
by

SARITA AGRAWAL
201121013

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

August, 2017

Secure and Efficient Dealing with Node
Capture Attack in Wireless Sensor

Networks

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Doctor of
Philosophy in Information and Communication Technology at Dhirubhai
Ambani Institute of Information and Communication Technology and has
not been submitted elsewhere for a degree,

ii) due acknowledgement has been made in the text to all the reference material
used.

Sarita Agrawal

Certificate

This is to certify that the thesis work entitled SECURE AND EFFICIENT DEAL-
ING WITH NODE CAPTURE ATTACK IN WIRELESS SENSOR NETWORKS has
been carried out by SARITA AGRAWAL for the degree of Doctor of Philosophy
in Information and Communication Technology at Dhirubhai Ambani Institute of
Information and Communication Technology under my supervision.

Prof. Manik Lal Das
Thesis Supervisor

i

Acknowledgements

I express my deepest gratitude to my spiritual Masters, whose continuous sup-

port gave me the strength to sail through this journey. I would ever be in debt

to my parents for all their sacrifices, motivation and blessings. This award truly

belongs to my father, who always encouraged me to face life like a soldier, and to

my late mother, who always stood beside me and helped me go beyond my fears.

I am grateful to my supervisor Prof. Manik Lal Das, who believed in me and,

guided me at every step systematically and patiently. His dedication, sincerity

and generosity inspired me to reach at this stage. If luck is to be believed on, I

would say, I am lucky to be the first research scholar of such a supervisor.

My sincere thanks to Prof. Anish Mathuria, who has an unassuming way of pro-

viding most valuable guidance in such a simple and witty manner. I feel lucky to

receive guidance from Prof. Sanjay Srivastava who has always amazed me by his

simplicity and clarity. I would like to acknowledge our Ex-Director Prof. Nagaraj

Ramrao, Director Prof. K S Dasgupta, Dean AP - Prof. Suman Mitra, Dean Re-

search and Development - Prof. Sanjeev Gupta and all faculty members. I thank

our Registrar Mr. Soman Nair and all the staff members of DAIICT especially Ms.

Deepa Poduval.

Further, I would like to thank Prof. Javier Lopez, Dr Rodrigo Roman and their

team at University of Malaga, Spain for their fruitful discussion through collabo-

ration.

I am grateful to Prof. Veena Bansal (IIT Kanpur), Prof. Ajay Jain (IIT Kanpur) and

Prof. Renu Jain (Kanpur University), whose constant support encouraged me to

continue my work despite all odds.

A very special thanks to my friend Seema Devra who never looked at the clock to

ii

support me in all my endeavor.

I would like to acknowledge Mr. Narendra Yadav and his family for devoting

their time and efforts to look after my parents in my absence.

I am grateful to many families of Heartfulness Institute, specially Late Mr. Rajesh

Agrawal and Mr. H. L. Khar, the families of Mr. Naresh Goswami, Mrs. Kumu-

dini Kolhe, Mr. Prakash Patel, Mr. Mukesh Barot, Mrs. Sushila Contractor, Mr.

Yaman Saluja and Mrs. Renu Chaturvedi, who supported me as my extended

family. I also thank Mrs Anna-marie Beaud, Ms. Dominique Veinante, Dr Cather-

ine Choukroun and Dr. Jose Quesada and all members of Heartfulness institute in

Europe, for their guidance and care during my Spain visit. I thank Mrs. Lourdes

Comitre and her family who made my stay in Malaga so comfortable.

I would like to acknowledge my sister Savita Gautam and brother-in-law Ram

Gautam and sisterly friends G. Keerthika, Neha Sisodiya, Dr. Rina Kumari. I

thank Dr Birju Acharya, Dr. Varsha Dave and Dr. Deepak Bhandari. Last but

not the least, I thank all my co-researchers in DAIICT, especially Milind Padalkar,

Naveen Kumar and Ram Naresh Vangala for their support. And, thanks to the

girl gang of my young researcher friends - Vandana Ravindran, Archana Nigam,

Nidhi Desai, Nupur Jain, Miral Shah and Purvi Patel who helped me keep my

youthfulness alive.

I thank one and all, who directly or indirectly contributed in fulfilling my dream.

iii

Contents

Abstract ix

List of Symbols and Acronyms xii

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Overview of Wireless Sensor Networks (WSNs) 2

1.1.1 Sensor Node Architecture . 3

1.1.2 WSN Architecture . 5

1.1.3 WSN Standards . 6

1.1.4 WSN Applications . 7

1.2 Security Issues in WSN . 9

1.3 Motivation . 11

1.4 Contribution of the Thesis . 13

1.4.1 Framework of Solution to Deal with Node Capture Attack . 15

1.4.2 System and Network Model used in the Proposed Solution 17

1.5 Thesis Outline . 18

2 Background and Preliminaries 21

2.1 Overview of Security in WSN . 21

2.1.1 Resilience . 24

2.1.2 Key Management in WSN . 27

2.1.3 Node Capture Detection and Revocation 35

iv

2.2 Primitives Used in the Proposed Protocols 39

2.2.1 Pseudo Random Function . 39

2.2.2 Bivariate Polynomials . 40

2.2.3 ID based Public Key Infrastructure with Bilinear Pairings . . 40

2.2.4 Chinese Remainder Theorem 42

2.3 Trusted Platform Module . 43

2.4 Conclusion . 45

3 Pair-Wise Key Establishment and Key Update 46

3.1 Introduction . 47

3.2 Polynomial Share Based Pair-Wise Key Establishment 49

3.3 Proposed Pair-Wise Key Establishment and Key Update Protocol . 56

3.3.1 Goals and Assumptions . 56

3.3.2 Set-up and Initialization . 57

3.3.3 Node Discovery and Node Authentication 57

3.3.4 Session Key Update . 59

3.3.5 Security Features . 60

3.3.5.1 Forward Secrecy . 62

3.3.5.2 Resistance to Impersonation Attack 63

3.3.5.3 Resisting Known-key Attacks 64

3.3.5.4 Resistance to Replay Attacks 65

3.3.5.5 Resilience to Node Capture 67

3.3.5.6 Resilience to Worm hole and Sink hole Attacks . . 69

3.3.6 Comparing Performance with Existing Protocols 70

3.3.7 Experimental Results . 71

3.4 Conclusion . 74

4 Self-Healing and Mutual-Healing enabled Group Key Distribution 76

4.1 Introduction . 76

4.2 Self Healing . 77

4.3 Mutual Healing . 81

4.4 Proposed Bilinear Pairing based Healing Protocol 82

v

4.4.1 Goals and Assumptions . 82

4.4.2 Session Key Management . 83

4.4.2.1 System Set-up . 83

4.4.2.2 Group Key Broadcast 83

4.4.2.3 Authentication and Key Extraction 84

4.4.3 Healing . 85

4.4.4 Security Analysis . 88

4.4.5 Performance Analysis . 91

4.4.5.1 Computation cost 91

4.4.5.2 Communication cost 92

4.4.5.3 Storage cost . 93

4.5 CRT based Symmetric Key Healing Protocol 93

4.5.1 System Model . 93

4.5.2 Session Key Management . 94

4.5.2.1 System Setup . 95

4.5.2.2 Group Key Message Construction and Distribution 95

4.5.2.3 Authentication and Key Extraction 96

4.5.3 Healing . 97

4.5.4 Security Analysis . 99

4.5.5 Performance Analysis . 104

4.5.5.1 Computation cost 104

4.5.5.2 Communication cost 105

4.5.5.3 Storage cost . 105

4.6 Comparison with Existing Schemes 105

4.6.1 Security Features . 105

4.6.2 Performance . 106

4.7 Experimental Results . 107

4.8 Conclusion . 110

5 Node Capture Attack 112

5.1 Introduction . 113

5.2 Identifying Node Capture by Monitoring 114

vi

5.3 Software and Hardware Attestation 118

5.4 Program Integrity Verification . 121

5.5 Trusted Platform Module Enabled Program Integ-rity Verification

(TPIV) Protocol for Node Capture Detection 124

5.5.1 Goals and Assumptions . 125

5.5.2 TPIV Setup and Monitoring 126

5.5.3 Authentication and Code Verification 127

5.5.4 Security Strengths . 128

5.5.4.1 High Probability of Node Capture Detection 130

5.5.4.2 Node Capture Detection by Authorized Verifier . . 132

5.5.4.3 Secrecy of Non-captured Nodes 133

5.5.4.4 Comparing TPIV with Existing Schemes 134

5.5.5 Efficiency and Experimental Results 134

5.5.5.1 Analytical Comparison 134

5.5.5.2 Improvement in Node Capture Detection Probability135

5.5.5.3 Experimental Results 136

5.6 Conclusion . 138

6 Node Revocation and Key Update 141

6.1 Introduction . 141

6.2 Centralized Approach to Node Revocation 142

6.3 Distributed Voting Mechanism for Revoking a Victim Node 144

6.4 Hybrid Node Revocation Methods 147

6.5 Proposed Protocol for Node Revocation and Key Update (NRKU) 152

6.5.1 Goals and Assumptions . 152

6.5.2 Initial Session Setup . 152

6.5.3 Node Revocation and Key Update 153

6.5.3.1 Revocation Message Broadcast 154

6.5.3.2 Authentication and Session Key Update 154

6.5.4 Security Strengths . 156

6.5.4.1 Secure Node Revocation 157

6.5.4.2 Forward and Backward Secrecy 158

vii

6.5.4.3 Resistance to Node Collusion Attack 160

6.5.4.4 Resistance to Impersonation and Replay Attacks . 161

6.5.4.5 Existing Revocation Protocols v/s NRKU 161

6.5.5 Performance Boost with NRKU 162

6.6 Conclusion . 164

7 Conclusion and Future Work 166

Appendix 1: ProVerif Tool 187

Appendix 2: Publications 196

viii

Abstract

Wireless Sensor Networks (WSN) have found enormous applications in various

areas of day-to-day life such as in health-care, battle-field surveillance and disas-

ter management. The communication amongst the sensor nodes within a WSN

takes place on an unreliable wireless channel. Therefore, the nodes are vulnerable

to various security attacks such as eavesdropping and message replay attack. Typ-

ically, the sensor nodes in a WSN are mostly deployed in unattended areas that

render the nodes vulnerable to physical attacks. Node capture attack is one of

the most precarious attacks that allows an adversary to physically capture, repro-

gram and redeploy a node in the network to carry out other malicious activities

such as routing or cloning attacks and may badly hamper the normal function-

ality of the network. In this thesis, we address the node capture attack with a

secure and efficient solution framework that comprises of a set of protocols for

secure key establishment, detection of node capture attack and revocation of a

victim of node capture attack. For secure key establishment, we worked on pair-

wise key establishment and key update and propose a protocol that use multiple

polynomial shares based master secret and update the pair-wise key for each ses-

sion using random inputs from the pair of nodes involved. We then propose self-

healing and mutual-healing enabled group key distribution protocols. First, we

present a protocol using bilinear pairing and then a protocol that uses Chinese re-

mainder theorem (CRT) based secret sharing. Detection of node capture attack is

carried out using program integrity verification of suspect node by cluster heads

equipped with trusted platform module (TPM). To revoke a node capture victim,

we propose a node revocation and key update protocol.

We used analytical reasoning, theorem proving technique and formal analysis

ix

with ProVerif tool to analyze the security of the proposed protocols. The analysis

reveals that the pair-wise session-key establishment and key update protocol is

capable of resisting impersonation, replay, known-key, sink-hole and worm-hole

attacks. The protocol also ensures key freshness, mutual-key control and forward

secrecy and, provides high resilience to node capture attack. The group key distri-

bution protocols, proposed for secret key sharing within a group of nodes, equip

the sensor nodes so they can recover one or more missing broadcasts from a future

broadcast using self-healing. Even the missed broadcast for the current session

can be obtained with the help of a neighbor node using mutual-healing. The pro-

posed protocols ensure that only the group members authorized to take part in a

session can recover the key for that session using self-healing or mutual-healing.

The protocols do not allow an unauthorized neighbor to respond to a mutual-

healing request. The node capture detection protocol in the proposed solution

framework detects a victim of node capture attack with very high probability even

when an additional memory is put into the captured node. The node capture de-

tection protocol also ensures that the probability of a captured node revealing the

personal secret of any non-captured node is negligible. The protocol allows only

an authorized verifier to carry out the program integrity verification for a node

suspected to be a victim of node capture attack. The node revocation and key

update protocol resists node collusion and impersonation attacks while ensuring

the forward and backward secrecy for secure node revocation. We experimented

on ATmega328 processor using Arduino Duemilanove controller board and Ar-

duinoISP programmer and used Castalia simulator to simulate the performance

of the protocols in the real-time networks. The results show that the pair-wise key

establishment and key update protocol has constant low computation overhead

for session key update irrespective of the degree of the polynomials used to estab-

lish master secret. The node energy consumption for session key update is much

less as compared to the one time key establishment. The proposed bilinear pairing

based healing protocol reduces the cost overhead, especially the computation and

storage overhead, providing additional security as compared to the existing bilin-

ear pairing based healing protocol. With the CRT based healing protocol, we are

x

able to achieve the same security as the proposed bilinear pairing based healing

protocol at significantly low cost overhead in terms of communication, computa-

tion and storage. The node capture detection using program integrity verification

could be carried out with reduced energy consumption at both node and server

end. The capture detection protocol has low communication, computation and

storage overhead as compared to the existing software based program integrity

verification and also reduces the overall network setup cost when compared with

the hardware attestation protocols. With our node revocation and key update pro-

tocol, a resource constrained sensor node could get the key update with notably

low overhead as compared to the existing revocation protocols.

xi

List of Symbols and Acronyms

h() Unkeyed cryptographic hash function

hk() Keyed cryptographic hash function with key k

PRFk() Pseudo Random Function with key k

Ek(data) Encryption of data with key k

Dk(data) Decryption of data with key k

W ∧V Logical AND operation on W and V

W ∨V Logical OR operation on W and V

Attacker(S) Attacker has access to S (S may be some term/name/variable/channel)

AttackerC(T) Attacker can compute term T

WSN Wireless Sensor Network

BS Base Station

CH Cluster Head

SKC Symmetric Key Cryptography

PKC Public Key Cryptography

ECC Elliptic Curve Cryptography

MAC Message Authentication Code

CRT Chinese Remainder Theorem

TPM Trusted Platform Module

PIV Program Integrity Verification

TVS TPM enabled Verification Server

TPIV TPM enabled Program Integrity Verification

NRKU Node Revocation and Key Update

xii

List of Tables

2.1 Resiliency at various levels in a WSN 26

3.1 Security Features of Polynomial based Key Management Schemes . 69

3.2 Performance Comparison . 70

3.3 Simulation Parameters . 73

4.1 Comparison of Security Features . 106

4.2 Notations used in Performance Comparison 106

4.3 Performance Comparison . 107

4.4 Communication Cost in Sec . 108

5.1 Comparing Security Features of Node Capture Detection Protocols 134

5.2 Performance Comparison of Node Capture Detection Protocols . . 135

5.3 Improvement in Capture Detection Probability with TPIV 136

6.1 Comparison of Security Features of Revocation Protocols 162

6.2 Performance Comparison of Revocation Protocols 163

xiii

List of Figures

1.1 A Generic WSN Setup . 2

1.2 Sensor Node Architecture . 4

1.3 Various Sensor Nodes . 5

1.4 Flat WSN . 6

1.5 Hierarchical WSN . 6

1.6 Overview of SASNet Operational Architecture 8

1.7 Attacks in WSN . 11

1.8 Framework of Proposed Solution to Deal with Node Capture Attack 16

1.9 System Model . 17

2.1 Illustrating the Resiliency Strategy 25

2.2 Key Management in WSN . 28

2.3 Trusted Platform Module (TPM) Sealing and Unsealing 45

3.1 Two Dimensional Grid based Polynomial Key Distribution 52

3.2 Node Discovery and Authentication 58

3.3 Session Key Update . 60

3.4 Resilience to Node Capture with Key Management 68

3.5 Computation Cost of the Key Update Protocol 72

3.6 Node Energy Consumption . 73

4.1 Self-Healing . 98

4.2 Mutual-Healing . 100

4.3 Storage Cost for Mutual-Healing . 108

4.4 Computation Cost for Self-Healing 109

4.5 Computation Cost for Mutual-Healing 109

xiv

5.1 DAPP Protocol . 124

5.2 Authentication and Code Verification Protocol 127

5.3 Attacker Time Line . 130

5.4 TVS Optimization . 137

5.5 Comparison of Computation Cost for TPIV and DAPP 137

5.6 Comparison of Energy Consumption and Communication Latency

for TPIV and DAPP . 139

6.1 Comparison of Energy Consumption for NRKU and RP Protocol . 163

6.2 Comparison of Computation Cost for NRKU and RP Protocol . . . 164

xv

CHAPTER 1

Introduction

Wireless Sensor Network (WSN) has emerged as a promising technology for var-

ious real-life applications such health care management, battle-field surveillance

and so on. A WSN comprises of a large number of low-cost, tiny sensor nodes that

work in collaboration to accomplish application specific task. The sensor nodes

communicate on a wireless medium that renders it vulnerable to various secu-

rity threats such as eavesdropping and replay attacks. Sensor nodes have limited

computation, communication and computation resources and are usually battery

operated. Therefore, the traditional network security solutions do not fit for WSN.

With the increasing use of WSNs in real world scenarios, different application re-

quirements influence the underlying security mechanisms.

Some mission critical applications such as battle-field surveillance and forest fire

detection leave the nodes unattended after deployment that gives way to physi-

cal capture of nodes resulting in more severe attacks such as node capture attack.

Although, research on WSN security has advanced along with the growing use

of WSNs in real-life, a major research challenge that still exists is dealing with the

node capture attack.

The communication can be secured with the robust key management techniques,

however, when an adversary physically captures a node, it can gain access to the

cryptographic keys stored within the node. A more powerful adversary can carry

out node capture attack, wherein the node is reprogrammed and redeployed in

the network as an insider attacker to further disrupt the network activities. There-

fore, timely detection of node capture attack in a secure and efficient manner is

need of the hour. In this thesis, we present a comprehensive secure framework to

1

deal with node capture attack with due consideration to resource constraints of

sensor nodes.

1.1 Overview of Wireless Sensor Networks (WSNs)

Wireless Sensor Networks (WSN) comprise of hundreds or thousands of tiny sen-

sor nodes that monitor events or the environmental conditions such as vibration,

temperature, and motion or track some object of interest in the physical world.

The sensor nodes in a specified area work in collaboration to collect and report

the observations to a central authority directly or indirectly. In a WSN, this central

trusted authority, usually known as base station, serves as the data sink/processor

that connects the sensor nodes to the external world. Through the base station, the

sensor network data is communicated to the digital world of computer systems

to make informed decisions in order to accomplish a common application specific

task [140] e.g. in battle-field surveillance, forest fire detection etc. (Figure 1.1).

End
User

Internet

External World

Base Station/Sink

sensor nodes

Sensor Network

Figure 1.1: A Generic WSN Setup

WSN needs different treatment as opposed to conventional networks because of

its distinctive characteristics such as autonomy, the ability of self configuration

and deployment location. In a WSN, the sensor nodes are not directly controlled

by any human user, the nodes either interact with other sensor nodes or with the

base station. The sensor nodes are capable of setting up their services and func-

tions in situations where no central control is available. This autonomy requires

2

sensor nodes to be self-configurable and be capable of maintaining themselves

during the entire lifetime of the network. A WSN typically functions for periods

ranging from several days to one or two years. The sensor nodes in a WSN have

embedded intelligence that allows them to perform different tasks, however, the

WSN protocols and services are dependent on the application requirement.

In a WSN, it is not mandatory to pre-determine or pre-engineer the position of

sensor nodes thus allowing the nodes to be deployed in an ad-hoc manner. For ex-

ample, WSNs can be randomly placed or air-dropped in some disaster relief oper-

ations such as forest fire detection and earth quake alerts, or in hostile, inaccessible

terrains for applications like battlefield surveillance. Thus, the infrastructure-less

setup of WSN with self-configurable sensor nodes is very cost effective. The sen-

sor nodes interact with each other via radio frequency based short range wireless

communication that is susceptible to various attacks. In WSN applications, where

the nodes are left unattended after deployment, the security of nodes against

physical attacks becomes a major concern. The sensor nodes have limited com-

putation, communication and storage capability. Generally, in most of the WSN

applications, the power source for a sensor node is an irreplaceable battery. In tra-

ditional networks, the main objective is to achieve high quality of service (QoS),

however, for WSN, power conservation remains one of the primary concerns.

Thus, the security protocols designed for WSNs must also focus on providing

the required security with minimized overhead on resource constrained sensor

nodes.

We briefly discuss the sensor node architecture, topologies, standards, applica-

tions of WSN and security issues in WSN subsequently. Then, we present the

motivation behind taking up this work and discuss the contribution of the thesis.

1.1.1 Sensor Node Architecture

Sensor nodes are autonomous units with sensing facility along with limited pro-

cessing, storage and communication capability and, are usually battery operated.

Figure 1.2 gives a general architecture of a sensor node.

3

Sensor

Analog to Digital
Converter (ADC)

Sensing unit

Memory

Microcontroller

Processing Unit

Radio

Communication Unit

Battery

Power Unit

Figure 1.2: Sensor Node Architecture

With the help of sensor hardware, a bridge is built between the abstract world

and the physical world. A sensor node comprises of an on-board processor with

memory, a sensing unit, a radio unit and a power unit. The sensors in the sensing

unit produce a continuous signal related to measured physical world data such

as temperature and vibrations. The analog signals from sensors are converted

into digital signals by analog to digital converter (ADC) and fed into the process-

ing unit wherein simple computations can be carried out before sending the data

to the next level nodes or to the base station through radio unit. A sensor node

consumes maximum energy for communication. It is observed that the cost of ex-

ecuting 3 million instructions by a 100 MIPS per word processor is approximately

same as that of the energy cost required to transmit 1 KB of data to a distance of

100 meters [103]. Thus, to save on energy cost, in most of the cases, rather than

sending the raw data, the nodes transmit partially processed data needed by the

higher level nodes.

In last two decades, numerous sensor nodes of varying capabilities have been

made available in the market by different vendors, for example IRIS [54], Wasp-

mote [128] and Raspberry [106] (Refer Figure 1.1.1). IRIS has MEMSIC Atmel

ATmega1281 processor with 16 Mhz clock, 128 KB Flash and 8KB RAM as stor-

4

age. IRIS can communicate at the data rate of 250 Kbps. With Libelium Atmel

ATmega1281 processor having 14.7456 MHz clock, Waspmote works at 250 Kbps

data rate and has 128 KB Flash memory. Raspberry Pi is the latest trend with

1.2 GHz 64/32-bit quad-core ARM Cortex-A53. Raspberry Pi has 1 GB RAM and

uses Wi-Fi 802.11n for communication. The choice of a sensor node largely de-

pends upon the application requirements and the budget.

(a)
IRIS

(b)
Wasp

(c) Raspberry Pi

Figure 1.3: Various Sensor Nodes

1.1.2 WSN Architecture

The sensor nodes in a WSN can be arranged in different topologies depending on

the underlying application needs. For applications such as monitoring the tem-

perature conditions in a small area, a WSN may be a flat network with base station

(BS) and all nodes at the same level. In a flat WSN, all the sensor nodes commu-

nicate the sensed data directly to the base station. (Refer Figure 1.4).

5

Base Station/Sink

Sensor nodes

Figure 1.4: Flat WSN

However, for large applications, such as surveillance of battlefield, where the net-

work is spread over a large geographical area covering a few kilometres, it may be

a hierarchical network as shown in Figure 1.5. In a hierarchical WSN, the nodes

communicate with the base station through some more powerful intermediate

nodes known as cluster heads.

Base Station/Sink

Cluster
Head

Cluster
Head

Cluster
Head

Cluster

Figure 1.5: Hierarchical WSN

1.1.3 WSN Standards

The underlying standards used in wireless sensor network for communication

are mainly IEEE 802.15.4 standard and ZigBee [140]. The physical and medium

access control layers are defined in IEEE 802.15.4, while the network and appli-

cation layers are defined in ZigBee. These two protocol stacks compromising of

IEEE 802.15.4 and ZigBee together can support long lasting applications with low

6

data rate on battery powered wireless devices such as sensor nodes. The physical

layer of the IEEE 802.15.4 standard provides packet transmission on the physi-

cal medium and activation/deactivation of the radio transceiver and, operates on

three different license free radio frequency bands:

1. 868 - 868.6 MHz with a data rate of 20 kbps (in Europe)

2. 902 - 928 MHz with a data rate of 40 kbps ((in North America)

3. 2400 - 2483.5 MHz with a data rate of 250 kbps (worldwide).

Data and management services are provided to the upper layers by the medium

access control layer of IEEE 802.15.4. The medium access control packet trans-

mission and reception across the physical layer is enabled by data service. The

management service comprises of synchronization of communications, associa-

tion and disassociation of devices to the network and, management of guaran-

teed time slots. The medium access control layer also implements basic security

mechanisms leaving the advanced security features, such as key management and

device authentication, to the upper layers. The medium access control layer secu-

rity services are based on symmetric keys that are securely generated, transmitted,

and stored by the upper layers. Access control, frame integrity, data encryption,

and sequential freshness are some medium access control layer security services

and are optional. ZigBee is built upon the IEEE 802.15.4 standard wherein the net-

work layer provides support to various network topologies such as tree, star, and

peer-to-peer while the framework for communication and distributed application

development is provided by the application layer.

1.1.4 WSN Applications

WSNs have found enormous applications in almost every walk of the life [6].

Some of the commonly used applications of WSN are discussed below:

• Environmental Applications: Sensor networks are deployed for habitat mon-

itoring, wherein the conditions of plants and wild animals in the wild life

can be monitored by sensor nodes, for example, Great Duck Island project

[82], ZebraNet [56] and Luster [110]. Water quality monitoring in the field of

hydrochemistry, air quality monitoring for air-pollution control, monitoring

7

of chemical or biological hazards in chemical plants also use WSNs. Sen-

sor nodes may also be scattered to detect forest fire or seismic activities in

disaster prone areas as an early warning mechanism.

• Military Applications: The presence of enemy troops and vehicles can be

tracked by deploying the WSN for battlefield surveillance. For example,

the SASNet [70] as an agile surveillance system with an aim to provide im-

proved operational flexibility and usability in military surveillance (Refer

Figure 1.6).

Figure 1.6: Overview of SASNet Operational Architecture

Sensitive objects and buildings such as communication centers and head-

quarters can be protected with the help of WSNs. Sensor nodes can also be

utilized for intelligent guidance and coordination by mounting them on un-

manned robotic vehicles, submarines etc. The deployment of WSNs can be

done for detecting the possibility of terrorist attacks and remote sensing of

8

chemical, nuclear or biological weapons as well. Battle damage assessment

can also be carried out using WSN.

• Health Care Applications: Health care industry has been looking for the means

to provide quality health care at reduced costs and also the focus is being

shifted to prevention and early detection of ailments. WSNs are capable of

providing continuous monitoring even remotely and can be deployed with

low set up overhead. Through remote monitoring with the help of sensor

nodes deployed at the patient’s home, the doctors can keep track of the pa-

tient’s behavior and move and provide immediate medical attention when

required. Vital signs within an elderly person or patient can be monitored by

equipping the person with wearable sensors integrated into wireless body

area networks. This provides real time health updates of a patient. A prac-

tical implementation of one such system is AlarmNet (Assisted Living and

Residential Monitoring Network) [130] that offers ubiquitous and flexible

health care to elderly personnel and patients as per their needs.

Apart from these applications, WSNs can also be used in road transport applica-

tions to track vehicles and traffic control, in structural monitoring applications to

monitor bridge strength and building life, in warehouse management, in indus-

trial process control and so on. Thus, WSNs can give us a promising solution for

many real-life problems.

1.2 Security Issues in WSN

Since last two decades, WSNs have been implemented in diverse areas such as

battlefield surveillance, forest fire and earth quake detection, health care, home

automation applications and so on [113]. A WSN needs to be protected against

malicious activities that can adversely affect the network functionality. As the sen-

sor nodes in a WSN are resource-constrained in terms of computational capabil-

ities, battery power, memory, and communication bandwidth, to implement the

traditional security protocols and cryptographic algorithms is challenging. Most

of the applications using WSNs are remotely handled and therefore, the security

9

of such networks is the major concern while designing the network.

In a WSN, an adversary can eavesdrop on the public wireless communication

channel and gather the information about the activities happening in the network.

Although, because of the inherent passive nature of the eavesdropping attack, the

network behavior is not directly affected, the information acquired from passive

attacks can be used to perform active attacks. An adversary can generate fake

events, modify the messages, and can even introduce bogus control information

as an active attacker. In WSNs, routing is an essential service for the data and

information to reach the sink. As the communication happens on unreliable wire-

less channel, the traffic may be disrupted by performing various routing attacks

such as replay attack, selective forwarding, sink hole and worm hole attacks. The

attacker may use jamming and hello flood leading to denial of service [81].

The unattended deployment of WSN in various applications further pose more se-

curity threats including node subversion and node capture. Thus, WSN demands

security solutions based on application security goals that vary from application

to application. For example, for a WSN deployed inside a hospital to track the

doctors and patients, we do need to ensure the integrity and confidentiality of

the information about patient’s health, but the individual sensor nodes deployed

within the hospital building are physically protected. However, a WSN deployed

in battlefield surveillance to detect and track targets and to send the real time

information of enemy mobility to the command center, there is a threat of node

capture attack wherein, for further malicious activities, the enemy may physically

capture the unattended nodes, reprogram and redeploy those nodes in the net-

work.

Figure 1.7 summarizes the commonly possible threats to WSN security. The ef-

fects of one or more attacks can render the services of a WSN useless and therefore

can not be ignored. In mission critical applications such as health-care monitoring

and forest fire detection, there may be life-threatening results due to malfunction-

ing of the network.

10

Attacks

Active Passive

Eavesdropping Traffic Analysis

Node Level Application
Level

Impersonation Node
Subversion

Node
Collusion

Node
Capture

Routing
Attacks

Denial of
Service

ReplaySelective
forwarding

Sink/Worm
hole

Sybil

Hello
Flood

Jamming

Figure 1.7: Attacks in WSN

1.3 Motivation

Many real life applications demand the deployment of WSNs in hostile environ-

ments. For example, military surveillance missions are carried out with the aim

of providing alerts to the military commands about the objects of interest such

as enemy troops and vehicle movement in hostile territories. In such scenarios,

surreptitious action is needed as threat to human life is always present. Thus, de-

ploying WSNs as unmanned vigilance agent tremendously helps the military in

the surveillance of the region. VigilNet [51] is one such WSN application for mili-

tary that is used to obtain and verify the capabilities of the enemy and the hostile

target positions in a battle-field.

11

Over the years, various security solutions have been proposed to address specific

security issues of WSN, since the inherent resource constraints of sensor nodes re-

strict the use of conventional network security mechanisms [6]. Despite securing

the communication with the help of secret keys [81] [144], the unattended deploy-

ment of sensor nodes in harsh environments for such mission critical applications

pose a major threat of node capture attack [39].

The node capture attack has different level of severity depending upon the ad-

versary capability and the time available with an adversary to carry out an attack

[10]. An adversary aims for node capture attack because it provides an effective

way to be present in the network and control the network activities as an insider.

For example, in a large sensor network deployed for battle-field surveillance, the

sensor nodes are randomly air-dropped in the field and are left unattended. In

such scenario, the enemy may get hold of one or more nodes physically and can

easily extract cryptographic keys for using them to communicate on the associ-

ated links. In such hostile environments, even an attacker can not remain present

all the time, therefore, the attacker may change the program running on a sensor

node and redeploy the node in the network as an insider attacker. From a set

of captured nodes, the adversary can recover enough cryptographic information

and further compromise the secure communication links, subsequently causing

substantial damage to the entire WSN. This mandates the need for detecting the

node capture attack victim as early as possible.

Typically, it is assumed that in physical attacks, an attacker has unsupervised ac-

cess to a node for an extended period of time. However, in normal WSN op-

eration, nodes keep communicating with their neighboring nodes and if a node

is continuously absent then it is an unusual condition that neighbors can notice.

Some of the existing protocols to detect a victim of the node capture attack, based

on monitoring of the nodes through base station, cluster head, group manager or

peer nodes, are proposed in [39] [87] [76]. Even with the continuous monitoring,

it is possible that the malicious neighbors collude and the detection is bypassed,

resulting in node capture.

In order to prevent an attacker from deploying a reprogrammed node for carrying

12

out insider attacks, various attestation protocols have been proposed such as [112]

which require strict time measurement and in multi-hop wireless networks, it is

impractical to achieve the same. The program integrity verification protocol in

[99] is vulnerable to impersonation attack and needs the continuous involvement

of base station. The program integrity verification with distributed authentica-

tion in [25] exposes all node program codes to adversary on verifier compromise

and does not address memory addition attack. The hardware based protocols as

proposed in [117], require specialized hardware such as Trusted Platform Module

(TPM) [122] at all the sensor nodes resulting in high network setup cost in large

sensor networks. Therefore, a secure and efficient protocol for timely detection of

node capture attack is required.

When a node is detected to be a victim of node capture attack, it must be revoked

from the network in order to prevent further damage to the network. A practical

and feasible approach to revoke a victim node is to exclude it from the further

network activities. For this purpose, the secret shared within the group of non-

captured nodes can be updated. Since, sensor nodes are resource constrained, the

node revocation process should place significantly low overhead on the nodes.

From the above discussion, it can be observed that the node capture attack is a

major security threat especially to the WSNs deployed in harsh unattended en-

vironments. Although various proposals for WSN security are considered in the

literature, a complete solution to deal with node capture attack in secure and ef-

ficient manner taking into account key establishment, detection of node capture

attack and revocation of the captured node is not considered.

Our motivation to take up this work is to provide a complete solution to securely

and efficiently deal with node capture attack.

1.4 Contribution of the Thesis

The proposed solution integrates the key establishment, detection of node cap-

ture attack and revocation of victim of node capture. We address the problem of

node capture detection in clustered wireless sensor networks, as most of the sen-

13

sor node applications deploy large sensor network with hierarchical (clustered)

topology. Moreover, the clustered network does not have the threat of single point

of failure and is suitable for large sensor network deployed in a vast geographical

area for applications such as battlefield surveillance and forest fire detection.

The contribution of the thesis is summarized as below:

• Secure key establishment. The wireless sensor network demands confi-

dentiality, authenticity and/or integrity of the messages depending on the

application needs. For example, an environment monitoring application

keeping track of the surrounding temperature and pressure maintains the

authenticity and integrity of the information, but does not need confiden-

tiality. However, the health care application keeping the patients’ health

records maintains confidentiality as well to preserve the privacy of the pa-

tient. For secure communication, it is required for the nodes to share a secret

pair-wise key and/or group key that can be dynamically updated after each

communication session. We have considered a clustered wireless sensor net-

work wherein the communication is secured at two different levels:

– At base station-cluster head level, we have proposed the pair-wise key

establishment amongst base station and cluster heads using multiple

polynomial share based key. Multiple polynomial share based key can

be established between any pair of nodes irrespective of their physical

locations and provides strong resilience to node capture attack as well.

– Within a cluster, the nodes communicate amongst themselves using a

group key distributed through a session wise broadcast by cluster head.

The proposed group key distribution is enabled with self-healing and

mutual healing property.

• Detection of node capture attack. A node that is suspected to be a victim of

node capture attack undergoes the program integrity verification. As soon

as a cluster head notices the unusual absence of any node from the network,

the suspect node is challenged to prove the integrity of its program code. If

node is captured, reprogrammed and redeployed in the network, the pro-

14

posed program integrity verification protocol detects the node capture vic-

tim with very high probability.

• Secure revocation of victim node. When a capture attack is confirmed on

a node, it must be revoked from the network to prevent further damage

caused by the victim node as an insider attacker. The proposed node revo-

cation and key update protocol allows a cluster head to exclude the victim

node from sharing the further group session keys within its cluster.

1.4.1 Framework of Solution to Deal with Node Capture Attack

In Figure 1.8, the framework of the proposed solution is presented. Once the

network is deployed, the nodes form a cluster by responding to the request beacon

of the nearest cluster head. A pair-wise key is established within the pair of CHs

and also between a CH and the base station (BS). For each session, within a pair

of BS-CH or CH-CH, the pair-wise key is dynamically updated [4].

For communication at the level of cluster, a cluster head distributes the session

key to all the nodes authorized to participate in the session within its cluster using

self-healing and mutual-healing enabled group-key distribution protocol [3].

Each cluster head monitors its cluster nodes by keeping track of the transmissions

from its cluster nodes. If no transmission is heard from a node for more than a set

threshold time, the monitoring cluster head suspects the node to be captured and

the suspect node is requested to prove the integrity of its program code. Program

integrity verification protocol [5] is executed between the cluster head and the

suspect node.

If the suspect node fails to prove its program integrity or it has moved out of that

cluster without informing its cluster head, it is considered to be captured and the

cluster head then either proceeds for node revocation and key renewal process or

it decides to repair the node by reprogramming it with the valid program code.

15

Initial Network
deployment

Pair-wise key
establishment

between Base station
and Cluster heads

Session
between a BS-
CH or CH-CH

pair over?

Pair-wise
session key

updated

BS and CHs
continue

with
respective
sessions

Key Establishment
amongst Cluster Heads

and Base Station

Nodes identify
cluster head through
neighbour discovery

Mutual healing
enabled Group
key broadcast

within a cluster

Monitoring
of nodes by
cluster head

A

Node absent
for more than

T units of time?

Program
Integrity

Verification

Node Capture
Confirmed?

Node
Revoke or

Repair?

Manually repair
node by updating

the personal
secret of the node

and rebooting

A

Node Revocation
and Key Update

Inform other
cluster heads

and base station
about revocation

Key Establishment within a Cluster

YES

NO

YES

YES

Repair

Revoke

NO

NO

Figure 1.8: Framework of Proposed Solution to Deal with Node Capture Attack

16

1.4.2 System and Network Model used in the Proposed Solution

The system and network model used in the proposed solution is as depicted in

Figure 1.9.

Figure 1.9: System Model

Base station is the trusted link between the WSN and the external world and

serves as the central authority in the WSN. In the clustered WSN, some resource-

ful cluster heads (CH) link the base station with nodes. Prior to deployment, base

station assigns unique identities to the cluster heads and the nodes. The program

memory in each node has sufficient free space, after loading boot code, application

code and flash down-loader, to store a unique random incompressible bit string

that serves as a unique secret of the node. Each cluster head is equipped with a

trusted platform module (TPM) [122] in which the program memory content of

all the nodes are sealed. Within a cluster, the nodes communicate using a group

session key. When a cluster head changes its location, reformation of the clusters

take place. A node moving away from its cluster informs its cluster head, who in

turn informs the move to other nodes in its cluster as well as to the head of new

17

cluster which the moving node decides to join.

Adversary Assumptions. We consider an active adversary which can intercept,

remove or update packets or insert new packets into the network apart from just

eavesdropping on the communication channel to listen to the on-going commu-

nication. The adversary can also physically capture, reprogram and redeploy a

node in the network to launch further insider attacks. An attempt from an adver-

sary to put additional memory in the captured node or to inject malicious code

into the node will be detected by the proposed program integrity verification.

The security claims made in the proposed protocols are analyzed with the help

of theorem proving techniques and by carrying out the formal analysis using

ProVerif tool [14].

1.5 Thesis Outline

In chapter 2, we give the preliminaries for the protocols that are building blocks

of the proposed solution to deal with node capture attack in WSNs. First, the

overview of security in WSN is discussed with an emphasis on secure key man-

agement, node capture detection and node revocation. The primitives used in

the various protocols discussed in the thesis namely pseudo random function,

bivariate polynomials, bilinear pairing and Chinese remainder theorem based se-

cret sharing are defined next. At the end, we give an overview of trusted platform

module (TPM) that are associated with cluster heads in our capture detection pro-

tocol.

In Chapter 3, we present the authenticated pairwise key establishment and ses-

sion key update protocol. We give an overview of the pair-wise key establish-

ment protocols proposed for WSNs such as SNEP. Next, polynomial share based

key establishment schemes that do not require the presence of third party are de-

scribed. Then, we discuss in detail the protocol for pair-wise key establishment

used for communication amongst base station and cluster head in our solution

18

framework wherein the initial pair-wise master secret is established using shares

from multiple bi-variate polynomials. The protocol allows the subsequent session

key update using master secret and random inputs from the participating pair of

nodes.

In Chapter 4, the self healing and mutual healing enabled group key distribu-

tion is presented. We first give the need of self-healing and the brief overview

of the existing self-healing protocols. We then discuss the importance of mutual-

healing and describe the bilinear pairing based mutual healing protocol available

in the existing literature. Then, we present the improvement over existing bilinear

pairing based protocol and discuss the significantly improved self-healing and

mutual-healing using Chinese remainder theorem based group key distribution

that we have used for communication within clusters in our solution framework.

In Chapter 5, we present the vital contribution to this thesis in terms of a se-

cure and efficient solution to detect node capture attack. We start the discussion

with identifying node capture attack by monitoring and then present the brief

overview of the existing software and hardware attestation approaches to detect

node capture attack. Next, we discuss the program integrity verification approach

and present the proposed solution of node capture detection that uses trusted

platform module enabled cluster heads to verify the integrity of a node’s program.

With the help of light weight hash operations and pseudo random functions, the

protocol is able to detect the victim of node capture with high probability even in

presence of a strong adversary capable of putting additional memory in the node.

In Chapter 6, we identify the requirement of node revocation after node capture

detection and discuss the various centralized, distributed and hybrid protocols

proposed in the literature to address the issue of revocation. Then, we present a

secure node revocation and key update protocol that puts very low overhead on

the resource constrained sensor nodes. The proposed protocol revokes a victim

node by not allowing the victim node to obtain the group session keys thereafter.

19

In Chapter 7, the conclusion for the thesis is given, wherein we briefly present the

importance and merits of the proposed protocols for pair-wise key establishment,

healing enabled group key distribution, node capture detection using program

integrity verification and node revocation and key update used in the solution

framework for secure and efficient dealing with node capture attack in wireless

sensor networks. At the end of this chapter, we give the future scope of this re-

search.

20

CHAPTER 2

Background and Preliminaries

WSNs are gaining popularity in various aspects of real life applications due to

their ease of deployment even in difficult terrains such as battlefields and earth

quake prone areas. Along with the growing use of WSNs, security of WSNs has

been a matter of concern. The communication on unreliable wireless medium and

deployment of WSNs in harsh terrains depending on application specific needs

leave WSN vulnerable to various security threats including routing attacks and

physical attacks. We studied various aspects of WSN security and realized that

node capture attack is one of the most critical attacks on WSN security. In this

chapter, we give an overview of WSN security with the emphasis on secure key

establishment and, node capture detection and node revocation. We also present

the basics of security primitives and the overview of trusted platform module

used in the proposed protocols.

2.1 Overview of Security in WSN

WSNs give a promising approach for various applications mostly in hostile and

emergency environments e.g. battlefield surveillance, forest fire detection, health

care and so on. Most of such applications using WSNs are mission critical. The

wireless communication in sensor networks is exposed to attacks such as eaves-

dropping, traffic monitoring and analysis. Furthermore, due to their deployment

mostly in hostile environments, the sensor nodes are vulnerable to tampering

or even physical destruction. Therefore, the security is a major concern while

designing such networks. To integrate the required security features, the secu-

21

rity mechanisms require one or more cryptographic primitives namely symmetric

key cryptography (SKC), asymmetric key cryptography and hash functions. With

SKC, both communicating parties must share the same security credentials which

means the same key is used for encryption and decryption. Asymmetric key cryp-

tography, also known as public key cryptography (PKC) uses two distinct keys, a

private key that is kept secret, and a public key that is known publicly. In PKC,

the encryption done with the public key can be decrypted with the corresponding

private key. Cryptographic hash functions [88] provide "digital fingerprints" of

the given data. Other cryptographic primitives such as message authentication

code (MAC) can be built using cryptographic hash functions. The cryptographic

primitives have been extensively used in the network security. However, due to

the inherent constraints of memory, computation power, energy and requirement

of keeping the cost low, the existing network security solutions can not fit in WSN

as it is. Therefore, the efforts have been made to secure the WSNs in an efficient

and economical way. In traditional networks, the traffic pattern is dominantly

end-to-end communication wherein the intermediate routers do not require to ac-

cess the message bodies. Therefore, the authenticity, integrity and confidentiality

of messages are usually ensured using end-to-end security mechanism such as

SSL (Secure Sockets Layer) [118]. However, in WSNs, in-network processing such

as data aggregation may be carried out by the intermediate nodes (cluster heads).

In such cases, if message integrity is left to be checked only at the final destina-

tion, an adversary may inject packets en-route. To address this issue, a link-layer

security architecture, TinySec, was proposed in [58] that can be integrated into

existing applications. Two variants of security options are proposed in TinySec.

In authentication only mode, the data load remains unencrypted and the entire

packet is authenticated using a MAC. MAC is a cryptographically secure check-

sum of a message that is used to achieve message authenticity and integrity in

the communication using shared symmetric key. A sender party computes MAC

over the data being transmitted using the shared secret key and transmits this

MAC along with the data. At the receiver’s end, the MAC is computed on the

received data using the same shared key and the computed MAC is compared

22

with the received MAC value. If both values match, the received data is accepted

as authenticated and correct. MACs are keyed hash functions that are hard to

forge without the secret key. With authenticated encryption (TinySec-AE), data

payload is encrypted and a MAC, computed over the packet header and the en-

crypted data, is used to authenticate the packet.

In general, the threat to security of a WSN is influenced by three major factors

[63] - the topology of the network, the density of the network and, the underlying

key management scheme governing the manner in which keys are shared among

the nodes. Moreover, the security requirements may vary depending on the ap-

plication specific needs. The health care applications are amongst the real life

examples of WSN application, wherein the medical sensors are put on a patient’s

body or the environmental sensors are installed at different places within the hos-

pital premises. These sensor nodes may be captured by an attacker, who can alter

the programs in sensor nodes according to his needs to carry out malicious activ-

ities and can later place such captured nodes back into the network. Such attack

may even put a patient’s life into danger. Similarly, in a WSN deployed for earth-

quake alert, a capture attack victim functioning with adversarial motives can dis-

rupt the alert-mechanism that may result in heavy loss to the movable property

and humans. By securing the node location with the help of secure localization,

the possibility of physical capture of nodes can be reduced. Various secure local-

ization schemes such as Serloc [71] and [94] have been proposed. In [94], secure

localization of sensor nodes is considered from two perspectives. First, an adver-

sary may pretend to be an unknown or anchor node and compromise other nodes

in order to interfere with the localization process. Therefore, secure node authen-

tication process is needed. Secondly, the integrity of the localization information

is required as an attacker may delete, replay or change the location information.

For authentication and integrity protection, secure key management is essential.

Although, with secure localization and robust key management mechanism in

place, we can increase the resilience to node capture attack, the possibility of an

adversary launching node capture attack exists. Therefore, a secure and efficient

way of dealing with node capture attack remains as one of the most challenging

23

problems in wireless sensor network security.

In the subsequent sections, we discuss concept of resilience and then the back-

ground study carried out to address the issues of secure key management, detec-

tion of node capture attack and node revocation.

2.1.1 Resilience

The term Resilience has been used by different communities in different contexts.

The dictionary defines resilience as toughness or the capacity to recover quickly

from difficulties. In general engineering systems, fast recovery from a degraded

system state is often termed as resilience. Dependable computing community de-

fined resilience as the persistence of service delivery that can justifiably be trusted,

when facing changes. In computer networking, resilience is defined as the ability

to provide and maintain an acceptable level of service in the face of faults and

challenges to normal operation. Threats and challenges for services can range

from simple misconfiguration over large scale natural disasters to targeted at-

tacks. Resilience is seen as the combination of trustworthiness (dependability,

security, performability) and tolerance (survivability, disruption tolerance, and

traffic tolerance) [123]. Resilient networks aim to provide acceptable service to

applications. The required level and the properties of resilience is determined by

the needs of users and the application service provided by the network. A net-

work’s resilience depends upon the ability of the entities to defend and protect

themselves in the face of challenges and in the presence of adversary. A network

can be made resilient by implementing various security mechanisms such as au-

thentication, confidentiality and integrity in the communication.

A resiliency strategy is implemented with the help of a four step process [132]:

• defend against challenges and threats

• detect when an adversarial attack has taken place

• If an attack has happened, remediate to minimize the impact of the attack

24

• when attacker has left the network, recover to normal operations

Figure 2.1 below illustrates a Resiliency strategy.

User A sets a password to se-

cure his bank account (Defence)

An attacker attempts to

log into User A’s account

System identifies mul-

tiple unsuccessful lo-

gin attempts (detecting)

The account is blocked.

User A is informed of the

possible attack attempt.

No one can login for next

few minutes (remediating)

Attacker leaves

User requests unblocking of

account by providing sup-

porting credentials (Recovery)

Figure 2.1: Illustrating the Resiliency Strategy

In the context of WSN, the service provided by the network is either in terms

of raw data gathered by sensor nodes and/or data aggregated and processed by

cluster heads or base station. A WSN is required to be resilient to attacks hamper-

ing the service either by disrupting the functioning at sensor node/aggregators

or the communication within the sensor network. Due to the insecure commu-

nication on a wireless medium and resource constraints of sensor nodes in terms

of computational, communication, memory and energy, the resilience to various

attacks on the security of a WSN, such as known-key attack, sink hole attack etc.

is very crucial. Moreover, WSNs are mostly deployed in unattended hostile envi-

ronments such as battle-field surveillance, the nodes are exposed to physical at-

tacks as well. Therefore, making a WSN resilient to physical attacks such as node

capture attack is an essential requirement as well. A WSN is considered to be re-

silient if it is capable of providing and maintaining an acceptable level of security

service even when some nodes are compromised. Also, it is believed that a dis-

tributed network provides better resilience as compared to a centralized network

25

when the network size is large [29]. A WSN should be capable to survive and

successfully deal with internal attacks in case of some portion of compromised

valid nodes. [97]. We can broadly classify the resiliency in terms of the security at

various levels in a WSN as shown in Table 2.1.

Level Resilience Against

Application Level Key compromise, node collusion, message replay,

impersonation, denial of Service through heavy inflow

Network Level Sink hole, worm hole, selective forwarding,

denial of Service through jamming

Physical Level Node capture, Physical Tampering

Table 2.1: Resiliency at various levels in a WSN

At application level, if a key is accessible to an attacker, it can mount attacks

such as known-key attack, and attack to forward/backward secrecy that prevents

achieving confidentiality and integrity of the communication. Even without the

knowledge of key, adversary may replay previous messages and interfere into the

ongoing communication. Some malicious nodes may collude and misbehave to

disrupt the normal network operation. An attacker may simply cause an excess

inflow of messages to few selected nodes in the network to drain their batteries

rendering them unavailable.

Routing, a network level function, is an essential function in a WSN. An adversary

mounting the attacks such as sink hole, worm hole or selective forwarding aims

to hamper the routing functionality and hence affecting average delivery ratio,

average degree of nodes in order to detect abnormalities of neighborhood and

and/or average path length. The routing resiliency defines keeping these routing

metrics in order.

One of the most crucial aspects of WSN security is to ensure that the network is

26

resilient to physical attacks such as node capture. The resiliency to node capture

attacks can be defined from three different perspectives [73].

• the probability that a link is compromised when an adversary captures a

node

• number of nodes whose security credentials are compromised when an ad-

versary captures a node, or

• number of sensor nodes required to be captured to compromise whole WSN

In this thesis, we have addressed the resiliency of the WSN at different levels.

The proposed pair-wise key establishment protocol provides forward secrecy and

resists known key, impersonation and replay attacks. The protocol also achieves

node-to-node authentication, data confidentiality and mutual key control and is

resilient to sink-hole, worm hole attacks as well as to node capture attack. The

proposed healing enabled group-key distribution protocols also ensure resilience

against replay and impersonation attack. In order to address the resilience at

physical level, our proposed node capture detection protocol ensures that the

victim of node capture attack is detected with very high probability. Moreover,

capture of a node does not compromise the security credentials of any other node

in the network. The node revocation and key update protocol ensures that the vic-

tim is revoked from participating in further network operations so the resiliency

to further internal attacks is ensured. The revocation process ensure resiliency

against node collusion, replay and impersonation attacks.

2.1.2 Key Management in WSN

Due to the wireless communication medium and deployment in difficult terrains,

it is important to ensure that, within a WSN, the accurate data is generated and/or

forwarded by the authenticated source and reach the intended recipient in time,

without illegal alteration of the data in transit. In order to secure the data inside

the node and while in transit, numerous approaches for securing communication

between nodes in a WSN through a cryptographic key have been proposed and

27

followed. The encryption security largely depends on the underlying key man-

agement scheme. Although conventional network security solutions can not be

used for WSN security due to resource constraints and application specific de-

ployment, WSN security does rely on the principles of cryptography wherein the

data being transmitted or stored in a system needs to be protected against unau-

thorized disclosure or modification [98].

To develop a secure application, the fundamental requirement is a key manage-

ment protocol that is used for setting up and distributing cryptographic keys to

the nodes in a network. The basic approaches used in key management in a WSN

can be broadly classified in different categories as depicted in Figure 2.2.

Key Management in WSN

Symmetric
Key based

Public
Key based

DH
based

RSA
based

ECDH
based

Pre Deployment Post Deployment

Single
Network

Wide
Key

Pair-
wise
Key

Pre-
distributed
Polynomial
share based

schemes

Using
Trusted Set-
up Server

Using
Transient

Master
Secret

Figure 2.2: Key Management in WSN

PKC mechanisms that have been primarily used for WSN security are RSA [107]

28

and Elliptic Curve Cryptography [65]. A RSA based protocol TinyPK is proposed

by Watro et al. in [129] for authentication and key agreement between an exter-

nal user and a node in a WSN. The protocol uses challenge-response mechanism

to authenticate the external user to a sensor node and to establish a session key

between them in a secure manner. Since in RSA crypto system, the decryption

and/or signature key generation (private key operations) are costly, TinyPK pro-

poses the private key operations to be performed by the external user. The sensor

nodes are required to perform the comparatively less costly public key operations

i.e. signature verification and/or decryption. The challenge to a sensor node con-

sists of two components: one is public key EPub of the external user E signed by

the private key CAPri of the certification authority (CA), second component has

a nonce and the checksum of EPub signed with the private key EPri of E. When a

sensor node SN receives this challenge, it first verifies the public key EPub using

the public key CAPub of CA. Then, the node SN verifies the signature on nonce

and the checksum of EPub using EPub. Next, SN computes the check sum of EPub

and compares it against the received checksum. The received nonce is compared

with the previous nonce to ensure that the former is greater. After ensuring the

authenticity of the received messages, the node SN prepares the response mes-

sage. It picks the session key TinySecKey and encrypts nonce and TinySecKey with

EPub and sends this response to the external user E. The external user E decrypts

the response message using its own private key EPri and retrieves the nonce and

TinySecKey. User E verifies the nonce and accepts TinySecKey as the session key

shared with SN. The TinyPK protocol also provides key establishment between

two sensor networks using Diffie-Hellman key exchange [38]. The key exchange

is initiated by a node SN1 that generates a random number R1 ∈ F∗p (p is a large

prime) and calculates gR1 mod p. Here g is a generator for the group F∗p . Node

SN1 sends this quantity gR1 mod p to another node SN2. The second node SN2

computes gR2 mod p using its own generated random number R2 ∈ F∗p and sends

gR2 mod p in parallel to node SN1. Node SN1 computes (gR2 mod p)R1 mod p

and SN2 computes (gR1 mod p)R2 mod p. The common secret between SN1 and

SN2 becomes K = (gR2 mod p)R1 = (gR1 mod p)R2 = (gR1∗R2 mod p). Later, Kumar

29

and Das [68] found the "masquerade as sensor node to an unknowing external

party" attack in TinyPK, wherein, if an adversary gets hold of EPub can generate

its own TinySecKey and share it with E to communicate with E as a valid sensor

node. Authentication of a sensor node is ensured in TinyPK by a node using a

credential that consists of static Diffie-Hellman key pair along with a text string

(node identity, date of manufacturing and so on) processed by the private key of

CA. However, in [68], an alternate solution is provided to ensure authenticated

key establishment with less overhead on the resource constrained sensor nodes.

The protocol considers the presence of base station between an external user and

a sensor node within the WSN. The external user sends a request to the base sta-

tion to establish a session key with a sensor node. Base station first verifies the

authenticity of the external user and then forwards this request to a sensor node

encrypted with the secret shared between the base station and the sensor node.

The sensor node can then directly communicate the session key to the external

user by performing a symmetric decryption and two XOR operations. Although

the protocol in [68] gives improvement over TinyPK protocol, it involves base sta-

tion for each session key establishment that may result in traffic congestion at base

station. Moreover, in real-life applications deployed in hostile environments, the

continuous presence of base station may not be feasible.

Though, RSA public key operations are less costlier as compared to RSA private

key operations, the researchers looked into the possibility of using Elliptic Curve

Cryptography (ECC) [65] to construct security protocols for resource constrained

WSN. ECC has an advantage over RSA because shorter keys with ECC are as

strong as long key for RSA (160-bit ECC key similar security as 1024-bit RSA key).

ECC uses an elliptic curve defined over a finite field and works on a group of

points on that curve. An elliptic curve EFp defined over a field Fp of characteristic

> 3 is the set of solutions (x, y) ∈ Fp
2 to the equation y2 = x3 + ax + b, {a, b} ∈ Fp

(where the cubic on the right has no multiple roots). It is the set of such solutions

together with a "point at infinity" (O). In ECC, the main cryptographic operation

is the scalar point multiplication that calculates Q = k.P, where P is a point on an

elliptic curve, k is an integer and Q is another elliptic curve point that is obtained

30

when point P is multiplied with integer k. The scalar multiplication in ECC is

actually the result of point additions, so, k.P = P + P + P + . . . + P (k times). The

security of ECC depends on the difficulty of solving the Elliptic Curve Discrete

Logarithm Problem (ECDLP). ECDLP states that given points P and Q = k.P on

a ECC, it is hard to find k. For each elliptic curve, there is a fixed base point G.

In ECC, private key is taken as a large random integer k and the public key is the

result of the multiplication of the private key k with the curve’s base point G i.e.

k.G.

Gupta et al. proposed authentication and confidentiality protocol, Sizzle [49], us-

ing elliptic curve Diffie-Hellman (ECDH) key exchange that is based on SSL. Siz-

zle offers scalable key management and provides end-to-end security. Sizzle is a

small footprint implementation of an HTTPS stack that allows the security prop-

erties of SSL to be implemented in the embedded Internet. Sizzle does prove the

feasibility of using public key cryptography in WSN, however, SSL-like hand-

shake still incurs heavy overhead on resource constrained sensor nodes. In [84],

two join protocols are proposed using ECC. Each node ui is pre-deployed with the

public key PKS of sink and, its own public private key pair (PKi, SKi). The pro-

tocols use ECC and take G as a public generator point of the elliptic curve. The

public key PKi of a node is computed as PKi = SKi * G. With this pre-deployed

information, each node ui computes a key KIS = SKi * PKS. Similarly, the sink

computes KSI = SKS * PKi. Here KIS = SKi * PKS = SKi * (SKS *G) = SKS * SKi * G

= SKS * (SKi * G) = SKS * PKi = KSI is the shared secret between the sink and the

node ui. The first protocol proposed in [84] is DJS (direct join to the sink) protocol

that allows a sink and a node to join directly. In DJS, a new node unew, having

public-private key pair (PKnew, SKnew), computes the shared key KnewS with the

sink. It selects a nonce Nnew and sends a direct request EKnewS(Nnew, IDnew) to the

sink. The sink, upon receiving this request, decrypts the message using the shared

secret KSnew (= KnewS), verifies the identity of node unew and then randomly gen-

erates a new session key K′Snew. The sink sends the join response to node unew as

EPKnew(Nnew, IDS, K′Snew). Since the join response is encrypted with the public key

PKnew of node unew, unew decrypts this message with the help of its private key

31

SKnew. With nonce Nnew, node ensures the authenticity and freshness of the key.

With the second protocol, indirect join to the sink (IJS) [84], a new node unew can

join the network with the help of an already authenticated neighbor node ur. An

indirect request is sent by node unew to the sink S for establishing a session key

with node ur. The new node sends request EKnewS(Nnew, IDnew) to node ur. The

neighbor node ur forwards this request to the sink S without any alteration. Node

ur sends the request via intermediate nodes that are trusted to forward the request

towards the sink. Though, intermediate nodes are involved in the routing, only

nodes unew and the sink S can decrypt the messages encrypted with the shared

key KnewS (= KSnew). Likewise, the messages encrypted with KrS (= KSr) are acces-

sible only to node ur and the sink S. Sink S responds back to ur with EKSr(Nnew,

IDS, PKnew). Node ur decrypts the message with the shared key KrS (= KSr), picks

the public key PKnew of node unew and reconstructs the response as EPKnew(Nnew,

IDr, Krnew). Upon receiving this response from ur, node unew decrypts the mes-

sage with its private key SKnew, verifies the key Krnew and the nonce Nnew and

establish the link with node ur. Apart from having the public key setup, in join

protocols, to establish a session key with any neighbour node, the base station

support is needed. Recently, Hayouni and Hamdi [50] presented an authentica-

tion and pair-wise key establishment scheme that is based on elliptic curve public

key cryptography. The scheme works with ECDH key exchange procedure for

establishing pair-wise keys agreement between the sensor node.

Although, PKC based schemes have been found feasible for key establishment,

since sensor nodes have inherent resource constraints [113], in order to avoid the

overheads associated with public key set up, most of the schemes in WSNs still

prefer symmetric key primitives. A substantial progress has been made for sym-

metric key establishment amongst communicating nodes by providing schemes

based on pre-loaded shared keys/mathematical constructions ([108]), which offer

a viable alternative to the use of public key cryptography. With symmetric key

pre-distribution, either the secret key itself or some keying material to later estab-

lish the key is distributed to all sensor nodes prior to deployment. The simplest

way for establishing symmetric key in WSN is to distribute a common key to all

32

the nodes before deployment i.e. single network wide key pre-distribution. How-

ever, with this approach, compromise of one node results in the compromise of

the entire network. Second approach is to assign a random set of keys to each

node from a large key pool and the nodes can communicate with other nodes, if

they have at least one key common in the key set. Another option is pair-wise

private key sharing. The key can be shared prior to deployment or may be estab-

lished after the deployment. The trivial approach to pre-distributed pair-wise key

sharing is to assign one key to each node and to share it with all other nodes in the

network. In a network of n nodes, this arrangement requires each node to store

n-1 keys, which is not practical for large number of nodes in WSN. A more prac-

tical mechanism is to establishment pair-wise key once the nodes are deployed in

the network. We discuss different post-deployment pair-wise key establishment

protocols using Diffie-Hellman key exchange [38], with the help of trusted setup

server [100], using transient master secret [143] and with pre-distributed polyno-

mial shares followed by the proposed pair-wise key establishment and key update

protocol in Chapter 3.

In most of the applications, WSNs work in a distributed manner wherein the sen-

sor nodes in a WSN collaborate together to communicate the object or event re-

lated data to their respective cluster heads. In such scenarios, the secure commu-

nication within the WSN takes place using a secret shared between a group of

nodes that may be provided during the deployment or during the network oper-

ations. Group-key distribution is one of the possible approaches wherein a node

can extract the group shared secret from the keying material broadcasted by a

group manager (usually the cluster head) [104].

Various group-key broadcast protocols have been proposed in the literature to se-

cure the group communication within a set of sensor nodes in WSN [28]. Recently,

Wang et al. [124] discussed a bilinear pairing based group authentication and

key distribution scheme. The scheme allows any user to easily generate a group

for communication without involving a group manager. The group members are

able to perform authentication and can distribute group key without having prior

knowledge of the number of members attending the group communication. The

33

content of communication remain secret even if a group member leaves the group

communication or join in. However, each node needs to perform multiple bi-

linear pairing operations and scalar multiplications. A key freshness scheme is

presented in [46] that is based on XOR and left shift operations that allows key

refresh at all the group member nodes without transmitting inter-node message.

To each group member, the group manager sends an encrypted magic word and

the group key is extracted from that magic word. This scheme requires the group

manager to transmit n encrypted messages for n nodes in the group at each mem-

bership change, resulting in high communication cost.

We studied various group-key broadcast schemes that use CRT based secret shar-

ing and observed that the CRT based approach offers light-weight solution to

group-key broadcast problem in wireless sensor network. Zheng et al. [141] and

Zhou et al. [142] proposed group-key management schemes using CRT but did

not consider the XOR-overflow problem. This weakness is addressed by Bhaskar

and Pais [13] wherein they introduced a multiplicative factor for each individual

node. In [13], however, the group manager distributes the node specific multi-

plicative factor individually to the nodes which contributes to increased network

traffic. Moreover, all of these schemes suffer from man-in-the-middle attack, since

the CRT congruence value is distributed in plain to the individual nodes, if the at-

tacker captures and changes this value, the individual nodes will not be able to

compute the group key correctly. Moreover, the nodes do not have any mech-

anism to ensure the authenticity of the CRT congruence value. Liu et al. [80]

had proposed the authenticated group-key distribution using CRT set-up but the

scheme requires the resource constrained nodes to solve the system of congruence

using CRT and moreover, the communication overhead on nodes as well as on the

group manager is high.

Even with the most efficient group key distribution mechanism, if a node misses

out on one or more broadcasts, it may not be able to extract the group key used for

a particular session. In a distributed WSN, with the sensor nodes having limited

resources and the communication cost is much higher than the computation cost,

sending an explicit request to the group manager to obtain the session key infor-

34

mation would be an overhead. Using self-healing an authorized node is allowed

to recover the key of some previous session(s) using the broadcast message re-

ceived in a subsequent session, without requesting for the keying material explic-

itly from the group manager. Furthermore, when a node is not able to recover the

key with self-healing because it has lost the current session’s broadcast or when

it has lost more than one broadcast and does not want to wait for the subsequent

broadcasts, mutual-healing comes in picture. With mutual-healing, a node may

request its neighboring nodes to provide the missing keying material. We discuss

the state-of-the-art in self-healing and mutual healing enabled group key distribu-

tion and present our proposed healing enabled group key distribution protocols

in Chapter 4.

2.1.3 Node Capture Detection and Revocation

Despite robust key management to secure the communication within a WSN, the

sensor nodes deployed in unattended hostile terrains are vulnerable to physical

attacks including node capture attack. Node capture attack is the ability of an at-

tacker to access (and eventually change) the internal state of a sensor node [12].

An attacker gains full control over a sensor node through a direct physical access

and then easily extract cryptographic primitives. The attacker can also apply a

reverse engineering process on the captured node to obtain unlimited access to

the information stored on its memory chip resulting in substantial damage to the

entire WSN [63]. The node capture attack in wireless sensor networks (WSNs)

can be decomposed into three stages: physical capture of node, redeployment of

compromised node, and rejoin the network for various insider attacks [39]. An

attacker getting hold of a node physically may reprogram and redeploy the node.

The possibility of node capture attack is classified based on severity and duration

by Becher et al [10]. The simple attacks start from manipulating the radio com-

munications, to influence sensor readings and reading out RAM or flash memory

in whole or in part. In more severe attacks, the adversary may gain complete

read/write access to the micro-controller. The attack that vary based on the du-

ration are termed as short, medium and long attacks. In short attacks, adversary

35

takes less than 5 mins and simply create plug-in connections and transfer few

data. Medium attacks take about 30 mins in which some mechanical work such

as soldering can be carried out. Long attacks are possible only in specialized labs

which may take hours or days depending on the intended damage. A node cap-

ture attack is aimed to be performed with an optimal cost in terms of time and

efforts of an adversary.

The node capture attack is modelled using different schemes to analyze the fea-

sibility and impact of the attack. In the proposal given by Tague et al. in [115], a

model for node capture attack is formalized wherein it is considered that an at-

tacker can collect the network related information by eavesdropping on the wire-

less medium and passively learn about the protocol states and network opera-

tions. The attacker can also have active participation in the network activities by

injecting malicious packets into the network. After collecting sufficient details of

network information, the physical capture of nodes can be carried out in planned

manner to optimize the attack performance. An event based attack decomposition

model is used to develop relevant performance metrics for node capture attack.

Another formulation by Tague et al. is presented in [116] in which the node cap-

ture attack is modelled as a nonlinear integer programming minimization prob-

lem. The model uses greedy heuristics for approximation of minimum cost attack.

The capture of each individual node is based on the information gathered from the

already captured nodes to increase the vulnerability. The greedy node capture ap-

proximation using vulnerability evaluation (GNAVE) proposed in [116] provides

increased attack efficiency with more compromised traffic using fewer captured

nodes. However, the model does not discuss the time required in the execution

to compromise the whole network. An epidemiological model is proposed by De

et al. in [36] that identifies the probability of the compromise of the entire net-

work or the sizes of the parts of the affected network. The model proposes to start

the capture from the most vulnerable node, and it assumes that through wireless

communication, the neighboring nodes can be compromised. The capture process

is modelled to be propagated using the epidemic theory. Bonaci et al. modelled

the physical capture of sensor nodes in a WSN using a control-theoretic frame-

36

work in [18]. The dynamic model maps the problem of network security into a

control theory problem and efficiently specifies the behavior of the network un-

der attack. The optimal control theory is used to achieve the control parameter

in terms of minimal revocation rate that ensures network stability under attack.

However, the model does not fully consider the effects of node capture attack.

In [93], Mishra and Turuk presents a probabilistic model of the process of infor-

mation gathering by an attacker as a birth and death process. The model shows

that the time required to gather information depends on the strength and con-

figuration of an adversary. The model can also compute the expected chunk of

information that an attacker can possess at any given time. Chi Lin et al. in [75]

model the node capture attack using matrix approach by proposing a matrix algo-

rithm. The matrix algorithm takes minimum resources and produces maximum

destructiveness. This model pays less attention to the relationship between attack

efficiency and the cost of attack and, works only for random key pre-distribution

schemes. Most of the node capture attack models discussed above consider the

theoretical aspect and models the node capture attack from adversarial aspect.

While modelling the capture attack, usual assumption is that in physical attacks,

attacker can access a node for an extended period of time without getting no-

ticed. However, in normal WSN operation, nodes continuously interact with

their neighboring nodes, an unusual absence resulting from physical capture of

a node can be noticed with periodic monitoring. Various protocols have been

proposed, such as [87] and [32], for detection of node capture by continuous mon-

itoring. However, with the malicious neighbor collusion, the non-captured mali-

cious nodes intentionally report an absent node to be present in the network, and

because the absence is not noticed within the defined threshold period, the adver-

sary may reprogram and redeploy the captured node in the network. In chapter

5, we review the existing approaches to detect node capture attack in a WSN and

then discuss a secure and efficient protocol for node capture detection using pro-

gram integrity verification.

The node that becomes a victim of node capture attack works as an insider at-

tacker and poses a threat to the entire network. As a reprogrammed and rede-

37

ployed node, the victim can disrupt the routing in the network, can communicate

with other nodes as a valid member of a group. Therefore, it is mandatory to

revoke the node from the network as soon as it is found to be a victim of node

capture attack. A Node may be revoked by revoking its secret keys so that it

can no longer participate in any future network activities. Node revocation using

public key setup as well as with symmetric key based approaches are proposed in

the literature. Recently, in [84], the revocation protocol is proposed that allows the

renewal of keys and the revocation of compromised nodes. The protocol [84] uses

public key setup and encrypt the communication using the current session key to

share the renewed public keys, or the network key. In such case, if the current

session key is compromised then the renewed keys will be accessible to an at-

tacker. Also, each node needs to store the public key of the sink as well as its own

public private key pair and a network key. This incurs more storage overhead.

The scalar multiplication is involved in computing initial key and, for each re-

newal, symmetric encryption and decryption needs to be performed by the node

that results in additional computational overhead. Chuang et al. [31] proposed

a node revocation scheme that utilizes PKC, certificate revocation list (CRL) and

a one-way hash chain. In [31], each node is assigned a certificate signed by the

base station. The certificate contains a node’s unique identity that makes a node

authorized to access data authentication and node revocation services. A certifi-

cate also has a unique identity. On detection of a compromised node uj, a node

ui broadcasts a compromised revocation vote (CRV), along with the certificate ID

of the compromised node, to all the neighbor nodes. When a neighbor node uk

receives a CRV message, it validates the authenticity of the vote using the hash

value that is attached in the CRV. If the vote is found authenticated, the revoca-

tion vote count against node uj is increased by node uk. The node uk cuts the link

with the node uj, if the revocation votes against uj exceeds a pre-defined thresh-

old t. The scheme in [31] demands high storage cost at node that needs to store

its own public-private key pair, the public keys of its r neighbors and, r hash val-

ues corresponding to r neighbors which are used for revocation vote verification.

The scheme also requires strict time synchronization to maintain the validity of

38

the node’s certificates. Various symmetric key based revocation schemes also ex-

ist that are categorized as centralized, distributed and hybrid approaches of key

revocation [83] [45]. We discuss the existing key revocation schemes and then

present proposed node revocation and key update protocol in Chapter 6.

2.2 Primitives Used in the Proposed Protocols

In the subsequent chapters, we have presented security protocols that use various

security primitives. We give an overview of those primitives in this section.

2.2.1 Pseudo Random Function

Pseudo random function (PRF) [11] is a family of functions for which the input-

output behavior of a random instance of the family is “computationally indistin-

guishable” from that of a random function. PRF is a central tool in the design of

symmetric key cryptography protocols. PRF can be used for symmetric encryp-

tion as well as for generating message authentication codes. A PRF is a deter-

ministic function f : {0,1}n → {0,1}n that takes two inputs x, k ∈ {0,1}n and is

computable in polynomial time. Here, k is the function index, f (x, k) = fk(x) and

serves as the hidden random seed. Essentially, a true random function is a look-

up table with random entries. A function x → fk(x) is considered a good PRF, if

it looks like a random function. If we take a black box that computes the function

f :{0,1}n→ {0,1}n and if there is a way to decide if f is a true random function, or

a fk(x) with random k, then f is not a good PRF.

Formally, let F: {0, 1}∗ x {0, 1}∗→ {0, 1}∗ be an efficient length preserving, keyed

function. F is said to be pseudo-random function [59], if for all probabilistic poly-

nomial time distinguisher D, there exists a negligible function ε(n), such that:

|Pr[DFk(.)(n) = 1]− (Pr[D f (.)(n) = 1]| ≤ ε(n)

where k and f both are chosen uniformly at random and, f is chosen from the set

of functions mapping n-bit strings to n-bit strings.

39

2.2.2 Bivariate Polynomials

A bivariate t-degree polynomial [78] f (x, y) =
t

∑
i,j=0

aijxiyj over a finite field Fq ,

where q is a prime number that is large enough to accommodate a cryptographic

key. A symmetric bivariate polynomial has the property of f (x, y) = f (y, x).

2.2.3 ID based Public Key Infrastructure with Bilinear Pairings

Identity based public key cryptography has widely been used for efficient key

management as an alternative to certificate-based public-key infrastructure (PKI).

In last two decades, bi-linear pairings are used to construct identity based crypto

primitives. A trusted Key Generation Center (KGC) generates two cyclic groups

G1 (additive) and G2 (multiplicative) defined over q (a large prime number) and,

a mapping e : G1 ? G1→ G2.

The mapping e is Bi-linear mapping [66] satisfying the below mentioned condi-

tions:

1. Bi-linearity: ∀ P, Q ∈ G1 and ∀ a,b ∈ Z∗q , e(aP, bQ) = e(P, Q)ab

2. Non-Degeneracy: ∃ P ∈ G1 and Q ∈ G1 such that e(P, Q) 6= 1

3. Computability: An efficient algorithm exists to compute e(P, Q) for any P, Q

∈ G1

Bilinear mapping is called bilinear pairing as it associates pairs of elements from

G1 ? G1 with elements in G2. The groups G1 and G2 are isomorphic to each other

as their group order is same and they are cyclic. Typically, group G1 is an elliptic

curve and group G2 is a finite field.

For setting up the ID based PKI infrastructure:

• KGC selects a generator P ∈ G1 randomly and defines two cryptographic

hash functions:

H1: {0, 1}∗ → G1 and,

H2: G2→ {0, 1}l (l is the bitlength of plain text)

• KGC randomly selects an integer s ∈ Z∗q and sets its own public key Ppub =

sP

40

• KGC keeps s as secret master key known only to itself and publishes system

parameters params = {G1, G2, q, P, Ppub, H1, H2}

• Each user privately shares its identity information ID to KGC

• For each user, KGC computes public key as QID = H1(ID) and correspond-

ing private key as SID = sQID and, secretly sends the public-private keys to

the individual user.

Two legitimate parties can communicate securely with the help of identity based

encryption scheme using bi-linear pairing such as Boneh-Franklin scheme [19]. A

user B encrypts a plain text message m ∈ {0, 1}l for another user A as follows:

(i) computes the public key of user A as QA = H1(IDA)

(ii) randomly selects an integer r ∈ [1, n-1] and calculates R = rP

(iii) computes c = m ⊕ H2(e(QA, PPub)
r)

User B now transmits the ciphertext (R, c) to user A who can use her private key

SIDA to obtain the plain text m as m = c ⊕ H2(e(SA, R).

User A can retrieve m, since e(SA, R) = e(s.QA, r.P) = e(QA, s.P)r = e(QA, PPub)
r.

Computational Assumptions.

Elliptic Curve Discrete Logarithm Problem (ECDLP). For a given elliptic curve E de-

fined over Fp, a point P ∈ E(Fp), the elliptic curve discrete log problem is to find s

∈ Z such that Q = s.P ∈ E(Fp).

Bi-linear Diffie-Hellman Problem (BDHP). Given P, aP, bP, cP for some a, b, c ∈ Z∗q ,

there is no polynomial time algorithm to solve e(P, P)abc ∈ G2.

The security of bi-linear pairing based cryptosystem is based on the Bi-linear

Diffie-Hellman (BDH) assumption. In the above mentioned communication be-

tween users A and B, if an attacker wants to retrieve m from (R, c), she needs

to compute e(QA, PPub)
r using the publicly available parameters (P, QA, PPub, R)

that is equivalent to solving BDHP.

Implementation Issues. As such the implementation of any efficient crypto-

graphic schemes on wireless sensor networks is a difficult task wherein platform

specific features must be analysed to get best results.

The identity based cryptosystems have been implemented either using Weil-pairing

41

or Tate-Pairing [21]. Most implementations consider Tate-pairing as it is more ef-

ficient as compared to Weil-pairing. For example, Weil-pairing takes 1.59ms and

Tate-pairing takes 0.78ms (almost half of the time compared to Weil-pairing) in

an experiment carried out on Intel i5 3.20GHz processor with 4GB RAM on an

elliptic curve EF103 : y2 = x3 + x + 18 embedded degree k = 6 and n = 19 (order of

the point P ∈ EF103).

In the literature [22], some implementation issues related to PBC have been high-

lighted as below:

• For most of the people involved in implementation, it is difficult to under-

stand the pairing computation

• the PBC shows key escrow problem, the KGC has the master key that it uses

to generate the private keys of all the users

• For the security protocols based on elliptic curve cryptography (ECC), it is

assumed to be infeasible to find the discrete logarithm of a random elliptic

curve element with respect to a publicly known base point (ECDLP). The

main advantage of using ECC is a smaller key size. An elliptic curve group

provides same level of security as provided by an RSA-based system with

a large modulus and larger key. For example, a 160-bit elliptic curve pub-

lic key provides the 80-bit security level similar to 1024-bit RSA public key.

The security of PBC is defined by the intractability of Elliptic Curve Discrete

Logarithm Problem (ECDLP) in the group E(Fq). Although, the ECC works

with the elements that are defined over its base field Fq, the pairing based

cryptography (PBC) that uses the elliptic curve E(Fq) works with the ele-

ments and functions that are defined over the extension field Fqd resulting in

heavy computations in PBC.

2.2.4 Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) can be used to share a secret amongst a

set of users using threshold secret sharing [90]. The CRT [43] is defined as:

Given two sets of integers {ai|i = 1, 2, . . . , k} and {bi|i = 1, 2, . . . , k}, which satisfy

42

the conditions as follows:

i) ai, aj are co-prime when i 6= j; (i = 1, 2, . . . k and j = 1, 2, . . . k)

ii) 0 ≤ bi < ai; (i = 1, 2, . . . k)

iii) For an integer X -

0 ≤ X < ∏k
i=1 ai; (i = 1, 2, . . . k)

iv)

X ≡ b1 mod a1

X ≡ b2 mod a2

...

X ≡ bk mod ak

X has one and only one solution as:

X = b1A1A−1
1 + b2A2A−1

2 + . . . + bk Ak A−1
k (mod N),

where N = a1a2a3 . . . ak, Ai = N/ai and A−1
i is the multiplicative inverse of Ai

modulo ai.

We will be using this concept of CRT based secret sharing in the thesis in the

chapters followed.

• In section 4.5, we have given CRT based Symmetric Key Mutual Healing

Protocol, wherein CRT based secret sharing, as mentioned in section 2.2.4, is

used to construct the broadcast message containing the secret session key as

per Algorithm 4.1.

• In section 6.5, we have proposed Node Revocation and Key Update Protocol

(NRKU) that uses CRT based secret sharing for distributing the updated ses-

sion key to non-revoked members of the group. The key distribution process

given in Algorithm 6.1 (section 6.5.2) provides the details of the same.

2.3 Trusted Platform Module

In the proposed system model (Refer Figure 1.9), the cluster heads are assumed

to be equipped with Trusted platform module (TPM). In this section, we give an

overview of the TPM with emphasis on the sealing functionality that is used in

43

the protocol for node capture detection. Trusted Platform Module(TPM) [122] is a

dedicated microprocessor and an international standard for secure co-processor.

It is designed for hardware security wherein the cryptographic keys are integrated

into devices. Endorsement Key (EK) is unique to each TPM and is used to iden-

tify the TPM. It is typically a pair of public-private keys and the private key is

embedded into the TPM and never leaves it. The private key is never needed to

be known outside the TPM that prevents everyone (even the user) from know-

ing the private key value. TPM architecture has unique feature in terms of the

Secure Platform Configuration Registers (PCRs). PCRs store the integrity metrics

used to measure the integrity of any code prior to its execution. The integrity

measurements are extended from boot loader to operating system and then to the

application code.

TPM provides a unique capability of Sealing any data block with TPM’s plat-

form configuration. The sealed data block can only be unsealed, when during

the unsealing, the TPM has the same platform configuration. This feature can be

used to secretly store the data in TPM and also verify the integrity of the device

which is embedded with TPM. For this purpose, TPM provides TPM_Seal() and

TPM_Unseal() commands. Figure 2.3 shows the sealing and unsealing using TPM.

The data within the TPM is encrypted with the public key of the TPM. This en-

crypted data is bound with the current platform configuration (stored in PCRs) of

the same TPM. To retrieve this data block, the private key of the TPM is needed

and at the time of retrieval, TPM has to be in the same configuration in which

the data was sealed. TPM_Unseal() command takes the TPM’s private key and

the current platform configuration to unseal the sealed data block. If the current

configuration matches the initial configuration, it will unseal the data block with

the help of the private key. A simple abstraction of TPM_Seal() and TPM_Unseal()

can be:

PSeal(Platform_Configuration_at_sealing_time, public_key_of_TPM, data_to_be_sealed)

PUnSeal(Platform_Configuration_at_unsealing_time, private_key_of_TPM, sealed_data)

44

Figure 2.3: Trusted Platform Module (TPM) Sealing and Unsealing

2.4 Conclusion

In this chapter, we presented an overview of security in WSNs with a brief expla-

nation of symmetric and asymmetric cryptography and their use in WSN security.

We discussed key management in detail with classification of key management

techniques with example protocols. We then presented the background study car-

ried out in the context of node capture detection and node revocation. At the end,

we introduced the cryptographic primitives and trusted platform module that are

used in the proposed protocols in the subsequent chapters.

45

CHAPTER 3

Pair-Wise Key Establishment and Key Update

Pairwise key establishment is one of the essential security services that enables

a pair of sensor nodes to securely communicate with each other using crypto-

graphic techniques. Due to the resource constraints on sensors, it is not preferable

to use traditional key establishment approaches using public key cryptography

and key distribution center. With the basic probabilistic and q-composite key pre-

distribution schemes, the fraction of affected pairwise keys quickly increases with

the increase in the number of compromised nodes. In the random pairwise keys

scheme, the network size is strictly limited by the desired probability of allowable

neighbor nodes that a sensor can communicate with and sharing of a pairwise key

between two nodes. The polynomial share based key establishment is determinis-

tic and allows any two nodes to share a pair-wise key directly or indirectly. How-

ever, most of the existing polynomial share based schemes use static arrangement

of nodes. In a dynamic WSN, during the entire network life-time, a node is mobile

and may wish to communicate with any neighbor that it comes in contact with.

Moreover, the existing polynomial share based schemes consider just one-time

key establishment between a pair of nodes, therefore, compromise of a pair-wise

key results in the compromise of the link between that pair of nodes for all forth-

coming sessions as well. In this chapter, we present an overview of the existing

pair-wise key establishment schemes in WSN using trusted server and without

the help of trusted server. We then discuss, polynomial share based key estab-

lishment schemes wherein the pair-wise key is established using pre-distributed

polynomial shares. We then present the proposed pair-wise session key update

protocol for a dynamic WSN. The proposed protocol allows deterministically es-

46

tablishing a master secret between a pair of nodes. The master secret is then used

to update the pair-wise key for each session with the help of random inputs from

both the nodes. The proposed protocol resists replay, impersonation, known-key,

worm and sink hole attacks and ensures forward secrecy, key freshness, and mu-

tual key control. Due to the underlying multiple polynomial based key used as

master secret, we also achieve high resilience to node capture attack. In our pro-

posed solution, we consider the pair-wise key establishment between base station

and cluster head pair and between a pair of cluster heads.

3.1 Introduction

Various key management schemes have been proposed to establish pair-wise key

between a pair of nodes. For pair-wise symmetric key setup, a convenient method

is using a public-key cryptography based protocol to bootstrap secure connec-

tions. However, for resource constrained sensor nodes, it is preferable to avoid

public-key cryptography that is computationally expensive. WSNs also lack the

infrastructure support and therefore traditional key establishment protocols suit-

able for infrastructure supported wireless networks such as Kerberos [91] also

can not be used in wireless sensor networks. Researchers have proposed using

symmetric-key algorithms with base station as a trusted agent for key setup. With

trusted server setup, the server authenticates and helps the nodes to agree to a key

for secure communication. For example, in [100], Perrig et al. proposed SNEP pro-

tocol that can be used to establish a shared session key between two nodes A and

B with the help of base station as the trusted server. With this trust setup, Each

node shares an encryption key and an authentication key with base station. A

node initiates the key-agreement protocol by sending its identity and a nonce to

another node. The receiver node chooses a nonce and sends identities and nonces

of both the nodes along with authentication code computed using its encryption

key shared with base station. Base station individually sends the pair-wise key be-

tween both the nodes to respective nodes. For this, base station encrypts the new

key with the encryption key it shares with the node and computes the authentica-

47

tion code of another node’s identity, nonce and encrypted pair-wise key using the

authentication key. The node-to-node key agreement between two nodes A and

B takes place as follows:

A⇒ B: NA, A

B⇒ S: NA, NB, A, B, MACKBS(NA||NB||A||B)

S⇒ A: EKAS(SKAB), MACK′AS
(NA||B||EKAS(SKAB))

S⇒ B: EKBS(SKAB), MACK′BS
(NB||A||EKBS(SKAB))

Here KAS and K′AS are encryption and authentication keys respectively, shared

between base station and node A. Similarly, KBS and K′BS are keys between base

station and node B. NA and NB are the nonces selected by nodes A and B re-

spectively and SKAB is the pair-wise key agreed between the two nodes with the

help of base station. Although, we do assume the existence of base station as

a central trusted authority in a WSN, dependence on base station for each pair-

wise key agreement results in communication overhead. Moreover, in most of

the real-life WSN applications, the continuous presence of trusted infrastructure

is not feasible. Therefore, the pair-wise key establishment that does not require

the continuous presence of the base station is preferred.

There are pair-wise key establishment protocols that use transitory master key,

wherein each node is pre-deployed with a master key. Each node computes its

individual secret using this master key and then the master key is deleted. A pair

of nodes can then use their individual secrets to establish a pair-wise key. One

such scheme based on transitory master key called LEAP (Localized Encryption

and Authentication Protocol) is proposed by Zhu et al. in [143]. In LEAP, each

node is pre-configured with master secret KI . A node u computes its individual

secret as Ku = f (KI , u) (f () is a secure one-way function). Two nodes u and v

can establish a pair-wise secret as Kuv = f (Ku, v) = f (Kv, u). In LEAP, however, if

the master secret is leaked, then an adversary w can establish the pair-wise key

with any node x in the network as Kwx = f (Kw, x) = f (f (KI , w), x). To overcome

this security issue, they extended this scheme [143] by setting the life time of a

master key. The total network life time is divided into time slots T1, T2, . . . Tm

and a master key is considered to be valid only within a time slot. Therefore, an

48

adversary getting hold of the master secret in a time slot Ti will be able to estab-

lish pair-wise key with only those nodes that have joined the network in the time

slot Ti. With this solution, however, the pair-wise node-to-node connectivity is

limited to a specific time slot and deciding on the interval of a time slot is an-

other challenge. In [17], polynomial share based key establishment was proposed

that gives promising solution to the issue of symmetric pair-wise key establish-

ment in WSNs. We extensively studied the polynomial share based pair-wise key

establishment schemes that allows a pair of nodes to establish a secret, without

taking help of the base station, using pre-distributed polynomial shares. In the

subsequent section, we discuss the details of some of the existing schemes using

polynomial share based pair-wise key establishment.

3.2 Polynomial Share Based Pair-Wise Key Establish-

ment

For the post deployment pair-wise key establishment, many polynomial based

key schemes have been proposed in last two decades. The core element of this

family of schemes is the concept of bivariate t-degree polynomials f (x, y) over a

finite field Fq. Here, q is a large prime number that can accommodate a crypto-

graphic key. In the most basic scheme [17], each sensor node is assigned a share

from a polynomial, and to establish a pairwise key, each node requires to com-

pute the key from its own polynomial share using the unique identity of the other

node. For example, let the two nodes be ui and uj, having unique identities Idi

and Idi respectively. A polynomial share assigned to node ui is f (Idi, y) and that

to node uj is f (Idj, y). Node ui computes f (Idi, idj) and node uj computes f (Idj,

Idi). Since the polynomial f (x, y) is symmetric, f (Idi, Idj) = f (Idj, Idi) and serves

as the pair-wise key between nodes ui and uj. This scheme provides excellent

connectivity and support for mobile nodes, as every node can create a pair-wise

key with any other node in the network. Moreover, this scheme does not hinder

the extensibility of the network, i.e. it is possible to add new nodes after the orig-

inal deployment. However, this basic scheme has a major drawback: the actual

49

resilience of the network (i.e. ability to cope with stolen credentials and rogue

nodes) is low, as an adversary only needs to subvert t nodes to control the whole

network. Therefore, various authors have tried to improve the basic scheme over

the years, but at the cost of sacrificing network connectivity or increasing memory

consumption.

Over the years, number of polynomial share based schemes have been proposed.

In [78], Liu and Ning proposed a general framework that combined the concept

of polynomial-based key pre-distribution with the key pool idea used in [42]. The

framework has three step process to establish a pair-wise key between two nodes:

• Setup phase. The setup server randomly generates a pool P = { f1, f2, . . .,

fm} of bivariate t-degree polynomials over the finite field Fq. Set up server

assigns each node ui a unique identity Idi, picks a subset of polynomials

Pi from the polynomial pool P and assigns the polynomial shares of these

polynomials to node ui.

• Direct key establishment. Two sensor nodes ui and uj having the shares

from sets Pi and Pj and having a share from a common polynomial fl, can

establish the pair-wise key directly using the polynomial-based key pre-

distribution as given in [17]. The polynomial share discovery can be carried

out using either pre-distribution or real time discovery.

– Pre-distribution. Setup server pre-distributes certain information to

the nodes, so that given the identity of another node, a sensor node

can determine whether it can establish a pair-wise key with that node.

For example, each node may be preloaded with the unique identities of

those nodes with whom it can directly setup a pair-wise key. However,

for nodes, that join the network on the fly, setup server has to inform

some existing nodes about the addition of these new nodes. Moreover,

with this approach, an attacker may also know the distribution of the

polynomials and thus can precisely target at certain nodes in order to

learn polynomial shares of a particular bivariate polynomial.

– Real time discovery. To avoid the issues with pre-distribution for poly-

50

nomial share discovery, nodes begin the real time discovery by ex-

changing the identities of polynomials of which they both have shares

to identify the common polynomials. The nodes may choose to pro-

tect the identities of the polynomials by challenging the other party to

solve puzzles instead of disclosing the identities of the polynomials di-

rectly. For example, node ui may broadcast an encryption list α, EKl

(α), l = 1, 2, . . ., |Pi|, where Kl is a potential pair-wise key the other

node may have. If another node uj correctly decrypts any one of these,

it can establish a pair-wise key with node ui. This approach, however,

introduces additional communication overhead.

– Path key establishment. When direct key establishment fails, two nodes

can establish a pair-wise key with the help of other nodes. To establish

a pair-wise key with node uj, a node ui needs to find a path (key-path)

between itself and node uj such that any two adjacent nodes in the path

can establish a pair-wise key directly. Once the path is found, node ui

can initiate a request to establish a pair-wise key with node uj through

the intermediate nodes along the path. The main issue in this phase

is the path discovery problem, which specifies how to find a path be-

tween two sensor nodes. This issue can also be addressed using pre-

distribution or real-time discovery techniques.

Two actual instantiations of this general framework are proposed by the authors

of [78]. The first one considers a random subset assignment, where the poly-

nomials are randomly selected from the pool of polynomials and the shares are

assigned to nodes. Here, the probability of direct key establishment is low and

there may be situations wherein two nodes do not have any polynomial share in

common and therefore, will not be able to establish a pair-wise, even though ge-

ographically they might be close neighbors. This issue is addressed by propos-

ing another instance of key distribution from the pool as grid based key pre-

distribution, in which nodes are arranged in m x m matrix with each node as-

signed an intersection point at the grid. The setup server randomly generates 2*m

bivariate polynomials. Each row and each column in the grid is assigned one

51

polynomial from the pool of these 2*m polynomials. Each node gets two polyno-

mial shares, one share corresponding to its row and the other share corresponding

to its column. Two nodes can establish a pair-wise key directly, if they both share

a common polynomial, i.e., they are either in the same column or in the same

row of the grid. If two nodes do not have any row or column in common, they

go through path discovery to establish a pair-wise key (Refer Figure 3.1). The

Figure 3.1: Two Dimensional Grid based Polynomial Key Distribution

grid-based idea was extended by Kim et al. [64] to increase the direct key-sharing

probability in the grid-based basic scheme. Instead of a 2-dimensional grid, N

nodes are arranged in k-dimensional grid with k ∗m number of t-degree bivariate

polynomials with N = m1/k. A node identity contains k components and if two

nodes have any one component in common, they can establish a pair-wise key

directly. In case the two nodes are not able to establish a direct key, they can still

connect to other nodes with the help of intermediate nodes. Delgosha and Fekri

[37] extended the Kim et al. scheme [64] by using the multivariate polynomials

instead of the bivariate polynomial. In this scheme, a k-tuple unique identity is

associated with each node. The base station generates a virtual k-dimensional

52

space that has k axis lines. A k-variate polynomial will be associated with each

axis line. Each intersection of the k axis lines in this k-dimensional space is as-

signed to a node. Each node is given shares from k polynomials corresponding to

k axis lines intersecting at a point assigned to that node. Each of these polynomi-

als is evaluated at (k-1) variables determined by the k-tuple node identity. Thus,

k univariate polynomial shares are stored in the node memory. For the direct

key establishment, two neighboring nodes with node identities at the Hamming

distance of one from each other evaluate the keys using their (k-1) common uni-

variate polynomial shares. A symmetric combination of these common keys is the

final link key between the two nodes.

In 2009, Liao et al. [74] proposed a robust grid-based key pre-distribution scheme

which uses algebraic tame automorphism, which is a variant of the grid-based

scheme given by Liu and Ning in [78]. In [74], N nodes in the network are de-

ployed in a 2-dimensional field. Each node will be having a field co-ordinate,

say(xc,ym). xc-coordinate denotes the cell number of the node and ym-coordinate

can be considered as marking within the cell. A node is assigned shares from

two symmetric tame-maps based on its field coordinates. Two nodes can estab-

lish a direct pair-wise key if they belong to the same cell(inter-cell) or have same

marking in their respective cells(intra-cell). In other words, if the xc-coordinate or

ym-coordinate of the nodes are matching, they are considered to be direct neigh-

bors. For example, nodes with coordinates (1, 1) and (1, 2) are direct neighbors

and so are the nodes (1, 1) and (2, 1).

Recently, Guo et al. [47] proposed a permutation-based multi-polynomial scheme

for the pair-wise key establishment. The scheme assigns the shares of m unique

symmetric bivariate polynomials fk(x, y), 1 ≤ k ≤ m, to the nodes in a random

order. A node ui with its unique identity, Idi, gets the polynomial shares fk(Idi,

y). Any two nodes ui and uj with unique identities Idi and Idj respectively and,

in the communication range of each other can establish a direct pair-wise key as

follows:

53

Node ui computes: Kij = fk1(Idi, Idj) ⊕ fk2(Idi, Idj) ⊕ . . . ⊕ fkm(Idi, Idj)

Node uj computes: Kji = fk1(Idj, Idi) ⊕ fk2(Idj, Idi) ⊕ . . . ⊕ fkm(Idj, Idi)

Here, subscript range k1, k2,....km is a unique permutation of integers 1, 2, . . ., m

for each node. The unique secret key between nodes ui and uj will be Kij = Kji,

since⊕ operation is commutative and fk(x, y) is a symmetric bivariate polynomial

(for k = 1, 2, . . ., m).

The scheme in [42] relies on probabilistic key sharing. A limited number of keys

are randomly drawn from a finite pool of keys, so it is difficult to achieve high

network connectivity, especially in the dynamic environment and large networks.

Similarly, the probability of direct connectivity is low with the random distribu-

tion of polynomial shares proposed by Liu and Ning in [78]. With the two dimen-

sional grid based approach [78], another instantiation of the Liu and Ning general

framework, the probability of key establishment between a pair of nodes actually

improves. However, in their proposal, at any time m nodes are sharing the same

row/column polynomial. If that polynomial is disclosed, the direct keys shared

by these m polynomials can easily be discovered, hence compromising the nodes

is easier. Kim et al. [64] uses k-dimensional grid in place of two dimensional grid

to enhance the probability of connectivity, however, their scheme is comparatively

less resilient to node capture. Although, more alternative paths are available for

key-establishment when direct paths are compromised. Liao et al. [74] use tame-

maps and further enhances the connectivity by giving the possibility of inter-cell

and intra-cell connectivity. However, all the above mentioned schemes are op-

timized for static arrangements of nodes, where nodes are not mobile after the

deployment. Finally, Guo et al. scheme [47] provides a promising solution for

ensuring connectivity even in mobile WSN with high resilience to node capture

attack.

The polynomial share based schemes provide inherent authentication, as a node

is assured that only a valid node in the network could possess the required poly-

nomial share to establish a pair-wise key. However, the key once established re-

mains static and the approach is thus vulnerable to known key attack and replay

54

attack. Moreover, the approach does not provide forward secrecy, as once a key is

known, an attacker gets hold of all the previous communications encrypted using

that single static key. Thus, we need a key update protocol that allows updating

pair-wise key between two nodes after each session.

In [48], a compromise resilient pair-wise re-keying protocol is discussed to estab-

lish and update the pair-wise between a cluster head and any of its sensor nodes

or between two cluster heads. In [48], for each session key, the sender sends a

polynomial share that consists of shares from a symmetric bivariate polynomial

and a perturbation polynomial. A node needs to compute three candidate keys

and may have to perform at most three symmetric decryption to check which is

the valid key for the session. The receiver has no way to validate the encrypted

message as no message authentication is provided. Moreover, the protocol in [48]

uses perturbation polynomial that was introduced by Zhang et al. in [137] claim-

ing to increase the resilience threshold while maintaining efficiency by adding

some noise to polynomial-based systems. However, Albrecht et al. in [7] have

shown that the heuristic security arguments given for perturbation polynomial

can be broken completely. The EDDK scheme (energy-efficient distributed deter-

ministic key management scheme) proposed in [138] allows a pair of nodes to

update the key wherein one node selects the new key and shares the new key

with the pairing node by encrypting it with the old pair-wise key. However, if an

attacker gets hold of the old key, it can get access to the new updated key as well.

Therefore, a secure and efficient pair-wise key establishment and key update pro-

tocol is needed that not only ensures high resilience to node capture attack, but

also protects the network from known key and impersonation attacks and allows

a pair of nodes to establish and update the pair-wise key with mutual authenti-

cation and mutual key control. We discuss the proposed key update protocol for

dynamic WSN [4] in the next section.

55

3.3 Proposed Pair-Wise Key Establishment and Key

Update Protocol

3.3.1 Goals and Assumptions

We present an authenticated pair-wise key establishment and key update protocol

to ensure forward secrecy and resilience to replay, known key and node capture

attacks in mobile WSNs ensuring mutual pair-wise key control.

The proposed protocol [4] assumes that WSN has a central trusted authority as the

base station and a large number of nodes that are mobile in nature. The nodes in

the network are allowed to change their locations during the network operation.

Each node is pre-deployed with a finite set of polynomial shares calculated over

its unique identity. Each node is capable of computing a univariate polynomial

over a finite field. The nodes can establish a pair-wise key with any other node

in the network and can directly communicate with a node in its communication

range. Whenever a node changes its location, it indicates the move to all its cur-

rent neighbors. Nodes at the new location again set up and maintain a secure

communication channel within the new location. Node-to-node authentication is

done only once, thus, during the course of the move, if a node happens to meet an

old neighbor, they need not re-authenticate each other; they already have negoti-

ated their pair-wise key. Such key can be refreshed using the session key update

protocol.

We assume that the adversary is capable of eavesdropping on the communica-

tion channel to listen to the on-going communication. The pair-wise master secret

computed using these polynomials shares is not communicated at any time dur-

ing the protocol execution and, therefore, not available to an adversary through

the communication channel. Moreover, it is assumed that the nonces (ephemeral

secrets) used to generate the initial pair-wise key are not available to the adver-

sary.

56

3.3.2 Set-up and Initialization

In the initialization phase, a unique identity is assigned to each node and, using

the unique identity, shares from m distinct bivariate polynomials are given. Any

bivariate polynomial scheme that provides high connectivity and high resilience

to node capture attack can be used, such as Guo et al. scheme [47]. The base-

station assigns a unique identity Idi to each node ui ∈ U = {u1, u2, . . ., un}. The

base station chooses a large prime q s.t. n ≤ q ≤ 2l , where l is the number of

bits needed for pair-wise master key. The base station then follows the Guo et

al. scheme [47] and constructs m symmetric bivariate polynomials of the form

f (x, y) = ∑t
a,b=0 Aabxayb of degree t for both x and y. Then, it assigns to each

node, shares from the m distinct polynomials fk(x, y) (1 ≤ k ≤ m) computed over

their respective unique identities. So, a node ui gets m shares fk1(Idi, y), fk2(Idi,

y), . . . , fkm(Idi, y). Here, the subscript sequence (k1, k2, . . ., km) is some random

permutation of (1, 2, . . ., m).

3.3.3 Node Discovery and Node Authentication

In the node discovery and authentication phase, a node broadcasts its identity

and all the nodes in its communication range respond. The communicating nodes

compute the master secret from the shares of polynomials. This master secret is

used in this phase for node-to-node authentication. We use the Diffie-Hellman

key exchange protocol [38] to derive the initial pair-wise key. Once the nodes

are deployed, they begin to establish the network by discovering their neighbors.

In order to confirm the neighboring node, the computation of pair-wise key is

required by two nodes to mutually authenticate each other. The mutual authen-

tication process is carried out only once between a pair of nodes. For subsequent

communications, the session specific pair-wise key established between the nodes

ensures the authenticity of the nodes. If a node ui wants to discover the nodes in

its current neighborhood, ui executes the protocol for node discovery and mutual

authentication. In this protocol, node ui broadcasts its unique identity Idi in plain

to the neighboring nodes. A neighbor node, say uj, in the communication range

57

of ui that listens to ui’s broadcast can establish the pair-wise master secret with

node ui. Node uj computes master secret between ui and uj as Kji = fk1(Idj, Idi)

⊕ fk2(Idj, Idi) ⊕ . . . ⊕ fkm(Idj, Idi) using its polynomial shares. Then it selects a

random nonce Nj ∈ Z∗q and computes gNj , where g is the primitive root mod q for

large prime q. Node uj further computes PRF value of Idj, and gNj using key Kji

i.e. PRFKji(Idj, gNj). It finally constructs the response message Idj, gNj , PRFKji(Idj,

gNj) and unicasts the same to node ui. On receiving a response from node uj,

node ui computes Kij = fk1(Idi, Idj) ⊕ fk2(Idi, Idj) ⊕ . . . ⊕ fkm(Idi, Idj) using its

own polynomial shares. It then computes PRFKij(Idj, gNj). Since Kij = Kji due

to the symmetry of underlying bivariate polynomials, the computed PRF value

should match the PRF value received from node uj. If these PRF values match,

then node ui authenticates node uj. Now, node ui selects a random nonce Ni ∈ Z∗q

and computes gNi and PRFKij(Idi, gNi , gNj). Node ui sends the message Idi, gNi ,

PRFKij(Idi, gNi , gNj) to uj as a unicast. Node uj verifies the received PRF value

by computing the same at its end to ensure that the gNj was correctly received by

ui and the term gNi received from ui is correct. On this verification, node uj au-

thenticates node ui. Once the mutual authentication is confirmed, both the nodes

compute initial pair-wise key between them at their respective ends. Node ui has

Ni and gNj , so it computes the first pair wise session key between ui and uj as K0
ij

= (gNj)Ni = gNj∗Ni = gNi∗Nj . Similarly, node uj having Nj and gNi computes K0
ij =

(gNi)Nj = gNi∗Nj . Nodes ui and uj add each other to their neighbor list along with

the initial session key K0
ij. From this point on, both nodes can use K0

ij to protect

their communication channel.

The protocol is summarized in Figure 3.2:

1. ui ⇒ *: Idi

2. uj ⇒ ui: Idj, gNj , PRFKij

(
Idj, gNj

)
3. ui ⇒ ui: Idi, gNi , PRFKij

(
Idi, gNi , gNj

)
Figure 3.2: Node Discovery and Authentication

58

3.3.4 Session Key Update

A pair of nodes use the pair-wise key from the previous session, secret nonce val-

ues and the master secret to generate a new pair-wise key using a cryptographi-

cally secured PRF.

Once two nodes ui and uj have mutually authenticated each other and have es-

tablished an initial pair-wise key, they can choose to update the current session

key at any time. In order to do so, both nodes first exchange the nonce values se-

cretly. These newly selected nonce values, current session key and master secret

Kij between ui and uj are used to generate the next session key. To secretly trans-

fer the nonce value, it is encrypted with the current session key. The PRF value of

this newly selected nonce along with the identities of both the nodes is computed

using the master secret Kij. This not only ensures the secrecy of nonce en-route,

but also the receiver can verify that the sender is the legitimate party with whom

it shares the unique keys and the nonce value is not corrupted.

Suppose the nodes ui and uj are currently operating in session s. If nodes have

some data to exchange, this protocol also allows nodes to exchange data (say Ms
i

and Ms
j respectively by nodes ui and uj in session s) along with key update pa-

rameters during the process to save on communication and computation cost,

although this is optional. In order to now update the session key, let node ui ini-

tiates the key update protocol. Node ui randomly selects a nonce Ns
i ∈ Z∗q . It

encrypts the selected nonce Ns
i and message Ms

i with the current session key Kij

as EKs
ij
(Ms

i , Ns
i). Node ui then computes the PRF value for Idi, Idj, Ns

i and Ms
i

using the master secret Kij i.e. PRFKij(Idi, Idj, Ns
i , Ms

i). It sends the message Idi,

Idj, EKs
ij
(Ms

i , Ns
i), PRFKij(Idi, Idj, Ns

i , Ms
i) to node uj via unicast. On receiving this

message from ui, node uj uses the current session key Ks
ij and obtains Ms

i and Ns
i

by performing decryption DKs
ij
(EKs

ij
(Ms

i , Ns
i)). Now, node uj computes PRF over

Idi, Idj, Ns
i and Ms

i using master secret Kij. If the computed PRF value matches

with the PRF value received from ui then node uj accepts the nonce value Ns
i and

the data Ms
i . Node uj now selects a random nonce Ns

j ∈ Z∗q , picks the current data,

say Ms
j , that it wishes to share with node ui and encrypts Ns

j and Ms
j using the cur-

59

rent session key Ks
ij as EKs

ij
(Ms

j , Ns
i). It further computes the PRF of Idi, Idj, Ns

i , Ns
j

and Ms
j using the master secret Kij as PRFKij(Idi, Idj, Ns

i , Ns
j , Ms

j) and responds to

node ui with message Idj, Idi, EKs
ij
(Ms

j , Ns
j), PRFKij(Idi, Idj, Ns

i , Ns
j , Ms

j). Node ui,

when receives the response from node uj, decrypts Ms
j and Ns

j with DKs
ij
(EKs

ij
(Ms

j ,

Ns
j)). It computes PRFKij(Idi, Idj, Ns

i , Ns
j , Ms

j) and verifies the same with the re-

ceived PRF value. On successful verification, ui accepts the data Ms
j and nonce Ns

j

from uj. Both the nodes compute the next session key Ks+1
ij = PRFKs

ij
(Ns

i , Ns
j , Kij)

at their respective ends. Node ui now constructs the key confirmation message as

Idi, E
K(s+1)

ij
(Idj, Ns

j - 1) and unicasts this message to node uj that verifies the same

by performing decryption D
K(s+1)

ij
(E

K(s+1)
ij

(Ids
j , Ns

j -1)) to ensure that node ui has in-

deed computed the same key for next session. Both nodes delete the nonces used

in this process and the previous session key. As a result of this protocol, a fresh

pair-wise session key will be established using the previous pairwise key as Ks+1
ij .

Since the nonce values from both the participating nodes are used, the new key

generated will not be biased by any communicating node. In the first key update,

Ks
ij = K0

ij. The summary of the sth-iteration of the protocol is given in Figure 3.3:

1. ui ⇒ uj: Idi, Idj, {Mi, Ns
i }Ks

ij
, PRFKij(Idi, Idj, Ns

i)

2. uj ⇒ uj: Idj, Idi, {Mj, Ns
j }Ks

ij
, PRFKij(Idi, Idj, Ns

i , Ns
j)

3. Ks+1
ij = PRFKs

ij
(Ns

i , Ns
j , Kij)

4. ui ⇒ uj: Idi, {Idj, Ns
j − 1}Ks+1

ij

Figure 3.3: Session Key Update

3.3.5 Security Features

The proposed protocol provides forward secrecy and resists known key, imperson-

ation and replay attacks. The protocol achieves node-to-node authentication, data con-

fidentiality and mutual key control in the mobile sensor network. As the nonces of

both participating nodes are used in updating the pair-wise key between them,

the resulting key can not be biased by any single node and therefore, the protocol

60

ensures mutual key control. For node-to-node authentication, both the participat-

ing nodes compute the master secret at their respective ends, using their common

polynomial shares. The key is updated using previous session’s key, nonces and

the master secret. The previous session key and the nonce values are destroyed

once the new key is computed. The protocol also ensures forward secrecy where

the adversary is not able to derive the previous sessions’ keys even if it gets hold

of the long-term master secret.

We carried out the formal analysis for proving the authentication and confiden-

tiality features of the proposed protocol using ProVerif tool. The script and the ex-

ecution results are given in Appendix 1: ProVerif Tool. Since ProVerif tool considers

an attacker with Dolev-Yao [40] capabilities, we could not use ProVerif for analyz-

ing all our security claims. To maintain the uniformity in the security analysis, we

created the inference rules using the logic drawn form ProVerif analysis. We use

these rules to prove the security claims in the form of theorem proving technique

in our proposed protocol in this chapter as well as in all the subsequent chapters.

The notations used in the proof of a theorem are as given below:

Attacker(S) - Attacker has access to S

(S may be some term/name/variable/channel)

L - Public channel

W ∧V - Logical AND operation on W and V

W ∨V - Logical OR operation on W and V

We give the attacker’s knowledge at various states, before and during the execu-

tion of the protocol, to reach the conclusion. The attacker’s knowledge at initial

state is as follows:

Initial State

In the initial state, through network topology, the attacker is aware of the unique

identities of nodes. The public functions and public channel L are accessible to

the attacker. Moreover, the attacker does not have access to the polynomial shares

held by the valid nodes. Therefore:

61

Attacker(Idi) . . . (3.1.1)

Attacker(Idj) . . . (3.1.2)

Attacker(PRF()) . . . (3.1.3)

Attacker(L) . . . (3.1.4)

Not Attacker(fl(Idi, y)) . . . (3.1.5)

Not Attacker(fl(Idj, y)) (for 0 ≤ l ≤ m) . . . (3.1.6)

3.3.5.1 Forward Secrecy

Forward secrecy ensures that even when the long term secret is revealed, the pre-

vious session keys remain inaccessible.

Theorem 3.1. During a session s, given that an attacker gets hold of the long term master

secret Kij, the protocol ensures that the attacker does not get access to previous session keys

Kl
ij (0 ≤ l < s).

Proof. When the session s is being executed, the nodes have the long term master

secret Kij, the current nonces Ns
i , Ns

j and the current session key Ks
ij. The nodes

have deleted the previous session key and old nonces. Therefore:

Not Attacker(Nl
i) . . . (3.2.1)

Not Attacker(Nl
j) . . . (3.2.2)

Not Attacker(Kl
ij) (0 ≤ l < s) . . . (3.2.3)

Attacker(Kij) (Attacker gets hold of long term master secret) . . . (3.2.4)

Now, we suppose that the protocol provides no forward secrecy and the attacker

gains access to a previous session key Ks−1
ij using long term master secret.

Attacker(Ks−1
ij)

⇒ Attacker(PRFKs−2
ij

(Ns−2
i , Ns−2

j , Kij))

[from step 3 of session key update protocol (Figure 3.3)]

⇒ Attacker(Ns−2
i) ∧ Attacker(Ns−2

j)

∧ Attacker(Kij) ∧ Attacker(PRF()) ∧ Attacker(Ks−2
ij)

⇒ FALSE ∧ FALSE ∧ TRUE ∧ TRUE ∧ FALSE

[using assertions 3.2.1, 3.2.2, 3.2.4, 3.1.3 and 3.2.3 respectively]

⇒ FALSE

62

This is a contradiction. Thus, the assumption that the attacker gets access to Kl
ij (0

≤ l < s) after knowing long term master secret Kij in session s is false.

Here, the session key is computed using a one way PRF with the help of the pre-

vious session key, nonce values and master secret (which is the long term secret).

Once the nodes compute the new session key, all the ephemeral parameters i.e.

nonce values and previous session keys are destroyed. At any given time, if the

adversary gets hold of the long term secret, due to one-way property of the PRF, it

can not compute key of any previous session. 2

3.3.5.2 Resistance to Impersonation Attack

In an impersonation attack, the attacker assumes the identity of a legitimate node in

the network and sends the messages on behalf of the node being impersonated or

receive messages directed to the node it fakes.

Theorem 3.2. The protocol resists impersonation attack by not allowing a fake node to

assume the identity of a valid node in the network.

Proof. Suppose a fake node ux pretends to be a valid node ui. In order to imper-

sonate ui, the node ux needs to carry out mutual authentication with any node in

its neighborhood. Suppose the node ux successfully authenticates itself as node

ui to a neighbor node uj. Therefore:

Attacker(Auth)

⇒ AttackerC(PRFKij(Idi, gNi , gNj))

[Attacker can compute PRFKij(Idi, gNi , gNj)]

⇒ Attacker(PRF()) ∧ Attacker(Idi) ∧ Attacker(gNi) ∧

Attacker(gNj) ∧ Attacker(Kij)

[from step 3 of node discovery and authentication protocol (Figure 3.3)]

⇒ TRUE ∧ TRUE ∧ Attacker(gNi) ∧ Attacker(gNj) ∧ Attacker(gNj)

∧ Attacker(Kij) [using assertions 3.1.3 and 3.1.1 respectively]

⇒ Attacker(gNi) ∧ Attacker(gNj) ∧ Attacker(Kij)

⇒ Attacker(L) ∧ Attacker(Kij)

[from steps 2 and 3 of node discovery and authentication protocol

63

(Figure 3.2)]

⇒ TRUE ∧ (Attacker(fl(Idi, y)) ∨ Attacker(fl(Idj, y))

[using assertions 3.1.4 and by definition of Kij respectively]

⇒ FALSE ∨ FALSE [using assertions 3.1.5 and 3.1.6]

⇒ FALSE

This contradicts to our assumption of a fake node being authenticated as a valid

node. Since node identity is publicly known in the network, the fake node ux

broadcasts idi, the identity of the node ui. Node uj, which listens to the broad-

cast, computes the master secret Kij using the common polynomial shares and

responds back with its own identity Idj and the value gNj , Nj being the nonce se-

lected by uj. Node uj also computes the checksum using PRF and sends it back to

ux (faking as ui). The first two steps of the node authentication protocol (as given

below) may be executed successfully:

1. ux → *: Idi

2. uj → ux: Idj, gNj , PRFKij(Idj, gNj)

However, the third step in the protocol needs ux to acknowledge back to uj us-

ing the master secret Kij as to compute PRF and after that validating the received

checksum as:

3. ux → uj: Idi, gNi , PRFKij(Idi, gNi , gNj)

Since ux is pretending to be ui and does not possess the polynomial shares re-

quired to construct Kij, ux will not be able to construct the acknowledgement mes-

sage and the protocol will fail. Hence a fake node ux cannot impersonate the valid

node ui during the initial node discovery and authentication process. When au-

thentication fails, the fake node cannot participate in any further communication

in the network. 2

3.3.5.3 Resisting Known-key Attacks

The protocol also resists known key attacks when session keys are compromised

[69]. In known-key impersonation attacks (KKI), an adversary uses the captured

session keys to impersonate himself/herself as a valid entity of the network, with

the aim of interfering with the session key negotiation process. Known-key pas-

64

sive attacks (KKP) are launched by adversary wherein he uses past session keys

to compute the current session key. In known-key attacks without impersonation

(KKA), an adversary (i.e. a malicious insider ux) uses legitimate information (e.g.

session keys, public information) to derive new or past session keys.

Theorem 3.3. The protocol is secure against known key attacks.

Proof. Let us assume that the attacker has captured a session key Ks
ij that is used

between ui and uj for session s. Thus:

Attacker(Ks
ij) . . . (3.3.1)

Now, suppose the attacker has successfully launched known key attack and has

computed the next session key Ks+1
ij as a valid node ui or uj, i.e.

⇒ Attacker(Ks+1
ij)

⇒ Attacker(PRF()) ∧ Attacker(Ks
ij) ∧ Attacker(Ns

i) ∧

Attacker(Ns
i) ∧ Attacker(Kij)

[from step 3 of session key update protocol (Figure 3.3)]

⇒ TRUE ∧ TRUE ∧ TRUE ∧ TRUE ∧ Attacker(Kij)

[using assertion 3.1.3, 3.3.1 and,

from steps 1 and 2 of session key update protocol (Figure 3.3)]

⇒ Attacker(Kij)

⇒ (Attacker(fl(Idi, y)) ∨ Attacker(fl(Idj, y)) [by definition of Kij]

⇒ FALSE ∨ FALSE [using assertions 3.1.5 and 3.1.6]

⇒ FALSE

The contradiction to our assumption proves that the known key attack cannot be

launched since the protocol uses Kij (the shared secret produced from the bivariate

polynomial) as an authentication token. In other words, a session key by itself

does not provide information about future session keys. 2

3.3.5.4 Resistance to Replay Attacks

In the replay attack, an adversary intercepts the messages transmitted between

a pair of nodes ui and uj in the network during the session s. After that, the

65

adversary replays the same message aiming to establish a new session with ui or

uj.

Theorem 3.4. The protocol prevents an adversary from launching replay attack.

Proof. During the network operation, suppose an adversary listens to the commu-

nications that take place between nodes ui and uj.

Case 1: During node discovery and authentication phase:

Attacker(gNj) ∧ Attacker(PRFKij(Idj, gNj)) . . . (3.4.1)

[from step 2 of node discovery and authentication protocol (Figure 3.2)]

Attacker(gNi) ∧ Attacker(PRFKij(Idi, gNi , gNj)) . . . (3.4.2)

[from step 3 of node discovery and authentication protocol (Figure 3.2)]

Since the attacker has the knowledge of gNj and PRFKij(Idj, gNj) (as per assertions

3.4.1) required to replay the message, after some time, attacker replays the same

message Idj, gNj , PRFKij(Idj, gNj) (as in step 2 of node discovery and authentica-

tion protocol) to node ui, pretending to be node uj. However, as the discovery pro-

tocol is executed only once per node, node ui would have already negotiated the

initial pair-wise key K0
ij with node uj, thus node ui would consider the replayed

message to be a duplicate and delayed message and will immediately discard it.

Similarly, replay of message Idi, gNi , PRFKij(Idi, gNi , gNj) with knowledge as per

assertion 3.4.2 will be discarded by node uj.

Case 2: Session key update phase:

Attacker({Mi, Ns
i }Ks

ij
) ∧ PRFKij(Idi, Idj, Ns

i) . . . (3.4.3)

[from step 1 of session key update protocol (Figure 3.3)]

Attacker({Mj, Ns
j }Ks

ij
) ∧ PRFKij(Idi, Idj, Ns

i , Ns
j) . . . (3.4.4)

[from step 2 of session key update protocol (Figure 3.3)]

Again, when the adversary pretends to be node ui and replays the message Idi,

Idj, {Mi, Ns
i }Ks

ij
, PRFKij(Idi, Idj, Ns

i) to node uj (using knowledge as per assertion

3.4.3), uj will not accept the message, as it has already received this message from

ui and has updated the session key to Ks+1
ij using newly shared nonce values.

Since the delayed message replayed by the adversary is still encrypted with the

previous session key Ks
ij, uj will not be able to decrypt it correctly and discard the

66

replayed message. The message Idi, Idj, {Mj, Ns
j }Ks

ij
, PRFKij(Idi, Idj, Ns

i , Ns
j) (us-

ing knowledge as per assertion 3.4.4) replayed by adversary pretending to be node

uj will be discarded by node ui in a similar manner. 2

3.3.5.5 Resilience to Node Capture

The resilience to node capture attack of our protocol depends on the resilience of

the underlying bivariate polynomial scheme. In our specific instantiation, we in-

tegrate the protocol by Guo et al. [47], which uses m polynomials - each of degree

t. This protocol might seem to be only t-collusion resistant, but due to the permu-

tation of the m polynomials, the actual probability of breaking all polynomials in

one attempt (once t+1 nodes are subverted) is:

(1
m!)

t+1 (cf. [47])

We analyzed the resilience to node capture with varying degree of polynomials

and taking 5 polynomials. We consider the network size of 1000 nodes. The fig-

ure below shows that when the master key is generated using permutations of

multiple bi-variate polynomial shares, the network is resilient to node capture

attack even with the polynomial degree 10. With degree 10 polynomials, the at-

tacker needs to capture 1200 nodes (beyond the network size).

From Figure 3.4, it is evident that the resilience to node capture is significantly

higher when we use permuted multiple bivariate polynomial scheme for estab-

lishing the master secret, as compared to grid based schemes. With an underlying

polynomial of degree 10 and number of polynomials as 5, while the 2-dimensional

grid based scheme will collapse with capture of only 14 nodes, our proposed

scheme would survive even with capture of more than 1000 nodes. As the degree

of polynomial increases, the resilience to node capture increases exponentially

with our proposed scheme as compared to 2-dimensional grid based scheme. In

fact, this formula can be used by a network designer to discover the most optimal

configurations for his/her network. For example, the following (m, t) combina-

tions provide a security level of 128 bits (i.e. the effort of breaking this scheme

t+1 nodes subverted by the adversary is the same as breaking a 128-bit symmetric

key): {(16, 2), (13, 3), (10, 5), (7, 10), (5, 18), (4, 27)}. Networks with low prob-

67

Figure 3.4: Resilience to Node Capture with Key Management

ability of node capture can use a smaller t value (less memory overhead), while

networks in unattended and/or hostile environments can use a bigger t value

(more memory overhead). Note that it is possible to substitute this underlying

bivariate polynomial scheme with future ones, if their features are better.

Nevertheless, in order to provide a higher defense against node capture (regard-

less of the underlying bivariate polynomial scheme), we can also extend our pro-

tocol with the concept of the couple based protocol for early detection of node

compromise [76]. To form a couple, when a node starts finding the neighbors, the

first node it interacts with become its spouse. If the node is already coupled with

some other node, the next node is searched for. Based on the common polynomial

shares, the nodes compute the secret key. Once a couple (say node ui and node uj)

is formed, the nodes start monitoring each other. Periodically, say after every T

units of time, node ui sends the following normal operation signal to node uj: ui

→ uj: EKs
ij
(Idi, idj, seq), where seq indicates the sequence number which is set to 0

for every new session. If node uj receives this signal, it assumes the normal func-

tioning of node ui and vice-versa. However, if for three consecutive time periods,

uj neither receives this normal operation signal nor the message that ui is moving

68

to some other location, ui is suspected to be captured and other neighbors are in-

formed of the same. When ui moves to some other location, its spouse uj looks

for another partner ux and makes couple with node ux. We discuss the intricacies

and the detection of node capture attack in detail in Chapter 5.

3.3.5.6 Resilience to Worm hole and Sink hole Attacks

After the initial deployment, the nodes have shared the keys and can communi-

cate through encrypted messages using the pair-wise secret key. Since the net-

work is mobile, we expect the nodes to move around. When a node ui moves to

a new location, it again broadcasts its identity to find neighbors at the new loca-

tion. The adversary can not participate in the communication as it does not have

the unique polynomial shares to compute pair-wise key and also the key is being

updated after each node-pair communication. Therefore, wormhole or sinkhole

attacks can not be mounted.

We show the security strength of the multiple polynomial share based key as com-

pared to other polynomial based schemes in the Table 3.1.

Feature⇒ Resilience to

Authentication Forward Known Replay Node
Secrecy key attack Collusion

Schemes ⇓ attack (up to)

Single bivariate Yes No No No t
polynomial [17]

Random subset Yes No No No ((t+1)*
assignment with (s/s′)-1)*p
bivariate polynomial [78]

2-dimensional grid with Yes No No No m - 1
bivariate polynomial [78] + t

k-dimensional grid with Yes No No No (m/k) - 1
bivariate polynomial [64] + t

Permutation with multiple Yes No No No m! * t
bivariate polynomial [47]

Proposed pair-wise key Yes Yes Yes Yes m! * t
establishment and key
update protocol [4]

Table 3.1: Security Features of Polynomial based Key Management Schemes

69

3.3.6 Comparing Performance with Existing Protocols

The protocol performance would vary depending on the underlying scheme for

generating long term pair-wise master secret. Table 3.2 gives the performance

comparison of the proposed protocol with various polynomial based schemes.

Feature⇒ Communication Computation Storage Cost
Scheme ⇓ Cost (in bits) Cost (in bits)

Single bivariate log q Ty (t+1) log q
polynomial [17] + log q

Random subset assignment (s′+2) log q Ty s′ * (t+1)
with bivariate polynomials [78] log q+log q

2-dimensional grid with 2 log q Ty 2(t+1) log q+
bivariate polynomials [78] 2((t+1) log2 m)

k-dimensional grid with k log q Ty k(t+1) log q
bivariate polynomials [64] + k((t+1) log2 m)

Permutation of multiple log q mTy m(t+1) log q
bivariate polynomials [47] +log q

Proposed pair-wise Initial key 4 log q mTy + m(t+1) log q
key establishment establishment 2Tx + 2Tp +log q

and key update Session key 6 log q 3Tp + 3Ts log q
protocol [4] update

Table 3.2: Performance Comparison

We chose the multiple bivariate polynomial based approach due to its security

strength. In Table 3.2, Ty and Tdy are timings to evaluate a single univariate poly-

nomial and a polynomial with d-1 variables, respectively, Tx and Tp are the tim-

ings to compute exponent and PRF, respectively. Time Ts is to perform symmetric

encryption/decryption. Size of the random key subset assigned to each node [78]

is denoted by s′ and m is number of distinct polynomials [47]). With the permuted

multiple bivariate polynomial based master secret, the various overheads of the

key update protocol are as follows:

Communication cost. In the node discovery and authentication, nodes need to

find out the current neighbors. A node ui broadcasts its identity. This needs log

q bits. Now, a node uj that responds to ui with a message consisting of Idj, gNj ,

70

PRFj which needs 3 log q bits. The node ui responds back to confirm the authen-

tication with a message Idi, gNi , PRFi that also takes 3 log q bits. Therefore, for

establishing one initial key, a node needs 4 log q bits. A node may be confirming

to maximum d neighbors’ responses to establish a pair-wise key with each. Thus,

each node communicates maximum (4d log q) bits during node discovery and

authentication protocol to establish direct pair-wise key with d neighbors. Each

time a node moves from its location, it needs to communicate the movement to

its current neighbors and requires to again look for new neighbors repeating the

same process. Thus it may require communicating further maximum (d + (4d log

q) bits.

Moreover, for a session key update, as initiating node, a node ui communicates 6

log q bits and as a responding node uj communicates 4 log q bits.

Storage cost Each node stores exactly m shares from m different t-degree poly-

nomials. The node stores one master secret and one current session key for a

pair-wise secret communication. Thus, the total storage requirement is m(t+1) log

q + log q.

Computation cost Initially, to discover and authenticate a node and establish

the initial session key, a node ui needs to compute m univariate polynomials (for

pair-wise key), two PRF operations and two exponent operations. To update the

session key, as initiating node, node ui performs two encryptions, 3 PRF opera-

tions and one decryption. Similarly, as responding node, node uj computes one

encryption, 3 PRF operations and two decryption operations.

3.3.7 Experimental Results

For experimental purpose, we used ATmega328 processor using Arduino Duemi-

lanove controller board and ArduinoISP programmer [8]. The protocols are pro-

grammed using Arduino IDE using ’C’ language programming to evaluate the

cost of computation of various operations in terms of time.

We evaluate the computation cost of our proposed protocol as given in Figure 3.5.

71

It shows that the one time initial cost of node discovery and authentication proto-

Figure 3.5: Computation Cost of the Key Update Protocol

col depends on the underlying scheme used for establishing the master secret and

increases as we increase the degree of polynomials for increased resilience to node

capture. However, the session key update protocol takes a constant time irrespec-

tive of the underlying polynomial scheme or degree of polynomials. Moreover,

the cost of session key update is significantly less than the one time cost of node

discovery and authentication.

To simulate the network performance, we have used Castalia simulator [20] specif-

ically designed for low-power embedded devices such as wireless sensor net-

works. Castalia can be used for testing the distributed algorithms and/or pro-

tocols in realistic wireless channel and radio models. We have considered a uni-

formly distributed clustered network set up wherein some nodes are designated

as cluster heads and the remaining nodes act as normal sensing nodes. The com-

munication takes place at one-hop distance determined by the radio transmission

range. The simulation parameters used are given in Table 3.3. The radio model

used is CC2420 that is 2.4 GHz IEEE 802.15.4 compliant RF transceiver designed

for low power and low voltage wireless applications that provides an effective

72

data rate of 250 kbps. The simulation is carried out using TMAC protocol that

reduces the idle listening time. Periodically, each node wakes up and commu-

nicates with its neighbors, and then goes to sleep again until the next frame. In

Parameter Value

Simulation Time 100s
Node Transmission output power 0 dBm
Cluster Head Transmission output power 5 dBm
Clear Channel Assessment (CCA) Threshold -95 dBm
Field size 100 X 100 m2

Radio Model CC2420
Radio Range 25 meters
Node Deployment Uniform
MAC protocol TMAC

Table 3.3: Simulation Parameters

Figure 3.6, we present results of simulation for node energy consumption with

different number of nodes in the network for one time initial key establishment

and session key update. The simulation result shows the energy requirement for

session key update is significantly low.

Figure 3.6: Node Energy Consumption

73

The proposed protocol updates the pair-wise key after each session using the mas-

ter secret, previous session key and the nonces of both participating nodes at a

nominal overhead of extra storage of a key and 3 communications per session

which trades off for the additional security features such as forward secrecy and

resilience to known key attack. All other protocols mentioned only use one pair-

wise key during the whole lifetime of the nodes. In our scheme, we use the previ-

ous session key and the master secret to derive new session key. Since polynomial

is t-degree, at least t+1 shares are needed to re-construct the polynomial to derive

pair-wise key of some other pair of nodes. The actual resilience of the scheme

once t+1 shares are extracted by an adversary is actually higher. Moreover, the

proposed scheme can update the pair-wise key used in the communication chan-

nel. In other schemes, the key remains same for each session between two nodes

in any pair. So, if the pair-wise key is compromised, all the past and previous

communications would be revealed.

3.4 Conclusion

In this chapter, we discussed an authenticated pair-wise key establishment and

update protocol for WSN in dynamic environments. A multi-polynomial based

scheme is used to establish a master secret key between a pair of nodes. With the

help of this master secret, the pair of nodes can generate a fresh pair-wise key be-

tween themselves. The protocol does not involve base-station or any additional

communication overhead for node-to-node authentication; in the node discovery

phase itself the nodes are authenticated and initial key establishment takes place.

The protocol is secure against impersonation, replay, worm-hole and sink-hole

attacks. Known key attacks are prevented as the protocol implements a key up-

date mechanism that allows two nodes to negotiate a new pair-wise key any time

during the communication. The protocol provides data confidentiality through a

dynamic secret key and ensures forward secrecy and mutual key control. Even

if the underlying multi-polynomial scheme provides a very good resilience, this

protocol can make use of any present and future polynomial scheme that imple-

74

ments better features.

The computation cost of session key update is constant irrespective of the degree

of polynomials used for setting up the master secret between a pair of nodes.

When compared with the one time initial session key establishment with high

degree of polynomial (≥ 200), it is observed that the session key update cost is

significantly low. Irrespective of the network size, the energy consumption of a

node for session key update is less than half the energy consumed during initial

key establishment.

The pair-wise keys are established at the upper level in our solution framework

between base station and a cluster head or between a pair of cluster head. Since

sensor nodes work in collaboration to perform an application specific task, at sen-

sor node level, a shared group key is proposed for a set of nodes managed by a

cluster head. In the next chapter, we present a self-healing and mutual-healing

enabled group key distribution protocol.

75

CHAPTER 4

Self-Healing and Mutual-Healing enabled Group

Key Distribution

For secure group communication in a WSN, a central authority may distribute

some keying material containing secret to a subset of nodes. However, a possibil-

ity exists wherein a node may miss out on one or more broadcasts. Self-healing

is incorporated to get such missing information. Using the recent broadcast key-

ing material, a node can extract the key used in some previous session with self-

healing, if that node holds the membership in that session for which it is attempt-

ing to extract the key. Furthermore, if the node misses out the recent broadcast,

it can seek help of its neighboring nodes to obtain the missing key through mu-

tual healing. In this chapter, we discuss the proposed low cost self-healing and

mutual-healing enabled group key distribution using bilinear pairing and then

present a Chinese remainder theorem based group key distribution that provides

self-healing and mutual-healing along with the required security features at sig-

nificantly low cost overhead.

4.1 Introduction

Group-key broadcast is a commonly used approach to share a common secret to

a group of nodes by a central authority [104]. However, the group key broadcast

does not serve the purpose in case a node does not receive the broadcast mes-

sage. Re-broadcasting of the messages is not a cost-effective solution in a WSN

environment with resource constrained sensor nodes. This issue got researchers’

76

attention and the self-healing was proposed as a way to help a node obtain the

missed broadcast without involving the distribution authority.

In self-healing, a node who had missed some broadcast can retrieve the key shared

in that broadcast using a subsequent broadcast. Thus, the node does not require

to send an explicit request to the distributing authority for getting the missed

broadcast. For a resource constrained node, saving on the communication cost

for an explicit request to distributing authority is significant. However, there is

a possibility of a node missing multiple consecutive broadcasts and can not af-

ford to wait for future broadcasts. Also, the node may require to have the current

broadcast in the current session itself without requesting the same from the dis-

tributing authority. In such cases, mutual healing comes to rescue. With mutual

healing, a node may request its immediate neighbors to share the missing broad-

cast. A neighbor node, having received the requested broadcast, may respond

after ensuring the mutual authentication with the requesting node. Suppose, we

consider a scenario of battle-field surveillance, where the nodes are deployed to

observe the enemy intrusion across the border. The nodes are left unattended af-

ter deployment and a central authority is a mobile entity that periodically collects

the data from the sensor nodes [102] and therefore, not always available to collect

the data. The nodes may need to keep the measured or observed data for some

length of time. In this time period, an attacker may compromise a node and read

its data. The data collected before and after the compromise may be protected,

if the key distribution mechanism provides forward and backward secrecy and

some secure and effective way of handling membership changes and node ad-

dition and revocation is in place. A healing enabled group-key distribution is

therefore needed.

4.2 Self Healing

Staddon et al. introduced the idea of self-healing group key distribution in [114]

that addresses secure group communication in unreliable networks deployed for

applications such as military surveillance. The group key distribution scheme in

77

[114] uses two dimensional polynomial based secret sharing that enables group

members to recover lost session keys if a group member receives both the broad-

casts sandwiching the missing broadcast. An enhanced and simpler version of

[114] was proposed by Blundo et al. [16]. Both these protocols are based on ex-

ponential arithmetic and demand expensive maintenance costs and high compu-

tation costs. In [79], Liu et al. proposed an improvement over [114] with respect

to communication complexity and memory storage. Liu et al. in [79] deals with

coalition of more evicted group members as well.

Yuan et al. [134] used a security model that allows participation and revocation

of at most t nodes and, resilience to collusion of at most 2t nodes, t being the de-

gree of underlying polynomial. The protocol [134] incurs less communication and

storage overhead compared to the protocols in [114] and [79]. Hong and Kang

protocol [53] incurs lesser communication overhead and gives t-collusion resis-

tance capability by allowing a user to recover keys of all the sessions (for which

the user holds membership) from a single broadcast message. In [133], Yuan et al.

proposed self healing with limited group membership wherein a fixed number of

(t-1) users are allowed. By maintaining t users throughout the communication,

the bandwidth is saved to get enhanced quality of service. During the lifetime of

the secure group communication, the protocol in [133] allows revoking any num-

ber of members thus eliminating the limitations of revoking at most t members.

The protocol would require about half the broadcast message size but twice the

memory space as compared to [53].

To overcome some shortcomings in the existing schemes and yet keeping their ad-

vantages, Zou et al [145] introduced the concept of access polynomial. An access

polynomial is defined as Aj(x) = (x − VID)∏d
i=1(x − IDi)+1 using the unique

identity IDi (1 ≤ i ≤ d) of each of the d active users. The term (x − VID) (VID

6= IDi) is virtual and randomly selected for each access polynomial. The aim of

(x−VID) is to differentiate access polynomials even when they are computed for

same active users. A user can evaluate an access polynomial Aj(x) using its iden-

tity as Aj(IDi). For an active user, Aj(IDi) results in 1, while for a non-active user,

it results in a random value. In the access polynomial based self-healing protocol

78

[145], the group manager (GM) randomly selects t-degree polynomial p(x) and

secretly distributes the unique identity IDi ∈ Fq and the polynomial share p(IDi)

to each user ui ∈ U. The GM chooses the secret Kj for session j and a random

polynomial Sj(x) of degree t. It splits the key Kj such that Kj = Sj(IDi) + Tj(IDi)

for each active user ui. GM then broadcasts two polynomials Pj(x) = Aj(x) * Sj(x)

- p(x) and Qj(x) = Tj(x) - p(x), where Aj(x) is the access polynomial computed

for session j. Upon receiving the polynomials Pj(x) and Qj(x), an active user ui

can retrieve the session key as:

Kj = ((Pj(IDi) - p(IDi))/Aj(IDi)) + (Qj(IDi) - pj(IDi)) = Sj(IDi) + Tj(IDi).

Since, Aj(IDi) = 1 for active users and some random value for non-active users,

only active users would be able to get correct value of Sj(IDi) and therefore, re-

trieve the valid session key. Subsequently, Tian et al. [119] used access polynomial

for self-healing to reduce computation and communication overhead. In [119],

rather than splitting the key into two polynomial shares, a single polynomial

Pj(x)) = Aj(x) * Kj + pj(x) is prepared by GM for a session j. The GM broad-

casts this polynomial to all users. An active user can retrieve the valid key by

computing ((Pj(IDi) - p(IDi))/Aj(IDi)), since Aj(IDi) = 1 for active users. Wang

[125] observed that in [119] forward secrecy is not provided and revocation is also

limited to the degree t of the polynomial used. Dutta [41] also proposed access

polynomial based protocol but it does not perform selective key distribution and

thus gives the same effect as a simple broadcast of session key.

A bilinear pairing [66] based self-healing key distribution protocol is proposed

by Tian et al. in [121] that allows a user to verify the integrity and correctness of

the cipher text before carrying out key recovery operations. In [121], a subset of

users form a communication group for each session and the group manager(GM)

broadcasts keying material in each session. Only an authorized session group

user is allowed to extract the session key of current and any previous session. The

bilinear pairing based self-healing protocol in [121] assumes the existence of a key

generation center (KGC) that takes two cyclic groups G1 (additive) and G2 (mul-

tiplicative) defined over q and a bilinear mapping e: G1 × G1 → G2. The KGC

randomly selects a generator P ∈ G1 and defines two cryptographic hash func-

79

tions H1: {0, 1}∗→ G1 and H2: G2→ {0, 1}∗. KGC also selects its private key as a

random number s ∈ Z∗q and sets its own public key as PPub = sP. For each node ui

in the network, its public key is set as QIDi = H1(IDi) using its unique identity IDi.

KGC computes SIDi = s.QIDi as private key for the node ui. The public-private key

pair is given to each node through some secure channel. For a communication

group of size |CGj| for a session j, a group manager (GM) constructs a broadcast

message. GM first defines a |CGj−1| × |CGj| matrix {a2, a3, . . . , a|CGj|} with each

vector ai (i = 2, 3, . . ., |CGj−1|) of size |CGj|. GM randomly chooses rj ∈ Z∗q and

formulates the broadcast message Bj in the following manner:

U1 = rj.P

Ui = rj.Qvi (2 ≤ i ≤ |Gj|)

Vj = Kj ⊕ H2(e(PPub, rj.Qv1))

zj = (Ui ((1 ≤ i ≤ |Gj|), Vj)

Bj = (z1, z2, . . ., zj)

GM broadcasts this message Bj to all the nodes in the set Gj. An authorized node

ux recovers the session key Kj = Vj ⊕ H2(e(U1, x1.Sx).e(PPub,
|Gj|
∑

i=2
xi.Ui) from the

broadcast message.

A node has to obtain the vector (x1, x2, . . . , x|Gj|) by solving a system of linear

equations. With the bilinear pairing based self-healing in [121], any collusion of

non-authorized users does not reveal a session key. The protocol also provides a

constant storage overhead to each user and is not affected by whatever number of

other users are revoked unless the private key of any user is disclosed/ compro-

mised. However, the generation of broadcast message and key recovery process

are computationally heavy. A member node requires to perform a matrix inver-

sion operation to obtain the vector (x1, x2, . . . , x|Gj|) and need to perform |CGj|

scalar multiplications in order to recover the key. Each node stores two vectors of

size |CGj| (the group size in session j) and the public keys of all the nodes in its

group, resulting in high storage overhead.

To summarize, although polynomial based algorithms [41] [134] [133] are effi-

cient and simple, some information about pre-distributed user data is disclosed

and such data can not be re-used. This weakness is not shown in exponent based

80

algorithms [114] [16], however, as compared to polynomial based protocols, expo-

nent based algorithms are computationally heavy and do not provide backward

secrecy. The most efficient one-way hash chain based protocols fail to provide

collusion-resistance property. All the three security features namely, forward se-

crecy, backward secrecy and collision resistance required in self-healing protocols,

are provided by bilinear pairing based protocol [121] that demands high computa-

tion cost due to bilinear pairing calculations. In [105], self-healing group-key dis-

tribution with extended revocation capability is proposed by Rams and Pacyna.

The protocol in [105] requires the nodes to evaluate polynomial for recovering the

update polynomial broadcasted by GM and perform exponential computation for

session key computation. To reduce communication overhead in the self-healing

protocol given by Tian et al. [121], recently, Hassan et al. [96] proposed hash chain

based approach. However, with [96], whenever a new user joins in a session j,

the seed value is changed. An existing valid user that had lost the session key

broadcast for session j-1 does not have any means to retrieve that key from the

broadcast received in session j. Mutual-healing is inevitable in such case.

4.3 Mutual Healing

The concept of mutual healing in wireless sensor networks was discussed by Tian

et al. in 2011 [120]. They proposed a group-key broadcast protocol using bilinear

pairing that allows a node to recover a missed key by taking help of a neigh-

bor node in the same session. Mutual healing is assumed only between one-hop

neighbors. Using some range-based secure localization process such as [71], for

each node ux, a location based secret LKx is set up with the help of mobile robots.

This secret LKx is used to establish a pair-wise key between the two nodes in-

volved in the mutual healing process. When a node ui misses a broadcast message

in some session t, it locally broadcasts an authentication request message with its

own identity, location and the session number t of the requested broadcast mes-

sage Bt, all in plain:

ui → *: IDi, li, t

81

A neighboring node uj that receives such request, verifies the claimed location li

to be within its one-hop communication range and if so, calculates a shared key

Kji = e(LKj, h(IDi‖li)) and sends a uni-cast response to ui’s request:

uj → ui: IDj, lj, EKij(Bt)

On receiving response, ui performs location verification of neighbor uj and then

ui calculates the key Kij = e(LKi, h(IDj‖lj)) shared with uj and extracts the broad-

cast message (Bt). During the mutual healing in [120], for request and response

communication, the node location is communicated in plain, which may give way

to known-location attacks. As there is no way to ensure the integrity of the loca-

tion provided by the requesting node, an adversary may update the location or

session number shared by the requesting node, resulting in location verification

failure. While the protocol in [120] suggests sending the broadcast message in

plain during normal course of operation, it computes a shared key using bilinear

pairing for encrypting the broadcast message only to authenticate the response

from the neighbor node. This is a computation overhead both for requesting and

responding nodes.

4.4 Proposed Bilinear Pairing based Healing Protocol

4.4.1 Goals and Assumptions

We present a group key distribution protocol that provides self-healing and mutual-

healing capability along with authentication and resistance to impersonation and

replay attacks with significantly low overhead as compared to the existing proto-

cols.

We assume that nodes may leave a group or join a group or may change the group.

Due to this, for each session, the group manager may have a different set of au-

thorized nodes in its group. The presence of an active adversary is assumed, who

can intercept messages on the communication channel and is capable of injecting,

updating or deleting the messages in the traffic.

82

4.4.2 Session Key Management

The proposed protocol consists of three phases. We first give the system set up

and then present the step-wise description of the proposed protocol.

4.4.2.1 System Set-up

All the group managers and nodes in the networks are assigned unique identities

prior to deployment by the base station. The base station generates two groups

G1, G2 and a bilinear pairing e: G1 X G1 → G2 and, arbitrarily selects generator P

∈ G1. It defines two cryptographic hash functions H1: {0, 1}∗ → G1 and H2: G2

→ {0, 1}n. For public-private key setup, a group manager (GM) selects a random

number s ∈ Z∗q , which is known only to GM and serves as its private key. GM sets

its own public key as PPub = s.P (denotes scalar multiplication of integer s with the

elliptic curve point P). The system parameters consist of params = (G1, G2, q, P,

PPub, H1, H2). Each node in the network submits its identity to GM, using which,

GM computes node’s public key QID = H1(ID) and SID = s.QID as private key for

the node and sends it to the node securely. The public keys are used by GM in the

construction of broadcast message (as explained in subsequent paragraph). GM

selects independent session keys K1, K2, . . ., Km for m sessions using a uniform

distribution.

4.4.2.2 Group Key Broadcast

For a session j, GM randomly chooses session key Kj ∈ Zq
∗ that is used for com-

munication within the group CGj of size d = |CGj| for session j. It adds up the

public key values QIDi for all nodes ui ∈ CGj to get a term Q. GM chooses a ran-

dom number rj ∈ Z∗q . The chosen session key Kj, random number rj, the term

Q and the public key of the GM PPub, all these values are used to construct the

broadcast message Bj. GM generates the signature Signj on Bj using Zhang’s

short signature scheme [135]. The broadcast message Bj and the signature Signj

are then broadcasted. The step wise process of group key broadcast is as given

below:

83

1. Q = Q1 + Q2 + . . . + Qd

2. U0 = rj.PPub

3. Ui = rj(Q− s.Qi), for i = 1 to d, ui ∈ CGj

4. Vj = Kj ⊕ H2(e(PPub, rj.Q))

5. zj = (U0, Ui (for i = 1 to d, ui ∈ CGj), Vj)

6. Bj = (z1, z2, . . ., zj)

7. Signj = 1
h(Bj)+s .P

8. GM⇒ *: Bj, Signj

4.4.2.3 Authentication and Key Extraction

Upon receiving the broadcast message Bj, a node ux authenticates the broadcast

message by verifying the short signature received as Signj. If the signature veri-

fication fails, the broadcast message is discarded. Otherwise, the node can use its

private key Sx for extracting the required session key. The broadcast message is

constructed in such a manner that an unauthorized user uy /∈ CGj can not extract

the session key. The steps below give the authentication and key extraction pro-

cess:

1. If e(h(Bj)P + PPub, Signj) 6= e(P, P) then

Discard Bj, Exit.

2. Compute the term e(PPub, rj.Q) as follows:

e(PPub, Ux).e(U0, Sx)

= e(PPub, Ux).e(rjPPub, s.Qx)

= e(PPub, Ux).e(PPub, rj.s.Qx)

= e(PPub, Ux + rj.s.Qx)

= e(PPub, rj.Q)

3. Extracts session key Kj = Vj ⊕ H2(e(PPub, rj.Q)).

In the authentication process, for a correct message Bj, the verification succeeds,

because:

e(h(Bj)P + PPub, Signj)

= e(h(Bj)P + s.P, (h(Bj)P + s)−1P)

= e((h(Bj) + s).P, (h(Bj)P + s)−1P)

84

= e(P, P)(h(Bj)+s).(h(Bj)+s)−1

= e(P, P)

Here (Qx, Sx) is the public-private key pair of node ux and PPub is the public key

of GM.

4.4.3 Healing

In the process of self-healing, if a node ux misses the broadcast message Bi from

session i < j (1 ≤ j ≤ m) and it was member of the communication group in ses-

sion i, then it can use the broadcast message Bj from session j > i, pick up the

component zi from Bj (as Bj contains zi, 1 ≤ i ≤ j) and use the key extraction pro-

cess (as explained above) to obtain the missing session key for ith session.

For the purpose of mutual healing, it is assumed that the sensor nodes are station-

ary after deployment. The mobile robots compute the location lx for each node ux

in the network, using a secure localization process such as in [71]. The nodes are

communicated their respective locations by one of the mobile robots. Once the

localization process is completed, the mobile robots leave the network. During

mutual healing process, this location information will be used for neighbor au-

thentication. The mutual healing process is carried out in two sub-phases that

work as follows:

Mutual Healing Request: When a node ux needs the broadcast message Bt, it broad-

casts an authenticated request to the nodes in its local neighborhood:

ux → ∗: IDx, EKc(lx), t, c, PRFKc(IDx‖lx‖t‖c)

Here,
IDx - ID of requesting node ux

lx - location of ux

Kc - Group key in some previous session c, of which ux was member

t - the session for which broadcast message is being requested

PRF() - Pseudo Random function

Mutual Healing Response: A node uy, which receives this mutual healing request,

first confirms that the message is from an authenticated node which is in its one-

hop communication range. Node uy verifies
∣∣lx − ly

∣∣ ≤ R (Here, R is assumed to

85

be one-hop communication distance between two nodes in the sensor network,

based on the communication range of the nodes). If the location verification fails,

node uy simply discards the request, else it uni-casts a reply to node ux as follows:

uy → ux: IDy, EKc(ly), zt, Ny, PRFKc(IDx‖IDy‖lx‖ly‖zt‖Ny‖t‖c)

We add a Key Confirmation Message for the responding node to ensure that the re-

questing node has correctly extracted the required key:

ux → uy: IDx, EKt(Ny + 1), PRFKt(IDx‖IDy‖(Ny + 1))

In this protocol, the responding node uy sends the tth component zt of the broad-

cast message Bt meant for the requested session t, along with its own identity and

encrypted location. The responding node does not need to send the entire broad-

cast message Bt, since the requesting node has specified which broadcast message

it has missed, so it suffices to send the keying material specific to that session i.e.

zt. It also sends a nonce Ny which is used by the requesting node ux to confirm

the reception of the message and recovery of the required key Kt. The nodes must

authenticate each other to ensure that the keying material is being requested/sent

by a valid user. For authentication purpose, the protocol uses a keyed PRF such as

HMAC [88] of all the transmitted values using a key shared by the group in some

previous session c. Node ux shares this previous session number c whose key is

used for generating the PRF() for the request message. When a node uy receives

the request message, it checks if it holds the key Kc and the requested key Kt. If so,

the node uy computes the PRF() using the corresponding key Kc and is assured of

the authenticity of the requesting node ux. Similarly, ux authenticates uy by calcu-

lating the PRF() of the response message sent by node uy. Here, we assume that

the requesting and responding nodes share at least one session key from some

previous session to complete this protocol. Once, requesting node ux receives the

broadcast message component zt, it recovers the key for session t, using the key

extraction process. Then, it sends (Ny + 1) encrypted by the newly recovered key

Kt back to responding node uy to confirm the receipt of the correct message and

the required key.

Adding and Revoking Node. The protocol also allows adding and revoking of a

node from the group. Suppose a node unew willing to join session j requests GM

86

for including it in the communication group CGj. Node unew sends its identity,

IDnew, and the session number j, the session from which it is interested to join

the group. GM validates the identity of unew by looking at the list of non-revoked

nodes. If GM finds node unew to be an authorized node, GM includes the new

node’s public key QIDnew in the computation of Q and also computes Ui for this

new node while preparing the broadcast message i.e.

Q = Q1 + Q2 + . . . + Qnew + . . . + Qd

U0 = rj.PPub

Ui = rj.(Q− s.Qi), for i = 1 to d

(including i = new)
...

Similarly, when a node, say urov, is revoked from the jth session, GM excludes its

public key Qrov in the computation of Q and, Ui value corresponding to this re-

voked node urov will not be included in the broadcast message i.e.

Q = Q1 + Q2 + . . . + Qd,

(excluding Qrov)

U0 = rj.PPub

Ui = rj.(Q− s.Qi), for i = 1 to d

(excluding i = rov)
...

Neither node urov’s public key is used in the computation of Q in the subsequent

sessions, nor is Ui computed for i = rov. Therefore, even if urov receives the broad-

cast message Bt for a session t ≥ j, it would not be able to extract the key Kt for

session t.

The newly joined node can participate in the jth session and subsequent sessions

(if he is chosen as the valid member in the group in a particular session). A re-

voked user would not be able to participate in the jth session and any subsequent

sessions (unless it is joined again by GM)

87

4.4.4 Security Analysis

The security features of the proposed protocol are presented in the form of theo-

rems with proofs by contradiction. We follow the same notations as in chapter 1,

that is, Attacker(T) implies adversary has access to a term/name/variable/channel

T and, T1 ∧ T2 and T1 ∨ T2 denotes logical AND and OR operations on T1 and T2,

respectively. As, the protocol uses public key setup, the public parameters (G1,

G2, q, P, PPub, H1, H2) are accessible to all the users. The hash function h() is pub-

licly available as well. The broadcast message Bj can be accessed on the public

channel for each session j. The private key s of GM is secret that is known only to

the GM. Therefore:

Attacker(P) . . . (4.1.1)

Attacker(PPub) . . . (4.1.2)

Attacker(H1) . . . (4.1.3)

Attacker(H2) . . . (4.1.4)

Attacker(h()) . . . (4.1.5)

Attacker(Bj) . . . (4.1.6)

Not Attacker(s) . . . (4.1.7)

Theorem 4.1. The protocol does not allow a group member ux /∈ CGj, not authorized to

participate in session j, to obtain the session key Kj through self-healing in any future

session > j.

Proof. We consider a user ux /∈ CGj. Therefore:

Attacker(Ux /∈ zj) (from Group Key Broadcast process) . . . (4.2.1)

Attacker(Sx) (private key of the user ux) . . . (4.2.2)

Now, let us assume that the user ux /∈ CGj has obtained the session key Kj:

Attacker(Kj)

⇒ Attacker(Vj) ∧ Attacker(H2) ∧ (e(PPub, rj.Q))

[from step 3 of the Authentication and Key Extraction (para 4.4.2.3)]

⇒ Attacker(zj) ∧ TRUE ∧ (e(PPub, rj.Q))

[from step 5 of Group Key Broadcast (para 4.4.2.2)

88

and using assertions 4.1.4]

⇒ Attacker(Bj) ∧ (e(PPub, rj.Q))

[from step 6 of Group Key Broadcast (para 4.4.2.2)]

⇒ TRUE ∧ (e(PPub, rj.Q)) [since Bj is available on public channel]

⇒ Attacker(e(PPub, Ux).e(U, Sx))

[from step 2 of Authentication and Key Extraction (para 4.4.2.3)]

⇒ Attacker(Ux ∈ zj)

⇒ FALSE [using assertion 4.2.1]

This contradicts to our assumption that user ux /∈ CGj has obtained the session

key Kj. 2

Theorem 4.2. A group member does not accept a broadcast message from an unauthenti-

cated source.

Proof. In the proposed protocol, a group member accepts the authenticity of the

broadcast message by verifying the signature received from the group manager

along with the message.

Let us assume that an attacker has successfully been able to authenticate itself as

an authorized group manager:

Attacker(Signj)

⇒ Attacker((h(Bj) + s)−1)

⇒ Attacker((h(Bj) + s))

⇒ Attacker((h(Bj)) ∧ Attacker(s)

⇒ Attacker((h()) ∧ Attacker(Bj) ∧ Attacker(s)

⇒ TRUE ∧ TRUE ∧ FALSE [using assertions 4.1.5, 4.1.6 and 4.1.7 respectively]

⇒ FALSE

An unauthorized GM, therefore, can not authenticate itself. 2

Theorem 4.3. Only a member ux ∈ CGt
⋃

CGc (c < t) can successfully participate in

the mutual-healing protocol for session t.

Proof. The public functions such as PRF() are available to all the users. The mes-

sages exchanged for mutual-healing are available on the public channel, there-

fore:

89

Attacker(IDx) . . . (4.3.1)

Attacker(IDy) . . . (4.3.2)

Attacker(t) . . . (4.3.3)

Attacker(c) . . . (4.3.4)

Attacker(zt) . . . (4.3.5)

Attacker(Ny) . . . (4.3.6)

Attacker(PRF()) . . . (4.3.7)

The mutual-healing in the proposed protocol involves two entities, a requesting

node and a responding node.

As a requesting node, a node must be able to send the correct key confirmation

message. Let us assume that a node ux /∈ CGt
⋃

CGc (c < t) has successfully sent

the key confirmation message to complete the mutual-healing protocol for session

t:

Attacker(Key Confirmation Message)

⇒ Attacker(IDx) ∧ Attacker(EKt(Ny + 1)) ∧

Attacker(PRFKt(IDx‖IDy‖(Ny + 1))))

[from Key Confirmation in Mutual Healing protocol (subsection 4.4.3)]

⇒ Attacker(IDx) ∧ Attacker(IDy) ∧ Attacker(Ny) ∧

Attacker(PRF()) ∧ Attacker(Kt)

⇒ TRUE ∧ TRUE ∧ TRUE ∧ TRUE ∧ Attacker(Kt)

[using assertion 4.3.1, 4.3.2, 4.3.6 and 4.3.7 respectively]

⇒ Attacker(Kt)

⇒ FALSE [from Theorem 4.1 for ux /∈ CGt]

A responding node must be able to send the valid mutual-healing response mes-

sage. We assume that a node uy /∈ CGt
⋃

CGc (c < t) is able to send a mutual-

healing response. Therefore:

Attacker(Mutual-healing Response)

⇒ Attacker(IDy) ∧ Attacker(EKc(ly)) ∧ Attacker(zt) ∧ Attacker(Ny) ∧

Attacker(PRFKc(IDx‖IDy‖lx‖ly‖zt‖Ny‖t‖c))

⇒ Attacker(IDy) ∧ Attacker(Kc) ∧ Attacker(zt) ∧ Attacker(Ny)

90

∧ Attacker(PRF()) ∧ Attacker(IDx) ∧ Attacker(lx) ∧ Attacker(ly)

∧ Attacker(t) ∧ Attacker(c)

⇒ TRUE ∧ Attacker(Kc) ∧ TRUE ∧ TRUE ∧ TRUE ∧ TRUE ∧ Attacker(lx)

∧ Attacker(ly) ∧ TRUE ∧ TRUE

[using assertion 4.3.2, 4.3.5, 4.3.6, 4.3.7, 4.3.1, 4.3.3 and 4.3.4 respectively]

⇒ Attacker(Kc) ∧ Attacker(lx) ∧ Attacker(ly)

⇒ Attacker(Kc)

⇒ FALSE [from Theorem 4.1 for ux /∈ CGc]

This contradicts to our assumption that a user ux (and/or uy) /∈ CGt
⋃

CGc could

successfully complete the mutual-healing protocol. 2

4.4.5 Performance Analysis

4.4.5.1 Computation cost

A node after receiving the broadcast message, takes the jth component and for

computing e(PPub, rt.Q), it needs to perform two bilinear pairing operations, one

for e(PPub, Ux) and other for e(U0, Sx). Then it computes the hash H2(e(PPub,

rt.Q)) and finally extracts key Kj using an XOR operation. The hash and XOR

computation cost is negligible in comparison to the bilinear pairing computation.

So, if Tp is the cost of bilinear pairing computation, then self-healing and key-

recovery operation takes only 2 * Tp.

In Tian et al.’s proposal [120], GM needs to define a |Gj−1| X |Gj| matrix and re-

quires to compute |Gj−1| additional ECC points using public keys of the members

of current communication group, in order to construct the broadcast message. A

node in the group needs to perform matrix inversion operation. Secondly, during

the mutual healing process, the responding node encrypts the requested broad-

cast message with a key generated from the location based key using bilinear

pairing operation. The requesting node needs to calculate the same key again us-

ing bilinear pairing operation.

In our proposal, we avoid the need of any matrix, additional ECC points computa-

tions by GM, matrix inversion operation by node and bilinear pairing operations

91

for authentication during mutual healing. For mutual healing, our protocol [3] re-

quires one symmetric key encryption, and one PRF() computation, one symmet-

ric key decryption, one simple comparison to check Euclidean distance and one

PRF() to verify response and, one symmetric key encryption for key confirmation

as a requesting node. In case node is responder, then it needs one symmetric key

decryption, one simple comparison to check Euclidean distance and one PRF() to

verify request, then for response one symmetric key encryption, and one PRF()

computation. When compared with the protocol in [120], we find that computa-

tion cost is greatly reduced, as now a node does not require to solve system of

linear equations and also it could avoid doing scalar multiplication with respect

to all other nodes in the group in order to recover a key.

4.4.5.2 Communication cost

The group manager broadcasts one single message in each session. So, for m ses-

sions, there will be total m broadcast messages. In each session j, j(2d+4) log q bits

are transmitted as Bj, which is similar to Tian’s protocol [120]. At node end, node

receives a broadcast message in each session and in usual operation, it does not

need to transmit anything for obtaining the group secret key. When a node needs

to obtain the group key information through mutual healing, it needs to send out

two messages, one broadcast message as mutual healing request and another key

confirmation message to the responding node.

The overall bits communicated in the process is much less as compared to Tian’s

protocol, with an additional security feature of key confirmation. Since the re-

questing node is specifying the session number t for which it has missed the

broadcast message, it implies that the requesting node had received all the pre-

vious messages, so the responding node need not to send the whole broadcast

message, but can only send the tth component i.e. zt from the broadcast message

Bt.

92

4.4.5.3 Storage cost

Each node stores its own public-private key pair and the group session keys for

maximum m sessions. It also needs to temporarily store the broadcast message,

which contains j (1 ≤ j ≤ m) entities. We are able to save on the cost of storing a

‖Gj| x ‖Gj|matrix and also a node does not need to store the public keys of all the

nodes in the group to recover a session key, unlike in [120].

4.5 CRT based Symmetric Key Healing Protocol

The bilinear pairing based healing in group key distribution is computationally

heavy on resource constrained sensor nodes due to bilinear pairing computation

involved in key extraction process. The bilinear pairing approach also incurs more

storage overhead on the nodes due to public key setup. Therefore, we propose a

symmetric key based protocol that uses Chinese Remainder Theorem based secret

sharing for group key distribution. The goals and assumptions remain the same

as with the proposed bilinear pairing based healing protocol discussed in section

4.4, however, the objective here is to provide the similar security with notably re-

duced cost overhead. The detailed discussion of the proposed CRT based healing

protocol follows.

4.5.1 System Model

The proposed protocol is defined with the help of following modules:

(a) (ID, S, HK, w) = Setup(U):

Input : U - Set of nodes in the network

Output : ID - Set of unique identities for nodes

S - Set of personal secrets for nodes

HK - Set of hash chains of auxiliary keys created by each GM

w - Self-healing window size

93

The Setup module sets up system for key distribution and healing for nodes in set

U to assign identities and keys to all the nodes in the network.

(b) Bj = GpKeyDistr(Kj, CGj, Nj, KAj, S, w):

Input : Kj, CGj, Nj, KAj (for session j), S, w

Kj - Group shared secret for session j

CGj - Set of nodes authorized for communication in session j

Nj - Nonce

S - Set of individual node secrets

w - Self healing window size

Output : Bj - Broadcast message in session j

Module GpKeyDistr is used to construct broadcast message for session j with

group session key Kj, nonce Nj and auxiliary key KAj using the personal secrets

of nodes from set S for the nodes in communication group CGj and, returns the

set Bj of broadcast messages consisting of all zl ((j− w) ≤ l ≤ j) for self-healing

window of size w.

(c) Kj = AuthKeyExtr(Bj, si):

Input : Bj - Broadcast received in session j

si - Personal secret of node ui

Output : Kj - Group key for session j

AuthKeyExtr module authenticates the broadcast message set Bj received by a

node ui from group manager in session j and extracts the session key Kj for node

ui using its personal secret si.

4.5.2 Session Key Management

The proposed protocol for healing enabled group key distribution using CRT

based secret sharing has the following mandatory phases: system set up, group

key construction and distribution and, authentication and key extraction. If a node

misses broadcasts for one or more consecutive sessions, the self-healing is per-

formed. When the current session broadcast is missed by a node and the node

94

requires to obtain the information in the current session itself then mutual-healing

is executed. We describe each of the phases in the subsequent paragraphs.

4.5.2.1 System Setup

Prior to deployment, the base station assigns unique identity IDi ∈R Z to each

node ui ∈ U. A personal secret si ∈R Z∗q is also assigned to each node. A cluster

head acts as a group manager (GM) managing a subset of nodes. The base station

secretly gives the personal secret si ∈ S for each node ui to its respective GM. Each

group manager selects a key seed KAm ∈R Z∗q . Using the seed KAm, the GM com-

putes hash chain of auxiliary keys as:

KA0 = h(KA1 = h(KA2 = . . . = h(KAm)))

This hash chain is added to the set HK of hash chains. The auxiliary key KAj asso-

ciated with a communication session j is used for authentication purpose during

mutual-healing. The GM also sets up the self-healing window size w (� m) and

the initial session number as j = 0.

4.5.2.2 Group Key Message Construction and Distribution

Just before the start of a communication session j (j ≥ 0), GM chooses the session

key Kj ∈R Z∗q . GM picks the auxiliary key KAj corresponding to session j from the

hash chain. For each node ui, a unique value is computed using the secret Kj and

the node’s personal secret si. GM uses these node specific unique values to con-

struct the broadcast message with the help of Chinese remainder theorem (CRT)

based secret sharing for secretly distributing the session key. The PRF values over

the elements being shared using the individual node secrets are also computed

for broadcast authentication. The GM picks the broadcast messages constructed

for last w (the self-healing window size) sessions that is zj−w, zj−w+1, . . ., zj−1 and

broadcasts these messages along with the current broadcast message zj.

Algorithm 4.1 gives the detailed steps for group-key message construction and

distribution by GM.

95

Algorithm 4.1 Group Key Message Construction and Distribution

Input : Kj, CGj, Nj, KAj (for session j), S, w

Kj - Group shared secret for session j

CGj - Set of nodes authorized for communication in session j

Nj - Nonce chosen for session j

S - Set of individual node secrets

w - Self healing window size

Output : Bj - Broadcast message in session j

1: procedure GROUPKEYDIST(Kj, CGj, Nj, KAj, S, w)
2: Select group key Kj ∈R Z∗q and a nonce Nj ∈R Z∗q
3: Pick auxiliary key KAj ∈R Z∗q from hash-chain
4: Compute Vj = h(Kj) ⊕ KAj

5: for each node ui ∈ CGj do
6: Compute bij = si ⊕ Kj

7: Compute rij = b(si ⊕ Kj)/sic
8: end for
9: Solve congruence Xj ≡ bij mod si (∀ ui ∈ CGl)

10: Solve congruence Yj ≡ rij mod si (∀ ui ∈ CGl)
11: for each node ui ∈ CGj do
12: Compute cij = PRFsi (IDi, Xj, Yj, Vj, Nj)
13: end for
14: Solve congruence Wj ≡ cij mod si (∀ ui ∈ CGj)
15: Set up zj = (Xj, Yj, Vj, Wj, Nj)
16: Set up Bj = (zj−w, zj−w+1, . . ., zj−1, zj)
17: return Bj

18: end procedure

4.5.2.3 Authentication and Key Extraction

When a node ui listens to a broadcast, it checks the authenticity of the message.

It computes the PRF using its own secret si and compares with the PRF value

received to check the authentication. On successful authentication, it confirms the

freshness of the message by comparing the received nonce with the nonce of the

previous session and then extracts the new group session key. The detailed steps

are as given in Algorithm 4.2.

96

Algorithm 4.2 Authentication and Key Extraction

Input : Bj - Broadcast received in session j

si - Personal secret of node ui

Output : Kj - Group key for session j

f l0 - Flag bit for authentication check

f l1 - Flag bit for freshness check

1: procedure AUTHKEYEXT(Bj, si)
2: Picks zj = (Xj, Yj, Vj, Wj, Nj) from Bj

3: Computes c′ij = PRFsi (IDi, Xj, Yj, Vj, Nj)

4: Retrieves cij from Wj as cij = Wj mod si

5: if c′ij = cij then

6: f l0 = 1 “Authentication Successful !!”
7: else
8: f l0 = 0 “Authentication Failed !!” Discard zj

9: end if
10: if Nj > Nj−1 (for j > 0) then
11: f l1 = 1
12: Extracts Kj = ((Xj mod si) + (Yj mod si)*si) ⊕ si

13: return Kj

14: else
15: f l1 = 0
16: “Replay Attack !!” Discard zj return
17: end if
18: end procedure

4.5.3 Healing

When a node misses a session broadcast message, it will not be able to extract the

group key for that particular session. With self-healing, such node can extract the

missed key from a future broadcast, if the node is an authorized group member

for the specified session for which it missed the broadcast. A node missing one or

more broadcasts waits for a future broadcast. The GM sets a self-healing window

of size w, assuming that a node missing broadcasts should recover from within a

limited number of future broadcasts. Whenever, a next broadcast is received, the

node can pick all the missing broadcast components (maximum w) and extract

the missing keys. As depicted in Figure 4.1, suppose at some point of time the

97

missing count c = 0, that is a node has been receiving all the broadcasts. If a node

misses a broadcast in session j, it waits for the next broadcast, so missing count

c in incremented by 1. As long as the node does not receive a broadcast, it keeps

waiting and the missing count keeps increasing. Eventually, when the node re-

ceives a broadcast, it checks the missing count (if the missing count is more than

0, then only node would require self-healing). The total miss tm is set to the miss-

ing count c and then node starts recovering keys (for whatever missed sessions it

needs).

Missing
Count c = 0

Node ui
missed

broadcast Bj?

Extract Kj for current
session from zj ∈ Bj

Wait for next
broadcast

j = j + 1

c = c + 1

c > 0?Self-healing
not needed

Exit

Total Miss tm = c

j = j - 1

Extract Kj
from zj ∈ Bj
(if needed)

c = c - 1

c > tm - w?

Yes

No

Yes

No

Yes

No

Figure 4.1: Self-Healing

98

Although, with self-healing, a node can easily recover the missing keys using

future broadcasts, a node missing the current broadcast may not want to wait

for the future broadcasts. In such scenarios, a node can use the mutual-healing

protocol to obtain a missing broadcast by requesting its neighbor nodes. The

mutual-healing protocol involves three steps. In the first step, a node ux, that

needs mutual-healing, broadcasts a mutual-healing request. A neighboring node

uy listening to this broadcast may opt to respond by unicasting the mutual-healing

response. After ensuring that the correct session key is received, the requesting

node sends the key confirmation message to the responder. The detailed steps of

the mutual-healing protocol are given in Figure 4.2.

4.5.4 Security Analysis

We present the security strengths of the proposed protocol in the form of theo-

rems and prove them using proof by contradiction. We use the following existing

results in the proof of theorems.

Statement 4.1: For a one-way cryptographic hash-function with collision resis-

tance h(.) defined as h : {0, 1}n→ {0, 1}l, the probability of finding a x
′ 6= x, such

that h(x) = h(x
′
) for a given x and h(x), i.e. the probability of hash collision [101]

is:

Pr[(h(x) = h(x
′
) (x

′ 6= x))] = 1 - (1− 1
2l)

n−1

Statement 4.2: The probability Pr[forge] of accepting forged data as authentic

with HMAC is 2t

2λ , where λ is the length of the output of the HMAC in bits and 2t

is the number of failed verifications allowed [34].

The protocol uses HMAC SHA-256 [88] as PRF to authenticate the communica-

tion. Using the session key Kj and the node secrets si for all ui ∈ CGj, the GM

in the protocol computes the congruence value Xj, supporting congruence Yj and

Vj to protect auxiliary key, for a session j. Then, the GM computes PRF values of

these contents along with nonce Nj using individual secrets si of the nodes. The

99

Requesting Node ux

1. Picks a nonce Nx ∈R Z∗q

2. Mutual Healing Request (Broadcast):

Idx, t, Nx

(To all neighbor nodes)

Responding Node uy

3. Picks a nonce Ny ∈R Z∗q

4. Extracts KAt from zt as KAt = Vt ⊕ h(Kt)

5. Computes PRFKAt(Idx‖Idy‖Nx + 1‖Ny)

6. Mutual Healing Response:

Idy, zt, Ny PRFKAt(Idx‖Idy‖Nx + 1‖Ny)

7. Extracts Kt from zt (using key extraction)

8. Computes KAt = Vt ⊕ h(Kt)

9. If h(KAt) 6= KAt−1 then ‘Discard respond from uy’

EXIT
10. Computes PRFKAt(Idx‖Idy‖Nx + 1‖Ny)

11. If Computed PRF 6= Received PRF then

‘Message Corrupted’. EXIT

12. Computes PRFKt(Idx‖Idy‖Ny + 1)

13. Key Confirmation:

Idx, PRFKt(Idx‖Idy‖Ny + 1)

14. Computes PRFKt(Idx‖Idy‖Ny + 1)

15. If Computed PRF 6= Received PRF then

‘Message Corrupted’; EXIT

16. ‘Mutual Healing Success’ !

Figure 4.2: Mutual-Healing

PRF value is distributed as a congruence value computed using individual secrets

of all the participating nodes. Here, the individual node secret si is shared only

between node ui and the GM. The broadcast message contains zj = (Xj, Yj, Vj, Wj,

100

Nj) and the communication channel is public. Therefore:

Attacker(zj = (Xj, Yj, Vj, Wj, Nj)) . . . (4.4.1)

Not Attacker(si) ∀ ui ∈ U . . . (4.4.2)

Theorem 4.4. An adversary can evade the authentication process by forging the PRF

with probability Pr[forge] = 1
2(λ−t) , where λ is the output size of the PRF used for authen-

tication and 2t is the number of failed verifications allowed.

Proof. Let us assume that an adversary is able to evade the authentication process.

This implies that the adversary has reached step 6 of Algorithm 4.2 and could

successfully compute c′ij (= cij). If we trace back the adversary steps:

Attacker(cij) for some ui ∈ CGj

⇒ Attacker(PRFsi(IDi, Xj, Yj, Vj, Nj))

⇒ (Attacker(si) ∧ Attacker(IDi, Xj, Yj, Vj, Nj))

∨ Attacker(PRFs′i
(IDi, Xj, Yj, Vj, Nj) (= PRFsi(IDi, Xj, Yj, Vj, Nj)))

[for some key s′i 6= si to forge the PRF]

⇒ (FALSE ∧ TRUE) ∨ TRUE(with Probability Pr[forge] = 1
2(λ−t))

[using assertions 4.4.1, 4.4.2 and Definition 4.2]

⇒ TRUE(with Probability Pr[forge] = 1
2(λ−t))

Therefore, the assumption that an adversary is able to evade the authentication

process holds with the probability Pr[forge] = 1
2(λ−t) .

In the proposed protocol, since HMAC SHA-256 is used as PRF, the value of λ

(from definition 4.2) is 256. Therefore, the adversary requires 2256 attempts to

forge data as authentic with HMAC. Even if an adversary makes 2200 attempts

which is practically infeasible in an operational WSN scenario, the probability

Pr[forge] = 1
2256−200 = 1.39 * 10−17. 2

Theorem 4.5. The protocol is secure against replay and impersonation attacks

Proof. In the proposed protocol, the nonce value Nj for each session j is selected

in such a manner that Nj−1 < Nj. When a node receives a group key broadcast

message from the GM for session j, it checks for the freshness of the nonce value

Nj. If nonce Nj ≤ Nj−1, it is discarded. This prevents an attacker from replaying

the broadcast message from any previous session. Furthermore, any attacker that

101

attempts to assume the identity of GM must possess the personal secrets of all the

nodes in the cluster in order to construct the broadcast message. To impersonate a

node ux, an attacker must have its personal secret sx to extract the key and partic-

ipate in the network operations. We prove the security of the proposed protocol

against replay and impersonation attacks by contradiction. We consider different

possibilities for an attacker under this scenario as follows:

(i) Suppose the adversary chooses a nonce N′j > Nj−1 and successfully carries out

replay attack. This implies that:

Attacker(z′j = (Xj−1, Yj−1, Vj−1, Wj−1, N′j))

⇒ Attacker(cij = PRFsi(IDi, Xj−1, Yj−1, Vj−1, N′j)) ∀ ui ∈ CGj

⇒ Attacker(si)

⇒ FALSE [using assertions 4.4.2]

(ii) Let us assume that an adversary has impersonated the GM to broadcast Bj.

Thus:

Attacker(z′j = (X′j, Y′j , V′j , W ′j , N′j))

⇒ Attacker(X′j ≡ b′ij mod si) ∧ Attacker(Y′j ≡ r′ij mod si) ∧

Attacker(V′j = K′j ⊕ KA′j) ∧ Attacker(W ′j ≡ c′ij mod si) ∀ ui ∈ CGj

⇒ Attacker(si)

⇒ FALSE [using assertions 4.4.2]

(iii) If we assume that the adversary has impersonated a node ui ∈ CGj, then:

Attacker(Kj)

⇒ Attacker(((Xj mod si) + (Yj mod si)*si) ⊕ si) [from step 12 of Algorithm 4.2]

⇒ Attacker(Xj) ∧ Attacker(Yj) ∧ Attacker(si)

⇒ TRUE ∧ TRUE ∧ FALSE [using assertions 4.4.1 and 4.4.2]

⇒ FALSE

Therefore, the protocol is secured against replay and impersonation attacks. 2

Theorem 4.6. For a given session t, self-healing can be performed only by a group mem-

ber authorized to participate in session t.

Proof. The protocol ensures that self-healing for a session t can be done only by a

node ux that was a valid member in session t. This is due to the fact that when

key information message zt is constructed for a session t, the GM computes the

102

congruences Xt and Yt that take into account the personal secrets of only those

nodes that belong to the communication group CGt. Therefore, an unauthorized

member or an attacker can not perform self-healing even when the broadcast

messages from previous sessions are available in current session. We prove this

through contradiction, so let us assume that a node ux /∈ CGt receives broadcast

message in a future session j (t < j) within self-healing window and ux ∈ CGj.

Thus:

Attacker(ux /∈ CGt) . . . (4.5.1)

Attacker(sx) . . . (4.5.2)

Now, suppose node ux successfully obtains key Kt for session t through self-

healing, therefore:

Attacker(Kt)

⇒Attacker(((Xt mod sx) + (Yt mod sx)*sx)⊕ sx) [from step 12 of Algorithm 4.2]

⇒Attacker(Xt ≡ (sx mod Xt) mod sx)∧Attacker(Yt ≡ rxj mod sx)∧Attacker(sx)

[from steps 9 and 10 of Algorithm 4.1]

⇒ Attacker(ux ∈ CGt) ∧ Attacker(sx)

⇒ FALSE ∧ TRUE [using assertions 4.5.1 and 4.5.2]

⇒ FALSE

Thus, only an authorized member of a given previous session can use self-healing

to extract key of that session. 2

Theorem 4.7. The probability of an unauthorized group member responding to mutual-

healing request is 1 - (1− 1
2l)

(n−1) (where n is input size and l the output size of hash

respectively) that is negligible for l >= 256.

Proof. Suppose an unauthorized member participates in mutual-healing and re-

sponds to a mutual-healing request with its own broadcast component z′t and

nonce N′y and uses its own auxiliary key KA′t. Assuming that protocol is success-

fully completed, the responding node gets the key confirmation message. Thus:

Attacker(key confirmation)

⇒ Attacker(h(KA′t) = KAt−1) [from step 9 of Figure 4.2]

⇒ Attacker(h(KA′t) = h(KAt)) [since KAt−1 = h(KAt)]

⇒ TRUE (with probability 1 - (1− 1
2l)

(n−1) [from definition 4.1]

103

In the proposed scenario, the secret size l = log q = 256 bits and the input size =

sizeof (KAt) = 256 bits, resulting in probability of hash collision to 1 - (1− 1
2256)

(256−1)

= 1 - (1- 8.64 * 10−78)255. 2

The proposed mutual-healing protocol ensures that only a node who posses valid

key being the authorized member of session t can respond to mutual-healing re-

quest. We see that when an attacker attempts to respond to a mutual-healing

request, he chooses a session key K′t, auxiliary key KA′t and nonce N′y and, con-

structs its own message z′t. The requesting node ux receives the response as Idy, z′t,

N′y, PRFKA′t
(Idx‖Idy‖Nx + 1‖N′y). Node ux gets some key K′′t by following key ex-

traction process (step 7 of Figure 4.2). Using this key it would get some auxiliary

key KA′′t . When node ux verifies auxiliary key by checking if h(KA′′t) = KAt−1 (as

per step 9 of Figure 4.2), the validation fails and the response is discarded. For a

valid response, the auxiliary key validation as well as the PRF verification (step 11

of Figure 4.2) must succeed so that node ux can extract key Kt and send back the

confirmation message. When the responding node uy successfully validates the

key confirmation message, it is assured that the correct key is received by the re-

questing node. Thus, the protocol also ensure Key confirmation in mutual-healing.

4.5.5 Performance Analysis

The proposed healing enabled group key distribution protocol incurs less com-

munication, computation and storage overhead on resource-constrained sensor

nodes.

4.5.5.1 Computation cost

For Self-healing, a node has to extract a key from a future broadcast message.

The key extraction process demands a node to first compute a PRF of the received

value that it uses to authenticate the message and the sender. Once the authentica-

tion is successful, the node extracts the key by performing one XOR operation, one

multiplication and 2 mod operations. If a node participates in mutual-healing to

obtain or provide the keying material, it acts as a requesting node or a responding

node. To place a request, the node performs one XOR, one hash and, it requires

104

to perform one XOR and 2 PRF operations. When a node responds to a mutual-

healing request, it needs to perform only one XOR and two PRF operations. As

compared to the existing mutual-healing protocols, this is a significant reduction

in computation overhead.

4.5.5.2 Communication cost

For self-healing, a node does not transmit any message, so communication cost

only involves the cost of message reception. The node receives only 5w * log q

bits in each session, for self-healing window size w and secret size log q bits. For

mutual-healing, as a requesting node, for sending a request and subsequently

a key confirmation message, node sends 8 * log q bits of data. In order to re-

spond to a mutual-healing request, the node needs to send 5 * log q bits. It may

seem some overhead as compared to the protocols [96], [141], [13] and [80] where

the transmission cost overhead is null, but then, these protocols do not provide

mutual-healing capability.

4.5.5.3 Storage cost

The storage overhead is low as a node keeps the current session key for self-

healing. For mutual-healing purpose, the node stores an additional auxiliary key.

4.6 Comparison with Existing Schemes

4.6.1 Security Features

We compared the security features of our proposed protocols with the reference

protocols. As shown in Table 4.1, both our proposed protocols provide the self-

healing and mutual-healing capability unlike the CRT based group key distribu-

tion protocols proposed in [141] [13] and [80]. The CRT based protocol presented

in [96] does provide self-healing, but it does not discuss mutual-healing. Our pro-

posed protocols resist replay and impersonation attacks as opposed to the proto-

cols discussed in [141] [13] and [96]. The protocols ensure authentication that is

105

not provided in [141] [13]. We also provide additional security in terms of key con-

firmation at a low cost overhead during mutual-healing as compared to the only

existing mutual-healing protocol in [120]. Although, both our proposed protocols

provide same security features, the CRT based healing proposal gives significant

performance improvement as compared to the bilinear pairing based healing, as

discussed in subsequent subsection.

Schemes⇒ Tian Hassan Zheng Bhaskar Liu Proposed Proposed
Attributes ⇓ et al. et al. et al. et al. et al. pairing CRT

[120] [96] [141] [13] [80] based based
[3] [1]

Resists Replay Attack X X × × × X X

Resists Impersonation Attack X X × × × X X

Authentication X X X × × X X

Self Healing X × X × × X X

Mutual Healing X × X × × X X

Key Confirmation∗ × NA NA NA NA X X

* - in mutual-healing
NA - Not Applicable

Table 4.1: Comparison of Security Features

4.6.2 Performance

We present the analytical comparison of the performance of our proposals with

some of the relevant schemes in Table 4.3. The notations used in the performance

table are given in Table 4.2.

Notation Description

Tbp Time taken for Bilinear Pairing operation
Ts Time taken for Symmetric key operations such as encryption/ decryp-

tion/ hash/ PRF
Tp Time taken for Public key operations such as signature verification/ scalar

multiplication
Tb Time taken for basic operations such as XOR, Mod
Ta Time taken for Solving system of algebraic equations
Tc Time taken for CRT congruence solving
log q Size of secret in bits

Table 4.2: Notations used in Performance Comparison

106

Attributes⇒ Computation Overhead Communication Overhead Storage Overhead

Self Mutual Healing Self Mutual Healing Self Healing Mutual
Healing Healing HealingSchemes ↓ Request Response Request Response

Tian 2Tbp+(d+1)Tp Tbp+2Ts Tb+Ts (2d+3)j 3log q ((2d+3)j (2jd+2j+5) 2log q
et al. [120] +Ts +Ta +Tp log q +2)log q log q+2dlog q

+16(d2+d)

Proposed 2Tbp+Ts 6Ts 6Ts (2d+3)j 8log q ((2d+3) (2jd+2j+5) 2log q
bilinear pairing +Tp log q +4)log q log q
based [3] log q

Hassan 2Tbp+dTp+ NA (2d+1) NA (4d+2)log q+ NA
et al.[96] 2Ts+Ta log q 16(d2+d)

Zheng 2Tb log q 2log q
et al. [141]

Bhaskar Ts+2Tb 2 log q 3log q
et al. [13]

Liu Tc+Tb+2Ts (2d+6) log q 2d log q+3
et al.[80]

Proposed [1] Ts+3Tb 4Ts+Tb 3Ts+Tb 5w log q 8log q 5log q log q log q

Table 4.3: Performance Comparison

With our proposed bilinear pairing based protocol, we reduce the computation

overhead of scalar multiplications and solving of system of algebraic equations

that was needed by Tian et al. protocol [120]. The storage overhead of keeping the

public keys of all other group nodes is also avoided as opposed to the requirement

in [120]. The CRT based protocol proposed for self-healing and mutual-healing

further reduces the overheads considerably, as it is based on symmetric key cryp-

tographic primitives to be used at node end. Although, the overhead seems to

be higher as compared to the existing CRT based schemes discussed in [141] and

[13], our proposed scheme trades-off for security features of self-healing, mutual-

healing, resistance to replay and impersonation attacks and authentication. The

protocol proposed in [80] has more communication and storage cost in compari-

son to our proposed CRT based protocol and does not provide healing capability.

4.7 Experimental Results

We carried out the simulation with Castalia Simulator considering 50 nodes within

a cluster and self-healing window size of 5 for proposed CRT based protocol. The

simulation results show that with the proposed healing protocol using bilinear

107

pairing, the cost for communication for a mutual-healing protocol is significantly

reduced. The communication cost for self-healing as well as for mutual-healing

response is notably reduced with our CRT based healing protocol (Refer Table

4.4). The comparison of storage overhead in terms of Kbits is shown in Figure 4.3.

Scheme⇒ Tian et al. Proposed bilinear Proposed CRT
Features ⇓ [120] pairing based [3] based [1]

Self-Healing 2.060 2.060 0.025

Mutual Healing - Request 0.003 0.008 0.008

Mutual Healing - Response 2.062 0.107 0.005

Table 4.4: Communication Cost in Sec

The cost of storage with the existing healing protocol increases as the number of

nodes and the number of sessions are increased. With the help of proposed bilin-

ear pairing based healing, we are able to significantly reduce this increase as the

number of nodes in the network grows and the number of sessions increase. The

proposed CRT based healing protocol has very low and constant storage over-

head irrespective of the growth in network size and the number of sessions.

Figure 4.3: Storage Cost for Mutual-Healing

We also carried out the experiments on ATMega 328 processor using Arduino

108

Duemilanove controller board and ArduinoISP programmer to evaluate the com-

putation cost for self-healing and mutual-healing (Refer Figures 4.4 and 4.5). As

Figure 4.4: Computation Cost for Self-Healing

Figure 4.5: Computation Cost for Mutual-Healing

seen in the Figure 4.4, with our proposed protocols, the computation overhead

109

for self-healing remains constant irrespective of the increase in the group size.

Specifically with the CRT based protocol, the cost of computation incurred in self-

healing is notably low. Also, the computation cost for mutual-healing (Figure 4.5)

drops down significantly with our proposed protocols as compared to the existing

mutual-healing protocol proposed in [120].

4.8 Conclusion

In this chapter, we have discussed the self-healing and mutual-healing enabled

group key distribution protocols for WSN. As the communication channel is wire-

less, the broadcast messages during group-key distribution may not reach all the

nodes. In such scenarios, self-healing is used to obtain the missing information

using a future broadcast. When the missed broadcast message is required in the

current session itself, a node takes help of some neighbor node and use mutual-

healing to get the required broadcast message. We first discussed a bilinear pair-

ing based healing enabled group key broadcast protocol that gives performance

improvement over the existing bilinear pairing based healing protocol. With the

proposed bilinear pairing based healing protocol, the nodes are able to perform

self-healing and mutual healing with reduced computation and storage overhead.

The proposed mutual-healing protocol provides additional security features of se-

cure localization and key confirmation as compared to the existing bilinear pair-

ing based mutual-healing protocol. Although, the bilinear pairing based heal-

ing enabled group-key broadcast provides robust security, the pairing operations

are costly for resource constrained sensor nodes. The pairing based approach in-

volves public key setup, that incurs more storage overhead as well. Therefore, we

proposed further improvement and presented a healing protocol that uses Chi-

nese remainder theorem (CRT) based secret sharing for group key distribution.

The proposed CRT based protocol provides authentication, resistance to imper-

sonation and replay attacks along with secure self-healing and mutual healing.

From the experimental and simulation results it is evident that the proposed bi-

linear pairing based healing protocol has significant performance boost over the

110

existing healing protocol, specifically during mutual-healing. With the proposed

CRT based healing, the cost overhead in terms of communication, computation

and storage is almost negligible when compared with the only existing pairing

based mutual-healing protocol.

The resilience to node capture attack can be reduced with a robust key manage-

ment scheme in place wherein the impact of node capture attack can be optimized.

However, the threat of node capture attack remains and it is vital to have timely

detection of a victim of node capture attack. We, therefore, present an efficient

and secure protocol of node capture detection in the next chapter.

111

CHAPTER 5

Node Capture Attack

Wireless sensor networks (WSNs) deployed for applications, such as battle-field

surveillance and forest fire detection, work in hostile environments. In such sce-

narios, the sensor nodes are left unattended after deployment and therefore, are

vulnerable to various types of physical attacks including node capture attack.

Node capture attack allows an adversary to physically capture one or more nodes,

reprogram and redeploy the nodes in the network to benefit as an insider attacker.

The secure key management can help in increasing the resilience to node capture

attack, however, secure and efficient detection of node capture attack is vital to the

security of a WSN. In this chapter, a program integrity verification protocol is dis-

cussed. The protocol compares the program memory content of the node before

and after capture. This verification for a node capture suspect is carried out by

its respective cluster head that is equipped with trusted platform module (TPM).

The proposed TPM enabled program integrity verification (TPIV) protocol uses

dynamically computed hash based key and pseudo random function for success-

fully detecting the node capture attack. With the TPIV protocol, the probabilities

of a victim of node capture attack eluding the PIV and leaking the secret of any

non-captured node are negligible. TPIV protocol detects the node capture attack

even in the presence of a strong adversary capable of putting additional memory

to elude the PIV. The performance improvement in terms of low communication,

computation and storage overhead as compared to the already existing protocols

for program integrity verification is evident from the analytical comparisons and

experimental results.

112

5.1 Introduction

In most of the real-life applications such as battle-field surveillance and forest

fire detection using wireless sensor networks (WSNs), a group of sensor nodes

are densely and randomly deployed and, are left unattended in hazardous con-

ditions. The nodes collaboratively monitor events such as movement of enemy

troops in battle-field and communicate with each other over wireless channel.

The sensor nodes may directly communicate the observations to a central trusted

powerful entity, called base station, or through the intermediate more resource-

ful nodes, called cluster heads. The wireless nature of the communication chan-

nel and the unattended deployment in difficult terrains leave a WSN vulnera-

ble to various attacks including node capture. The inherent resource constraints

of nodes restrict using traditional security solutions directly for WSN. Although

during the last years, researchers have successfully addressed various aspects of

WSN security such as secure key management [4], secure location and so on, the

problem of node capture attack is a major concern.

Researchers have proposed protocols for attestation and program integrity verifi-

cation (PIV) [112] [99] [25] [117] for detecting a victim of node capture attack. The

software attestation protocol in [112] requires optimal program code and accu-

rate time synchronization between the verifier and a prover. Soft tamper proofing

proposed in [99] is vulnerable to impersonation and replay attacks. In addition,

both protocols need centralized verifier. In [25], the verifier compromise reveals

the program code of all the nodes. Both [99] and [25] does not address memory

addition attack. In the case of utilization of specialized hardware (e.g. Trusted

Platform Module (TPM) [122]) at all the sensor nodes, such as in hardware based

protocol [117], cost overhead occurs when large sensor networks are considered.

Recently, Zhao discussed about node capture attack in his work [139], however,

that work only analyzes the q-composite scheme for key pre-distribution, that mit-

igates the node capture vulnerability in the neighbor discovery phase. In [92], the

node replication detection attack is proposed that adversary can carry out after

capturing the node. However, neither [139] nor [92] discuss about detecting node

113

capture. Clearly, the need to efficiently and securely detect a captured node is an

excellent motivation to address this issue.

In the subsequent sections, various approaches to detect node capture attacks are

discussed and then the TPM enabled program integrity verification (TPIV) proto-

col to efficiently and securely detecting the node capture attack is presented.

5.2 Identifying Node Capture by Monitoring

Monitoring based node capture attack is a classic approach for detection of a vic-

tim of node capture attack and has been widely discussed in the WSN security lit-

erature. Wong et al.in [57] had given a protocol for identifying malicious nodes in

wireless sensor networks through detection of malicious message transmissions.

The protocol compares the signal strength of a message with the geographical

location of the sender and if it is incompatible, the transmitted message is consid-

ered to be suspicious and the information about the identified malicious node is

disseminated in the network. This protocol assumes homogeneous and symmet-

ric network with uniquely identifiable nodes, but it also requires the arrangement

to be static and nodes to know their own geographical position. Liu et al. in [77]

used various buffers such as Arrival Time buffers and Transmission Time buffers to

store the arrival and transmission time of each message transmitted/received. If

arrival time is not within the specified limits, base station is alerted and based

on the decision of the base station, node identity of the suspect is put in Com-

promised list by other nodes. The scheme incurs additional storage overhead for

maintaining arrival time and transmission time buffers. Also, it needs to check

for each packet the arrival time validity and it is designed for static WSN. In [86],

Mathews et al. looked into an anomaly-based intrusion detection system to detect

compromised nodes using the event-driven characteristics of sensor networks to

verify whether a node is sending packets in fixed time intervals. When the base

station gets an alert about the abnormal behavior of some node, it verifies it by

checking the difference in packet transmission times of that suspected node. The

algorithm assumes network of stationary homogeneous nodes without clock syn-

114

chronizations amongst themselves and with no scope of new additions. Zhang,

Yu and Ning [136] proposed an application-independent framework in which the

sensors monitor the activities of the other nearby nodes assuming the existence of

application-specific detection mechanism. It focuses on static sensor networks.

Conti et al. in [33] proposed two specific protocols that use node’s mobility to

detect node capture attacks in a completely distributed way. In the first proposal,

Simple Distributed Detection (SDD), the attack is detected using only the infor-

mation local to the nodes. The second solution, the Cooperative Distributed De-

tection (CDD), exploits node collaboration to improve the detection performance.

According to the SDD protocol, if node A has listened to a transmission originated

by node B (meeting occurred) at a certain time t, and later it does not re-meet

node B for some long enough time, then node A can infer that node B has proba-

bly been captured. In the cooperative version of this protocol, two or more nodes

monitor a node’s presence in the network. They may share the meeting time of the

monitored node with each other to reduce the false positive rate. This work was,

however, at conceptual level. Later, they presented detailed algorithms both for

simple and cooperative distributed detection [87], that leverage mobility and co-

operation (CMC Protocol). The attacker, in their scheme [87], is assumed to know

the detection protocol. It is an event-based protocol. Each node A tracks a set of

nodes TA. When a tracked node B ∈ TA meets node A, both the nodes execute

CMC meeting algorithm through which they update the meeting time and set a

time-out for each other. In case node B does not meet node A again within a speci-

fied time-out period (say λ) node A executes CMC-timeout() routine, which raises

an alarm against node B, claiming it to be absent from the network and flood the

whole network requesting revocation of the node. Any node X, that receives a

message from node A, runs CMC-receives() module and checks the message type.

If it is a usual message, then it simply sets the meeting time with node A, else if

it is an Alarm then it checks, if the alarm is against itself, it floods the whole net-

work claiming its presence, else if the accused node, say B, is not revoked, then

the receiving node X sets revocation time out for node B. On expiry of revocation

timeout, the node B is revoked. Two nodes A and B, may also cooperatively mon-

115

itor a given node C and update the meeting time with node C virtually without

real meet with node C, based on the inputs from each other.

We observed the possibility of insider attacks in this approach. The tracking node

may act maliciously and it might raise a false alarm against a node. Although the

presence proving mechanism is there, we cannot ensure if it is the node which is

actually present or some other node giving proxy. Also the time out and revoke

timeout is set based on local clocks of the nodes thus we cannot completely rely

on the timings for deciding if the node is actually captured. The scheme does not

deal with the nodes that are captured and redeployed in the network.

Li, Song and Alam in [72] defined a Data Transmission Quality (DTQ) function

(a measure of node’s communication quality) to differentiate the legitimate nodes

and compromised nodes. For legitimate nodes, the value of DTQ function re-

mains constant or changes smoothly. However, if the node behaves suspiciously,

this value keeps decreasing. Finally, the group members’ voting is used to decide

whether a suspicious node is actually compromised or not.

A weighted-trust evaluation (WTE) based scheme to detect compromised or mis-

behaved nodes in wireless sensor networks was proposed by Atakli et al. in [9].

The scheme considers three levels in the network - at the lowest level the sensor

nodes are there, then the middle level has forwarding nodes and the top level

consists of access point(s) (APs) or base station(s). Each forwarding node heads

a cluster of sensor nodes that send the sensed data to the forwarding node. A

forwarding node assigns trust values to each of the nodes in its cluster. If a node

sends meaningless/wrong information, it implies that a node has been compro-

mised, so the trust level of the node is lowered by its forwarding node. Deciding

on the trust value and recalculating the trust depends on the application and does

not seem to be a trivial task. The proposal assumes that the compromised nodes

would always behave abnormally.

A new approach to detect the attack at the first stage is proposed by Ding et al.

[39]. Their detection is based upon the discovery of missing nodes and malfunc-

tioning of nodes due to the physical capture. Each node is assigned a guardian

node. A node needs to send a Hello message to the guardian node at the periodic

116

intervals with least possible radio power level. When guardian node does not

receive a Hello message for three consecutive time intervals, it sends out two Are

you there messages consecutively and if no response is received, the guardian node

will broadcast a Captured message to neighbors with its maximum radio power.

This Captured message will be forwarded by its neighbors to the entire network.

Any node that receive this message will add the announced node to its list of

known captured nodes and will not forward or aggregate the data packets from

the captured node. If the keys are used in sensor network security scheme; the

current keys are replaced with alternative keys. Furthermore, a captured node

can also broadcast an IMC (I Am Captured) message to neighbors. For inactive

nodes, the nodes that are put into hibernation or sleep, the frequency of sending

out Hello message will be much lower. Lin [76] addressed the node compromise

problem in the first stage of physical capture in a different way. A new couple-

based scheme is presented in [76] to detect the node compromise attack in an early

stage. According to this, once the sensors are deployed, they build couples in an

ad-hoc pattern. Now, the nodes in a couple monitor each other to detect any node

compromise attempt. It is assumed that each sensor node can detect being con-

nected by a programming board when an adversary launches the physical node

compromise attack. When a node detects itself to be connected to a programming

board, it sends the signal to its spouse and the spouse informs the base station and

its neighbors of the compromise. In case, the adversary shuts down the node after

capture, then also the spouse will come to know, as it does not receive any signal

for a defined time period and thus suspects the compromise. The scheme uses

Elliptic Curve Cryptography (ECC) based keys and designed for static network

wherein the nodes are stationary after deployment.

Couple-based monitoring can keep track of the absence of a node from the net-

work for more than a specified threshold period. However, setting the optimal

threshold to decide if the node is captured has practical difficulties in multi-hop

wireless sensor networks. To decide on the threshold value for absent time to

consider a node as captured, Ho in [52] suggested using the Sequential Proba-

bility Ratio Test (SPRT). SPRT is a dynamic threshold scheme for setting up the

117

threshold that changes dynamically according to the absence time duration mea-

sured for a node. This dynamic change in threshold helps in minimizing the false

positive and negative rates of node capture detection. Furthermore, SPRT not

only achieves the low rates of false positive/negative, it is capable of reaching the

decision with a few samples. However, this scheme is designed for static sensor

networks, wherein the nodes divide the time period Tx of monitoring nodes into

n time slots and then checks the presence of the monitored node in each slot and

uses SPRT to decide if the node is present/absent during the time period Tx.

If the monitoring nodes collude, they can give the proxy for the absent node. The

adversary could have captured the node, and would be able to reprogram and re-

deploy the node in the network for launching various insider attacks. It is, there-

fore, necessary to periodically check the integrity of the sensor node program.

5.3 Software and Hardware Attestation

Seshadri et al. [112] created a SoftWare-based ATTestation technique (SWATT), a

code attestation algorithm that is executed solely through software means. Their

technique was designed with the intention of creating a method to externally ver-

ify the code running on embedded devices. A trusted verifier is the key compo-

nent in achieving this goal of their algorithm. The malicious node will contain at

least one line of code that is different from the expected code running on normal

sensors. The verifier has a copy of the memory contents residing in the nodes. The

verifier sends a challenge to the node, which the challenged node uses as the in-

put to a pseudo-random generator to create random memory addresses. A check-

sum is performed in the device on each of these memory addresses. The verifier

runs the same verification procedure locally to compute the expected value of the

check-sum. This expected value is compared to the value returned by the node

in question. This scheme requires the trusted verifier (in case of WSN, the base

station) to continuously be in communication with the nodes. A node must have

memory-content-verification procedure, which itself can be tempered with by the

attacker. They also proposed a protocol called SCUBA [111] to recover the sen-

118

sor nodes after compromise, which uses two-authenticated channel between a

node and the base station. Hash chain is generated by the node as a function of

the indisputable code execution (ICE) check-sum, therefore, malicious node can

not pre-compute the hash chain to save time and forge the ICE check-sum. In

this scheme also, the expected value of the check-sum computed locally at the

verifier end is compared with the value returned by the node in question. The

node and the trusted verifier requires continuous communication and the verifi-

cation procedure loaded in node memory itself can be corrupted, if the node is

compromised. Software attestation based techniques such as [112] and [111] are

not suitable for multi-hop WSNs, which require mutual authentication between

the prover and the verification authority. Also, they depend upon the accurate

time measurement as well as optimal coding of the sensor node program to de-

cide whether the valid code is currently running on the node. In [30], Choi et

al. proposed improvement over SWATT with proactive code verification protocol.

Whenever a verification is requested, the protocol cleans the memory space of the

target node where malicious code can reside. Each node shares a pre-deployed

pair-wise key with the base station. After, node deployment, verification code

V and firmware code C stay in SRAM or flash memory. To start the verification

protocol, base station sends a request message to the target node along with an

encrypted nonce. Target node decrypts the nonce and uses it as a seed to gener-

ate random numbers. These random numbers are fed into an algorithm that fills

the empty space of the node. The node responds back with the hashed memory

content encrypted with the pair-wise key between base station. The base station

checks the received hash and if it is not as expected, the node is considered to

be compromised. In [30], at node end, the fill memory algorithm including ran-

dom number generations and multiple hash computations are involved. The node

needs to perform a symmetric decryption after the request phase and encryption

before response. The request-response communication does not provide message

authentication. Though, the values are encrypted, the receiver side has no way to

ensure if the encrypted value itself is tampered.

Researchers have also proposed hardware attestation protocols for detecting node

119

capture attack. These protocols use Trusted Platform Module (TPM). Kraus et al.

in [67] proposed two hardware attestation protocols for hierarchical WSNs orga-

nized in clusters. In [67], the WSN has two types of nodes - sensor nodes with

limited resources and more resourceful cluster heads equipped with trusted plat-

form module (TPM). The trustworthiness of a cluster head can be validated by

more than one sensors simultaneously in regular intervals using Periodic Broad-

cast Attestation Protocol (PBAP). One way hash chains adapted from µTESLA

[100] are used for authentication. The protocol binds a one-way hash chain to the

platform configuration of a cluster head using the sealing function of the TPM.

The sensor nodes in the cluster can verify the values of hash chains, released pe-

riodically by the cluster head. Only if the platform configuration of the cluster

head is not altered, the validation of hash chain value succeeds and trustwor-

thiness of the cluster head is proved. The second protocol named as Individual

Attestation Protocol (IAP) allows the validation of the trustworthiness of a cluster

head by a sensor node or sink at any time. A sensor node or a sink sends the data

along with its identity and a nonce to cluster head encrypted with a pair-wise key

shared between cluster head and the node/sink. This key is sealed within the

TPM of cluster head. If the cluster head is successful in unsealing the key, decrypt

the nonce and data and respond back with the same nonce sent, the cluster head

is considered to be trustworthy. The hardware attestation protocols in [67] can

also be in the scenarios where many mobile TPM-enabled sinks are deployed in

insecure locations and a network verifier needs to verify the trustworthiness of

the data received from these sinks. The protocols in [67] can be used to prove

whether the cluster is trustworthy or not, it can not prove the untrustworthiness

of a cluster head. Moreover, both the protocols are used for validating the clus-

ter head, the verification of the integrity of program stored in a sensor node is

not addressed. In [117], Tan et al. suggested using TPM at all the sensor nodes

using which a node can verify the integrity of any peer node. Hardware attes-

tation with all nodes enabled with TPM proposed in [117] do consider the node

program integrity verification. However, for large sensor networks, equipping all

the nodes with TPM will result in increased network cost. The scheme needs a

120

node to interact with base station for each verification, which is a communication

overhead. Yang et al. in [131] suggest using TPM enabled cluster heads for node

compromise detection. However, the authors have only mentioned monitoring of

nodes by cluster heads for compromise detection. In their scheme the sensor node

needs to perform few symmetric encryption/decryption and a public key encryp-

tion to establish key with the cluster head. Khiabani et al.[60] proposed Unified

Trust Model (UTM) in which a node’s trustworthiness is calculated on the basis

of its history, recommendation, context, and platform attestation. A node A can

evaluate the trustworthiness of another node B by checking the history of past in-

teractions HAB, recommendations of other entities in the same environment as R1

to Rn, communication context and platform configuration of TPM associated with

node B. This scheme does not consider all nodes equipped with TPM, but incurs

overhead on sensor nodes for computing all the trust parameters involved in the

validation process. For resource constrained sensor node in a WSN, the endeavor

is always to optimize the overhead on nodes, and therefore, a secure and efficient

solution to deal with node capture detection is required.

5.4 Program Integrity Verification

Park and Shin [99] proposed a software solution tailored made for constrained

sensor nodes that claims to prevent manipulation/ reverse engineering/ repro-

gramming of sensors not degrading normal sensor functions. The Software Tam-

per Proofing (STP) protocol in [99] is a Program Integrity Verification (PIV) pro-

tocol that works towards prevention of nodes rejoining the network after capture

and redeployment. The protocol uses a trusted central authority, usually the base

station, as Authentication Server (AS), cluster heads as PIV servers and the sensor

nodes which need to verify the integrity of their programs through PIV servers

(PIVS). The approach is based on Randomized Hash Function (RHF). The entire

program on a sensor node is divided into program blocks. The digest of these

blocks are kept with the PIVS. Server nodes have PIV codes (PIVC) to verify the

integrity. Whenever a node newly joins the network or rejoins after a long ab-

121

sence, PIVS verifies the integrity of the nodes. The nodes can verify the authen-

tication of the PIVS through the authentication server, before executing the PIVC

with a specific PIVS. The STP protocol triggers infrequently and does not rely on

self decryption or result checking and can be used with/without tamper-resistant

hardware. However, the scheme requires base station to authorize the program

integrity verification servers (PIVS) and also the communication between a PIVS

and a node is done on public channel which may cause man-in-the-middle attack

causing a valid node to fail the verification. The protocol considers the scenario

after captured node rejoins the network, however, it does not discuss as to how

the PIVS would decide if the node is redeployed. Chang and Shin [25] suggested

using PIV with distributed authentication, wherein a set of PIVS authenticates

the PIVS involved in a node’s program integrity verification. The centralized au-

thentication in STP is not appreciated as the structure is not consistent with the

distributed structure of WSNs. Central entity may become a bottleneck for com-

munication, reliability and security. The energy consumption of the nodes near

base station will be more.

In the Distributed Authentication Protocol of PIVSs (DAPP) [25], all nodes and

PIVSs share polynomial share based [17] pair-wise secret with each other. PIVSs

can use this secret for the purpose of authenticating one another. Before deploy-

ment, the setup server randomly generates a symmetric bi-variate polynomial

f (x, y) =
t

∑
i,j=0

aijxiyj, and assigns the shares of these polynomials to all PIVSs and

nodes in the network. Post-deployment, PIVS A with a share f (A, y) and PIVS B

with another share f (B, y) can authenticate each other and establish a pair-wise

key as KAB = f (A, B) = f (B, A).

Once the initialization and PIVS discovery is completed, sensor nodes joining the

network require to get their program integrity verified. A sensor node can choose

the nearest PIVS within its communication range and authenticates the chosen

PIVS by asking the PIVS to present authentication tickets from other PIVSs. A

sensor node E requests authentication from the PIVS A using its nonce NE and

message authentication code (MAC), MACKEA(NE), that is computed on nonce

with the help of the pair-wise key between the node and the verifying PIVS. The

122

verifying PIVS A in turn sends the request for authentication tickets to other PIVSs

in the network. For requesting authenticating ticket to another PIVS B, the PIVS

A sends the identity E and nonce NE of the target node along with the authenti-

cator MACKAB(E‖NE) computed over E and NE using the pair-wise key between

the PIVS A and PIVS B. The responding PIVS B prepares the authentication ticket

of the form (B, MACKBE(NE)), where KBE is the pair-wise key between node E

and PIVS B. PIVS B sends this authentication ticket along with node identity E

and the authenticator MACKBA(E‖(B, MACKBE(NE))) to verifying PIVS A. PIVS

A has to collect at least nauth valid authentication tickets from other PIVSs. After

collecting all required authentication tickets, the verifying PIVS A now prepares

the response of authentication request from target node E. This response includes

all the authentication tickets and the authenticator MACKAE(NE + 1).

After validating the response and all the authentication tickets from nauth authen-

ticating PIVSs, the target node E accepts the PIVS A to execute the program in-

tegrity verification protocol with it. The node now checks for the latest version of

the program integrity verification code (PIVC). The PIVS sends the new PIVC in

response, if needed. Node writes the new PIVC into flash memory and requests

the new hash key. Using the new hash key, the node computes the hash of its

program code and requests PIVS for verification. The PIVS, on successful ver-

ification, registers the identity of validated node into its database and confirms

the verification to the target node. Node can now start executing its application.

The complete process of program integrity verification with DAPP is depicted in

Figure 5.1. Although, the authors have discussed a parallel approach to monitor

the compromise of PIVS and revocation of a compromised PIVS as a corrective

measure, PIVS compromise is a threat to the overall integrity verification system.

This scheme also does not talk about how to decide when the redeployment after

capture of a node happens. The pair-wise key scheme [17] used between PIVS

has security weaknesses, which are already discussed in Chapter 3. Both STP and

DAPP protocols for program integrity verification can not handle the adversary

that is capable of adding additional memory in the node.

123

Figure 5.1: DAPP Protocol

In the subsequent section, we present the proposed trusted platform enabled pro-

gram integrity verification (TPIV) protocol for detection of node capture attack.

5.5 Trusted Platform Module Enabled Program Integ-

rity Verification (TPIV) Protocol for Node Capture

Detection

In the proposed TPIV protocol, a cluster head equipped with TPM compares

the program memory content of the node before and after capture to verify the

integrity of the node program. A dynamically computed hash based key and

pseudo random function are used for successfully detecting the node capture at-

tack. TPIV protocol works even when additional memory is put in the captured

node to elude the PIV.

124

5.5.1 Goals and Assumptions

The goal of our TPIV protocol is to detect node capture attack ensuring that:

• only an authorized verifier executes the PIV for detecting a node capture

suspect;

• a victim node can not elude the PIV;

• a captured node does not reveal the secret of other non-captured nodes.

We assume that the adversary does not know the program memory contents of

any non-captured node. The hash of program memory content of a node is the

initial secret between a node and its cluster head. We also assume the sensor

nodes having separate user/data and program memory.

Prior to deployment, base station keeps main application code, boot code and,

the public functions in program memory. All TVSs and nodes are capable of com-

puting a cryptographic Pseudo Random Function PRFk() using key k ∈ Z∗q for a

large prime q and, a one way hash function h(). The PRF used is a keyed hash

that is SHA-256 HMAC [88]. Unique random incompressible bit strings are filled

in the free space of the program memory of each node. Any two nodes (say A

and B) have random incompressible bit strings SA and SB (SA 6= SB, {SA, SB} ∈

Z∗p for some large prime p ≥ q (q is a large prime defining the size of the secret))

respectively in their free spaces. Despite the same application code, the overall

program memory content of each node would be different due to the uniqueness

of random bit strings. We assume that the application code always leaves some

reasonable size of free space in the program memory and whenever the applica-

tion code changes due to software update, free space is adjusted in accordance

with the updated code size. In each TVS, the base station securely copies the free

space contents of each node along with one common copy of the remaining pro-

gram memory content. The node program contents stored at a TVS are sealed

using the initial platform configuration and the public key of TPM embedded in

that TVS.

Post deployment, the nodes associate themselves with a cluster head nearest in

125

their transmission range to form a cluster. An active adversary is assumed to

be present in the network and we discuss his capabilities in the security analysis

section.

5.5.2 TPIV Setup and Monitoring

In the proposed setup, the sensing nodes are vulnerable to node capture attack.

The trusted base station interacts with the outside world on behalf of the WSN

and keeps overall control of the network. Verification is performed by a small

number of resourceful TPM enabled cluster heads referred as TVS (TPM enabled

Verification Server). Each TVS manages a group of resource constrained normal

sensor nodes. Base station assigns a unique identity IDA to each node A and

CHV to each TVS V, prior to deployment. The TPM attached to each TVS V has

a unique non-migratable public-private key pair (PubV , PriV) always residing in

protected storage within TPM. At time t=0, TVS V switches on and PCRs of as-

sociated TPM stores the initial platform configuration (PC) PC0
V . Using PC0

V and

PubV , the program memory content PA of node A is sealed within the TPM asso-

ciated with V using PSeal() function as:

PAsealed = PSeal(PC0
V , PubV , PA)

This sealed content PAsealed can be unsealed later at time t using PCt
V , the PC of V

at time t and, PriV (provided the configuration PCt
V = PC0

V) as:

PA = PUnseal(PCt
V , PriV , PAsealed)

If PCt
V 6= PC0

V , the unsealing fails and the sealed contents become inaccessible to

TVS V.

A cluster head monitors the transmission of the nodes within its cluster. For each

node A, the last transmission heard time tlast
A is recorded. At time tnew

A > tlast
A ,

when next transmission is heard from A, if the time interval between tnew
A and

tlast
A is more than a set threshold time T (tnew

A - tlast
A ≥ T), cluster head proceeds to

perform PIV for the suspect node A.

126

5.5.3 Authentication and Code Verification

A TVS carries out the PIV for a node suspected to be a victim of node capture at-

tack. Before the node presents itself for such verification, it ensures the validity of

the verifying TVS. The two step protocol for authentication and code verification

is given in Figure 5.2.

TVS V Node A

1. PIV_ Challenge:

CHV , IDA, NV ⊕ KA, PRFKA(NV , IDA, CHV)

2. PIV_ Response:

IDA, CHV , PRFKAnew(IDA, CHV), PRFKA(NV)

Figure 5.2: Authentication and Code Verification Protocol

A TVS V, suspecting a node A, initiates the authentication and code verification

protocol. TVS V, having the current platform configuration same as initial plat-

form configuration, retrieves the program memory content PA by unsealing and

computes the key shared with node A as KA = h(PA). TVS V picks a nonce NV

randomly and sends the PIV_Challenge message to node A as CHV , IDA, NV ⊕

KA, PRFKA(NV , IDA, CHV) (Figure 5.2: step 1).

On receiving PIV_Challenge, node A extracts the nonce NV as (NV ⊕ KA) ⊕ KA

and computes PRFKA(NV , IDA, CHV). If computed PRF value matches with re-

ceived PRF value in PIV_Challenge, node A authenticates the challenger TVS V.

Node A, picks NV extracted from the challenge and computes new key KAnew =

h(PAcurr, NV , IDA, CHV) using its current program memory content PAcurr. Node

A sends the PIV_Response message to TVS V in response to PIV_challenge as

IDA, CHV , PRFKAnew(IDA, CHV), PRFKA(NV) (Figure 5.2: step 2) . Since the verifi-

cation depends on the computation of new key KAnew as expected, node A sends

PRFKA(NV) to assure the TVS of correct nonce received. When TVS V receives

PIV_Response, it first verifies the PRFKA(NV) and then computes new key at its

end as KV = h(PA, NV , IDA, CHV). TVS V verifies PRF value PRFKV (IDA, CHV).

127

If the value of PAcurr used to compute KAnew is same as the original value PA stored

at TVS V i.e. program code for node A is unaltered, the PIV succeeds. TVS V con-

siders node A to be authenticated and untempered. Otherwise, node A is treated

as captured and revocation follows.

At the end, node A and TVS V delete nonce and keep the new secret KAnew (= KV).

When node A leaves the cluster monitored by TVS V, node A informs the move to

TVS V who informs this move to all the cluster heads and to all the nodes within

its own cluster. The new TVS W, whose cluster is joined by node A intimates this

new join to old TVS V who secretly shares the key KV with W to communicate

with node A.

5.5.4 Security Strengths

The TPIV protocol detects a victim of node capture with high probability and en-

sures that only an authorized verifier can execute the program integrity verifica-

tion of victim node. Secrecy of non-captured nodes is maintained by not allowing

a captured node to reveal the secret of any non-captured node. The TPIV proto-

col also ensures security against replay and impersonation attacks. The security

analysis is carried out against the adversary model as given below:

Adversary Model. The existence of an active adversary is considered that is ca-

pable of capturing a node physically and steal its secret information. By imper-

sonating a valid node, the adversary can take part in the network operations. Ad-

versary is also capable of reprogramming and redeploying the captured nodes in

order to launch various insider attacks such as sybil attack and selective forward-

ing. The strong adversary is capable of putting additional memory in the node.

We further assume that the adversary can not remain present in the network all

the time due to its deployment in the hostile terrains.

We analyze the protocol against the security goals and give the security proofs

against each security claim in the form of theorems. The definitions used in the

proofs are as below:

Definition 5.1: If h(.) is a one-way cryptographic hash-function with collusion re-

128

sistance defined as h{0, 1}m → h{0, 1}k, then the probability of hash collision, i.e.

finding a x
′ 6= x, such that h(x) = h(x

′
) for a given a x and h(x), is:

Pr[(h(x) = h(x
′
), for x

′ 6= x)] = 1 - (1− 1
2k)

m−1

Definition 5.2: If psucc is the probability of a node successfully receiving a message

from another node within its communication range, the probability of a verifier

successfully receiving the response from challenged node is given as:

Pr[TVS V
PIV_Response←−−−−−−− Node A] =

psucc, if TVS is authorized verifier

0, otherwise

Here, psucc =∑ec

j=0 (
k
j).(1− e)k−j.ej, on a channel with bit error rate e, for k out of

maximum ec number of bits encoded.

Definition 5.3: If s1 is a binary string of length l, then the maximum probability

ps1s2 of finding another string s2 having hamming distance at least 1 from s1 is l
2l

Definition 5.4: EludePIV(.) is a boolean function that determines if a captured re-

programmed node eludes the PIV:

Algorithm 5.1 Elude Program Integrity Verification

Input : PA, PAnew, CHV , IdA, NV

PA - Original Program Memory Content of node A

PAnew - Program Memory Content of A after reprogramming

CHV - Unique identity of TVS V

IdA - Unique identity of node A

NV - Nonce received by node A from server V
Output : TRUE/FALSE

1: procedure ELUDEPIV(PA, PAnew, CHV , IdA, NV)
2: if h(PA, NV , CHV , IdA) = h(PAnew, NV , CHV , IdA) then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end procedure

The following security strengths are identified through the security analysis:

129

5.5.4.1 High Probability of Node Capture Detection

Theorem 5.1. The Pr[EludePIV(PA, PAnew, CHV , IdA, NV)] = TRUE is (1 - (1 −
1
2k)

m−1) for m = |PA‖NV‖CHV‖IdA| and k = |h(PA, NV , CHV , IDA)|.

Proof. We prove that a victim of node capture attack can not elude the PIV. We

trace through the time line for an attacker carrying out the node capture attack

(Refer Figure 5.3).

Figure 5.3: Attacker Time Line

After capturing node A, an adversary had access to secret KA (i.e. h(PA)). When

the attacker reprograms this node, the program memory PA changes to PAnew.

Since the free space in the memory is filled by an incompressible random bit

string, an adversary can not insert code pieces while keeping the original pro-

gram intact [5]. When the attacker puts additional memory and keeps the original

program code there, at any point of time, the attacker has either PA or PAnew as

program memory. Therefore:

130

Attacker(KA) . . . (5.1.1)

Attacker(NV) . . . (5.1.2)

(as Attacker(NV ⊕ KA) ∧ Attacker(KA), NV = (NV ⊕ KA) ⊕ KA)

Attacker(PA) ∧ Not Attacker(PAnew) . . . (5.1.3)

Attacker(PAnew) ∧ Not Attacker(PA) . . . (5.1.4)

To elude the verification, victim node must swap out the malicious code PAnew,

and swap in the original code PA in the program memory before starting PIV pro-

tocol. As per attack time line (Figure 5.3), node A starts with uploading memory

with PA and starts the PIV execution at time t′5 (= t5 + Tu) instead of t5 as expected

by TVS. Therefore, it sends “PIV_Response message” at time t′6 (= t′5 + Tpiv) and

not at t6 and TVS receives the delayed response at t′7 (> t7). Although the time

synchronization in TPIV protocol is not crucial, the implementation (with AT-

mega328 processor using Arduino Duemilanove controller board and ArduinoISP

programmer) of TPIV protocol at node end shows that to upload 9.4 KB of code

associated only with PIV protocol takes about 11.27 seconds (Tu) which itself is

significantly more than the protocol execution time (Tpiv) measured as 5.86 sec-

onds. Thus, the victim does not have enough time to use the original code to

elude the PIV while having malicious code to carry out insider attacks otherwise.

Another possibility is the victim node A eluding the PIV even after reprogram-

ming i.e. holding PAnew as its program memory and, A is able to send a valid

PIV_Response to TVS V. Let us track back the protocol execution:

Attacker(valid PIV_Response)

⇒ Attacker(PRFKAnew(IDA, CHV)) ∧ Attacker(PRFKA(NV))

⇒ Attacker(KAnew) ∧ Attacker(KA) ∧ Attacker(NV)

⇒ Attacker(KAnew) ∧ TRUE ∧ TRUE

[using assertions 5.1.1 and 5.1.2 respectively]

⇒ Attacker(h(PAnew, NV ,IDA, CHV) = h(PA, NV ,IDA, CHV)) ∨

(Attacker(PAnew) ∧ Attacker(PA))

⇒ TRUE (With probability (1 - (1− 1
2k)

m−1) ∨ FALSE

131

[using Definition 5.1 and assertions 5.1.3/5.1.4]

⇒ Pr[EludePIV(PA, PAnew, CHV , IdA, NV)] = TRUE is (1 - (1− 1
2k)

m−1)

[by Definition 5.4] 2

5.5.4.2 Node Capture Detection by Authorized Verifier

Theorem 5.2. The probability of an unauthorized verifier executing the PIV for a detect-

ing a node capture attack is hash-collision probability (1 - (1− 1
2k)

m−1), where m and k

are the input and output sizes of hash, respectively.

Proof. Consider a TVS V compromised by an attacker. Being TPM enabled, any

change in TVS V program changes its platform configuration. Now, TVS V sends

the “PIV_challenge” to node A in order to execute PIV. Thus:

Not Attacker(PC0
V) . . . (5.2.1)

Attacker(NV) . . . (5.2.2)

(as attacker sending “PIV_challenge” message)

If verifier is successful in executing the PIV for node A, the verifier must receive

the “PIV_Response” from node as reply to “PIV_challenge”. Let us trace back the

protocol execution:

Attacker(PIV_Response)

⇒ Attacker(PRFKAnew(IDA, CHV)) ∧ Attacker(PRFKA(NV))

⇒ Attacker(KA) ∧ Attacker(NV)

⇒ Attacker(KA) ∧ TRUE [using assertion 2.2]

⇒ Attacker(PA) (since KA = h(PA)) ∨ Attacker(h′ (= h(PA))

⇒ Attacker(PCt
V(=PC0

V)) ∨ TRUE (With probability(1- (1− 1
2k)

m−1)

[using Definition 5.1]

⇒ FALSE [using assertion 5.2.1] ∨ TRUE (With probability (1 - (1− 1
2k)

m−1)

⇒ TRUE (With probability (1 - (1− 1
2k)

m−1)

Thus, even if an unauthorized verifier receives a message from a node with proba-

bility psucc, the probability of the unauthorized verifier receiving “PIV_Response”

from challenged node i.e. the probability of unauthorized verifier executing PIV

132

for a node is equivalent to the hash-collision probability.

The protocol does not allow an attacker to keep the hash of the program memory

content pre-computed to be used for verification, as the nonce supplied by TVS is

used for each verification round. For both Theorems 5.1 and 5.2, with our imple-

mentation with m = 218 bits (for program memory size of 32 KB) and k = 256 bits

(secret size), the probability would be (1 - (1− 1
2256)

218−1) that is negligible. 2

5.5.4.3 Secrecy of Non-captured Nodes

Theorem 5.3. Given the capture of a node A, the probability of an attacker obtaining the

secret of another node B is Pr[Attacker(KB)/KA] = l
2l , where l is the size of the random bit

string in the free space of a node.

Proof. From the system model, we know that the program memory contents of

any two nodes A and B are different because they have unique random bit strings

SA and SB in their respective free spaces. Therefore, for two nodes A and B, the

free space contents SA and SB (assuming the size of strings l bits each) differ by at

least one bit. When the adversary captures node A, he knows the entire program

memory content PA and thus the secret KA = h(PA) ∈ Z∗q of node A.

Suppose an adversary has captured a node A and, the secret KB of node B is

available to the adversary:

Attacker(KB)

⇒ Attacker(KB = (KA)) ∨ Attacker(h(PB))

⇒ Attacker(h(PB) = (h(PA))) ∨ Attacker(PB)

⇒ Attacker(PA = PB)

⇒ Attacker(SA = SB)

⇒ TRUE (with probability l
2l) [by Definition 5.3]

For free space bit string size of 256 bits, the probability Pr[Attacker(KB)/KA] = 256
2256

= 2.21 ∗ 10−75. 2

133

5.5.4.4 Comparing TPIV with Existing Schemes

Table 5.1 compares the security features of proposed TPIV protocol with some of

the existing proposals. We observed that unlike the SWATT [112] and STP [99]

protocols, the TPIV protocol does not require accurate time synchronization be-

tween verifier and prover. While the integrity of challenge and response messages

is not protected in STP and TRAP [117], the SWATT, STP and TRAP protocols re-

quire base station to be involved in each verification. The proposed TPIV protocol

provides mutual authentication as opposed to STP. The DAPP protocol provides

only k-collusion resistant (for k-degree polynomial used for key) against captured

node revealing the secret of any non-captured node, while TPIV resists the key

leakage of non-captured node with very high probability. The TPIV protocol is

also capable of detecting the node capture attack with very high probability even

when additional memory is put in the captured node.

Scheme⇒ SWATT STP DAPP TRAP TPIV
Features ⇓ [112] [99] [25] [117] [5]

no accurate time synchronization × × X X X

challenge-response message integrity protected X × X × X

base station only involved prior to deployment × × X × X

mutual authentication between verifier-prover X × X X X

captured node does not reveal valid node secrets X X * X X

protected against node memory addition X × × X X

*k- collusion resistant for k-degree polynomial used for key

Table 5.1: Comparing Security Features of Node Capture Detection Protocols

5.5.5 Efficiency and Experimental Results

5.5.5.1 Analytical Comparison

Table 5.2 captures the performance of the proposed TPIV protocol in terms of

storage, computation and communication overhead as compared with existing

protocols.

134

Features⇒ Prover Storage Computation Communication
or overhead overhead overhead (bits)

Protocol ⇓ Verifier (bits) Transmit Receive

DAPP [25] Verifier (k+s) (Nauth + s (3 Nauth + 8) (4 Nauth
log q +(s + 1) Tp Ts + 7) log q + 8) log q

Prover (k+Nauth (Nauth+7) Ts + 10 log q (2 Nauth
+2)log q (Nauth + 1) Tp + 8) log q

TRAP [117] Verifier 3 log q Tt+ 3 Ts + Tp 3 log q 3 log q

Prover log q 2 Tt + 2 Ts 2 log q log q

TPIV [5] Verifier log q Tt + 4 Ts 4 log q 4 log q

Prover log q 5 Ts 4 log q 4 log q

Table 5.2: Performance Comparison of Node Capture Detection Protocols

For computation overhead, we only consider the time incurred in three main cat-

egories of operations namely, public key, symmetric key and heavy TPM opera-

tions such as TPM_Unseal and TPM_Sign, ignoring the light weight operations

such as XOR and TPM_Read. In the performance comparison Table 5.2, timings

required to perform a public key operation, symmetric key operation and TPM

Unseal/Sign operations are depicted as Tp, Ts and Tt respectively. Size of secret

log q is given by a large prime number q. For DAPP protocol [25], k is the degree of

polynomial used for generating key, s is total PIVSs in network and Nauth is num-

ber of authentication tickets needed by a PIVS. With this protocol, we achieved an

overall performance and security improvement with the TPM enabled verifiers as

compared to the software based scheme such as [25]. At the same time, we saved

the cost to equip all the nodes with the TPM chip as in [117].

5.5.5.2 Improvement in Node Capture Detection Probability

In the proposed TPIV protocol, the verification process considers the security

against node memory addition that is not provided in the existing DAPP scheme.

The TRAP protocol needs base station for every verification round.

Suppose:

Probability of an adversary placing additional memory in node = pm

135

Probability of unavailability of base station = pb

Probability of detection of victim of node capture attack = pd

and, δ� 1

Table 5.3 gives the improvement in the detection probability with proposed TPIV

protocol over existing DAPP and TRAP protocols. For example: Consider pm =

DAPP TRAP TPIV Improvement with Improvement with
TPIV over DAPP TPIV over TRAP

pm.δ pm.(1-δ).(pb.δ) pm.(1-δ) pm.(1-2δ) pm.(1-δ).(1 - pb.δ)

Table 5.3: Improvement in Capture Detection Probability with TPIV

0.8, pb = 0.7 and δ = 0.01 then,

Improvement with TPIV over DAPP = 0.8 *(1-2*0.01) = 0.784 (78.4%)

Improvement with TPIV over TRAP = 0.8* (1 - 0.01)*(1-0.7*0.01) = 0.786

(78.6%)

5.5.5.3 Experimental Results

The performance of the existing software based DAPP [25] and TPIV protocol are

further compared using experimental and simulation results.

The network is simulated with Castalia simulator [20] for a field of size 100 by 100

with uniformly distributed varied number of nodes communicating with 25 me-

ters of radio range. We first simulated the TPIV protocol with varied number of

TVSs against a set of nodes and observed that with 10 TVSs we are able to achieve

the optimum performance (Refer Figure 5.4).

As seen from Figure 5.4, when the number of TVSs are increased from 5 to 10,

the percentage increase of nodes served is high, however, when we increase the

number of servers beyond 10, then either the percentage increase is very low or it

decreases. Even with a network of 500 nodes, more than 20% nodes are served at

a time with the help of 10 TVSs. In a practical scenario, this suffices to deal with

the captured nodes effectively.

We implemented the protocols with ATmega328 processor using Arduino Duemi-

lanove controller board and ArduinoISP programmer. The experimental results

136

Figure 5.4: TVS Optimization

show that the computation cost incurred in executing the PIV with TPIV is signif-

icantly less than with DAPP [25] (Refer Figure 5.5) .

Figure 5.5: Comparison of Computation Cost for TPIV and DAPP

137

The simulation results also indicates the performance improvements with the

TPIV protocol in terms of energy consumption and communication latency as

seen in Figures 5.6(a) and 5.6(b).

As against the DAPP, the energy consumption with TPIV protocol drops down to

nearly 50 % at verification server and at node end the reduction is almost 20 %.

The communication latency is significantly low with TPIV.

The reason for the reduction is, in DAPP protocol, four rounds of to and fro com-

munication between the node and the server are required, whereas, TPIV proto-

col needs one round of communication. The sleep schedule of nodes affects the

latency since TMAC as MAC protocol is used for simulation. For large number

of nodes (say 1000), almost all the nodes remain awake for most of the time, as

they are continuously getting signals from the neighboring nodes. In the TPIV

protocol, an awake node can immediately respond back to the server challenge,

while in DAPP, node has to wait for the server to collect authentication tickets

from other servers. The reason for reduced computation cost is that, in DAPP,

a node and the verifying server both compute polynomial based keys for all au-

thentication ticket providing TIVSs. Also, MAC needs to be computed to verify

the authentication tickets. In TPIV, a node computes only an un-keyed hash and

3 PRFs.

5.6 Conclusion

In this chapter, we discussed node capture detection in WSNs deployed in unat-

tended harsh terrains. The objective of an adversary behind carrying out the node

capture attack and various approaches proposed in the literature to model and de-

tect the node capture are studied. A trusted platform module enabled program

integrity verification protocol (TPIV) to detect the node capture attack in a dis-

tributed wireless sensor network setup ensures that only an authorized verifier

can execute the verification. Through experimental results it is proved that the

protocol does not allow a victim node to elude the verification process. The pro-

tocol prevents a captured node from revealing the secrets of other nodes. With

the TPM enabled verifier sealing the program code of nodes, the protocol does

138

(a) Energy Consumption

(b) Communication Latency

Figure 5.6: Comparison of Energy Consumption and Communication Latency for
TPIV and DAPP

139

not reveal node program code on verifier compromise. As evident from the per-

formance analysis and experimental results, in comparison to the pure software

based protocols, TPIV provides additional security with significant reduction in

communication, computation and storage overhead on the nodes. The overall re-

duced cost of network deployment and maintenance is achieved by saving on the

cost of having all the nodes enabled with TPMs.

On a successful detection of a node capture attack victim, the victim must be re-

voked from the network in order to avoid any further damage to the network. In

the next chapter, we discuss a node revocation and key update protocol.

140

CHAPTER 6

Node Revocation and Key Update

Once a node is detected to be a victim of node capture attack with the help of

program integrity verification as discussed in the previous chapter, the cluster

head (PIVS) executes the node revocation and key update protocol to take out

the victim from its cluster by updating the group session key. In this chapter, we

discuss the node revocation and key update protocol that uses Chinese remain-

der theorem based secret sharing to secretly distribute the new session key to all

non-compromised nodes in the cluster. The protocol works with significantly low

overhead on resource constrained sensor nodes providing the security strengths

in terms of secure node revocation, forward and backward secrecy and, resistance

to collusion, replay and impersonation attacks.

6.1 Introduction

Once the node is detected to be a victim of node capture, it must be revoked from

the network to avoid further harm to the network. Since the nodes are randomly

deployed mostly in harsh environments, one of the efficient approaches to node

revocation is to revoke the key used by the victim node so that it can not partic-

ipate in any future network activities. To solve the vital issue of key revocation,

there are different centralized and distributed approaches proposed in the liter-

ature [83] [45]. While the key revocation using centralized schemes require in-

volvement of base station for each malicious node identification and revocation,

the schemes suffer from a common threat of single point of failure. In the dis-

tributed schemes, the nodes are involved through voting mechanism to identify

141

and revoke malicious nodes, such schemes require the resource constrained nodes

to take the overhead involved. The revocation accuracy is improved with the in-

troduction of hybrid approaches that use the concept of grouping of nodes and

take advantage of the features of both centralized and distributed approaches.

6.2 Centralized Approach to Node Revocation

In centralized revocation schemes, a central trusted authority, the base station,

takes the responsibility of identifying a victim node and taking the revocation

decisions. In [42], Eschenauer and Gilgor first proposed the concept of key re-

vocation wherein, the central entity is a mobile controller node with large com-

munication range. The central entity shares a pair-wise key with each node in

the network before deployment. A signature key is generated by the controller

node and shared secretly with each non-compromised node using pair-wise key

between controller and the node. For the revocation, controller node broadcasts

the message, containing all the key identifiers of the keys held by a compromised

node, and signed by the signature key Ke. The non-compromised nodes verify

the signature and remove the common compromised keys from their respective

key rings. With this scheme, the central controller is severely overloaded, as for

each revocation, it needs to first send the new signature key to each node indi-

vidually. Even if one of the pair-wise key is compromised, the attacker can learn

the signature key and thus can impersonate the controller node to send the fake

broadcast. This basic scheme prompted the researchers to explore the key revoca-

tion in wireless sensor networks and this followed many centralized schemes for

key revocation. The KeyRev scheme proposed in [126] revokes the compromised

nodes by not allowing them to compute new session key k j for session j from

which the nodes are revoked. This scheme [126] uses an encryption key Kenc and

a MAC key Kmac for secure communication in the network of n nodes. Both these

keys are derived from the session key k j. In this scheme, the setup server loads

during setup phase, in each node ui, for each session j, a personal secret obtained

from a 2t-degree masking polynomial. The setup server also selects a t-degree

142

polynomial Aj(x) for each session j. For a session, a node ui has to compute two

polynomials Pj(Idi) and Qj(Idi) received as Pj(x) and Qj(x) in the broadcast mes-

sage. These polynomials are obtained based on the revocation list Rj = {r1, r2, . . .,

rw} (w ≤ t) of revoked nodes. Later, Wang et al. extended the KeyRev scheme

and proposed mKeyRev [127] scheme in which m (� n) base stations are used

and these base stations are distributed in such a way that each node has one-hop

access to at least one base station.

Although, KeyRev and mKeyRev schemes prevent the impersonation attack as

the encryption and MAC keys are bound to session key that is being updated af-

ter each session, there exists a vulnerability of same pattern attack due to fixed

size of session interval, wherein the new key is distributed only when the new

session begins. An attacker may use the time between a compromise and the start

of new session to launch same pattern of attack again. In [61], Park et al. proposed

dynamic level session (DLS) scheme that is an improved version of KeyRev to pre-

vent same pattern attack by providing dynamic level sessions. In DLS, base sta-

tion detects the compromised node and updates the session key for next session.

The scheme uses dynamic size of session by using a session time configuration

function wherein the base station distributes new session key immediately after a

node compromise is detected instead of waiting for the active session to get over.

The DLS time has less duration than the time an attacker takes to crack the session

key. To revoke a compromised node, the base station selects a 2t-degree masking

polynomial randomly as h(x) = h0 + h1x + . . . + h2tx2t. Polynomial h(x) has t-

revocation capability. Base station assigns a personal secret Si = h(i) to each node

i in the network using a secure channel between the node and the base station.

For a new session, a session key Ks is generated from pseudo random generator.

The base station takes the set R = {r1, r2, . . ., rl} (l ≤ t) to be revoked, constructs

revocation polynomial g(x) = (x - r1)(x - r2) . . . (x - rl) and, sends the broadcast

message as {R} ⋃ {w(x) = g(x).Ks + h(x)}. Any non-compromised node i can

retrieve the session key by evaluating Ks = (w(i) - h(i))/g(i). For a compromised

node in {R}, g(i) = 0 and therefore, it will not be able to retrieve the key. In the

DLS scheme, a node requires to evaluate polynomials to obtain the session key

143

distributed by the base station and, reveals the personal secret of a valid node to

other valid nodes in the network.

A public key based approach was discussed in [85] wherein ECC is used. In [85],

each node N is preloaded with a public-private key pair (PK(N), SK(N)) with

public key PK(N) = SK(N).G for G as a generator on the elliptic curve. The sink

possesses the key pair (PK(S), SK(S)) and the public key PK(S) is pre-deployed in

each node. A network wide key NK is shared by all the nodes and each node can

establish a pair-wise key KDH(N,S) = KDH(S,N) with sink using Diffie-Hellman

key exchange [38]. On detection of malicious nodes in the neighborhood of a

node N, the sink unicasts the revocation message consisting of the list of malicious

nodes and a nonce ns encrypted with KDH(S,N). Receiving node N deletes ses-

sion keys with all malicious neighbors and confirms the receipt of the revocation

message to sink by sending back nonce ns encrypted with KDH(N,S). Sink also up-

dates the network key NK by unicasting a new key NK′ to each non-compromised

node I along with nonce n(s,I) using key KDH(S,I). Node I confirms the new key

message reception by sending n(s,I) encrypted with KDH(I,S). In this scheme, each

node needs to store its own key pair, public key of sink and network key. Each

revocation requires a node to send confirmation for revocation message and for

updated network key that involves ECC encryption/decryption. Therefore, Even

though it is a centralized scheme, the overhead on nodes is high.

In general, the centralized revocation approaches suffer from single point of fail-

ure.

6.3 Distributed Voting Mechanism for Revoking a Vic-

tim Node

To address the issues in centralized approaches, the researchers have proposed

different distributed approaches. In a distributed key revocation, the neighbors

of a compromised node decide the revocation instead of some centralized au-

thority. The neighbor nodes use some kind of voting mechanism and a node is

confirmed to be revoked once the number of votes against a suspect exceeds a

144

pre-defined threshold. To address the inefficiencies of EG scheme [42], Chan et al.

proposed CPS scheme in [23] with the underlying random pair-wise key distribu-

tion. Suppose a node i can establish a pair-wise key with m other nodes. These m

nodes are called participants for node i and are assigned a random voting key ki.

Each participant node carries a pair-wise key with the target node i as well as a

preloaded vote hash(ki) against node i. When a participant node finds the target

node i to be malicious, it uses the vote hash(ki) to inform other participants. A

Merkle tree [89] is used to authenticate the vote, so each participant also keeps log

m hash values needed for authenticating a vote message. When a node receives

and validates at least t votes against the target node i, node i is marked as “re-

voked” and the revocation message is passed on to all other network nodes. All

the nodes remove the keys associated with revoked nodes from their key rings.

An improvement over CPS scheme is proposed in [24] as CGPM scheme in which

the voting and revocation decisions are performed by processing only one-hop

local broadcast. The revocation is finalized by propagation of a network wide sin-

gle short message. In CGPM, a random t degree polynomial q(x) is chosen and

its cryptographic hash is computed as H(q(x)). A revocation vote is generated as

EMaskjis{(qis(xjis), xjis)}, where qis is the random polynomial used for revocation

against target node i in revocation session s and xjis is the point used by partic-

ipant j against node i for session j. Mask jis is the activation mask given by the

target node i to the participant node j for session s for the purpose of decrypting

the vote. When a compromise node i is detected by a neighbor j in revocation ses-

sion s, node j locally broadcasts unencrypted vote {qis(xjis), xjis)} and the Merkle

[89] authentication values required for verification of the authenticity of this re-

vocation vote. As soon as a neighbor node j receives and authenticates at least t

votes, including its own vote, against a target node i, node j computes polynomial

qis and H(qis) and broadcasts the same. All the nodes receiving this broadcast ver-

ify the message with the pre-stored value H2(qis). On successful verification, the

nodes delete all the keys shared with target node i and mark i as revoked. The

broadcast message is further distributed to reach the entire network.

In [26], Chao et al. proposed Blom’s matrix [15] based scheme CYLL as an ex-

145

tension of CGPM scheme. In [26], each node is assigned a public matrix and a

secret private matrix used for verification of vote in each voting session. For each

revocation session, encrypted votes are preloaded in a node. The scheme uses a

vote matrix that is a multiplication of public and private matrices. The votes are

generated using the vote matrix, and corresponding column information in pub-

lic matrix. A set of hash values is also stored by each node. The node uses the

hash values for verification of a revocation decision. For mi number of partici-

pants for a node i, and a threshold t of number of votes needed to revoke a node,

the public matrix Gi of size t * (mi + 1) is generated for a node i. Then private

symmetric matrices Ri(s) of order t * t are created (1 ≤ s ≤ stotal, stotal being the

number of available revocation sessions against each node). Vote matrices Vi(s) =

(Ri(s) ∗ Gi)
T (T denotes transpose of matrix) of size (mi + 1) * t are then created.

For a target node i, the jth row vj
i(s) of matrix Vi(S) corresponds to participant j.

The encrypted votes, EMaskji(s){v
j
i(s)} are pre-loaded in node j. Activation masks

Mask ji are used by participant j to decrypt vote against target node i for session

s. The hash values H(vλ
i (s)) are also stored by each participant node j of target

node i, where Vλ
i (s) is the secret sharing row in matrix Vi(s). The connection es-

tablishment phase is executed upon receiving a vote against a malicious node or

when identifying a node as malicious. In this phase, the participating node and

the target node exchange the activation masks to decrypt the vote. Upon receiv-

ing threshold number of vote against a target node, the target node is marked as

revoked. If the malicious node refuses to exchange mask, participant node will

not get the decrypted vote against the target node. After few attempts to establish

connection, participating node disconnects the link with the target node and the

target node degree is reduced. When the target node degree goes below a pre-

defined threshold, central degree count mechanism is used to revoke the node.

The CPS [23], CGPM [24] and CYLL [26] schemes suffer from node-collusion at-

tacks. In de-centralized schemes such as [95], a single node makes a revocation

decision. In [95], the concept of “Suicide for common good” is used wherein a

node detecting the compromised node broadcasts the revocation message involv-

ing identities of itself and the victim. Both the nodes are blacklisted by all the

146

nodes. With this scheme, a malicious node may generate false note against a valid

node even before the malicious node itself is detected and thus the network may

loose valid node. Also, even a valid node may mistakenly generate false alarm

against a valid node and this results in loss of two valid nodes.

The distributed approaches, in general, need prior knowledge of node deploy-

ment and put heavy overhead on the resource constrained sensor nodes that par-

ticipate in the voting mechanism to revoke a malicious node.

6.4 Hybrid Node Revocation Methods

To overcome the issues in centralized and distributed approaches, some hybrid

node revocation protocols are proposed using multiple base stations or cluster

heads for revocation. For example, in KSP [62], a hybrid key revocation scheme

is proposed, that applies redundancy on Randomized Grid Based (RGB) scheme

[109]. In RGB scheme, a virtual grid of size m * m is considered in which a dis-

tinct group of symmetric bivariate is assigned to each row and each column. Each

sensor node is then assigned a unique intersection on the grid and the shares of

corresponding row and column are given to each node. A node can thus establish

a direct key with any other node in its own row or column using the share from

the common polynomial, or, can take help of its direct neighbors to establish key

with a node on any other row or column. In the key revocation scheme based

on RGB [62], the grid structure is extended from size m * m to size (m + l) * (m

+ l). Polynomial shares are also assigned to these additional grid intersections,

but are not allotted to any of the nodes. The scheme also assumes the presence

of mobile base stations (MBSs) in the network that may use PKC for secure MBS-

MBS communication. Each sensor node has pair-wise keys to communicate with

MBSs. The scheme suggests key revocation for nodes for which some of the keys

are compromised. When a MBS identifies that some keys of a node are compro-

mised, it broadcasts a revocation message to stop communication with that node.

Then, MBS assigns a new intersection on the grid to the victim node with new

identity and new polynomial shares. With multiple MBSs, the scheme solves the

147

problem of single point of failure and also the nodes are not involved in the re-

vocation process. However, the KSP scheme does not handle the revocation of

nodes captured by the adversary.

In [27], Chattopadhyay and Turuk also attempted to improve upon [23], CGPM

[24] by proposing two key revocation schemes. The schemes in [27] assume that

the network consists of hexagonal regions with unique identities < i, j >, i and j

being the row and column of the region and having at most k nodes in each re-

gion. Some regions are designated as basic regions having the criteria that [i %

2 = 0 and j % 2 = 0 and i % 4 6= 0] or [i % 4 = 0 and j % 4 = 1]. If a region is

not a basic region, then it is a non-basic region with at most two basic regions in

its neighborhood. A set f1(x, y, z), f2(x, y, z) . . . fn(x, y, z) of tri-variate polyno-

mials is chosen with highest degree of x, y and z as 7k. Each basic region has a

unique tri-variate polynomial and a non-basic region gets at most two tri-variate

polynomials that are drawn from the basic regions in their neighborhood. Each

node with a unique identity u in a region is assigned shares of polynomial(s) of

that region and a unique hash function. The node u in a region having polynomial

f1(x, y, z) gets auth1
u(y, z) = f1(u, y, z) as authentication polynomial and ver f 1

u(y, z)

= f1(x, u, z) as verification polynomial. To vote against a node v, node prepares a

message M having the identity of v to all the neighbors of v and also to the base

station. A node w that is a neighbor of node u within same or in the neighboring

region shares a polynomial, say fi(x, y, z) with node u. Node u sends message M

to node w along with a single value p = authi
u(w, h(M)). When w receives this

message (M, p), it computes q = ver f i
w(u, h(M)) using its own verification poly-

nomial. If p = q, node w is assured of the authenticity of the message sent by u

and node w appends its own suspect list with the identity of node v, if not al-

ready present along with the accuser name. Node w increments the revocation

counter against node v by 1. When the number of revocation counts at a node w

against a suspect node v reaches the threshold value t, the node v is added to the

blacklist maintained by node w. After putting node v in blacklist, node w stops

communicating with v and delete all the shared keys with v as well as path keys

created through v. When base station receives t votes against a node v, it pre-

148

pares revocation message containing identity of revoked node v, all the compro-

mised keys and broadcasts the message along with authentication polynomials
n
∑

i=1
fi(baseId, y, h(M)), where baseId is the identity of the base station. Each node

after receiving the revocation broadcast from base station, checks the authenticity

of the message using its own verification polynomial and, once confirmed, deletes

all the compromised keys mentioned in the message M and puts the victim node

in blacklist. The scheme prevents sybil attack and node replication attack as the

list of compromised nodes exist in each node. Another variant of this scheme use

monitor nodes in each region to decide and perform final revocation.

In [44], the hybrid key revocation scheme suggests using voting process among

nodes, but global revocation is based on the process as given in [24]. The scheme

[44] eliminates the need of having prior knowledge of node deployment. The base

station autonomously generates and distributes shared secrets for nodes. For this

purpose, base station stores a (t - 1) degree polynomial f (x) = Si + a1.x + a2.x2 +

. . . + at−1.xt−1 in each node and thus each node has its own secret Si. Each node

also stores a hash value H(Si) and Maski that is used to encrypt/decrypt a vote.

Each node i stores a local link list that contains the information about each neigh-

bor j with which the node i has established an encrypted link. The list contents

are of the form < IDj, Kij >, where IDj is the unique identity of node j and Kij

is the secret key between nodes i and j. Each node i also maintains a path-key

list of the form < IDN1 , IDN2 , . . ., IDNk > that contains the details of each node

j with which node i has established a secret path. In this list, IDN1 , IDN2 , . . .,

IDNk are unique identities of the intermediate nodes on the path between nodes i

and j. An initially empty revocation list is maintained by each node as well. Two

nodes having established a pair-wise key become voting members for each other.

A unique secret share is generated as Sij = Si + a1.IDj + a2.ID2
j + . . . + at−1.IDt−1

j

for each voting member j for node i. Node i sends EKij{Sij, Maski, H(Si)} to

each partner node j and thus a partner node is eligible to vote against the node.

In case, a partner node j is continuously refused for sending shared secret and

mask by a partner node i, it is disconnected. A node with degree less than the

pre-defined threshold is revoked by base station. To vote against a node i, part-

149

ner node j broadcasts EMaski{IDj, Sij} in both the current and the next session to

ensure that a vote sent near the end of a session is also considered by local vote

members for further dissemination. Any other voting member of i, on reception

of this broadcast by j, decrypts the message using mask, stores the message con-

tents and rebroadcasts the message. At the end of the session, if a node j receives t

votes, it uses the shares to compute Si, validates H(Si) value and clears the details

of node i from local link list and adds node i in the revocation list. Node j also

informs base station along with Si encrypted with pair-wise key shared between

base station and j. Base station verifies Si using H(Si) and broadcasts the revoca-

tion to all including non-local voting members. The path-key list is also updated

accordingly. In this scheme, since no session specific details are involved in vote

message or revocation message, it is vulnerable to replay attack. Moreover, in all

these schemes, a sensor node has to evaluate polynomials for sending and receiv-

ing a vote. Furthermore, nodes need to process a revocation message received

from the base station.

In [55], another hybrid revocation protocol is proposed with voting mechanism by

cluster nodes. The cluster head is responsible for broadcasting the final revoca-

tion message with its signature using the public key. The nodes need to store the

public key of cluster head to verify the revocation message. In all the hybrid ap-

proaches discussed above, although, base station or cluster heads are responsible

for final revocation, the nodes are involved in voting mechanism and therefore the

schemes are more distributed and incur computation, communication and stor-

age overheads on the nodes. Recently, Rams and Pacyna [105] had given a group

key distribution with revocation capability (referred as RP scheme) by invalidat-

ing personal secret keys during user revocation. In [105], m random polynomials

s1(x), s1(x), . . ., sm(x) of degree 2t each and a t-degree polynomial h1(x) are se-

lected by group manager. Each user ui ∈ CG1 is assigned a random unique index

xi ∈ Fp. Group manager sends to each user ui, the user’s personal secret Si = {xi,

s1(x), s2(x), . . ., sm(x), h1(x)} using some secure communication channel. For

a communication session j, group manager randomly, uniformly and indepen-

dently selects an update polynomial δ(x) ∈ Fp(x), session key component k j ∈ Fp

150

and a masking value vj ∈ Fp. The update polynomial is such that δj(x) /∈ {δ1(x),

δ2(x), . . ., δj−1(x)}. Group manager also computes hj(x) = h1(x) +
j−1
∑

i=1
δl(x); hj(x)

/∈ {h1(x), h2(x), . . ., hj−1(x)}. Next, a set of t distinct indexes Wj = {w1(x), w2(x),

. . ., wt(x)} ⊆ Fp is selected in a way that the set Wj includes all the nodes revoked

for session j and does not include any node from communication group CGj for

session j. The revocation polynomial rj(x) = ∏
xi∈Wj

(x - xi) is prepared and then the

session key Kj = gkj , a value zj = gkj+vj.hj(0) and polynomial ∆j(x) = δj(x). rj(x) +

sj(x) are computed. Finally the group manager constructs the broadcast compo-

nent as bj = [gvj , zj, {wl, gvj.hj(wl)}wl∈Wj , ∆j(x)]. From the broadcast, for extracting

the session key Kj and update the personal secret data, a node ui takes its personal

secret hj(xi) and first calculates gvj.hj(xi) = (gvj)hj(xi). Node uses Lagrange’s inter-

polation [35] with t points {w1(x), w2(x), . . ., wt(x)} to obtain gvj.hj(0). The new

session key Kj is then retrieved as Kj = zj/(gvj.hj(0)). To update the personal secret

of node ui, the node recovers δj(xi) =
∆j(xi)−sj(xi)

rj(xi)
and computes hj+1(xi) = hj(xi) +

δj(xi).

The RP scheme [105] for hybrid node revocation does not put overhead of vot-

ing process on nodes, however, this scheme also uses polynomial based keys and

involves exponent computation, Lagrange’s interpolation and polynomial evalu-

ation for revocation and key update that are costly for resource constrained sensor

nodes.

Although, hybrid or semi-centralized approaches address the issues of central-

ized and distributed approaches, we observed the scope of reducing overhead on

resource constrained sensor nodes by providing the key revocation with robust

security in the context of node capture. The proposed node revocation and key

update (NRKU) protocol is discussed in subsequent section.

151

6.5 Proposed Protocol for Node Revocation and Key

Update (NRKU)

We present a node revocation and key update protocol that uses Chinese remain-

der theorem based group key distribution to update the session key for non-

captured nodes and revoke the captured node from participating in future net-

work activities.

6.5.1 Goals and Assumptions

The NRKU protocol aims to securely and efficiently withdraw the group key of a

compromised node that is found to be a victim of node capture attack. On suc-

cessful detection of node capture attack, the group session key must be updated

in such a way that the victim node is not able to access the new key and therefore

revoked from participating in further network activities.

We assume that within a cluster, the nodes communicate using a shared group

key that is broadcasted by cluster head for each session. A cluster head runs key

revocation and update protocol on node capture detection through TPM enabled

Program Integrity Verification (TPIV) protocol [5].

The proposed protocol has two phases as explained below.

6.5.2 Initial Session Setup

In the beginning, the head of each cluster distributes initial session key to all the

nodes within its cluster, assuming all the nodes in the cluster are non-compromised

at this initial set-up phase. The initial session secret K0 ∈ Z∗q and a nonce N0 ∈ Z∗q

are randomly selected by a cluster head. The cluster head generates an initial

broadcast message. For this purpose, the cluster head takes the initial session

key K0, the initial group of nodes in the cluster as CG0, the set of secrets S =

{s1, s2, . . . , sd} for all d nodes in the group, initial nonce N0 and the initial empty

list of revoked nodes R0. Using these inputs, the algorithm AUTH_SKEY() is ex-

ecuted to obtain initial broadcast message B0 = Auth_SKEY(K0, CG0, S, N0, R0).

152

The steps involved in AUTH_SKEY algorithm are given in Algorithm 6.1.

Algorithm 6.1 Authenticated Secret Key Distribution

Input : Kl , CGl , S, Nl , Rl (for session l)

Kl - Group shared secret

CGl - Set of nodes under a CH

S - Set of individual node secrets

Nl - Nonce

Rl - Set of nodes marked for revocation

Output : Bl (Broadcast message for session l)

1: procedure AUTH–SKEY(Kl , CGl , S, Nl , Rl)
2: for each node ui ∈ CGl do
3: Compute bil = (Kl ⊕ si) mod si

4: Compute ril = b(Kl ⊕ si)/sic
5: end for
6: Solve Xl ≡ bil mod si (∀ ui ∈ CGl)
7: Solve Yl ≡ ril mod si (∀ ui ∈ CGl)
8: for each node ui ∈ CGl do
9: Compute cil = PRFsi (IDi, Xl , Yl , Rl , Nl)

10: end for
11: Solve Wl ≡ cil mod si (∀ ui ∈ CGl)
12: Compute Bl = (Xl , Yl , Wl , Rl , Nl)
13: return Bl

14: end procedure

6.5.3 Node Revocation and Key Update

The nodes in a cluster are under continuous monitoring by its cluster head. When

the cluster head suspects a node to be a victim of node capture attack, the clus-

ter head executes the program integrity verification protocol [5] with the suspect

node to verify the node’s program integrity. If the node capture attack is con-

firmed through the program integrity verification, cluster head adds the node in

the revocation list. To start the next session, the cluster head prepares the revo-

cation message to distribute revocation list and the new session group key. Al-

though, cluster head broadcasts the revocation message, the keying material is

prepared in such a manner that new key can not be extracted by any of the re-

153

voked nodes. Since a node revoked from the group is excluded from obtaining

the new session group key, the revoked node can not participate in future group

activities. The cluster head may choose to either update the node’s personal secret

manually and thus repair the node or it may choose to leave the node useless by

depleting node’s battery by unicasting a command involving very heavy compu-

tations.

We now discuss the details of the two sub modules involved in the node revoca-

tion and key update protocol, namely revocation message broadcast and authentica-

tion and session key update.

6.5.3.1 Revocation Message Broadcast

To construct the revocation message for a session j, the cluster head randomly

selects a new session group key Kj ∈ Z∗q . The cluster head also selects a random

nonce Nj ∈ Z∗q to be used for the purpose of ensuring message freshness. The

cluster head picks the set Rj of nodes revoked from this session j, the set Jj of

nodes joining the group from session j, set CGj−1 of the group members that were

authorized members in session j-1 and the set S of personal secrets of nodes. The

current communication group CGj includes all the new nodes joining the clus-

ter from this session and excludes all the nodes revoked from this session. With

Kj, Nj, Rj, CGj and S, the cluster head executes AUTH_SKEY() procedure (Re-

fer 6.1) to generate the broadcast Bj for session j. The cluster head intimates the

non-captured nodes about revocation and distributes them a new session key by

executing the Revocation Message Broadcast procedure given in Algorithm 6.2.

6.5.3.2 Authentication and Session Key Update

On receiving the broadcast message Bj from the cluster head for session j, a node

ui first authenticates the message and the sender. The cluster head provides the

PRF value of all the components of the message along with the broadcast. This

PRF value is computed for each individual non-captured node ui that is member

of communication group CGj for session j using the node’s secret si. After au-

thenticity check with the help of PRF, the node checks if the current nonce Nj is

154

Algorithm 6.2 Revocation Message Broadcast

Input : CGj−1, S, Rj, Jj (for session j)

CGj−1 - Set of nodes under a cluster head from previous session

S - Set of individual node secrets

Rj - Set of nodes marked for revocation from session j

Jj - Set of nodes newly joining from session j

Output : Bj (Broadcast message for session j)

1: procedure REV–MSG–BCAST(CGj−1, S, Rj, Jj)
2: Choose a new group key Kj ∈R Z∗q
3: Select a nonce Nj ∈R Zq

4: Picks the sets Jj and Rj

5: Prepares set CGj = (CGj−1/Rj)
⋃

Jj

6: Sets Bj = Auth_SKEY(Kj, CGj, S, Nj, Rj)
7: return Bj, CGj // (for broadcast)
8: end procedure

greater than the previous nonce. The nonces chosen are in ascending order for

each subsequent session and used to ensure the freshness of the broadcast. After

authenticity and freshness check, a valid member node marks all the nodes in Rj

as revoked. Now, the node proceeds to extract the new session key Kj from the

broadcast message. Algorithm 6.3 provides the step-wise details of the authenti-

cation and session key update process.

Apart from revocation of a node, the protocol also provides the joining of new

nodes in a cluster. As a node makes a move to a new cluster, the node informs its

cluster head about this move. When this node requests another cluster head for

joining that new cluster, the new cluster head gets the details of the node from the

node’s previous cluster head and upon ensuring the validity of the node, the new

cluster’s head includes the new node into its cluster. Suppose a node uw moves

from cluster C1 and joins the cluster C2 from session j. After validating node uw

with the help of head of previous cluster C1, the head of cluster C2 considers the

node uw while preparing its next broadcast message Bj. Firstly, it computes bwj

= (Kj ⊕ sw) mod sw and corresponding multiplication factor rwj = b(sw ⊕ Kj)/swc

and then solves the congruence for Xj and Yj including bwj and rwj respectively.

155

Algorithm 6.3 Authentication and Session Key Update

Input : Bj, si

Bj - Broadcast message received

si - Node secret shared with CH

Output : Kj (Session secret key)

1: procedure AUTH–KEY–UPDATE(Bj, si)
2: Pick Xj, Yj, Rj, Nj from broadcast Bj

3: Compute c′ij = PRFsi (IDi, Xj, Yj, Rj, Nj)

4: Pick Wj from broadcast Bj

5: Retrieves cij from Wj as cij = Wj mod si

6: if c′ij 6= cij then
7: REJECT Bj

8: return
9: end if

10: if ui ∈ Rj then return
11: end if
12: if Nj > Nj−1 then
13: Accept the broadcast message as valid
14: Mark the nodes in Rj as revoked
15: Compute rij = Yj mod si

16: Compute Kj = ((Xj mod si) + (rij)) ⊕ si

17: return Kj

18: else
19: REJECT Bj return

20: end if
21: end procedure

Furthermore, C2 computes cwj = PRFsw(IDw, X, Yj, Rj, Nj) and then solves the

congruence for Wj to include cwj. Therefore, from session j, node uw becomes a

valid member of cluster C2 until it is revoked or the node itself moves to another

cluster.

6.5.4 Security Strengths

The protocol for node revocation and key update discussed above provides secure

key revocation along with resistance to node collusion, impersonation and replay

attacks and, forward and backward secrecy. We prove the security claims in the

156

form of theorems with proof by contradiction using the attacker’s knowledge at

various stages.

Initial State: Initially, the attacker has the knowledge of the cluster heads and the

nodes through the network topology. An attacker has access to the public chan-

nel and the public functions. Therefore, an attacker can read all the messages

being communicated on the public channel and can also compute the public func-

tions. At this state, the attacker does not know the secret of any node in the net-

work:

Attacker(U) . . . (6.1.1)

Not Attacker(si) (1 ≤ i ≤ n) . . . (6.1.2)

Attacker(PRF()) . . . (6.1.3)

Attacker(L) . . . (6.1.4)

6.5.4.1 Secure Node Revocation

Theorem 6.1. A node revoked from a session does not have access to new session key and

is not allowed to participate in any future sessions.

Proof: As the protocol execution proceeds, we trace the knowledge of the attacker.

Intermediate State: The attacker has the personal secret se of a node ue captured in

session j. As the cluster head detects this capture, it prepares the list of revoked

nodes as Rt before the start of the next session t. The cluster head also updates

the member list CGt to exclude revoked members and to include new joins.

Now, the broadcast message Bt containing new key Kt is prepared by the cluster

head without involving the secrets associated with nodes in Rt. The Cluster head

broadcasts message Bt on the public channel. Thus:

Attacker(se) . . . (6.2.1)

Not Attacker(si) (∀ui ∈ CGt) . . . (6.2.2)

Attacker(Bt) . . . (6.2.3)

We now claim that the attacker with se has obtained the key Kt and to prove this

claim, we trace back the protocol steps as below:

157

Attacker(Kt)

⇒ Attacker(((Xt mod si) + rit) ⊕ si)

[from step 16 of Algorithm 6.3]

⇒ Attacker(Xt) ∧ Attacker(si) ∧ Attacker(rit)

⇒ Attacker(Xt) ∧ Attacker(si) ∧ Attacker(Yt mod si)

[from step 15 of Algorithm 6.3]

⇒ Attacker(Xt) ∧ Attacker(si) ∧ Attacker(Yt)

⇒ Attacker(Bt) ∧ Attacker(si)

[from step 12 of Algorithm 6.1]

⇒ TRUE ∧ FALSE

[from assertions 6.2.3 and 6.2.2 respectively]

⇒ FALSE

From the above trace, it is evident that an attacker, who could capture a node ue

in session j, is not able to obtain the key Kt for any future session t (> j), when

the node ue is revoked. The node once revoked from the group does not get mem-

bership in any future session t (> j), unless the node is taken back as a new valid

user with new credentials, this claim holds for all the future sessions.

The contradiction, therefore, proves the secure revocation capability in the pro-

posed protocol. 2

6.5.4.2 Forward and Backward Secrecy

Forward secrecy ensures that even when one of the long-term keys is compro-

mised in the future, a session key derived from a set of long-term keys will not be

compromised. Backward secrecy ensures that the past session keys or long-term

keys will not be revealed on compromise of a session key.

In the context of group key distribution [104], forward secrecy ensures that any

number of users revoked before session j colluding together can not recover any of

the future session keys Kj, Kj+1, . . ., Km. (m is the total number of sessions). Thus,

∀ui ∈
⋃

Rl (1 ≤ l ≤ j− 1), collusion will not reveal any key Kw (j ≤ w ≤ m).

158

Similarly, backward secrecy implies that any number of users joining from session

j colluding together can not recover any of the past session keys K1, K2, . . ., Kj−1

[104]. This implies that ∀ui ∈ CGp (j ≤ p ≤ m) and ui /∈ CGl (1 ≤ l ≤ j-1),

collusion will not reveal any key Kw (1 ≤ w ≤ j-1).

Theorem 6.2. The protocol ensures forward and backward secrecy.

Proof : From Theorem 6.1, a node revoked in session j, ue ∈ Rj, can not access Kl

(j ≤ l ≤ m). Now, what remains to prove is that all the revoked nodes in set
⋃

Rp

(1≤ p ≤ j-1) together can not reveal key Kl (j ≤ l ≤ m).

Intermediate State: Up to this stage, j-1 sessions have passed and we have the set

of all the nodes revoked up to session j-1 i.e.
⋃

Rp (1≤ p ≤ j-1).

Now, cluster head broadcasts Bj. Thus:

Attacker(si) (∀ui ∈
⋃

Rp) . . . (6.3.1)

Not Attacker(si) (∀ui ∈ U\⋃ Rp) . . . (6.3.2)

Attacker(Bj) . . . (6.3.3)

Assume that the attacker has obtained the session key Kj for session j with all the

above mentioned knowledge of public functions, public channel, network topol-

ogy and secret keys of revoked nodes (as in assertions 6.1.1 to 6.1.4 and 6.3.1 to

6.3.3). Let us trace back this scenario:

Attacker(Kj)

⇒ Attacker(((Xj mod si) + ri,j) ⊕ si) (for some ui ∈ CGj)

[from step 16 of Algorithm 6.3]

⇒ Attacker(Xj) ∧ Attacker(si) ∧ Attacker(rij)

⇒ Attacker(Xj) ∧ Attacker(si) ∧ Attacker(Yj mod si)

[from step 15 of Algorithm 6.3]

⇒ Attacker(Xj) ∧ Attacker(si) ∧ Attacker(Yj)

⇒ Attacker(Bj) ∧ Attacker(si)

[from step 12 of Algorithm 6.1]

⇒ TRUE ∧ FALSE

159

[from assertions 6.3.3 and 6.3.2 respectively]

⇒ FALSE

This shows that even with si (∀ ui ∈
⋃

Rp, 1≤ p ≤ j-1), the attacker can not get Kl

(j ≤ l ≤ m) i.e. the collusion of revoked nodes does not reveal the future session

keys and protocol ensures forward secrecy.

On the similar lines, we can prove that even with si (∀ ui ∈
⋃

Rl, j ≤ l ≤ m),

an attacker can not get Kp (1 ≤ p ≤ j-1) i.e. the collusion of new joining nodes

does not reveal the past session keys, therefore, providing backward secrecy in

the protocol. 2

6.5.4.3 Resistance to Node Collusion Attack

Node collusion resistance ensures that the key Kw for a session w (j ≤ w ≤ t) can

not be recovered by the collusion of all users of the group Rj ∪ Jt+1.

Theorem 6.3. The proposed protocol resists the node collusion attack

Proof : As the broadcast message Bw for session w (j ≤ w ≤ t) is available on public

channel and the nodes in groups Rj and Jt+1 collude:

Attacker(Kl) ((0 ≤ l < j) and (t < l)) . . . (6.4.1)

Attacker(si) (∀ui ∈ Rj ∪ Jt+1) . . . (6.4.2)

Not Attacker(si) (∀ui /∈ Rj ∪ Jt+1) . . . (6.4.3)

Attacker(Bw) (j ≤ w ≤ t) . . . (6.4.4)

Let us now assume that the node collusion attack is successful and the key Kw

for a session w (j ≤ w ≤ t) is accessible to the collusion of all users of the group

Rj ∪ Jt+1. Therefore:

Attacker(Kw) (for j ≤ w ≤ t)

⇒ Attacker(((Xw mod si) + ri,w) ⊕ si) (for some ui ∈ CGw)

[from step 16 of Algorithm 6.3]

⇒ Attacker(Xw) ∧ Attacker(si) ∧ Attacker(ri,w)

⇒ Attacker(Xw) ∧ Attacker(si) ∧ Attacker(Yw mod si)

160

[from step 15 of Algorithm 6.3]

⇒ Attacker(Xw) ∧ Attacker(si) ∧ Attacker(Yw)

⇒ Attacker(Bw) ∧ Attacker(si) (for some ui ∈ CGw)

[from step 12 of Algorithm 6.1]

⇒ TRUE ∧ FALSE

[from assertions 6.3.3 and 6.3.2 respectively]

⇒ FALSE

This contradiction fails our assumption of successful node collusion attack. 2

6.5.4.4 Resistance to Impersonation and Replay Attacks

The protocol also provides resistance to impersonation and replay attacks. Imper-

sonation implies that an attacker can claim to be a valid group member. However,

in our protocol, the congruence value Xw for a session w that contains the session

key Kw is computed only for valid group members involving their respective per-

sonal secrets. Therefore, even if an attacker gets Xw, can not retrieve the key Kw

unless it has obtained the secret si of a valid group member ui. The protocol thus

resists impersonation attack. For resisting replay attack, each group key broadcast

message includes a nonce Nj for a session j. The nonces are in increasing order

for each later session i.e. Nj < Nj+1. Before proceeding for key retrieval, a node

checks the nonce to ensure that it is greater than the previous nonce. Therefore,

an adversary can not re-transmit an old message in some later session.

6.5.4.5 Existing Revocation Protocols v/s NRKU

Major security features of the proposed protocol are compared with some of the

existing protocol as shown in Table 6.1. We observed that the centralized DLS

scheme [61] neither provides resilience to replay and impersonation attack nor

it resists the node collusion attack. The distributed approach proposed as CT

scheme in [27] is resilient to replay and impersonation attacks, however, the re-

sistance to node collusion depends on the degree k of the polynomial used in the

scheme. Both DLS and CT schemes do not discuss about the forward and back-

ward secrecy of the key. The RP scheme for hybrid revocation presented in [105]

161

is secure against replay and impersonation attacks, however, as the RP scheme is

also polynomial based, the node collusion resistance as well as forward and back-

ward secrecy are limited to the degree k of the polynomial.

Schemes→ DLS [61] CT [27] RP [105] Proposed [2]
Features ↓ (Centralized) (Distributed) (Hybrid) (Hybrid)

Resilience to No Yes Yes Yes
Replay attack

Resilience to No Yes Yes Yes
Impersonation attack

Resistance to Node No up to up to Yes
Collusion Attack k-collusion k-collusion

Forward and − − k-forward Yes
Backward Secrecy k-backward

Table 6.1: Comparison of Security Features of Revocation Protocols

In the table 6.1, k is the degree of polynomial used in revocation schemes based

on polynomials. ‘−’ is an indication that the respective work does not consider

the feature.

6.5.5 Performance Boost with NRKU

With the given node revocation and key update protocol, the computation over-

head is almost negligible at node end. This is due to the fact that a node only

needs to perform basic XOR and mod operations to retrieve the session key from

the broadcast message.

The protocol proposes to keep the personal secret of a node stored as incompress-

ible bit strings in the program memory of the node [5], thus the storage overhead

is only to keep a group key for each session.

The communication overhead is seen as the number of bits transmitted and re-

ceived by a node. In this protocol, a node does not transmit any message for node

revocation and key update and receives 5 * log q (log q - size of the key in bits) bits

of single broadcast.

The comparison of performance parameters is summarized in Table 6.2. In the

table, k is the degree of the polynomial in the protocols that use polynomial based

162

primitives, m is for maximum number of sessions and d is for the number of votes

transmitted/received in distributed schemes.

Schemes→ DLS [61] CT [27] RP [105] Proposed [2]
Features ↓ (Centralized) (Distributed) (Hybrid) (Hybrid)

Computation Cost O(k) O(k3) O(k2) O(1)

Storage Cost O(1) O(k2) O(mk) O(1)

Communication Cost O(k) O(d) O(1) O(1)

Table 6.2: Performance Comparison of Revocation Protocols

We compared the node energy consumption of NRKU protocol [2] and the latest

hybrid RP protocol for revocation [105] using the Castalia simulator [20]. From

Figure 6.1, it is evident that the energy consumption in NRKU protocol is con-

stantly low irrespective of the network size in comparison to the RP protocol.

Figure 6.1: Comparison of Energy Consumption for NRKU and RP Protocol

Also, we implemented both the protocols on ATMega 328 processor using Ar-

duino Duemilanove controller board and ArduinoISP programmer for computa-

tion cost. The experimental results in Figure 6.2 shows that with NRKU protocol,

the computation time reduces to almost 90 %.

163

Figure 6.2: Comparison of Computation Cost for NRKU and RP Protocol

6.6 Conclusion

In this chapter, we discussed about the vitality of node revocation and key up-

date aspects in relation to node capture attack in a WSN. When a node becomes

a victim of node capture attack, it serves the purpose of an adversary to dam-

age the network from within as an insider attacker. Therefore, it is imperative

to exclude such node from the network operations. A viable approach to node

revocation is to revoke the secret key of such captured node and provide a new

key to the non-captured nodes within the group. The existing key revocation

schemes are based on centralized, distributed or hybrid approaches. The cen-

tralized approaches suffer from the threat of single point of failure. Moreover,

the base station requires to communicate with nodes to gather information about

the malicious node, and inform nodes on revocation decisions resulting in de-

lays that gives time to an attacker for performing more attacks. The distributed

approaches, on the other hand, are vulnerable to node collusion attack and also

demand the resource constrained nodes to actively participate in voting mecha-

nism for revocation resulting in overhead. Hybrid revocation schemes attempted

164

to address the security issues in centralized and distributed approaches. How-

ever, although most of the hybrid approaches put the revocation decision on base

station but nodes are involved in voting to identify the nodes for revocation. In

this chapter, we presented a node revocation and key update protocol using Chi-

nese remainder theorem based secret sharing. The protocol provides an efficient

and secure way to revoke a node when it is detected to be a victim of node capture

attack. The proposed protocol not only provides secure node revocation but also

ensures forward and backward secrecy and, resistance to node collusion, replay

and impersonation attacks. We compared the performance of the proposed node

revocation and key update protocol with some of the existing protocols and it is

evident from the analytical comparisons and, from the experiments and simula-

tion results that the protocol out performs by providing the required security with

significantly reduced computation, communication and storage costs.

165

CHAPTER 7

Conclusion and Future Work

We have presented a comprehensive approach to deal with node capture detec-

tion in a WSN in a secure and efficient manner. The proposed solution integrates

the key establishment, node capture detection and node revocation in a clustered

mobile sensor network and can be used for any application with an unattended

deployment that demands security against the threat of node capture attack.

We first discussed an authenticated pair-wise key establishment and key update

protocol for WSN in dynamic environments [4]. We used a multi-polynomial

share based scheme to establish a master secret key between a pair of nodes. Using

this master secret, a pair of nodes can generate a fresh pair-wise key. The protocol

provides node authentication without involvement of the base-station and with-

out any additional communication overhead; in the node discovery phase itself

the nodes are authenticated and initial key establishment takes place. Moreover,

the protocol implements a key update mechanism that allows two nodes to ne-

gotiate a new pair-wise key anytime during the communication. The protocol is

proven secure against impersonation, replay, worm hole, sink hole and known-

key attacks. The protocol provides data confidentiality through a dynamic secret

key and ensures forward secrecy and mutual key control. The underlying multi

polynomial scheme provides a very good resilience against node capture attack.

The pair-wise key establishment is used for communication between base station

and cluster heads. Within a cluster of nodes, we proposed a group session key

managed by the respective cluster head. We then discussed a self-healing and

mutual healing enabled group key distribution protocol. During key distribution,

a node may miss out on one or more broadcasts. We discussed self-healing to get

166

such missing information wherein, using the recent broadcast keying material, a

node extracts the key used in the previous sessions, if that node was an authorized

member of the session. Furthermore, if the node misses out the recent broadcast,

it seeks help of its neighboring nodes and obtains the missing key through mu-

tual healing. We provided an efficient approach for generating the broadcast in-

formation and key extraction from the keying broadcast material using Chinese

remainder theorem based secret sharing. Our protocol provides self-healing and

mutual-healing capability along with additional security features such as resis-

tance to impersonation attack and key message confirmation with authentication

in mutual healing. The required security of group-key distribution along with

self-healing and mutual-healing capability is achieved at significantly low stor-

age, computation and communication overhead, which is a significant achieve-

ment in WSN environment.

Since the unattended deployment of resource constrained sensor nodes in haz-

ardous environments leaves the nodes exposed to node capture attack, we next

discussed a protocol to verify the integrity of a sensor node program to detect

node capture attack, that is an adversary physically capturing, reprogramming

and redeploying a node, in a distributed WSN setup. The protocol provides au-

thentication of a node and verification of the program integrity that helps de-

tecting the node capture attack with less overhead as compared to the existing

program integrity verification protocols [5]. Prior to node program integrity ver-

ification, a node can authenticate the verification server. Each verification server

is equipped with trusted platform module (TPM), so the protocol overcomes the

threat of attacker knowing the node program stored at the verifier and also en-

sures that capture of a node does not reveal the secret of any other node in the

network. Additional security such as protecting node secrets from compromised

verifier and protection against node memory addition is provided as compared to

the pure software based protocols with significant reduction in communication,

computation and storage overhead on the nodes. Moreover, the cost of equipping

all the nodes with the TPM chip is saved, resulting in the overall reduced cost of

network deployment and maintenance.

167

At the end, we discussed an efficient and secure protocol for node revocation

and key update after node capture detection [2]. The proposed protocol provides

secure node revocation and also ensures the forward and backward secrecy, resis-

tance to node collusion, replay and impersonation attacks.

The security claims in all the proposed protocols are verified using analytical rea-

soning, theorem proving technique and formal analysis with ProVerif tool. The

performance improvements claimed in the protocols are the results of analytical

comparisons as well as the simulation and experiments carried out. We used the

Castalia simulator for simulating the performance of the protocols in the real-time

networks and carried out experiments on ATmega328 processor using Arduino

Duemilanove controller board and ArduinoISP programmer.

In pair-wise key establishment and key update protocol, it is shown that the com-

putation cost of session key update remains constant and does not get affected

even if the degree of polynomial to establish the master secret is increased to en-

hance the node capture resilience. When degree of polynomial is high (≥ 200), the

session key update cost is significantly low as compared to one time initial session

key establishment. The node energy consumption for session key update protocol

is less than half the energy required for initial key establishment irrespective of the

network size. The experimental results for self-healing and mutual-healing pro-

tocols reveal that when the computation cost for self-healing and mutual healing

is compared with the existing protocol, the cost is significantly reduced with pro-

posed bilinear pairing based approach and is almost negligible with the proposed

symmetric key based healing. In the proposed TPIV protocol for node capture

detection, we proved through the experiment that the adversary can not elude

the program integrity verification even when he puts additional memory in the

captured node. The computation cost, energy consumption and communication

latency is reduced with TPIV as compared to the existing DAPP protocol. The

experiment carried out to compare the performance of the proposed node revo-

cation and key update (NRKU) protocol with the existing RP protocol shows that

the computation overhead and node energy consumption with NRKU is notably

low.

168

To summarize, this thesis presents a secure and efficient solution for detection of

node capture attack supported by secure key establishment, self healing and re-

vocation of a victim of node capture from the network. The proposed solution can

be used in any clustered mobile sensor network for applications where nodes are

unattended after deployment and are vulnerable to node capture attack.

In the thesis, we have used various mathematical and cryptographic primitives.

In the pair-wise key update protocol, the initial session key set up is proposed us-

ing Diffie-Hellman (DH) key exchange that is considered to be computationally

heavier for resource constrained sensor nodes. Although the pair-wise DH key

exchange is proposed to be executed only once between a pair of resource rich

cluster heads, there is a scope of improvement and the DH key exchange can be

replaced with a more efficient method.

We have given the bi-linear pairing based protocol for healing enabled group key

distribution. The pairing based cryptography is also considered to be computa-

tionally heavy. Although, we have proposed a symmetric key based protocol, we

see the scope of considering more efficient public-key based approach to replace

the pairing-based approach.

The proposed framework mandates the deployment of cluster heads equipped

with trusted platform module. In future, we plan to ease this assumption by us-

ing software based implementation for establishing a trust base. We further look

forward to explore the feasibility of equipping a node for self-defence against the

node capture attack.

The node revocation and key update protocol provides mitigation to revoked

node in terms of manually repairing the node. We plan to explore the possibil-

ity of providing solution for remotely repairing the victim of node capture attack

to reuse the node.

Furthermore, with the emergence of cyber physical system (CPS), the interactions

amongst humans and objects in the physical and in the virtual world is going to

be an enriching experience. Wireless Sensor network is one of the key compo-

nent of CPS wherein the intelligence would be built with multiple dimensions of

sensing data across multiple sensor networks and the Internet. Within a CPS, a

169

WSN is able to participate and leave in dynamic fashion wherein the activation-

deactivation of sensors may also be mission-specific. CPS would involve intra-

WSN, cross-domain communications with varying level of coverage and connec-

tivity for different WSNs. A mix of static as well as dynamic sensor nodes with

controlled and uncontrolled mobility may be used to collect data in a CPS appli-

cation. In order to make proper use of the intelligence gathered from the sensing

data, emphasis on obtaining knowledge from multiple sensing domains would be

given in CPS. Security and privacy would be a vital issue with CPS given that the

sensing data is gathered from multiple WSNs. In our future research endevours,

we would like to explore and identify the security threats in WSNs in the con-

text of cyber physical systems and work towards providing effective and efficient

solutions to resolve the identified security issues.

170

Bibliography

[1] Agrawal, S. and Das, M. L. “Mutual Healing Enabled Group-key Distribu-

tion Protocol in Wireless Sensor Networks”. In: Elsevier Journal of Computer

Communications , Vol. 112(C) (2017).

[2] Agrawal, S. and Das, M. L. “Node Revocation and Key Update Protocol

in Wireless Sensor Networks”. In: Proceedings of IEEE International Confer-

ence on Advanced Networks and Telecommunications Systems (ANTS) , pp. 1–6

(2016).

[3] Agrawal, S., Patel, J., and Das, M. L. “Pairing Based Mutual Healing in

Wireless Sensor Networks”. In: Prooceeding of 8th IEEE International Confer-

ence on Communication Systems and Networks (COMSNETS) , pp. 1–8 (2016).

[4] Agrawal, S., Roman, R., Das, M. L., Mathuria, A., and Lopez, J. “A Novel

Key Update Protocol in Mobile Sensor Networks”. In: Proceeding of 12th

International Conference on Information Systems Security , Vol. Springer LNCS

7671: 194–207 (2012).

[5] Agrawal, S., Das, M. L., Mathuria, A., and Srivastava, S. “Program In-

tegrity Verification for Detecting Node Capture Attack in Wireless Sensor

Network”. In: Proceedings of 11th International Conference on Information Sys-

tems Security (ICISS) , Vol. Springer LNCS 9478: 419–440 (2015).

[6] Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. “Wireless

Sensor Networks: A Survey”. In: Journal of Computer Networks , Vol. 38(4):

393–422 (2002).

[7] Albrecht, M., Gentry, C., Halevi, S., and Katz, J. “Attacking Cryptographic

Schemes Based on "Perturbation Polynomials"”. In: Proceedings of the 16th

171

ACM conference on Computer and Communications Security (CCS) , pp. 1–10

(2009).

[8] Arduino Platform. Accessed: 2016-10-11. URL: https://www.arduino.cc.

[9] Atakli, I., Hu, H., Chen, Y., Ku, W., and Su, Z. “Malicious Node Detection

in Wireless Sensor Networks using Weighted Trust Evaluation”. In: Pro-

ceedings of the 2008 Spring Simulation Multiconference , pp. 836–843 (2008).

[10] Becher, A., Benenson, Z., and Dornseif, M. “Tampering with Motes: Real-

world Physical Attacks on Wireless Sensor Networks”. In: Proceedings of

the Third International Conference on Security in Pervasive Computing (SPC) ,

Vol. Springer LNCS 3934: 104–118 (2006).

[11] Bellare, M. and Rogaway, P. Pseudorandom Functions. Accessed: 2017-17-02.

URL: https://cseweb.ucsd.edu/~mihir/cse207/w-prf.pdf.

[12] Benenson, Z., Cholewinski, P., and Felix, C. “Vulnerabilities and Attacks in

Wireless Sensor Networks”. In: Wireless Sensor Network Security - Cryptology

and Information Security Series , Vol. 1: 22–43 (2007).

[13] Bhaskar, P. and Pais, A. “A Chinese Remainder Theorem Based Key Man-

agement Algorithm for Hierarchical Wireless Sensor Network”. In: Interna-

tional Conference on Distributed Computing and Internet Technology (ICDCIT)

, Vol. Spinger LNCS 8956: 311–317 (2015).

[14] Blanchet, B., Smyth, B., and Cheval, V. ProVerif 1.88: Automatic Cryptographic

Protocol Verifier: ProVerif User Manual and Tutorial (2013). URL: https://

www.bensmyth.com/files/ProVerif-manual-version-1.88.pdf.

[15] Blom, R. “An Optimal Class of Symmetric Key Generation Systems”. In:

Proceedings Of the EUROCRYPT 84 Workshop on Advances in Cryptology: The-

ory and Application of Cryptographic Techniques , pp. 335–338 (1985).

[16] Blundo, C., D’Arco, P., Santis, A. De, and Listo, M. “Design of Self-Healing

Key Distribution Schemes”. In: Designs, Codes and Cryptography: An Inter-

national journal , Vol. 32(1): 15–44 (2004).

172

https://www.arduino.cc
https://cseweb.ucsd.edu/~mihir/cse207/w-prf.pdf
https://www.bensmyth.com/files/ProVerif-manual-version-1.88.pdf
https://www.bensmyth.com/files/ProVerif-manual-version-1.88.pdf

[17] Blundo, C., Santis, A. De, Herzberg, A., Kutten, S., Vaccaro, U., and M.

Yung, Moti. “Perfectly-Secure Key Distribution for Dynamic Conferences”.

In: Proceedings of 12th Annual International Cryptology - Advances in Cryptol-

ogy , pp. 471–486 (1993).

[18] Bonaci, T., Bushnell, L., and Poovendran, R. “Node Capture Attacks in

Wireless Sensor Networks: A System Theoretic Approach”. In: Proceedings

of IEEE 49th International Conference on Decision and Control , pp. 6765–6772

(2010).

[19] Boneh, D. and Franklin, M. “Identity-based Encryption from the Weil Pair-

ing”. In: Proceedings of the 21st Annual International Cryptology Conference on

Advances in Cryptology , LNCS Vol. 2139: 213–229 (2001).

[20] Boulis, A. Castalia: A simulator for Wireless Sensor Networks and Body Area

Networks: Castalia User’s Manual (Ver - 3.2(2011). URL: https://www.scribd.

com/document/78901825/Castalia-User-Manual.

[21] Brown, E., Errthum, E., and Fu, D. Weil Pairing vs. Tate Pairing in IBE Sys-

tems. Accessed: 18 Jul 2017. URL: http://course1.winona.edu/eerrthum/

Papers/WeilVsTate.pdf.

[22] Cao, Z. and Liu, L. “On the Disadvantages of Pairing-based Cryptogra-

phy”. In: IACR Cryptology ePrint Archive , Vol. 2015: 84–92 (2015).

[23] Chan, H., Perrig, A., and Song, D. “Random Key Predistribution Schemes

for Sensor Networks”. In: Proceedings of IEEE Symposium on Security and

Privacy , pp. 197–213 (2003).

[24] Chan, H., Gligor, V., Perrig, A., and Muralidharan, G. “On the Distribu-

tion and Revocation of Cryptographic Keys in Sensor Networks”. In: IEEE

Transactions on Dependable and Secure Computing , Vol. 2(3): 233–247 (2005).

[25] Chang, K. and Shin, K. “Distributed Authentication of Program Integrity

Verification in Wireless Sensor Networks”. In: ACM Transactions on Infor-

mation and System Security (TISSEC) , Vol. 11(3): 1–35 (2006).

173

https://www.scribd.com/document/78901825/Castalia-User-Manual
https://www.scribd.com/document/78901825/Castalia-User-Manual
http://course1.winona.edu/eerrthum/Papers/WeilVsTate.pdf
http://course1.winona.edu/eerrthum/Papers/WeilVsTate.pdf

[26] Chao, C., Yang, C., Lin, P., and Li, J. “Novel Distributed Key Revocation

Scheme for Wireless Sensor Networks”. In: Journal of Security and Commu-

nication Networks , Vol. 6(10): 1271–1280 (2013).

[27] Chattopadhyay, S. and Turuk, A. “A Scheme for Key Revocation in Wire-

less Sensor Networks”. In: International Journal on Advanced Computer Engi-

neering and Communication Technology , Vol. 1(2): 16–20 (2012).

[28] Cheikhrouhou, O. “Secure Group Communication in Wireless Sensor Net-

works: A Survey”. In: Journal of Network and Computer Applications , Vol. 61:

115–132 (2015).

[29] Chen, X., K. Makki, K. Yen, and Pissinou, N. “Sensor Network Security: A

Survey”. In: Proceedings of IEEE Communications Surveys and Tutorials , Vol.

11(2): 57–73 (2009).

[30] Choi, Y., Kang, J., and Nyang, D. “Proactive Code Verification Protocol in

Wireless Sensor Network”. In: Proceedings of the 2007 International Confer-

ence on Computational Science and Its Applications (ICCSA) , pp. 1085–1096

(2007).

[31] Chuang, P., Chang, S., and Lin, C. “A Node Revocation Scheme Using

Public-Key Cryptography in Wireless Sensor Networks”. In: Journal of In-

formation Science and Engineering , Vol. 26: 1859–1873 (2010).

[32] Conti, M. “Capture Detection”. In: Secure Wireless Sensor Networks , Vol. 65:

53–73 (2016).

[33] Conti, M., Pietro, R., Mancini, L., and Mei, A. “Emergent Properties: Detec-

tion of the Node-Capture Attack in Mobile Wireless Sensor Networks”. In:

Proceedings of the First ACM Conference on Wireless Network Security (WiSec)

, pp. 214–219 (2008).

[34] Dang, Q. “Recommendation for Applications Using Approved Hash Al-

gorithms”. In: NIST Special Publication 800-107, Revision 1 (2012).

[35] Davis, P. “Interpolation”. In: Interpolation and Approximation, published by

Dover Publications , pp. 24–55 (1975).

174

[36] De, P., Liu, Y., and Das, S. K. “Deployment Aware Modeling of Node Com-

promise Spread in Wireless Sensor Networks”. In: ACM Transactions on

Sensor Networks , Vol. 5(3): 413–425 (2009).

[37] Delgosha, F. and Fekri, F. “A Multivariate Key Establishment Scheme for

Wireless Sensor Networks”. In: IEEE Transactions on Wireless Communica-

tions , Vol. 8(4): 1814–1824 (2009).

[38] Diffie, W. and Hellman, M. “New directions in Cryptography”. In: IEEE

Transactions on Information Theory , Vol. 22(6): 644–654 (1976).

[39] Ding, W., Laha, B., and Yenduri, S. “First Stage Detection of Compromised

Nodes in Sensor Networks”. In: Proceedings of IEEE Sensors Applications

Symposium , pp. 20–24 (2010).

[40] Dolev, D. and Yao, A. “On the Security of Public Key Protocols”. In: IEEE

Transactions on Information Theory , Vol. 29(12): 198–208 (1983).

[41] Dutta, R., Mukhopadhyay, S., and Dowling, T. “Enhanced Access Polyno-

mial based Self-healing Key Distribution”. In: Security in Emerging Wireless

Communication and Networking Systems , LNICS Vol. 42: 13–24 (2010).

[42] Eschenauer, L. and Gligor, V. “A Key-Management Scheme for Distributed

Sensor Networks”. In: Proceedings of the 9th ACM Conference on Computer

and Communications Security , pp. 41–47 (2002).

[43] Gao, Q. “The Chinese Remainder Theorem And The Prime Memory Sys-

tem”. In: Proceedings of the 20th Annual International Symposium on Computer

Architecture , pp. 337–340 (1993).

[44] Ge, M. and Choo, K. “A Novel Hybrid Key Revocation Scheme for Wireless

Sensor Networks”. In: Proceedings of 8th International Conference on Network

and System Security (NSS) , pp. 462–475 (2014).

[45] Ge, M., Choo, K., Wu, H., and Yu, Y. “Survey on Key Revocation Mecha-

nisms in Wireless Sensor Networks”. In: Journal of Network and Computer

Applications , Vol. 63(C): 24–38 (2016).

175

[46] Ghafoor, A., Sher, M., Imran, M., and Saleem, K. “A Lightweight Key Fresh-

ness Scheme for Wireless Sensor Networks”. In: Proceedings of 12th Interna-

tional Conference on Information Technology - New Generations , pp. 169–173

(2015).

[47] Guo, S., Leung, V., and Qian, Z. “A Permutation-Based Multi-Polynomial

Scheme for Pairwise Key Establishment in Sensor Networks”. In: Proceed-

ings of IEEE International Conference on Communications (ICC) , pp. 1–5 (2010).

[48] Guo, S. and Qian, Z. “A Compromise Resilient Pair-wise Rekeying Pro-

tocol in Hierarchical Wireless Sensor Networks”. In: Smart Wireless Sensor

Networks , Vol. InTechOpen 18: 315–326 (2010).

[49] Gupta, V., Millard, M., Fung, S., Zhu, Y., Gura, N., Eberle, H., and Shantz,

S. C. “Sizzle: A Standards-based End-to-End Security Architecture for the

Embedded Internet”. In: Proceedings of 3rd IEEE International Conference on

Pervasive Computing and Communications , pp. 247-256 (2005).

[50] Hayouni, H. and Hamdi, M. “Energy Efficient Key Management Scheme

for Clustered Hierarchical Wireless Sensor Networks”. In: Proceedings of

the IEEE 12th International Conference on Networking, Sensing and Control ,

pp. 105–109 (2015).

[51] He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao,

Q., Vicaire, P., Stankovic, J., Abdelzaher, T., Hui, J., and Krogh, B. “VigilNet:

An Integrated Sensor Network System for Energy-efficient Surveillance”.

In: ACM Transactions on Sensor Networks , Vol. 2(1): 1–38 (2006).

[52] Ho, J. “Distributed Detection of Node Capture Attacks in Wireless Sensor

Networks”. In: Smart Wireless Sensor Networks (2010).

[53] Hong, D. and Kang, J. “An Efficient Key Distribution Scheme with Self-

Healing Property”. In: Journal of Communications , Vol. 9(8): 759–761 (2005).

[54] IRIS Datasheet. Accessed: 2017-15-02. URL: http : / / www . memsic . com /

userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf.

176

http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf

[55] Jiang, Y., Zhang, R., and Du, X. “A New Efficient Random Key Revocation

Protocol for Wireless Sensor Networks”. In: Proceedings of International Con-

ference on Parallel and Distributed Computing, Applications and Technologies ,

pp. 233–238 (2013).

[56] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., and Rubenstein, D.

“Energy-efficient Computing for Wildlife Tracking: Design Tradeoffs and

Early Experiences with ZebraNet”. In: ACM SIGPLAN Notices: Session on

Emerging Systems , Vol. 37(10): 96–107 (2002).

[57] Junior, W., Hao, T., Wong, C., and Loureiro, A. “Malicious Node Detection

in Wireless Sensor Networks”. In: Proceedings of 18th International Parallel

and Distributed Processing Symposium , Vol. 4: 24–30 (2004).

[58] Karlof, C., Sastry, N., and Wagner, D. “TinySec: A Link Layer Security Ar-

chitecture for Wireless Sensor Networks”. In: Proceedings of the 2nd Interna-

tional Conference on Embedded Networked Sensor Systems , pp. 162–175 (2004).

[59] Katz, J. and Lindell, Y. “Private-key Encryption”. In: Introduction to Mod-

ern Cryptography, Chapman & Hall/CRC - Cryptography and Network Security

Series, ISBN: 978-1-4665-7026-9 , pp. 77–79 (2015).

[60] Khiabani, H., Idris, N., and Manan, J. “Leveraging Remote Attestation to

Enhance the Unified Trust Model for WSNs”. In: Proceedings of International

Conference on Cyber Security , pp. 139–143 (2012).

[61] Kim, D., Sadi, M., and J, Park. “DLS : Dynamic Level Session Key Revoca-

tion Protocol for Wireless Sensor Networks”. In: Proceedings of International

Conference on Information Science and Applications (ICISA) , pp. 1–8 (2010).

[62] Kim, D., Sadi, M., and Park, J. “A Key Revocation Scheme for Mobile Sen-

sor Networks”. In: Proceedings of Frontiers of High Performance Computing

and Networking ISPA 2007 Workshops , pp. 41–49 (2007).

[63] Kim, J., Caytiles, R., and Kim, K. “A Review of the Vulnerabilities and At-

tacks for Wireless Sensor Networks”. In: Journal of Security Engineering ,

Vol. 9(3): 241–250 (2012).

177

[64] Kim, J., Han, Y., Park, S., and Chung, T. “N-Dimensional Grid-Based Key

Predistribution in Wireless Sensor Networks”. In: Proceedings of Interna-

tional Conference on Computational Science and Its Applications , pp. 1107–1120

(2007).

[65] Koblitz, N. “Elliptic Curve Cryptosystems”. In: Mathematics of Computation

, Vol. 48(177): 203–209 (1987).

[66] Koblitz, N. and Menezes, A. “Pairing-Based Cryptography at High Secu-

rity Levels”. In: Proceedings of 10th IMA International Conferenc on Cryptog-

raphy and Coding , Vol. Springer LNCS 3796: 13–36 (2005).

[67] Krauß, C., Stumpf, F., and Eckert, C. “Detecting Node Compromise in Hy-

brid Wireless Sensor Networks using Attestation Techniques”. In: Proceed-

ings of 4th European Workshop on Security and Privacy in Ad-hoc and Sensor

Networks (ESAS) , pp. 203–217 (2007).

[68] Kumar, V. and Das, M. L. “Securing Wireless Sensor Networks with Public

Key Techniques”. In: Journal of Ad Hoc and Sensor Wireless Networks , Vol. 5:

189-201 (2007).

[69] Kyungah, S. “The Risks of Compromising Secret Information”. In: Proceed-

ings of 4th International Conference on Information and Communications Secu-

rity (ICICS) , pp. 122–133 (2002).

[70] Lamont, L., Toulgoat, M., Deziel, M., and Patterson, G. “Tiered Wireless

Sensor Network Architecture for Military Surveillance Applications”. In:

Proceedings of Fifth International Conference on Sensor Technologies and Appli-

cations (SENSORCOMM) , pp. 288–294 (2011).

[71] Lazos, L. and Poovendran, R. “SeRLoc: Secure Range-independent Local-

ization for Wireless Sensor Networks”. In: Proceedings of the 3rd ACM Work-

shop on Wireless Security (WiSe) , pp. 21–30 (2004).

[72] Li, T., Song, M., and Alam, M. “Compromised Sensor Nodes Detection: A

Quantitative Approach”. In: Proceedings of 28th International Conference on

Distributed Computing Systems Workshops , pp. 352–357 (2008).

178

[73] Li, X. and Yang, D. “A Quantitative Survivability Evaluation Model for

Wireless Sensor Networks”. In: Proceedings of the IEEE International Confer-

ence on Networking, Sensing and Control , pp. 727–732 (2006).

[74] Liao, Y., Lei, C., and Wang, A. “A Robust Grid-Based Key Predistribution

Scheme for Sensor Networks”. In: Proceedings of 4th International Confer-

ence on Innovative Computing, Information and Control (ICICIC) , pp. 760–763

(2009).

[75] Lin, C. and Wu, G. “Enhancing the Attacking Efficiency of the Node Cap-

ture Attack in WSN: A Matrix Approach”. In: Journal of Supercomputing ,

Vol. 66(2): 989–1007 (2013).

[76] Lin, X. “CAT: Building Couples to Early Detect Node Compromise Attack

in Wireless Sensor Networks”. In: Proceedings of IEEE Global Telecommuni-

cations Conference (GLOBECOM) , pp. 7–12 (2009).

[77] Liu, D., Ning, P., and Du, W. “Detecting Malicious Beacon Nodes for Secure

Location Discovery in Wireless Sensor Networks”. In: Proceedings of 25th

IEEE International Conference on Distributed Computing Systems (ICDCS) 609-

619 (2005).

[78] Liu, D., Ning, P., and Li, R. “Establishing Pairwise Keys in Distributed

Sensor Networks”. In: ACM Transactions on Information and System Security

(TISSEC) , Vol. 8(1): 41–77 (2005).

[79] Liu, D., Ning, P., and Sun, K. “Efficient Self-healing Group Key Distribu-

tion with Revocation Capability”. In: Proceedings of the 10th ACM Conference

on Computer and Communications Security (CCS) , pp. 231–240 (2003).

[80] Liu, Y., Harn, L., and Chang, C. “An Authenticated Group Key Distri-

bution Mechanism Using Theory of Numbers”. In: International journal of

Communication Systems , Vol. 27(11): 3502–3512 (2014).

[81] Lopez, J., Roman, R., and Alcaraz, C. “Analysis of Security Threats, Re-

quirements, Technologies and Standards in Wireless Sensor Networks”.

In: Tutorial Lectures on Foundations of Security Analysis and Design V , Vol.

Springer LNCS 5705: 289–338 (2009).

179

[82] Mainwaring, A., Polastre, J., Szewczyk, R., and Culler, D. “Wireless Sensor

Networks for Habitat Monitoring”. In: Proceedings of 1st ACM Workshop on

Sensor Networks and Applications , pp. 88–97 (2002).

[83] Mall, D., Konaté, K., and Pathan, A. “Key Revocation in Wireless Sensor

Networks: A Survey on a Less-addressed Yet Vital Issue”. In: International

Journal of Ad Hoc Ubiquitous Computing , Vol. 18(1/2): 3–22 (2015).

[84] Mansour, I., Chalhoub, G., and Lafourcade, P. “Key Management in Wire-

less Sensor Networks”. In: Journal of Sensor and Actuator Networks , Vol. 4:

251-273 (2015).

[85] Mansour, I., Chalhoub, G., Lafourcade, P., and Delobel, F. “Secure Key

Renewal and Revocation for Wireless Sensor Networks”. In: Proceedings

of 39th Annual IEEE Conference on Local Computer Networks , pp. 382–385

(2014).

[86] Mathews, M., Song, M., Shetty, S., and McKenzie, R. “Detecting Compro-

mised Nodes in Wireless Sensor Networks”. In: Proceedings of 8th ACIS In-

ternational Conference on Software Engineering, Artificial Intelligence, Network-

ing, and Parallel/Distributed Computing , pp. 273–278 (2007).

[87] M.Conti, Pietro, R, Mancini, L., and Mei, A. “Mobility and Cooperation

to Thwart Node Capture Attacks in MANETs”. In: EURASIP Journal on

Wireless Communications and Networking , Vol. 2009: 8:1–8:13 (2009).

[88] Menezes, A., Vanstone, S., and Oorschot, P. In: Handbook of Applied Cryptog-

raphy, published by CRC Press, Inc., ISBN: 0849385237 , pp. 321–383 (1996).

[89] Merkle, R. “Protocols for Public Key Cryptography”. In: Synopsis on Secu-

rity and Privacy , pp. 122–134 (1980).

[90] Mignotte, M. “How to Share a Secret”. In: Proceedings of the Workshop on

Cryptography , pp. 371–375 (1982).

[91] Miller, S., Neuman, B., Schiller, J., and Saltzer, J. “Kerberos Authentication

and Authorization System”. In: Project Athena Technical Plan (1987).

180

[92] Mishra, A. K. and Turuk, A. K. “A Comparative Analysis of Node Replica

Detection Schemes in Wireless Sensor Networks”. In: Journal of Network and

Computer Applications , Vol. 61: 21–32 (2016).

[93] Mishra, A. K. and Turuk, A. K. “Adversary Information Gathering Model

for Node Capture Attack in Wireless Sensor Networks”. In: Proceedings of

International Conference on Devices and Communications (ICDeCom) , pp. 1–5

(2011).

[94] Mittal, R., Agrawal, S., and Das, M. L. “Secure Node Localization in Clus-

tered Sensor Networks with Effective Key Revocation”. In: Emerging In-

novations in Wireless Networks and Broadband Technologies, published by IGI

Global , pp. 12–41 (2016).

[95] Moore, T., Clulow, J., Nagaraja, S., and Anderson, R. “New Strategies for

Revocation in Ad-Hoc Networks”. In: Proceedings of 4th European Workshop

on Security and Privacy in Ad-hoc and Sensor Networks , pp. 232–246 (2007).

[96] Nasiraee, H., Bagherzadeh, J., and Nasiraee, M. “A New Self-healing Group

Key Distribution Scheme”. In: Proceedings of the 12th International Iranian

Society of Cryptology Conference on Information Security and Cryptology(ISCISC)

, pp. 85–90 (2015).

[97] Ochir, O., Minier, M., Valois, F., and Kountouris, A. Resilient networking in

wireless sensor networks. Accessed: 18 Jul 2017. URL: http://arxiv.org/

abs/1003.5104.

[98] Paar, C. and Pelzl, C. “Introduction to Cryptography and Data Security”.

In: Understanding Cryptography: A Textbook for Students and Practitioners,

Published by Springer, ISBN: 978-3-642-04100-6 , pp. 1–27 (2010).

[99] Park, T. and K.Shin. “Soft Tamper-Proofing via Program Integrity Verifica-

tion in Wireless Sensor Networks”. In: IEEE Transactions on Mobile Comput-

ing , Vol. 4(3): 297–309 (2005).

[100] Perrig, A., Szewczyk, R., Wen, V., Culler, D., and Tygar, J. “SPINS : Security

Protocols for Sensor Networks”. In: Journal of Wireless Networks , Vol. 8:

521-534 (2002).

181

http://arxiv.org/abs/1003.5104
http://arxiv.org/abs/1003.5104

[101] Peyraviana, M. and Kshemkalyanib, A. “On Probabilities of Hash Value

Matches”. In: Elsevier Journal of Computers and Security , Vol. 17(2): 171–176

(1998).

[102] Pietro, R., Ma, D., Soviente, C., and Tsudik, G. “Self-healing in Unattended

Wireless Sensor Networks”. In: ACM Transactions on Sensor Networks , Vol.

9(1): 7 (2013).

[103] Pottie, G. and Kaiser, W. “Wireless Integrated Network Sensors”. In: Com-

munications of the ACM , Vol. 43(5): 551–558 (2000).

[104] Rams, T. and Pacyna, P. “A Survey of Group Key Distribution Schemes

with Self-healing Property”. In: IEEE Communications Surveys and Tutorials

, Vol. 15(2): 820–842 (2013).

[105] Rams, T. and Pacyna, P. “Self-healing Group Key Distribution with Ex-

tended Revocation Capability”. In: Proceedings of International Conference

on Computing, Networking and Communications (ICNC) , pp. 347–353 (2013).

[106] RaspBerry Pi Node. Accessed: 2017-15-02. URL: https://www.raspberrypi.

org/products/.

[107] Rivest, R., Shamir, A., and Adleman, L. “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems”. In: Magazine: Communications

of the ACM , Vol. 21(2): 120–126 (1978).

[108] Roman, R., Lopez, J., Alcaraz, C., and Chen, H. “SenseKey–Simplifying

the Selection of Key Management Schemes for Sensor Networks”. In: Pro-

ceedings of IEEE Workshops of International Conference onAdvanced Information

Networking and Applications (WAINA) , pp. 789–794 (2011).

[109] Sadi, M., Park, J., and Kim, D. “Randomized Grid Based Scheme for Wire-

less Sensor Network”. In: Proceedings of the Second European Conference on

Security and Privacy in Ad-Hoc and Sensor Networks (ESAS) , Vol. Springer

LNCS Vol. 3813: 91–101 (2005).

182

https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/

[110] Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y.,

Kang, W., Stankovic, J., Young, D., and Porter, J. “LUSTER: Wireless Sen-

sor Network for Environmental Research”. In: Proceedings of the 5th Interna-

tional Conference on Embedded Networked Sensor Systems , pp. 103–116 (2007).

[111] Seshadri, A., Luk, M., Perrig, A., Doorn, L., and Khosla, P. “SCUBA: Secure

Code Update By Attestation in Sensor Networks”. In: Proceedings of ACM

workshop on Wireless Security (WiSe) , pp. 85–94 (2006).

[112] Seshadri, A., Perrig, A., Doorn, L., and Khosla, P. “SWATT: SoftWare-based

ATTestation for Embedded Devices”. In: Proceedings of IEEE Symposium on

Security and Privacy , pp. 272-282 (2004).

[113] Shi, E. and Perrig, A. “Designing Secure Sensor Networks”. In: IEEE Wire-

less Communications , Vol. 11(6): 38–43 (2004).

[114] Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., and Dean, D.

“Self-healing Key Distribution with Revocation”. In: Proceedings of IEEE

Symposium on Security and Privacy , pp. 241–257 (2002).

[115] Tague, P. and Poovendran, R. “Modeling Adaptive Node Capture Attacks

in Multi-hop Wireless Networks”. In: Journal of Ad Hoc Networks , Vol. 5(6):

801–814 (2007).

[116] Tague, P. and Poovendran, R. “Modeling Node Capture Attacks in Wireless

Sensor Networks”. In: Proceedings of IEEE 46th Annual Allerton Conference

on Communication, Control, and Computing , pp. 1221–1224 (2008).

[117] Tan, H., Hu, W., and Jha, S. “A TPM-enabled Remote Attestation Protocol

(TRAP) in Wireless Sensor Networks”. In: Proceedings of the 6th ACM work-

shop on Performance Monitoring and Measurement of Heterogeneous Wireless

and Wired Networks (PM2HW2N) , pp. 9–16 (2011).

[118] The Secure Sockets Layer (SSL) Protocol Version 3.0. Accessed: 2017-17-02.

URL: https://tools.ietf.org/html/rfc6101?ref=driverlayer.com.

[119] Tian, B., Han, S., and Dillon, T. “An Efficient Self-Healing Key Distribu-

tion Scheme”. In: Proceedings of International Conference on New Technologies,

Mobility and Security , pp. 1–5 (2008).

183

https://tools.ietf.org/html/rfc6101?ref=driverlayer.com

[120] Tian, B., Han, S., Hu, J., and Dillon, T. “A Mutual-healing Key Distribution

Scheme in Wireless Sensor Networks”. In: Journal of Network and Computer

Applications , Vol. 34(1): 80–88 (2011).

[121] Tian, B., Chang, E., Dillon, T., Han, S., and Hussain, F. “An Authenticated

Self-healing Key Distribution Scheme based on Bilinear Pairings”. In: Pro-

ceedings of 6th IEEE Consumer Communications and Networking Conference

(CCNC) , pp. 1–5 (2009).

[122] Tomlinson, A. “Introduction to the TPM”. In: Smart Cards, Tokens, Security

and Applications , pp. 155–172 (2008).

[123] Trivedi, K., Kim, D., and Ghosh, R. “Resilience in Computer Systems and

Networks”. In: Proceedings of the International Conference on Computer-Aided

Design (ICCAD) , pp. 74–77 (2009).

[124] Wang, F., Chang, C., and Chou, Y. “Group Authentication and Group Key

Distribution for Ad Hoc Networks”. In: International Journal of Network Se-

curity , Vol. 17(2): 199–207 (2015).

[125] Wang, H. “On the Security of Some Self-healing Key Distribution Schemes”.

In: Proceedings of the International Conference on Multimedia Information Net-

working and Security , pp. 777–780 (2010).

[126] Wang, Y. and Ramamurthy, B. “KeyRev : An Efficient Key Revocation Scheme

for Wireless Sensor Networks”. In: Proceeding of IEEE International Confer-

ence on Communications , pp. 1260–1265 (2007).

[127] Wang, Y., Ramamurthy, B., and Xue, Y. “A Key management Protocol for

Wireless Sensor Networks with Multiple Base Stations”. In: Proceedings of

IEEE International Conference on Communications , pp. 1–6 (2008).

[128] WASPMote. Accessed: 2017-15-02. URL: http://www.libelium.com/products/

waspmote/.

[129] Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., and Kruus, P. “TinyPK:

Securing Sensor Networks with Public Key Technology”. In: Proceedings of

the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks , pp. 59–64

(2004).

184

http://www.libelium.com/products/waspmote/
http://www.libelium.com/products/waspmote/

[130] Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He,

Z., Lin, S., and Stankovic, J. “ALARM-NET: Wireless Sensor Networks for

Assisted-living and Residential Monitoring”. In: Technical Report of Wireless

Sensor Network Research Group, Department of Computer Science, University of

Virginia (2006).

[131] Yang, Y., Zhou, J., Deng, R.H., and Bao, F. “Better Security Enforcement in

Trusted Computing Enabled Heterogeneous Wireless Sensor Networks”.

In: Journal of Security and Communication Networks , Vol. 4: 11–22 (2011).

[132] Yu, Y., Michael, F., Bernhard, P., Paul, S., and Alberto, F. “Resilience Strate-

gies for Networked Malware Detection and Remediation”. In: Proceedings

of Network and System Security , pp. 233–247 (2012).

[133] Yuan, T., Jianqing, M., Zhong, Y., and Zhang, S. “Self-healing Key Distri-

bution with Limited Group Membership Property”. In: Proceedings of First

International Conference on Intelligent Networks and Intelligent Systems , pp.

309–312 (2008).

[134] Yuan, T., Jianqing, M., Zhong, Y., and Zhang, S. “Self-healing Key Distri-

bution with Revocation and Collusion Resistance for Wireless Sensor Net-

works”. In: Proceedings of International Multi-symposiums on Computer and

Computational Sciences , pp. 83–90 (2008).

[135] Zhang, F., Naini, R., and Susilo, W. “An Efficient Signature Scheme from

Bilinear Pairings and Its Applications”. In: Proceedings of 7th International

Workshop on Theory and Practice in Public Key Cryptography , pp. 277–290

(2004).

[136] Zhang, Q., Yu, T., and Ning, P. “A Framework for Identifying Compro-

mised Nodes in Wireless Sensor Networks”. In: ACM Transactions on Infor-

mation and System Security (TISSEC) , Vol. 11(3): 12:1–12:37 (2008).

[137] Zhang, W., Tran, M., Zhu, S., and Cao, G. “A Random Perturbation-based

Scheme for Pairwise Key Establishment in Sensor Networks”. In: Proceed-

ings of the 8th ACM international symposium on Mobile Ad-hoc Networking and

Computing (MobiHoc) , pp. 90–99 (2007).

185

[138] Zhang, X., HeEmail, J., and Wei, Q. “EDDK: Energy-Efficient Distributed

Deterministic Key Management for Wireless Sensor Networks”. In: EURASIP

Journal on Wireless Communications and Networking , Vol. 2011(1): 765143:1–

765143:11 (2010).

[139] Zhao, J. “On Resilience and Connectivity of Secure Wireless Sensor Net-

works Under Node Capture Attacks”. In: IEEE Transactions on Information

Forensics and Security , Vol. 12(3): 557–571 (2016).

[140] Zheng, J. and Jamalipour, A. “Introduction to Wireless Sensor Networks”.

In: Wireless Sensor Networks: A Networking Perspective, Published by John Wi-

ley and Sons, ISBN: 978-0-470-16763-2 , pp. 34–51 (2009).

[141] Zheng, X., Huang, C., and Matthews, M. “Chinese Remainder Theorem

Based Group Key Management”. In: Proceedings of the 45th Annual Southeast

Regional Conference , pp. 266-271 (2007).

[142] Zhou, J. and Ou, Y. “Key Tree and Chinese Remainder Theorem Based

Group-key Distribution Scheme”. In: Journal of the Chinese Institute of En-

gineers , Vol. 32(7): 967–974 (2009).

[143] Zhu, S., Setia, S., and Jajodia, S. “LEAP: Efficient Security Mechanisms

for Large-scale Distributed Sensor Networks”. In: Proceedings of 10th ACM

Conference on Computer and Communications Security (CCS) , pp. 62–72 (2003).

[144] Zia, T. and Zomaya, A. “Security Issues in Wireless Sensor Networks”. In:

Proceedings of International Conference on Systems and Networks Communica-

tions (ICSNC) , pp. 6–9 (2006).

[145] Zou, X. and Dai, Y. “A Robust and Stateless Self-Healing Group Key Man-

agement Scheme”. In: Proceedings of International Conference on Communica-

tion Technology , pp. 1–4 (2006).

186

Appendix 1: ProVerif Tool

ProVerif is a tool for verification of cryptographic protocols. The cryptographic

protocols, as concurrent programs, interact using public communication channels

for achieving some objective related to security. It is assumed that these public

channels are controlled by the attacker who can read, modify, delete, and inject

messages. The attacker is also supposed to be having the ability of manipulating

data, if it has the necessary keys. The environment can also capture a dishonest

participant’s behavior. The input language of ProVerif allows the cryptographic

protocols and associated security goals to be coded in a formal manner. Then,

ProVerif can automatically verify the claimed security features. With cryptogra-

phy, it is considered that an attacker can perform cryptographic operations only

when in possession of the secret keys used to secure the communication.

Proverif Script

A ProVerif script to test the protocol for authentication and confidentiality is given

below:

type mkey.

type G.

const g : G[data].

187

fun exp(G, bitstring):G.

fun mac(bitstring, mkey): bitstring.

fun g_to_bs(G):bitstring.

fun bs_to_G(bitstring):G.

fun poly(bitstring, bitstring):mkey[private].

equation forall x:bitstring, y:bitstring;

exp(exp(g, x), y) = exp(exp(g, y), x).

equation forall x:bitstring, y:bitstring;

poly(x,y) = poly(y,x).

free c : channel.

free nA: bitstring[private].

free nB: bitstring[private].

free idA:bitstring.

free idB:bitstring.

free k1: bitstring[private].

free k2: bitstring[private].

event acceptsA(mkey).

event acceptsB(mkey).

event termA(mkey).

event termB(mkey).

188

query attacker(nA).

query attacker(nB).

query attacker(idA).

query attacker(idB).

query attacker(k1).

query attacker(k2).

query x:mkey; event(termA(x)) ==> event(acceptsB(x)).

query x:mkey; event(termB(x)) ==> event(acceptsA(x)).

(* Process for node A *)

let NodeA() = out(c, idA);

(* 1. A sends out its ID in plain *)

in(c, (idX:bitstring, mgX:bitstring, macX:bitstring));

(* 6. A receives a response from some node X *)

let kAX = poly(idA, idX) in

(* 7. A computes shared key with responding node X *)

let macA = mac((idX, mgX), kAX) in

(* 8. A computes mac using the supplied values and *)

(* check with the supplied mac value *)

if macA = macX then

189

(* 9. if verifies, accpets B’s response *)

let k1 = g_to_bs(exp(bs_to_G(mgX), nA)) in

event acceptsA(kAX);

(* 10. A computes the new shared key and *

(* accpet the shared key*)

let gA = exp(g, nA) in

(* 11. A now computes g^nA = gA using its nonce *)

(* nA and converts the result into bitstring type *)

let mgA = g_to_bs(gA) in

out(c, (idA, gA, mac((idA, mgA, mgX), kAX)));

event termA(kAX).

(* 12. A sends confirmation to node X and terminates *)

(* Process for node B *)

let NodeB() =

in(c, idX:bitstring);

(* 2. B receives a msg with some node ID *)

let kBX = poly(idB, idX) in

event acceptsB(kBX);

(* 3. B computes the shared polynomial based key *)

(* with node X and accepts to communicate with A*)

190

let gB = exp(g, nB) in

let mgB = g_to_bs(gB) in

(* 4. B takes a nonce value, computes g^nB = gB, *)

(* since it is of type G, converted into bitstring type *)

out(c, (idB, mgB, mac((idB, mgB), kBX)));

(* 5. B responds back with idB, gB, and mac of *)

(* both values using shared key kBX *)

in(c, (idX1:bitstring, mgX:bitstring, macX:bitstring));

(* 13. B receives confirmation from requesting node *)

let macB = mac((idX1, mgX, mgB), kBX) in

if macB = macX then

(* 14. B computes mac using the supplied values, *)

(* checks with supplied mac value *)

let k2 = g_to_bs(exp(bs_to_G(mgX), nB)) in

event termB(kBX);

0.

(* 15. B computes the new shared key and terminates *)

(* Main process execution *)

process

191

(NodeA() | NodeB())

ProVerif Output

We present the result of the execution of the script given above as

follows:

Linear part:

poly(x_12,y_13) = poly(y_13,x_12)

exp(exp(g,x),y) = exp(exp(g,y),x)

Completing equations...

Completed equations:

exp(exp(g,x),y) = exp(exp(g,y),x)

poly(x_12,y_13) = poly(y_13,x_12)

Convergent part:

Completing equations...

Completed equations:

Process:

(

{1}out(c, idA);

{2}in(c, (idX: bitstring,mgX: bitstring,macX: bitstring));

{3}let kAX: mkey = poly(idA,idX) in

{4}let macA: bitstring = mac((idX,mgX),kAX) in

{5}if (macA = macX) then

{6}let k1_46: bitstring =

g_to_bs(exp(bs_to_G(mgX),nA)) in

{7}event acceptsA(kAX);

192

{8}let gA: G = exp(g,nA) in

{9}let mgA: bitstring = g_to_bs(gA) in

{10}out(c, (idA,gA,mac((idA,mgA,mgX),kAX)));

{11}event termA(kAX)

) | (

{12}in(c, idX_47: bitstring);

{13}let kBX: mkey = poly(idB,idX_47) in

{14}event acceptsB(kBX);

{15}let gB: G = exp(g,nB) in

{16}let mgB: bitstring = g_to_bs(gB) in

{17}out(c, (idB,mgB,mac((idB,mgB),kBX)));

{18}in(c, (idX1: bitstring,mgX_48: bitstring,

macX_49: bitstring));

{19}let macB: bitstring = mac((idX1,mgX_48,mgB),kBX) in

{20}if (macB = macX_49) then

{21}let k2_50: bitstring =

g_to_bs(exp(bs_to_G(mgX_48),nB)) in

{22}event termB(kBX)

)

-- Query event(termB(x_51)) ==> event(acceptsA(x_51))

Completing...

Starting query event(termB(x_51)) ==>

event(acceptsA(x_51)) goal reachable:

begin(acceptsA(poly(idB[],idA[]))) ->

end(termB(poly(idB[],idA[])))

193

RESULT event(termB(x_51)) ==>

event(acceptsA(x_51)) is true.

-- Query event(termA(x_832)) ==> event(acceptsB(x_832))

Completing...

Starting query event(termA(x_832)) ==>

event(acceptsB(x_832)) goal reachable:

begin(acceptsB(poly(idB[],idA[]))) ->

end(termA(poly(idB[],idA[])))

RESULT event(termA(x_832)) ==> event(acceptsB(x_832))

is true.

-- Query not attacker(k2[])

Completing...

Starting query not attacker(k2[])

RESULT not attacker(k2[]) is true.

-- Query not attacker(k1[])

Completing...

Starting query not attacker(k1[])

RESULT not attacker(k1[]) is true.

-- Query not attacker(idB[])

Completing...

Starting query not attacker(idB[])

goal reachable: attacker(idB[])

1. The attacker initially knows idB[].

attacker(idB[]).

A more detailed output of the traces is available with

194

set traceDisplay = long.

out(c, idA) at {1}

The attacker has the message idB.

A trace has been found.

RESULT not attacker(idB[]) is false.

-- Query not attacker(idA[])

Completing...

Starting query not attacker(idA[])

goal reachable: attacker(idA[])

1. The attacker initially knows idA[].

attacker(idA[]).

A more detailed output of the traces is available with

set traceDisplay = long.

out(c, idA) at {1}

The attacker has the message idA.

A trace has been found.

RESULT not attacker(idA[]) is false.

-- Query not attacker(nB[])

Completing...

Starting query not attacker(nB[])

RESULT not attacker(nB[]) is true.

-- Query not attacker(nA[])

Completing...

Starting query not attacker(nA[])

RESULT not attacker(nA[]) is true.

195

Appendix 2: Publications

Journals

S. Agrawal, M. L. Das and J. Lopez. “Detection of Node Capture

Attack in Wireless Sensor Networks”. (Manuscript submitted).

S. Agrawal and M. L. Das. “Mutual Healing enabled Group-key

Distribution Protocol in Wireless Sensor Networks”. (Manuscript

Accepted for publication in Elsevier Journal of Computer Commu-

nications).

Conferences

S. Agrawal, M. L. Das. “Node Revocation and Key Update Proto-

col”. In: Proceedings of 10th IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS) (2016).

S. Agrawal, J. Patel and M. L. Das. “Pairing Based Mutual Healing in

Wireless Sensor Networks”. In: Proceedings of 8th International Con-

ference on Communication Systems and Networks (COMSNETS), pp. 1-

196

8 (2016).

S. Agrawal, M. L. Das, A. Mathuria and S. Srivastava. “Program

Integrity Verification for Detecting Node Capture Attack in Wireless

Sensor Network”. In: Proceedings of 11th International Conference on

Information Systems Security (ICISS), Vol. Springer LNCS 9478: 419-

440 (2015).

S. Agrawal, M. L. Das, R. Roman, A. Mathuria and J. Lopez. “A

Novel Key Update Protocol in Mobile Sensor Networks”. In: Pro-

ceedings of 8th International Conference on Information Systems Security

(ICISS), Vol. Springer LNCS 7671: 194-207 (2012).

Book Chapter

R. Mittal, S. Agrawal, and M. L. Das. “Secure Node Localization

in Clustered Sensor Networks with Effective Key Revocation”. In:

Emerging Innovations in Wireless Networks and Broadband Technologies,

published by IGI Global, pp. 12-41, (2016).

197

	Abstract
	List of Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Overview of Wireless Sensor Networks (WSNs)
	Sensor Node Architecture
	WSN Architecture
	WSN Standards
	WSN Applications

	Security Issues in WSN
	Motivation
	Contribution of the Thesis
	Framework of Solution to Deal with Node Capture Attack
	System and Network Model used in the Proposed Solution

	Thesis Outline

	Background and Preliminaries
	Overview of Security in WSN
	Resilience
	Key Management in WSN
	Node Capture Detection and Revocation

	Primitives Used in the Proposed Protocols
	Pseudo Random Function
	Bivariate Polynomials
	ID based Public Key Infrastructure with Bilinear Pairings
	Chinese Remainder Theorem

	Trusted Platform Module
	Conclusion

	Pair-Wise Key Establishment and Key Update
	Introduction
	Polynomial Share Based Pair-Wise Key Establishment
	Proposed Pair-Wise Key Establishment and Key Update Protocol
	Goals and Assumptions
	Set-up and Initialization
	Node Discovery and Node Authentication
	Session Key Update
	Security Features
	Forward Secrecy
	Resistance to Impersonation Attack
	Resisting Known-key Attacks
	Resistance to Replay Attacks
	Resilience to Node Capture
	Resilience to Worm hole and Sink hole Attacks

	Comparing Performance with Existing Protocols
	Experimental Results

	Conclusion

	Self-Healing and Mutual-Healing enabled Group Key Distribution
	Introduction
	Self Healing
	Mutual Healing
	Proposed Bilinear Pairing based Healing Protocol
	Goals and Assumptions
	Session Key Management
	System Set-up
	Group Key Broadcast
	Authentication and Key Extraction

	Healing
	Security Analysis
	Performance Analysis
	Computation cost
	Communication cost
	Storage cost

	CRT based Symmetric Key Healing Protocol
	System Model
	Session Key Management
	System Setup
	Group Key Message Construction and Distribution
	Authentication and Key Extraction

	Healing
	Security Analysis
	Performance Analysis
	Computation cost
	Communication cost
	Storage cost

	Comparison with Existing Schemes
	Security Features
	Performance

	Experimental Results
	Conclusion

	Node Capture Attack
	Introduction
	Identifying Node Capture by Monitoring
	Software and Hardware Attestation
	Program Integrity Verification
	Trusted Platform Module Enabled Program Integ-rity Verification (TPIV) Protocol for Node Capture Detection
	Goals and Assumptions
	TPIV Setup and Monitoring
	Authentication and Code Verification
	Security Strengths
	High Probability of Node Capture Detection
	Node Capture Detection by Authorized Verifier
	Secrecy of Non-captured Nodes
	Comparing TPIV with Existing Schemes

	Efficiency and Experimental Results
	Analytical Comparison
	Improvement in Node Capture Detection Probability
	Experimental Results

	Conclusion

	Node Revocation and Key Update
	Introduction
	Centralized Approach to Node Revocation
	Distributed Voting Mechanism for Revoking a Victim Node
	Hybrid Node Revocation Methods
	Proposed Protocol for Node Revocation and Key Update (NRKU)
	Goals and Assumptions
	Initial Session Setup
	Node Revocation and Key Update
	Revocation Message Broadcast
	Authentication and Session Key Update

	Security Strengths
	Secure Node Revocation
	Forward and Backward Secrecy
	Resistance to Node Collusion Attack
	Resistance to Impersonation and Replay Attacks
	Existing Revocation Protocols v/s NRKU

	Performance Boost with NRKU

	Conclusion

	Conclusion and Future Work
	Appendix 1: ProVerif Tool
	Appendix 2: Publications

