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Abstract

Cloud data outsourcing services can potentially help reduce the IT budget of or-

ganizations. However, they pose significant risks to the security and privacy of

the data as the data is outsourced to untrusted third-party servers. In this thesis,

we propose security mechanisms for cloud data access control using symmetric

key primitives.

The contributions of this thesis are summarized below.

• We critically analyze the two types of key management hierarchy used for

access control in outsourced data: user-based and resource-based. We show

that both types of hierarchy have comparable public storage requirements.

This result disproves a common belief that resource-based hierarchies re-

quire significantly more storage than user-based hierarchies. We also show

that resource-based hierarchies are more efficient in terms of computation

and communication cost as compared to user-based hierarchies with respect

to dynamic operations. The performance evaluation of dynamic operations

is shown experimentally.

• We design a subscription-based hierarchical key assignment scheme with

single key storage per user. Our construction is based on indirect key deriva-

tion with dependent keys. It reduces the public storage requirement of ex-

isting schemes, while also reducing the secret storage cost at the central au-

thority. The scheme is formally analyzed using the provable security notion

of key non-recovery. To our knowledge, this would be the first hierarchi-

cal key assignment scheme using dependent keys with a rigorous security

proof.

vii



• A weakness of existing write access control schemes is that a write autho-

rized user can modify the files written by him even after the write privilege

is revoked. We propose audit-based protocols so that if any unauthorized

writes are performed they can be detected by the data owner. The proto-

cols are implemented on Microsoft Azure platform and it is shown that the

suggested mechanisms are viable in practice.

It is important to ensure that the read operation returns the latest updated

version of the requested file. The service provider may misbehave by send-

ing an old version of a file instead of the current version. If the read oper-

ation returns stale data, the reader may be mislead. We propose an audit-

based mechanism that provides a strong freshness guarantee ensuring that

the file returned by the read operation is fresh at least until the time when

the file was sent by the service provider.

• A cloud-based personal health record (PHR) management system allows a

user to store, share and update her outsourced PHR data, access online med-

ical services, at anytime and from anywhere. Unlinkability is an essential

privacy requirement for such system which ensures that PHR data cannot be

linked to its owner. However, a cloud service provider can still observe the

linkage between them as it can observe the traffic. We propose a symmetric

key based PHR management system that provides a stronger privacy guar-

antee called unobservability. Unobservability implies unlinkability between

the communicating parties against a malicious service provider, whereas the

converse is not true.
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CHAPTER 1

Motivation and overview

In the present digital age, information and communications technology plays a significant

role in day-to-day life. Information can be gathered, stored in a computer or communica-

tion system, and shared by a large number of users. In recent years, data outsourcing in

the cloud has emerged as an attractive solution for small scale IT organizations having a

huge amount of data and large global user base. An organization can outsource its data to

a third party cloud service provider that stores the data and allows the authorized users to

access it. However, since the cloud service provider is an independent entity, it cannot be

trusted by the data owner.

In this chapter, we discuss the security, privacy and efficiency issues related to the read

and write access to outsourced data, and outline our contributions.

1.1 Introduction

The loss of control over its data presents a serious risk to the business operations

of any organization. An important security goal is to ensure that no unautho-

rized user can access any sensitive corporate data. This goal is known as “access

control”. There are two basic types of access permission: read and write. A read

authorized user can only read the file’s content, whereas a write authorized user

can write a new file or modify the content of an existing file. There are non-

cryptographic techniques to implement access control mechanisms such as file

access control in an operating system. However, they will not work in data out-

sourcing scenario as the cloud service provider is untrusted. We therefore con-

sider the use of cryptographic access control to protect against unauthorized read

1



and detect unauthorized writes by any unauthorized user including the cloud

service provider.

The data files are encrypted by the data owner before outsourcing them to the

cloud. For read access control, each data file for which certain users are autho-

rized is encrypted with a distinct secret key. The keys are then distributed to the

authorized users who can now retrieve the outsourced encrypted data file directly

from the cloud server and decrypt it.

As with read access control, write access control ensures that only write au-

thorized users can write the outsourced data files. A read authorized user can

access a resource (or file) only if it has the corresponding decryption key. As we

assume that the service provider is untrusted, it may allow unauthorized write

access, which can significantly affect the data owner’s business operations.

Two basic types of cryptographic systems can be used for enforcing access con-

trol: asymmetric key-based and symmetric key-based. Asymmetric cryptosys-

tems use different keys for encryption and decryption operation, whereas sym-

metric systems use the same key for both the operations. There exist schemes

([1, 2, 3]) which implement access control using Attribute-Based Encryption (ABE)

[4]. We note that all such schemes require a trusted third party to manage the sys-

tem attributes. These schemes require a large number of keys to be stored at each

user, i.e., one corresponding to each attribute he/she is authorized for. A sym-

metric key-based cryptosystem uses comparatively smaller key size and the cost

of encryption/ decryption operations is less than in the ABE.

In this thesis, we explore symmetric key-based cryptographic access control

techniques or approaches as they are more efficient than those based on advanced

cryptographic primitives. We address enforcement of dynamic changes to access

rights as it is an important aspect of access control. An example of dynamic oper-

ation is extending or revoking read (or write) access permission for a user. Also,

privacy related issues in data outsourcing are explored.

In what follows, we give a short introduction to access right revocation and

data privacy in data outsourcing scenario. Section 1.2 will discuss the considered

reference architecture and related security requirements will be discussed in Sec-

2



tion 1.3. Section 1.4 will give an overview of our contributions in this thesis.

1.1.1 Revocation

An important security requirement related to access control is “access right re-

vocation”. The goal of revocation is to ensure that a user whose access right is

revoked cannot access any update of the revoked resource (or data file) which is

published after revocation. Fu et al. proposed lazy revocation [5] to handle access

right revocation, i.e., a revoked file is re-encrypted only when the file is modified

for the first time after being revoked. It is challenging to enforce revocation in

the cloud outsourcing scenario because it requires cooperation between the data

owner and the service provider. The revocation mechanism must be efficient, i.e.,

it should not impact a large number of users or resources.

1.1.2 Data privacy

Data privacy deals with the ability of an individual to determine what information

can be shared with others [6]. It is a concern related to disclosure of personal in-

formation. Anonymity is a privacy property. User anonymity is the state of a user

being not identifiable within a set of users, the anonymity set [7]. It ensures that

a user involved in some transaction be non-linkable with the transaction. Simi-

larly, anonymous message refers to a message that does not reveal its originator’s

identity.

The use of encryption does not hide the linkage between a sender and the

message that is sent, or the linkage between the two communicating parties. An

adversary can see the corresponding packet header and view the identity infor-

mation of communicating parties. The linkage information may cause a breach of

privacy. For example, if it becomes known that a patient is communicating with a

specialty doctor such as a psychiatrist, this will reveal the type of illness.

Sometimes it is desired that a user can establish a long-term relationship to

his/her data, without revealing his/her association to the data item. This is es-

pecially needed in a privacy enabled data outsourcing application, such as, cloud-

based e-Health management system where the user’s private medical data is stored

3



with an untrusted cloud service provider. A mechanism of establishing a long-

term relationship between a user and his/her data is by using pseudonyms [8]. It

associates a unique identifier with a data item used by the authorized users to ac-

cess the data. A unique identifier can be an account number, nickname, etc. Such

identifiers cannot be trivially linked to a user, thus ensuring message anonymity.

However, such pseudonymization process requires a trusted third party which

stores the linking information and helps the document receivers to link it to its

owner. Although the pseudonymization process provides unlinkability, it does

not provide unobservability which is a stronger privacy guarantee. Unobserv-

ability of an item of interest (the resource) means its undetectability against all

subjects (may be an outsider such as the cloud service provider) uninvolved in it

[7]. It is to be noted that unlinkability does not imply unobservability, whereas

the converse is true [7]. This is true because using network traffic analysis one can

identify who communicates with whom.

1.2 Reference architecture

A typical data outsourcing architecture as shown in Figure 1.1, consists of three

entities, viz., a data owner, a cloud service provider (CSP), and the end users. We

consider the user-read-write setting (in contrast to the owner-write-user-read set-

ting in [9, 10, 11]), where a user can have both read and write access permissions

to the outsourced files. An example of the user-read-write setting is a blog on

social networking site where a user can read every blog and write her own. Sim-

ilarly, an example of the owner-write-user-read setting is an online e-Newspaper,

where a publisher writes the news content and online users are the readers.

There are two types of write privileges: write-with-read [12] and write-with-

or-without-read [13]. In the first type, a user can have write access only if she has

read access to the file, i.e., a user can read and modify the existing file content. Two

examples of this kind are Google docs where many users can update a document

at the same time, and blog writing on social networking sites. In the second type,

a user can have write access to a file without having read access, i.e., such user
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Figure 1.1: A typical cloud architecture

can only write a new file to the server. An example of this type is the dropbox-

like behavior of directories where one can only drop (or store) the data files and

cannot read any file from the directory.

The data owner is assumed to have read and write access to all the outsourced

files. It is assumed that only the data owner can delete these files; the other au-

thorized users can only read and write them. The CSP mediates access to the

outsourced data based on the access control policy defined by the data owner.

The end users first register with the data owner and are issued some access cre-

dentials. Upon a read request, the CSP authenticates the user and responds with

the requested resource. The end users send their access requests directly to the

CSP, instead through the data owner. This reduces the computational load on the

data owner. We assume that the CSP is always on-line, whereas the data owner

may be off-line.

For the purpose of security analysis, CSP behavior has been classified into four

types as discussed by Arapinis et al. [14]: honest, honest-but-curious, malicious-

but-cautious and malicious. For read access scenario, a standard assumption

about the CSP is that it is “honest-but-curious”, i.e., it does not launch any ac-

tive attack. However, it may launch passive attacks such as data eavesdropping.

The assumption that the CSP is honest-but-cautious is not appropriate for write

access control, since the write operation is executed under the supervision of the

CSP and an unauthorized modification to a file can ruin the data owner’s business

operations. Therefore for write access, we consider “malicious-but-cautious” CSP

that launches no attack that leads to any provable trace, i.e., one cannot prove
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that the misbehavior is done by the CSP. We do not consider the last type, i.e.,

malicious since it can have negative effects on the CSP. Such CSP may launch ac-

tive attacks and may collude with the unauthorized users in order to access the

outsourced content. It may maliciously provide wrong information or deny any

authorized user’s request. If it is found that the CSP has engaged in some activity

that violates the business agreement with the data owner, the data owner may

blacklist the CSP.

In a distributed cloud system, the data is cloned at multiple servers to allow

fast data access from closest server and data recovery in emergency situations

such as a server crash. At the time of write access, a file is modified or updated

by a write authorized user on the closest server. The CSP then propagates the

updates to other servers. The outsourced data can be accessed by multiple users

concurrently. The cloud is responsible to ensure that users see a coherent view of

the stored data files.

1.2.1 Data consistency and serializability

As defined in traditional database management systems, a transaction is a group

of one or more read and write operations over one or more data items. It is desir-

able that concurrent transactions do not change a data item in such a way that the

resulting view of the data is incorrect. For example, consider two transactions, T1

and T2, containing two operations read and then write to some data item x (de-

noted, read(x) and write(x), respectively). A schedule is shown in Figure 1.2 and

is written as

T1 : read(x)→ T2 : read(x)→ T1 : write(x)→ T2 : write(x)

A schedule is called serializable if it is equivalent to some serial execution of

the transactions. It is the commonly accepted criterion for database correctness.

The above schedule is not serializable. This is because it is not equivalent to either

T1→T2 or T2→T1. The reason is that both of the write operations (T1:write(x)

and T2:write(x)) have updated over the same value in the read operation. The
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first update of T1 is lost as it is overwritten by the second update of T2. Following

two types of sequence of operations can result in non-serialized (also known as

conflict serialized) schedule: read-write and write-write.

Figure 1.2: A non-serializable schedule

Data consistency ensures that the execution of concurrent transactions will

be equivalent to some serial schedule of the transactions (also known as write-

serializability [15]). For example, a concurrent execution of the two transactions

T1 and T2 will be same (or consistent) as either a schedule where T1 executed

before T2 or where T2 executed before T1.

In a data outsourcing scenario with the untrusted service provider and con-

current transactions, it is an essential requirement to enforce write-serializability,

in the absence of which the service provider can maliciously delete an impor-

tant update from the storage. For example in the case of two transactions with

read-write operations sequence, the service provider can execute just one out of

the two. Recent works ([15, 12, 16]) use timestamps or multi-versioning to en-

force write-serializability in data outsourcing transactions. Timestamps capture

the time when a transaction happened. Versioning ([17]) assigns an incremental

sequence number to each write operation on a data item.

1.2.2 Types of consistency

In the literature [16, 18] there are three notions of data consistency: strong consis-

tency, weak eventual consistency, and strong eventual consistency.

Strong consistency ensures that updates are visible to all readers at the same

time, i.e., the update is not visible until the updated value is replicated at all nodes.

It requires that all accesses to any copy of that data are blocked (or locked) until

that time. Therefore, it guarantees that a read will always return the most recent

copy. The strong consistency model is required for real-time systems such as e-
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banking. It is noted here that implementing strong consistency negatively affects

the availability requirement.

A weak eventual consistency model guarantees that the system will eventually

become consistent and have the most up-to-date version of data for all copies. A

read returns the version it finds first, whether or not it is the most recent version. It

has better data availability as compare to strong consistency. An example includes

logging data for weather forecasting applications where one or two hours stale

data may not have any adverse effect.

A strong eventual consistency model guarantees that any two nodes that have

received updates over the same data item will be in the same state. An example

of the use of strong eventual consistency is online bidding application.

1.3 Security requirements

We list below some security requirements that are commonly considered for ac-

cess control on outsourced data [15, 19, 12]. Our security model does not consider

malicious clients.

Data confidentiality The data confidentiality is a set of rules that prevents access

to the data from unauthorized users. In data outsourcing scenario, it ensures that

no unauthorized user including the CSP can access the outsourced data. This

requirement is important when an organization outsources it’s secret data to an

untrusted CSP.

Data integrity The data integrity property is the assurance that the data has

not been modified by unauthorized users. In data outsourcing scenario, it en-

sures that no unauthorized user (including the CSP) can update or modify the

outsourced content even if they collude. An update here means writing a new

version of a data file and by modifying a file we mean altering the content of the

file.
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Write-serializability In database management system, serializability ensures that

a schedule for executing concurrent transactions is equivalent to one that executes

the transactions serially in some order. While data versioning, a copy of the orig-

inal file is kept and modified file is kept as a new version. Therefore, a sequence

of versions is stored for each data file. In data outsourcing scenario, a malicious

CSP may hide an unauthorized user’s update from the data owner while making

it visible to the other authorized readers. This will mislead the readers including

the data owner. The “write-serializability” property ensures that all users will see

all versions of a resource in the same order as they are updated by various users

[15]. It ensures strong eventual consistency, i.e., each update is written on the

latest update.

Freshness The freshness property implies that the viewed data is recent and not

replayed by an adversary. It ensures that a read operation will always fetch the

latest updated version of the requested resource. The stale data may mislead the

readers in many time-sensitive applications. For example, in a stock market ap-

plication, a small delay in updating the bid price can cause a huge loss to a bidder.

Similarly, a small delay in getting the current status of seat allocation in a railway

reservation system may prevent a user from getting a confirmed seat reserva-

tion. The freshness requirement should be relaxed since staleness cannot be fully

avoided in a distributed setting due to the delay in data replication process.

Access right revocation It implies removal of access right permissions for an

object from a previously authorized user. A user whose access rights are revoked

should not be able to access any new or modified file which is published or mod-

ified after revocation.

1.3.1 Application: Cloud-based e-Health

E-Health effectively uses information and communication technology to provide

health-related services to end users. A primary objective of an e-Health system is

to efficiently manage its users’ e-Health data, providing faster access to health ser-
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vices. Personal health record (PHR) has emerged as a prominent e-Health model

that is controlled and managed entirely by the individual. PHR is a collection of

private health related information of an individual [20]. A record management

system for personal health records is called personal health record management

system (PHRMS). A cloud-based PHRMS allows a user with resource constrained

device to store, share and update her outsourced PHR data, access different medi-

cal services online, anytime and from anywhere. Security and privacy of the PHR

data are the major concerns in cloud-based e-Health [21].

PHRMS architecture

As shown in Figure 1.3, a typical PHRMS has two types of user: primary user

and the secondary user. A primary user is an entity such as a PHR owner or a

doctor. A secondary user is an entity such as surveyor or researcher. The PHR

owner will create, maintain and allow authorized access to her PHR. A doctor

can generate medical prescriptions and progressive notes as and when requested

by the PHR owner. The PHR service provider performs the following functions:

users registration, store and maintain each user’s PHR information, and process

service requests of authorized users.

Figure 1.3: A reference architecture for PHRMS

We list below two important privacy requirements for a PHRMS:

Data unlinkability Unlinkability of two or more items of interest (IOIs, e.g.,

subjects, messages, actions, ...) from an attacker’s perspective means that within

the system, the attacker cannot sufficiently distinguish whether these IOIs are re-

lated or not [7]. In the considered scenario, it ensures that no unauthorized user

including the cloud service provider can link a user’s identity with his PHR. The
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service provider can link a document with its owner while observing the real-time

communication between the entities if the same pseudonym is used more than

once [7]. The use of distinct pseudonym per document is difficult to achieve in

healthcare systems where documents are stored on third party servers. Therefore,

a secure communication healthcare architecture is needed where data access pat-

terns are unobservable by an adversary who can sniff the communication traffic.

The dotted line in Figure 1.3 represents a link where at least one end is connected

with a primary user. Such links are vulnerable to privacy threats and are required

to be unobservable.

Forward secrecy This property ensures that a user cannot access any future

version of a resource using expired credentials. For example, access to future

e-Health record information by the doctor using expired credentials must be re-

stricted (forward secrecy), since the patient may change her doctor at any time. It

is different then revocation in a way that access rights are not forcedly revoked,

however they get expired as the consulting session between a patient and her doc-

tor ends. If forward secrecy is not provided, an unauthorized doctor can see the

patient’s future consultation information, such as to whom she is consulting and

what prescriptions she is getting. In general, a patient may not want to disclose

their PHR information to any person including a doctor without her consent.

1.3.2 Other requirements

Below we briefly describe some of the other security requirements that are not in

the scope of this thesis but presented here for the sake of better understanding our

system.

Proof of storage It is important for a data owner to verify its outsourced data

against any undesired modification intentionally or unintentionally. Ideally, it re-

quires downloading the whole data locally by the data owner and verify it when-

ever needed which is an inefficient process. The proof of storage ensures that a

data owner or an auditor (on behalf of the data owner) can verify the integrity of
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its outsourced data without downloading the whole data locally [22].

The data owner constructs queries for a set of randomly selected resources for

which the service provider sends back a response. The response messages are then

verified by the data owner. Additionally, the time it takes to receive a response

can be used as a proof of geographic location where the resource is stored [23].

Assured data deletion This property ensures that after a file delete operation

takes place the file will be permanently inaccessible. If all copies of the file are

not removed from the cloud, then a malicious party may be able to access the

data. Assured deletion also ensures that the data owner does not have to pay for

unwanted storage [24].

Searchable encryption This enables secure search queries over encrypted sensi-

tive data without disclosing any information about the data or search query [25].

The objective is to preserve user privacy involved in the search operation. For

efficiency reasons, keyword-based search techniques are generally used. The in-

tegrity of the query results needs to be verified by the user [26].

1.4 Our contributions

In this section, we outline the contributions of this thesis.

1.4.1 Read access control

Analysis of key management hierarchies To reduce the amount of secret stor-

age, key management hierarchies are generally used. A key management hierarchy

can be represented as a directed acyclic graph, where a key is assigned to each

node in the graph. Each file is associated with some node and is encrypted with

the key of that node. The edges of the graph represent the direction of key deriva-

tion. The relationship among the keys is such that using a key one can efficiently

compute any descendant node’s key. Also, it is computationally infeasible to de-

rive a key corresponding to a non-descendant node.
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There are two existing types of key management hierarchy for data outsourc-

ing: user-based [13, 12] and resource-based [27]. In a user-based hierarchy, each

node represents a set of users having access to that node’s key. On the other hand,

each node of a resource-based hierarchy represents a subset of resources such that

a user having access to the node’s key can access each resource associated with

the node.

When considering dynamic operations such as extending read access and user

revocation, we will show in Chapter 2 that the resource-based hierarchy has a sig-

nificant advantage over user-based hierarchy. To perform the extend read access

operation on a user-based hierarchy, it is necessary to re-encrypt the resource. In

the resource-based hierarchy, no such resource re-encryption is needed. Similarly,

to perform user revocation, the user hierarchy is required to be modified, whereas

in the case of resource hierarchy the hierarchy structure is kept intact. Therefore,

to effectively deploy these common dynamic operations, we recommend the use

of resource-based hierarchies for key management. We have implemented both

types of hierarchy to demonstrate our analytical results experimentally.

Let R be the set of resources. Then there are 2|R| subsets of R, where |R| denotes

the cardinality of R. Consider a resource hierarchy that contains a unique node for

each possible subset of R. Clearly, the number of internal nodes will be equal to

2|R|. Let U be the set of users. Now consider a user hierarchy that contains a node

for each possible subset of U. Clearly, the number of internal nodes will be equal

to 2|U|. If we assume |U| < |R|, then the resource hierarchy will take more space

than the user hierarchy. However, as we shall show in Chapter 2, both types of

hierarchy do not require more than O(|R|) space (a part of this work is published

in [28]).

New key assignment scheme A hierarchical key assignment scheme (HKAS)

[29, 30] is a method for assigning encryption keys and private information to each

node in the hierarchy in such a way that using a node’s key it is feasible to derive

the keys of its descendants, whereas it is infeasible to derive the key of any other

node.

There are specialized kinds of applications which require subscription-based
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(or time-bound) access to the data. For example, in a digital pay-TV system, the

service provider organizes the channels into several possible subscription pack-

ages that can be accessed by the authorized users for a fixed period of time.

A subscription-based HKAS (or SBHKAS) assigns keys in a subscription hi-

erarchy so that a user subscribed to a node in the hierarchy can efficiently access

(only) its authorized subscription keys. Recently proposed SBHKASs [31, 32, 33,

34, 35, 36] require a single secret key per user and large amount of public storage.

A trusted Central Authority (CA) will generate, assign and maintain secret keys

in the system. In our architecture, the data owner works as a CA who will gener-

ate secret keys and then distribute them among the authorized users. The secret

keys are never disclosed to the untrusted cloud service provider. We have de-

signed an alternative scheme using indirect key derivation with dependent keys

[37]. The proposed scheme reduces the secret storage at CA and public storage (as

compared to the most promising scheme by Crampton [36]). It reduces the secret

storage at CA to one key and improves the public storage by a factor of ≈ 3/8

with same key derivation cost. For example, a weekly subscription hierarchy for

10 years will contain 260261 nodes 1. Then the public storage cost of Crampton’s

scheme will be 2.7 lakh edges, whereas the proposed scheme has a storage cost of

1.7 lakh edges.

We have carried out a formal security proof of the proposed SBHKAS using

modern notion of security known as “key recovery”. This would be the first prov-

able security style proof for any dependent SBHKAS in the literature. In the exist-

ing schemes (Atallah et al. [38, 30] and D’Arco et al. [39]) with independent keys,

the information related to a node and its successor is only in the public informa-

tion. In the schemes with dependent keys, the related information is also found in

the secret keys. Atallah et al. constructed the proof by breaking the dependency

in the public information, using which a node can derive its successor’s key. They

used an assumption based on the security of pseudo random functions and then

using an adversary against their scheme, they constructed a probabilistic polyno-

1The number of nodes in a subscription hierarchy with n leaf nodes is n(n + 1)/2. Therefore,
the number of nodes in a subscription hierarchy with 520 leaf nodes (the number of weeks in 10
years) is (520× 521)/2, i.e., 260261
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mial time algorithm to break the security of pseudo random functions. In case of

dependent scheme, we need to use different assumption (i.e., preimage resistance)

because the information is scattered and present even in the secret keys of sib-

lings of all the nodes encountered in the path from root node to target node. So,

we have to replace this information with random strings.

Access right revocation The goal of revocation is to prevent a user from access-

ing a resource in future. As an example of a scheme that fails to provide security

against a revoked user, we consider a SBHKAS proposed by Vimercati et al. [40].

Consider a hierarchy shown in Figure 1.4 (a) where user u is subscribed for

time interval from Jan to May. Suppose a user u withdraws his subscription for

the months of Apr and May (before the start of Apr). The data owner will first

update u’s subscription with Jan−Mar. Since the node Jan−Mar is present in

the subscription hierarchy, data owner will compute and publish public link from

u to Jan−Mar. The updated subscription hierarchy is shown in Figure 1.4 (b).

Figure 1.4: (a) User u subscribes for Jan−May and user u1 subscribes for Apr−
Jun (b) Subscription withdrawn by user u for Apr and May months.

In the example, a user after withdrawal of his subscription can still have unau-

thorized access to revoked data files. Consider the hierarchy given in Figure

1.4(a), a user u with key Ku is initially subscribed for Jan − May using which

he can compute encryption keys of leaf nodes with a subscription from Jan to

May months. After the withdrawal of subscription for Apr and May, u can still

decrypt data files for subscription nodes Apr and May using his old subscription

keys and public information. This is because the subscription keys of nodes from

Jan to May are not changed by subscription withdrawal procedure defined by
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them. An alternate link to the new subscription node is given to the user dur-

ing subscription withdrawal procedure as shown in Figure 1.4 (b). The rest of

the hierarchy is not updated or re-keyed. Therefore, a user in possession of old

subscription keys can still have an unauthorized access to old subscription nodes’

data files.

The re-keying operation [29, 30] assigns new keys to the (affected) set of data

files and re-encrypts them with new keys. Although the re-keying operation will

restrict a user from accessing their revoked resources, it requires re-encryption of

all the descendant resources with fresh keys and re-distribution of these new keys

among all existing authorized users. This operation is very costly when working

with outsourced data. It requires the re-encryption operation over outsourced

data, by the data owner.

Wang et al. [9] proposed a revocation scheme for outsourced data that avoids

re-encryption. A detailed description of their scheme is given in Section 2.5.1. In

their scheme re-encryption is not at all required for revocation, whereas in the

case of lazy-revocation it is delayed. Each user is assigned an authorization cer-

tificate by the data owner. When an access authorization is changed in Wang et

al. scheme, a significant amount of computation and communication overhead is

needed at data owner to compute each existing certificate again and re-distribute

these among the users. The certificate needs to be updated because it contains a

common index number which needs to be updated on each change to the access

control policy. Therefore, the system does not scale with a large number of users

in which changes in users’ access rights are frequent.

We have proposed modifications to Wang et al. scheme to avoid the bottleneck

at the data owner [41]. Our proposal is detailed in Section 2.5.2. Table 1.1 shows

the advantages over Wang et al. scheme.

1.4.2 Write access control

The goal of write access control is to prevent write access by unauthorized users.

A file updated by a user is committed by the CSP without the involvement of

the data owner. As the CSP is a third party, it can allow a malicious write oper-
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Table 1.1: Comparison of Wang et al. scheme and proposed modified scheme

Wang et al. Proposed
scheme scheme

Effect of a user revocation on each user requires new Independent
other users access certificate for further access

Subscription extension/revocation O(|U|) O(1)
cost at data owner

ation without the data owner noticing the unauthorized write. For example, the

dishonest CSP can allow a revoked user to modify an existing file. We therefore

assume that the CSP is “malicious-but-cautious” type.

In what follows, we discuss a scenario where a user in collusion with CSP can

perform an unauthorized file modification, i.e., violating data integrity property.

Existing work on write access control [42, 43, 15, 12] do not address such scenario.

Scenario: Suppose that an authorized user Alice has just performed a write op-

eration on some file F. Further, suppose that no another user has performed a

write operation on F after Alice’s write. In this situation, the CSP may misbehave

by omitting a previous version written by Alice. That is, it allows Alice to modify

the contents of F without creating a new version. Modifying a file here means

altering the content of the file. This is a matter of concern even if the user is an

authorized writer. For example, in an e-Health system, if a medical prescription

is published by a Doctor, the patient will immediately startup following the pre-

scribed medication. The patient will then not allow any modification in the stored

e-prescription without his knowledge. However, it may happen that the doctor

later realizes that the published prescription has a wrong medicine which may

lead to some legal action or embarrassment for him. In this event, the doctor can

collude with the service provider to modify the prescription stored at the server

in order to avoid any legal consequences. Now nobody including the patient can

frame any charges against the doctor once the outsourced prescription is modi-

fied.

Similarly, in the case of user’s access right revocation, i.e., the revoked user can
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collude with the CSP and modify their latest committed version (s) of a resource

whose access right is now revoked. Such unauthorized write becomes possible

when the record is not updated by the data owner after its access right is revoked.

We assume that expired write authorization credentials of the resource are avail-

able with its writer.

In the outsourcing scenario, the write operation is executed by an authorized

user directly at the untrusted CSP. Therefore, the data owner requires a posterior

procedure to verify the write operation. Auditing is a well-known posterior mis-

behavior detection mechanism. It will detect the misbehavior at some later time

and take an appropriate action to avoid it in future. In the outsourcing scenario,

the auditing process is executed by the data owner at regular intervals of time.

To address the above discussed threat, we propose an audit-based protocol (in

Chapter 4.3) so that a write authorized user who colludes with the CSP is not able

to modify even their own written data files, after a fixed amount of time. If the

cloud allows a user to modify the file, it will be detected during the audit process

by the data owner and charges can be framed against the misbehaving party. We

also propose a protocol so that a revoked user who colludes with the CSP is not

able to modify their written data files. We have implemented the above proto-

cols on Microsoft Azure platform. The implementation shows that the suggested

mechanisms are viable in practice.

Data freshness If the CSP deliberately sends a stale version of some resource to

a reader, it must be detectable by the data owner. Also, it is desirable to reduce

the read staleness (or improving freshness guarantee) as much as possible.

We examine the staleness problem and improve on the freshness guarantee

as compared to the existing works. The scheme in [15] provides version-based

staleness, i.e., a read returns one of the kth latest version. The parameter k is fixed

and depends on the time required by a data record to reach a reader. The works

in [44, 12] use timestamp stored securely with each record version that assures the

time when it was written. Bailis et al. [45] combine the above two (version and

timestamp based staleness) to define the notion of < k, t >-staleness. It ensures

that a read request which begins t time units after the write commit operation
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returns one of the last k updated versions. All the above discussed notions for

staleness will not guarantee that the file is fresh as the last update. For example,

in a bidding application, if a reader does not read the last updated file it may have

an adverse effect on the reader’s business operations. Our proposed mechanism

described in Chapter 4 ensures that a file retrieved from the cloud server is fresh

at least until the time when the file is dispatched by the CSP to the reader. In case

the stale data is dispatched by the CSP during a read request, it will be detected

by the data owner (a part of this work is published in [46]).

1.4.3 Privacy enabled access control

Pseudonymisation is a well-known unlinkability technique used in existing PHRMSs

[8]. The basic idea is to identify field of a user or a file is replaced by a unique iden-

tifier called a pseudonym. The pseudonyms are stored in encrypted form. Only a

user capable of decrypting the pseudonym (the process is called de-pseudonymisation)

can find a link between the document and the patient. In PHR systems, a doctor

needs to decrypt the patient’s PHR; therefore, the processes of de-pseudonymisation

and pseudonymisation must be separated. This separation is generally imple-

mented using asymmetric keys and requires a trusted third party for de-pseudonymisation

process. This will allow a separation but with a significant computation cost [47].

Pseudonymisation-based techniques can be used for achieving unlinkable re-

lationships between the resources and their IDs in a system where all communi-

cating entities are trusted. However, an adversary who can observe or control the

network communication may find the linkability between them. In data outsourc-

ing scenario, the untrusted cloud service provider who controls the traffic may

observe the communication and break the unlinkability. Therefore, we require a

stronger privacy property, namely unobservability which ensures that even after

observing the network traffic one cannot find the linkage between the commu-

nicating parties. Formally, unobservability of an item of interest (the resource)

means its undetectability against all subjects (may be an outsider such as CSP)

uninvolved in it [7].

In our proposed cloud-based PHRMS scheme described in Chapter 5, we achieve
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unobservability property, which implies unlinkability. We use an existing concept

called mix node [48] to implement unobservable communication (or unobserv-

ability) between a user and its PHR information. The mix node is used to create

an anonymous channel between the communicating parties (a part of this work is

published in [49]).

We conducted a formal analysis using Proverif [50] to verify that the presence

of mix node among the communicating parties makes the communication un-

observable. Two protocols are designed, viz., medical prescription (or progress

notes) publishing protocol and laboratory report publishing protocol. The proto-

cols are formally analyzed against an adversary who can observe the communi-

cation.

We show that our scheme enjoys the forward secrecy property so that a current

consulting doctor is prevented from accessing any future document in a patient’s

PHR, using expired access authorization secrets. To the best of our knowledge,

forward security property in PHRMS is not previously addressed in the literature.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 gives a detailed evalua-

tion of user and resource-based hierarchies. Chapter 3 gives the construction for

the proposed subscription-based hierarchical key assignment scheme. Chapter 4

discusses the issues related to unauthorized write access and freshness property,

and gives our proposed solutions. In chapter 5, we propose a privacy enabled

cloud-based personal health record management system. Finally, we conclude

the thesis in Chapter 6.
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CHAPTER 2

Key management for read access control

Key management is an essential component of cryptographic read access control. Man-

aging a large number of secret keys is a challenge for the organization that outsourced its

data. An important objective of key management is to reduce the secret key storage with

each authorized user. To this end, this chapter discusses an important tool: key manage-

ment hierarchy. We critically evaluate two existing types of key management hierarchy

for data outsourcing in cloud.

In a cryptographic system, revocation can be achieved through the so-called re-keying

operation. This operation assigns new keys to all the affected nodes in the hierarchy. The

respective outsourced resources are re-encrypted with the newly assigned keys. Wang et

al. proposed a scheme for handling access right revocation without re-keying. We identify

an inefficient feature of their scheme that makes it unscalable and propose a modification

that can handle a large number of users.

2.1 Access control matrix representation

An authorization policy defines who can access what resource. Access authoriza-

tions are generally defined using an Access Control Matrix (ACM). We assume

each user has read authorization for some resource. An ACM can be represented

in two ways, either as a collection of Access Control Lists (ACLs) or CaPability

Lists (CPLs). An ACL corresponding to a resource is the set of users who are au-

thorized to read the resource. On the other hand, a CPL is the set of resources for

which a given user has read authorization. Both are dual of each other.

For example, consider a system with four users A, B, C, D and four resources
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Figure 2.1: An example access control matrix as (i) ACLs (ii) CPLs.

a, b, c, d. An example of ACM is shown in Figure 2.1. In table (i), each row rep-

resents an ACL. acl[o] represents an ACL corresponding to resource o, i.e., the set

of users who are authorized to read o. The entry acl[a] = {A, B, C, D} means that

the resource a can be read by the users A, B, C and D. Similarly, in table (ii), each

row represents a CPL. cpl[u] represents a CPL corresponding to user u, i.e., the

set of resources for which u has read authorization. The entry cpl[A] = {a, c, d}

means that the user A can access the resources a, c and d.

In general, a resource can be accessed by a group of users. A subset of these

users may be authorized to access another resource. For example, resource a can

be accessed by users A, B, C and D. The subsets {C, D} and {A, B} are authorized

to access resources b and c, d, respectively. The relationships between user subsets

can be represented using a hierarchy structure as shown in Figure 2.2 (i). In the

hierarchy, each node is labeled by a subset of users, hence the name user-based

hierarchy (or user hierarchy). For example, user B (in HKAS) can access the de-

scendant nodes AB and ABCD, and hence can access the associated resources,

i.e., c, d and a, respectively.

Figure 2.2: Example hierarchy structures based on (i) ACLs (ii) CPLs.

Consider the hierarchy shown in Figure 2.2 (ii), where the nodes other than

the individual user nodes represent resource groupings. This type of hierarchy is

called a resource-based hierarchy. In the figure, user A can access all the resources
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a, b, c, d, whereas user D can only access a and b.

To enforce the restriction that a user can read only its (descendant) autho-

rized resources, the nodes are assigned keys using a hierarchical key assignment

scheme (HKAS) given in [51]. A HKAS is a pair of algorithms (Gen, Der). The al-

gorithm Gen generates and assigns keys to the nodes in the hierarchy. A resource

is encrypted with its associated node’s key. The Der algorithm derives a node’s

key using an ancestor node’s key and public values.

In the following section, we review two types of key management hierarchy

(KMH) previously proposed in the literature: user-based and resource-based. We

critically compare the two hierarchy types with respect to their static structure.

Section 2.3 gives the procedures for dynamic operations such as granting and re-

voking read access. It compares the two hierarchy types with respect to dynamic

characteristics. In Section 2.4, operations for both hierarchy types are experimen-

tally evaluated and compared. In Section 2.5, we analyze an access right revoca-

tion scheme that avoids re-keying (traditionally used to avoid a revoked access)

and give a modified efficient scheme for the same. For the sake of readability, the

notations used in this chapter are listed in Table 2.1.

Table 2.1: Notations used

Notation Description
a, b, c, ... Resources

A, B, C, ... End users
Ki Random key assigned to node i

e(i, j) A directed edge from node i to node j
ri,j A public token associated with an edge e(i, j)

E() Symmetric encryption function
E and D A symmetric encryption and decryption operation

C A communication between data owner and CSP
acl[o] A set of read authorized users for the resource o
[X] It represents a node corresponding to set X of users/resources
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2.2 KMH: definitions and properties

In a key management hierarchy, each user is assigned a fixed number of keys

using which she can derive the rest of the authorized keys. The design goals of a

key management hierarchy are to minimize the cost of secret key storage per user,

system public storage, and key derivation time.

2.2.1 User-based hierarchies

In this section, we review user-based key management hierarchies ([52, 13, 27, 12])

for enforcing data access control. Following Blundo et al. [52], a user graph is

defined as follows, where each node represents a group of users and v0 is the root

node. In the definition, notation v.acl represents a set of users that can access the

node v’s key.

Definition 1 (User graph). A user graph over a given set of users U, denoted GU,

is a graph (VU, EU) rooted at node v0, where VU is the power set of U and EU =

{e(vi, vj)|vi.acl ⊂ vj.acl}.

It follows from Definition 1 that v0 is a root node, there is a node correspond-

ing to each subset of users and there is a directed path from each node vi to node

vj with vi.acl ⊂ vj.acl. Also, there is an edge from the root node to each sin-

gle user node. Figure 2.3 shows Hasse diagram of a user graph with four users

{A, B, C, D}. For simplicity, the edges that are implied by other edges are not

shown in the figure.

Figure 2.3: A user graph over a set {A, B, C, D} of four users.

In a user graph, each user stores only one secret key corresponding to its re-

spective node in the graph. For example, knowledge of key assigned to node
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A is sufficient to derive the keys assigned to nodes AB, AC, AD, ABC, ABD and

ABCD, respectively. Note that a user graph is a worst case graph over a set of

users, i.e., it contains a node for every possible grouping of users in the given user

set and an edge between every related pair of nodes. It contains one hop distance

to reach any descendant node in the graph but with a significant increase in the

number of edges (or the public storage). It requires O(nn) edges in the worst case

even when excluding those implied by transitive property, where n is the number

of nodes in the hierarchy.

A connected graph with at most single directed edge between two nodes is a

tree. A user tree is a subgraph of a user graph with at most single directed edge

between two nodes. It contains all nodes whose keys are used for encrypting

resources; these nodes are called material nodes (denoted asM). Formally, for a

set of ACLs over a set of resources R,M = {[acl[o]] : o ∈ R}. Following [52], a

user tree can be defined as follows.

Definition 2 (User tree). Let GU be a user graph over a set of users U, with root node v0

and a set of material nodes M. A subgraph T = (V, E) of GU withM⋃{v0} ⊆ V ⊆ VU

and E = {e(vi, vj)|vi, vj ∈ V, vi.acl ⊂ vj.acl} that satisfies the property of being a tree

rooted at v0 is called a user tree.

There can be more than one user tree exists for a given set of ACLs. An ex-

ample with four users U = {A, B, C, D} and four resources R = {a, b, c, d} is

shown in Figure 2.4. Figure 2.4 (i) represents example ACLs, and figure (ii) rep-

resents one possible user tree corresponding to the given ACLs. Each node in the

user tree represents a user grouping, i.e., a set of users that can access the node’s

key and the associated resources. For example, node ACD represents a group of

users A, C and D that can access the key KACD and hence the associated resource

a. We can see in the figure that there is a node for each read authorization set

acl[o] for resource o. For example, there are nodes acl[a] = ACD, acl[b] = ABD,

acl[c] = AB and acl[d] = BC, in the figure.

Although there is a node for each acl[o] in figure (ii), for each node there is

no guarantee that it’s respective ACL exists. For example, there is no ACL for

node A. To reduce the public storage, such nodes may be deleted from the tree,
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Figure 2.4: (i) Example ACLs with read authorization, (ii) A user tree, and (iii)
Minimal vertex user tree

resulting in a minimal vertex user tree. In what follows, we first define the notion

of a minimal graph to reduce the system public storage cost and then use it to

define a minimal vertex user tree.

Definition 3 (Minimal user graph). Let GU be a user graph over a set of users U, with

root node v0, and let M be a set of material nodes. A minimal user graph is a subgraph

(V, E) of GU for which |V| + |E| is minimum over all M⋃{v0} ⊆ V ⊆ VU and

E = {e(vi, vj)|vi, vj ∈ V, vi.acl ⊂ vj.acl}.

A minimal vertex user tree can be defined as follows.

Definition 4 (Minimal vertex user tree). Let A be a set of ACLs over a set of users

U and set of resources R. A minimal vertex user tree Tm = (Vm, Em) is a subgraph

of GU = (VU, EU), rooted at node v0 with v0.acl = φ, where Vm = M⋃{vo} and

Em = {e(vi, vj)|vi, vj ∈ Vm, vi.acl ⊂ vj.acl}.

A minimal vertex user tree contains exactly the material vertices M and the

root node v0. An example minimal vertex user tree is shown in Figure 2.4 (iii).

The secret storage with each user in the tree is as follows:

Table 2.2: Secret keys with each user

User Secret keys
A KACD, KAB
B KAB, KBC
C KACD, KBC
D KACD, KABD

It is seen from Table 2.2 that a user may require more than one secret key

storage in a minimal vertex user tree. The maximum number of keys that a user

may required to store will be equal to the number of leaf nodes in the tree.
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Claim 1. A minimal vertex user tree is a minimal user graph.

Proof. A minimal vertex user tree contains exactly one node for each ACL. Since

each node’s key is used to encrypt at least one resource, the number of nodes

cannot be reduced. If the number of nodes is n, then the minimum number of

edges required to retain connectivity is exactly n− 1. Therefore, a minimal vertex

user tree is always a minimal graph.

In comparison to user graph, minimal vertex user tree help reduce the public

storage, while increasing the secret storage at each user. In contrast to user trees, a

user hierarchy needs to store a single secret key per user and consists of a node for

each user. Moreover, a node can have more than one incoming edge. Following

[13, 27, 12], a user hierarchy can be defined as follows.

Definition 5 (User hierarchy). Let A be a set of ACLs over a set U of users and set R

of resources. A user hierarchy denoted UH = (V, E) for given A is a subgraph of GU =

(VU, EU) whereM⋃
U ⊆ V ⊆ VU and E = {e(vi, vj)|vi, vj ∈ V, vi.acl ⊂ vj.acl}.

In general, the public storage is defined as the total number of nodes and edges

present in the hierarchy as there is a public value for each node and for each edge

([38]). Although the user hierarchy contains a minimum number of nodes, the

total number of edges can be further reduced to some extent in the hierarchy by

adding additional nodes. For example, suppose v1.acl = BCDEX and v2.acl =

ABCDEF, then a common subset of the two given ACLs is BCDE. Adding BCDE

node into the hierarchy may reduce the number of existing edges. If another node

v3.acl = ABCDFY exists, then it may happen that instead of node BCDE, node

BCD (common to v1, v2 and v3) reduces more number of edges. Hence, there

exists many such possibilities.

Definition 6 (Minimal user hierarchy problem). To find a user hierarchy UH =

(V, E) for which |V|+ |E| is minimum over allM⋃
U ⊆ V ⊆ VU and E = {e(vi, vj)|vi, vj ∈

V, vi.acl ⊂ vj.acl} is called a minimal user hierarchy problem.
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Our objective is to find a user hierarchy which optimizes |V|+ |E|. We call this

problem as minimal hierarchy problem (MHP). In what follows, we show that the

MHP is a hard problem.

The Steiner tree problem (STP [53]) on weighted graphs asks for a tree of min-

imum weight that contains all leaf nodes, but may also include additional nodes.

Therefore, when edge weight is fixed to 1, the problem is same as minimizing the

number of edges and the non-leaf nodes in the graph. It is known that the Steiner

tree problem is NP-hard and remains so even in very restricted planar cases [54].

A variation of STP is directed STP whose goal is to find a minimum cost tree in a

directed graph G = (V, E) that connects all leaf nodes X ∈ V to a given root r ∈ V

[55].

A generalization of directed STP is directed STP with multiple roots (or q-Root

Steiner Tree, i.e., q-RST problem [56]). The q-RST problem is that given a directed

graph G = (V, E), two subsets of its nodes, set of root nodes R of size q and T,

the goal is to find a minimum cost subgraph of G that contains a path from each

node of R to each node of T. The rest of the nodes in set V \ (R ∪ T) can be added

to form a minimum cost subgraph. This optimization problem is known to be

NP-hard [56, 55].

Now, consider the q-RST problem with given directed graph GU = (VU, EU)

containing unit weight edges, two subsets of its nodes, R of size q as user nodes

and T the leaf nodes represent the ACLs. The goal is to find a minimum cost

subgraph of GU that contains a path from each node v1 of R to each node v2

in T, where v1.acl ⊆ v2.acl and v2 6= Φ, i.e., there is at least one target node

corresponding to the given root node. This problem is equivalent to the MHP.

Therefore, if there exists an algorithm to solve MHP, the algorithm can be used

to solve the q-RST problem. Below we show that MHP and q-RST problems are

equivalent.

Theorem 2.2.1. MHP and q-RST problems are equivalent.

Proof. To show the equivalence between them, consider an arbitrary instance

graph of MHP with unit directed edges, set R of size q containing user nodes as
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root nodes and T the leaf nodes represent the ACLs. Now, we will show how the

MHP instance can be converted into general weighted graph as in q-RST problem.

Consider each chain C =< x1, x2, ..., xi > of nodes in the graph such that each

node except xi in C has only one outgoing edge. Then replace C with one edge

chain C′ =< x1, xi > and weight of the edge is i− 1, i.e., the sum of edge weights

in C. The updated graph has now become an instance of q-RST problem which

says that the q-RST problem is no harder than the MHP problem. This implies

that the two problems are equivalent.

As an approximation to the MHP problem, we define a minimal vertex user hi-

erarchy containing a minimum number of nodes and respective edges. A minimal

vertex user hierarchy is defined as follows.

Definition 7 (Minimal vertex user hierarchy). A minimal vertex user hierarchy UHm =

(Vm, Em) for a given UH = (V, E) is a subgraph of UH with Vm =M⋃
U.

Consider the set of ACLs shown in Figure 2.5 (i). A minimal vertex user hier-

archy implementing the given ACLs is shown in Figure 2.5 (ii).

Figure 2.5: (i) Example ACLs with read authorization, and (ii) A minimal vertex
user hierarchy.

In a minimal vertex user hierarchy, each user requires only one secret key, as

in the case of user graph. However, a user hierarchy will take a number of edges,

i.e., the public storage, as compared to the corresponding user tree (see in Figure

2.4 (ii)). This is because there is a node for each system user in the user hierarchy.

Although the MHP problem is NP-hard, constructing a minimal vertex user

hierarchy for a given ACM can be done in polynomial time. A procedure for con-

structing a minimal vertex user hierarchy for a given ACM is shown in Algorithm

1. In the algorithm, the notation [x] represents a node corresponding to set x of

users. A node n is called a out-neighbor of node m if there is a directed edge from

m to n.
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Algorithm 1 Create_Hier(ACM, U)

Input: An ACM containing a set of ACLs and a set of users U.
Output: Create a user hierarchy corresponding to the given ACM.

1: for (each user u ∈ U) do
2: Create a node [u] for u
3: end for
4: for (each ACL ∈ ACM) do
5: Create a node X for ACL
6: for (each user u ∈ ACL) do
7: Create and initialize set S = {u}
8: Set “Update” = True
9: while ( “Update” = True) do

10: Set “Update” = False
11: for (each out-neighbor n of [S]) do
12: if (n.acl ⊂ ACL) then
13: S← n.acl /* Update set S */
14: Set “Update” = True
15: Break /* Exit from inner for loop */
16: end if
17: end for
18: end while
19: for (each out-neighbor n1 of [S]) do
20: if (ACL⊂ n1.acl) then
21: Create an edge from node X to n1 /* Update outgoing edges from X

*/
22: Delete edge from node [S] to n1
23: end if
24: end for
25: Create an edge from node [S] to X /* Update incoming edge on X */
26: end for
27: end for

The Algorithm 1 works as follows. A node is created for each user in set U

(Steps 1-3). For each ACL in the given ACM, a corresponding node X is created

(Step 5) and inserted into the hierarchy (Steps 6 to 26). For each user u in the

given ACL, a node S after which X can be inserted (satisfying the access con-

trol relationships) is searched (Steps 7 to 18). Then, outgoing edges from node

X corresponding to S and u are updated (Steps 19 to 24). Incoming edge to X is

then updated (Step 25). At the end of this algorithm, a user hierarchy is created

corresponding to the given ACLs in the ACM. For a given set of resources R, the

Algorithm 1 will take a running time cost of O(|R|2) in the worst case, considering

30



|U| << |R|. It is due to the statement numbers 4 and 11 in the algorithm each of

which iterates O(|R|) times. Statement number 6 and 9 will iterate O(|U|) times

each.

2.2.2 Resource-based hierarchies

In this section, we discuss a key derivation structure called resource hierarchy (in-

troduced in [27]), where nodes are defined based on the resource groupings (i.e.,

CPLs), instead of the user groupings (i.e., ACLs).

We first define a resource graph in a similar fashion to a user graph. In the

definition, v.cpl for a node v is a set of resources that will be accessed using node

v’s key.

Definition 8 (Resource graph). A resource graph over a given set of resources R, de-

noted GR, is a graph (VR, ER), where VR is the power set of R and ER = {e(vi, vj)|vj.cpl ⊂

vi.cpl}.

Definition 8 ensures that a resource graph over a set of resources R contains

every element from the power set of R. An example resource graph with four

resources {a, b, c, d} is shown in Figure 2.6. In the graph, there is a directed path

from each node vi to node vj such that vj.cpl ⊂ vi.cpl. For example, the node abc

with capability list {a, b, c} has a path to each node with subset capability list such

as ab, ac, bc, a, b and c.

Figure 2.6: A resource graph over a set {a, b, c, d} of four resources.

In contrast to a user graph, nodes in a resource graph are created by grouping

resources from set R. It contains 2|R| number of nodes. Since |R| >> |U|, resource

graphs are less practical than user graphs.
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A resource hierarchy is a sub-graph of the resource graph and can be viewed

as a dual of user hierarchy. We redefine M that only contains a node used to

encrypt data file. As user hierarchy, a resource hierarchy is defined as follows.

Definition 9 (Resource hierarchy). Let A be a set of CPLs over a set of users U and

set of resources R. A resource hierarchy denoted RH = (V, E) for given A is a subgraph

of GR = (VR, ER) whereM⋃
U ⊆ V ⊆ VR and E = {e(vi, vj)|vi, vj ∈ V, vi.acl ⊂

vj.acl}.

Now with the same spirit as of minimal vertex user hierarchy, a minimal vertex

resource hierarchy is now defined as follows.

Definition 10 (Minimal vertex resource hierarchy). Let A be a set of CPLs over a set

U of users and set R of resources. A resource hierarchy denoted RH = (V, E) for given

A is a subgraph of GR = (VR, ER) with V = U
⋃

R and E = {e(vi, vj)|vi ∈ U, vj ∈

R with vj.cpl ⊆ vi.cpl}

The above definition ensures that a minimal vertex resource hierarchy includes

root nodes representing the users and leaf nodes representing the resources. Since

each resource is encrypted with its dedicated leaf node’s key, no intermediate

node is needed between user and resource nodes. There is a direct edge from ev-

ery user node u to a node corresponding to a resource r if r ∈ cpl[u]. An example

minimal vertex resource hierarchy is shown in Figure 2.7, where (i) represents an

example set of CPLs and (ii) gives a corresponding minimal vertex resource hier-

archy. In the example hierarchy, there is a direct edge from node A to the set of

nodes {[a], [b], [c]} since cpl[A] = {a, b, c} as shown in figure (i). Similarly, there

are edges from node B to the set of nodes {[b], [c], [d]}, node C to the set of nodes

{[a], [d]} and node D to the set of nodes {[a], [b]}.

Figure 2.7: (i) Example CPLs, and (ii) A minimal vertex resource hierarchy.
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Unlike the minimal vertex user hierarchies, each leaf node in a minimal vertex

resource hierarchy represents a resource node, i.e., a resource is encrypted with a

leaf node’s key. There is a direct (key derivation path) edge from each user node u

to all of her authorized resource nodes, i.e., resources in her capability list (cpl[u]).

2.2.3 Comparison of static hierarches

A hierarchy with a fixed structure is called a static hierarchy. In this section, we

compare minimal vertex user and resource hierarchies in a static situation. An

ACM is said to be in the worst case if all of its ACLs or CPLs are distinct. We will

compare the number of nodes and edges that are required to construct a minimal

vertex hierarchy for a worst case ACM. In Section 2.3, we give algorithms for

dynamic operations that guarantee the minimal vertex hierarchy construction.

Let |U| and |R| denote the number of users and resources, respectively. We

assume that |U| << |R| but |R| < 2|U|. For example, consider that we need to

create an electronic health record management system for India, and assume that

1 crore patients receive care every year. Suppose a central database is created to

store the patient records. For 100 years and assuming 20 documents per patient

per year, it requires ∼ 1010 data files to be stored. However, for a set of only 50

users, 2|U| = 250 ∼ 1015 which is a significant number, as compared to the total

number of resources in an organization.

Cost of user hierarchies In a user hierarchy, consider a set of ACLs in worst

case, i.e., each resource o has a distinct acl[o]. As there is a node for each acl[o],

the maximum number of nodes is |R|. In case |U| is small and 2|U| < |R| then

maximum number of nodes will be 2|U|. Therefore, the total number of nodes in

the hierarchy will be min(2|U|, |R|). In total, min(2|U|, |R|) or O(|R|) nodes are

needed assuming |R| < 2|U|.

For finding the number of edges required for a given number of nodes, con-

sider user nodes as level 0 nodes, directly connected nodes of the level 0 nodes as

level 1 nodes, and so on. In the worst case, the level 0 contains |U|C1 nodes, level

1 contains |U|C2 nodes, and so on (similar to user graph). Also, the number of
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incoming edges at each node in level 1 is 1 and in level 2 is 2 and so on. Therefore,

the total number of incoming edges at level 1 is 1×|U| C1, at level 2 is 2×|U| C2

and so on. Now the total number of edges can be written as follows.

1×|U|C1 + 2×|U|C2 + ... + (|U| − 1)×|U|C|U|−1 + (|U|)×|U|C|U| (2.1)

=
|U|
0!

+
|U|(|U| − 1)

1!
+ ... +

|U|(|U| − 1)
1!

+
|U|
0!

(2.2)

= 2(
|U|
0!

+
|U|(|U| − 1)

1!
+ ... +

|U|(|U| − 1)...(|U| − (|U|/2))
(|U|/2)!

) (2.3)

In total, it comes out as 2(∑|U|/2
i=0

|U|!
(|U|−i−1)!i! ), i.e., O(|U||U|/2) due to the last

term in equation 3. Also, the number of levels gives the key derivation steps (or

time), i.e., O(|U|) (in worst case).

When considering number of edges in worst case minimal vertex user hierar-

chy, all the ACLs are distinct of O|R| number of users each and there is no node

whose corresponding ACL is subset of other (i.e., all nodes are at same level). It

creates two level hierarchy: user nodes in one level and other nodes in second

level. Now, the total number of edges will be O(|U||R|).

Cost of minimal vertex resource hierarchy In the worst case minimal vertex

resource hierarchy, each user has a direct edge to each of its authorization resource

node. In total, |U| + |R| nodes and |U||R| edges are needed in the worst case.

Also, the key derivation cost will be O(1) due to a direct edge from a user to an

authorized resource node.

Table 2.3 compares the minimal vertex resource hierarchy with existing user-

based hierarchies (user graph, user tree and minimal vertex user hierarchy) in

the worst case. We can see from the table that, the maximum number of nodes

and edges in both minimal vertex user and resource hierarchies are |U|+ |R| and

O(|U||R|), respectively. The key derivation cost in minimal vertex resource hier-

archy is only one edge whereas in minimal vertex user hierarchy is |U| − 1 edges

in the worst case. This is more in minimal vertex user hierarchy because it may

form a longest chain of O(|U|) nodes.
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Table 2.3: Comparison of minimal vertex resource hierarchy with user-based hi-
erarchies

Hierarchy→ User-based hierarchies Minimal vertex
User User Minimal vertex resource

↓ Attributes graph tree user hierarchy hierarchy
# of keys/users Single Multiple Single Single

# of nodes 2|U|+1 min(|R|, 2|U|)+1 |U|+ |R| |U|+ |R|
# of edges O(|U||U|/2) O(min(|R|, 2|U|)) O(|U||R|) O(|U||R|)

key derivation |U| |U| |U| − 1 1
cost

2.3 Dynamic access control

Data access authorizations change with time as employees join and leave the or-

ganization or the department within the organization. A scheme with dynamic

access control would allow granting or revoking access authorizations. In the

following, we evaluate the user and resource-based hierarchies in terms of com-

putational and communication costs of the common dynamic operations.

2.3.1 Algorithms for user hierarchy

Grant/revoke read privilege In user hierarchy, if access authorization is granted

(or revoked) for a resource o to a user u then acl[o] will be updated to acl[o]′ =

acl[o] ∪ {u} ( or acl[o]′ = acl[o] \ {u}). Now, since acl[o] 6= acl[o]′ (both repre-

sent different nodes in the hierarchy), resource o will be now encrypted with the

key K[acl[o]′] corresponding to acl[o]′. To avoid storing multiple copies of the re-

source encrypted with different keys (K[acl[o]′] and K[acl[o]]) for security reasons,

data owner must delete the old copy from the server. Since granting read access

is a frequent operation, associated re-encryption operation to the outsourced re-

source by the data owner should be avoided, if possible.
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Algorithm 2 Grant_Revoke_Read_Access(UH, o, u)
Input: A minimal vertex user hierarchy UH, a resource o and a user u.

Output: Read access for o is granted or revoked to u.

1: Find node v with v.acl = acl[o] in UH

2: In case of

“Grant operation”: acl[o]← acl[o]
⋃{u} /* update the ACL of resource o */

“Revoke operation”: acl[o]← acl[o] \ {u}

3: Find node vnew with vnew.acl = acl[o]

4: if (vnew does not exist in the UH) then

5: Create node vnew with vnew.acl = acl[o]

6: Insert vnew into UH

7: end if

8: Download the encrypted version o′ of o from the server

9: o ← DKv(o
′)

10: o′′ ← EKvnew
(o)

11: Outsource o′′ to the server

/* Delete v if v.acl is not in the ACL list*/

12: if (does not exist p ∈ R with acl[p] = v.acl) then

13: Delete v and associated edges from UH /* deleting redundant node */

14: end if

15: Publish updated UH to the cloud server

Consider Algorithm 2 for granting read access. Running time of the algorithm

with respect to the hierarchy manipulation, i.e., excluding encryption, decryption

or communication cost is O(U + R). It is due to the statement number 6 in the

algorithm that requires cost O(U) in updating incoming edges to new node vnew

and O(R) in updating outgoing edges. In the following, E represents the cost

of one symmetric encryption operation, D the cost of one symmetric decryption

operation and C the cost of one communication between the data owner and the

CSP.

In Algorithm 2, granting read access for a resource to a user requires the fol-

lowing steps: (1) downloading the resource from the server (1C), (2) decrypting
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it using the old key (1D), (3) encrypting it with the new key (1E ), and (4) storing

it back to the server (1C) (i.e., total cost = 1E + 1D + 2C). For example, consider

the user hierarchy shown in Figure 2.8 (i), granting read access for resource c to

users C leads to the modified hierarchy shown in Figure 2.8 (ii). In the modified

hierarchy, a new node ABC is inserted and the resource c is encrypted with KABC.

Figure 2.8: Modified example of minimal vertex user hierarchy (i) before, and (ii)
after granting read access

User revocation Since each node in a user hierarchy represents a user grouping,

a user revoke operation requires a modification to the hierarchy. Revoking a user

requires that each node previously accessible to the revoked user be deleted and

replaced by a new node (without revoked user label). For example, consider the

minimum vertex user hierarchy given in Figure 2.8 (i). To revoke D we delete the

node ABCD and replace it with the new node ABC (by deleting label D). Now,

resources a and b are re-encrypted with the new key (KABC) so that user D will

not be able to access the revoked resources. The updated hierarchy is shown in

Figure 2.9.

Figure 2.9: Modified example of minimal vertex user hierarchy after revoking user
D

2.3.2 Algorithms for resource hierarchy

Grant read access To grant read access for a resource o to a user u, the data

owner executes Algorithm 3.
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Algorithm 3 Grant_readAccess(RH, o, u)
Input: A minimal vertex resource hierarchy RH, a resource o, and a user u.
Output: Grant read access of resource o to user u.

1: u.cpl = u.cpl
⋃{o} /* updating user u’s CPL */

2: Create an edge from [u] to [o] by computing a public edge token r[u],[o]
3: Publish r[u],[o] (and E(o, K[o]), if new resource) at the cloud server to update

RH

In the algorithm, [x] represents a node corresponding to set x of users or re-

sources. K[o] is the key used to encrypt resource o. Consider the example hierarchy

in Figure 2.10 (i). Initially, user C has read access to the resources a and b. Sup-

pose, read access for resource c is to be granted to the user C. Using Algorithm

3, user C’s capability list C.cpl = {a, b} is updated by inserting resource c, i.e.,

C.cpl = {a, b, c} (Step 1). An edge is created from node [u] to [c] (Step 2). All

updated public information (i.e., r[u],[o] and E(o, K[o]) (if o is new resource)) will

be now published at the server (Step 3). The modified CPL and the hierarchy are

shown in Figure 2.10 (ii).

Figure 2.10: (i) An example minimal vertex resource hierarchy, and (ii) Granting
read access for resource c to user C.

Revoke read access To revoke read authorization for a resource o to a user u (as-

suming both exist), the data owner executes Algorithm 4. For example, consider

the hierarchy in Figure 2.10 (ii), where user B has initially read access for the re-

sources b, c and d. Suppose, read access of resource d is revoked from user B, the

algorithm works as follows. Old capability list of user B, i.e., bcd is updated to

bc (Step 1). A new key K
′
[d] is assigned to node d (Step 2). Encrypted resource d

is downloaded from the server, decrypted using old key K[d] and then encrypted

with new key K
′
[d] (Steps 3− 5). Edge rB,[d] is deleted (Step 6). Now, for each user

node v with o ⊂ v.cpl, compute public token for edge e(v, o) and update it with
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the stored one (Steps 7− 9). The updated resource hierarchy information is then

sent to the server along with encrypted resource K
′
[d] (Step 10). The updated CPL

and resource hierarchy are shown in Figure 2.11.

Algorithm 4 Revoke_readAccess(RH, o, u)
Input: A resource hierarchy RH, resource o, and user u.
Output: Revoke read access of resource o from u.

1: u.cpl ← u.cpl \ {o} /* updating user u’s CPL */
2: Update node [o]’s key to K

′
[o]

3: Download the encrypted version o′ of o from the server
4: o ← DK[o]

(o)
5: o′′ ← EK′

[o]
(o)

6: Delete edge from [u] to [o] by deleting public edge token r[u],[o]
7: for (each user v with o ⊂ v.cpl) do
8: Compute r[v],[o] and use it to replace the old public edge token in RH
9: end for

10: Publish o′′ and updated RH information at the cloud server

Figure 2.11: After revoking read access of resource d from user B.

User revocation To revoke a user u, the data owner executes the following. For

each outgoing edge e(u, o) from u to some resource o, the data owner calls the

procedure Revoke_readAccess(RH, u, o) (Algorithm 4).

2.3.3 Comparison of dynamic hierarchies

Table 2.4 compares the minimal vertex UH and RH. It compares the two with

respect to the number of encryption (E ) or decryption (D) operations needed by

the data owner, communications (C) needed with the CSP to grant one read access,

revoke one read access, and whether revoking a user requires modification to the

hierarchy structure. An attractive property of the minimal vertex RH is that it does

not require any encryption or decryption operation while granting read access to
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Table 2.4: Comparison of computation and communication cost

Cost of Cost of Modification of
a grant a revoke hierarchy due to

Hierarchy type ↓ read access read access user revocation
Minimal vertex UH 1E + 1D + 2C |R|(1E + 1D) + 2C Yes
Minimal vertex RH 1C |R|(1E + 1D) + 2C No

a user. It requires single communication between the data owner and CSP to

update the outsourced hierarchy structure while granting read access to a user.

Also, it does not require any modification to the hierarchy structure when a user

is revoked, unlike the user-based hierarchies. Revoking a user’s read access right

takes similar cost in both the hierarchy types.

2.4 Experimental evaluation

We have implemented the minimal vertex UH and RH for read access control on

a local area network. The goal of the experiment is to evaluate the cost of dynamic

operations from the perspective of the user and the data owner. We evaluate the

time of user’s grant and revoke access right operations, and elapsed time perfor-

mance of the data owner machine. The elapsed time is the time difference between

a start and finishing time for a set of operations.

Setup: For testing purposes, we use two machines: a file server and a data

owner. Each machine consists of an Intel core 2 quad Q8400 processor 2.66 GHz

with 3 GB RAM and 7200 RPM, 16 MB Cache, SATA 3.0 Gb/s hard drive. Both

systems running windows XP are connected with a 1 Gbps Ethernet link. We

choose AES − 128 as the cipher for file encryption and employ SHA − 1 as the

hash function (available in java.security package). We implement grant and re-

voke read methods in Java with JDK 1.7. The test includes a file server that stores

1000 files. The file size varies from 1 MB to 2 MB. The hierarchy is implemented

using Hashmap in Java by storing it as an adjacency list. For the test, we fix the

number of users to 30 and number of resources to 50. Considering fewer resources

will not affect our experimental results since the cost of a grant or revoke opera-

40



tion depend only on the corresponding resource whose access right is updated.

After fixing these, we create different initial hierarchies. We define the size of

initial hierarchy in terms of the number M of consecutive grant access right oper-

ations. Each grant operation randomly selects a user and a resource from the set

of 1000 files.

Minimal vertex RH: Grant and revoke read operations cost

We first evaluate the cost of one grant and revoke operations at the data owner.

An initial minimal vertex RH is created for a fixed value of M. This defines an ini-

tial ACM. Then the grant and revoke permissions are initiated in sequence at the

data owner machine for which it updates the respective CPLs and the hierarchy

structure. We define a thread containing one grant and one revoke operation that

will execute simultaneously to maintain the same size of the initial hierarchy. The

thread is executed 100 times. The average cost of each operation in the thread is

then computed separately immediately after the corresponding hierarchy is pub-

lished.

Figure 2.12: Permission operation cost

Figure 2.12 shows the cost of one grant and one revoke operation for dif-

ferent sizes of initial hierarchy, i.e., M = 100, 300, 500 and taking an average
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over 100 operations. In the figure, the cost of one grant permission operation

is 0.477, 0.454, 0.440 milliseconds for M = 100, 300, 500, respectively. It shows that

the cost of revoke operation are 13.2, 38.0, 78.8 milliseconds with on average 3, 7,

11 file re-encryptions per revoke operation, respectively. From the figure, we con-

clude that the cost of one grant operation is approximately same with different

size of initial hierarchy. This is due to the fact that each grant operation adds to

at most one node into the hierarchy and updating of corresponding edges. How-

ever, the cost of one revoke operation increases almost linearly with the size of

initial hierarchy. As the size of hierarchy increases by randomly applying grant

permission operations with the same number of users and resources, the user’s

subscription (subscribed resources) will increase. This will lead to an increase in

the number of re-encryption operations at the time of revoke operation and hence

the revocation cost.

Figure 2.13: Average elapsed time of one grant/revoke operation

Figure 2.13 shows the computation for average cost of revoke operation when

considering M = 100. We take an average over 100 operations. It requires 296

total file re-encryptions and on average 3 re-encryptions per revoke operation.
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The average cost of revoke operation is 132.47 milliseconds.

Performance of data owner machine In the above evaluation, we considered

only one user. Now, we consider a number of users involve in grant or revoke

operations. For each operation, the data owner will update the ACM and corre-

sponding hierarchy. To evaluate the data owner’s elapsed time performance for

handling a number of user threads, we simulate T simultaneous threads at the

data owner. Due to random inputs for each operation, we perform the test 100

times and then the average cost of one batch of T threads is computed. We per-

form the tests for T = 10, 50, 100, 200, 300, 500, 700, 1000, 1500, 2000. M is fixed

to 100. Figure 2.14 shows the results. From the figure, we conclude that there is

almost linear relation between the elapsed time and the number of threads T.

Figure 2.14: Elapsed time performance of data owner machine for evaluating user
threads

Minimal vertex UH: Grant and revoke read operations cost

Similar to the minimal vertex RH, the minimal vertex UH is created by fixing

M and the corresponding ACM is stored. The grant and revoke operations are

initiated in the same way as in the minimal vertex RH. The evaluation cost is
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Table 2.5: Grant and revoke cost in user hierarchy

Size of initial hierarchy→ 200 500 1000
Operation Average file size

Grant 100 KB 12.961ms 13.923ms 18.530ms
1 MB 146.174ms 160.385ms 186.561ms

Revoke 100 KB 13.511ms 14.223ms 17.935ms
1 MB 133.274ms 151.843ms 172.015ms

shown in Table 2.5. For a given file size, our results show that the grant and

revoke access right operations have a similar cost. This is because each operation

requires one re-encryption of an outsourced resource and an addition of at most

one node in the hierarchy.

Minimal vertex UH and RH: Comparing grant read operation cost

Considering the experimental setup described above, we evaluate the cost of one

grant read permission for a user. Figure 2.15 compares the two hierarchies against

Figure 2.15: Elapsed time of one grant read subscription operation

grant operation cost. We fixed the initial hierarchy parameter M = 200, 500 and

1000. The average file size is 1 MB. This grant operation is executed 100 times. The

average cost of one operation is then computed. The figure shows that in minimal
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vertex UH the cost of one grant operation is significantly large in comparison to

minimal vertex RH. It is due to file encryption and decryption operations needed

in the minimal vertex UH when user subscription is granted. These operations

are not required in the minimal vertex RH.

Minimal vertex UH and RH: Comparing user revoke operation

cost

Figure 2.16: Average elapsed time of one user revoke operation

Figure 2.16 compares minimal vertex user and resource hierarchies with re-

spect to a user revoke operation cost. In the experiment we only consider the

hierarchy modification cost due to user revoke operation, i.e., the cost of resource

encryption and decryption is omitted for simplicity. It is to be noted here that the

average cost of encryption and decryption operations required per user revoca-

tion is same in both the hierarchies. The graph shows that the hierarchy modifica-

tion cost significantly increases in minimal vertex UH with the increase in initial

hierarchy size. This is due to the increase in a number of nodes to be modified
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with the increase in the size of user’s ACL. In the minimal vertex RH, the increase

is constant as only number of edges from user node to the authorized resource

node need to be deleted from the hierarchy.

2.5 Re-keying

Although the re-keying operation restricts a user from accessing their revoked re-

sources, it requires re-encryption of a set of descendant resources with fresh keys

and re-distribution of these new keys among all authorized users. This operation

becomes more expensive when working with data outsourcing scenario where the

re-encryption operation is performed over outsourced data, by the data owner.

Therefore we require some efficient solution for handling access right revocation

that avoids this significant re-encryption cost.

2.5.1 Wang et al. protocol

A cryptographic scheme is proposed by Wang et al. [9] to handle access right

revocation problem in data outsourcing scenario. The important feature of their

scheme is that it does not require the inefficient re-keying operation. The scheme

uses over-encryption 1 to avoid unauthorized access through eavesdropping by

revoked users (with knowledge of old keys). In the scheme, the secret key used

for over-encryption is generated using pseudorandom bit sequence generator P()

that takes a secret seed value as input. Each authorized user obtains from the data

owner a certificate containing the seed value along with other necessary informa-

tion. A user U’s certificate is of the following form:

{Ekdc
(U, ACMindex, seed, {dbiread}, MAC)},

1Vimercati et al. [10] consider a symmetric key based model that uses “over-encryption” where
the data is encrypted twice: once by the data owner for confidentiality protection, and then by the
CSP with a user-oriented key that makes it accessible only to a specific user. Without re-keying,
the over-encryption restricts the revoked users with old authorization keys from accessing any
sniffed data while communicated from CSP to the current authorized users.
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where {dbiread} is a set of resource indexes for which U is authorized for read ac-

cess. ACMindex is the latest updated index number of the Access Control Matrix

(ACM) with the data owner. It is incremented by one each time a user’s access

right is changed, by the data owner. The ACMindex value is used for latest cer-

tificate validation, by CSP. MAC preserves the integrity of the certificate and is

computed over rest of the values in encryption. E() is symmetric encryption func-

tion. Data owner shares a pair-wise secret key kdc and kdu with CSP and user (U)

respectively, for secure message communication between them. The certificate

credentials are encrypted by data owner at the time of certificate creation using

symmetric key kdc.

The data access procedure in Wang et al. [9] scheme is illustrated below. It is

assumed that the data owner (DO) shares a pair-wise secret key kdu with the user

(U), for secure message communication between them.

1. At the registration time, the user U sends the following message to DO,

U → DO : {U, DO, Ekdu
(U, DO, ri, {indexes}, MAC)}

where ri is the request index number that is used to protect against replay

attack; it is increased by 1 each time the user sends a message to the data

owner. {indexes} is the set of data block indexes that U wants to register (or

require future access). MAC is used for message integrity protection and is

computed over all other information in the encryption (i.e., U, DO, ri and

{indexes}).

2. Upon receiving the registration request, DO decrypts it, verifies the integrity

and freshness of the message. Then, DO replies with the following message.

DO→ U : {DO, U, Ekdu
(DO, U, ri, ACMindex, seed, K′, cert, MAC)},

where secret seed is used in pseudorandom function P() for generating se-

cure bit string by U and CSP, for secure message communication. This secure

bit string is used for over-encryption by CSP. U’s subscription key K′ is used
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to derive the authorized encryption keys in the key management hierarchy.

The cert is the certificate as described before.

3. U sends a resource access request to the CSP containing request id (i.e., index

to be accessed) and the cert as follows.

U → CSP : {U, CSP, request id, cert}

4. Upon receiving the access request, CSP will verify the user’s cert for up-

dated ACMindex. Then it verifies the request id in the cert and retrieves the

respective cipher blocks. The CSP will then over-encrypt the encrypted data

blocks using the secret key generated using P() and seed, if needed. Then it

sends the over-encrypted data blocks back to the user.

5. Upon receiving message 4, U uses his seed value, P() and K′ to decrypt the

received data blocks.

Analysis If the CSP is malicious then re-keying is necessary to disallow a re-

voked user from accessing her revoked resources. However, if CSP is honest-but-

curious then the re-keying can be avoided as in the above scheme.

In the above procedure, access right revocation is handled using over-encryption

and ACMindex value. Over-encryption defends against eavesdropping by re-

voked users, whereas updated ACMindex value in certificate defends against

unauthorized authentication at CSP. However, in the case of malicious CSP, it

can maliciously give access of the revoked resources to the users without being

detected by the data owner. The CSP can give the revoked resource’s access to

a user without over-encrypting it. It becomes possible because the revoked re-

sources are not re-encrypted and the revoked resource’s encryption key is possi-

bly stored with the user.

The ACMindex value in the Wang et al. protocol is updated after each change

in user’s access right. Note that the increment in ACMindex value requires a

significant amount of computation and communication overhead at data owner

to compute each existing certificate again and re-distribute them among the users.
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Therefore, the system is not well scaled when a number of users in the system are

large and changes in users’ access rights are frequent. In what follows, we propose

a modification to the above protocol that makes it scalable.

2.5.2 Improving efficiency

Here, we suggest modifications to the work in [9] to reduce computational over-

head at the data owner and communication overhead due to user’s access right

revocation. This is an important requirement when using data outsourcing in the

cloud.

Instead of using common incremental ACMindex value in the system, we in-

troduce a separate user certificate index (UCIndex) value for each user. Data

owner will store latest UCIndex value for each user in a ACM matrix along with

user’s access authorization details. At the time of service registration (message 1

in Figure 2.17) by the data owner, cloud server will create an empty UCIndex table

(UCIT). UCIT is used by the cloud server at the time of user’s data access request

to check whether the user contains the latest certificate. UCIT contains two fields:

user id and user’s latest UCIndex value. At the time of user registration the data

owner assigns a UCIndex value in the ACM matrix along with other user autho-

rization details. Then, it sends user’s update request with UCIndex value to the

cloud server. Receiving which, the cloud server will update UCIT with respective

user’s UCIndex value and sent back an acknowledgment (Ack). Upon receiving

Ack, the data owner creates user’s certificate along with assigned UCIndex value

and sends it to the user.

Whenever a user’s access right is revoked, her UCIndex value is incremented

by one without affecting other users’ UCIndex values. As a user’s UCIndex value

is incremented, the data owner immediately send user’s UCIndex update request

to cloud server as shown in message 2(a) in Figure 2.17. The cloud server contains

UCIT with the latest value of UCIndex associated with each user in the system.

Upon receiving the update request from the data owner, if new user request or re-

ceived user’s UCIndex value is greater than the stored value then the cloud server

updates the received user’s UCIndex value in UCIT by storing received UCIndex
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Figure 2.17: Data outsourcing architecture

value. If UCIT is updated, then the cloud server sends an Ack back to the data

owner (message 2(b)). Otherwise, it informs the data owner that greater/equal

user’s UCIndex value is already stored or incorrect message is received.

To ensure data security, the data owner waits for an acknowledgment (Ack)

for every user’s UCIndex update request from the cloud server (message 2(b)). If

the acknowledgment is not received in a fixed period of time, it resends the up-

date request to the cloud server. In the case of partial subscription withdrawal by

the user, a new certificate should be sent to the user only after receiving acknowl-

edgment for the user’s UCIndex update request. In the case of full subscription

revocation (or user revocation), user’s record corresponding to the revoked sub-

scription is deleted from the UCIT. In the case of extension of a user’s subscrip-

tion, same UCIndex value can be used in updated certificate sent to the user.

For every resource request from the user (message 4), cloud server first val-

idates the user’s certificate by decrypting it and authenticates the user’s access

request. If succeed, it will check the user’s UCIndex value in UCIT and in user’s

certificate. If the two values are equal, user’s data access request is accepted and

the requested data blocks are sent back. Otherwise, it sends an error message.

In the case of the request is rejected due to invalid UCIndex match, the user will

request the data owner for the latest certificate for further data access. If the user

is unauthorized to access any subset of requested data blocks, cloud server sends

the data block id’s to the user.
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Table 5.4, shows worst case comparison between Wang et al. [9] scheme and

Table 2.6: Efficiency comparison

Wang et al. My modified
scheme scheme

Effect of a user revocation Each user requires new Independent
on other users access certificate for further access

Subscription extension/ O(|NU|) O(1)
revocation cost at DO

our proposed modified scheme. |NU| represents a number of users in the existing

system. In our modified scheme, the effect of a user’s access right revocation is

independent of other users data access procedure. In Wang et al. scheme, each

user requires a newly updated certificate from data owner for further data access.

Also, the computational (O(|NU|) encryption and decryption) overhead at data

owner is reduced to 1 encryption and decryption in our modified scheme. Our

scheme requires at most one certificate to be created corresponding to the partially

revoked user, instead of updating all the user certificates in the system.

2.6 Summary

In this chapter, we have critically analyzed two types of hierarchy used for read

access control in data outsourcing scenario. To reduce the public storage, the

notion of minimal vertex hierarchy is introduced that makes it practical in use.

Finding a minimal vertex hierarchy is an approximation to the problem of finding

minimum cost hierarchy for a given hierarchy and a subset of nodes in the hier-

archy. The problem of finding minimum cost hierarchy can be easily transformed

into well-known q-RST problem [7] which is NP-hard [8]. We proved that finding

minimum cost hierarchy and q-RST problems are equivalent. Therefore, if there

exists an algorithm to solve minimum cost hierarchy problem, the algorithm can

be used to solve the q-RST problem.

We showed that the resource-based hierarchies are more efficient in terms of

computation and communication costs as compared to user-based hierarchies
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with respect to the dynamic operations such as extending read access and user

revocation operations. For better understanding, both of the hierarchy types are

implemented in local cloud. We experimentally evaluated the performance of dy-

namic operations in both of the hierarchies to demonstrate our analytical results.

For the sake of confidence, the dynamic operations are performed over different

size of initial hierarchies and individual results are averaged.

Access right revocation problem is revisited. We reviewed Wang et al. [9]

scheme and found that in the scheme a user’s access right revocation leads to

immediate updation of all other users’ authorization certificates. We proposed

a modification to their scheme so that any user’s access right revocation will be

independent of other users’, without sacrificing other desirable properties of the

scheme.

In the next chapter, we study the use of resource hierarchy for time-limited

read access control where access to a file is given for a fixed amount of time. After

the time expires, the user authorization is automatically revoked.
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CHAPTER 3

Key management for time-bound read access

control

Time-limited read access control allows read access to a file only for a pre-specified interval

of time. In this chapter, we describe a novel and efficient key assignment scheme for time-

limited access with constant secret key storage per user. The scheme is formally analyzed

using a modern notion of security, i.e., “key recovery”.

3.1 Introduction

There is a set of applications which require time-limited access control over out-

sourced data such as e-newspaper, e-magazine, digital libraries and PayTV sys-

tem. A user can subscribe to a service for a fixed time duration. For example, a

user can subscribe to an e-newspaper for the months of March and April.

The minimum possible subscription period is referred to as a time slot. In the

above example, a time slot is of one month duration. Each time slot has one or

more resources associated to it. A continuous sequence of time slots is called an

interval. A user can subscribe to the service for one or more time intervals.

A cryptographic way to enforce time-limited access control is by assigning a

secret key to each time slot in the system. Each key is then used to encrypt the

resources, associated with the respective time slot. A user subscribed for a sub-

scription interval must be securely given the respective set of encryption keys.

Whenever needed, a user can retrieve any authorized encrypted resource and de-

crypt it using its known (stored) keys.
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To minimize these numbers of keys associated with a user’s subscription, a

subscription hierarchy can be used where each node represents a subscription-

interval (or time-interval).

Figure 3.1 shows a subscription hierarchy with three distinct time slots (re-

quires three leaf nodes). We can see from the figure that each subscription interval

is represented by a unique node in the hierarchy. A key is assigned to each node

in the subscription hierarchy. Data files are encrypted with leaf node encryption

keys. In the figure, a user subscribed for time slots 1 and 2 is given a single secret

information K1−2 through which it can compute encryption keys K1−1 and K2−2.

In the following, Ki−i is sometimes written as Ki.

Figure 3.1: An example subscription hierarchy

Similar to HKAS, subscription-based HKAS (or SBHKAS) assigns keys in a

subscription hierarchy so that a user subscribed to a node (time-interval) in the

hierarchy can efficiently access only its authorized subscription keys. We define a

SBHKAS as follows.

• Gen : returns a labeled set of encryption keys (Kta,tb where (ta, tb) is a time-

interval from time slot ta to tb) and system public information (Pub).

• Der : takes Kta,tb , target time slot t and Pub as input, and return encryption

key K(t,t) whenever ta ≤ t ≤ tb.

In designing a SBHKAS, our aim is to minimize secret key storage with each

user, system public storage cost and key derivation cost in the subscription hier-

archy. It is important to reduce the public storage in cloud scenario since the user

has to pay-as-use basis, i.e., the user has to pay more with the increase in storage.

Another requirement is that the scheme must be dynamic and can incorporate

new time slots with the passage of time.
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In this chapter, we focus on the SBHKAS constructions that require single key

storage per user per subscription. We propose a simple and efficient hash-based

construction for SBHKAS that uses indirect key derivation with dependent keys.

With single key storage per user per subscription, our scheme requires less pub-

lic storage and only one key private storage with Central Authority (CA). Our

scheme requires at most log z hash operations as key derivation cost in a sub-

scription hierarchy as in [36] where z is the number of time slots. The security of

our scheme relies on the one-way property of cryptographic hash functions.

In the remainder of this section, we first discuss the difference between subscription-

based access control system (SBACS) with a single resource and with multiple

resources by giving an example. In the following section, we review selected ex-

isting SBHKASs. Section 3.3 describes the proposed SBHKAS. We discuss how

the new construction can be extended to multiple resource system. Section 3.3.2,

gives a formal security proof for the new construction. Section 3.4 provides a com-

parative analysis of the proposed scheme with similar existing schemes. Section

3.5 discusses the related dynamic operations. Section 3.6 summarizes this chapter.

For the sake of readability, notations used in this chapter are shown in Table

3.1.

3.1.1 Classification

We divide SBACS into two types: SBACS with a single resource and SBACS

with multiple resources. An example of SBACS with the single resource is an

e-newspaper system with only one type of newspaper. It requires a single sub-

Table 3.1: Notations and abbreviations used

Notation Description
h() Cryptographic hash function
z Total number of time slots
ti ith time slot

(ti, tj) Time interval from time slot ti to tj
Kti,tj Encryption key associated with time interval (ti, tj)

⊕ Bit-wise xor operator
Enc() Symmetric encryption function
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scription hierarchy. A newspaper is associated with each time slot (say, a day) in

the subscription hierarchy. Each copy of the newspaper is encrypted with its asso-

ciated leaf node’s encryption key. Whereas, an example of SBACS with multiple

resources is an e-newspaper system with more than one type of newspapers. The

user can subscribe for any allowed subset of newspapers types. The hierarchy

shown in Figure 3.2 shows 4 groups with different resources R1, R2, R3 and R4.

A user with access to a resource group in the hierarchy is also eligible to access

descendant resource groups. Hence, the hierarchy can be viewed as packages;

{R1, R2, R3, R4}, {R2, R4}, {R3, R4} and {R4}. Each node in the hierarchy is asso-

ciated with an instance of common subscription hierarchy. A user subscribed for

package {R2, R4} and time interval (ta, tb) is given a secret information of a node

in instance subscription hierarchy associated with resource R2. Using given secret

information, the user can access any resource of type R2 and R4 associated with

any time slot t, ta ≤ t ≤ tb. Since every user in the system is assigned to any

one of the group (node) in the hierarchy, we can also call such hierarchy as a user

hierarchy.

Figure 3.2: An example of user hierarchy

3.2 Previous schemes

3.2.1 Ateniese et al. scheme

Ateniese et al. [35] propose two basic constructions for SBHKAS with multiple

resources. Here we describe their symmetric encryption-based construction. This

was simple but worst case construction, i.e., every possible subscription informa-

tion has a direct edge to its all associated encryption keys.

The total system time T is divided into z distinct and equal time slots t1, t2,

..., tz. Let P be the number of possible time intervals in the system. For example,
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consider a user hierarchy and a subscription hierarchy with z = 2 shown in Figure

3.3. Here |P| = 3, i.e., t1, t2 and t1−2. Their corresponding complete system

hierarchy is shown in Figure 3.4. In the figure, every edge has associated with

a public value used for key derivation. As per the system hierarchy, the user b

who is authorized for subscription t1−2 (represented as node bt1−2) can access

any resource associated with node bt1 (i.e., user b with subscription t1), bt2, dt1

and dt2.

Figure 3.3: (a) User hierarchy, (b) Subscription hierarchy

Figure 3.4: A complete system hierarchy corresponding to Figure 3.3

In Ateniese et al. scheme, Algorithm Gen() (Algorithm 5) is used to generate

and assign keys to the time intervals. This algorithm returns subscription infor-

mation set s, assigned set of keys K′ to the nodes in the system and a set of public

information Pub.
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Algorithm 5 Gen(1k, UH, P)
Input: Security parameter 1k, user hierarchy UH and set of time intervals P.

Output: Returns set (s, K′, Pub).

1: Perform a graph transformation to obtain the two-level partially ordered hi-

erarchy GPT = (VPT, EPT), where VPT = VP
⋃

VT.

2: For each node uλ ∈ VP, let su,λ ∈ {0, 1}k.

3: For each class ut ∈ VT, randomly choose a secret value ku,t ∈ {0, 1}k.

/* Let s and K′ be the sequences of private information and keys, respectively,

computed in the previous two steps. */

4: For any pair of classes (uλ, vt) ∈ VP x VT such that (uλ, vt) ∈ EPT, compute

the public information p(u,λ),(v,t) = Encsu,λ(kv,t).

/* Let Pub be the sequence of public information computed in the previous

step. */

5: return (s, K′, pub)

In Step 1 of procedure Gen() (Algorithm 5), a hierarchy GPT is generated with

set of nodes VPT = VP
⋃

VT and set of edges EPT where set VP contains all the

nodes corresponding to set P and set VT contains nodes corresponding to set T(

= {t1, t2, ..., tz}). Step 2 and 3 assigns random keys to the nodes in set P and T

respectively. For every edge in set EPT, a public edge value is computed used for

key derivation purpose (Step 4).

A user at node u in the user hierarchy with subscription information su,λ can

derive encryption key of any node v � u for a time slot t with t ∈ λ. Key deriva-

tion procedure is shown in Algorithm 6. It takes as input the system hierarchy

GPT, user’s node u, target node v, user’s authorized time interval λ, user’s sub-

scription information su,λ, target time slot t and Pub. In Step 1, it finds a public

edge information from Pub corresponding to v and t. Then decrypt key kv,t using

the public edge information and user’s subscription information su,λ (Step 2) and

return. Since, every subscription node in the upper level of system hierarchy is

associated with a direct edge (value) to every possible encryption (key) node at

lower level, key derivation cost will be 1 decryption operation.
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Algorithm 6 Der(GPT, u, v, λ, su,λ, t, Pub)
Input: A hierarchy GPT, source node u, target node v, authorized time interval λ,

user’s subscription information su,λ, target time slot t and Pub.

Output: Returns target encryption key kv,t.

1: Extract the public value p(u,λ),(v,t) from Pub.

2: Compute key kv,t = Dsu,λ(p(u,λ),(v,t)).

3: return (kv,t)

A node in the user hierarchy can subscribe for any of the time intervals in P.

Therefore, every node in the user hierarchy must have a |P| number of associated

nodes in the top level of the two-level system hierarchy. If we have a m number

of nodes in a user hierarchy, the top level of system hierarchy should have mp

nodes where p is O(z2). The lower level of system hierarchy will have z (=|T|)

nodes corresponding to each node in user hierarchy, i.e., mz nodes in total. Now,

since a node in the top level of system hierarchy associated with root node in user

hierarchy and with lifetime subscription should be associated with all |T| edges.

Therefore, a total number of public edge values will be at most (mp)(mz), i.e.,

O(m2z3).

3.2.2 Atallah et al. base scheme

Atallah et al. [35] proposed a family of SBHKAS with single user hierarchy. Their

constructions were based on symmetric encryption. We will discuss their all vari-

ations step-by-step. Let m and z denote the number of nodes in user hierarchy

and a number of time slots in the system respectively. Initially, we will start with

the construction with respect to a subscription hierarchy only, since the remain-

ing part of the construction is similar to all constructions. In the latter part of the

description, we merge user hierarchy with subscription hierarchy and give a com-

plete description of the system. Let T = {t1, ..., tz} denote the set of all time slots

and {kt1 , ..., ktz} denote the corresponding encryption keys. First, we will describe

their base scheme and later we give their improved scheme.
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Figure 3.5: Base data structure with |T| = z

Base scheme

Consider a subscription hierarchy shown in Figure 3.5. It is built over a set T of

time slots with |T| = z. Assign a random key Ki,j and a random label li,j to each

node vi,j in the hierarchy. For each directed edge ((i, j), (k, p)) from node vi,j to

vk,p in the hierarchy compute a public value y(i,j),(k,p) = Kk,p ⊕ h(Ki,j, lk,p).

A user will require one secret key per subscription (For example, Ki,j for sub-

scription (ti, tj)). The distance between any two nodes in the subscription hierar-

chy is at most (z− 1) edges, therefore key derivation cost is O(z). The number of

nodes in the hierarchy is (1/2)z(z + 1), i.e., O(z2). It requires z(z− 1) (i.e., O(z2))

public edge values for single subscription hierarchy.

3.2.3 Atallah et al. improved scheme

The improved scheme reduces the public storage cost over the base scheme. A

data structure is built over set T using procedure DataStructBuild(v, T) (Algo-

rithm 7) where v is the root node with set of time slots T.
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Algorithm 7 DataStructBuild(v, T)
Input: A set of system time slots T and node v.

Output: Build a respective data structure.

1: If |T| = 2, then return.

2: Partition T into
√
|T| sets of

√
|T| contiguous time slots each, call these

T1, ..., T√|T|, i.e.,if T = t1, ..., t√|T|, then Ti = ti
√
|T|+1, ..., ti

√
|T|+
√
|T|. Create a

node vi for each Ti, and make vi a child of v.

3: Generate a problem Coarse(T), derived from T by treating each Ti as a black

box (i.e., merging the constituents of Ti into a single item). Note that the size

of set Coarse(T) is
√
|T|.

4: Store at node v an instance of the basic scheme for Coarse(T), denoted D(v).

D(v) can only process an interval if it is the union of a contiguous subset of

Coarse(T) (i.e., it cannot handle intervals whose endpoints are inside the Ti’s,

as it cannot see inside a Ti).

5: Also store at node v two solutions of one-dimensional problems on T:

One is for intervals all of which start at the right boundary of T and end inside

T (we call this the right-anchored problem and denote the one-dimensional

structure for it by R(v));

another is for intervals all of which start at the left boundary of T and end in-

side T (we call this the left-anchored problem and denote the one-dimensional

structure for it by L(v)).

Note that having R(v) and L(v) enables the handling of an interval that lies

within T and also has its left or right endpoint at a boundary of T.

6: Recursively apply the scheme to each child of T; that is, call

DataStructBuild(vi, Ti) in turn for each i = 1, 2, ...,
√
|T| .

7: return

Figure 3.6: Data Structure with |T| = 16

61



Figure 3.7: D(v), L(v), R(v) for node v with (|T| = 16)

Suppose |T| = z, then the height of the new data structure is loglog z. For ex-

ample, consider node v with T = {t1, ..., t16}. The output of procedure DataStruct

Build(v, T) is shown in Figure 3.6. The children of v are v1, ..., v4. The Figure 3.7

shows the D(v), L(v) and R(v) structures corresponding to node v.

Let a user request CA to subscribe for a time interval I. It will call procedure

Assignkeys(I, v, T) (Algorithm 8) where v is the root node with a set of time slots T

in the data structure build through Algorithm 7. We can see in the procedure that,

the consequence of reduced data structure is that it requires assigning at most 3

keys to the user per subscription.
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Algorithm 8 Assignkeys(I, v, T)
Input: Node v, set T and requested subscription interval I.

Output: Return secret information corresponding to I.

1: If v is a leaf, then return a key for each of the (at most two) time intervals in I.

Else, continue with the next step.

2: Let v1, ..., v√|T| be the children of v, and let T1, ..., T√|T| be the respective sets

of times associated with these children. We distinguish two cases:

3: (a). I overlaps with only one set Ti. Then we return the keys from the recursive

call AssignKeys(I, vi, Ti).

(b). I overlaps with all of Tk, Tk+1, ..., Tk+l, where l = 1. These l + 1 intervals

are handled in 3 different ways:

Those completely contained in I are collectively processed using the D(v)

structure, resulting in one key.

If Tk overlaps with I but is not contained in I, then it is right-anchored and is

processed using R(vk), resulting in one key.

If Tk+l overlaps with I, but is not contained in I, then it is left-anchored and is

processed using L(vk+l), resulting in one key.

4: return Those (at most) 3 keys are returned.

For example, consider data structure given in Figure 3.6. If a user wants to

subscribe for an interval from t1 to t5, CA will give two keys to the user: Kt1,t4 and

Kt5 . Kt1,t4 is given from D(v1) structure and Kt5 is given from L(v21) structure. v21

is left child of v2 with time slots t5 and t6. Similarly, a user need a subscription

from t4 to t13 is given three keys Kt4 , Kt5,t12 and Kt13 . Kt4 is given using R(v1),

Kt5,t12 is given using D(v) and Kt13 is given using L(v4).

To derive an authorized key for some time slot ti, a user with secret informa-

tion STU will call procedure DeriveKey(ti, STU, Pub) (Algorithm 9). The algorithm

will first parse the user’s subscription information STU into three intervals R, D

and L. The target time slot ti is in either of them. If ti ∈ R (or D, L) then find the

node v at level l in data structure R (or D, L) such that R(v) (or D(v), L(v)) per-

mits access to ti. Now, using key kv (the key corresponding to node v) and Pub,

it derives and return the key kti corresponding to given time slot ti. For example,
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consider data structure given in Figure 3.6. A user with STU = {Kt4 , Kt5,t12 , Kt13}

is authorized for time slot t5. It can first derive Kt5,t8 using D(v) and Kt5,t12 . Then,

derive Kt5 using Kt5,t8 in data structure given in Figure 3.6.

Algorithm 9 DeriveKey(ti, STU, Pub)
Input: A user’s subscription information STU, authorized target time slot ti and
Pub.
Output: Return key Kti .

1: Parse STU as k1(l, R, tstart, ta),k2(l − 1, D, ta+1, tb), k3(l, L, tb+1, tend)
2: If ti ∈ {tstart, ..., ta}, find the node v at level l such that R(v) permits access

to ti. Use k1 and Pub to derive the key corresponding to ti and return that
enabling key.

3: Similarly, if ti ∈ {tb+1, ..., tend}, locate node v at level l such that L(v) permits
access to ti. Use k3 and Pub to derive an enabling key for ti and return that
key.

4: Finally, if ti ∈ {ta+1, tb}, locate v at level l− 1 such that D(v) permits access to
ti; use k2 and Pub to derive an enabling key for ti and return it.

5: return

Consider a D(v) structure with root node v in the data structure with |T| = z.

Since height of D(v) structure is O(
√

z), key derivation cost of deriving a leaf node

key in D(v) structure is O(
√

z). Since height of subscription hierarchy is now

loglog z, to derive a leaf node in a subscription hierarchy using D(v) structure

will be at most
√

z + loglog z, i.e., O(
√

z).

Consider L(v) and R(v) of the root node v in the data structure. Length of

structures L(v) and R(v) is z− 1 each. Therefore, key derivation cost for deriving

a leaf node key in a subscription hierarchy will be at most z + loglog z, i.e., O(z).

Suppose v is the root node in the data structure with |T| = z, produced by

Algorithm 7. Let Rz is the number of edges in R(v), Lz is the number of edges in

L(v), Dz is the number of edges in D(v) and Cz is the number of child (outgoing

edges) nodes of in v. The following recurrence defines the public storage require-

ment corresponding to edges in the system is defined by the following recurrence.
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S(z) = Rz + Lz + Dz + Cz + z1/2S(z1/2) (3.1)

= z + z + (z1/2)2 + z1/2 + z1/2S(z1/2) (3.2)

= 3z + z1/2 + z1/2S(z1/2) (3.3)

= 3z + z1/2 + z1/2(3z1/2 + z1/4 + z1/4S(z1/4)) (3.4)

= (3z + z1/2) + (3z + z3/4) + z3/4S(z1/4) (3.5)

Since, height of the data structure is loglog z, we write

S(z) ≤ 4zloglog z (3.6)

= O(zloglog z) (3.7)

3.2.4 Improved scheme with shortcut edges

Here, we first merge complete system together. Consider a user hierarchy (Di-

rected acyclic graph) UH in the system. Let us consider the procedure Gen()

given in Appendix A. It assigns secret keys, public labels and public edge values

to the subscription hierarchy corresponding to each node in the user hierarchy.

The Algorithm 23 first creates a tree data structure (using Algorithm 7) as a

subscription hierarchy and assigns public labels to each node in user and sub-

scription hierarchy. Then for each node u in the user hierarchy, it picks secret keys

for its copy of subscription hierarchy and generates public information accord-

ing to those keys. Next, it connects the data structures corresponding to different

nodes in the user hierarchy. That is, for each time interval t, if node u1 is a parent

of node u2, we compute public edge value that permits derivation of ku2 , t from

ku1,t. Then assign an edge between each t ∈ T and an associated node in D(v),

R(v) and L(v) structures in G. An associated node with the time slot t means a

node with key kt. Finally, it creates three sets: set K consists of keys for every t ∈ T,

set Sec consists of remaining keys in the system and public set Pub containing all

public information associated with the system.

In Algorithm 23, Step 7 assigns a direct edge between each time slot t and the
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corresponding node in D(u), R(u) and L(u) structures for each u ∈ V. Therefore,

three additional edges (one for each D(u), R(u) and L(u)) are required from a

node u at each level in the subscription tree structure. Since, height of subscrip-

tion tree structure is loglog z for a system with |T| = z, it requires additional

(3z)loglog z edges.

A user with subscription key Sv,TU can derive key Kw,t whenever w � v in user

hierarchy UH and t ∈ TU. Key derivation procedure is written in Algorithm 10. In

Step 1, validity of the request is verified. If destination node w is not descendant

of source node v or the user is not authorized for target time slot t then it returns

null. Step 2, derives kv, t in the subscription hierarchy using Pub. Step 3, returns

target key kw, t using kv, t, public labels corresponding to user hierarchy and Pub.

Algorithm 10 Derive(v, w, TU, t, Sv,TU , Pub)
Input: A source node v, destination node w, user’s authorized time interval TU,

target time slot t, user’s secret information Sv,TU and system public information

Pub.

Output: If user is authorized, destination key Kw,t is returned.

1: If t 6∈ TU or w 6∈ Desc(v, G), return Null.

2: Execute DeriveKey(t, Sv,TU , Pub) to compute an enabling key for t; call it kv,t.

3: Use kv,t along with its (level-type) label and Pub to derive key kw,t.

4: return

Now, we apply shortcuts [51] to each one-dimensional structure L(v) and R(v)

in tree data structure. Also, for each two-dimensional D(v) structure, apply short-

cuts to each horizontal and vertical one-dimensional sub-hierarchies in the struc-

ture. All possible one-dimensional sub-hierarchies in a two-dimensional structure

with n leaf nodes are shown in Figure 3.8.

Assume that any two nodes in an one-dimensional sub-hierarchy are at a dis-

tance of at most s hops (edges). We call such scheme s− HS (s Hop Scheme) [35].

A procedure for creating 3− HS is written in Algorithm 22 [51] (see Appendix

A). The cost of the algorithm will be O(z) for z node one-dimensional hierarchy.

Comparison of shortcut schemes for one-dimensional structures with n nodes is
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Figure 3.8: Base data structure with one-dimensional sub-hierarchies

given in table 3.2 [35]. Public edges information in the table shows additional

public edge information added by the algorithm.

Table 3.2: Comparison of shortcut schemes

Public (edge) Private Key derivation
information information cost

2-HS O(nlog n) 1 2-op
3-HS O(nloglog n) 1 3-op
4-HS O(nlog3 n) 1 4-op

log n-HS O(n) 1 O(log n)-op

Consider s = log n. For key derivation of a leaf node, it requires at most log n

operations in horizontal direction and log n operations in vertical direction, i.e., at

most 2log n operations.

Assume a log z− HS shortcut scheme is used in the system. It means, every

two nodes in D(v), R(v) and L(v) corresponding to each node in tree data struc-

ture are at a distance of at most log z edges. Longest data structure are with root

node v, i.e., R(v) and L(v), with z nodes in the chain. Applying shortcut edges

using log z − HS, key derivation cost will be at most log z. Similarly, the D(v)

structure with height
√

z requires 2log (
√

z) operations (log (
√

z) operations in

each horizontal and vertical direction) for leaf node key derivation (in D(v) struc-

ture). Then one additional operation is required to derive target leaf node key

in subscription tree hierarchy. Hence, total key derivation cost in subscription

hierarchy will be at most log z + 1.
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Total public edge storage Ssz associated with a subscription hierarchy will be

addition of 3 sets of public edge values associated with: base data structure build

using Algorithm 7 (S(z)), directed edges in Step 5 of Algorithm 23 and additional

shortcut edges Sed(z) (using log z− HS). Edges associated with base data struc-

ture build using Algorithm 7 are computed above as S(z) in inequality (3.6).

Hence, total public storage with respect to single subscription hierarchy will be

as follows.

Ssz ≤ S(z) + (3z)loglogz + Sed(z) (3.8)

≤ 4zloglogz + (3z)loglogz + Sed(z) (3.9)

= O(zloglogz) + Sed(z) (3.10)

Additional shortcut edges (Sed(z)) associated with single subscription hierar-

chy with z leaf nodes can be computed by following inequality,

Sed(z) ≤
√

z(Sed(
√

z) + Lz + Rz + D√z

where, Lz and Rz are the cost of shortcut edges associated with L(v) and R(v)

data structures with z nodes respectively, D√z is the cost of shortcut edges associ-

ated with D(v) data structure with
√

z nodes.

Sed(z) ≤
√

z(Sed(
√

z) + z + z + (
√

z)2 (3.11)

≤
√

z(Sed(
√

z) + 3z (3.12)

= O(zloglogz) (3.13)

3.2.5 Crampton scheme

Crampton [36, 58] proposed a SBHKAS with single key storage per user. The

nodes in the subscription hierarchy are first divided into 2 triangles (i.e., Ts) and

one diamond (i.e., D) structures called blocks. Then edges are inserted between

nodes in diamond structure to the nodes in triangle structures for key derivation.

Consider a subscription hierarchy with z = 4 as shown in Figure 3.9. A corre-
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sponding hierarchy structure named T2m with m = 2 (initially, 2m = z) is shown

in Figure 3.10. T2m contains two copies of Tm covering leaf nodes and one copy of

Dm containing root node. There are no edges between the nodes in Dm.

Figure 3.9: A nodes structure for an example subscription hierarchy (with z = 4)

Figure 3.10: (a) Division of nodes, and (b) Key derivation

For key derivation, each node (i, j) ∈ Dm has two outgoing edges to the

nodes (i, m) and (m + 1, j) respectively where each end node belongs to a dif-

ferent triangle structure. For example, the outgoing edges from node (1, 4) in D2

are ((1, 4), (1, 2)) and ((1, 4), (3, 4)).

Key derivation in each of the Tm is implemented recursively, i.e., similar to

the procedure used for T2m. Now, since edges are going from Dm to Tm, they are

able to reduce key derivation cost to log z operations. z(z− 1) number of public

edge values are needed corresponding to a subscription hierarchy without using

shortcut edges.
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3.3 A new construction with reduced public storage

cost

In this section, we propose a new construction for SBHKAS with single key stor-

age per user per subscription. The scheme uses indirect key derivation with de-

pendent keys. It requires less public storage (z(z − 1) − d(1/8)z(3z + 2)e) and

only one key private storage at CA. It has a key derivation cost of at most log z

hash operations.

The proposed SBHKAS uses xor and hash functions as primitive operations.

The CA generates system public information and secret information for each ex-

isting subscription interval so that a user with his secret information can derive

any authorized subscription node’s key in the hierarchy.

Figure 3.11: (a) An example subscription hierarchy structure, and (b) Key deriva-
tion structure corresponding to subscription hierarchy in Figure (a)

Key assignment

Assume z time slots t1, ..., tz. CA generates a subscription hierarchy structure with

z leaf nodes, one for each time slot ti, with 1 ≤ i ≤ z.

Step 1. Arrange nodes into levels in such a way that at each level l in the sub-

scription hierarchy structure, there are l + 1 nodes with subscription interval of

size z− l each. Therefore, at level l = 0 (root level) there is only one (0 + 1) node

with subscription interval size z, i.e., node with time interval (t1, tz) represented as

(1, z). An example subscription hierarchy structure for z = 4 time slots is shown

in Figure 3.11(a). The keys are assigned to the nodes as follows.
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Step 2. CA chooses a public cryptographic one-way hash function h() for key

generation. h() is also used by the subscribers for key derivation purpose. A secret

key Ks is generated and stored by the CA. CA assigns a random public label l(a,b)

to each node (ta, tb) in the subscription hierarchy. In order to assign keys to the

nodes in subscription hierarchy, CA will call procedure Key_Assignment(), defined

in Algorithm 11. Step 1 in Algorithm 11, moves to each level from top to bottom

in the subscription hierarchy. Step 2 initializes counter i to one, to point left most

node in a level. Step 3 moves to each node from left to right in a level. If no key

is assigned to the selected node, it compute and assign key to the node using h()

and Ks (Step 4− 6). Steps 7, 8 computes two child nodes named le f t and right

child nodes respectively of the selected node. In Steps 9− 13, if key to le f t child

node is Null, then compute and assign dependent key K(i,le f t) as in Step 10. Else,

compute public edge value r(i,j),(i,le f t) for key derivation between nodes (Step 12).

Steps 14− 18 gives similar treatment to right child. Step 19 will increment i by

one, to move next node in same level.

Table 3.3: Key assignment to the subscription hierarchy given in Figure 3.11(c)

node Key left child right child public edge values
left child right child

(1, 4) h(Ks, l(1,4)) (1, 2) (3, 4) − −
(1, 3) h(Ks, l(1,3)) (1, 2) (3, 3) r(1,3),(1,2) −
(2, 4) h(Ks, l(2,4)) (2, 3) (4, 4) − −
(1, 2) h(K(1,4), l(1,2)) (1, 1) (2, 2) − −
(2, 3) h(K(2,4), l(2,3)) (2, 2) (3, 3) r(2,3),(2,2) r(2,3),(3,3)
(3, 4) h(K(1,4), l(3,4)) (3, 3) (4, 4) r(3,4),(3,3) r(3,4),(4,4)
(1, 1) h(K(1,2), l(1,1)) − − − −
(2, 2) h(K(1,2), l(2,2)) − − − −
(3, 3) h(K(1,3), l(3,3)) − − − −
(4, 4) h(K(2,4), l(4,4)) − − − −

Figure 3.11(c) shows output of Key_Assignment() (Algorithm 11) for the input

hierarchy shown in Figure 3.11(a). In Figure 3.11(c), a smooth directed edge de-

note a public edge value between two end nodes and dotted directed edge denote

a dependent key generation as shown in Figure 3.11(b). A dotted directed edge

from node u to v shows that the key of node v is computed using key of node
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Algorithm 11 Key_Assignment(SH, z, Ks, h())
Input: A subscription hierarchy SH, number of time slots z, secret key Ks associ-
ated with SH and h().
Output: Assign keys to the nodes in SH.

1: for l = 0 to (z− 2) do
2: i = 1
3: for j = (z− l) to z do
4: if (K(i,j) = Null) then
5: K(i,j) = h(Ks, l(i,j))
6: end if
7: le f t = b(i + j)/2c
8: right = le f t + 1
9: if K(i,le f t) = Null then

10: K(i,le f t) = h(K(i,j), l(i,le f t))
11: else
12: r(i,j),(i,le f t) = h(K(i,j), l(i,le f t))⊕ K(i,le f t)
13: end if
14: if K(right,j) = Null then
15: K(right,j) = h(K(i,j), l(right,j))
16: else
17: r(i,j),(right,j) = h(K(i,j), l(right,j))⊕ K(right,j)
18: end if
19: i = i + 1
20: end for
21: end for
22: return

u. Table 3.3 shows output of Key_Assignment() (Algorithm 11) with respect to the

subscription hierarchy shown in Figure 3.11(c).

Key derivation

A user with a subscription key can derive any authorized encryption key within

its subscription using procedure Key_Derivation(), defined in Algorithm 12. Sup-

pose that there is a user with secret information K(ta,tb)
corresponding to a sub-

scription interval (ta, tb). To derive an encryption key K(t,t) with ta ≤ t ≤ tb, the

user will do the following.

Step 1 Let (ta < tb), user will find two nodes with subscription (ta, tmid) and

(tmid+1, tb) where tmid = b(ta + tb)/2c.

(a) Let t∈ (ta, tmid). To compute key K(ta,tmid)
, if public edge value r(ta,tb),(ta,tmid)
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exists then user will compute K(ta,tmid)
= h(K(ta,tb)

, l(ta,tmid)
)⊕ r(ta,tb),(ta,tmid)

where h() and l(ta,tmid)
are public. Otherwise, user will compute K(ta,tmid)

=

h(K(ta,tb)
, l(ta,tmid)

).

(b) Let t ∈ (tmid+1, tb). To compute key K(tmid+1,tb)
, if public edge value

r(ta,tb),(tmid+1,tb)
exists then user will compute K(tmid+1,tb)

=h(K(ta,tb)
, l(tmid+1,tb)

)⊕

r(ta,tb),(tmid+1,tb)
. Otherwise, he will compute K(tmid+1,tb)

= h(K(ta,tb)
, l(tmid+1,tb)

).

Step 2 The user will repeat Step 1 using fresh computed key K(tx,ty) ((tx, ty) is

either (ta, tmid) or (tmid+1, tb)) with tx ≤ t ≤ ty until getting target encryption

key K(t,t).

Since there is a path from each subscription node to its all descendant leaf

nodes in the subscription hierarchy one can derive any authorized leaf node en-

cryption key using the above steps.

3.3.1 Extension to multiple resources

In this section, we show how to extend our construction to a multiple resource

system. Following the construction in [35], we use two separate hierarchies: a

user hierarchy and a subscription hierarchy. Assume that there is instances of

subscription hierarchy structure and each instance is associated with a node in

the user hierarchy. Hence, each node (Ci) in a user hierarchy is associated with a

similar instance (SHi) of subscription hierarchy structure (SH).

System hierarchy integration. Now, we combine all instances of common sub-

scription hierarchy structure associated with nodes in user hierarchy into a sys-

tem subscription hierarchy. For an edge in user hierarchy, there are a z number of

new edges in system subscription hierarchy between leaf nodes of their respective

instances of common subscription hierarchy. An example system subscription hi-

erarchy is given in Figure 3.12(c). It considers the user hierarchy of Figure 3.12(a).

For simplicity, we have taken a common subscription hierarchy structure with

z = 2 which contains three possible nodes with subscription (1− 2), (1− 1) and

(2− 2) as shown in Figure 3.12(b). There are four instances of common subscrip-

tion hierarchy structure corresponding to four nodes in the resource hierarchy.
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Algorithm 12 Key_Derivation(K(i,j), i, j, t, Pub)
Input: Given a subscription key K(i,j), subscription start time slot i, subscription
expiry time slot j, target time slot t with i ≤ t ≤ j and public information Pub.
Output: it returns target node encryption key K(t,t).

1: if (t < i) or (t > j) or (j < i) then
2: return Null
3: end if
4: while j > i do
5: m = b(i + j)/2c
6: if (t ≤ m) then
7: if r(i,j),(i,m) ∈ Pub then
8: K(i,m) = h(K(i,j), l(i,m))⊕ r(i,j),(i,m)
9: else

10: K(i,m) = h(K(i,j), l(i,m))
11: end if
12: j = m
13: else
14: if r(i,j),(m+1,j) ∈ Pub then
15: K(m+1,j) = h(K(i,j), l(m+1,j))⊕ r(i,j),(m+1,j)
16: else
17: K(m+1,j) = h(K(i,j), l(m+1,j))
18: end if
19: i = m + 1
20: end if
21: end while
22: return K(i,j)

For each edge in resource hierarchy, there are 2 (since, z = 2) edges in system

subscription hierarchy. For an edge from node C1 to C2 in the resource hierarchy,

there are 2 edges which connects leaf nodes of the respective instances of common

subscription hierarchy (i.e., SH1 and SH2) as shown in Figure 3.12(c).

Key derivation. As an example, consider the system subscription hierarchy shown

in Figure 3.12(c). Suppose a user with subscription key K2,(1,2) wants to derive

encryption key K4,2. It will first compute K2,(2,2) in the instance subscription hier-

archy SH2. Then, it traverses in resource hierarchy towards the target node and

computes encryption key K4,(2,2) using K2,(2,2) and Pub.
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Figure 3.12: (a) User hierarchy, (b) Subscription hierarchy structure, and (c) Sys-
tem subscription hierarchy

3.3.2 Security analysis

In this section, we outline a security proof of the proposed SBHKAS scheme using

the modern notion of security, i.e., “key recovery” formally defined as follows.

Definition 11 (Key Recovery (KR)). A SBHKAS is secure w.r.t. KR if no polynomial

time adversary A has a non-negligible advantage (in security parameter τ which defines

the cardinality of each secret key used) against the challenger in the following game:

• Setup: The challenger sets up the subscription hierarchy, assigns key K(ta,tb)
to

each node with subscription interval (ta, tb) in the subscription hierarchy and gives

resulting public information (Pub) to the adversary A.

• Challenge: Select a challenge time interval (ta, tb) with t1≤ ta ≤ tb ≤ tz and send

all keys K(tc,td)
to the adversary A for each t with tc ≤ t ≤ td and ta 6≤ t 6≤ tb.

• Break: The adversary outputs his best guess K
′
(ta,tb)

to the key K(ta,tb)
associated

with challenged subscription interval (ta, tb).

The adversary’s advantage in attacking the game KR is defined as:

AdvKR
A = Pr[K

′
(ta,tb)

== K(ta,tb)
]

We say that given SBHKAS is secure w.r.t. KR iff,

AdvKR
A < εKR

where εKR is negligible function of security parameter τ.
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To carry out the proof, we assume “preimage resistance” property of secure

keyed hash functions [59], formally defined below.

Definition 12 (Preimage resistance (hpre)). Let H = L× K → Y be a hash-function

family and A be an adversary. Then preimage resistance advantage of A with respect to a

hash function h ∈ H is defined as follows:

Advhpre
h (A) = Pr[L $← {0, 1}τ; K $← {0, 1}τ; Y ← h(L, K); K′ ← A(L, Y) : h(L, K′) = Y]

We write M $← S for the experiment of choosing a random element from the

distribution S and calling it M. τ defines the cardinality of M, i.e., number of

times the experiment executes. A() is the adversary’s algorithm used by A, which

outputs K′ as its best guess for an unknown K, given L, Y(= h(L, K)) and h() such

that h(L, K′) = Y.

A function h() is said to be preimage resistance secure if the following is true.

Advhpre
h (A) < εpre

or, Pr[A(h(), L, Y) == K] < εpre

where, εpre is negligible function in security parameter τ.

Theorem 3.3.1. Proposed scheme is secure w.r.t. key recovery against static adversary

provided hpre assumption hold.

Proof sketch. To prove the security of proposed scheme w.r.t. key recovery,

we want to model all the information available to the adversary in advance. To

achieve this, the game described in Definition 11 is played between the adversary

and the challenger. Security of the scheme is bounded to arbitrary but fixed value

in terms of security parameter.

Let G = (V, E) be some subscription hierarchy with z time slots (i.e., t1,...,tz)

where V is the set of nodes and E is the set of edges in the hierarchy. Let a sub-

scription interval (ta, tb) in the hierarchy and let, A be a static polynomial time
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adversary attacking the node ut with time interval (t, t) with ta ≤ t ≤ tb. Now,

based on Definition [key recovery], A is having secret information corresponding

to all unauthorized access nodes with subscription interval (tc, td) such that there

does not exist a time slot t with ta ≤ t ≤ tb and tc ≤ t ≤ td.

We consider three cases (given below) where |(ta, tb)| defines the number of

time slots in subscription interval (ta, tb). The first two cases are special cases and

the third case is general case.

Case 1: |(ta, tb)| = z, i.e., ta = t1 and tb = tz.

Case 2(a): |(ta, tb)| = z− 1 with ta = t2 and tb = tz.

Case 2(b): |(ta, tb)| = z− 1 with ta = t1 and tb = tz−1.

Case 3: General case with |(ta, tb)| < (z− 1).

We show that all possible cases can be identified as one of the three cases.

Later, we prove that KR adversary A has a negligible advantage in finding the

key of any node in the hierarchy as described one of the cases above and hence

the overall maximum advantage of A is negligible. The detailed proof is given in

Appendix B.

3.4 Comparison with related schemes

In this section, we compare the proposed scheme with other similar existing schemes

in the literature.

In our scheme, each node in the subscription hierarchy excluding leaf nodes

has at most two outgoing edges and each edge has one associated public edge

value. Hence, there are at most z(z− 1) public edge values. The nodes in lower

half levels of the subscription hierarchy are having dependent keys and hence

each such node has one incoming edge which does not have associated public
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edge value. The number of nodes (X) in lower half levels is computed below,

= # nodes in f ull hierarchy− # nodes in upper hal f levels (3.14)

= (1/2)z(z + 1)− (1/2)(z/2)((z/2) + 1) (3.15)

= (1/8)z(3z + 2) (3.16)

Hence, out of z(z − 1) edges, up to (1/8)z(3z + 2) (nodes in lower half levels

of subscription hierarchy) nodes have dependent incoming edges without public

edge value. Hence, a total of z(z − 1) − (1/8)z(3z + 2) public edge values are

required.

In our scheme, each key in the subscription hierarchy is computed with a sin-

gle key (e.g., Ks). Hence, only one key is required with CA to derive all other keys.

In [36, 58], since keys are independently assigned to the nodes in the subscription

hierarchy, there are many nodes whose parent does not exist (are root nodes). A

key for each root node must be stored at CA. We can see in their hierarchy that at

least upper half of the levels do not have parents (hence are root nodes. Therefore,

(1/2)(z/2)((z/2) + 1) = (z/8)(z + 2) keys must be stored at CA. In [35], since

using root node key, CA can derive every key in the hierarchy, it requires only one

key to the store. In [34], there are two levels. The upper level will have a node

corresponding to each subscription interval with more than one time slots. In

another way, it includes all nodes in the considered subscription hierarchy other

than leaf nodes (nodes in upper z− 1 levels) i.e., (z/2)(z− 1).

Table 3.4 compares the cost associated with a subscription hierarchy in the ex-

isting SBHKAS. Ateniese et al. [34] scheme require one decryption operation for

key derivation with an expense of huge (O(z3)) public storage. Atallah et al. base

scheme [35] requires at most z hash operations as a key derivation. When using

log z − Hop shortcut edge scheme, Atallah et al. improved scheme reduces key

derivation cost up to 2 log z with an expense of additional (> z2) public edge val-

ues. Crampton [36, 58] was able to reduce key derivation cost up to log z without

using any additional (shortcut) public edge value by using independent keys. In

our scheme, we use dependent keys and are able to further reduce public storage
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by a factor of (1/8)z(3z+ 2). Key derivation cost in our scheme is similar (at most

log z steps) to [36, 60], as a user can jump half of the existing levels towards target

leaf node in every step.

Table 3.4: Comparison of single key SBHKAS

Scheme Public Secret storage Key derivation
edge values at CA cost

Ateniese et al. z(z− 1)(z + 4)/6 z(z− 1)/2 1
scheme [34] decryption

Atallah et al. base z(z− 1) 1 z
scheme [35]

Atallah et al. improved > z(z− 1) + z2 1 2log z
scheme [35] with

log z− Hop scheme
Crampton z(z− 1) > z/8(z + 2) log z

scheme [36]
Our proposed z(z− 1)− 1 log z

Scheme d(1/8)z(3z + 2)e

Note that allowing more number of outgoing edges to a node in subscription

hierarchy will reduce key derivation cost. There is a trade-off between outgoing

edges to a node and key derivation cost. In our scheme, if we allow log z outgo-

ing edges to a node (with the same spirit as in [60]), key derivation cost will be

reduced to log log z as in [60]. Public storage cost in our construction will be still

less with a factor of (1/8)z(3z + 2) since these number of nodes are still require

an incoming edge with dependent key derivation, i.e., without any public edge

value.

3.5 Dynamic operations

In this section, we discuss two operations: add new subscription and subscription

withdrawal.

Add new subscription

Adding new subscription is simple and straight forward. When a new user is sub-

scribed for a subscription interval or an existing user is extending his subscription

79



in the system, CA will give the respective subscription node’s key from the sub-

scription hierarchy to the user. Using received new subscription key, the user can

derive all the encryption keys in his subscription interval.

Subscription withdrawal

Suppose a user with initial subscription interval (ta, tb) wants to withdraw his

subscription for time interval (t, tb) where ta ≤ t ≤ tb. Let node v represent (ta, tb)

and node w represents (ta, t) in the subscription hierarchy. In case ta = t, w is Null

represents full subscription withdrawal. After a user withdraws his subscription,

CA will call procedure Subscription_Withdrawal(v, w) (given in Algorithm 13). It

re-assign keys to a subset of nodes in the subscription hierarchy such that revoked

user will not able to access revoked data blocks.

Algorithm 13 Subscription_Withdrawal(SH, v, w)

Input: Given subscription hierarchy SH, user’s old subscription node v and new
subscription node w (after subscription withdrawal).
Output: Keys are assigned to a subset of nodes in SH.

1: lv = compute and assign new random label
2: update_parents(SH, v)
3: update_children(SH, v, w)
4: for each updated key Ku associated with leaf node u ∈ lower(v) do
5: for each resource r associated with u do
6: Encrypt resource r with key Ku
7: end for
8: end for

Algorithm 14 update_parents(SH, v)
Input: A subscription hierarchy SH and a subscription node v.
Output: v’s incoming relationship with its parents will be updated.

1: for each immediate predecessor node v′ of v do
2: if rv′,v ∈ Pub then
3: rv′,v = h(Kv′ , lv)⊕ Kv
4: else
5: Kv = h(Kv′ , lv)
6: end if
7: end for
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Algorithm 15 update_children(SH, v, w)

Input: Given subscription hierarchy SH, old subscription node v and new sub-
scription node w (after subscription withdrawal).
Output: v’s incoming relationship with its parents will be updated.

1: v1 = le f tchild(v)
2: v2 = rightchild(v)
3: if (rv,v1 ∈ Pub) and (v1 6∈ lower(w)) then
4: lv1 = compute and assign new label
5: update_parents(SH, v1)
6: update_children(SH, v1, w)
7: else if (rv,v1 ∈ Pub) and (v1 ∈ lower(w)) then
8: rv,v1 = h(Kv, lv1)⊕ Kv1

9: else
10: Kv1 = h(Kv, lv1)
11: update_parents(SH, v1)
12: update_children(SH, v1, w)
13: end if
14: Repeat if clause by replacing v1 with v2

3.6 Summary

A subscription hierarchy is used as a key management hierarchy for time-limited

access control systems. SBHKAS assigns keys to a subscription hierarchy. Exist-

ing SBHKASs will have a trade-off between private storage requirement by a user,

system public storage requirement, and key derivation cost. We have proposed

a SBHKAS using dependent keys with only one secret key per user. The com-

parison with similar existing schemes shows that the proposed SBHKAS further

reduces the secret storage cost at data owner and system public storage without

increasing other costs such as secret storage per user and key derivation cost. A

formal security proof of the proposed scheme is given against a static key recov-

ery security adversary assuming that the pre-image resistance property of a secure

hash function holds. A limitation of our proof is that it does not consider dynamic

operations such as re-keying operation.
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CHAPTER 4

Enhancing write integrity and data freshness

Controlling write access to outsourced data is more challenging as compared to read

access because of two major reasons. First, even a single unauthorized write operation

may heavily ruin the data owner’s business. Second, multiple users may try to update

a data item at the same time that may lead to an inconsistent view of the data among

readers. Existing works on secure write access with a malicious service provider do not

consider security against users who have written the outsourced data files. Also, they

consider weak freshness guarantee, i.e., the recipient only knows that the current message

is recent than the previous. It suited to applications which do not require strong freshness

guarantee such as Twitter updates. In this chapter, we address and analyze the above

security issues so that even a user who has written an outsourced data files should not

be able to modify the file after a given amount of time. A strong freshness guarantee is

addressed so that a read request will return the latest version of the data file which helps

in handling consistency issues involved in concurrent write operations.

4.1 Introduction

To enable secure write access to outsourced data, we consider a data owner who

has outsourced its data at a malicious but cautious CSP (as discussed in 1.2). Now,

consider that a write authorized user in collusion with the CSP can modify his

own written outsourced data files until next update is written, without being de-

tected by the data owner. Modifying a file here means altering the content of

the file without creating a new version. This is a matter of concern even if the

user is an authorized writer. For example, in a cloud-based daily e-newspaper
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publishing system, the news is created by staff writers (write authorized users)

and uploaded to a third party storage service provider. Once the news articles

are published, the e-newspaper CEO will not allow any modification to the pub-

lished content. However, it may happen that the published news article has some

unauthenticated content which may lead to some legal action or embarrass the

newspaper. Meanwhile, let the staff writer collude with the service provider and

update the published content at the server to avoid any legal consequences. Now

nobody including the CEO can frame any charges against the staff writer as out-

sourced news is modified.

Similarly, in the case of user’s access right revocation, i.e., the revoked user

can collude with the CSP and modify their latest written version (s) of a resource

whose access right is now revoked.

The existing schemes for write access control ([42, 43, 15, 12]) aim to restrict

a user from modifying the outsourced data files for which it does not have write

authorization. However, we found that there is still a scope to modify the self-

written data files in the existing schemes. For example, consider a resource r

whose last version vi was written by a user u at time t. Now, until a new ver-

sion vi+1 is written, the user u can modify it at the server by colluding with the

CSP. It is possible even when the access permission for resource r is revoked from

u. Also, if u has written the latest contiguous sequence of versions vj, vj+1, ..., vi,

it can modify any number of versions in that sequence. In what follows we sum-

marize their two shortcomings.

1. A write authorized user in collusion with the CSP can modify his own writ-

ten latest sequence of data records until a new version is written by another

user.

2. A user whose access right is revoked, in collusion with the CSP, can still be

able to modify his latest written version (s) of revoked resource (s).

In above, the latest record of a resource refers to the last written version of the

resource. Similarly, the latest sequence of records refers to the recent contiguous

chain of versions (including the last version) of the resource.
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In our model each data file update operation works as follows: a data file is

first read by an authorized user who will then update the file locally and send the

updated version back to the server for storage. We define two types of transac-

tions: Get and Put. Both will be initiated by the authorized users. A transaction

is a sequence of operations each treated as a unit such as read and write. In Get

transaction, the user will first send a read request to the CSP which verifies the

request and responds back with the requested resource, if the request is valid.

Else respond with “invalid request” message. In Put transaction, the user will

first request the recent resource version and store it locally. Next it creates a new

updated version and sends it to the CSP. Upon receiving the new data version,

the CSP will authenticate the user and verify the integrity of the received version.

If verified correctly, the new version is updated at the server and an acknowledg-

ment is returned to the writer. A Get transaction is said to be committed when a

reader receives the requested data file. A Put transaction is said to be committed

only when a writer receives an acknowledgment.

As another requirement if the staleness is maliciously injected by any mis-

behavior party (including the CSP), it must be caught by the data owner. For

example, a small delay in getting the current status of seat allocation in a rail-

way reservation system may restrict you from getting confirmed seat reservation.

Therefore, it is desired to minimize the read staleness (or improving freshness

guarantee) in a data access system.

In the following section, we give some preliminaries used in the rest of the

chapter. In Section 4.3, we review the existing schemes with respect to the secu-

rity of write access against users who has written the outsourced data files. We

highlight their shortcomings and give appropriate countermeasures. The modi-

fied system is implemented on Azure platform. Section 4.4 address the stronger

freshness property as compared to the existing ones. Section 4.5 will discuss the

related work on write access control over outsourced data. Section 4.6 summa-

rizes this chapter. The notations used in this chapter are shown in Table 4.1.
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Table 4.1: Notations and abbreviations used

Notation Description
h() Cryptographic hash function
veri Version of resource i

ver(K) Version of secret key K
(Pru, Pbu) Private and public key pair of entity u

IDo Identifier of resource o
CHi Chain hash corresponding to resource’s version vi
reco,i Data record for jth version of resource o

4.2 Preliminaries

4.2.1 A resource record

For proper maintenance and security reasons, the encrypted data file is stored

along with various other attributes. We call such individual group as a record.

A general record structure is shown below. In the given record structure for a re-

source o, IDo represents the resource’s identifier, veri is the version number, EK(oi)

represents the encrypted current resource version oi and ver(K) is the version

number of encryption key K. MAC ([61]) is message authentication code com-

puted over the described fields and is used for checking integrity of the record.

Table 4.2: Outsourced resource record structure proposed by Popa et al.

IDo veri EK(oi) ver(K) Writer ID MAC ...
resource id version of encrypted version of integrity

resource resource key K verification code

4.2.2 Chain hash

A malicious CSP can insert a file as old version, delete an old version, and change

a resource version sequence. As a solution, we required a guarantee that an up-

dated version i is always written over version i− 1. Chain hash creates a strong

binding between every pair of contiguous record versions so that no unauthorized
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user (including the CSP) can change the sequence of versions, insert or delete a

version from in-between. For example, consider a resource with versions v1, ..., vi

with the corresponding chain hashes CH1, ..., CHi where CHj = MACK(jth re-

source information + CHj−1) and K is symmetric key known to the writer who has

written the updated record. K is also known to the data owner (who generates it)

who can verify the chain hash during auditing process (see Section 4.2.3). Since K

is only known to the writer and the data owner, no other user including the CSP

can modify the outsourced resource and create the corresponding modified chain

hash using K.

4.2.3 Auditing

Write integrity property ensures that only authorized writers can modify or up-

date the outsourced content. Chain hash can prevent a malicious user (including

the untrusted service provider) from altering the sequence of existing resource

versions. However, the malicious CSP in collusion with an unauthorized user

who has written the resource can still overwrite its latest updated version (s).

One of the possible solution to address this issue is by using “audit” mechanism

executed by the data owner that verifies any unauthorized outsourced data mod-

ification [15]. It is assumed that no user except the data owner is allowed to delete

any outsourced data record. If data deletion is allowed by such users then to prove

any unauthorized data modification may become difficult to verify, without the

knowledge of old (deleted) records. Popa et al. [15] suggest time-bound auditing

of outsourced data. System time is divided into epochs. Auditing is done at the

end of each epoch. A general auditing mechanism is described in Algorithm 16.

In the algorithm, the data owner selects a random set of resource identifiers

with version numbers to be audited and send them as a read request to the CSP.

The CSP will return the corresponding records back to the data owner. The data

owner will then verify the chain hash by re-computing it against each received

record. If every chain hash in the received record set is correct then the algorithm

returns “Success” else it returns “Failure”. In case the audit process returns “Fail-

ure”, the data owner will know that the integrity of the corresponding record is
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Algorithm 16 Audit()
1: DO → CSP: Generate and send a random set of resource ids with version

numbers to be audited.
2: for (each entry in the set) do
3: CSP→ DO: Sends the corresponding resource record
4: end for

/* DO will do the following */
5: for (each received resource record) do
6: Verify the chain hash by re-computing it
7: if (Chain hash is correct) then
8: Return “Success”
9: else

10: Return “Failure” /* If verification fails, appropriate action will be taken
*/

11: end if
12: end for

beached and will take the appropriate action.

The above mechanism can detect the integrity misbehavior by the CSP but

cannot prove in the court of law that the CSP misbehaved. To frame charges

against the CSP, the data owner needs a concrete proof mechanism so that it can

frame charges against the CSP in case the CSP is involved in the misbehavior. On

the other hand, the CSP also required a shield against any wrong blame against

him by the data owner.

A solution to the above discussed misbehavior is proposed by Popa et al. [15]

using attestation messages or proof messages. In their scheme, a signed proof

message is returned by the CSP for each read/write operation to the user (in-

volved in read/write operation) to assure the correctness of the operation. These

proof messages are then checked by the user and forwarded to the data owner.

The collected proof messages at the data owner (DO) are then used in auditing

process to verify the correctness of outsourced records. Now, if the integrity of

the outsourced record is breached the data owner can frame charge against the

CSP using the respective proof messages.

A similarly signed proof message is sent by a user while performing a read

or write operation. The CSP authenticate the user, verify the proof message and

store it along with the record so that at the time of dispute these proof messages
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can shield the CSP from any wrong charge against him.

Although the proof messages can be used to frame charges against a misbehav-

ing party, it may create a storage bottleneck the data owner. To handle this Popa et

al. uses Merkle hash tree for verifying the integrity of stored data. After auditing,

the data owner, and the CSP create a Merkle hash value of the entire storage, ex-

change proof messages ensuring that they agree on the same hash value. Now, all

proof messages from that epoch can be discarded. Although the Merkle hash tree

significantly reduces the storage at the data owner, one major drawback with such

tree computed over dynamic records (updated with time as different versions) is

that the tree hash values need to be updated after each record update. Also, the

Merkle root hash value needs to be signed (in proof messages) each time by the

data owner and the CSP ensuring that both agree with the tree computation.

It must be noted that if CSP is honest then the auditing mechanism is not re-

quired. In Popa et al. [15] scheme, priorities are given to the data files so that the

data with higher priority is audited more frequently than data with lower priority.

4.3 Audit-based protocols

In this section, we discuss how audit-based protocols can be used for detecting

misbehavior by unauthorized writers. A secret symmetric key Ks is assumed to

be known only to the data owner. The data owner will verify and attest each of

the latest updated records of various resources written in the current time slot

with its secret key Ks. For attesting a record, the data owner computes MAC over

corresponding chain hash with Ks. The attestation is such that if the integrity of

any old committed record of the attested record is breached, it must be caught by

the data owner in the detailed audit process given in Algorithm 17. The k in step

three of the algorithm describes the number of versions written in the last time

slot for a given resource. We assume it is not very large in practice.
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Algorithm 17 Audit()
1: DO → CSP: Prepare and send a set of resource ids with version numbers to

be audited.
2: for (each entry in the set with version number i) do
3: CSP→DO: Sends a contiguous sequence of corresponding resource records

with version number i, i − 1,...,i − k such that i − kth versioned record is
attested by the data owner

4: end for
/* DO will do the following */

5: for (each received contoguous sequence of resource records) do
6: Verify each chain hash by re-computing it
7: if (all chain hashes are correct till the last attested chain hash in the se-

quence) then
8: Return “Success”
9: else

10: Return “Failure”
11: end if
12: end for

4.3.1 Protocol for enforcing time-limited access

In what follows, Protocol 1 describes the handling of the first requirement given in

Section 4.1.

The protocol for handling the given requirement is described in Algorithm 18.

It runs between CSP and the data owner (DO). The goal of the protocol is that

even the authorized user cannot modify their own written data records after a

pre-defined amount of time, i.e., after the end of the current time slot. To achieve

this, the CSP will call Algorithm 18 at the end of each time slot.

In Algorithm 18, let ti be the current time slot. At the end of time slot ti, the

CSP will create a set S of triplets corresponding to each latest data record version

written in the current time slot (Step 2). A triplet corresponding to resource o

contains resource identifier IDo, its latest version number verj and corresponding

chain hash (CHj). Then the CSP will compute the hash of set S and ti (to avoid

replay attack). This hash is then signed by the CSP using its private key PrCSP.

The signed hash is used by the data owner as a correctness proof for set S and

current time slot. The signed hash and the set S are then sent to the data owner

(Step 3). Upon receiving the message, the data owner will first compute and ver-
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Algorithm 18 ControlledWriteAccess()
1: ti ← current time slot

/* Create set S containing triplets <resource id, version number, chain hash
(CH)> */

2: CSP creates set S = {< IDo, verj, CHj >} for each latest record committed in
ti

3: CSP→ DO: Send S + {h(S, ti)}PrCSP
4: DO verifies {h(S, ti)}PrCSP . If verification fails, ask the CSP to send it again
5: for (each chain hash CHj in S) do
6: C ← RetrieveChain(IDo, verj)
7: if (CorrectChain(IDo, C)) then
8: DO computes MACKs(CHj), replace it with CHj in S
9: else

10: “Verification fails”, DO takes appropriate action
11: end if
12: end for
13: DO→ CSP: Send signed updated S. The CSP will then overwrite each respec-

tive chain hash with the received MAC
14: CSP → DO: Send “Signed proof message” as an acknowledgment ensuring

updates are written
15: DO can now delete old proof messages

ify the signature (Step 4). If the signature is invalid, stop the process and request

the CSP to send it again. In case it repeats more than few times, an appropriate

action can be taken against the CSP about not fulfilling the service agreement. If

signature is correct then for each CHj in S, the DO will do the following: retrieve

corresponding latest sequence of records by calling RetrieveChain(IDo, verj) (Al-

gorithm 19) and if it is correct then attest it by computing a MAC over CHj using

key Ks. The newly attested MAC is now replaced with corresponding CHj in S

(Steps 6− 8). In the function call, verj is the version number of resource o with

id IDo corresponding to the CHj. Updated S is now sent to the CSP (Step 13).

Upon receiving the updated S, the CSP will update the corresponding records at

the server by replacing their chain hashes with received updated MACs (or chain

hashes). CSP will now send a signed proof message as an acknowledgment to the

data owner ensuring that the updates are successfully written in the cloud store

(Step 14). The old proof messages received from the authorized users can be now

deleted by the data owner (Step 15). The use of chain hash attestation using key

Ks is used to reduce the storage at the data owner.
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Algorithm 19 RetrieveChain(IDo, veri)

Input: A resource id IDo and one of its version number veri.
Output: It retrieves a sequence of recent records for IDo up to version veri.

1: DO→CSP: send Get request with IDo, veri
/* create sequence C containing latest records reco,j of resource o and version
j */

2: CSP creates and initialize set S = {reco,i}
3: k← i
4: while (reco,k−1 and not MACKs(CHk−1)) do
5: C = C ∪ {reco,k−1}
6: k← k− 1
7: end while
8: if (reco,k−1 and MACKs(CHk−1)) then
9: C = C ∪ {reco,k−1}

10: end if
11: CSP→DO: C

Algorithm 20 CorrectChain(IDo, C)
Input: A resource id IDo and a sequence of its recent records C.
Output: It verifies each element in C by recomputing it and returns a true or false
value accordingly.

1: for (each record reco,l in C) do
2: DO verifies the CHl by recomputing it and comparing it with the stored

proof messages in the current time slot
3: end for
4: Return “True” if all chain hashes are correct, else return “False”

The RetrieveChain() method allows the data owner to retrieve the chain (i.e.,

C) of given resource’ id (IDo) and version number (verj) from the CSP. The chain

C = {reco,k, ..., reco,i} is such that the CHk associated to record reco,k with version

verk has MAC’ed with key Ks. Also, there is no CHl exists with k + 1 ≤ l ≤ i and

MAC is computed with Ks.

Using CorrectChain() method (Algorithm 20), the data owner verifies the given

chain hash of a given resource. If correctly verified then the algorithm returns

“Success’ else it returns “Failure”.

In case the CSP does not send the latest version of a resource to the data owner,

it will be caught by the data owner. There are two possible cases: only CSP mis-

behaves or the CSP will collude with the writer. In the first case since the writer
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is trusted, the timestamp will ensure the time of resource update. If the resource

was written in the previous time slot, the CSP will be caught by looking at the

timestamp. If the resource is written in current time slot but is not the latest ver-

sion then also it will be caught. It is because at the end of each time slot the latest

version must be attested and an intermediate version is only attested if corre-

sponding access right is revoked. It means if the latest version of a resource is not

attested at the end of the current time slot, it cannot be attested later and will be

caught easily by the data owner. If the writer colludes with the CSP and will mod-

ify the timestamp then also it will be caught by the data owner. It is because the

timestamp is captured in the chain hash of next version written for that resource.

If there is no new version written then it will be treated as a new version.

4.3.2 Protocol to defend against revoked access

In what follows, protocol 2 describes handling of requirement 2 given in Section

4.1. In the protocol, immediately after a user’s access right is revoked, the data

owner will attest each of his latest updated records written in the current time

slot. It ensures that the integrity of revoked resource will be intact even if the CSP

colludes with the writer of the resource.

To handle the given requirement, we propose a protocol described in Algo-

rithm 21. The goal of this protocol is that a user whose access right is revoked for

a resource (has written previously some latest records for the resource) cannot be

able to modify their own written records, even if colluded with the CSP. If a user

u is revoked from accessing resource r (with identifier IDr), the data owner will

call procedure RevokeAccess(u, IDr) (i.e., Algorithm 21).

In RevokeAccess() method (Algorithm 21), the data owner will first send the

read request for resource r to the CSP (Step 2). If the latest version of the resource

r is written in the current time slot ti, the CSP returns the corresponding record

(Steps 3− 4) else return “no such record found” (Step 12). If the received record

was written by the revoked user, the data owner will compute MAC over it using

secret key Ks, and send it back to the CSP (Steps 5− 7). The CSP will update the

received chain hash into corresponding resource record and return a signed proof
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Algorithm 21 RevokeAccess(u, IDr)

Input: A user u and resource IDr to be revoked from u.
Output: The authorization of resource IDr is revoked from user u.

1: ti ← current time slot
2: DO→ CSP: Send IDr
3: if (latest verj of resource r is written in ti) then
4: CSP→ DO: Send latest record recr,j for IDr
5: if (recr,j is written by u and CorrectChain(IDr, RetrieveChain(IDr, verj)))

then
6: DO computes X ← MACKs(CHj)
7: DO→ CSP: Send X
8: CSP will replace CHj with X
9: CSP→ DO: Send “Signed proof message” as an acknowledgment

10: end if
11: else
12: CSP→ DO: “ no new record found′′

13: end if

message as an acknowledgment back to the data owner (Steps 8− 9). In case the

CSP maliciously allows the revoked writer to overwrite the existing record, the

data owner can frame charge against the CSP through the proof message. When

a new version is written by another user, the proof message can be destroyed by

the data owner.

The two shortcomings given in Section 4.1 are formalized together as follows.

In the definition below, the unauthorized user refers to untrusted cloud service

provider, authorized users who have written some historical data and the revoked

users.

Definition 13 (Collusion-secure). A system is called collusion-secure if even in the

presence of two or more unauthorized users collude together, the secret keys known to all

the users does not contain any key that can be used in generating secrets that will allow

any unauthorized write access in the system.

Claim 2. Protocol 1 and Protocol 2 are collusion secure.

Proof. Upon receiving the updated sequence of triplets in Protocol 1, the CSP will

update these chain hashes in the corresponding records. Now since chain hash

of every latest resource version written in the current time slot is created using
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data owner’s secret key Ks, no user including the writer of the resource itself can

modify the resource. With the reasoning as in Protocol 1, in Protocol 2 since MAC

is computed over latest version’ chain hash using data owner’s key, the revoked

user cannot be able to modify its own written records. The above two protocols

are secure even if the unauthorized users will collude (Definition 13) because the

secret key (Ks) used in the computation of MAC is only known to the data owner.

If the chain hash in last versioned record of a resource in a time slot is not MAC’ed

with Ks, the CSP is caught by data owner for violating the mutual service agree-

ment.

4.3.3 Experimental evaluation

We implemented the proposed write access control protocols on Microsoft’s Win-

dows Azure [62] cloud platform using Java. In the implementation, we are not

focusing on Azure storage performance since the proposed system can be imple-

mented on most of the cloud storage systems. The implementation, in particular,

focuses on cryptographic models used in the system to achieve different security

requirements.

The implementation consists mainly of three entities: a client machine in user

premises, two virtual machines. One virtual machine works as a data owner and

other works as a cloud server. The client machine consists of an Intel core 2 quad

processor 2.66GHz with 3GB RAM and 16MB Cache. We choose AES-128 as the

cipher for file encryption and employ MD5 as the hash function. The cloud server

stores 1000 records whose size varies from 100KB to 200KB.

Figure 4.1 shows the latency chart with respect to different numbers of write

requests given to the cloud service provider. Major processing time is due to the

cryptographic operations performed at the server and rest of the time is used in

to and fro communication between the client machine and server machine.

Figure 4.2 shows the performance of data owner machine for computing MACs

over received chain hashes in Protocol 1. The execution cost of one received mes-

sage with 107 pairs is 78.2 seconds. It includes computation of one MAC for mes-

sage integrity, verification of authorization certificate and 107 MAC computations
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Figure 4.1: Write operation latency

over received chain hashes from the CSP.

Figure 4.2: Data owner performance for computing MACs over chain hashes

Figure 4.3 analyses Protocol 2. The protocol requires two communications be-

tween the data owner and the CSP. In the first communication, the data owner

sends a list of users IDs to the CSP whose write access has been revoked and re-

ceives a list of the corresponding chain hashes from the CSP. The data owner then

computes the MAC over each received chain hash and sends them back to the

CSP, who will then update each corresponding record and return an acknowledg-

ment back to the data owner. In the implementation, we consider three sets of

revoked users, i.e., 10, 100 and 1000. Since a revoked user can have multiple re-

sources to be revoked, we consider 10 and 100 number of MACs are computed by

the data owner. The maximum time (approx 70%) in the operation is due to com-

munication between the two parties. Therefore we can see from the figure that
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time is slowly increasing with the increase in a number of revoked users. It may

be noted here that in general the number of revoked users in a time slot and their

respective latest updated versions (in the last time slot) are limited in number.

Figure 4.3: Implementation cost for Protocol 2

4.4 Freshness guarantee

If the staleness is maliciously injected by any misbehaving party (including the

CSP), it must be caught by the data owner. For example, in a stock market appli-

cation, a small delay in updating the bid price can cause a huge loss to a bidder.

Similarly, a small delay in getting the current status of seat allocation in a railway

reservation system may restrict you from getting a confirmed seat reservation.

Therefore, it is desirable to minimize the read staleness (or improve freshness

guarantee) in a data access system.

In order to guarantee the freshness of the received data to a user, in an ideal

situation, the CSP needs to give a freshness proof (along with the data item) that

will ensure the user that received data is fresh as the last update. However, there

is a delay involved in sending and receiving the proof message.

4.4.1 Existing notions

Golab et al. [63] define two interpretations for staleness: version-based staleness

and time-based staleness. In the first type, a read returns any of the k last updated

versions (called k-atomicity [64]). In latter, a read returns the value that is at least
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t time units stale (called delta-atomicity). In real systems, t depends on write

latency and propagation delays. Bailis et al. [45] combine the two above metrics

and define another probabilistically bounded Staleness, i.e., < k, t >-staleness. It

ensures that a read request will return one of the last k updated versions provided

we wait t seconds after the last version was written. Suppose the last 3 versions

are v1, v2 and v3. Now, < 3, 4 >-staleness ensures the returned record will be one

from the last 3 (i.e., v1, v2, v3) versions provided the read request was made within

4 seconds after the last record was written (i.e., v3).

At the time of read request to resource (o) in Popa et al. [15] scheme, a user

sends the resource ID (i.e., IDo) along with a (fresh) random nonce N to the CSP.

The CSP authenticates the user and return the requested resource information oi

along with a proof message.

Proo f message={h(IDo, veri, ver(Ko), h(oi), CHi, N)}PrCSP

Where h() is secure hash function, veri is the resource version number, ver(Ko)

is the version number of resource encryption key Ko and oi is the current ith re-

source. The presence of N in the proof message only assures that the message is

computed afresh. It gives version-based staleness. In [44, 12], the timestamp (τi)

stored securely with each record (i.e., CHi = MACKu(oi||CHi−1||τi)) written by

user u with secret key Ku. It captures the time when the record was written.

In the previous schemes ([44, 15, 12]), the CSP can still give stale resource in

response to a read request without the misbehavior being detected by the data

owner. This is because the proof messages do not guarantee that there is no

record written between the time when the returned record was written and the

time when the resource is sent to the user. Therefore, we are expecting that there

must be a commitment message that will guarantee “the returned resource ver-

sion will be the latest committed version at least till the time when the data record

is sent by the CSP to a reader”. However, while working with distributed cloud

servers we need to give some practical interpretation to the staleness definition. A

genuine issue is that there are delays in updating replicas; therefore one possible

excuse from the CSP for such delays is that the requested server is disconnected
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(for a time being) from other servers. Now, the challenge is that can we give a

better or improved staleness (or freshness) guarantee?

4.4.2 Improved notion: < v, d, t >-staleness

We propose a stronger interpretation to the staleness property which we call <

k, t >-staleness [45]. It ensures that a read request which begins t time units after

the write commit operation returns one of the last k updated versions.

Definition 14 (< v, d, t >-staleness). A system guarantees < v, d, t >-staleness if it

assures that the version v of resource d is the latest updated version at least until time t,

where t is the time when the resource was dispatched by the CSP.

The < v, d, t >-staleness definition says that its respective freshness proof will

ensure that the data version (i.e., v) returned is fresh as the last update at least

till the proof creation time (i.e., t). In distributed scenario, no server can give

such a proof since the write operation on a resource can be performed at any

server. However, to protect against stale read, staleness sensitive applications re-

quire such concrete proofs so that the CSP’s misbehavior is caught by the data

owner during the auditing process. To achieve the stronger freshness require-

ment, we assume there is a dedicated write server for each resource, i.e., in the

system’s view, each resource is updated at only one dedicated server by the CSP

and replicas are then updated. This assumption is similar to the one used by Zel-

lag et al. [65] and by Akal et al. [66], where all resources are stored at a central

database server. Every resource is first written at the central server then replicas

are updated. In contrast, in our model, there is more than one such dedicated

server, and each server is responsible for updating a distinct set of resources. It

may happen that the CSP may not do the write updates on dedicated servers.

These servers need to provide freshness guarantees in the form of proofs to the

readers whenever asked. Therefore, if the CSP does not follow the required agree-

ment, it will be exposed during auditing process with the help of proof messages

(collected at the data owner from various users). It is to be noted here that the

use of dedicated server may degrade the Get and Put transactions costs due to the

increase in communication cost.
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The dedicated server can only generate proofs for its associated resources.

Upon a read request, the proof message is computed as follows.

proo f message = {h(tcurr, resource_in f o, tw)}PrCSP

Where, tcurr is the current timestamp indicating the time when the proof was

created, tw is the timestamp indicating the time when the resource was written,

and resource_in f o contains the tw along with other resource record information.

The proof message is sent to the read authorized user along with tcurr and resource

information. It assures the user that there is no record written in-between the

proof creation time and the time when the returned resource was written. If later

any message is found to be written in this time interval, the proof message can be

used as a proof of staleness.

A system that ensures < v, d, t >-staleness is called < v, d, t >-staleness se-

cure. An informal proof for the staleness security property is given below.

Claim 3. The proposed mechanism is < v, d, t >-staleness secure.

Proof. The proof message by the CSP binds the committed time tw of the resource

version along with the time tcurr when the proof is created. Such proofs are col-

lected at the data owner and are used while auditing. Since the proof message was

signed by the CSP with its private key and created by a single dedicated server,

it cannot later deny about the commitment given in the proof. In case the server

tries to fool a reader by giving a stale data, the corresponding proof messages

collected from authorized users must differ.

Suppose the version number of received resource record is vi and its commit

timestamp is t. While auditing, the data owner will check the timestamp (t′) of

version vi+1 (if exists). If t′ < tcurr (present in the proof message), the record was

stale else it was fresh. In case vi+1 does not exist, the record is assumed to be fresh.

Since the timestamps in data records are used in computing MAC with writer’s

secret key, CSP cannot forge it. Hence, no unauthorized user (including the CSP)

can give a stale record to an authorized user without being detected by the data

owner.
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4.5 Related work

Early cryptographic file system with untrusted servers proposed by Cattaneo et

al. [67] and Miller et al. [68] provide data integrity by storing a hash value and

digital signatures for each data file. In SiRiUS [44] every user has one signature

key and one asymmetric key for file encryption. Every file has two parts: the

data part and meta-data part. Meta-data (contains access control information)

file is continuously signed by the user with updated timestamp, for freshness.

SUNDR [42] implements the property named “fork consistency” which guaran-

tees that users can detect any integrity or consistency violations as long as they

see each other’s file modifications on the server. They use signed message called

update certificate generated by a user to handle concurrent updates. This will

lead to waiting for users until another user will finish their access. Also, the

consistency is achieved by adding an extra user to user communication. There

are schemes which provide high-level integrity for cloud-based file system, i.e.,

Proofs of Retrievability (PoR) [22, 69]. Stefanov et al. [69] proposed dynamic

PoR that continuously monitors the operation of cloud storage service and obtain

strong guarantees about the correctness and availability of entire stored file sys-

tem. It is enabled through an auditing protocol that continuously monitors the

correctness and availability of the entire file system. At a low level, MAC’s are

used for ensuring data integrity. To ensure freshness, it is necessary to authenti-

cate not just data blocks, but also their versions. Freshness is ensured using MAC

for each file block binding it with the corresponding unique version number and

is updated every time the block is updated. In this work, we are however consid-

ering low-level integrity and strong consistency semantics for a malicious storage

system.

4.5.1 Write-serializability

SUNDR [42] implements a weaker property named “fork consistency”. To over-

come the fork attack, a strong binding among the history of updates for a resource

is needed. It is implemented using a user’s signed message that binds together
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all the updates into a single hash (i.e., the i-handle using Merkle hash trees [70])

along with the latest version of every other i-handle. While a file update opera-

tion, the user acquires the global lock and access the latest version structure for

each system user from the server. This set is called version structure list (or VSL).

The user then updates its version structure by modifying its i-handles and/or the

version numbers according to the (received) current state of the file system. A

user verifies the received VSL and compares it with stored VSL. If each version

structure in received VSL is no lesser than the corresponding version structure in

stored VSL then update the stored one (assuming it is consistent). Now sign the

updated version structure (the signed message) and sends it to the server. The

server adds this updated structure to the VSL and deletes the old entries for up-

dated i-handles. Now the user will release the file system global lock.

For concurrent updates, the user pre-declares a fetch or update operation to the

server before receiving the VSL. It is done using signed messages called update

certificates that contain user’s next version number (next to the one which is in the

stored VSL), a hash of user’s VSL entry and a list of modifications to be performed.

The user then sends the update certificate to the server which replies with the VSL

and a list of all pending operations not yet reflected in the VSL (by other users).

It is to be noted here that while signing an updated certificate, a user does not

predict the version vector of its next version structure since it may depend on

concurrent operations by other users.

Shraer et al. [43] addressed a stronger write-serializability property by taking

help of a verifier that will verify it using client-to-client communication. The ver-

ifier stores linked or chain hash for each resource, i.e., the latest hash includes all

previous versions information (in contrast to [42]). Therefore the untrusted CSP

will not able to modify old resources since every latter resource is linked with

previous versions. Also, each client updates others by sending consistency noti-

fication messages that contain the maximal version number. If one of the checks

fails then the client broadcasts a failure message among other clients.

Write-serializability property can be addressed by storing a secure message

such as a “chain hash” with each record [15, 12], as described earlier.
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Although the existing schemes defend against unauthorized modification of

outsourced records written by other users, a write authorized (or revoked) user in

collusion with the CSP can modify his own written latest sequence of data records

until a new version is written by another user.

4.5.2 Freshness

In Popa et al. scheme [15], at the time of resource read request, the authorized

user sends the requested resource ID along with a random nonce N to the CSP,

as shown in Figure 4.4. The CSP authenticates the user and returns the requested

resource information along with hashed and signed “CSP get attestation” mes-

sage. The “CSP get attestation” is computed by the CSP over returned resource

information and the N. The nonce value assures that the attestation is computed

afresh.

Figure 4.4: Attestation protocol

Vimercati et al. [12] use timestamp (as a commitment message) stored securely

with each record version that assures the time when it was written. However,

in both of the schemes, the CSP can still give the stale resource in response to

a read request without the misbehavior being detected by the data owner. Our

proposed scheme guarantees that the received resource version by a user is the

latest committed version at least till the time when it was sent by the CSP.

4.5.3 Revocation

Popa et al. [15] use lazy revocation ([5]) to handle access right revocation, i.e., a

revoked file is re-encrypted only when the file is modified for the first time after

being revoked. Therefore, the untrusted CSP can collude with the writer and

modify the last written file without being detected by the data owner.

In Vimercati et al. [12] scheme, a write access revocation is handled by up-

dating the secure write token at CSP. However, it will not restrict the collusion of

102



untrusted CSP and the revoked user who want to modify the existing resource.

Table 4.3 summarizes the mechanisms used by existing schemes with respect

to considered security properties, i.e., integrity, write-serializability, freshness and

Secure revocation. In the table, ’X’ indicates that the security property is not ad-

dressed. As shown in the table, integrity is addressed using Message Authentica-

tion Code (MAC [61]) in the most promising schemes [15, 12] and in the proposed

scheme. Chain hash is preferred over the global lock and out-of-band communi-

cation based mechanisms for handling write-serializability by these schemes. The

scheme in [15] achieve version-based staleness, i.e., a read returns one of the kth

latest version. k is fixed in a system and dependents on the time required by a

data record to reach a reader. In contrast, the proposed scheme uses < v, d, t >-

staleness guarantee. Attestation mechanism is used for handling a user’s access

right revocation as compare to lazy revocation or token renewal.

Table 4.3: Comparison of existing schemes against the considered security prop-
erties

Security property→ Integrity Write Freshness Access right
↓ Scheme Serializability revocation

Li et al. [42] Hash tree Global lock X X
Shraer et al. [43] Verifier Out-of-band X X

communication
Popa et al. [15] MAC Chain hash Version-based Lazy

staleness revocation
Vimercati et al. [12] MAC Chain hash X Renew token

Proposed MAC Chain hash < v, d, t >- Attestation
staleness

4.6 Summary

In this chapter, we demonstrated the challenges with regard to write access con-

trol for outsourced data as it requires more dependency on the untrusted service

provider. In the considered data outsourcing scenario, we argued that even the

authorized user should not be allowed to modify an outsourced content for an

unlimited amount of time. Also, we have shown that in the existing schemes, a
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revoked user in collusion with the CSP can modify the old written data files for

which his access is now revoked. The new system with proposed mechanism is

implemented on Microsoft Azure platform and it shows that the suggested mech-

anism is viable in practice.

We also provide stronger freshness guarantee as compared to the existing sche-

mes for outsourced data. It assures the reader that the received data file is fresh

at least until the time when it was dispatched from the CSP. Freshness guarantee

plays an important role especially when concurrent modifications to the existing

data file are allowed. Read staleness is inversely proportional to the efficiency in

handling concurrent updates.

For efficiency reasons, we assume that the data owner will divide the out-

sourced resources into four groups (1− 4) according to their security level (sim-

ilar to the priorities assigned in [15]). Most secure resources are in group 1 and

resources which require the least secrecy are in group 4. Group 1 resources are

audited in each time slot, group 2 resources are audited very frequently but not

necessarily in each time slot, group 3 are least frequently audited and the group 4

resources are never audited. To isolate the scheduled versions for auditing from

the CSP, resources from groups 2 and 3 are randomly chosen. Although the per-

centage of resources chosen are application dependent, a number of resources

chosen from the group 2 are always greater than the number of resources chosen

from the group 3.
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CHAPTER 5

A novel PHRMS scheme supporting unobserv-

ability and forward secrecy

Privacy and security of personal health information are the two major concerns for users

of e-Health system. For privacy reasons, it is desired that third parties cannot link the

outsourced e-Health documents to their owners. A scheme is proposed that employs mix

networks for achieving unobservable outsourced data access. An important security re-

quirement named forward secrecy is addressed and protocols for publishing a user’s health

record documents are proposed and analyzed.

5.1 Introduction

Confidentiality of PHR is an important security requirement of a PHRMS [71].

A PHR owner can identify the appropriate doctor to treat her and grant him ac-

cess to an appropriate part of her record. A doctor will usually access only her

specialty related information from a PHR [72]. Therefore, the PHR data can be

divided according to the doctor’s specialty classes for proper access control. To

enforce access control, each class of information can be encrypted with distinct

keys and an appropriate key can be given to the consulting doctor. However, ac-

cess to future PHR information by the doctor must be restricted, since the patient

may change her doctor at any time. If forward secrecy is not provided, an unau-

thorized doctor can see the patient’s future consultation information using some

old authorization, such as to whom she is consulting and what prescriptions she

is getting. A solution to handle this is to encrypt each new class document with a
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fresh secret key. This approach requires a large amount of secret storage to store

these keys with the patient.

Unlinkability between PHR owners and their PHR documents is an impor-

tant privacy requirement. A patient will be highly concerned about the linka-

bility to some of her private PHR information [73], for example, mental health

diagnosis information such as depression or alcoholism, HIV, psychiatric behav-

ior, teenagers, battered women, that may lead to her social discrimination [74].

Health Insurance Portability and Accountability Act (HIPAA [75]) outlined the

legal protections for PHR privacy. However, the HIPAA rules apply only to cov-

ered entities. The entities like cloud service provider, individual doctor receiving

the consultation fees in cash, researchers and surveyors are not covered entities.

There are two types of existing solutions which provide user-data unlinkability.

In one approach [76, 77], the data is released in groups and within a group, a

person’s identifier cannot be distinguished from at least a fixed number of indi-

viduals. Privacy of these methods is limited to the fixed number of individuals in

each group that require trusted servers and hence are not suitable for untrusted

cloud servers. The second approach uses a procedure called pseudonymisation

[8], where the identifying information in a data file is replaced by a secure (en-

crypted) identifier called pseudonym. A user knowing respective pseudonym

can only link the data file. To allow a doctor to decrypt the PHR documents of pa-

tients, the de-pseudonymisation and pseudonymisation operations must be sepa-

rated. However, this separation can be done only by using asymmetric encryption

schemes which require more computation cost [47]. Also, a separate third party

is generally used for the de-pseudonymisation procedure.

Although, the unlinkability using pseudonymization works well when com-

municating parties are trusted, it will not work when one of the communicating

parties is untrusted such as the CSP. Especially in case of untrusted CSP who con-

trols the system traffic can link the communicating parties involved in a commu-

nication. Therefore, a stronger privacy notion is needed such as unobservability

which will also defend against the adversary who can control the network traffic.

For achieving unobservability, we first time make use of MixNet [48] in PHRMS
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(as best of our knowledge) so that no unauthorized user including the cloud ser-

vice provider can find the link between a user and her PHR information.

It is necessary to enable data access by the secondary users such as medical

researchers and surveyors ([78]). For example, surveyors studying the malaria

cases in a city must get efficient access to all the related reports created by the

laboratories (labs) present in that city and study them. If the lab reports are stored

in encrypted form, then providing access to researchers and surveyors requires

either giving them the corresponding decryption keys or, somebody on behalf of

PHR owner will decrypt the documents and send to them. Since researchers or

surveyors are not trusted by a PHR owner, they may leak owner’s privacy. We

assume that the Lab reports are stored unencrypted so that they are efficiently but

securely accessed by the users including secondary users.

We propose a symmetric key based key management solution for patient-

centric PHRMS. We first time introduce the forward security property in PHRMS

so that a doctor with any old authorization key cannot access any newly added

PHR document. The scheme supports key and user revocation. A doctor or lab

cannot deny that a document is written by them if it was the case. The unobserv-

ability property in the PHR document publishing protocol is formally analyzed

using ProVerif [50]. In the proposed scheme, secret storage requirement for a PHR

owner will be of storing one private key and one master secret key. Also, one cer-

tificate is needed to be stored. To reduce computation cost, hash computations

and symmetric key encryption/ decryption operation are generally used.

The following section gives the system overview. Section 5.3 describes and

analyze the secure key management for a PHR. In Section 5.4, we give protocols

for publishing a medical prescription and lab report. It formally analyzes the lab

report publishing protocol with respect to privacy leakage. Section 5.5 will give

few use cases for a better understanding of given PHR management system and

discuss the hospital scenario. Section 5.6 gives the summary of this chapter. For

better readability, notations used in this chapter are shown in Table 5.1.
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Table 5.1: Notations and abbreviations used

Notation Description
h() Cryptographic hash function

PHRidU A unique id of a PHR for user U
SMU A symmetric master key of user U

Ki Key of class i
Ki,j jth key for class i in a PHR

CertU Certificate of user U
E() Symmetric encryption function
|| bit-wise concatenation operator

(PU, SU) A public and private key pair for user U

Figure 5.1: The PHRMS system

5.2 System overview

An outline model of the proposed PHRMS is shown in Figure 5.1. It consists of

two primary entities: the users and PHR Service Provider (PHRSP).

Users a user is a PHR owner, doctor, lab, insurance company, researcher or sur-

veyor. The responsibilities of key users are described below.

1. PHR owner is responsible for creating and changing her PHR with the help

of PHRSP. We assume that the PHR owner is also responsible for generating

and managing secret keys used to encrypt her PHR documents.

2. Doctor represents an entity responsible for generating medical prescriptions

and progressive notes for a PHR owner, whenever requested.

3. Lab represents an entity responsible for generating patient’s medical labo-

ratory report as and when requested by a PHR owner. A lab report is such

as chemical pathology report, microbiology report, immunology report etc.
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PHRSP It is the central core of the PHRMS. Its responsibilities are: registering

system users, maintaining system data including each (registered) patient’s PHR

information and, processing the read and write access requests from the autho-

rized users. PHRSP stores the system data at the cloud data store, maintained

by the cloud service provider or the PHRSP itself. PHRSP is semi-trusted, i.e.,

it follows the instructions given by the users correctly but can collude with the

unauthorized parties and release the stored data.

Each user needs to first register itself with the PHRSP. Upon receiving a re-

quest, PHRSP will generate a unique user id u, update it in its registered user list

and send it back to the user. In case the request is on behalf of a PHR owner,

PHRSP also generates a unique PHR id PHRidu for the user u and send it to the

user.

After the registration phase, the Certificate Authority (CA) issues a user cer-

tificate (Certu) to u that contains user type and sub-type information. User type

information tells whether the user is a PHR owner, a lab, a doctor etc. User sub-

type information tells about the specialty of the user. For example, sub-type of a

lab will be hematology, chemical pathology, microbiology, immunology etc., and

of a doctor will be Dentist, ENT specialist, Orthopedic Surgeon, Gynecologist etc.

along with the doctor’s medical degree (for example BMed/BM/MD etc.) We as-

sume that the class types are known in advance and are defined by the PHRSP.

A user certificate is used for authentication purposes by the other entities in the

system.

A unique PHR document ID is generated by the PHRSP when requested by

a lab or a doctor. A document ID is a bit string of type ”x||y||z” where x and

y identify the user’s (who generates it) type and sub-type, respectively, and z is

a random string generated by the service provider which uniquely identifies the

document. A group of unique IDs (for a lab or a doctor) can be generated and

assigned by the PHRSP in advance if requested.
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5.2.1 Requirements and assumptions

The data access control policy is solely enforced by the PHR owner itself. As a

non-security requirement, we require that the PHRMS data will be anonymously

and efficiently accessed by the secondary users such as medical researchers and

surveyors. We assume that a large number of users register with the PHRMS.

The communication link between a user and the PHRSP is assumed to be secure.

A large number of users are assumed to be associated with a doctor or a lab to

ensure unobservability. Since a lab report contains highly technical information,

it is required to be read by the doctors and the owner only. Allowing frequent

access to the lab reports by its owner may disclose linkability between the two.

Labs will know their own generated reports for a patient. The doctors and labs do

not intentionally leak any of their known or generated patient’s PHR information

to anyone. A PHR owner may use a low configuration device and hence com-

putationally intensive operations are avoided at their end. A doctor with access

to a PHR document has access to all its old related documents (patient’s history)

to enable more accurate diagnosis of the patient. We require that the lab reports

and the medical prescriptions do not contain any patient identity information like

patient’s name and her address. A unique id is assigned to each such document

with the help of PHRSP, to avoid any ambiguity in accessing them.

Let CLab is a central lab with respect to a group of labs in an area, used for

achieving unobservability between the lab reports and the patients. It is assumed

that a CLab does not reveal the linkability between the communicating parties.

5.2.2 Unobservability

The unobservability property ensures that no unauthorized user including the

untrusted PHRSP can observe the linkage between a PHR owner’s identity with

her PHR documents. Unlike medical prescriptions, we store lab reports anony-

mously and unencrypted at the server so that the users can efficiently access them.

To anonymously store a lab report, we require that the respective lab uploads it

directly to the server. Since the lab reports do not reveal their owner’s identity
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(as possibly in the case of progress notes), we store them unencrypted. An autho-

rized doctor downloads and read a report directly from the server with the help

of PHRSP. A pictorial view of the cloud data store is shown in Figure 5.2.

Figure 5.2: A view of cloud data store

A Mix Network (or MixNet [48]) is used for enabling unobservable communi-

cation between the users over the internet and hence the unobservability. It con-

sists of a sequence of mix nodes which provide anonymity for a batch of inputs,

by randomly changing the order of the arrived messages.

In the proposed scheme, all the PHR documents are stored independently.

Since each medical prescription is stored in encrypted form, one cannot trivially

link the prescription information with its owner. Also, an authorized doctor can

only decrypt it other than the owner, which is assumed to be trusted and does

not disclose the linkability. In the case of lab reports, to defend against an active

attacker who may attempt to link input and output messages to and from a lab,

we use the concept of MixNet. CLab (as a mix node) is assumed to be present

corresponding to a group of labs in an area. Each patient communicates with a

lab (or other entities) through the area CLab. For l patient requests to a CLab and

for a group of labs, guessing the probability of user-lab link will be 1/l. Hence,

any unauthorized user including PHRSP will not able to link a lab report with its

owner with probability more than 1/l.

5.3 PHR encryption and access control

A PHR consists of all health related documents of a user. To update a PHR effi-

ciently, we store the document IDs separately from the actual documents. There-

fore, a PHR can be viewed as a group of associated documents IDs. For access
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control, the PHR documents IDs are divided into independent classes according

to the sub-type of the doctor it is related to. For example, document IDs related to

the ENT specialist are grouped in one class. The motivation behind this classifica-

tion of IDs is that a doctor needs to access only its specialty related documents. 0th

class is a special class, accessible to all authorized doctors. It contains the owner’s

information like immunizations, allergies, family history, emergency contact in-

formation, blood group, age group, etc.

For data secrecy, PHR documents IDs are encrypted. A distinct symmetric key

is assigned to each class and is used for encrypting that class’ IDs. We consider

a PHR (excluding the 0th class) with two types of documents: medical prescrip-

tions (or progressive notes) generated by doctors and the lab reports generated

by different labs. Since a doctor’s prescription may contain a continuous progress

of a patient, an adversary can link it to the patient if it is left unencrypted. An

adversary here is an entity including PHRSP who is always curious to know the

patient’s PHR information. Therefore, we suggest that every prescription must be

encrypted with a key used to encrypt its corresponding ID. To avoid communica-

tion and computation cost at the PHR owner, prescriptions are directly uploaded

to the server by the doctor, without the involvement of the owner.

5.3.1 Key management

The PHR documents are divided into independent classes as discussed above. An

example PHR representation is shown in Table 5.2. A row in the table represents a

class. Each class has an ordered sequence of corresponding encrypted document

IDs. A PHR can have rows for a subset of possible classes, as needed. For example

in the table, it has only two specialty classes 1 and 3, other than the 0th class.

Table 5.2: An example PHR

Class\ seq. # 1 2 3 ... m
0(Common) D0,1 - - ... -

1(ENT) D1,1 D1,2 - ... -
3(Dentist) D3,1 D3,2 D3,3 ... -
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Table 5.3: Encryption keys in the example PHR

Class\seq.# 1 2 ... m
0(Common) K0,1=hm(K0)K0,2=hm−1(K0)...K0,m=h1(K0)

1(ENT) K1,1=hm(K1)K1,2=hm−1(K1)...K1,m=h1(K1)
3(Dentist) K3,1=hm(K3)K3,2=hm−1(K3)...K3,m=h1(K3)

Let 1 and 3 represents ENT and Dentist classes, respectively (as specified by the

PHRSP). A column in the table represents the document sequence number j with

1 ≤ j ≤ m, where m is the maximum number of possible documents present in a

class.

Let an encrypted document ID in a class i with sequence number j be repre-

sented as Di,j. Since each class’ data is distinct; the PHR owner can independently

handle each of them.

For all row and column intersection in Table 5.2, a different encryption key

is assigned as shown in Table 5.3. Let each class i is associated a class key Ki

computed as h(SMu, i||r), where SMu is the symmetric master key generated by

the PHR owner and r is used for handling class key revocation. The encryption

keys may be revoked due to reasons like key forgery and the session with the

doctor is needed to be revoked in-between, by the patient if she wants to change

her doctor. Initially, r = 1 and is incremented by one each time the ith class key

is revoked. The PHR owner will generate a hash chain for each class using the

respective class key. A hash chain for class i with m elements is computed as

Ki,m = h1(Ki), Ki,m−1 = h2(Ki), ..., Ki,1 = hm(Ki).

Updating a PHR

A PHR document with a unique ID is generated and uploaded by a doctor or a

lab, whenever requested by the PHR owner. The ID is then sent to the owner over

a secure channel. Upon receiving the ID (or IDs) for a specific class, the owner

will compute the corresponding key in the hash chain, encrypt the ID with the

computed key and send it (i.e., Di,j) to the PHRSP who will then update it in the

owner’s PHR.

The length of the hash chain is bounded by m, which is the maximum num-
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ber of possible documents in a class. Suppose the number of consultations per

person is 13. In a study, all Australians on average go to the doctor 11 times per

year. According to the data available at OECD iLibrary [79], it is maximum 13

in Japan and Korea, and over 11 in the Czech Republic, Hungary, and the Slovak

Republic, it is less than 3 in Chile, Mexico, and Sweden. Therefore, considering

100 years of age of a person and 13 consultations a year, m can be typically taken

as 1300. To avoid these number of hash computations each time a key in the hash

chain is computed, the owner can store intermediate hash value hm−l(.) taking an

appropriate l for each existing class.

5.3.2 Comparison

Scheme Special h/w Access right Forward Privacy
required revocation secrecy method

Huang et al. [84], Yes No No No
Chen et al. [83]

Odelu et al. [87], No No No No
Liu et al. [88]
Li et al. [72] No Yes No No

Thilakanathan No Yes No Secret sharing
et al. [89]

Neubauer et al. [90] No No No Pseudonymization
Benaloh et al. [91] Yes Yes No Searchable

encryption
Moor et al. [93] No No No Pseudonymization

Proposed scheme No Yes Yes Mix node

Table 5.4: Coarse level comparison of PHRMS schemes

A comparison of existing symmetric key based PHRMSs is shown in Table

5.4. The comparison is done on the basis of following properties: whether the

scheme requires any special hardware, whether access right revocation is ad-

dressed, whether forward secrecy property is addressed, and which privacy method

is used. From the comparison table, we can see that a number of schemes [83, 84,

91] are hardware-based. Schemes in [87, 88, 72] use hierarchical access control.

These schemes require a significant amount of system public storage for stor-

ing the key derivation hierarchy and key derivation information. Also, the key
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derivation cost for accessing PHR document vary with the height of the hierarchy.

Li et al. [72] scheme requires a variable number of secret keys with each system

user. Also, Liu et al. [88] scheme is not scalable with add or delete file operation or

change in the relationship between user classes. All the existing schemes enabling

privacy requirement use a TTP in their implementation. Our proposed scheme

first time introduces the forward secrecy requirement using symmetric keys. For

privacy, Thilakanathan et al. [89] scheme uses secret sharing mechanism and re-

quires a TTP for data sharing service. Neubauer et al. [90] scheme is not patient

centric. The solution in Benaloh et al. [91] scheme needs to create and manage

multiple keys by users and service providers. Moor et al. [93] scheme uses a sepa-

rate data provider rather than another TTP to perform the pre-pseudonymization

process. As compare to the pseudonymization-based anonymity, our scheme uses

mix node and provides stronger unobservable communication guarantee.

5.4 Protocols for publishing PHR documents

In this section, we describe the protocols for publishing a medical prescription and

a lab report. The data owner initiates the protocols whenever need a document

to be generated. We assume that communication between the communicating

parties is secured using SSL.

5.4.1 Publishing a medical prescription

A prescription is published by a doctor as and when requested by a patient (PHR

owner). The procedure for publishing a medical prescription (or progress note) is

shown in Figure 5.3 and described as follows.

1. PHR owner U will send the prescription request as <Details, PHRidU, (i, j), K>

to the doctor where Details represent the disease information against which

prescription is requested, PHRidU is her PHR’s id and (i, j) is the index

of latest document for which the doctor is to be given access. The key

K = Ki,j+1 is used for encrypting new prescription. It can also be used for
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Figure 5.3: Publishing a medical prescription

computing the encryption keys of the previous documents in that class to

access the patient’ history.

2. Upon receiving the request, doctor will read the request Details and if needed

send the PHR document request to the PHRSP as < PHRidU, (i, j), l >

where, l is the number of latest encrypted IDs required.

3. Upon receiving the request, the PHRSP will retrieve the most recent l en-

crypted IDs {Di,j, ..., Di,j−(l−1)} from the server corresponding to PHRidU

and (i, j), and send them back to the doctor.

4. After receiving the encrypted document IDs, the doctor will compute re-

spective keys in the hash chain using K and decrypt the IDs. Now the

IDs are used to retrieve respective documents from the server, decrypt and

read them. If required, doctor can retrieve more (older) documents from the

server (repeating Steps 2− 4).

5. Now, based on the current Details and retrieved information of the PHR

owner, doctor will generate the prescription P or append a note to existing

P.

6. The doctor will now send a fresh document id request to the PHRSP (if not

already received) with a random request index r2 for message synchroniza-

tion.

7. Upon receiving the id request, PHRSP will generate an unique id ID f and

send it back to the doctor with r.
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8. Receiving ID f , the doctor will compute M = h(ID||EK(P)) and send <

ID f , M> to the PHR owner.

9. Receiving < ID f , M>, PHR owner will compute K′ = h(Ki||j) and HMACK′(M)

where, HMAC() is the keyed-hash message authentication code [61] and is

used for write integrity protection. Then send HMACK′(M) to the doctor.

ID f is then encrypted and updated in her PHR, with the help of PHRSP.

10. Receiving HMACK′(M), the doctor will compute a signed message {M}SD

with its private key SD and send the storage request for P to PHRSP with

the following message < ID f , EK(P), D, {M}SD , HMACK′(M) > and wait

for the acknowledgment message. Signed message using SD is used as a

proof of association between D, ID f and P so that the doctor D cannot deny

later that P is created by him. If acknowledgment is not received within a

specific period of time, the doctor will send the request again.

11. Upon receiving the message, PHRSP will upload it to the server and return

back a message < Ack, ID f > to the doctor where, Ack is an acknowledg-

ment.

5.4.2 Publishing a Lab report

The lab publishing protocol has two goals: (1) the reports are efficiently accessible

by the secondary users; and (2) the reports are unlinkable with the patients. For

the first goal, we allow the lab reports to be stored unencrypted at the server. For

Figure 5.4: Publishing a lab report
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the second goal, an anonymous channel is created between the patients and the

labs, using a CLab (discussed above) and then each lab report is published by the

lab itself who generates it. The procedure for publishing a lab report is shown in

Figure 5.4 and described as follows.

1. The PHR owner U will compute X = {U, PHRidU, req_in f o, k}PL where, PL

is the public key of the requested lab L, req_in f o represents the necessary

information to generate the lab report and k is a random secret. Now, the

owner will send <L, X> to the CLab.

2. Upon receiving the message < L, X>, CLab (working as a Mix node) mix it

with other received request messages and later forward X to lab L.

3. Receiving the report request, L decrypts X using its private key SL and gen-

erates the required report R corresponding to the received request informa-

tion req_in f o.

4. Lab L will now send a fresh document id request (if not already received) to

the PHRSP with a random request index r for message synchronization.

5. Upon receiving the request, PHRSP will generate an unique id ID f and send

it back to L along with r.

6. Receiving (or having) ID f , lab L will compute Ek(ID f ) and M = h(ID f ||R),

and send them along with U to the CLab.

7. Receiving U, Ek(ID f ), M, the CLab will forward Ek(ID f ), M to U.

8. Receiving Ek(ID f ) and M, the owner will compute K′ = h(Ki||j) and HMACK′(M)

similarly as in prescription publishing protocol and send message <L, HMACK′(M)>

to CLab. Later, PHR owner will decrypt ID f from Ek(ID f ) using k sent in

Step 1 and securely updated it in her PHR with the help of PHRSP.

9. Receiving <L, HMACK′(M)>, the CLab will forward HMACK′(M) to L.

10. Receiving HMACK′(M), lab L will compute signed message {M}SL with its

private key SL, create record for R as < ID f , R, L, {M}SL , HMACK′(M) >
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and send it to the PHRSP. HMACK′(M) is used similarly as in prescription

publishing protocol. Now, L will wait for an acknowledgment from PHRSP.

If the acknowledgment is not received within a specified amount of time, it

will send the request again.

11. Upon receiving the request, PHRSP will upload the received report at the

server and return back an acknowledgment message <Ack, ID f >.

Lab reports are stored at cloud server in cleartext to facilitate efficient access

by authorized doctors, researchers, and surveyors. These must be anonymously

stored for data secrecy reasons so that no unauthorized user can link a report

with its owner. Since an outsourced report does not contain any owner’s identity

information; one cannot trivially link the report with its owner. However, one can

get linkability when the report is communicated over the Internet or through the

collection of IDs in PHR. The report is generated and outsourced by a lab. The

report ID is securely sent to the patient who will then update it securely in her

PHR.

We used ProVerif [50] to verify the unobservability property of the lab report

publishing protocol. ProVerif is a well-known cryptographic protocol verifier that

automatically verifies various security properties including unobservability.

To model the unobservability property in lab report publishing protocol, we

consider two reports R1 and R2 generated by a lab for users U1 and U2 using the

protocol shown in Figure 5.5. The unobservability property is specified in terms

of observational equivalence between two variants of the protocol. We say, two

variants are observational equivalent if an attacker cannot distinguish between

the two variants by interacting with either of them. For example, in the above

lab report generating protocol X, the unobservability is specified by the following

Figure 5.5: CLab handling two user requests
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observational equivalence:

X{R1/U1}{R2/U2} ∼ X{R1/U2}{R2/U1}

Where process X{R1/U1}{R2/U2} represents that report R1 is for user U1 and

report R2 is for user U2, respectively. Similarly in process X{R2/U1}{R1/U2},

report R2 is for user U1 and report R1 is for user U2, respectively. To further

simplify the above equivalence, consider that the first report published is R, for

two input requests from the patients U1 and U2. The observational equivalence

can be now relaxed to X{R/U1} ∼ X{R/U2} where, R ∈ {R1, R2}.

The detailed analysis is given in Appendix C.

5.5 Security analysis

In the proposed scheme, medical prescriptions are stored in encrypted form. The

encryption keys are only known to the PHR owner and the authorized doctors.

PHR documents (encrypted) IDs are grouped into classes where each class be-

longs to a doctor’s specialty. A PHR owner will securely send the necessary class

key(s) to the doctor. The doctor can now access only their corresponding class

information from the user’s PHR. Since the doctor does not have keys of other

classes, they are not able to access other class documents. On the other hand, the

lab reports are stored anonymously at the server and are accessed by doctors only

along with their owners. Communications between the system entities are se-

cured with secure SSL. Therefore, any unauthorized user including PHRSP does

not obtain any user’s PHR information.

A doctor with a key in a class can only access documents belonging to that

class. Also, since the class keys are generated using a hash chain, one can com-

pute keys of one side of the chain. In the example shown in Table 5.3 one can

compute old (left-hand side) keys. However, future (right-hand side) keys are

hard to compute due to the one-wayness property of the hash function. There-

fore, a doctor with access to a key in a class cannot access the future documents

encrypted with right-hand side keys. In the proposed scheme, a next key in the
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chain is required for encryption only when consulting doctor is changed.

Revocation

The encryption keys used to encrypt the PHR documents ids and the medical

prescriptions may be revoked due to the above discussed reasons. To revoke a

key Ki,j, PHR owner will do the following: increment the value r corresponding

to class i by one and then recomputes the class key Ki (as h(SMu, i||r)). The hash

chain is now computed using updated Ki as in PHR registration phase and all IDs

in class i are re-encrypted with the corresponding new keys from the hash chain.

The prescriptions are also re-encrypted with the updated keys used to encrypt

corresponding IDs. Each document ID and prescriptions in ith class are now re-

encrypted with a new key. Therefore, no unauthorized user with revoked key (of

class i) can access the class documents.

In what follows, we discuss two use cases that help in understanding the

working of the proposed system and then discuss the related hospital scenario.

Case 1: Non-trivial access to PHR documents

In general, a doctor can access documents related to her class. As a non-trivial

case, a doctor can sometimes require access to a document belonging to another

class. For example, a physician may require access to an ongoing medication (or

prescription) related to an ENT class. In such cases, the doctor can obtain re-

quired access to one or more specific documents belonging to other classes. The

proposed system has two types of PHR documents: the medical prescription and

the lab reports. In the case of medical prescriptions, the PHR owner downloads

the encrypted prescription, decrypts it and sends it to the doctor through a secure

channel. It allows the doctor to access only that particular document, since the en-

cryption key is not known to the doctor. In the case of lab reports, the PHR owner

will download the corresponding encrypted report ID, decrypt it and send it to

the doctor through the existing anonymous channel (using CLab). Receiving the

report ID, the doctor may then retrieve the report directly from the cloud server

and access it.
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Case 2: Treatment to minors

A PHR is required to be created for a minor, immediately after a baby is born.

However, the minor cannot handle her PHR for her initial years. She will go with

their parents to the doctor, for consultation. Therefore, a secure mechanism is

needed to access a minor’s PHR in her initial years and later the PHR is securely

handed over to the candidate. The age of handover of a PHR to its owner can

differ in different states or countries as per their local laws. It is assumed that

the parents securely manage the minor’s PHR until they hand back to her. After

getting custody of the PHR, the owner may need to restrict her parent’s access

to her PHR. Therefore, the owner generates a new master key and re-encrypts

all PHR IDs and corresponding prescriptions with the new keys, generated using

the master key as described in Section 5.3. Now, without getting access to the new

master key, the owner’s parents cannot access her PHR.

Discussion on hospital scenario

Consider an example scenario where a patient approaches a specialty department

in a hospital that may have more than one doctor in the panel. At a time only

one doctor from the panel may be present for consultation. To handle such situa-

tion, the above protocol requires one extra communication prior to the first step so

that the patient knows which doctor is in the consulting room. The patient sends

a request to the hospital that contains the concerned department information he

wants to consult with. Receiving the request, the hospital returns the public key

of the doctor currently in the consulting room along with her certificate. Receiv-

ing the doctor’s certificate, the patient will verify it and if satisfied then start the

above-given protocol.

A hospital may have junior doctors and nurses within each specialty depart-

ment. The junior doctor(s) can receive the patient request, assign it a case ID (in-

ternal to the hospital), maintains it and finally uploads it to the server on behalf

of the consulting doctor. However, the initial request message can be decrypted

by the consulting doctor only by her private key (Step 1). Since they are doctors,

the consulting doctor must trust them and pass the decryption key to them. Now,
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the junior doctor can download the patient’s history (Steps 2-4) and give them to

the consulting doctor. That will now generate the prescription (Step 5), compute

the signature for the record and pass it to the junior doctor. The junior doctor can

then generate the fresh ID if not previously exists (Steps 6-7), create the record,

upload it (Steps 8-9) and send prescription ID back to the patient (Step 10).

Other important entities in the hospital are the nurses. They may require writ-

ing notes on the prescription, for example, current patient temperature, weight,

medication with time etc. For each prescription request, the junior doctor will

encrypt the prescription with a locally generated symmetric key known also to

the department nurses (along with the doctors) and put it in a common database

associated with the case id. Since key K is not known to the nurses, they cannot

access any patient’s PHR information other than the current prescription. Nurses

can only read, decrypt, write their readings/notes, re-encrypt the current pre-

scription and store it back to the local store. The consulting doctor can read these

readings/notes and write progress notes further to the prescription. After the

consultation is over, the prescription record is built and stored at the cloud server

by the doctors.

5.6 Summary

We proposed an efficient symmetric key based patient-centric PHRMS for the

cloud using hash chains for key management. It efficiently handles the forward

data secrecy and access control in a PHR. Lab reports are stored anonymously

and unencrypted so that they can be efficiently accessed by the users including

the secondary users. Protocols for publishing a medical prescription and a lab re-

port are explained. We implement the lab report publishing protocol in ProVerif

calculus and successfully prove that it satisfies the unobservability property us-

ing ProVerif tool. We consider the revocation of the encryption key and a user.

Non-repudiation property is met so that a writer (lab or doctor) cannot deny that

the PHR document is written by them, in the case of disputes. Write integrity of

the outsourced PHR data is protected.
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CHAPTER 6

Conclusions

Fine-grained access control to outsourced data using a symmetric key-based cryp-

tosystem requires each data file (that can be accessed individually) is encrypted

with a distinct key. A user authorize for accessing a set of files needs to store

each file’s secret key. Key management hierarchies are used to efficiently man-

age a large set of secret keys with each user and enforce data access control. Two

types of key management hierarchy are used for managing keys in data outsourc-

ing scenario: user-based and resourced-based. We critically analyzed the two

types of key management hierarchy and show that the storage requirement for

resource hierarchies will be same as user-based hierarchies. They perform better

in the case of dynamic operations such as extending read authorization and revok-

ing a user without affecting other required functionalities. However, average key

derivation-time in resource-based hierarchies is more than user-based hierarchies.

We have implemented the two hierarchies and shown the results experimentally

for the sake of our arguments. We conclude that the resource-based hierarchies

can be a good candidate for key management in data outsourcing scenario.

The goal of a subscription-based key management hierarchy is to enforce time-

limited (or subscription-based) access control. The key assignment for time-limited

access is done using a subscription-based HKAS (SBHKAS). Existing SBHKASs

exhibit a trade-off between private storage requirement by a user, system pub-

lic storage requirement, and key derivation cost. Reducing public storage is not

generally emphasized in designing traditional HKAS but it is relevant in data out-

sourcing where consumer is paying for storage-as-a-service. We have proposed

a simple and efficient hash-based SBHKAS using dependent keys. The proposed
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SBHKAS reduces the secret storage cost at the central authority responsible for

managing the keys and system public storage without increasing other costs such

as secret storage per user and key derivation cost. However, the average re-keying

operation cost due to access right revocation is more in HKAS with dependent

keys. In case of dependent keys, ascendant nodes keys are also sometime needs

to be re-keyed. In our scheme, a parent node’s key needs to be re-keyed only if

the key of child node is computed using the parent key.

Access right revocation is a desired operation in many access control systems.

Traditionally, it is handled using the re-keying mechanism that assigns and en-

crypts each affected outsourced node with a new key. It prevents the revoked

user with old secrets from accessing the resource which is now encrypted with

the new key. Wang et al. [9] proposed an access right revocation mechanism

for outsourced data considering honest but curious CSP. The important feature

of their mechanism is that it does not require re-keying procedure (used in tra-

ditional systems). However, in their mechanism, a user’s access right revocation

is dependent on all other users’ access. Therefore, the system does not scale. In

our proposed system, access right revocation can be efficiently handled using the

improved certificate-based data access mechanism where each revocation is inde-

pendently handled.

Recently, Vimercati et al. [40] proposed a SBHKAS for outsourced data in a

cloud scenario. We show that their scheme has a security flaw. In their scheme,

a user after withdrawing his subscription can still have access to the resources

associated with his old and revoked subscription interval.

Write access control for outsourced data is more challenging as compared to

read access control since it requires more on the service provider. A small mali-

cious change to the outsourced content can put a hugely adverse effect on the data

owner’s business. Therefore, in the literature, a malicious but cautious CSP type is

adopted for write access control. The data owner requires an auditing like mech-

anism to detect any misbehavior and will take appropriate action accordingly to

avoid it in future. In existing schemes, it is possible that a user can modify their

own written outsourced records any number of times in collusion with a service
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provider, without being detected by the data owner. We first time consider this

property as an important security requirement and propose an audit-based mech-

anism to handle it. We also provide a stronger freshness guarantee for distributed

cloud scenario to assure a reader that the received data file is fresh at least until the

time when it was dispatched by the service provider. We argue that for freshness

property, storing timestamp and version number with the outsourced data record

is not sufficient. It must require some proof mechanism that can be used later at

the time of disputes. Finally, although the audit-based mechanisms will defend

against many write access control issues, we realize there is still an open question

that can we prevent unauthorized writes without using audit-based mechanisms?

Personal health record (PHR) is a well accepted patient-centric model for cloud-

based e-health. It is one of the important privacy enabled data outsourcing appli-

cation. We proposed a symmetric key based PHR management system (PHRMS)

for the cloud using hash chains for key management. Two of the important re-

quirements we addressed are forward secrecy and unobservability. As best of our

knowledge, we first time addressed the forward secrecy requirement in PHRMS.

It will be beneficial for patient’s outsourced data privacy. Privacy of PHR is a

primary concern for the user it belongs. It becomes more challenging when it

is outsourced to a untrusted cloud. Unobservability is a privacy property de-

fends against traffic analysis and is important requirement when communication

is through untrusted entity such as cloud service provider. We achieve unobserv-

ability using mix node and show that the forward secrecy can be achieved using

one-way hash chains. Although the presence of mix node adds communication

delay, it will be significantly less than the document generation time.
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CHAPTER A

Some algorithms

The Algorithm 22 takes a one dimension chain hierarchy (named ODH) as input

and produce an output hierarchy enabling 3-hop shortcut scheme (3-HS). In a 3-

HS, distance between any two nodes in the hierarchy will be at most 3 edges (or

hops).

Algorithm 22 3HS_Gen(ODH)
Input: A one-dimension hierarchy (ODH).

Output: Hierarchy with 3-HS.

1: Create a set of special nodes S consisting of every
√

nth node in the graph.

That is, initialize S with v1 and then add nodes vj
√

n+1 for all j such that j
√

n ≤

n. If vn 6∈ S, set S = S
⋃{vn}.

2: Insert new edges between the nodes in S to form the transitive closure of the

set.

3: For each node vi 6∈ S, find vj ∈ S such that j < i and i < j +
√

n. Insert an

edge (vj, vi) if it is not already present.

4: For each node vi 6∈ S, find vj ∈ S such that i < j and j−
√

n < i. Insert an

edge (vi, vj) if it is not already present.

5: return

Algorithm 23 creates a tree data structure in Step 1 corresponding to the input

set T of time intervals and user hierarchy UH. Then it assigns secret keys, public

labels and public edge values to the tree data structure (represents subscription

hierarchy) corresponding to each node in the given user hierarchy.
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Algorithm 23 Gen(1k, T, UH)
Input: Security parameter 1k, set T of time intervals and a user hierarchy
UH(VU, EU).
Output: It create a tree data structure and for each node in the user hierarchy it
assigns different set of secret keys, public labels and public edge values to the tree
data structure.

1: Create a root node root for the data structure and run DataStuctBuild(root, T).
Let G = (V, E) denote the tree data structure returned.

2: For each v ∈ V, randomly choose a secret key kw ∈ {0, 1}k and an unique
public label lw ∈ {0, 1}k associated with each node w in D(v), R(v), and L(v).

3: For each t ∈ T, randomly choose a secret key kt ∈ {0, 1}k and an unique
public label lt ∈ {0, 1}k.

4: For each v ∈ VU, randomly choose a secret key kv ∈ {0, 1}k

5: For each node u ∈ VU, perform the following:
(a) For each v ∈ V , randomly choose a secret key ku,w ∈ {0, 1}k associated
with each node w in D(v), R(v), and L(v).
(b) For each v ∈ V, construct public information about each edge in D(v),
R(v), and L(v) using the key derivation method.
(c) For each t ∈ T, randomly choose a secret key ku,t ∈ {0, 1}k.

6: For each t ∈ T, compute public information to permit key derivation between
nodes: for each edge (u1, u2) ∈ E compute public information by setting Su1 =
ku1,t and Su2 = ku2,t and using the key derivation method and public labels lu1

and lu2 .
7: For each t ∈ T, let Vt ⊂ V denote the set of nodes in G access to which implies

access to t. Then for each Vt, for each v ∈ Vt :
(a) Find in D(v) the node corresponding to the time interval t; call it w.
(b) Create an edge from w to t by computing public information using en-
abling key kw,t’s secret key kt, public label lt, and the key derivation method.
Mark such an edge with the level of v and type D.
(c) Repeat (a) and (b) for R(v) and L(v), using types R and L, respectively.

8: Let K consist of the secret keys kt for each t ∈ T and Sec consist of the remain-
ing secret keys kw. Also let Pub consist of G, all public labels (of the form lw
and lt), and public information about all edges generated above.

9: return
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CHAPTER B

Formal security proof for new SBHKAS

Here, we provide the proof for our proposed SBHKAS scheme given in Section

3.3 using the modern notions of security which would be the first provable secu-

rity style proof for any dependent SBHKAS in the literature. Let ASH be the set

of all nodes in the subscription hierarchy. Let Pred(ta, tb) denotes the set of all

nodes in the subscription hierarchy that can derive at least one leaf node t with

ta ≤ t ≤ tb. We can say that Pred(ta, tb) is the set of all predecessor nodes in the

subscription hierarchy, with respect to any of the leaf node with time slot from

ta to tb. Lower(ta, tb) denotes the set of all the nodes with subscription interval

(tc, td) such that ta ≥ tc and tb ≥ td. Let, S(ta,tb)
= Pred(ta, tb)− Lower(ta, tb) rep-

resents set of nodes in Pred(ta, tb) but not in Lower(ta, tb). We define set corr as set

of secret keys known to the adversary in advance. Let, keys(S) is the set of keys

associated with the nodes in set S.

To prove the security of above scheme w.r.t. key recovery, we want to model

all the information available to the adversary in advance. To achieve this, the

game shown in Definition [key recovery] is played between the adversary and

the challenger. Security of the scheme is bounded to arbitrary but fixed value in

terms of security parameter.

Theorem B.0.1. Proposed scheme is secure w.r.t. key recovery against static adversary

provided hpre assumption hold.

Proof. Let G = (V, E) be some subscription hierarchy with z time slots where V

is the set of nodes and E is the set of edges in the hierarchy. Let, a subscription

interval (ta, tb) in the hierarchy and let, A be a static polynomial time adversary
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attacking the node ut with time interval (t, t) with ta ≤ t ≤ tb. Now, based

on Definition [key recovery], A is having secret information corresponding to all

unauthorized access nodes with subscription interval (tc, td) such that there does

not exist a time slot t with ta ≤ t ≤ tb and tc ≤ t ≤ td.

We consider three cases as follows where |(ta, tb)| defines number of time slots

in subscription interval (ta, tb). First two cases are special cases and the third case

is the general case. We show that all possible cases can be identified as one of the

three cases defined below. Later, we prove that KR adversary A has a negligible

advantage in finding the key of any node in the hierarchy as described one of the

cases below and hence the overall maximum advantage of A is negligible.

Case 1: |(ta, tb)| = z i.e. ta = t1 and tb = tz.

As the Definition [collusion secure], there is no node v with subscription in-

terval (tc, td) is available such that there exists a time slot t with tc ≤ t ≤ td and

t1 6≤ t 6≤ tz. Hence, this is trivial case where adversary can access only Pub which

contains public edge values with other public information.

We know that getting the key of any node in the subscription hierarchy will

lead to knowing at least one of the encryption key in the hierarchy. Also, each

node in the hierarchy can have only two type of edges; dependent edge without

public value or edge with public value. Let us consider a preferable case from

an adversary point of view, where a subscription node in the hierarchy has all

incoming and outgoing edges with public edge values. We can argue that, if we

are not able to get any non-negligible advantage in getting the key of a preferable

node with the help of its all related public edge values in Pub then it implies that

same argument will follow for all the other nodes in the hierarchy. Hence, the

advantage of getting any key in the hierarchy is negligible.

As a most preferable case, consider a subscription node v in the hierarchy

with q incoming edges and 2 outgoing edges where every edge has one associ-

ated public edge value. Let q edges between node v and its immediate predeces-
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sor nodes u1, u2, ..., uq has public edge values ru1,v, ru2,v, ..., ruq,v respectively where

rui,v = kv ⊕ h(Kui,lv) with 1 ≤ i ≤ q. Similarly, let the public edge values between

v and its two immediate successor nodes w1 and w1 are rv,w1 and rv,w2 respec-

tively with rv,wi = kwi ⊕ h(Kv, lwi), 1 ≤ i ≤ 2. We can see that, all ri,j public

values corresponding to node v, has one distinct hash component. Therefore, no

two public edge values will give any simplified solution to compute target key

Kv. Hence, the adversary in game defined in Definition [Key Recovery] will not

gain any non-negligible advantage in knowing any encryption key in the hierar-

chy. Hence, KR advantage of the adversary A against full subscription interval

(t1, tz) of z time slots in the hierarchy is defined as,

AdvKR
A (z) < εKRz (1)

where εKRz is negligible function of security parameter τ.

Case 2(a): |(ta, tb)| = z− 1 with ta = t2 and tb = tz.

We can have two possible target subscription intervals with |(ta, tb)| = z− 1

as shown in Figure B.1. First, consider the target subscription interval (t2, tz) (as

shown in Figure B.1(a)), according to Definition [collusion secure] the adversary

A is given access to only subscription key K(t1,t1)
(i.e. ASH − Pred(t2, tz)). Figure

B.1 shows partition of subscription nodes in the hierarchy into two sets: Set I and

Set I I. Set I contain nodes in set ASH − Pred(t2, tz) and Set I I contain nodes in set

Pred(t2, tz).

Figure B.1: Type of hierarchies in Case 2
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We assume that there exists a polynomial time adversary A which can break

the scheme with non-negligible probability. The probability of A outputting cor-

rect key is same as the probability of which hpre problem can be broken as shown

in lemma 1.

Lemma B.0.1. The advantage of A in attacking target subscription interval (t2, tz) is

negligible.

Proof. Suppose that there exists an adversary A that is able to compute a key

K(t1,tp) with p ≥ 2 (i.e. a node in set S(t2,tz)) with non-negligible advantage.

We construct a polynomial time adversary Ahpre that, on input (h(), L, K(t1,t1)
),

uses the adversary A to compute with non-negligible advantage the value K(t1,tp)

where h(L, K(t1,tp)) = K(t1,t1)
, as follows:

Ahpre(h(), L, K(t1,t1)
)

1. Ahpre knows key K(t1,t1)
and it does not knows any key K(t1,tq) with q ≥ 2.

Let, K(t1,t1)
= hl(t1,t1)

(K(t1,ta)) with q ≥ 2 where L = l(t1,t1)
.

2. Now there exists either a public edge value r(t1,ta),(t1,t1)
. Ahpre can compute

hl(t1,t1)
(K(t1,ta)) = K(t1,t1)

⊕ r(t1,ta),(t1,t1)
.

3. Or if K(t1,t1)
is dependent key then there exist a time slot ta with a ≥ 2 such

that K(t1,t1)
= hl(t1,t1)

(K(t1,ta)).

4. Let K(t1,ta) is the output of A on input (1m, G, Pub, corr) where corr = {K(t1,t1)
}.

5. Output K(t1,ta).

Since, only way of getting K(t1,ta) from K(t1,t1)
is by computing using hl(t1,t1)

(K(t1,ta)).

So, we are able to construct an algorithm Ahpre which can break the hpre assump-

tion with the same success probability as that of A which was assumed earlier in

the proof to have non-negligible probability. But, it is known that hpre assumption

is hard and so success probability of A with respect to subscription interval (t2, tz)

is also negligible. Hence,

AdvKR
A (t2, tz) < εKRz−1 (2)
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where εKRz−1 is negligible function of security parameter τ.

Case 2(b): |(ta, tb)| = z− 1 with ta = t1 and tb = tz−1.

In this case we consider the other target subscription interval with |(ta, tb)| =

z− 1, i.e. (t1, tz−1) shown in Figure B.1(b). With the same reasoning as in case of

subscription interval (t2, tz) above, we can show that the success probability of A

in computing a key of any node in set S(t1,tz−1)
is negligible and hence,

AdvKR
A (t1, tz−1) < εKRz−1 (3)

where εKRz−1 is negligible function of security parameter τ.

Combining equation (2) and (3),

AdvKR
A (z− 1) ≤ 2εKRz−1 (4)

Case 3: General case with |(ta, tb)| < (z− 1).

In the general case we have either ta > t1 and/or tb < tz. Figure B.2 shows the

general case graphically where hierarchy of nodes can be divided into three sets:

set I, set I I and set I I I. Set I I in the middle represents set Pred(ta, tb). Nodes in

set I and set I I I represents the set corr = keys(ASH − Pred(ta, tb)). If set I exists,

then we can consider this case as close to case 2(a) where now adversary have

possession of more than one keys i.e. Pred(t1, ta−1)/Pred(ta, tb) for a > 1.

We assume that there exists a polynomial time adversary A which can break

the scheme with non-negligible probability. The probability of A outputting cor-

rect key is same as the probability of which hpre problem can be broken as shown

in lemma 2.

Lemma B.0.2. The advantage of A in attacking target subscription interval (ta, tb) is

negligible.
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Figure B.2: Type of hierarchies in Case 3

Proof. Suppose that there exists an adversary A that is able to compute a key

K(tc,td)
i.e. key of a node in set S(ta,tb)

with non-negligible advantage. We con-

struct a polynomial time adversary Ahpre that, on input (h(), L, K(te,t f )
) where key

K(te,t f )
is known to A (i.e. node (te, t f ) ∈ set I), uses the adversary A to compute

with non-negligible advantage the value K(tc,td)
where h(L, K(tc,td)

) = K(te,t f )
, as

follows:

Ahpre(h(), L, S(ta,tb)
)

1. Let, Ahpre knows key K(te,t f )
and it does not knows any key K(tc,td)

with

(tc, td) ∈ S(ta,tb)
. Let, K(te,t f )

= hl(te ,t f )
(K(tc,td)

) where l(te,t f )
= L.

2. Now there exists either a public edge value r(tc,td),(te,t f )
. Ahpre can compute

hl(te ,t f )
(K(tc,td)

) = K(te,t f )
⊕ r(tc,td),(te,t f )

.

3. Or if K(te,t f )
is dependent key then there exist a node (tc, td) with (tc, td) ∈

S(ta,tb)
such that K(te,t f )

= hl(te ,t f )
(K(tc,td)

).

4. Let K(tc,td)
is the output of A on input (1m, G, Pub, corr) where corr = keys(set I)⋃

keys(set I I I).

5. Output K(tc,td)
.

Similarly, if set I I I also exists along with set I, then we can consider this case

as close to case 2(b) where now adversary have possession of additional keys

i.e. Pred(tb1 , tz)\ Pred(ta, tb) for b < z− 1. Now, the adversary knows the set of

keys corr = keys(set I)
⋃

keys(set I I I). Since, incoming edges to the nodes in set

I I I have similar types of relationship as the nodes in set I, we follow the same

security argument as discussed in case of set I.
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Since, only way of getting K(tc,td)
knowing K(te,t f )

is by computing hl(te ,t f )
(K(tc,td)

).

So, we are able to construct an algorithm Ahpre which can break the hpre assump-

tion with the same success probability as that of A which was assumed earlier in

the proof to have non-negligible probability. But, it is known that hpre assumption

is hard and so success probability of A with respect to subscription interval (ta, tb)

is also negligible. Hence,

AdvKR
A (ta, tb) < εKR|(ta ,tb)|

(5)

where εKR|(ta ,tb)|
is negligible function of security parameter τ.

Let, there are n number of such time intervals (ta, tb), then we can combine all

corresponding inequalities into one as shown below,

AdvKR
A (ta, tb) ≤ εKRn (6)

where εKRn is addition of all n negligible functions (εKR|(ta ,tb)|
) and is again a negli-

gible function of security parameter τ.

Inequalities given in (1), (4) and (6) includes all possible subscription inter-

vals in the hierarchy. Hence, adding right-hand side values of all these three in-

equalities gives maximum KR advantage of the adversary A against given sub-

scription hierarchy of z time slots

AdvKR
A ≤ εKRz + 2εKRz−1 + εKRn

≤ εKR (7)

where εKR is negligible function of security parameter τ. Hence the proposed

scheme is secure against key recovery (KR).

146



CHAPTER C

Formal security analysis of Lab report pub-

lishing protocol

We model the four communicating parties Patient, CLab, Lab and PHRSP as pro-

cesses written in ProVerif calculus (see below) with corresponding public ids P,

CL, L and SP, respectively. CLab process work as a Mix node. It randomly chooses

a report request out of two input users requests and forwards it to the Lab. The

main process below defines the parallel execution of above processes including

two patients processes, one for each U1 and U2. Let r1 and r2 are two random

numbers used for message synchronization and, k1 and k2 are two random keys,

used by patients U1 and U2 respectively. Let, kU1C is the session key between

U1 and CL. Similarly, kU2C is between U2 and CL, kCL is between CL and L, and

kLSP is between L and SP. prkL and pbkL are the private and public keys of L.

(** main process **)

process

new r1:RandNum; new r2:RandNum;

new kCL:Key; new kLSP:Key; new k1:Key;

new k2:Key;

new prkL:prkey; let pbkL=pk(prkL)

in out(c3,pbkL);

out(c3,kLSP);

!((let U=U1 in let r=r1 in let k=k1 in

let kU1C = Sessk(U1) in Patient(kU1C)) |

(let U=U2 in let r=r2 in let k=k2 in
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let kU2C = Sessk(U2) in Patient(kU2C)) |

CLab(Sessk(U1),Sessk(U2),kCL) |

Lab(kCL,kLSP,prkL) |

PHRSP(kLSP) )

The main process verifies the equivalence between at least two runs where in

the first run, Lab handles request from one user and in the second run, from an-

other user. Equivalence between these two processes implies that an adversary

(including PHRSP) who can listen from the communicating channel cannot dis-

tinguish whether the (first) published report (R) request comes from user U1 or

U2. We perform the above process in ProVerif and result shows that the unob-

servability property holds between the two processes. An important part of the

code used for the verification is given below.

(** free channels **)

free c0,c1,c2,c3:channel.

const U1,U2,L,CL,SP:UserID.

(** functions Used **)

fun Sessk(UserID): Key [private].

fun hash(bitstring): bitstring.

fun senc(bitstring,Key):bitstring.

reduc forall m:bitstring, k1:Key;

sdec(senc(m,k1),k1)= m.

fun aenck(bitstring, pbkey): bitstring.

reduc forall m:bitstring, k1:prkey;

adeck(aenck(m,pk(k1)),k1)= m.

fun sign(bitstring, prkey): bitstring.

(** Patient Process **)

let Patient(sk:Key) =

1. new r:RandNum; new k:Key; new U:UserID;

2. let m1=aenck((U,L,r_req,r,k),pb(L)) in

148



3. let m2=senc((U,m1),sk) in

4. out(c0,(U,m2)); (* Send Msg 1 *)

5. in(c0,m3:bitstring); (* Receive Msg 7 *)

6. let (w1:bitstring,w2:bitstring) = sdec(m3,sk) in

7. out(c0,(U,senc(w2,sk))). (* Send Msg 8 *)

(** CLab Process **)

let CLab(kU1C:Key,kU2C:Key,kCL:Key) =

1. in(c0,m1:bitstring); (* Receive Msg 1-1 *)

2. in(c0,m2:bitstring); (* Receive Msg 1-2 *)

3. let (U3:UserID,m3:bitstring)=m1 in

4. let m4=sdec(m3,Sessk(U3)) in

5. let (U4:UserID,m5:bitstring)=m2 in

6. let m6=sdec(m5,Sessk(U4)) in

7. let m7=choice[choice[m4,m6], choice[m6,m4]] in

8. out(c1,senc(m7,kCL)); (* Send Msg 2 *)

9. in(c1,m8:bitstring); (* Receive Msg 6 *)

10.let (U5:UserID,w1:bitstring,w2:bitstring) = sdec(m8,kCL) in

11.out(c0,senc((w1,w2),Sessk(U5))); (* Send Msg 7 *)

12.in(c0,m9:bitstring); (* Receive Msg 8 *)

13.let (U6:UserID,m10:bitstring) = m9 in

14.let m11=sdec(m10,Sessk(U6)) in

15.out(c1,senc(m11,kCL)). (* Send Msg 9 *)

(** Lab Process **)

let Lab(kCL:Key,kLSP:Key,prL:prkey) =

1. new Rx:Report; new r1:RandNum;

2. in(c1,m1:bitstring); (* Receive Msg 2 *)

3. let (y:bitstring)=sdec(m1,kCL) in

4. let (u:UserID,=L,=r_req,r:RandNum,k:Key)= adeck(y,prL) in

5. out(c2,senc((L,r1,ID_req),kLSP)); (* Send Msg 4 *)
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6. in(c2,m2:bitstring); (* Receive Msg 5 *)

7. let (=r1,uid:UniqueID)=sdec(m2,kLSP) in

8. out(c1,senc((u,senc(UID_to_bitstring(uid),k),hash((uid,Rx))),kCL));

(* Send Msg 6 *)

9. in(c1,m3:bitstring); (* Receive Msg 9 *)

10.let m4=sdec(m3,kCL) in

11.out(c2,senc((uid,Rx,L,sign(hash((uid,Rx)),prL),m4),kLSP)).

(* Send Msg 10 *)

(** PHRSP Process **)

let PHRSP(kLSP:Key) =

1. in(c2,m1:bitstring);new uid:UniqueID; (* Receive Msg 4 *)

2. let (=L,r1:RandNum,=ID_req) = sdec(m1,kLSP) in

3. out(c2,senc((r1,uid),kLSP)); (* Send Msg 5 *)

4. in(c2,m2:bitstring). (* Receive Msg 10 *)

150



List of Publications

• Naveen Kumar and Anish Mathuria. ”Improved Write Access Control and

Stronger Freshness Guarantee to Outsourced Data ”. Accepted in ”18th In-

ternational Conference on Distributed Computing and Networking (ICDCN’17)

”, IDRBT, Hyderabad, India, January 2017.

• Naveen Kumar, Anish Mathuria and Maniklal Das. ”Achieving Forward

Secrecy and Unlinkability in Cloud-based Personal Health Record System”.

14th IEEE International Conference on Trust, Security and Privacy in Com-

puting and Communications (IEEE TrustCom/BigDataSE/ISPA (1) 2015),

pp. 1249-1254, Helsinki, Finland, 20-22 August, 2015.

• Naveen Kumar, Anish Mathuria and Maniklal Das. "Comparison of Key

Management Hierarchies for Access Control in Cloud". Third International

Symposium on Security in Computing and Communications (SSCC’15), pp.

36-44, Kerala, 10-13 August, 2015.

• Naveen Kumar, Anish Mathuria, Maniklal Das and Kanta Matsuura. "An

Efficient Time-Bound Hierarchical Key Assignment Scheme". Ninth Interna-

tional Conference on Information Systems Security (ICISS’13), pp. 191-198,

ISI Kolkata, 16-20 December, 2013.

• Naveen Kumar, Anish Mathuria, Manik Lal Das and Kanta Matsuura. "Im-

proving Security and Efficiency of Time-Bound Access to Outsourced Data".

Sixth ACM India Computing Convention: Next generation information, com-

puting and security (Compute’13), pp. 9:1-9:8, VIT University, Vellore, 2013.


	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Motivation and overview
	Introduction
	Revocation
	Data privacy

	Reference architecture
	Data consistency and serializability
	Types of consistency

	Security requirements
	Application: Cloud-based e-Health
	Other requirements

	Our contributions
	Read access control
	Write access control
	Privacy enabled access control

	Organization of the thesis

	Key management for read access control
	Access control matrix representation
	KMH: definitions and properties
	User-based hierarchies
	Resource-based hierarchies
	Comparison of static hierarches

	Dynamic access control
	Algorithms for user hierarchy
	Algorithms for resource hierarchy
	Comparison of dynamic hierarchies

	Experimental evaluation
	Re-keying
	Wang et al. protocol
	Improving efficiency 

	Summary

	Key management for time-bound read access control
	Introduction
	Classification

	Previous schemes
	Ateniese et al. scheme
	Atallah et al. base scheme 
	Atallah et al. improved scheme
	Improved scheme with shortcut edges
	Crampton scheme

	A new construction with reduced public storage cost
	Extension to multiple resources
	Security analysis

	Comparison with related schemes
	Dynamic operations
	Summary

	Enhancing write integrity and data freshness
	Introduction
	Preliminaries
	A resource record
	Chain hash
	Auditing

	Audit-based protocols
	Protocol for enforcing time-limited access
	Protocol to defend against revoked access
	Experimental evaluation

	Freshness guarantee
	Existing notions
	Improved notion: <v,d,t>-staleness

	Related work
	Write-serializability
	Freshness
	Revocation

	Summary

	A novel PHRMS scheme supporting unobservability and forward secrecy
	Introduction
	System overview
	Requirements and assumptions
	Unobservability

	PHR encryption and access control
	Key management
	Comparison

	Protocols for publishing PHR documents
	Publishing a medical prescription
	Publishing a Lab report

	Security analysis
	Summary

	Conclusions
	References
	Appendix Some algorithms
	Appendix Formal security proof for new SBHKAS
	Appendix Formal security analysis of Lab report publishing protocol

