70 HMM B* 65 

Hybrid C 48 HMM D 69 HMM C 53 

Hybrid D* 60 HMM E 59 Hybrid D 62 

HMM E* 39 HMM-DNN F 79 HMM E 51 

USS F 54 USS G 62 HMM-DNN F 68 

USS G 41 HMM H 76 USS G 36 

HMM H 45 
   

HMM H* 67 

USS I 49 
   

HMM K 56 

Diphone J* 64 
      

HMM K* 50 
      

* systems with lower MOS from 1 ≤ 2 (wavefiles for Gujarati system B and system I and Hindi system I are not available) 

 

5.4.7 Summary 

In this Section, we attempt to design a low-dimensional feature vector from the 

parameters estimated from the Fujisaki model. In the literature, the prosodic 

difference in terms of phrase and accent parameters was studied in the context of 
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parallel utterances. Here, we assume that the spoofed speech lacks the prosodic 

characteristics as that are present in the natural speech and try to generalize the 

findings from the phrase and accent components to non-parallel utterances. Firstly, 

this does not apply always for all utterances as even natural speech can be spoken 

without significant prosodic variations. Secondly, if a prosodic model has been 

applied while speech synthesis, then in such a case it is difficult for these features to 

detect spoof-specific characteristics. Hence, there is a need to modify and develop 

features that perform significantly well on the ASV spoof challenge database and 

then study its generalization.  

5.5 Chapter Summary 

In this Chapter, we discuss several approaches to distinguish natural vs. spoofed 

speech using source-based features. The source modeling is generally not as much 

explored as the system-based feature. Hence, they gave complementary information 

as compared to the system-based features. The system-based features worked well 

for vocoder-independent spoof and the source-based features perform better for 

vocoder-based speech, hence, the overall performance of the detection system 

improves with their score-level fusion. In the next Chapter, rather than using source 

and system separately, we explore the features that have embedded both 

information about the excitation source and vocal tract system (i.e., filter). With 

respect to this, we explore the nonlinear source-filter interaction or coupling between 

the two to capture the spoof-specific characteristics for the SSD task.  
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          Chapter 6.

Source-Filter Interaction Features 

6.1 Introduction 

In this Chapter, we discuss a crucial aspect of the speech production mechanism, i.e., 

the nonlinear Source-Filter (S-F) interaction. It is known that there exists nonlinear 

interaction between the excitation source and the vocal tract as the system. This 

interaction is an attribute of natural speech and is not present in Synthetic Speech 

(SS) or Voice Converted Speech (VCS). This Chapter proposes features based on S-F 

interaction for the Spoofed Speech Detection (SSD) task. To that effect, we estimate 

the voice excitation source (i.e., the glottal flow derivative waveform, ġ(t)) and model 

it using well-known Liljencrants-Fant (LF) model to get the coarse structure gc(t). 

The residue or the difference, gr(t), between estimated ġ(t) and fitted model gc(t) 

captures this nonlinear S-F interaction. Two approaches have been proposed, i.e., the 

time-domain approach and frequency-domain approach. The features are evaluated 

on the ASVspoof 2015 challenge database and we explore the features for robustness 

in the presence of additive white noise at various Signal-to-Noise Ratio (SNR) levels 

and for channel mismatch conditions on the Blizzard Challenge datasets.  

6.2 Basis for the Proposed Approach 

The vocal folds along with their dynamic movement represent various aspects of both 

speech and the speaker. During phonation, the gradual opening of the glottis and its 

sudden closure results in an asymmetric shape of the glottal flow waveform (g(t)).   

Assuming a Linear Time-Invariant (LTI) speech production mechanism, the 

derivative (due to lip radiation [21], [177]) of the glottal flow waveform g(t) is 

referred to as the voice excitation source (i.e., ġ(t)). This voice excitation source can 

be parameterized using physical or acoustic models. Physical models such as the 

two-mass model of Ishizaka and Flanagan involve the use of a large number of 

independent parameters for modeling [213]. The acoustic LF model is also a good 

approximation to ġ(t) and it can be represented in the frequency-domain as well 
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[214]. The LF-model gives the shape and timing parameters of the voice excitation 

source which are known to relate to voice quality measures such as speed quotient 

(SQ), open quotient (OQ) and return quotient (RQ) [215]. Natural speech has 

variations ranging from creaky to breathy voice which needs to be incorporated in 

synthesis and voice conversion techniques for better voice quality. In this context, 

incorporating the excitation source information through LF-model into HMM-based 

synthesizer has shown to give more naturalness and reproduction of two basic voice 

qualities such as breathy and tense [216]. Another example is of GlotHMM, which 

uses inverse filtering for generating glottal excitation and modeling it in an HMM 

framework using Line Spectral Frequencies (LSFs) [184]. Other earlier source 

models in parametric speech synthesizers include simple pulse and noise excitation 

model [33], Multi-Band mixed Excitation (MBE) [217], STRAIGHT vocoder that uses 

a mixed excitation model [218], Harmonic plus Noise Model (HNM) of speech [219], 

etc. The use of system-level features to model the vocal tract filter is very well known 

in speech synthesis and voice conversion techniques. These system-level features 

include the MFCCs [8], generalized Mel-cepstral Coefficients (MCC) [220], [221], 

LSF representation of Linear Prediction Coefficients (LPC) [222], and approaches 

such as STRAIGHT-based speech parameters encoded into MCCs or LSFs. Thus, the 

majority of the existing techniques model the excitation source or system 

characteristics individually. However, from signal and systems respective, it is not 

only the independent role of the source or system features that contributes in 

producing natural speech, but it is also the time-varying dependencies between them 

or the nonlinear S-F interaction that effectively contributes to naturalness and 

speaker identity [223], [224].  

6.2.1 The Source-Filter (S-F) interaction 

In the linear S-F theory, the source of speech production is independent of the vocal 

tract (filter). In such a case, the source impedance is much higher than the input 

impedance to the vocal tract. However, due to the narrow constriction of the vocal 

tract above the glottis, there exists a nonlinear S-F interaction. The closer the 

constriction is to the vocal folds, greater is the degree of interaction [225]. In this 

case, the source impedance is comparable to the vocal tract input impedance. This 

makes the glottal flow highly dependent on the acoustic pressures in the vocal tract. 

According to the landmark investigations in [225], [226], [227], there are two 
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primary levels of S-F interaction, namely, Level 1 and Level 2. The Level 1 

interaction occurs due to feedback from the vocal tract acoustic pressure (i.e., 

standing waves) that imparts variations in the glottal airflow (i.e., transglottal 

pressure drives the glottal flow which in turn is affected by the epiglottis pressure). 

On the other hand, Level 2 interaction primarily occurs in cases with high F0 where 

the pitch harmonics are near the formants. It is responsible for variations in vocal 

fold vibrations (i.e., tissue movements) that occur with same pressure (i.e., 

intraglottal pressure drives the vocal folds) [225].  

The findings in [225] summarize that there always exists an interaction of glottal 

airflow with the acoustic vocal tract. The primary effect of Level 1 interaction is the 

glottal airflow skewing (which in turn, balances source spectrum in terms of odd and 

even harmonics) that can be expressed by an analytic formula [214], [184]. The 

pressure from the vocal tract against the glottis will slow the flow and change its 

skewness. In addition to the asymmetric glottal flow, simulation of a simplified 

electrical first formant model showed the presence of a sinusoidal ‘ripple’ component 

(i.e., a fine structure superimposed onto the coarse structure) onto the open phase of 

the glottal flow [21]. Other effects of S-F interaction include abrupt increase in the 

first formant (F1) and the corresponding -3 dB bandwidth when the glottis opens. 

The increase in the bandwidth of the formant causes sudden decay of the vocal tract 

impulse response within a glottal cycle and is responsible for truncation effect in the 

speech waveform [21]. 

In [228], a structure for ġ(t) which includes both coarse structure and ripple 

component (produced as a result of S-F interaction) was proposed. The use of ripple 

(i.e., the fine structure features) is much explored in speaker identification task 

[223], [229]. However, its use in speech synthesis or voice conversion is not much 

explored yet. Thus, SS or VCS may not sound natural and intelligible than a certain 

extent due to the lack of nonlinear S-F interaction. To that effect, in this Chapter, we 

explore the fact that the nonlinear S-F interaction is an attribute of the natural 

speech production mechanism and not that of the machine-generated speech. It is 

highly complex for the synthetic speech generation or conversion systems to build or 

mimic such S-F interaction. With this motivation, we study the differences between 

the actual voice excitation source ġ(t) and it’s coarse structure gc(t) (i.e., fitted LF-

model). The voice excitation source ġ(t) is estimated by using a linear inverse 
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filtering technique. The use of a linear inverse filtering does not capture the effects 

of time variance in formant frequencies (due to the inherent segment-level block-

based processing in the LP approach). That is, the true formants changes when the 

vocal folds are open vs. when they are closed are not captured. However, the anti-

resonances of the glottal inverse filtering method remain fixed over many pitch 

(fundamental) periods. Thus, on using a linear fit to model the glottal flow, the anti-

resonances that appear as time-varying amplitude variations in the open phase of 

the glottal flow are captured as ripple structures.  

 

Figure 6.1: Schematic diagram of the proposed S-F interaction feature extraction process 

(both in time and frequency-domain) for the SSD task. Adapted from [93].  

To fit the acoustic LF-model, an exhaustive search method is used to obtain gc(t) for 

an estimate of ġ(t) [230]. This approach varies the shape parameter Rd within a 

specific range and attains the best fit depending on the minimum cost obtained both 

in the time and frequency domains. This motivated us to consider the residuals both 

in time and frequency domains. The fitted LF-model gc(t), when subtracted from the 

ġ(t) gives the residual signal gr(t). The residual signal has information about the 

ripple (due to first formant (F1) modulation of the vocal tract system) and the 

aspiration components (due to turbulence at the vocal folds) [228]. Thus, in the time 

domain, the L2 norm of gr(t) in the closed phase, open phase and return phase of the 

glottis can be considered as feature representations for SSD task. In addition, as the 

first formant (F1) modulation information is in the lower frequency range (<1 kHz), 

we also consider Mel representation (having high resolution for frequencies <1 kHz) 

of the residual gr(t). Furthermore, the residual information is also obtained in the 

frequency domain by using the difference between the spectrogram of ġ(t) and the 

spectrogram of gc(t). The residue in the frequency domain is further obtained by 

using the difference of the Mel wrapped spectrograms of ġ(t) and gc(t). Thus, shape 

and energy-based features in the time-domain and several feature representations in 
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the frequency-domain are used for the SSD task. The schematic of best 

representative features in time and frequency-domain are shown in Figure 6.1. 

6.3 Voice Source Parameterization 

The first task in this work involves estimating the excitation source ġ(t). To that 

effect, this section describes the inverse filtering approach to obtain ġ(t), followed by 

the description of the LF-model and its estimation from the Rd parameter using a 

search algorithm.   

6.3.1 The Coarse Structure (LF-Model)  

To obtain an initial estimate of voice excitation source, ġ(t), we assume the speech 

production mechanism as LTI system [21], i.e., 

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ),
d d

s t A g t h t A g t h t Ag t h t
dt dt

 
≈ ∗ = ∗ = ∗  

ɺ   (6.1) 

where * is the convolution operation, A is the gain that controls loudness, s(t) is the 

speech signal, ġ(t) is derivative of the glottal flow waveform and h(t) is the impulse 

response of the vocal tract system. Thus, to obtain an initial estimate of the g(t), 

Iterative Adaptive Inverse Filtering (IAIF) method is used to inverse filter the vocal 

tract information from the speech signal [183]. From g(t), its derivative ġ(t) is 

obtained to further characterize it in terms of the coarse structure gc(t). In the IAIF 

method, the effect of the vocal tract system and lip radiation is supressed from the 

speech signal to give an estimate of g(t). The block diagram of IAIF method is shown 

in Figure 5.3 (as discussed in Chapter 5, Section 5.2.4). 

The coarse structure gc(t) is a parameterization of the shape of the voice 

excitation source ġ(t). As shown in Figure 6.2, according to the time intervals, g(t) is 

divided into closed phase (when the vocal folds are closed and ideally, there is no flow 

of air through the glottis), open phase (when the vocal folds are open) and return 

phase (when the glottis closes). The shape and flow of the regions represent different 

attributes of the speaker and the nature of speech signal. For example, in the case of 

shouted speech, the vocal folds close abruptly and hence, the return phase is much 

shorter [21]. The coarse component gc(t) of ġ(t) is modeled using the LF-model in the 

closed, open and return phase. Therefore, the LF-model shown in Figure 6.2 can be 

defined by the five time instants, namely, the glottal opening time (to), the instant 
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when the glottis closes (tc), the time when ġ(t) crosses zero (tp), the time when the ġ(t) 

reaches its maximum negative value (te) and the time when tangent to the return 

phase that crosses the time-axis (ta). Similarly, we can define time periods 

corresponding to the LF-model as To (i.e., duration of a glottal cycle), Tp (period from 

to to tp), Te (period from to to te) and Ta (period from te to ta). These attributes are 

primarily for voiced speech. 

 

Figure 6.2:  (a) Schematic of g(t) and (b) the corresponding derivative of the g(t) along with 

various timing instants and the time periods used in LF-model.  

Thus, over a glottal cycle, the LF-model consists of an exponentially increasing 

sinewave, a decaying exponential function, and completed with a zero amplitude 

region, as described by the following equations [214], [216]: 
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 in eq. (6.2), parameters E0 

(amplitude of the sinewave), ωo (angular frequency of the sinewave related to the rise 

time of the g(t)) and α (growth factor) determine the shape parameters in the open 

phase. The parameter Ee (amplitude of maximum excitation) and β (exponential time 

constant) constitute the shape parameters in the return phase. The time instant to is 

assumed to be zero and it is omitted in the formulas. The parameters of the LF-

model can be obtained by considering the following assumption [214]: 
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In a study reported in [215], a set of dimensionless parameters of the LF-model, 

called R-parameters, have been derived. These parameters can be expressed as 

dimensionless quotients often used to describe the shape of the glottal source signal, 

ġ(t). The R-parameters affect the coarse structure representation both in time and 

frequency domains. The R-parameters are given by, 

2

o
g

p

T
R

T
=  , ,

e p

k

p

t t
R

T

−
=   and  .a

a

o

T
R

T
=     (6.4) 

The parameters Rk and Ra are known to relate to the speed quotient (SQ) and return 

quotient (RQ), respectively. The R-parameters are related with the open quotient 

(OQ) as [215]:  
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In [215], an Rd parameter was developed that captured almost all possible variation 

of the LF-model. The Rd parameter is represented as,  

0 01000
110e

E f
Rd

E

   =       
,                  (6.6) 

where E0 is the peak amplitude of the g(t) and Ee is the maximum negative of ġ(t). 

The Rd parameter is related to Rg, Rk, and Ra by following approximation [215]: 
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                 (6.7) 

Each of the R-parameters affects the coarse structure representation in the time-

domain and its spectrum in the frequency-domain. There have been various 

approaches in the literature to determine the coarse structure of the estimated ġ(t). 

One of the approaches includes minimizing the least square error when gc(t) as in eq. 

(6.2) is fitted to the estimate of ġ(t). The error function in such a case is a nonlinear 

function of the model parameters and needs to be solved iteratively using nonlinear 

least square algorithm [224]. However, this approach depends on the initial 

estimates of the time and shape parameters. In addition, it is rather difficult to 

obtain accurately these timing parameters from the speech waveform. Thus, in this 

work, instead of using an iterative algorithm that optimizes all shape and time 

parameters of the LF-model, we consider the work carried out in [230], where only 

the Rd parameter (which is descriptive of all the shape parameters in the LF-model) 

is varied. This approach not only aims at minimizing the error in the time-domain 
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rather it minimizes the error in the frequency-domain as well. Moreover, we can 

estimate the other R-parameters from the Rd parameter [215].  

6.3.2 Determination of GCI and F0 

In this work, we need to estimate the Glottal Closure Instants (GCIs) to fit the LF-

model at each glottal cycle in the time-domain. Hence, we adapt the time-domain 

approach to estimate the GCI. The Zero Frequency (ZF) filtering method, also known 

as the 0-Hz resonator is used [182] (as discussed in Chapter 5, Section 5.2.3). The 

basic idea behind ZF method is that the effect due to an impulse is spread uniformly 

across all the frequency regions including zero frequency. Thus, by passing the 

speech signal through the ZF filter, we try to decouple the interference of the vocal 

tract system (whose resonances are at much higher frequencies than zero frequency) 

from the excitation source. Therefore, to estimate the GCIs, the speech signal is 

passed through a ZF filter and the negative-to-positive zero-crossings of the filtered 

signal are hypothesized as an estimate of GCIs.  

The procedure to fit the LF model to the glottal source, ġ(t), using an 

exhaustive search method and dynamic programming is done using the voice 

analysis toolkit [231] as given in the next sub-section. The accuracy of the GCI 

estimation algorithm will affect the F0 estimate and the time period for which the 

LF-model is fitted to the glottal estimate. However, the search method for the Rd 

parameter and dynamic programming implementation uses estimated GCI locations 

from any given algorithm and then corrects the GCIs to match the main excitations 

of the ġ(t) (i.e., at its most negative peak in each glottal cycle). Thus, the GCI 

locations are aligned and adjusted to coincide with glottal source excitation minima. 

Hence, the dependency on the GCI extraction algorithm will be reduced. As an 

alternative to estimating the GCI locations from the speech signal, the ġ(t) estimated 

using the IAIF method can also be used directly for GCI estimation. However, this 

approach will require thresholding and peak picking of the negative peaks in the 

estimated ġ(t). 

6.3.3 The Exhaustive Rd Search Algorithm 

In [230], a search algorithm was proposed in which the LF-model is estimated for all 

possible Rd and the best Rd is searched that minimizes the error in time and 
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frequency domains. The steps to determine Rd are given in Algorithm 6.1 and its 

MATLAB implementation is available at [232]. In the estimate of frequency-domain 

error, Hg and Hc are the harmonic spectra of ġ(t) and gc(t), respectively. 

Algorithm 6.1: Exhaustive search algorithm to estimate Rd. After [230]. 

Step 1 For each GCI centered frame  ⇒ Rd = 0.3 : 0.1 : 5 

Step 1a Use F0 and Ee for each Rd 

Time-domain error { }{ }0.5 ( ) (| | ., .) tcTr corr g t g t w= − ɺ  

Step 1b Frequency-domain error { }{ }|0.5 , | . ,sSr corr Hg Hc w= −  

Step 1c Total Error _ .Tot err Tr Sr= +  

Step 2 Choose five best candidates (Ncand) that minimizes Tot_err 

Step 3 The transition cost is, 

{ }{ }, , , -1,| | .0.5- ,,i j k ri j i k tcorr seg eg wsδ =  

1 < j < Ncand 
1 ≤ i ≤ M, where M= GCIs or analysis frames 

Step 4 Optimal Rd  � minimize , ,, ,1,min{ , }.
i j ki j i j i k

D d D δ−= +  

*corr is the correlation between the given variables. 

The harmonic amplitudes are measured up to a frequency of 3 kHz. The weights wt, 

ws and wtr are associated with the time-domain error, frequency-domain error and 

transition cost, respectively. Normally, Rd value falls in the range 0.3 < Rd < 2.7 

whereas the upper range, i.e., 2.7 < Rd < 5 signifies abduction. The Rd parameter is 

known to govern all the other R-parameters [215]. Thus, from the Rd parameter, the 

R-parameters are obtained as [215]; 

(-1 4.8 ) /100,        
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a d
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   (6.8)  

Using the R-parameters, the OQ can be estimated from the eq. (6.5). Thus, we 

consider five shape features, i.e., Rd, Rg, Rk, Ra and OQ. Figure 6.3 shows the 

variations of the Rd parameter for a male Speaker A and female Speaker B. For both 

the speakers, all the 150 natural speech utterances and 100 utterances each for S1 

VCS and S3 SS spoof from the training set of ASV spoof 2015 challenge database are 

used. It is observed from Figure 6.3 that, a speaker, the Rd variations are different 

for natural, VCS and SS spoof. Thus, speaker-specific properties are not exactly 

preserved when the speech is synthesized or converted. For example, very much 

higher values of Rd are observed for Speaker B for SS than natural and VCS 

indicating that SS sounds more breathy. In addition, across the speakers, the Rd 
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variations were different, signifying that Rd captured speaker-related information 

both across natural and spoofed speech (which may not assist anti-spoofing).  

 

Figure 6.3: Normalized histograms of the Rd parameter for Panel I: natural speech, Panel II: 

vocoder-based VCS and Panel III: vocoder-based SS, corresponding to (a) Speaker A and (b) 

Speaker B. Dotted regions indicate the rise in Rd value for VCS and SS. 

6.4 Proposed Features based on Residual Information 

6.4.1 Residual in the Time Domain 

Once the coarse structure gc(t) is fitted to the estimated ġ(t), the residual waveform 

is obtained as [21]: 

( ) ( ) ( ).r cg t g t g t= −ɺ           (6.9) 

The residue obtained from ġ(t) and gc(t) can be divided into ripple and aspiration 

components [21]. There exists a nonlinear interaction between the source and the 

system due to which ripple components exists in the open phase. The ripple is known 

to have a frequency close to that of the first formant (F1) of the vocal tract system. It 

has also been shown that the ripple structure carries the speaker-specific 

information and, hence, is possibly a reason for the improvement in performance of 

speaker identification systems [224]- [229]. On the other hand, aspiration occurs due 

to turbulence created at the glottis when airflow passes through the partially open 

glottis. The amount of aspiration contributes to the quality of voice (e.g., breathy). 

Using the R-parameters estimated from eq. (6.8), the values of the timing 

parameters (to, te and tc) are obtained. Considering the closed phase [0, to] for first 

glottal cycle or [tc-1, to] for remaining glottal cycles, open phase [to, te] and the return 

phase [te, tc], the energy (i.e., L
2 norm) of the residual gr(t) corresponding to these 
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regions is denoted as E1, E2 and E3, respectively. For each of the glottal cycle, the 

energy measurements are averaged over the glottal cycle, i.e., 

 1 2 3
1 2 3,    ,    ,    

tot tot tot

E E E
E E E
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= = =
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is the total energy of ġ(t) in a glottal cycle. For a glottal cycle, Figure 6.4 shows its 

corresponding estimated ġ(t), fitted LF-model gc(t) and its residual energy in closed 

phase, open phase and return phase, corresponding to E1, E2 and E3, respectively. It 

can be observed from Figure 6.4 that during the open phase, the ġ(t) does not close 

gradually for spoofed speech as compared to natural speech due to which the ripple 

structure in the open phase is large for the spoofed speech (as shown by the arrows 

in Figure 6.4). In the regions other than open phase, the aspiration component is less 

for spoofed speech than in the natural speech signal.  

 

Figure 6.4: For a voiced region of speech (a) estimated ġ(t) and its corresponding fitted LF-

model gc(t) and (b) ripple in time-domain gr(t). The glottal opening (green), GCI location 

(red) and glottal closing location (magenta) indicating corresponding intervals for energies 

E1, E2 and E3, respectively, for Panel I: natural speech, Panel II: vocoder-based VCS and 

Panel III: vocoder-based SS (Panel III). The continuous oval in Panel I (a) indicates close 

match between ġ(t) and gc(t) whereas dotted region in Panel II (a) and III (a) indicates more 

deviation in fit. Adapted from [93]. 

As the ripple component exists in the open phase with corresponding energy E2, 

we show the variations of the E2 for Speaker A and Speaker B for all 150 natural 

speech utterances and all 100 utterances each for S1 VCS and S3 SS spoof from the 

training set. It is observed from Figure 6.5 that ripple energy in the open phase is 
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more for both VCS and SS speech and across the speakers as well. Thus, the use of 

ripple energy would probably has more significant contribution in SSD task. 

 

Figure 6.5: Normalized histograms of E2 for Panel I: natural speech, Panel II: vocoder-based 

VCS and Panel III: vocoder-based SS corresponding to (a) Speaker A and (b) Speaker B. 

Adapted from [93]. 

6.4.2 Variation of Shape and Energy Features Across Speakers 

Next, to analyze the speaker-dependency of the five shape parameters (Rd, Rg, Rk, Ra 

and OQ) and the three energy features (E1, E2 and E3), we consider the entire 

training set of the ASV spoof 2015 challenge dataset (details of the dataset are given 

in Chapter 3, Section 3.4.1). For the 25 speakers of the training data, the mean and 

standard deviation of the shape and energy parameters across 150 utterances of 

human speech and 100 utterances for 5 spoofs is being considered here. We consider 

three shape parameters, Rd, Rg, and OQ (shown in Top Panel of Figure 6.6) and three 

energy features, E1, E2 and E3 (shown in Bottom Panel of Figure 6.6). The two shape 

parameters, Rk, Ra are linearly related to Rd and hence, not shown here. The blue ‘o’ 

and red ‘*’ represents the points corresponding to the mean and standard deviations 

of natural and spoofed speeches, respectively.  

Firstly, considering the shape features, the variation across the speakers is more 

in natural speech than the spoofed speech for Rd and OQ parameters than Rg 

parameter. The Rd parameter for human speaker has spread across the normal 

range, 1 < Rd < 3. However, the range for the spoofed speech was generally towards 

higher values of Rd, indicating more breathy voice for spoofed speech (generally, 

vocoder-based speech). Not much inference could be drawn from Rg parameter as the 

clusters of natural and spoofed speech were highly overlapping. On the other hand, 

the OQ parameter goes in line with Rd, i.e., the OQ had a higher mean and higher 
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standard deviation across all the speakers for spoofed speech as compared to human 

speech.  Secondly, the energy features were found to represent more distinctive 

features for natural and spoofed speech compared to the shape features. The mean of 

energy E1 in the closed phase is less for spoofed speech than the natural speech. In 

the case of natural speech signal, this energy is referred to as aspiration, which is 

generally noise-like. Next, as per the observations in Figure 6.4 and Figure 6.5, for 

E2, the mean energy in the open phase is also more for spoofed speech than natural 

speech. The energy E3 in the return phase was less varied for natural speech than 

for the spoofed speech. As discussed, for natural speech, the nonlinear interaction 

between the source and system is reflected in terms of ripple in the time-domain. 

However, in the case of spoofed speech, no such nonlinear interaction exists. Thus, 

the nature of variation in shape and energy features may result in features which 

may help to discriminate between the natural and spoofed speech.  

 

Figure 6.6: The variations in terms of mean and standard deviation. Top Panel: for three 

shape parameters (a) Rd, (b) Rg, and (c) OQ and Bottom Panel: for three energy features (d) 

E1, (e) E2 and (f) E3 across all the speakers of the training dataset. Blue ‘o’ corresponds to 

speakers of the natural speech and red ‘*’ corresponds to the spoofed speech for the same 

speakers. Adapted from [93]. 

6.4.3 Mel Representation of the Residual in Time Domain 

The ripple component gr(t) is primarily due to the interaction of the excitation source 

with first formant (F1) which is generally within 0-1 kHz range. Thus, the 

information about the ripple is mainly embedded in the low frequency regions. 
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Therefore, as a secondary measure and to enhance the ripple information in the 

residual signal, gr(t), we consider using the Mel cepstral representation of gr(t) as 

features for the SSD task. In addition, it was observed that the residual, gr(t), is 

intelligible and, hence, the use of Mel scale that more closely mimics the human 

perception process for hearing (than linearly-spaced frequency bands) can be used for 

estimating the subband energy of this excitation source signal. Such representations 

of using the Mel cepstra for the excitation source, such as the ġ(t) [224] and the LP 

residual [233], has been used for speaker identification task as well. Figure 6.7 

shows a speech signal, residual gr(t) and the Mel cepstral representation gr(t) for 

natural, VCS and SS. The VCS and SS correspond to the S1 and S3 algorithm of the 

ASV spoof 2015 challenge database, respectively. As observed for natural speech in 

Figure 6.7 (Panel I (c)), both low and high frequency regions are of high intensity as 

compared to spoofed speeches. Therefore, the ripple component and the information 

about aspiration component are more prominent in the natural speech as compared 

to the spoofed speeches shown in Figure 6.7. 

 

Figure 6.7:  (a) Speech signal (b) residual estimated from the difference of ġ(t) and gc(t) and 

(c) the Mel representation of (b) for Panel I: natural speech, Panel II: vocoder-based VCS and 

Panel III: vocoder-based SS. Adapted from [93]. 

It has been observed that the higher frequency regions of speech are essential for the 

SSD task [83]. However, in the present case, the residual signal has ripple structure 

component with frequency around the first formant (F1). Therefore, the Mel 

representation of the residual enhances this low frequency region. The high 

frequency regions that are speaker-specific are suppressed due to inverse filtering of 
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vocal tract information. Furthermore, being in the frequency-domain, this 

representation captures the residual information at a higher dimension than just 

using the average values in the closed, open and return phase. 

6.4.4 Residual in the Frequency-Domain 

To estimate the time-domain representation of the effect of S-F interaction, 

Ananthapadmanabha and Fant held the vocal tract system fixed and mapped all the 

nonlinear S-F interaction onto the excitation source [224], [228], [223]. The ripple in 

the time domain as a result of S-F interaction can be approximated by the following 

expression of ġ(t) [228]: 

 10.5 ( )

1
0

( ) ( ) ( ) cos[ ( ) ]
t

tB t

c
g t g t f t e F dτ τ−≈ + ∫ɺ ,         (6.11) 

with f(t) as the amplitude modulation and its multiplier reveals the first formant 

modulation (via -3 dB bandwidth (B1) and the first formant (F1) frequency) in the 

frequency-domain. There exists a duality of ripple in time domain and formant 

modulation in frequency domain [228], [223]. Thus, similar to the residue in the time 

domain, the residue in the frequency domain has significant information of the 

nonlinearities due to the S-F interaction. The concept of the residue in frequency 

domain, (i.e., Fr(ω)) is as follows, 
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c
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Fr F g t F g t

F g t
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ɺ

ɺ
  (6.12) 

where F{ġ(t)} and F{gc(t)} is the Fourier transform of the ġ(t) and gc(t), respectively. 

Even though we intend to compute the residual-like representation of eq. (6.9) in 

frequency domain, from eq. (6.12) it is clear that Fr(ω)  represents the power ratio of 

the spectrum of ġ(t) and gc(t). Thus, the residue in the frequency domain will have 

formant modulation information at a much higher dimension than in the time 

domain.   

Panel I and Panel II of Figure 6.8 shows the spectrograms of the estimated ġ(t) 

and fitted LF-model gc(t), respectively. The difference between these two spectra (as 

per eq. (6.12)) is shown in Figure 6.8 (Panel III). It is observed that the energy 

spreads for natural speech (Figure 6.8 (a)) and for spoofed speech (Figure 6.8 (b) and 

Figure 6.8 (c)) in Panel III is different for low frequency and the high frequency 
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regions. As in eq. (6.12), the residue of the spectrogram is also the power ratio of the 

spectrum of ġ(t) and gc(t). In the natural speech signal, as the intensity of spectrum 

of gc(t) is high across the entire spectrum, the intensity of residual spectrum is least 

across all the frequency regions as compared to spoofed speech (Panel III). To further 

enhance the energy variations along the frequency-axis and to use it as features, the 

residual spectrogram (Panel III) is divided into 36 equally spaced regions and the 

energy is averaged over these regions. The representation is shown in Figure 6.8 

(Panel IV). This block-based energy will be further used for classification purpose in 

order to study the effect of low and high frequency regions for SSD task. 

 

Figure 6.8: Panel I: The spectrogram of ġ(t), Panel II: spectrogram of the fitted LF-model 

gc(t), Panel III: residue in frequency-domain, i.e., difference between spectrograms of ġ(t) 

and gc(t) and Panel IV: block-based energy of residual in frequency-domain for (a) natural 

speech, (b) vocoder-based VCS and (c) vocoder-based SS. Adapted from [93]. 

Next, considering the fact that the ripple effect is mainly towards the lower 

frequency region, a better approach to enhance the lower frequency regions would be 

to use the Mel cepstral representation of the estimated ġ(t), the Mel cepstral 

representation of the fitted LF-model gc(t) and then obtain residual in the frequency-

domain. Figure 6.9 shows the Mel representation of the estimated ġ(t) and the fitted 

LF-model gc(t) in Panel I and Panel II, respectively. The difference between the two 

representations (shown in Figure 6.9 (Panel III)) is considered as Mel warped 

frequency residual feature. It is observed that difference in the residue of Mel 

representations of ġ(t) and gc(t) for natural and spoofed speech differ across the 

utterances. In both the lower frequency region and the higher frequency region, the 
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energy for the natural speech was less than that of the spoofed speech. The closely 

spaced filters in the lower frequency region enhance the features essential for spoof 

detection which on fitting well for natural speech results in less energy in lower 

frequency regions. 

 

Figure 6.9: Panel I: The Mel representation of ġ(t), Panel II: Mel representation of the fitted 

LF-model gc(t) and Panel III: residue in frequency-domain, i.e., difference between Mel 

representations of ġ(t) and gc(t) for (a) natural speech, (b) vocoder-based VCS and (c) 

vocoder-based SS. Adapted from [93]. 

6.5 Experimental Results 

The following  Section describes in detail the parameterization carried out to develop 

features for the SSD task using a GMM-based classifier as described in Chapter 3. 

The features are designed based on several experiments and the best features are 

chosen for evaluation on the ASV spoof challenge data, followed by the results 

obtained for the signal degradation and channel mismatch conditions [93]. 

6.5.1 Parameterization 

To derive the features out of the LF-model, we use the five shape-related features 

(Rd, Rg, Rk, Ra and OQ) and the three energy features (E1, E2 and E3) in the time 

domain. In addition, several frequency-domain feature sets are designed based on 

the discussion in Section 6.4.3 and Section 6.4.4. In this context, the frequency 

domain residual Feature Representation (FrFR) is summarized in Table 6.1. The 

Discrete Cosine Transform (DCT) of the representations is taken to obtain static 

(without 0th energy coefficient) and dynamic features, i.e., delta (∆) and delta-delta 
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(∆∆). Thus, dimension (D) of the feature vectors, D1: 12-D static features, D2: 24-D 

(12s+12-∆), D3:36-D (12s+12-∆+12-∆∆) are considered. Firstly, Mel representation of 

the residual gr(t) is used as features, i.e., FrFR1. Next, the residual of the 

spectrogram of the estimated ġ(t) and the fitted LF-model gc(t) can also effectively 

represents the features for SSD task. Here, a 256-point FFT is considered and as 

discussed earlier, the frequency-axis is divided into 36 equally spaced regions and 

the energy is averaged over these regions (Section 6.4.4). The 36-D block-based 

energy representation is denoted as FrFR2. Furthermore, the 12-D static features of 

FrFR2 obtained after DCT, which along with the 12-∆ and 12-∆∆ features constitute 

FrFR3. Thereafter, the 36-D block-based energy representation is divided into two 

frequency regions, called as FrFR4, i.e., 18-D Low Frequency Region (LFR) for the 

range 0-4 kHz and 18-D High Frequency Region (HFR) for 4-8 kHz. Finally, we 

explore the FrFR5, i.e., the residue of the Mel representations (instead of only FFT) 

as features for SSD task. 

Table 6.1: The Frequency-domain residual Feature Representations (FrFR) for the SSD task 

Feature Set Description of Feature Set Dimension (D) 

FrFR1 Static and dynamic representation of Mel cepstral of the residue gr(t) 12s+12∆+12∆∆ 

FrFR2 Static block-based energy of residue of spectrogram of ġ(t) and gc(t) 36-D static 

FrFR3 Static and dynamic representation of FrFR2 12s+12∆+12∆∆ 

FrFR4 Low frequency region (LFR) and high frequency regions (HFR) of FrFR2 
LFR: 18-D static 

HFR: 18-D static 

FrFR5 
Static and dynamic representation of residue of Mel cepstra of ġ(t) and 

gc(t)  
12s+12∆+12∆∆ 

s=static, ∆=delta,  ∆∆=delta-delta 

 

For extracting the GCI locations, as discussed, the ZF method is used. A frame 

size of 30 ms and a frame shift of 10 ms is considered. To estimate the LF-model 

from the Rd search algorithm, equal weights wt, ws and wtr are associated with the 

time-domain error, frequency-domain error and transition cost, respectively. From 

the fitted LF-model, it was observed that for the weak voiced regions, an epoch may 

not always be present due to which the LF-model may be ill-fitted. This resulted in 

the outliers in the estimated energy values in the closed, open and return phase 

which needs to be discarded during the training of GMMs. Thus, for time-domain 

features, extreme data points outside 1st percentile to 99th percentile are discarded. 

This is also done to alleviate the possible components of GMM that might model 

outlier distribution (especially in the case of use of a large number of mixtures in 
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GMM). Moreover, the presence of such outliers in features may shift the mean and 

variance of component Gaussians used in GMM. In addition, outliers in training or 

testing results in mis-classification thereby resulting in an increase in % EER. The 

outlier removing is done only during the training and not during the testing. 

6.5.2 Results on the Development Set of ASVspoof Challenge Database 

Next, as the time-domain shape and energy features are less in dimension, we 

experiment to find the relatively optimal number of Gaussian mixture components 

that would be required to model the features. Therefore, as shown in Figure 6.10, we 

train the GMM on various numbers of mixture components and test it using the 

development set. It is observed that for the shape features, no improvement in the 

performance was observed with the increase in the number of mixture components. 

While for energy features, the % EER decreased significantly with the mixture 

components. Even on using the shape and energy features together at feature-level, 

the % EER of the energy-based features alone was less.  

 

Figure 6.10: The % EER for 5-D shape features, 3-D energy features and the 8-D combination 

of shape and the energy features at feature-level for various number of Gaussian mixture 

components varied from 1 to 128. 

A possible reason for shape features not performing well is that the Rd parameter 

is limited to the range of 0.3 to 5 and other R-parameters are derived from Rd itself. 

On the other hand, the energy features results due to differences between estimated 

and fitted model signifying the nonlinear S-F interaction. Thus, there is more 

possibility of capturing the differences between natural and spoofed speech. Hence, 

for clean speech, we consider the use of only E1, E2 and E3 energy values as the time-

domain features using 128 of mixture components.   
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Table 6.2: EER (in %) for various Frequency-domain residual Feature Representations 

(FrFR) on the development set 

Features FrFR1 FrFR2 FrFR3 FrFR4 FrFR5 

Dim. D1 D2 D3 36-D D1 D2 D3 
18-D 

LFR 

18-D 

HFR 
Fusion D1 D2 D3 

% EER 10.06 8.17 7.80 23.65 26.85 18.93 15.27 24.02 28.96 21.90 12.30 9.67 8.81 

 

Table 6.2 shows the % EER for the FrFR features. Some of the observations can be 

summarized as follows: 

• For FrFR1, the EER is 10.06 % for D1 feature vector and reduces to as low as 

7.80 % using the D3 feature vector. Thus, dynamic variations in feature 

trajectories are found to be effective for the SSD task. 

• Next, using FrFR2, i.e., the 36-D block-based energy representation yields an 

EER of 23.65 %.  

• Using DCT of FrFR2 to obtain FrFR3 representation, the EER reduces from 

26.85 % for D1 feature vector to 18.9 % and 15.27 % for D2 and D3 feature 

vector, respectively.  

• In order to investigate which frequency regions capture spoof-specific 

characteristics, the FrFR2, i.e., 36-D block-based energy representation as in 

Fig. 8 (Panel IV) is divided into two frequency regions, called FrFR4, i.e., 18-

D low frequency region (LFR) for the range 0-4 kHz and 18-D high frequency 

region (HFR) for 4-8 kHz. The EER of LFR as a feature set is found to be 

24.02 % which is less than 28.96 % when the HFR are used and less than 12-

D FrFR3 static features. On score-level fusion of LFR and HFR (with αf=0.3 

as in eq. (3.6)), the EER obtained is 21.9 %, which is less than that obtained 

by LFR. This implies that it may be appropriate to process the residue of the 

spectrograms such that the LFR are enhanced more than the HFR. 

• Next, to enhance the LFR, the FrFR5 is considered, i.e., the residue of the 

Mel representation of the estimated ġ(t) and fitted LF-model gc(t). The EER 

obtained with this is 12.30 % for D1 feature vector which reduces to 9.67 % 

and 8.81 % with the addition of ∆ and ∆∆ features, respectively.   

Hence, for the remaining set of experiments, we consider the FrFR1 and FrFR5 as 

feature vectors for SSD task. These EERs are not less than 6.09 % EER which is 

achieved by 3-D time-domain energy-based features. 
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Score-level fusion of source features: To consider jointly the effect of any two 

feature sets, we perform a score-level fusion of the features. The fusion of two 

features and for three features is done as in eq. (3.6) and in eq. (3.7), respectively. It 

is observed in Table 6.3 that when the FrFR1 is fused with FrFR5 at score-level, the 

least EER obtained is 5.75 % using D3 features vector. This EER is less than FrFR1 

and FrFR5 used alone and also less than 6.09 % of the 3-D energy features in the 

time-domain. The energy-based features when fused with the D3 features vector of 

the FrFR1 and FrFR5 (with αf=0.2) a significant improvement in performance is 

obtained resulting in 3.46 % and 3.80 % EER, respectively.  

Score-level fusion of source and system features: Next, we consider the system-

based MFCC feature set. The MFCC features were extracted using 28 subband Mel 

filters, with a frame size of 25 ms and with 50 % overlap. On the development set, 

the MFCC features gave an EER of 1.6 %. With MFCC as the system-based feature 

set, we fuse at score-level the S-F interaction-based information, namely, energy 

features, FrFR1 and FrFR5. As shown in Table 6.3, upon fusing the energy features 

with MFCC at αf=0.4, the EER drops down to as low as 0.43 %. Fusing FrFR1 and 

FrFR5 at score-level with MFCC at αf=0.6, the EER decreases to 0.69 % and 0.74 %, 

Table 6.3: EER (in %) for score-level fusion amongst FrFR1, FrFR5 and 3-D energy feature 

sets and with system-based feature sets at various fusion factors αf on the development set 

Feature 

Set1 
Dim 

Fusion Factor (αf) 
Dim 

Feature 

Set2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FrFR1 

D1 10.07 9.29 8.52 8.09 7.69 7.55 7.75 8.09 8.89 10.41 12.30 D1 

FrFR5 D2 8.18 7.43 6.83 6.43 6.26 6.23 6.32 6.66 7.35 8.29 9.67 D2 

D3 7.81 7.12 6.52 6.06 5.80 5.75 5.89 6.23 6.81 7.75 8.81 D3 

Energy 3-D 6.09 3.97 3.46 3.60 4.12 4.78 5.40 6.09 6.78 7.26 7.81 D3 FrFR1 

Energy 3-D 6.09 4.29 3.80 3.92 4.35 5.03 5.80 6.66 7.41 8.15 8.81 D3 FrFR5 

Energy 3-D 6.09 1.77 0.80 0.46 0.43 0.51 0.66 0.83 1.14 1.34 1.60 D3 MFCC 

FrFR1 D3 7.81 4.89 3.06 1.74 1.09 0.83 0.69 0.80 0.92 1.32 1.60 D3 MFCC 

FrFR5 D3 8.81 5.66 3.37 2.06 1.29 0.92 0.74 0.89 1.03 1.34 1.60 D3 MFCC 

Score-level fusion is carried as per eq. (3.6) 

respectively. Thus, complementary information is found to be clearly present in the 

S-F interaction-based features than MFCC alone for the SSD task. Moreover, the 

greater weightage to energy-based features indicates their relative importance than 

system-based features. Next, to use the system features and source features (time-

domain and frequency-domain features), an equal factor of αf=0.5 is used. Therefore, 

for factors α1=0.4, α2=0.1 and α3=0.5, as in eq. (3.7), EERs of as low 0.371 % and 

0.457 % is obtained as shown in Table 6.4. This % EER is very less than the best 

EER of 0.83 % submitted by the authors at the ASV spoof 2015 challenge using a 
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score-level fusion of MFCC and CFCCIF features. Hence, it is clear from the 

experiments that the S-F interaction residual energy features in time domain and 

frequency domain are highly essential to capture the vocoder-specific characteristics. 

Table 6.4: EER (in %) for score-level fusion of 3-D energy, FrFR1 (FrFR5) and MFCC feature 

sets at selected αf on the development set.  

Score-level Fusion % EER 

α1 . Energy + α2 . FrFR1 + α3 . MFCC 0.3717 

α1 . Energy + α2 . FrFR5 + α3 . MFCC 0.4575 

Score-level fusion is carried as per eq. (3.7), α1=0.4, α2=0.1 and α3=0.5 

 

Dependency on spoofing algorithms: We now investigate the dependency of the 

features on the spoofing algorithms and spoof type (SS or VCS). Figure 6.11 shows 

the performance of 3-D time-domain residual energy features, 8-D shape plus energy 

features, FrFR1 and FrFR5 feature sets when trained individually on S1 to S5 and 

tested on the development set. As in all the cases, results are shown for known type, 

same type and different type of attacks. For known type of attacks, using the 3-D 

time-domain energy features, the EER is very near to < 2 % for any training type. On 

an average, the % EER increases especially for VCS spoof when the shape features 

are used. For the frequency-domain features, the % EER decreases from D1 to D3 

and the FrFR1 features perform better than the FrFR5 represenataion. On training 

with S2 spoof, even known attack was not detected well with around 30 % EER. 

 

Figure 6.11: The % EER for known, same and different type of attacks when trained with 

individual spoofs S1, S2, S3, S4 and S5 for 3-D energy, 8-D shape+energy, FrFR1 and FrFR5 

features sets and tested on the development dataset. 

For the same type of attacks, the performance with SS spoof was same as for known 

attacks. However, for S1 and S2 VCS spoof, the % EER increased from 3-D energy 
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features to 8-D shape and energy features. On the other hand, the % EER was less 

with the shape features for training on the S5 spoof that uses MLSA filter for speech 

generation process. On the contrary with the frequency-domain features, the 

detection using S1 and S2 in the training decreases the % EER from D1 to D3 

feature vector while the % EER increases on training with the S5 spoof alone. For 

different type of attacks, the 3-D energy features gave the least % EER (except S2 

spoof) amongst all feature set. The performance of frequency-domain features for SS 

speech is similar to previous features where SS cannot detect VCS spoof. However, 

the S1 VCS when used in training did not detect SS and the % EER increased from 

D1 to D3 feature vector. Thus, to extract significant spoof-specific information from 

the S-F features, training is essential using both the spoof types (SS and VCS). 

Discussion on the DET curves: The DET curves for the energy features, FrFR1 

features, FrFR5 features and their score-level is shown in Figure 6.12. It is observed 

that without fusion, the FrFR5 has the relatively highest % EER and the energy-

based features have the least % EER. However, the FAR of the time-domain energy 

features were far more than FrFR1 and FrFR5 for FRR less than 2 %. Both the 

FrFR1 and FrFR5 features had more % FRR than the time-domain energy-based 

features. Thus, it is a feasible option to fuse the energy-based features in time-

domain and the frequency-domain representations for better performance. The score-

level fusion of time-domain energy features with FrFR1 and FrFR5 features 

decreased the % EER as well as the % FRR significantly. It was observed that after 

fusion, the % FAR did not reduce much for less than 0.5 % FRR. 

 

Figure 6.12: DET curve on the development set for 3-D time-domain energy features (red), 

FrFR1 (blue), FrFR5 (green), score-level fusion of 3-D energy features with FrFR1 (magenta) 

and  FrFR5 (cyan) at αf=0.2.  
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6.5.3 Results on the Evaluation Set of ASVspoof Challenge Database 

In the realistic scenarios, the type of spoof (SS or VCS) or the spoofing algorithm will 

not be known. Thus, the performance is studied by testing with all S1-S10 spoofs of 

the evaluation set. As analyzed from the development set, a score-level fusion of 

source- and system-based features gave significantly lower % EER than the features 

used individually. Considering the features and the fusion factors obtained from the 

development set, the overall % EER on the evaluation set and the % EER of the 

individual S1 to S10 attacks are shown in Table 6.5.   

Table 6.5: EER (in %) in terms of individual attacks, average known attacks, average 

unknown attacks, average with and without S10 spoof for time-domain energy features, 

FrFR1 and FrFR5 features, score-level fusion of time-domain energy features, FrFR1 and 

FrFR5 features and MFCC at selected αf on the evaluation set 

Feature 

sets 
Dim. 

Individual Attacks Average 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn w/oS10 Avg 

Energy 3-D 0.212 6.902 0.130 0.163 1.777 4.005 21.179 2.141 7.853 86.429 1.837 4.930 13.070 

Shape 

+ Energy 
8-D 4.174 17.050 9.277 9.120 14.590 21.760 26.908 3.342 10.650 81.087 10.840 12.990 19.790 

FrFR1 

D1 7.033 14.543 1.832 1.897 8.462 13.120 5.152 1.348 3.946 84.304 6.752 6.370 14.160 

D2 5.457 13.560 0.630 0.761 6.848 11.543 2.576 1.234 3.668 84.212 5.452 5.142 13.050 

D3 5.772 15.212 0.842 0.761 5.783 10.174 2.098 1.755 3.853 82.750 5.672 5.137 12.900 

FrFR5 

D1 4.136 21.853 6.348 6.848 8.745 10.082 27.451 12.473 7.397 77.120 9.586 11.700 18.250 

D2 1.951 22.766 3.016 3.043 7.826 8.299 16.402 9.967 9.402 76.397 7.721 9.186 15.910 

D3 0.962 21.359 2.283 2.337 7.087 7.842 8.375 8.560 7.353 76.761 6.805 7.351 14.290 

Energy 

+FrFR1 
D3+3-D 0.038 3.092 0.011 0.033 0.505 1.815 1.332 0.212 1.321 88.375 0.736 0.929 9.673 

Energy 

+FrFR5 
D3+3-D 0.054 4.815 0.043 0.065 0.690 1.511 5.272 0.826 2.457 86.761 1.134 1.748 10.250 

MFCC D3 0.005 0.995 0.000 0.000 0.832 0.902 0.054 0.000 0.082 39.723 0.366 0.319 4.259 

Energy 

+MFCC 
3-D+D3 0.000 0.141 0.000 0.000 0.027 0.038 0.000 0.000 0.005 47.913 0.034 0.024 4.813 

FrFR1 

+MFCC 
D3+D3 0.000 0.196 0.000 0.000 0.125 0.304 0.016 0.000 0.005 47.402 0.064 0.072 4.805 

FrFR5 

+MFCC 
D3+D3 0.000 0.571 0.000 0.000 0.321 0.272 0.016 0.000 0.022 44.011 0.178 0.133 4.521 

Energy 

+FrFR1 

+MFCC 

3-D+D3+D3 0.000 0.065 0.000 0.000 0.027 0.060 0.000 0.000 0.000 42.261 0.018 0.017 4.241 

Energy 

+FrFR5 

+MFCC 

3-D+D3+D3 0.000 0.174 0.000 0.000 0.049 0.043 0.000 0.000 0.005 40.973 0.045 0.030 4.124 

Score-level fusion is carried as per eq. (3.6) and eq. (3.7), Kn=known,  w/o  S10=Average without S10, Avg. = Average of S1-S10 

Considering the EER for the known attacks, for the shape and energy features 

used together at feature-level (8-D), the % EER is very high and hence, not 

considered for fusion. With the 3-D time-domain energy features, the EER is 1.84 % 

which is significantly less. The FrFR1 and FrFR5 with D3 feature vector give 5.672 

% and 6.805 % EER. A score-level fusion of energy features with FrFR1 and FrFR5 
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at αf=0.2 gives 0.736 % and 1.134 % EER, respectively. Secondly, considering the 

system-based MFCC features, the EER is found to be around 0.36 % for known 

attacks. On combining the energy and MFCC features at αf=0.4, the % EER reduced 

10 times compared to MFCC to achieve an EER of 0.034 %. Similar observations 

were observed when FrFR1 and FrFR5 features were fused at score-level with 

MFCC at αf=0.6. Thus, use of S-F interaction-based features for SSD can be justified. 

The evaluation set consists of both vocoder-dependent and vocoder-independent 

speech. Hence, the overall % EER is obtained without S10 (only vocoder-based (S1-

S9)) and with S10. The % EER of vocoder-based spoofs (S1-S9) is almost similar to 

that of the known case. That is, the vocoder-based attacks gave a significantly low 

EER of 0.017 % on the score-level fusion of the energy, FrFR1 and MFCC features 

with factors of α1=0.4, α2=0.1 and α3=0.5. An example of the effectiveness of score-

level fusion is the S7 spoof for which the time-domain energy features gives an EER 

of 21.18 %. However, when fused at score-level with FrFR1 and FrFR5 features, the 

EER reduced to 1.332 % and 5.272 %, respectively. The EER for S7 spoof decreases 

to 0.00 % on the score-level fusion of energy and MFCC features.  

Considering the % EER of the S10 spoof, it is observed that the relatively best % 

EER was obtained using the MFCC features. It is observed that the S-F interaction-

based features do not contribute significantly when used alone or with the MFCC 

feature set. Slightly lower EER of 4.124 % than MFCC alone was obtained by fusing 

energy, FrFR5 and MFCC features with fusion factors of α1=0.4, α2=0.1 and α3=0.5, 

respectively. However, this decrement is not very significant. Thus, the S-F 

interaction features do not contribute in detecting the spoofed speech due to 

concatenative speech synthesis, where, in principle, natural speech sound units are 

joined and hence, create a lot more confusion during classification of natural and 

spoofed speech. This is due to the fact that the residual features are characteristics 

of the natural speech which are still preserved in the S10 spoof due to the direct 

concatenation of the speech sound units. Thus, the residual features in time and 

frequency-domain may not prove to be much effective. 

Dependency on spoofing algorithms: On the evaluation set, to check the spoof 

dependency of the features, we carry the same evaluation as on the development set. 

The analysis of same and different type is almost similar to that obtained on the 

development set. Considering the performance of the features on the S10 spoof, 
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Figure 6.13 shows that as compared to the results for vocoder-based spoofs, for S10 

the % EER decreases with the use of 8-D shape and energy-based features. This may  

 

Figure 6.13: The % EER for the same type, different type and S10 attack when trained with 

individual spoofs S1, S2, S3, S4 and S5 for 3-D energy, 8-D shape+energy, FrFR1 and FrFR5 

features sets and tested on the evaluation dataset. 

be due to the fact that in a particular speech utterance, for a particular speaker, the 

variation of shape parameter depends only on the type of utterance. On the other 

hand, in unit-selection speech, the speech sound units are concatenated and which 

may again vary in voice quality due to recordings from various sessions. Thus, more 

variations in voice quality exist for S10 spoof which helps in reducing the % EER 

slightly than the energy features used alone. This may possibly be the reason for the 

decrease in % EER of S10 in Table 6.5 when the shape and energy features used 

jointly by their feature-level fusion. Even though the % EER has decreased, the 

improvement is not very significant as only one particular aspect of voice quality 

difference in natural and unit-selection speech is observed at a very low dimension. 

6.5.3.1 Comparison with Other Features 

The performance of the S-F interaction features is compared with the previous work 

on using cochlear filter-based CFCC, CFCCIF, CFCCIFS and feature sets as well as 

other excitation source features such as, F0 and SoE features and prediction 

residual-based features. The SBAE features are not discussed as its performance 

with the MFCC features are not better than the cochlear filters. These features were 

also fused at score-level with MFCC. A brief description of the features and their 

relative performance as compared to S-F interaction features is given as follows. 
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Cochlear-based features: The CFCC feature sets are based on using the auditory 

filterbanks as compared to triangular filterbanks in MFCC. In addition, the envelope 

at the output of the cochlear subband is combined with the average subband IF 

information. Moreover, to capture transient information or the variation across the 

frames, the derivative operation is used. These features are known as CFCCIF. In 

addition, the use of symmetric difference to estimate variations of subband energy 

representation (i.e., CFCCIFS) has shown to give better performance [91]. As shown 

in Table 6.6, the cochlear-based features, when combined with MFCC using score-

level (αf=0.2 as per eq. (3.6)) gave a very low average % EER of 1.44 %. However, for 

the vocoder-based S1-S9 spoofs, the EER was 0.16 % which is almost ten times more 

than with the energy and FrFR1 features when fused with MFCC at score-level.  

Table 6.6: % EER on testing with the evaluation set for cochlear-based CFCC, CFCCIF, 

CFCCIFS features and source-based features when fused at score-level fusion with MFCC 

feature set 

Feature Set Dim. 

Individual Spoofing Attacks (% EER) Overall % EER 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn. 
S1-

S9 
S1-10 

CFCC+MFCC D3+D3 0.01 0.74 0.00 0.00 1.33 0.68 0.07 0.00 0.12 13.08 0.41 0.32 1.60 

CFCCIF+MFCC D3+D3 0.00 0.36 0.00 0.00 0.97 0.50 0.04 0.08 0.04 16.72 0.26 0.22 1.87 

CFCCIFS+MFCC D3+D3 0.00 0.24 0.00 0.00 0.72 0.31 0.03 0.09 0.03 13.03 0.19 0.16 1.44 

(F0-SoEs) 

+MFCC 
12-D+D3 0.00 0.72 0.00 0.00 0.19 0.30 0.02 0.00 0.03 34.47 0.18 0.14 3.57 

Best(M1+M2) 

+MFCC 
24-D+D3 0.00 0.04 0.00 0.00 0.02 0.02 0.01 0.00 0.01 51.11 0.01 0.01 5.12 

 

 

F0 and SoE features: These features are based on the fact that when the vocal folds 

vibrate, there exists a correlation between the F0 contour and SoE at the glottal 

excitation source (SoE1) and at the speech signal (SoE2), which is found to be more 

for natural speech than machine-generated speech [86]. Moreover, as natural speech 

has more variations, the dynamics of the F0, SoE1 and SoE2 features are also 

considered by taking their derivative up to 3rd order. These features when combined 

with MFCC using score-level (αf=0.8 as per eq. (3.6)) perform slightly better than 

cochlear-based features for S1-S9 spoofs. However, even in this case for S1-S9 

spoofs, the % EER of proposed S-F features is almost ten times better. 

LP-LTP and LP-NLP features: Here, the LP, LTP and NLP features are explored 

based on the idea that the spoofed speech is too easy to predict if a simplified 

acoustic model generates it and it is too difficult to predict if there are artifacts 

present in the speech signal [76], [90]. Hence, the score-level fusion of LP-LTP (M1) 
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and LP-NLP (M2) combination at αf =0.4, when further combined with MFCC at 

score-level (αf=0.1 as per eq. (3.6)) provided discriminative or complementary 

features especially for S1-S9 spoofs. The performance for only vocoder-based spoofs 

is slightly better than the S-F interaction features. However, the EER for prediction-

based features is high for S10; as a result the average % EER is more than the 

proposed S-F interaction features. 

Fusion of S-F interaction features with CFCCIFS feature set: From Table 6.5 and 6.6, 

it is observed that S-F interaction features work well in detecting the vocoder-based 

speech (S1-S9). On the other hand, the previous work of using envelope and IF 

information jointly (i.e., CFCCIF and CFCCIFS features) gave reduced %EER for 

S10 spoof as compared to S-F interaction or other source-based features. Therefore, 

we attempt to combine the benefits from both of these two features as shown in 

Table 6.7. Firstly, for combination of time-domain energy features, FrFR1/FrFR5 

and CFCCIFS features, the fusion factors are α1=0.4, α2=0.1 and α3=0.5. It is 

observed that with the addition of CFCCIFS features, the EER of S10 decreases to 

around ~15-16%. On increasing the contribution of CFCCIFS features (i.e., α1=0.2, 

α2=0.1 and α3=0.7), the average EER decreases to around ~1.4 % where the EER of 

S10 decreases to 13.08 and 12.83 on using FrFR1 and FrFR5 features, respectively. 

The performance of S1-S9 slightly degrades as compared to S-F interaction and 

MFCC features, however, the performance of S1-S9 is better than CFCCIFS +MFCC 

system. It is to be noted that the use of attack-independent threshold makes the 

detection of S10 even more difficult and hence responsible for large average EER. 

Table 6.7: EER on Testing with the evaluation set for score-level fusion of time-domain 

energy features, FrFR1 and FrFR5 features with CFCCIFS feature set  

Feature Set FF 
Individual Spoofing Attacks (% EER) Overall % EER 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Kn. S1-S9 S1-10 

Energy+FrFR1+CFCCIFS A1 0.00 0.01 0.00 0.00 0.03 0.06 0.01 0.14 0.01 16.14 0.01 0.029 1.640 

Energy+FrFR5+CFCCIFS A1 0.00 0.01 0.00 0.00 0.07 0.07 0.00 0.20 0.03 15.18 0.01 0.043 1.557 

Energy+FrFR1+CFCCIFS A2 0.01 0.08 0.00 0.00 0.26 0.14 0.01 0.33 0.04 13.08 0.07 0.097 1.396 

Energy+FrFR5+CFCCIFS A2 0.01 0.14 0.00 0.00 0.35 0.12 0.04 0.45 0.06 12.84 0.10 0.130 1.401 

Fusion Factors (FF) A1: α1=0.4, α2=0.1 and α3=0.5, A2:  α1=0.2, α2=0.1 and α3=0.7 

 

Results on signal degradation conditions: Amongst the several approaches used 

for SSD task, the results are mostly evaluated in the presence of clean conditions. 

Very recently, research had been directed towards evaluating the performance of 
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countermeasures in the presence of noisy environments. In [94], a preliminary 

investigation of spoofing detection under additive noisy conditions had been 

performed. This work also describes an initial noisy database developed by 

artificially adding background noises at different SNR levels. This work shows that 

for a model trained on clean data, the system performance degrades significantly 

when tested on noisy speech. It was observed that the system performance differs 

with the types of noises. In [96], on the similar grounds, several countermeasures 

were found to fail at relatively high SNRs and did not generalize well for the SSD 

task even with speech enhancement algorithms. In this study, we consider 

evaluating the performance of the proposed S-F interaction features for additive 

white noise, babble noise and car noise at various SNR levels, namely, 10 dB, 5 dB 

and 0 dB. The performance evaluation for the various features in signal degradation 

conditions is shown in Table 6.8.  

Table 6.8: % EER of the source and system features for different feature sets on the evaluation set in 

the presence of additive white noise, babble noise and car noise at various SNR levels 

Feature Sets Energy 
Shape 

+Energy 
FrFR1 FrFR5 MFCC 

Dim. 3-D 8-D D1 D2 D3 D1 D2 D3 D1 D2 D3 

% EER → 

SNR (dB) ↓ 
S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. S1-S9 Avg. 

Clean 4.93 13.1 12.9 19.8 6.37 14.2 5.14 13.1 5.13 12.9 11.7 18.3  9.19 15.9 7.35 14.3 1.48 5.49 0.56 5.49 0.32 4.25 

W
h

it
e
 10 3.6 11.5 13.1 19.7 23.4 28.1 12.9 19.6 12.0 18.8 24.0 28.0 25.5 28.8 26.9 30.2 39.8 42.5 40.3 43.6 38.4 41.5 

5 8.3 13.6 14.5 19.2 29.4 33.8 21.1 27.4 18.6 24.9 34.7 36.9 30.9 33.1 32.9 35.2 41.6 44.1 48.1 51.5 40.9 43.2 

0 31.3 31.3 28.4 29.6 39.2 41.3 44.3 46.8 42.5 45.2 53.6 53.5 49.0 49.5 46.4 47.0 42.0 44.1 50.5 53.8 43.1 44.1 

Average 14.4 18.8 18.7 22.8 30.7 34.4 26.1 31.3 24.4 29.6 37.4 39.5 35.1 37.1 35.4 37.5 41.1 43.6 46.3 49.6 40.8 42.9 

B
a

b
b

le
 10 8.7 16.8 14.3 20.6 16.9 23.4 14.2 21.3 16.0 22.8 22.0 27.1 22.0 27.5 20.2 25.7 45.8 50.2 35.7 40.9 30.8 36.3 

5 12.9 20.1 19.5 24.5 25.9 30.8 22.6 28.2 25.3 30.3 29.2 33.2 29.9 34.3 27.8 32.0 45.6 49.6 45.0 49.0 40.2 44.0 

0 27.5 32.1 27.8 31.7 33.4 36.5 33.8 36.8 36.5 39.1 29.8 32.8 25.6 29.6 24.9 28.6 42.9 46.0 48.7 51.7 44.5 46.8 

Average 16.4 23.0 20.5 25.6 25.4 30.2 23.5 28.8 25.9 30.7 27.0 31.0 25.8 30.5 24.3 28.8 44.8 48.6 43.1 47.2 38.5 42.4 

C
a

r
 

10 2.7 11.6 15.0 22.0 7.8 15.6 7.3 15.4 7.4 15.3 17.2 22.8 14.1 20.3 12.6 19.0 20.0 26.7 9.6 16.1 15.1 22.8 

5 4.4 13.1 19.6 26.0 11.1 18.7 13.2 21.2 13.6 21.5 19.3 24.5 17.7 23.5 16.8 22.7 27.1 33.4 12.6 18.9 21.6 29.0 

0 13.6 20.7 22.3 27.9 17.1 23.6 19.3 26.0 20.7 27.5 29.8 32.8 25.6 29.6 24.9 28.6 34.6 40.1 15.9 21.8 28.4 35.2 

Average 6.9 15.1 19.0 25.3 12.0 19.3 13.3 20.9 13.9 21.4 22.1 26.7 19.1 24.5 18.1 23.4 27.2 33.4 12.7 18.9 21.7 29.0 

 

The performance is shown in terms of % EER for vocoder-based (S1-S9) spoofs 

and overall % EER (S1-S10). For white noise, it is observed that the energy features 

gave almost equal average % EER in clean and in the presence of 10 dB and 5 dB 

noise. A similar case was observed with that of the shape and energy features fused 

at feature-level. The % EER of the shape and energy features, when used jointly, was 

more than the energy features till 5 dB. However, for 0 dB SNR, the use of shape 
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and energy features gave the relatively better performance of 29.6 % EER. For these 

features, the spoof-specific information was preserved at severe signal degradation 

conditions as well. The % EER of the 8-D shape and energy features seems to 

decrease with the degradation. However, at 10 dB, the % EER increases for S1-S9 

and decreases for S10 spoof and hence, the overall % EER shown in Table 6.6 

decreases slightly. On the other hand, the frequency-domain features were severely 

affected by noise. Especially for MFCC feature set, at 0 dB SNR, the performance 

degrades to around 44 % with the D3 feature vector. The FrFR1 and FrFR5 features 

were found to perform better than MFCC till 5 dB SNR noise. 

For babble noise, the % EER for all features increases even for 10 dB SNR. The % 

EER is least for 3-D energy features and is maximum for MFCC feature set. For 0 

dB SNR, the least average EER is 28.6 % obtained using FrFR5 feature set. The 

FrFR1and FrFR5 representations, i.e., the S-F interaction cues in the frequency 

domain were able to better classify natural vs. spoofed speech in the presence of 

babble noise as compared to white noise. However, on an average of all SNRs, the 3-

D energy features perform the best amongst all the features. Next, for car noise, the 

% EER for all the features (except 3-D energy features) increased at 10 dB SNR. 

However, the performance degradation was less as compared to white and babble 

noise. Interestingly, at 10 dB SNR using 3-D energy features, the % EER improved 

both for vocoder-based cases (S1-S9) as well as for the average % EER. This is 

because the % EER of vocoder-based S7 spoof decreased about 10 times in the 

presence of 10 dB car noise. This was also observed for 10 dB white noise as well 

where the detection for S7 and S10 was improved. Similar observations were found 

in [94], where the performance on S10 improved in the presence of reverberation 

noise. It was observed that with the temporal filtering of reverberation, the 

discontinuity in S10 spoof could become more obvious. However, much needs to be 

explored about the improved performance even in the presence of noise.  

In recent works, where white noise is considered [94]- [96], it is observed that the 

% EER at 0 dB is as high as 40 % obtained by fusing several features with each 

other. In such multiple fusions of features, it is difficult to conclude as to why a 

particular feature performs well for a particular noise. In the present case, the 8-D 

shape and energy features gave better performance even at 0 dB SNR. This is 

because, in the present approach, the excitation source features in time domain are 



Experimental Results 

196 

obtained by inverse filtering from the speech signal the high frequency resonances 

corresponding to the vocal tract system. Thus, the high frequency noise is also 

filtered out. Therefore, the shape parameters along with the energy-based features 

help in maintaining the performance of the SSD systems much better as compared to 

the MFCC features that contain much broader spectra.  

 

Figure 6.14: The % EER for known attacks (S1-S5), unknown attacks (S6-S10), vocoder-based spoofs 

(S1-S9) and average EER (S1-S10) averaged across the various SNR levels for 3-D energy features, 8-D 

shape and energy features, FrFR1, FrFR5 and MFCC feature sets for D3 dimension. 

Figure 6.14 shows the % EER for known attacks (S1-S5), unknown attacks (S6-S10), 

vocoder-based spoofs (S1-S9) and average EER (S1-S10) (averaged across the 

various SNR levels) for 3-D energy features, 8-D shape and energy features, FrFR1, 

FrFR5 and MFCC feature sets for the D3 dimension. It can be observed that MFCC 

is highly sensitive to any type of signal degradation conditions as compared to the 

frequency-domain features that use S-F cues. The simple approach of residual using 

energy-based features proves to be effective in the presence of noise as well without 

significant performance degradation. It is also observed that, on average, white and 

babble noise were more severe as compared to car noise and at low SNR values, the 

white noise affects the performance more than the babble noise. 

6.5.4 Results on the Blizzard Challenge 2012 Database 

The results of the S-F interaction features with 3-D energy features, 8-D shape and 

energy features, FrFR1 and FrFR5 representation are shown in Table 6.9. As 

observed, the problem of channel mismatch cannot be generalized based on the 

performance of countermeasures on the ASV spoof challenge database. Generally, 

the performance of MFCC decreases with the addition of ∆ and ∆∆ features to the 

static features. However, in this case, the % EER for MFCC does not always decrease 
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with the addition of dynamic features as compared to the gradual decrease in % EER 

by the FrFR1 and FrFR5 features. Thus, MFCC with D3 feature vector cannot be 

considered optimum in all the cases. On the ASV spoof challenge data, the shape 

features did not contribute in decreasing the % EER. However, for completely 

unknown data, the synthetic speech recordings by several systems were detected by 

8-D shape and energy features. The results are much better than MFCC features.  

For the shape and energy features, the % EER is very less for statistical-based 

synthetic speech as compared to USS-based, hybrid or diphone-based synthetic 

speech. Considering an average representation across USS, statistical, hybrid and 

diphone-based systems, amongst all the systems, the USS-based systems were found 

to be difficult to detect in the SSD task. In the case of statistical systems, the shape 

and energy-based features gave very less % EER. For hybrid and diphone systems, 

the performance is similar to that of the USS-based speech recordings (except system 

G that gave 5 % EER with the 8-D shape and energy feature set). The FrFR5 

features detected diphone systems with least 22 % EER. On the whole, for the 

channel mismatch case, the performance of shape and energy features were found to 

be better than the other features. The performance of the features, in this case, is 

highly dependent on the type of attacks. Therefore, there is a need to look into the 

type of training strategy used such that the channel variability can be handled. 

Table 6.9: EER (in %) for 3-D energy, 8-D shape+energy, FrFR1 and FrFR5 features sets on 

training with the ASV spoof data and testing with the Blizzard Challenge 2012 database  

2012 Blizzard System 
Energy Shape+Energy FrFR1 FrFR5 MFCC 

3-D 8-D D1 D2 D3 D1 D2 D3 D1 D2 D3 

USS B 57 47 55 60 56 59 57 56 98 77 67 

Hybrid C 62 53 48 53 46 54 52 61 40 46 47 

Hybrid D* 39 24 90 85 80 37 20 15 65 66 42 

HMM E* 6 0 48 43 33 15 8 2 44 82 61 

USS F 52 37 79 83 77 52 54 61 22 24 15 

USS G 17 5 60 65 60 28 22 18 8 29 27 

HMM H 1 3 5 5 1 12 5 4 12 38 3 

USS I 53 48 55 59 54 61 58 55 98 97 69 

Diphone J* 37 38 79 67 67 25 24 22 64 69 69 

HMM K* 9 0 55 65 54 11 8 1 92 67 73 

* systems with lower MOS from 1 ≤ 2   

6.5.5 Results on the Blizzard Challenge 2014 Database 

The results of the source-system interaction features are given in Table 6.10 and 

Table 6.11 for Gujarati and Hindi dataset, respectively. For the Gujarati dataset, the 

HMM-based synthetic speech was detected easily by the energy features alone 
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(except that for system H). The USS-based G system was not detected either by time-

domain features or frequency-domain FrFR1 and FrFR5 features. However, the 

MFCC features detected it with 34 % EER. The HMM-DNN-based F system was not 

detected well by S-F interaction-based features. However, the MFCC feature set 

could detect system F with 6 % EER.  The synthesized utterances from the HMM-

based systems in Hindi language were detected well using 3-D energy, FrFR1 and 

FrFR5 feature sets. On the other hand, the % EER increased with the use of 8-D 

shape and energy features for all the systems. The Hybrid and USS systems were 

difficult to detect with EER around 60 % -70 %. The HMM-DNN system was 

detected by MFCC with least EER of 7 % with the D2 feature vector. Thus, on an 

average, the 3-D energy features generalized well to detect the unknown HMM-

based speeches both for Blizzard 2012 and Blizzard 2014 datasets.  

Table 6.10: EER (in %) for 3-D energy, 8-D shape+energy, FrFR1, FrFR5 and MFCC features 

sets on training with the ASV spoof data and testing with Blizzard Challenge 2014 database 

for the Gujarati language  

Blizzard 

2014 

Gujarati 

Systems 

Energy Shape+Energy FrFR1 FrFR5 MFCC 

3-D 8-D D1 D2 D3 D1 D2 D3 D1 D2 D3 

HMM C 1 4 2 2 3 10 10 5 37 13 4 

HMM D 0 30 9 3 0 7 5 1 67 6 1 

HMM E 0 0 0 1 0 9 8 4 13 21 4 

HMM-DNN F 27 22 89 91 95 23 30 28 75 23 6 

USS G 34 66 76 87 87 41 70 71 67 48 34 

HMM H 46 72 83 83 84 40 50 47 55 24 24 

* wavefiles for baseline system B and system I are not available 

Table 6.11: EER (in %) for 3-D energy, 8-D shape+energy, FrFR1, FrFR5 and MFCC features 

sets on training with the ASV spoof data and testing with Blizzard Challenge 2014 database 

for the Hindi language  

Blizzard 2014 
Hindi 

Systems 

Energy Shape+Energy FrFR1 FrFR5 MFCC 

3-D 8-D D1 D2 D3 D1 D2 D3 D1 D2 D3 

HMM B* 0 7 2 0 0 10 3 2 2 5 14 

HMM C 1 11 1 0 0 26 10 6 1 4 6 

Hybrid D 76 79 68 72 65 78 73 74 68 25 62 

HMM E 2 6 0 0 0 13 12 1 0 5 7 

HMM-DNN F 35 45 59 64 56 47 29 31 59 7 19 

USS G 38 65 62 75 63 70 66 73 62 52 52 

HMM H* 0 3 2 1 1 6 8 3 2 11 30 

HMM K 0 14 2 1 0 8 2 2 2 8 32 

* systems with lower MOS from 1 ≤ 2 (wavefiles for system I are not available)  

6.6 Chapter Summary 

This study presented the use of the features motivated from the natural human 

speech production mechanism. That is, each time the vocal folds open and close, 

there exists a nonlinear source and system interaction which can be estimated from 
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the residual component gr(t) in time-domain and frequency-domain. We presented 

the significance of Rd shape parameter of the LF-model in interpreting the 

characteristics or quality of speech. However, not much can always be inferred about 

the naturalness of speech due to the fact that the vocoded speech is a subset of the 

natural speech signal. In addition to the shape parameter, the residual energy in the 

closed, open and return phase is considered. The extensive analysis in this study 

indicates that the energy in the open phase specifically aids in the spoof detection 

task. The S-F interaction features represent information of the voice excitation 

source at a lower frequency region than the actual speech signal. Thus, this is indeed 

a promising approach as these features are likely to be robust to signal degradation 

conditions. Furthermore, the testing results on a completely unrelated database such 

as the Blizzard Challenge showed that the time-domain S-F interaction features 

perform very well. Spoof detection in signal degradation and channel mismatch 

conditions is an important research issue and needs further investigations as the 

features should generalize in terms of better performance for the clean speech as 

well. In the next Chapter, we summarize the performance of the several features 

discussed in this thesis and evaluate them based on various factors taking into 

consideration the present problem of spoof detection. 
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            Chapter 7.

Summary and Conclusions 

7.1 Summary of the Work 

The study presented in this thesis tries to address the problem of spoof detection by 

exploring the three basic aspects of natural speech production mechanism, i.e., the 

excitation source, the vocal tract system (i.e., filter) and the Source-Filter (S-F) 

interaction. The thesis aims to propose countermeasures that help in decreasing the 

% EER of the classification system both for the known attacks and for the unknown 

attacks on the ASV spoof 2015 challenge database. Furthermore, we explore the 

robustness of the features in various ways by evaluating the spoof dependency of the 

features and the performance of the features in the case of channel mismatch 

conditions using the Blizzard Challenge database.  

7.2 Discussions 

7.2.1 Performance of the Features on ASV Spoof Database 

The ASV spoof challenge database consists of clean recording conditions with the 

similar set of recording conditions both in the training and in the testing phase. 

Considering the case of system-based features, these performed very well on the ASV 

spoof data. The MFCC could perform well for the known attacks and the cochlear 

filter-based (i.e., CFCCIF and CFCCIFS) features and the SBAE feature set detected 

unknown vocoder-independent spoof very well. Hence, their score-level fusion 

further reduced the EER of the SSD system. However, as known that the system-

level information is not the only information in the speech signal, it is essential to 

study the role of source-based features as well. 

In speech synthesis and voice conversion techniques, generally the spectral 

modification or spectral conversion it considered important during the speech 

generation process. The modeling of source characteristics has complementary 

information in enhancing the quality of machine-generated speech. Therefore, when 

features based on the strength of closure of the glottis, (i.e., SoE) and the nonlinear 
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prediction of the speech are used (which are rarely used in SS or VCS generation), a 

relative improvement in the performance of the SSD system is observed. It may be 

possible that if the source aspects are modeled in the machine-generated speech, 

then these features may not be able to capture the spoof-specific characteristics. The 

Fujisaki model is used extensively for prosody modeling in speech synthesis and 

hence, the features derived from the model may fail at times. An efficient way is to 

direct research towards the design of such features that are highly difficult to model 

in the synthetically generated speech. The use of the nonlinear S-F interaction is a 

possible attempt in this direction. There exist very few studies that explore the 

nonlinear coupling between the source and the system in a mathematical or a 

feature representative form. Hence, these features are found to be highly useful in 

detecting unknown vocoder-based spoofs even with lesser feature dimension.  

7.2.2 Spoof Dependency of the Proposed Features 

The general approach in evaluating the features or countermeasures is to use the 

entire training set of the ASV spoof challenge database which includes both SS and 

VCS spoofs. However, it may also be worthwhile to know if the training can be 

minimized as much as possible and still achieve reduced EER for any unknown 

attack. Given this, we attempt to train on individual spoofing algorithms and 

estimate the EER for the spoofs in the development and the evaluation set.  

For the system-based features, on training with the VCS spoof only, both VCS 

and SS could be detected very well. With the use of SBAE features and training with 

the S5 spoof, all the vocoder-based spoof conditions were detected with almost ~0 % 

EER. On the other hand, the source-based features were not as robust as the system-

based features and the source-based feature sets could identify only itself and the 

same type of attacks to some extent. This was mostly applicable to SS because its 

same type was generated using the same algorithm and the only change was in the 

number of utterances that were used in training. However, this is not the real case 

scenario. In the case of source-based features (such as F0, SoE1 and SoE2), the % 

EER decreased consistently with the increase in dynamic information for the 

different type of spoof. However, this decrease was not significant. This was even 

observed with the S-F interaction features. Thus, the system-based features could be 

a better countermeasure when only a single VCS spoof is available for training. 
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7.2.3 Robustness of the Features to Channel Mismatch Case 

To evaluate the performance of the countermeasures for the channel mismatch case 

is the next immediate task that needs to be looked into even before robustness to 

signal degradation conditions is considered. This is because it is highly unlikely that 

the test spoofed speech will be of the same recording condition as that used in the 

training process. The evaluations on the Blizzard datasets show the vulnerability of 

the countermeasures to the channel mismatch case. Especially the system-based 

features that outperformed all available features on the ASV spoof challenge 

database did not generalize well for the channel mismatch case. Few vocoder-based 

speech recordings were detected with ~0 % EER while some had as high as 60-90 % 

EER. The same applied to unit-selected based spoofed speeches. Amongst the source-

based features, even the prediction-based and the Fujisaki model-based features 

faced similar problems. The only consistency was observed in the F0, SoE1 and SoE2 

features with their dynamics that showed decreases in % EER with the increase in 

dynamic information. The relative decrease in % EER was more in statistical-based 

synthesis techniques as compared to unit-selection-based techniques. Hence, these 

showed significant robustness to the channel mismatch case. The use of residual 

energy features to capture the S-F interaction also showed less % EER, i.e., 

robustness to channel mismatch case. In the case of HMM-based speech synthesis, 

the % EER was less compared to the unit-selection, diphone and the hybrid 

approaches of speech generation. Hence, research can be further directed to develop 

countermeasures that handle the channel variability to a larger extent.  

7.2.4 Performance of Humans vs. SSD systems 

In [123], a study has been carried out that benchmarks automatic systems against 

human performance on speaker verification and spoofing detection tasks. The study 

was attempted to know whether human perceptual ability is important in identifying 

spoofing and whether humans can achieve better performance than SSD systems. A 

set of listening tests were designed to conduct speaker verification tasks and 

spoofing detection task. For the verification task, the ASV systems were found to 

outperform the humans. For the detection task, human listeners detect spoofing less 

well than most of the automatic approaches. However, humans are much better than 

any of the automatic countermeasures in detecting unit-selection based speech. It is 
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observed that the proposed SSD systems detected vocoder-based spoofs very well. 

However, human listeners generally fail to recognize the vocoder-based speech upon 

hearing. On the other hand, for the unit-selection speech, the SSD systems have 

shown high % EER. This is because this type of speech is similar to the natural 

speech except at the point of concatenation. However, humans can very easily 

perceive this discontinuity while listening and can identify the spoofed speech. Thus 

the SSD systems slightly contradict the human perception. In [123], it has been 

quantified that for vocoder-based speech, the performance of SSD systems is around 

four times better than humans to falsely accept spoofed speech as natural. While in 

the case of the vocoder-independent speech, the humans perform ten times better 

than the SSD systems. Thus, incorporating the use of perception mechanism to the 

feature extraction process is highly recommended. This is one of the reasons, due to 

which the proposed system-based features which use subband processing performs 

better in detecting the S10 spoof. 

7.3 Future Applications of the SSD task 

Several applications of the SSD task have been mentioned in Section 1.5 amongst 

which the immediate applicable is the security of ASV systems for reliable telephone 

banking, personal identification and computer logins, etc. This includes the design of 

countermeasures and using it jointly with the ASV systems. The performance of the 

ASV systems should not be affected when the spoof detection system is incorporated 

into the ASV framework. Although significant progress is made for detecting spoofed 

speech in clean environment, the problem is yet to be solved especially for signal 

degradation and channel mismatch conditions. 

Amongst the several other applications, an important area would be to use the 

features for its counter application. That is to improve the quality of the synthetic 

and voice converted speech by using the knowledge of the lacking features in the 

spoofed speech. An example of which is the phase of the signal. The vocoder-based 

speech is known to lack the phase information as only the spectral magnitude is 

processed for speech generation. Knowing this and incorporating the phase-based 

information in some form during the speech generation process can aid to make the 

speech sound more natural. However, this is again a threat to the spoof detector 

systems which further needs to be modified and generalized.  
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Another important application of the design of countermeasures is the possible 

development of objective measures for the evaluation of TTS and voice conversion 

systems. In the evaluation of the TTS and voice conversion system, the subjective 

tests play an important role. Although the end users of the TTS or voice conversion 

system applications are humans, they may not be always efficient in evaluating 

these systems. Humans are only able to judge if the machine-generated speech is 

natural or not and that too in a naïve way (especially, if they are not speech 

processing experts). That is, they cannot identify the cause of degraded voice quality 

which may be due to lack of spectral information, prosody information, improper 

pitch modeling and many other acoustic properties which are not modeled properly, 

etc. Hence, using the countermeasures could be highly essential for objective 

evaluation and could aid in avoiding to some extent, if not eliminating the extensive 

subjective evaluations that are carried out to test the system performance.  

7.4 Contributions from the Thesis 

• Instead of considering the traditional approach for the known and unknown 

attacks, we bring the approach of the known, same and different type of 

spoofing attacks. That is, how well training with synthetic speech can test the 

voice conversion spoofs and vice-a-versa. This can be an efficient way of 

evaluating the countermeasures.  

• The proposal of system-based features, i.e., both the CFCCIF and SBAE are 

found to reduce significantly the % EER of vocoder-independent spoofs like 

MARY TTS (i.e., the S10 spoof of the ASV spoof database).  

• A simple yet a novel approach to explore the dynamics of F0 and SoEs was 

presented and this approach was found to be very effective for identifying 

vocoder-based spoofs. This approach proved to be a generalized feature set 

even for the channel mismatch case. 

• Considering the nonlinearities in the samples of speech, the nonlinear 

prediction of speech was explored. The nonlinearity in the spoofed speech is 

almost equal to the linearity in a spoofed speech which is not the case in 

natural speech. Using this finding, a combination of NLP with LP or LTP 

gave better results along with the traditional LP-LTP combination. 
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• The Fujisaki model was explored for the first time to identify the lacking 

prosodic information in the speech as compared to its traditional use in 

prosody modification for TTS systems. 

• An implicit way of using nonlinear coupling present in the speech production 

mechanism was proposed. This approach was found to detect vocoder-based 

spoofs even with less feature dimension. In addition, it was observed that the 

residue information was resilient enough to detect the spoofed speech in the 

case of signal degradation conditions.  

7.5 Limitations of the Present Research Work  

• Only system-based features worked to certain extend on S10 USS spoof. Such 

low EER was not observed with source-based features or source-system 

interaction features. 

• The system-based features were robust to unknown spoofs, however, not 

robust enough to channel mismatch conditions.  

• Fujisaki model based features may not work well if the spoofed speech has 

used prosody modeling during the speech generation process. In addition, the 

generalization to non-parallel utterances is even more difficult. 

• The channel mismatch was attempted; however, no ground truth regarding 

the actual channel condition is available.  

• The analysis of the thesis is more specific to the ASV spoof and the claims do 

not hold directly for the Blizzard data. 

7.6 Research Issues and Future Research Directions 

Based on the literature presented about spoofing attacks (with and without ASV 

systems for known and unknown attacks), various research issues or gap areas in 

the SSD task can be bought out in the following aspects. 

 

Diversity of spoofing attacks: The ASV spoof database consists of a large number of 

spoofing attacks. However, majority of the spoofing algorithm include variations of 

the VC techniques and less of the SS techniques. Recently, there have been 

significant development in using DNNs for SS techniques [109], [110] that could also 

be included as spoofing techniques. The use systems of Blizzard dataset allows to use 
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recent techniques in SS. However, these are available for very few speakers and 

utterances. For VCS such an evaluation is currently not carried out. The use of VC 

systems of the recently organized Voice Conversion challenge [234] can be an initial 

step towards evaluation of the features to unknown VC spoofs. Recently, in [235], 

the authors show that noisy yet intelligible speech can degrade the performance of 

ASV systems. This can be explored as a potential spoof to be detected. 

 

Direct and physical access: The ASV spoof database does not consider the case of 

physical access. The physical access is the actual spoofing where the speech is played 

back through a microphone into the ASV system. The recently developed Audio-

Visual (AV) spoofing database includes ten realistic spoofing threats generated using 

replay, SS and VC [236]. Although this database consists of 44 speakers that is less 

as compared to the ASV spoof database, the AV spoof database makes provision of 

providing the physical access spoofing attacks to evaluate the countermeasures.  

 

Number of speakers: The ASV spoof database consists of a large number for male and 

female speakers for evaluation as compared to the AV spoof database. The number of 

speakers available through Blizzard challenge dataset is further less. The effect of 

speaker number can be both while training and testing stage. In [70], % EER showed 

improvements as the number of speakers used for training increases. However, this 

changes with the type of spoofing attacks and features. Thus, the anti-spoofing 

measures must also justify their independence or robustness to the number of 

speakers and the speaker's voice under consideration. 

  

Generalization of features:  Generally, vocoder-based spoofs are studied and phase-

based features were initially used. However, with the development of phase-aware 

vocoders (such as AHOCODER [108]), the phase-based features may not be effective. 

Thus, features other than phase-based approaches need more attention. The use of 

features based on subband processing which showed better performance due to 

embedded perceptual information can be explored. The basic idea is that the features 

should be able to detect any spoofed speech generated from any algorithm, 

irrespective of the availability of the spoof in the training set. 
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Channel mismatch conditions: It is highly unlikely that the test spoofed speech will 

be of the same recording condition as used in the training process. The evaluations 

on the Blizzard datasets show the vulnerability of the countermeasures to the 

channel mismatch case. Again, the use of Blizzard dataset is not sufficient due to 

less number of utterances and less number of speakers and the lack of VC systems 

for evaluation. The use of AV spoof database having session variability and which 

has significant speakers can also be explored. 

 

Signal degradation conditions: The available ASV and AV spoof databases considers 

spoofing under clean conditions only. A noisy database is developed by adding 

background noises at various SNR to the ASV spoof challenge 2015 database in [95]. 

This database can be generated for the AV spoof database considering the physical 

access case as well. It needs to be studied further how the diversity in the various 

noise types affects the performance of the SSD system. Rather than evaluating the 

existing features for noisy dataset, the countermeasures must be modified to be 

robust to signal degradation as well. 

 

Performance with ASV systems: Studies have reported alteration in the performance 

of the baseline ASV systems when used with the countermeasures. However, the 

performance of the ASV system should not depend on its joint use of 

countermeasures. In addition, generally, for spoof detection, the FAR is considered. 

However, the features should have lower FRR when used with ASV systems to 

provide better user convenience by lesser rejections of genuine trials. 

 

Performance evaluation: The current evaluation system estimates the EER for each 

of the spoofing algorithm and then averages the EERs (attack-dependent EER). 

However, the realistic approach is to use the attack-independent EER that assumes 

only two classes of natural and spoofed speech. Based on this EER, the individual 

EERs can be obtained by identifying if the likelihood scores for a particular spoof 

(from a specific spoofing algorithm) was greater than or less the threshold. Such an 

approach allows to have a fixed threshold which is a more realistic scenario in case of 

unknown attacks. Hence, research can be directed towards using the attack-

ndependent approach to estimate the EER.   
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