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Abstract

The retrieval of the spoken document and detecting the query (keyword) within
the audio document have attained huge research interest. The problem of retriev-
ing audio documents and detecting the query (keyword) using a spoken form of a
query is widely known as Query-by-Example Spoken Term Detection (QbE-STD).
This thesis presents the design of QbE-STD system from the representation and
matching perspective.

A speech spectrum is known to be affected by the variations in the length of
the vocal tract of a speaker due to the inverse relation between formants and vocal
tract length. The process of compensating spectral variation caused due to the
length of the vocal tract is popularly known as Vocal Tract Length Normalization
(VTLN) (especially, in speech recognition literature). VTLN is a very important
speaker normalization technique for speech recognition task. In this context, this
thesis proposes the use of Gaussian posteriorgram of VTL-warped spectral fea-
tures for a QbE-STD task. This study presents the novel use of a Gaussian Mixture
Model (GMM) framework for VTLN warping factor estimation. In particular, pre-
sented GMM framework does not require phoneme-level transcription and hence,
it can be useful for the unsupervised task. In addition, we also propose the use of
the mixture of GMMs for posteriorgram design. The speech data governs acous-
tically similar broad phonetic structures. To capture broad phonetic structure, we
exploit supplementary knowledge of broad phoneme classes (such as, vowels,
semi-vowels, nasals, fricatives, plosive) for the training of GMM. The mixture of
GMMs is tied with GMMs of these broad phoneme classes. A GMM trained under
no supervision assumes uniform priors to each Gaussian component, whereas a
mixture of GMMs assigns the prior probability based on broad phoneme class.
The novelty of our work lies in prior probability assignments (as weights of the
mixture of GMMs) for better Gaussian posteriorgram design.

In realistic scenarios, there is a need to retrieve the query, which does not ap-
pear exactly in the spoken document. However, the appeared instance of query
might have the different suffix, prefix or word order. The DTW algorithm mono-
tonically aligns the two sequences, and hence, it is not suitable to perform par-
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tial matching between the frame sequence of query and test utterance. We pro-
pose novel partial matching approach between spoken query and utterance us-
ing modified DTW algorithm, where multiple warping paths are constructed for
each query and test utterance pair. This partial matching approach improves
the detection of the non-exact query in the realistic scenarios, where both exact
and non-exact queries are present. Next, we address the research issue associated
with search complexity of DTW algorithm and suggest two approaches, namely,
feature reduction approach and segment-level Bag-of-Acoustic-Words (BoAW)
model. In feature reduction approach, the number of feature vectors is reduced
by averaging across the consecutive frames within phonetic boundaries. Thus, a
lesser number of feature vectors require a fewer number of comparison operations
and hence, DTW speeds up the search computation. In BoAW model, we con-
struct term frequency-inverse document frequency (t f − id f ) vectors at segment-
level to retrieve audio documents. The proposed segment-level BoAW model is
used to match test utterance with a query using (t f − id f ) vectors and the scores
obtained are used to rank the test utterance. Both of these search space reduction
approaches are used to speed up the execution with a slight degradation in the
search performance.

We propose two-stage approaches for re-scoring the detection hypothesis with
the help of acoustic features and detection sources. First, we explored several
acoustic features to re-score the detection hypothesis. The second approach con-
siders additional detection sources, such as, depth of detection valley and term-
frequency, Self-Similarity Matrix (SSM), Pseudo Relevance Feedback (PRF) and
Weighted mean feature with Gaussian and phonetic posteriorgram. These two-
stage approaches improve the detection performance with the re-scoring from the
hypothesis of a single QbE-STD system. Finally, the thesis concludes by present-
ing few miscellaneous studies, a summary of entire thesis, along with few poten-
tial future research directions.
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CHAPTER 1

Introduction

1.1 Motivation

In the recent era, INTERNET has been very important communication media for
sharing the information across the globe. The information available in the INTER-
NET is mostly in the form of text-based documents. Now-a-days, a lot of infor-
mation is also available in the form of multimedia. In particular, spoken (audio)
form of information is important, which is stored in the form of audio and video
recordings. This information continuously grows in the future, for example, news
broadcast, YouTube video, etc. This information has become inevitable need of
the society, for knowledge and entertainment purpose. In addition, spoken infor-
mation can be thought as an alternative representation of written (text) informa-
tion so far as human communication is concerned. In such scenario, access and
retrieval of audio information helps us tremendously for various purposes [2].

Human speech is easily available, i.e., natural to produce and provides an easy
access, which primarily does not require a physical interface. In addition, the in-
teraction between human and a machine does not necessarily require costly hard-
ware, merely audio input-output (IO) devices (i.e., microphones and speaker),
which are smaller in size and consume low power [3]. Recently, during the last
decade, many technological companies are involved with the design of Intelligent
Personal Assistants (IPAs). IPAs are the software agents that takes input from the
user in the form of audio and responds to the query. Thus, IPAs form interactive
channels between voice input from the user and the database system. The well
known IPAs available are Apple’s Siri, Google Now, Microsoft Cortana, Ama-
zon Echo, etc. [4]. Figure 1.1 (a) shows the chronological development of voice-
enabled IPAs during last few years. Recently, an open source project Sirius started
to explore the voice as well as image query from the user [5]. The schematic of
open end-to-end Sirius system is shown in Figure 1.1 (b).

Mobile devices, such as, computers, mobile phones, smart watches are used
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Figure 1.1: Voice-enabled IPAs: (a) The development of voice-driven IPAs. After
[4], (b) an architecture of Sirius (Lucida) end-to-end architecture. After [5].

to take input from the user. The response from the system is either displayed
on respective devices or executed in the form of action. Many mobile users pre-
fer to stay connected wherever they are and whatever they are doing. For in-
stance, to communicate via Short Message Service (SMS) through a mobile phone,
a cab driver chooses to use voice rather than typing the SMS, i.e., hands free and
even eyes free mode of communication [6]. The spoken dialogue systems use the
state-of-the-art speech technologies, such as, speech recognition, speech synthe-
sis, and machine translation to provide human and machine interface through the
voice. However, there are challenges created by the poor performance of speech
recognition due to noisy automobile ambiance as well as head movements of the
driver [6].

The recent technological advancements allow recording and storing of vast
collections of speech or audio data with various contents. In addition, classroom
lectures that are stored in audio form can be effectively browsed and accessed
if one can have reliable audio retrieval mechanism 1. Furthermore, the current
speech technology allows access to speech data effectively via telephone. Thus, it
is important to seek for automatic, reliable and fast solutions to search large col-
lections of speech data. The information retrieval associated with spoken content

1Few online portals for online video lectures are: (1) http://nptel.ac.in/courses.php, (2)
http://ocw.mit.edu/courses/audio-video-courses/, (3) https://www.ted.com/talks, etc.

2



has been important area of research for spoken language processing area. Spo-
ken Content Retrieval (SCR) deals with information retrieval and processing on
spoken media to provide access and control to the user. SCR system focuses on
the retrieval of linguistic message as well as semantics associated with the speech
data. However, in this thesis, we focus only the retrieving linguistic message
information present in the speech data. The SCR system aims to retrieve audio
documents from the collection of large number of documents and detect the loca-
tion of query. The detailed review on SCR is presented in [7, 8]. The query can be
exploited in different form, i.e., either text or spoken form.

1. Text-based query representation: The problem is known as Spoken Term De-
tection (STD).

2. Spoken-example query representation: The problem is known as Query-by-
Example Spoken Term Detection (QbE-STD).

In that context, several applications were explored, basically enhancing speech
technology for SCR. STD technology was used for electronic note-taking support
system (NTSS) [9]. The NTSS is equipped with speech interface and Automatic
Speech Recognition (ASR). The user can simply touch and trace the notes by their
fingers and avoid the difficulty, while preparing the notes during classroom lec-
ture. The ease of access to speech also motivated to annotate (tag) and search
digital photographs or images [10, 11].

The organization of this chapter is as follows. Section 1.2 discusses the SCR
systems, namely, STD, keyword spotting (KWS) and QbE-STD. Section 1.3 dis-
cusses the focus of this thesis and the contributions. Section 1.4 presents the over-
all organizations from the thesis.

1.2 Spoken Content Retrieval (SCR) Systems

1.2.1 Spoken Term Detection (STD)

STD evaluation campaign was initiated by the NIST, the USA in 2006 [12]. The
term corresponds to a word or a sequence of words, which is to be detected in
the audio documents. The objective was to use speech technology, in particular,
Automatic Speech Recognition (ASR), for the audio retrieval using text query.

The state-of-the-art STD system is the cascade connection of ASR and text-
retrieval system [7]. An ASR system can be seen as a nonlinear transformation
from the speech signal to a sequence of words [13]. The core ASR architecture

3
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Figure 1.2: Block diagram representation of STD system. The red colored speech
waveform inside the dashed box indicates to the detection candidate. After [14].

has been constructed on the Bayesian probabilistic framework. In particular, the
acoustic observation sequence, O = o1, o2, · · · , on, the objective function of an
ASR is to determine the best word transcript, Ŵ = w1, w2, · · · , wm, that maximizes
the posterior probability, P(W|O), as [13]:

Ŵ = argmax
W
{P(W|O)} = argmax

W

P(O|W)P(W)

P(O)
. (1.1)

The estimate is highly dependent on two models, namely, acoustic model P(O|W)

and language model P(W).

ASR system decodes speech into word transcript, and the term is searched in
the decoded transcripts. The output from one-best hypothesis seems erroneous
so far as the performance of ASR is concerned. To cope up with the issues of ASR
errors, ASR system produces multiple word transcripts or an output in terms of
the lattice [7, 15, 16]. The traditional STD framework for audio content retrieval is
shown in Figure 1.2. The detection scores are transformed into confidence scores
by employing score normalization (which takes into account scores of different
terms that have different dynamic range). The detection threshold is applied to fil-
ter out confidence scores and obtain few detection candidates, whose confidence
scores are higher than the detection threshold [14].

The lattice information needs to be effectively stored for the fast retrieval.
Weighted Finite State Transducer (WFST) is one of the way to represent lattice
for STD task [17]. If a query contains Out-of-Vocabulary (OOV) words that does
not appear in ASR vocabulary, an ASR cannot generate output for STD. To resolve
this, ASR system is modelled on subword-level, i.e., smaller unit than the word,
such as, phonemes or syllables. Such subword-based ASR generates subword se-
quences or lattice and then searching is performed by minimum edit distance cri-
teria [15,18,19]. In order to search quickly using subword units, output of ASR has
to be converted into index representation. Few such indexing schemes are suffix
indexing scheme [20] and metric subspace indexing [21]. STD system exploits the
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well-trained speech recognizer to convert speech utterances into word-sequence
or word lattice. In the case of OOV word, STD system generates subword, i.e.,
phoneme or syllable-level sequence. In order to perform matching, soft-matching
(approximation) is needed to overcome the insertions, deletion and substitution
errors. This is also known as phonetic search. In phonetic search approach, each
text query is converted into string of phonemes via pronunciation dictionary.

1.2.1.1 Research Issues in STD

The major research issue in STD is to have abundant resources for ASR building,
efficient indexing and searching methods to speed up the search; and OOV words
that are very often considered as a part of query. Speech in vernacular language
may contain multiple code-switching, where ASR systems cannot be useful [22].

1.2.2 Query-by-Example Spoken Term Detection (QbE-STD)

As discussed earlier, STD technology requires the ASR system (to generate tran-
scription) and text-retrieval (for content/message retrieval). [7]. However, the
lack of resources in few languages (which are called as under-resourced languages)
makes the ASR building infeasible and SCR in such language cannot be feasi-
ble without ASR system. Thus, ASR system suffers from OOV word recogni-
tion and hence, STD system required subword (such as, phoneme, syllable, etc.)
recognizer. In this context, a study was conducted to exploit spoken example
and phoneme transcription of OOV query [23]. QbE-STD is important for low-
resourced languages and under non-mainstream conditions, where ASR is not
available or feasible to develop and hence, it was also called as unsupervised
STD [7, 24, 25].

Audio documents

query

Detection 
Result

Feature 
Extraction

Feature 
Extraction

Matching

Figure 1.3: Block diagram of QbE-STD system.

The architecture of QbE-STD system is shown in Figure 1.3. The use of spo-
ken example offers audio retrieval in multi-lingual scenario (i.e., audio documents
belong to more than one language). Inspired by this motivation, MediaEval cam-
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paign commenced, Spoken Web Search (SWS) task in 2011 [26]. This task involved
language-independent audio search for low-resourced languages. This task was
held almost every year in MediaEval [26–30]. Since 2014, SWS task was renamed
as Query-by-Example Search on Speech Task (QUESST) to well exhibit the funda-
mental characteristics of QbE-STD system, i.e., query in the form of spoken exam-
ple [29, 31]. More detailed reviews related to QbE-STD systems are presented in
Section 2.8 of Chapter 2.

1.2.2.1 Research Issues in QbE-STD

The major research issues in QbE-STD framework are audio representation and
the complexity of search algorithm.

• The audio representation should be speaker-invariant (i.e., w.r.t. speaker vari-
abilities). In addition, it should emphasizes phonetic information more rather
than the speaker and other paralingual characteristics.

• QbE-STD is very slow due to computationally intensive Dynamic Programming
(DP)-based algorithm, with frame-based representation. Matching task has to
be executed fast that demands another indexing or search space reduction ap-
proaches without much affecting matching performance.

• For realistic scenario, QbE-STD system should consider the non-exact variants
of query, such as, variation of query at suffix, prefix or word ordering.

More detailed discussion on these research issues is presented in Section 2.7.

1.2.3 Keyword Spotting System

The Keyword Spotting (KWS) problem is slightly different than the ASR. The key-
word spotter involves in locating few set of words rather than the optimal word
sequence as in ASR [32]. In a traditional keyword spotting framework, two acous-
tic models are used, namely, keyword model for modeling the keyword and back-
ground model to model entire speech signal [19,33]. The schematic block diagram
for acoustic keyword spotting (AKWS) is shown in Figure 1.4. The likelihood ra-
tio between keyword model and the background model is used to compute the
detection threshold. These detection scores are normalized (transformed into con-
fidence scores) and filtered to get detection candidates, whose confidence score is
higher than the detection threshold.

In this query detection, the score is computed by taking likelihood ratio be-
tween the phoneme sequence passing through keyword sequence and an arbi-
trary phoneme loop (ergodic model). This model is applicable, when pre-defined
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Figure 1.4: Block diagram representation of AKWS system The red colored speech
waveform inside the dashed box indicates to the detection candidate. After [14].

set of queries are available. This framework can be useful for text and spoken
query realization. In traditional STD scenario, keyword is described by phonemic
sequence using pronunciation dictionary and Viterbi decoders can be used [23,34].

1.2.3.1 Research Issues in KWS

The major limitation of AKWS is its applicability for fixed set of keywords. The
entire system needs to be retrained for the new set of keywords. In addition,
KWS problem was not attempted for non-exact keyword matching task, where
the objective is to detect the keyword having lexical variation either at suffix or
prefix.

1.3 Focus and Contributions in the Thesis

The major focus of present thesis is to exploit spoken query and build language-
independent QbE-STD task. In this thesis, we present the speech representation
and matching perspective for design of QbE-STD systems. The brief summary of
contributions in the thesis are as follows:

1.3.1 GMM Framework for VTLN

In this thesis, in order to make query and document invariant w.r.t. speaker,
we exploit Vocal Tract Length Normalization (VTLN) approach. In particular,
we used Gaussian posteriorgram of VTL-warped spectral features for a QbE-STD
task. The novel use of a Gaussian Mixture Model (GMM) framework for VTLN
warping factor estimation is presented. In particular, presented GMM framework
does not require phoneme-level transcription and hence, it can be useful for the
unsupervised task. In GMM-based VTLN warping factor estimation approach,
initially GMM parameters are estimated using unwarped features, i.e., having
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VTLN warping factor α = 1. Then, the optimal VTLN warping factors α̂ are
estimated based on Maximum Likelihood Estimation (MLE). In the next cycle,
GMM parameters are re-estimated with the help of the features having optimal
warping factor, i.e., α̂. The GMM framework along with proposed iterative vari-
ant estimates the VTLN warping factor and captures the spectral scaling suitable
to adjust with the speaker-independent scenario. We will discuss VTL-warped
Gaussian posteriorgram in Chapter 4.

1.3.2 Mixture of GMMs for Posteriorgram Design

The speech data governs acoustically similar broad phonetic structures. To cap-
ture broad phonetic structure, we exploit supplementary knowledge of broad
phoneme classes (such as, vowels, semi-vowels, nasals, fricatives, plosive) for
the training of GMM. The mixture of GMMs is tied with GMMs of these broad
phoneme classes. A GMM trained under no supervision assumes uniform priors
to each Gaussian component, whereas a mixture of GMMs assigns the prior prob-
ability based on broad phoneme class. The novelty of this work lies in prior prob-
ability assignments (as weights of the mixture of GMMs) for better Gaussian pos-
teriorgram design. The proposed posterior features from the mixture of GMMs
outperform Gaussian posteriorgram because of its implicit constraints supplied
by broad phonetic posteriorgram. We will discuss posteriorgram representation
based on mixture of GMMs in Chapter 4.

1.3.3 Partial Matching for Non-Exact Query Matching

In realistic scenarios, there is a need to retrieve the query that does not present
exactly in the spoken documents. However, the appeared instance of query might
have the different suffix, prefix or word order. The DTW algorithm monotonically
aligns the two sequences, and hence, the conventional approach is not suitable to
perform partial matching between the frame sequence of query and test utterance.
The proposed modified approach does not require to run Dynamic Time Warping
(DTW) for multiple times for each query and test utterance pair [2]. The non-
exact query matching can be handled by considering four different cases, namely,
forward partial match, reverse partial match, the query containing filler and the
query having reordered word sequence. In Chapter 5, we will discuss these partial
matching strategies.
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1.3.4 Feature Reduction Approach

To execute DTW in a faster mode for matching, the average of consecutive features
is considered without overlapping [35]. However, the blind merging of features
might average the information in the vicinity of phonetic boundaries. The reason
can be the posterior features on either side of phone boundaries exhibit different
characteristics. Hence, one such loss might be introduced due to the merging of
feature vectors in the vicinity of phoneme boundaries. In feature reduction ap-
proach, we merged consecutive feature vectors within phonetic segment bound-
aries and executed DTW by reduced number of feature vectors. Thus, a lesser
number of feature vectors reduces the computational cost by reducing the num-
ber of comparison operations with slight degradation in search performance. We
will discuss the feature reduction-based search space reduction in Chapter 5.

1.3.5 Segment-Level Bag-of-Acoustic Words

The conventional QbE-STD systems are based on DTW, which is computationally
intensive algorithm leading to scalability issue. The study discusses a segment-
level approach of a novel Bag-of-Acoustic Words (BoAW) [2]. The objective is
to use speech segmentation at phone-level to build an inverted index. This in-
verted index representation of spoken query and test utterance are used to reduce
the search space. To restore the time information and perform query detection,
DTW search is executed on selected test utterances. In Chapter 5, we will discuss
segment-level BoAW for search space reduction.

1.3.6 Exploring Detection Sources and Multiple Acoustic Features

In addition, we discussed the two-stage zero-resource approach for QbE-STD [36]
that exploits the detection candidates at first level and several acoustic features.
At the first-stage, subDTW search algorithm with GP representation gives detec-
tion candidates. Then, several acoustic features and detection sources are used
to re-score the detection hypothesis. The individual performance of various de-
tectors was found to be complementary. In the similar framework, we exploited
several detection sources, such as, the self-similarity matrix, the depth of valley
along the warping path in DTW, Term Frequency (TF) and the weighted mean
representation to improve the performance of Gaussian posteriorgram and pho-
netic posteriorgram [37]. These additional cues are complementary to the poste-
riorgram representation and hence, give better performance than posteriorgram
alone.
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1.4 Organization of the Thesis

The organization of thesis is as follows.

Chapter 1

Introduction

Chapter 2

Literature
Survey

Chapter 3

Experimental
Setup

Chapter 4

Representation
Perspective

Chapter 5

Matching
Perspective

Chapter 6

Two-Stage
Approach

Chapter 7

Summary and
Conclusions

Figure 1.5: Flowchart of the organization of the thesis.

• Literature survey for QbE-STD problem is discussed in Chapter 2. In particu-
lar, we will discuss the representation, matching, and detection subsystems in
detail. The primary performance evaluation metrics used in QbE-STD and var-
ious research issues are also presented. We will discuss several MediaEval SWS
and QUESST QbE-STD systems in brief. However, detailed literature survey
can be found in [7, 22, 24].

• The experimental setup used in this thesis is discussed in Chapter 3. In particu-
lar, this chapter gives details of databases used in the thesis, posteriorgram rep-
resentation, search and detection sub-systems. In this chapter, we investigated
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the effect of local constraints and dissimilarity functions used in subsequence
DTW.

• Chapter 4 discusses representation perspective for QbE-STD system. In par-
ticular, VTL-warped Gaussian posteriorgram and posteriorgram of mixture of
GMMs for QbE-STD are discussed. The objective is to design speaker-invariant
speech representation that emphasizes the phonetic information rather the speaker-
specific information.

• Chapter 5 discusses search (matching) perspective of QbE-STD system. In par-
ticular, partial matching approach for non-exact query matching and search
space reduction approaches are presented. Feature reduction-based and segment-
level BoAW approach are discussed as search space reduction approaches.

• Chapter 6 discusses the fusion of evidences from various acoustic features as
well as detection sources. This chapter contains two parts, namely, two-stage
zero-resource approach, which exploits several acoustic features and detection
sources. We observed that the incorporating these detection sources and acous-
tic features improves the performance as compared to the performance of the
posteriorgram alone.

• Finally, Chapter 7 discusses the summary of the thesis along with limitations
and research directions that can be explored in the future.

1.5 Chapter Summary

This chapter presented an introduction to spoken content retrieval problem to
retrieve audio documents. We briefly discussed spoken content retrieval sys-
tems, namely, STD, QbE-STD, and keyword spotting. In addition, we briefly
discussed key contributions in this thesis, namely, GMM-based VTLN-warped
Gaussian posteriorgram, posteriorgram from mixture of GMMs, feature reduc-
tion and segment-level BoAW for search space reduction, partial matching for
non-exact query detection task, and the exploration of multiple detection sources
and acoustic features. In the next chapter, the literature survey on QbE-STD prob-
lem is discussed.
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CHAPTER 2

Literature Survey

2.1 Introduction

In Chapter 1, we briefly discussed different Spoken Content Retrieval (SCR) frame-
works, namely, Spoken Term Detection (STD), Query-by-Example Spoken Term
Detection (QbE-STD) and keyword spotting (KWS). In addition, we also discussed
major contributions in the thesis. In this chapter, we will discuss a literature sur-
vey for various methods or approaches to design QbE-STD system. The organi-
zation of this chapter is as follows: Section 2.2 discusses the motivation behind
QbE-STD and components of QbE-STD systems. Performance evaluation metrics
are presented in Section 2.3. The details of components QbE-STD, such as, front-
end subsystem, searching subsystem, and detection subsystem are presented in
Section 2.4, 2.5, and 2.6, respectively. In Section 2.7, the research issues in QbE-
STD systems are discussed. The brief details about QbE-STD submitted systems
to MediaEval SWS and MediaEval QUESST evaluation campaign are given in Sec-
tion 2.8.

2.2 Motivation and Components of QbE-STD

Query-by-Example (QbE) paradigm for STD has been introduced with two ma-
jor motivations. One being the limitation of Automatic Speech Recognition (ASR)
system for Out-of-Vocabulary (OOV) words as an alternative approach to sub-
word recognizer [38]. The another is to extend the speech retrieval task for the
low-resource scenarios, where ASR is not feasible due to lack of huge transcribed
speech data [39]. Recent technological developments in the smartphone and dig-
ital devices allow a user to access the information via spoken media. This tech-
nological development motivated a new research direction for spoken content re-
trieval, i.e., to retrieve the audio document via spoken queries, which is called as
Query-by-Example Spoken Term Detection (QbE-STD).
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Figure 2.1: A schematic of generic block diagram of QbE-STD system. After [24].

Many information management tasks have adopted QbE paradigm. Earlier,
the query-by-example paradigm was utilized to execute image retrieval task by
computing the similarity between a query image and documents of images from
database [40]. The QbE framework was also presented in [41] for music informa-
tion retrieval (MIR) to extract the songs and other metadata, such as, singer, al-
bum, date of recording, etc. Recently, an example-based approach was employed
for surgical activity detection task under context-based information extraction
paradigm [42]. The stacked autoencoder representation of query was used with
asymmetrical subsequence Dynamic Time Warping (DTW) search algorithm [42].

Due to diversified nature of QbE-STD, there are plenty of views and approaches
regarding the solution. However, from the philosophical perspective, we may
categorize the majority of the approaches into two broad categories, namely, low-
resourced and zero-resourced, which are also referred to as supervised and un-
supervised approaches, respectively. In low-resourced, acoustic models (from
acoustically close language) can be used to obtain a symbolic form of acoustics.
Further acoustic data adaptation and bootstrapping of an acoustic model can also
be performed to tune the parameters of acoustic representation towards audio
documents. In zero-resourced or unsupervised approach, no other resources from
rich-resourced languages were adapted. These approaches are data-driven ap-
proaches, where the information about the acoustics is learned from the audio
documents. To generalize these categories, we may consider the general schematic
block diagram as shown in Figure 2.1. Basic components of QbE-STD system are
as follows [24]:

(i) Front-end subsystem: The role of front-end subsystem is to represent audio
documents and query into posteriorgram (i.e., frame-based posterior vec-
tors) or symbol-based linguistic units. Front-end also perform speech vs.
non-speech detection to remove silence present in the query.

(ii) Search-subsystem: The major role of search subsystem is to perform dy-
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namic alignment between query and audio document realization to locate
possible acoustic similarities. In addition, it also uses indexing to speed up
the dynamic matching task.

(iii) Detection subsystem: This subsystem ranks the detection score and does
the decision making. It also combines several evidences from multiple QbE-
STD systems with effective score normalization and their score-level fu-
sion. In pseudo-relevance feedback (PRF) scenario, the located query within
the audio documents can be further utilized as the secondary query (i.e.,
pseudo-query). The acoustic representation from such pseudo-query can be
further used to search within the audio documents, and the associated de-
tection scores are modified, accordingly.

In STD framework for SCR, front-end subsystem corresponds to the ASR,
whereas search and detection subsystems perform text-retrieval task onto the ASR
output using text representation of a query to detect a query (keyword) (Please re-
fer Figure 1.2). A more detailed aspect of each subsystem is discussed from next
Section onwards. These research issues (which was discussed earlier in Chapter
1) are the acoustic representation, searching algorithm, search space reduction,
search system combinations, etc.

2.3 Performance Evaluation Metrics

Evaluation of QbE-STD systems can be categorized as ranked and unranked eval-
uation [7]. The ranked evaluation displays the list of items based on the relevance
w.r.t. query. The unranked evaluation assesses the performance based on thresh-
olding, i.e., the audio documents are retrieved, whose relevance score is above a
particular threshold. The performance of QbE-STD systems have been evaluated
using following evaluation metrics [7, 43]:

(a) Precision@N: If N is the number of queries present in the database (docu-
ments), precision@N, (i.e., p@N) is defined as [43]:

p@N =
Ncorr

N
× 100, (2.1)

where Ncorr = total number of correct occurrences found in top N items and
N = total number of occurrences of the query. For an ideal search system,
p@N should be 100 % indicating all top Ncorr items are hit (correct detection).
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Consider a scenario, where the query, q, appears 4 times in the documents
and the top 10 potential matches are

(t, t, f , f , t, f , f , t, f , f ),

where t and f corresponds to true occurrence and false alarm, respectively.
Here, the total number of correct occurrences in top N = 4 items are 2 and
hence, precision at N is, p@N = 2

4 × 100 = 50 %.

(b) Mean Average Precision (MAP): Average precision (AP) is defined as [7]:

AP(q) =
∑n

k=1 pq(k)1q(k)
N

, (2.2)

where pq(k) =precision at k for the query q, n = total number of audio doc-
uments, N = total number of occurrences of the query, p@k and 1q(k) =

an indicator function indicating that the presence of a query (q) (i.e., rele-
vant documents), which means 1q(k) = 1 if kth document is relevant oth-
erwise 1q(k) = 0. Mean Average Precision (MAP) is the mean value of av-
erage precision (AP) across different queries, i.e., MAP = 1

Q ∑Q
q=1 AP(q).

Hence, AP shows the performance w.r.t. single query and mean average
precision (MAP) is the mean value of AP across different queries indicat-
ing the overall system performance independent of queries. For the above
scenario, AP(q) = 1

4

(
1
1 +

2
2 +

3
5 +

4
8

)
= 0.775 (i.e., 77.50 %). For an ideal

search system, MAP should be 100 %, indicating all the relevant documents
are retrieved and none of the irrelevant documents are retrieved.

(c) Maximum Term Weighted Value (MTWV): Term Weighted Value (TWV) is
a weighted linear combination of false alarm probability Pfa(q, θ) and miss
probability Pmiss(q, θ) at an operating threshold, θ, i.e.,

TWV(θ) = 1− 1
|Q| ∑

∀q∈Q
(Pmiss(q, θ) + βPfa(q, θ)) , (2.3)

where Q is the set of queries and β is a constant (which is set empirically
66.66 for SWS 2013 and 12.49 for QUESST 2014 [29, 44]).

The Maximum Term Weighted Value (MTWV) is the maximum value of TWV
obtained at an optimum value of threshold θopt. The ideal system should give
MTWV=1 that corresponds to Pmiss = 0 and Pfa = 0, i.e., all the presence of
query are detected with no false acceptance. The graphical view of miss, false
alarm (FA) and hit are shown for a given query in Figure 2.2.

16



time

Reference0.5 s 0.5 s

HIT

time

Reference0.5 s 0.5 s

FA HIT

time

Reference0.5 s 0.5 s

MISS

(a)

(b)

(c)

Figure 2.2: A graphical representation of hit, miss and false alarm (FA): (a) the
detection within the ground truth (i.e., reference) that corresponds to HIT, (b) two
detections within the ground truth that corresponds to one HIT and one FA, and
(c) no detection within the ground truth corresponds to MISS. After [14, 45, 46].

(d) Normalized cross-entropy Cnxe: It measures the fraction of information w.r.t.
the ground truth, which is not provided by the system scores [44]. Scores are
considered as log-likelihood ratios. A perfect system should give Cnxe ≈
0, indicating no randomness in the system detection and hence, it is well
calibrated system, where target and non-target scores are far apart [47]. The
cross-entropy can be expressed as follows:

Cxe =
1

log 2

[
ptarget

|Ttrue(S)| ∑
t∈Ttrue(S)

Clog(llrt) +
1− ptarget

|Tfalse(S)|
∑

t∈Tfalse(S)
Clog(llrt)

]
, (2.4)

where Ttrue(S) and Tfalse(S) are the set of target and non-target trials, respec-
tively and Clog(llrt) is the logarithm of cost function. The empirical cross-
entropy of trivial system (i.e., always rejecting or always accepting the trials,
whichever gives the lower cost), which is prior entropy and it is given by [44]:

Cprior
xe =

1
log 2

[
ptarget · log

1
ptarget

+ (1− ptarget) · log
1

(1− ptarget)

]
. (2.5)
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From eq. (2.4) and eq. (2.5), the normalized cross-entropy is defined by [44]:

Cnxe =
Cxe

Cprior
xe

. (2.6)

To minimize the normalized cross-entropy, affine transform is applied to the
likelihood scores such that ˆllr = γ · llr + δ, where γ and δ are the calibration
parameters and minimum normalized cross-entropy is given by [44]:

Cmin
nxe = min

γ,δ
{Cnxe}. (2.7)

(e) Recall: We use this metric to evaluate the performance of BoAW model. The
recall is defined as [43]:

Recall =
Nrel

∧
ret

Nrel
, (2.8)

where Nrel
∧

ret is a total number of retrieved documents that are relevant to
the query and Nrel is a total number of relevant documents. The ideal value
of recall is 1 indicating all the retrieved documents are relevant.

(f) Detection Error Trade-off (DET) curve: The DET curve has been de facto stan-
dard performance evaluation metrics in speaker recognition literature [48].
The plot shows an trade-offs between false alarm probability (Pfa) and miss
probability (Pmiss) for various detection threshold. In STD and QbE-STD, the
evaluation metric was introduced in [12], showing the performance of query
detection task for each detection threshold.

2.4 Front-end Subsystem

The front-end subsystem is responsible for converting acoustic representation into
either frame-based or symbol-based representation. Typically, a speech produc-
tion knowledge is exploited to extract features from an acoustic realization of spo-
ken audio. The acoustic realization is converted into parametric representation by
signal-level feature extraction, which we refer to as acoustic representation [49]. The
acoustic representation has some speaker-specific characteristics, which needs to
be removed before searching an audio in multi-speaker scenarios. To address this
issue, acoustic data is modeled and transformed into posterior representation. In
order to avoid silence regions that are present in the spoken query, Speech Activ-
ity Detection (SAD) task is performed.
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2.4.1 Acoustic Representation

In this thesis, we refer to acoustic representation as the first-level parameterization
conventionally at short-time or at segment-level (within 20-30 ms interval). To
characterize production and perception properties, linear prediction [50] and mel
cepstrum [51], respectively, have been used as an acoustic representation. Next,
the various acoustic representations explored in the QbE-STD problem are briefly
discussed:

• Mel Frequency Cepstral Coefficients (MFCCs) [24, 52] : The human hearing
mechanism has better frequency resolving capability at a lower frequency re-
gion than at a higher frequency region. To incorporate this into acoustic charac-
teristics, nonlinearly-spaced subband filters (at mel frequency scale) are used.
To extract MFCCs, Discrete Cosine Transform (DCT) is applied onto logarithm
of subband energies (that are estimated at the output of mel filterbank having
triangular shaped subband filters).

• Linear Prediction Cepstral Coefficients (LPCCs) [53]:
The LPCCs are the cepstrum representation of Linear Prediction Coefficients
(LPCs). LPC models the short-term power spectrum of speech using autore-
gressive all-pole model. Formants of speech acoustics are enhanced using all-
pole model [50]. LPCs can capture the physiological characteristics of human
speech production mechanism [54].

• Perceptual Linear Prediction (PLPs) [24, 52]:
In Linear Prediction (LP) analysis, we perform all-pole model spanning all pos-
sible frequency value. However, as discussed above human perception mecha-
nism has better frequency resolution at lower frequency region than the higher
frequency counterpart. Thus, human perception of hearing can discriminate
lower frequencies better than the higher frequencies. In addition, hearing sen-
sitivity is relatively more in middle frequency range (typically, 3100 Hz - 5000
Hz [55]). To incorporate a psychoacoustic observation of the human hearing
process, PLP feature set was devised [55, 56]. In general, the cepstral version of
PLP is used to represent acoustic data from a short-time speech signal.

• Frequency-domain Linear Prediction (FDLP) [24, 52]: The FDLP technique per-
forms all-pole model in frequency-domain to obtain temporal envelopes. The
DCT is used to get real-valued frequency-domain representation [57]. It was
found that FDLP captures better acoustical characteristics under noisy and re-
verberation scenarios [58].
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• Mel subband filters [59,60]: Subband filter energy has been used in the connec-
tions of DNN and Split Temporal Context Neural Network (STC-NN). Phoneme
recognition system developed by the Brno University of Technology (BUT) use
mel subband energy to train STC-NN for Czech (CZ), Hungarian (HU), Russian
(RU) and English (EN) languages [61]. These phoneme recognizers have been
extensively used in a low-resourced scenario for QbE-STD. The spacing of sub-
band in frequency-domain is nonlinear, which typically follows mel frequency
scale to imitate human perception process for hearing [51].

The features, such as, MFCCs, PLP, and FDLP, were used extensively as acoustic
representation in QbE-STD system. This might be because of their wide usage in
various speech research activities, and availability of various software tools. In
addition to above mentioned acoustic representation, various other speech fea-
ture extraction schemes were used, such as, modulation spectrogram [62], mod-
ified group delay [34], MPEG-7 with low-level descriptors (such as, audio spec-
trum centroid, spectral flux, audio spectrum spread, audio spectrum envelope)
[63], Power Normalized Cepstral Coefficients (PNCCs) [64], Local Binary Pat-
terns (LBP) from spectrograms [65], etc. The design of suitable feature extraction
scheme for QbE-STD task is an important research issue. The feature selection
was performed using correlation and valley depth approaches [66, 67]. In par-
ticular, the objective was to select the better features from the bunch of features
(namely, a sum of auditory spectra, zero-crossing rate, frame intensity, loudness,
Root Mean Square (RMS) energy, log-energy, MFCCs, mel filterbank, PLP, etc.)
that discriminates two different words and hence, aids for audio search task.

2.4.2 Speech Activity Detection (SAD)

Speech Activity Detection (SAD) task is accomplished with the use of short-term
energy. SAD is useful to remove the silence regions present at the begin and end
of the spoken query. The top-hat algorithm is applied with window duration
of 100 ms duration to avoid silence regions having less than 100 ms duration to
prevent from small phrase breaks [68]. Speech vs. non-speech classification was
performed by unsupervised clustering of MFCC features [28]. Zero-frequency fil-
tered signal was used and a non-speech regions having more than 300 ms duration
are ignored [69]. The Variance of Acceleration of MFCC (VAMFCC) rule-based ap-
proach was used to separate non-speech regions [70–72]. A Smith-trigger-based
technique was used to trim start and end silence regions associated with the spo-
ken query [73]. Multilayer Perceptron (MLP) was used to train the phone pos-
teriors and posterior associated with non-speech region is used to discriminate
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speech vs. non-speech classification [59, 74–76]. To avoid false alarm, the query
having less than 100 ms duration is ignored [74]. Principal Component Analysis
(PCA) transformation is applied onto the speech segment, and then the thresh-
old is applied on the corresponding eigenvalues of segmented speech to perform
non-speech detection [71].

2.4.3 Posteriorgram Representation

The posteriorgram representation is 2-dimensional (i.e., 2-D) plots of time (speech
frame index) vs. posterior probabilities. The posteriorgram is broadly categorized
into two types, namely, supervised and unsupervised. The supervised posteri-
orgram are computed using the trained acoustic models using speech data and
associated transcription, whereas the unsupervised posteriorgrams are computed
without trained acoustic models using only speech data. For observations se-
quence, O, having T acoustic feature vectors corresponding to segmental speech
frames (namely, o1, o2, · · · , oT), the posteriorgram (PG) is defined as the sequence
of posterior vectors [77]:

PG(O) = [PG(o1), PG(o2), · · · , PG(oT)] . (2.9)

Each posterior vector can be obtained by [77]:

PG(oi) =
[

P(C1|oi), P(C2|oi), · · · , P(CNp |oi)
]

, (2.10)

where Cj represents jth class, Np is the total number of classes and PG(oi) is the
posterior vector for ith feature vector oi. Hence, the posteriorgram for observation
sequence, O, can be represented as Np × T matrix. Figure 2.3 shows an example
of posteriorgram representation.

Here, class can be hypothesized as Gaussian components [77], acoustic seg-
ment [78], Restricted Boltzmann Machines (RBM) [79, 80] or phonetic unit [39] to
compute posteriorgram. The posteriorgram representation takes real values be-
tween 0 and 1, that corresponds to posterior probability (Please refer Figure 2.3).
The acoustic representation, such as, MFCCs, PLPs, etc. are not sparse, taking
multiple non-zero values for each speech frame.

2.4.3.1 Supervised Posteriorgram

Supervised posteriorgram represents an acoustic frame in terms of posterior prob-
abilities w.r.t. phonetic units. For low-resourced scenarios, phoneme recogniz-
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Figure 2.3: A schematic of posteriorgram plot.

ers from rich-resourced languages have been used to characterize phonetic sym-
bols in terms of rich-resourced language. For low-resource languages, labeling
of the speech data is the challenging and erroneous task. Hence, in order to use
low-resource language speech, bootstrapping approach is employed as discussed
in [24]. The trained phoneme recognizer is used to compute phonetic posterior-
gram.

Posterior features were exploited in template-based ASR that was found to
be comparable with HMM-based ASR. It was found that very less number of
templates perform effectively in template-based ASR task [81]. The posterior-
gram are found to be speaker-independent and different approaches were used
to compute the posterior probability value in posteriorgram. For example, in su-
pervised posteriorgram, Multilayer Perceptron (MLP) has been used to model the
phonetic symbols [82]. Hence, the problem of acoustic representation design can
be posed as the phonetic-level frame classification problem. However, this needs
frame-level phonetic labels to train MLP. In low-resourced language scenarios,
a language of phonetic recognizer might be different from that of audio docu-
ments. MLP can be trained with the help of rich-resourced language. It is as-
sumed that this language is phonetically closer to that of audio documents and
the query. Thus, for low-resourced speech sound units (that are represented in
terms of MLP posteriors), speech need not be the part of the language (on which
MLP is trained). In such cross-lingual decoding case, MLP representations can be
assumed as language-independent [74, 82]. The phoneme recognizer developed
by Brno University Technology (BUT) has been extensively used in the QbE-STD
task [59,74]. These phoneme recognizers are based on the Split Temporal Context-
Neural Netork (STC-NN), which is Multilayer Perceptron (MLP) framework. This
framework exploits longer temporal context from the left and the right side and
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then merge them in MLP framework [61]. Figure 2.4 shows phonetic posterior-
gram for word intelligence spoken by two different persons. In Figure 2.4 (a) and
(b) show examples of phonetic posteriorgram with English phonetic recognizer.
The language (as well as database, i.e., TIMIT) of spoken query and recognizer is
the same. Thus, it can be observed that (a) and (b) posteriorgram plots are very
much similar. Figure 2.4 (c) and (d) show cross-lingual posteriorgram, where the
language of phonetic recognizer is different (i.e., Czech, (CZ)) than the language
of spoken query (i.e., American English). Due to this language mismatch condi-
tion, the plots of posteriorgrams shown in Figure 2.4 (c) and (d) are not as identical
as compared to Figure 2.4 (a) and (b). Thus, in low-resource scenario foreign lan-
guage phoneme recognizer can be useful to represent the audio. The objective for
using foreign language posteriorgram is to characterize the acoustic events of the
audio. The objective is not to correlate this characterization into linguistic units,
such as, phonemes. With this objective, many researchers have used cross-lingual
foreign recognizer for QbE-STD [2, 44, 83, 84].

(a) (b)

(c) (d)

Figure 2.4: Phonetic posteriorgrams examples for the spoken word ‘intelligence’.
Posteriorgram with English phoneme recognizer: (a) male and (b) female speak-
ers. Posteriorgram with Czech (CZ) phoneme recognizer (c) male and (d) female
speakers.

Recently, articulatory features (from speech production viewpoint) that have
an advantage of being language-independent were used for QbE-STD task [85,86].
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The articulatory posteriorgram was computed by taking output as articulatory la-
bels instead of phonetic labels. Three different MLPs were used to model vowel
broad classes, place of articulation for consonants and manner of articulation for
consonants inspired from IPA charts [86]. The suggested lower-dimensional ar-
ticulatory posteriorgram gave an improvement of 2.87 % in terms of p@N as com-
pared to the phonemic posteriorgram representation. In MLP construction, bot-
tleneck features (BNF) from the middle hidden layers were also investigated for
a QbE-STD task. The GP computed from articulatory BNF and FDLP features
was found to be superior as posterior representation than the GP of FDLP fea-
tures [85]. Furthermore, it was found that less amount of training data (about 30
minutes) for training BNF gave better performance than the phonetic posterior-
gram and Gaussian posteriorgram, indicating convergence property of articula-
tory features [85]. In the cross-lingual QbE-STD framework, phonetic recognizer
from one language is used to represent the spoken data of another language. The
study conducted in [67] focuses the issue related to cross-lingual QbE-STD task.
The phonetic posteriorgram trained in one language may not cover phonetically
the target language (i.e., the language of audio documents and query). In such
a scenario, few phonetic symbols might have redundant behavior, whereas few
symbols might act as nuisance [67]. Thus, the study reported in [67] suggested
feature selection approach by optimizing the DTW distance criteria and interest-
ingly, observed that selected features gave better performance than the phoneme
posteriorgram.

The study presented in [80] shows that deep architecture does not always help
in performance improvement. In fact, the performance of QbE-STD saturates by
using the only single hidden layer in DNN. Furthermore, it was observed that
DNN with only 30 % of labels from TIMIT data could perform as good as entire
training data [80]. The study was conducted on Tibetan corpus for QbE-STD using
Chinese BNF [87]. The experimental results show 6 % improvement in F1 score
(F-score) over PLP features. The query detection was conducted using keyword
model and garbage (background) model with GMM/HMM framework.

Knowledge-based information was used to design posteriorgram features [88].
The knowledge about speech sound units is integrated in terms of binary distinc-
tive features. Earlier, distinctive features were found to be effective for event-
based ASR task using landmark detection [89]. Each distinctive features can be
trained using discriminative training approach. To that effect, support vector
machines (SVMs) were utilized to perform binary classification for each distinc-
tive features. This approach significantly improved the performance of QbE-STD
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as compared to other MLP phonetic posteriorgrams [88]. Recently, phone-time
boundaries and data augmentation techniques were exploited in training of poste-
riorgram for QbE-STD [60,90]. The data augmentation technique produces a large
amount of training data having acoustical variations obtained by convolving the
speech signal with simulated room impulse response and additive noise [60]. The
motivation behind data augmentation is to generate more the degraded speech in
training phase in order to have a better match with degraded test conditions. The
partial matching approaches suggested in [60] took phone boundaries into con-
sideration as a guiding tool for the warping path of subDTW. Interestingly, data
augmentation with stacked BNF does not hurt the performance rather do not give
any substantial improvement either [90]. The reason might be QUESST 2014 does
not have artificial noise and reverberation in audio data.

2.4.3.2 Unsupervised Posteriorgram

Unsupervised approaches for speech has been a popular area of research. In that
context, the zero resource speech challenge 2015 (Zero-speech) was held at IN-
TERSPEECH 2015 [91]. The primary objective of the challenge was to learn the
subword units directly from a raw speech signal. The major motivation behind
the task is to exploit the language acquisition performed by an infant. During
the early infancy period, an infant gathers and process the speech and develop
an acoustic and language model in an unsupervised manner [92]. Our tradi-
tional speech systems, in particular, ASR system uses a huge amount of acous-
tic and linguistic data. The researchers are keen to exploit this additional cues to
improve the ASR performance. Unsupervised posteriorgram characterizes each
feature vector by computing the posterior probability without any resources us-
ing features only. Such approaches are also referred to as zero-resources. Few
unsupervised modeling techniques have been used, such as, Gaussian posteri-
orgram [25, 77], Acoustic Segment Model (ASM) [78, 93–96] posteriorgram and
Restricted Boltzmann Machines (RBM) Posteriorgram [79,80] for QbE-STD. Next,
we will describe these unsupervised posteriorgrams in brief.

• Gaussian Posteriorgram: Gaussian posteriorgram has been extensively used
for QbE-STD task because it is easy to train and fewer parameters are required
for tuning as compared to the ASM and RBM. Another advantage is that GMM
can be easily adapted and initialize the deep learning networks, such as, Deep
Belief Networks (DBN) [80]. The posterior probability P(Ck|ot) (for kth cluster
and tth speech frame index) of Gaussian Posteriorgram (GP) can be computed
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as follows:

P(Ck|ot) =
P(ot|Ck)P(Ck)

P(ot)
, (2.11)

=
πkN (ot; µk, Σk)

∑
Np
j=1 πjN (ot; µj, Σj)

, (2.12)

where Np is the number of GMM components and {πk, µk, Σk}
Np
k=1 are the weights,

mean vectors and covariance matrices, for each k GMM components. The weighted
mean of Gaussian posteriorgram representation was explored for QbE-STD. A
weighted mean representation is computed from a linear combination of mean
vectors of GMM, whose weights are the posterior values associated with a pos-
terior component. Smoothing operation on Gaussian posteriorgram was con-
ducted to spread the posterior values across different components and frames.
Reconstructed representation from smoothed Gaussian posteriorgram was found
to be more efficient than the earlier weighted mean representation [97]. GMM
posteriorgram-based QbE-STD was used for Telugu broadcast news dataset
in [98]. Figure 2.5 shows phonetic posteriorgram for word intelligence spoken by
two different persons. As compared to the phonetic posteriorgram (shown in
Figure 2.4 (a) and (b)), the Gaussian posteriorgram (shown in Figure 2.5) is not
as identical as phonetic posteriorgram because it may be due to unsupervised
nature of GMM, i.e., obtained without any supervision (or transcription).

(a) (b)

Figure 2.5: Gaussian posteriorgrams examples for the spoken word ‘intelligence’.
(a) male speaker and (b) female speaker.

The binary version of posteriorgram, which BinaryGrams, were used in zero-
resource audio matching [68, 99]. In this representation, posterior probabilities
are mapped to the binary values. The advantage of BinaryGrams representa-
tion is lesser storage and computational requirements employing Boolean log-
ical distance computation [68, 99]. The human vocal tract system can be as-
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sumed to have the cascaded connections of linear cylindrical-shaped acoustic
tubes or organ pipes (which is nothing but resonators corresponding to the for-
mants). The Bessel functions are the solutions of the cylindrical wave equation.
With that motivation, Fourier-Bessel Cepstral Coefficients (FBCCs) were used
for QbE-STD [100]. FBCCs are expected to give better speech representation
than the MFCCs (where frequency-domain is characterized by sinusoidal basis
functions). FBCC gave 7 % (i.e., 0.07) absolute improvement than the MFCCs
for SWS 2012 QbE-STD task using Gaussian posteriorgram [100].

The spectral and temporal acoustic models were linked for QbE-STD task [101,
102]. In particular, GMM of the spectral acoustic model is initialized with TIMIT
phonetic ground truth. 39 phones of TIMIT were modeled as 4-component
GMM, resulting in 156-dimensional posterior representation. The Kullback-
Leibler (KL) divergence w.r.t. each Gaussian of GMM was used to measure the
dissimilarity between posterior vectors. The temporal acoustic model (TAM)
captures the long temporal information of duration 150 ms that was taken from
MFCCs representation. Combined spectral and temporal acoustic model gave
69 % improvement in MTWV as compared to the baseline approach.

Several modifications in GMM were proposed during training and effective-
ness were studied for a QbE-STD task. Expectation Maximization-Maximum
Likelihood (EM-ML)-based approach was used to train GMM. In this study,
K-means is trained (which creates hard assignment) and then Gaussian distri-
bution is fitted onto each cluster [99]. For better initialization, the GMM-based
acoustic model trained on high-resourced language was adapted for training
low-resourced language [101]. MLP is trained with either articulatory classes
or phoneme labels and the BNF from the middle layer were used. The BNF
with articulatory class labels at output were used with acoustic features to train
GMM, and the GP derived posteriorgram outperformed phonetic posterior-
gram [85]. Intrinsic Spectral Analysis (ISA) has been found to give speaker-
invariant as well as phonetically distinctive representation in unsupervised method
[103, 104]. The experimental results on TIMIT QbE-STD show that ISA features
gave the relative improvement of 13.5 % over Gaussian posteriorgram, when
temporal information is used in ISA [103].

• Acoustic Segment Model (ASM): The unsupervised model developed using
GMM does not incorporate a sequential information into the account. To in-
corporate temporal dynamics across the frames, ASM was proposed, where
segmentation and labelling-based approach was employed. ASM character-
izes the temporal dynamics via HMM framework [78, 93, 95, 96, 105]. Figure 2.6
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shows the steps for computing the ASM. To initiate HMM training, segmenta-
tion, and label assignment tasks are performed by Hierarchical Agglomerative
Clustering (HAC) algorithm [106]. To label each acoustic segment, K-means
clustering [78, 93, 105], Gaussian Component Clustering (GCC) and Multi-view
Segment Clustering (MSC) were explored [96]. The initial labels are used to
train ASM and decoding new labels. Again, the ASM is trained with this newly
generated labels and this process iterates till convergence in label assignment
is achieved. Conventionally, a number of ASM clusters were selected based
on tuning on development set [78]. However, Minimum Description Length
(MDL) criteria was used along with likelihood to select an optimum number of
ASM components [93].

In unsupervised ASM framework, few studies discussed multi-level acoustic,
phonetic and temporal granularity (resolution) [107,108]. In these studies, pho-
netic, acoustic and temporal resolutions were adjusted by varying number of
classes (i.e., ASM units), number of Gaussian components and number of states
in HMM. To perform QbE-STD, KL-divergence between the states of HMM (in
terms of variational approximation) was used and DTW was used to align the
sequence [108]. Furthermore, the content consistency across the multiple recog-
nized hypothesis was inferred and re-labelling was conducted. This re-labelling
scheme was found to be more effective than the one without re-labelling [107].

• Restricted Boltzmann Machine (RBM):
RBM was explored to represent the audio signal in QbE-STD. Gaussian-Bernoulli
RBM (GBRBM) was used to learn the distribution of feature vectors [79]. The
joint energy for GBRBM is defined as follows [79]:

E(v, h) = ∑
i∈V

(vi − bi)
2

2σ2
i
− ∑

i∈V,j∈H

vi

σi
wijhj − ∑

j∈H
hjcj, (2.13)

where vi and hj represent the ith component of visible layer and jth component
of hidden layer, respectively, wij is the weight associated with visible unit vi and
hidden unit hj, bi is the bias with visible unit vi, cj is the bias with hidden unit
hj and σi is the standard deviation with visible unit vi.

The sigmoid activation obtained at first hidden layer was used as a posterior

Initial 
Segmentation

Segment 
Labeling

Iterative HMM 
Training

Compute 
ASM

Figure 2.6: The schematic diagram for ASM computation. After [78, 96].
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Figure 2.7: The schematic flow diagram of DBN posteriorgram feature extraction.
After [109].

representation. The major motivation behind GBRBM was the non-Gaussian
distribution of features. In GP, we generally assume diagonal covariance, which
may be not the correct for different acoustic features. Since GBRBM posteri-
orgram considers this fact, it is expected to give better performance than the
GP. The GBRBM posteriorgram gave 12 % improvement in p@N as compared
to the MFCC representation. Deep Belief Network (DBN), the stack of RBMs,
was used for posteriorgram building [80, 109]. DBN posteriorgram were used
to tune Gaussian posteriorgram by assigning a class to each feature-based on
the values attained by Gaussian posteriorgram. This unsupervised framework
improves the search performance over Gaussian posteriorgram representation
[80]. Procedure of DBN posteriorgram feature extraction is shown in Figure 2.7.

Recently, an autoencoder-based approach was used to learn the subword units
in the speech signal. The autoencoder-based representation was found to be
more efficient than the GMM posteriorgram for spoken query classification
task [110]. Recently, Dirichlet Process Gaussian Mixture Model (DPGMM) is
used in the connection with DNN for audio representation [111]. DPGMM has
an ability to learn and adapt the suitable number of hyperparameters rather
than being fixed as in the case of GMM. DPGMM is used to label the speech
data in an unsupervised manner. The low-dimensional BNFs were computed
in DNN framework. The performance of unsupervised BNF was found to be
comparable with supervised BNF. The score-level fusion further improved 10
% relative improvement than the supervised BNF.
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2.4.4 Symbol-based Representation

Along with frame-level posteriorgram representation, symbol-level representa-
tion was also used in QbE-STD. Phoneme decoders from trained recognizer [69,
112, 113], or unsupervised ASM trained under zero-resource scenarios [93, 108]
were used to produce symbolic representation. Well trained phoneme recognizer
and international phonetic alphabets (IPA) were used to represent spoken doc-
uments and query [114]. The phoneme labels obtained by Romanian phoneme
recognition are mapped to the respective IPA symbols. Dynamic Time Warping
String Search (DTW-SS) approach performs alignment on the smaller part of test
utterance and query. DTW-SS is operated on symbol-level, and hence, it provides
scalable and practically feasible in terms of computational aspect as compared to
the frame-based approaches.

Given a spoken data, the unsupervised HMM training and labeling task can
be executed in an iterative manner. Initially, the spoken data are transcribed as
W0 using segmentation and labeling approach [115]. The iterative model training
and decoding steps are executed as follows:

λt = argmax
λ

P(O|λ, Wt−1), (2.14)

Wt = argmax
W

P(O|λt, W). (2.15)

HMM models are trained using the initial transcripts (labels) W0 as in eq. (2.14)
and then new transcription (labels) are obtained using trained HMM as in eq.
(2.15). For every time t, the process can be repeated (as in eq. (2.14) and eq.
(2.15)) iteratively, till there is no change across the old transcript Wt−1 and the
new transcript Wt.

In this Section, we studied front-end subsystem of QbE-STD system, where
each audio waveform is converted into equivalent frame-based posterior repre-
sentation. This sequence of posterior representation (i.e., posteriorgram) is used
to execute matching between the audio documents and the spoken query. In the
next Section, we discuss variants of search algorithm to perform audio matching.

2.5 Searching Subsystem

In this Section, we will discuss the search algorithm used for QbE-STD task for
frame-based and symbol-based representation.
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Figure 2.8: An example of segmental DTW with adjustment window length 2.
Three segments are shown. After [25, 77, 109, 119].

2.5.1 Search Subsystem for Frame-based Representation

The same query word spoken by the same or different speaker does have temporal
alignment mismatch. Due to the speaking rate variation of individual speakers
(i.e., the speakers may or may not prolong few vowels in any word), linear time
normalization approach may not be suitable for the alignment task. DP-based
nonlinear time normalization scheme was proposed in [116]. This nonlinear time-
normalization technique has been popular as DTW. This Section discusses the
majority of search algorithms used in QbE-STD problem, which are some variants
of DTW.

(A) Segmental DTW (SDTW) is popular search technique, proposed for spoken
term discovery [117]. In SDTW, constraints applied by considering the segment of
nearly equal length to the query. DTW is performed to obtain an alignment cost
for each segment [77, 117]. The number of comparison operation to execute the
search task for a query having length N frames and test utterance having length
M frames is of the order of O(MN2), which is very time-complex operation. The
number of segments in SDTW are proportional to number of test utterance. In
some cases, a warping window was set in proportion to the length of query [118].
Figure 2.8 shows three segments of SDTW.

(B) Subsequence DTW (SubDTW) is used to find a subsequence of a query into
reference. Here, endpoint constraint of classical DTW is relaxed [120]. In Sub-
DTW, local distance is accumulated only once during warping path construction
and hence, single DTW is executed (unlike multiple DTW in SDTW algorithm).
The number of comparison operation to execute the search task for the query
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having length N frames and reference having length M frames is of the order
of O(MN) that is far lesser than O(MN2). Few modifications in the SubDTW
algorithm were suggested mainly due to accumulation distance procedure.
(C) Other variants of DTW: SDTW and subDTW have been extensively used in
QbE-STD, however, few research studies considered different variants of DTW
w.r.t different local constraints or distance computation [53, 121, 122]. Non-
segmental DTW (NSDTW) accumulates the distances and then normalized by a
total number of hops to reach a current position from the starting frame index [53].
Slope-constraint DTW (SC-DTW) was proposed to overcome high-speaking rate
distortion between two audio signals [121]. In SC-DTW, local slope constraints are
adjusted between 0.5 and 2, i.e., the warping path is adjusted such that no frame
from query should be aligned to more than two frames of test utterance and vice-
versa [25, 121]. Cumulative Dynamic Time Warping (CDTW) was proposed to
introduce softmax operation in distance accumulation [122]. The detection score
is obtained through logistic function. The parameters of logistic function can be
derived using gradient-based optimization, where development data is used as
train data.

2.5.1.1 Computational Improvement for Frame-based Approaches

The major issue with DTW-based approaches is high computational requirements.
The simple, straightforward solution is to use advanced computing platform and
parallel computing environment. Several such attempts were made in terms of the
use of distributing the computational load to multiple CPU cores [123] for acoustic
pattern discovery as well as the use of Graphical Processing Units (GPUs) [119,
124] for QbE-STD. In order to speed up, various improvements were suggested,
which are as follows:

• Lower bound estimate: The lower bound (LB) is used to approximate LB of the
exact DTW [125]. For the query Q and the segment of utterance US, the LB and
DTW are related as follows:

LB(Q, US) ≤ DTW(Q, US). (2.16)

The idea is to execute computationally cheaper LB values for each possible seg-
ment of an utterance, before the execution of DTW. The pair of a query and a
test segment along with the LB values are ranked and stored in the queue, PQ.
The top of the queue is pointing to the lowest LB value for all possible seg-
ments. The algorithm popped off the segments UStop on the top of queue and
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Figure 2.9: An illustration of KNN search with LB estimate to speedup SDTW.
The LHS indicates the priority queue PQ and RHS indicates the result list RL.
After [109].

execute DTW, i.e., DTW(Q, UStop). The result of DTW is stored into the result
list RL. If result list RL does not contain the utterance associated with segment
UStop , then RL is updated, else the better segment having lower DTW is kept
in RL. The kth best match is set to DTW(Q, UStop). Again, the top of the queue
PQ is popped off and compared against the kth best and the list RL is updated.
Figure 2.9 shows the working of K nearest neighbors (KNN) search with LB es-
timate. Thus, KNN DTW method uses the lower bound technique to remove
the unnecessary DTW operations [126]. In addition, tighter lower bound for
DTW was also proposed in [127] that can be used for any distance unlike inner
product distance as proposed in [126].

• Segment-based approach: In this approach, a segment is represented as the
sequence of homogeneous frames efficiently. Thus, it can reduce the compari-
son operation and speed up the searching task at little cost [121]. The integrated
segment and frame-based approach are presented from QbE-STD [121] that per-
forms in two passes to detect the query. The first pass performs segment-based
DTW and located the possible region that hypothesizes the presence of query.
The distance between possible regions and query is recalculated using frame-
level DTW. The detection performance is improved by 2.0 % in terms of MAP
and CPU time is reduced by 45.2 % as compared to the frame-based DTW [121].

• Syllable-based segmentation: The study conducted in [128] presents the fast
approach of QbE-STD via two-pass approach. At the first pass, new query in-
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stances derived using the actual query. In the second pass, the new instances
along with actual query are used and normalized DTW distances were com-
puted. The DTW alignment distance between syllable segments with a query
and part of test utterance were used in the normalization process. The query
detection task was conducted by segmental DTW, where the search is executed
at only syllable boundaries and hence, it reduces the search computational com-
plexity by a factor of nine than the segmental DTW approaches [128].

• Fast DTW: Inspiring from fast DTW approach [35], the study was conducted
to speed up the NS-DTW by feature reduction [53]. The number of comparison
operations to execute the search task for the query (having length N frames) and
reference (having length M frames) is of the order ofO(MN

β2 ), where β > 1 is the
feature reduction factor. This means theoretically, search complexity reduces in
a quadratic manner. Unbounded-DTW was proposed in [129] to reduce high
computational cost. In this approach, possible alignment points are defined
that are used to search time-warped matches. This results in a reduction in the
exhaustive computational matrix. Start-end alignment points are found using
forward-backward DP algorithm.

• Information Retrieval DTW (IR-DTW): IR-DTW was proposed to match two
subsequences of test utterance and spoken query in QbE-STD [130]. IR-DTW
does not involve with dynamic alignment; it sequentially computes the similar-
ity measure on an entire distance matrix. Hence, IR-DTW has a smaller memory
or footprint size requirement as compared to the subDTW. In addition, IR-DTW
offers an indexing for searching that makes this approach feasible for large scale
subsequence matching scenario. One of the limitations of IR-DTW was the re-
quirement of exhaustive search on all the test utterances for a given query.

• Randomized Algorithm for Fast Template Matching: For computational ef-
ficient DTW, randomized algorithms are used. Locality Sensitivity Hashing
(LSH) technique is used to approximate sparse cosine similarity [131]. LSH con-
verts high-dimensional raw speech representation into low-dimensional sig-
nature bits that can exploit Hamming distance as an approximating to some
distance metrics in the feature space. A Randomized Acoustic Indexing and
Logarithmic-time Search (RAILS) algorithm is rooted in randomized hashing
and nearest neighborhood search operation [132]. The RAILS makes large-scale
QbE-STD task feasible by combining stages of search-space reduction using
approximating distance and an application of segmental DTW for further re-
scoring [132].

• Bag of Acoustic Words Approach (BoAW) : To reduce the search space, BoAW
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is proposed in [133]. This method is derived from Bag of Words (BoW) method
used in the text retrieval literature [43, 134]. In this study, acoustic words are
associated with components of Gaussian posteriorgram. In BoAW, a spoken
document is represented as an unordered acoustical units, such as, framewise
phonetic contents, syllables or spoken lexical words. Each document is repre-
sented as a histogram or frequency count of acoustic words. Acoustic words are
indexed using inverted indexing method [133]. In the BoAW method, temporal
information in the speech signal is lost. Hence, DTW-based re-scoring is ap-
plied on the detection of BoAW inverted indexing method. The idea of BoAW
was extended for bi-gram and tri-gram for indexing [135].

• Graph-based similarity search : To speed up the QbE-STD, several Graph-
based Similarity Search (GSS) approaches were proposed, where the indexing
graph is prepared offline and query detection is performed on the selected ut-
terances [136–138]. A Degree Reduced k - nearest neighbor (k-DR) graphs are
constructed from the GP representation. The GSS is a combination of Greedy
Search (GS) and Depth-First Search (DFS). The GSS looks for the graph index,
which is similar to the query and generates selected detection candidates with
scores [136]. The DTW is further performed on these selected candidates. The
GSS approach executes the search space reduction by 28 times faster than the
LB-based approach, keeping almost the same p@N [136]. The extension of k-
DR, i.e., hierarchical k-DR was proposed to perform Hierarchical Graph-based
Similarity Search (HGSS). The HGSS reduces the CPU execution time about 40
% than the GSS, having almost the same precision [137]. A Double-Layer neigh-
borhood Graph (DLG) index search method was proposed, which has two dis-
tinct layers, namely, an upper layer (which is analogous to express highway
road) and a base layer (which is analogous to general roads). Both layers have
different degree reduced k- nearest neighbor. Thus, the vertex on a base layer
are posteriorgram segments that acts as general roads, and the top layer has a
representative vertex that serves as an express highway. DLG reduces the CPU
execution time by 40 % and more than 60 % as compared to the HGSS and GSS,
respectively [138].

2.5.2 Search Subsystem for Symbol-based Representation

Symbol-based approach converts the query and spoken document in terms of a
sequence of symbols. To do this, low-resourced approaches are employed to ob-
tain phoneme symbols [139] or articulatory labels [69] from spoken document and
query. However, few studies used zero-resourced approaches and exploited ASM
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to obtain symbols [93, 108]. There are two major approaches, namely, DTW on
string and Viterbi alignment.

• DTW : Similar to frame-based approaches, DTW was also explored on the
symbol-based representation. Various approaches used a different number of
phone sets in order to handle the language mismatch between trained rec-
ognizer and the audio data. In addition, hyperphone, i.e., broad phoneme
symbol-based approach was used as an indexing and searching [18]. The
cost of alignment between the symbols were based on either flat binary [69],
data-driven (i.e., derived from confusion matrix [107, 140]) or linguistically-
motivated [18, 112]. In data-driven approaches, phoneme confusion matrix is
normalized and cost of insertion, substitution and deletion are computed [140].
To compute the dissimilarities between the two symbols, KL-divergence aver-
aged over all the states of HMM was used in [107]. To compensate the phoneme
(symbol) decoding errors, N-best or lattice were used. However, this technique
introduces speed vs. performance trade-offs.

• Viterbi Decoding : A keyword-background model-based AKWS approach has
been popular for query detection task [33]. In AKWS model, each query is
modeled as HMM (i.e., query HMM). Then, the likelihood difference between
two HMMs is considered, namely, staying in background HMM and passing
through query HMM sequence. However, this technique was designed for a
pre-defined set of keywords (queries). In order to use this approach in spo-
ken query, phoneme sequence from each query is generated, and then likeli-
hood difference is calculated [30, 113]. Under ASM framework, entire audio is
converted into ASM states, and a Viterbi algorithm is applied to compute the
alignment cost. Furthermore, to introduce the slope-constraint in query align-
ment, Duration Constraint Viterbi (DC-Vite) was proposed [93]. In DC-Vite,
the alignment of frames to HMM state is restricted by a number of frames per
state, which is analogous to SC-DTW at frame-level matching [25]. The un-
supervised HMM consists 3-degrees of freedom, namely, a number of models,
a number of states in each model, and a number of Gaussians in each state.
They are referred to as phonetic granularity, temporal granularity, and acoustic
granularity, respectively, in the study presented in [108]. Unsupervised HMM
converts audio documents and spoken query into a sequence of unsupervised
HMM labels. For TIMIT QbE-STD, this approach gave 16.16 % improvement in
MAP as compared to the DTW-based approach.

• Weighted Finite State Transducer (WFST) : The lattice representation can be
effectively transformed into WFST, and query audio is represented in terms of
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Weighted Finite State Accepter [23]. WFST in QbE framework usually converts
the phonetic symbols of lattice into the transducer, where time information is
associated with a vertex of the graph and the likelihood is associated with a link.
Later the weight pushing algorithm transforms the weights (likelihoods) into
posterior probability [141]. The query detection is performed by composing the
query transducer with utterance transducer. The resulting transducer gives all
the possible occurrences of the query within utterance [142].

2.6 Detection Subsystem

In this Section, we will discuss the detection subsystem that performs decision
making from search algorithm. In addition, the detection subsystem combines
evidences from multiple sources, i.e., multiple query realization and multiple sub-
systems.

2.6.1 Score Normalization

The scores associated with each query detection might be different due to length
and the content in the query. The QbE-STD system consists of single or multi-
word queries, as well as the presence of silence is different in each query. For
these reasons, the scores from each query have different distributions [24]. Typ-
ically, DTW algorithm accumulates the distances between frame sequences and
the scores taken from DTW distances follow Gaussian distribution having dif-
ferent means and variances. In order to consider a common threshold for the
scores corresponding to all the queries, the scores per query were normalized to
have zero-mean and unity-variance (q-norm). The concept of q-norm has been ap-
plied in many SWS systems [76, 118, 143, 144]. Query normalization problem was
formulated as the logistic function, and the parameters were estimated using de-
velopment set in [122]. Novel m-norm was proposed, where a maximum (mode)
score is subtracted, and a standard deviation is divided for each query [113].

2.6.2 Query Selection

The selection of a query out of multiple examples of a query (i.e., query realiza-
tion) has been very important. The query selection and combination of multiple
examples were analyzed in [59]. Various strategies have been investigated to ef-
fectively select the example. Each spoken examples may exhibit different tempo-
ral dynamics. The sharpness in phonetic posteriorgram can be quantified in terms
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of self dot products and cross-entropy. In addition, to incorporate the relative be-
havior of query example w.r.t. other examples, pairwise DTW can be employed.
After ranking, queries are fused with each other by the alignment. Multiple ex-
amples are fused in terms of graphical keyword model in ergodic HMM (EHMM)
framework [144].

Posteriorgram stability, reliability, and local similarity were found to be ef-
fective metrics to select the best query [60]. It was analyzed that selected query
via these metrics gave better precision over the score-level fusion and alignment
over the longest query. The query selection schemes used in [59] and [60] were
designed for phonetic posteriorgram. However, the longest query alignment
method proposed in [74] applies to all the kinds of representation. The computa-
tionally simple scheme was suggested as to consider the longest query [74]. The
average query representation is formed by the alignment of other queries onto
the longest query. This technique is computationally cheaper because only single
average example is utilized for searching task. Here, the longer duration query
is used as a base and each feature from other query are aligned onto the base
query to produce an average query. The average query Xavg for two different spo-
ken queries X = [x1, x2, . . . , xLX ] and Y = [y1, y2, . . . , yLY

] can be performed as
follows [74]:

Xavg
t =

1
1 + |St|

(
Xt + ∑

v∈St

v

)
, (2.17)

where St is the set of all the features of Y that are aligned to tth frame of X (i.e.,
xt) and 1 ≤ t ≤ LX. In this thesis, we will use this approach for constructing the
single average query example (please refer sub-Section 4.2.5.3).

2.6.3 Pseudo Relevance Feedback (PRF)

Inspired from the Information Retrieval (IR) literature, several studies in QbE-
STD literature exploited the concept of relevance feedback. In relevance feedback
scenario, the detection candidates (i.e., the part of spoken audio detected) at first
few hits are assumed to be close to the query. Hence, these detected part of spoken
audio may be treated as a query (which is referred to as pseudo-query or pseudo-
relevant example) and the searching can be employed with this query. This ap-
proach is known as pseudo-relevance feedback (PRF) [93,121,145]. The scores ob-
tained using pseudo query are merged with the scores using actual query. How-
ever, the weights associated with the pseudo query is low as compared to the
weight of query because pseudo query might be the false detection (i.e., wrong
detection by the actual query). Thus, lower weight associated with pseudo query
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might not affect the performance severely. Figure 2.10 illustrates the concept of
pseudo-relevance feedback perform re-scoring for detection candidates. From
Figure 2.10, it can be seen that top N ranked detection candidates are treated
as pseudo-query examples. Since lower ranked pseudo query example is highly
similar to the query than the higher ranked pseudo query. All the DTW distances
between pseudo queries and detection candidates are used for re-scoring. This is
achieved by taking the linear combination of DTW distances. However, the rele-
vance of higher ranked pseudo query is less, the DTW distance should be assign
lower weights. In Figure 2.10, the weights are set as w0 > w1 > · · · > wN. More
details of pseudo-relevance feedback is given in [25]. We will use pseudo-relevant
queries to re-score the detection hypothesis (please refer sub-Section 6.3.4).

Pseudo-
relevant 
queries

Detection 
candidates/ 
hypothesis

New score

rank1

rank2

rank-N

Σ
DTW

DTW

DTW

Query

DTW
w0

w1

w2

wN

Figure 2.10: Illustration of re-scoring using the pseudo relevance feedback, top N
detection candidates are treated as pseudo query examples. The relevance factors
are w0, w1, w2, · · · , wN, where wi > wj, ∀i < j. After [25].

PRF can be employed as a second pass search system along with first pass,
such as, segment-based search system, whose execution is faster than the DTW
[93, 121]. In addition to a pseudo-relevance example, the concept of pseudo-
irrelevant example was used for ASM framework [93]. The pseudo-irrelevant
example corresponds to the detection, which has the least similarity to the query.
In this study, query HMM (i.e., ΛR) and anti-query HMM (i.e., ΛI) were built
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using the set of pseudo-relevant examples R and pseudo-irrelevant examples I.
The likelihood-ratio w.r.t. two models were computed in order to score the hy-
pothesis. Self-Similarity Matrix (SSM) along with DTW scores were combined to
improve DTW detection score [146]. DTW compares the effective distance to align
the frame sequence, whereas SSM takes into account the distance from entire spo-
ken segments of the query and detected part in the test audio. In model-based
approach, relevant or irrelevant examples are used to model the query and anti-
query HMMs, respectively. An absolute improvement of 11.8 % was obtained
with almost 50 % reduction in computational cost as compared to the SDTW
on Mandarin broadcast news corpus [93, 105]. For query detection task, image
processing-based approach was used in [147]. In this approach, distance matrix
of a query and test utterance is processed with series of morphological operations.

2.6.4 Non-Exact Query Matching

MediaEval QUESST 2014 dataset contains different types of query that has vari-
ations at suffix, prefix, or word order. We performed modified DTW search to
locate such presence of a query in the audio document. The kind of variations in
spoken query retrieval task requires one to perform approximate/partial match-
ing search rather than only the exact search. Given that no prior information about
query type is given with QUESST 2014 database, the search algorithm should
be general and incorporate all possible variations in the query matching task.
The symbol-based search approach was adopted, and split phone sequence from
query decoding was used to perform partial matching [60, 148]. In order to de-
tect a non-exact type of query (i.e., variations at suffix, prefix, word order), DTW
algorithm needs to be modified [83]. This technique considers different partial
match and takes harmonic mean of DTW distance from these partial match. We
considered slightly modified version from [83] with less number of backtracking.
In the next part of chapter, we address the issue of computation related to search
task. To that effect, we suggest two approaches, namely, feature reduction and
segment-level BoAW model.

2.6.5 Calibration and Fusion of Multiple Search Systems

The discriminative calibration using logistic regression has been extensively used
to fuse various heterogeneous QbE-STD systems [62]. To improve the fusion score
and provide better calibration additional resources (such as, length of a query,
non-silence frames, language identification (LID) scores) were used [149]. Given
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multiple examples of the same query, a reliable warping path on the test utterance
is evaluated, where most of the minimum DTW warping path overlaps. The DTW
scores from such reliable warping paths are taken into fusion procedures, and the
rests are discarded [77].

Parallel DTW distance matrix fusion was proposed to combine the various
frame-level representation [150]. In this distance matrix fusion, DTW has exe-
cuted ones for all the systems as compared to the multiple executions of DTW
per systems, and hence, this approach is computationally less complex. DTW lo-
cal distance matrix combination gave 4.78 % relative MAP improvement over the
score-level fusion approach [150]. In the next Section, we present various research
issues in QbE-STD task.

2.7 Research Issues in QbE-STD System

QbE-STD is expected to bypass all the errors generated by ASR, since it offers
ASR-free spoken query detection framework [25]. However, QbE-STD suffers
from the following research issues:

• Acoustic Representation: In the realistic scenarios, the same word but differ-
ent spoken realizations may have different statistics due to stochastic nature of
speech production mechanism (i.e., speaker variations) and difference in speech
acquisition (i.e., microphones and transmission channel characteristics). This
naturally results in different acoustic characteristics for these different realiza-
tions. To represent these different acoustic characteristics as a similar pattern
is a technological challenge. Various speaker normalization and noise-robust
approaches were attempted in the history. The majority of approaches convert
speech into either frame or symbol-based representation [24].

• Design of Speech Activity Detection (SAD) System: The spoken query often
have the silence regions in the vicinity of spoken part, since it is recorded in
isolation [151]. The presence of the silence region in the query might incorrectly
detect the query within the audio documents. Thus, SAD system plays a vital
role in the QbE-STD system.

• Searching Execution: The common approaches converts spoken query and
test utterances into representative templates and execute the task of template
matching. However, the size of audio documents (which contains test utter-
ances) is huge as compared to the actual presence of query. Hence, a large
amount of time is required to search the query within the test utterance that
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does not contain the query. This time is effective since most of the search al-
gorithms are based on DTW, whose time-complexity is directly proportional
to time (in terms of a number of frames). To alleviate this issue, data abstrac-
tion [35, 53] and indexing techniques [2, 131, 133] were used for QbE-STD.

• Fusion of the search systems: There is a need to combine the evidences from
different search systems because of low performance of the individual QbE-STD
system. The detection scores from majority voted detections were fused using
the score-dependent weights. These weights of calibration are determined by
logistic regression with the scores and available ground truth information [62].
Another approach suggested as to combine the local distance matrix for vari-
ous templates obtained using different front-ends and execute the DTW onto
the average local distance matrix [150]. This approach is quite computationally
cheaper as compared to the combining the evidences from different QbE-STD
systems as suggested in [62]. However, this approach does not consider the rel-
ative significance of each audio representation that is exploited in QbE-STD and
might give wrong detection if majority of audio representation favors wrong
detection [150].

The overall summary of selected chronological progress in QbE-STD problem
since 2009, is shown in Figure 2.11, which indicates that research activity is con-
tinuously evolved w.r.t. all the three different perspectives, i.e., representation,
matching, and detection.

2.8 QbE-STD Submission in MediaEval

In this Section, we will discuss various submitted QbE-STD systems in MediaEval
campaign in he years from 2011 to 2015. The details of QbE-STD systems submit-
ted for MediaEval’s SWS evaluations are shown in Table 2.1-Table 2.5.

2.8.1 Summary of MediaEval SWS 2011

To the best of author’s knowledge, SWS 2011 evaluation was first time initiated
by IBM, India [27] to develop STD systems on Indian languages (namely, Indian
English, Hindi, Gujarati and Telugu). Audio documents/test utterances are hav-
ing duration of 4-30 sec. Dev set contains 400 queries (100 per language) and Eval
set contains 200 queries (50 per language) [27]. Most of the audio is taken in spon-
taneous recording mode in the real-life settings [151]. The performance metric
used is MTWV. Table 2.1 shows the QbE-STD submission to MediaEval SWS 2011
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Figure 2.11: Selected chronological progress during last few years in QbE-STD
research problem.

Table 2.1: QbE-STD submission in SWS MediaEval 2011

Study Front-end Search Algorithm MTWV

Telefonica [68] Binarization of posterior features SubDTW 0.222

Telefonica [68] EM-ML GP SubDTW 0.173

BUT-HCTLabs [152] GMM/HMM query model LLR 0.131

MUST, HLT, Microsoft [112] Hindi AM, PhnRec DP 0.114

Irisa [153] MFCC, GP, PP SLNDTW with SSM 0.100

MUST, HLT, Microsoft [112] Hindi AM, lattice DP 0.086

BUT-HCTLabs [152] PAKWS LLR 0.033

BUT-HCTLabs [152] PP DTW 0.014

IIIT-H [69] Articulatory-triphone Sliding DTW 0.000

EM-ML: Expectation-Maximization Maximum-Likelihood, AM = Acoustic Model, PAKWS = Parallel Acoustic
Keyword Spotting, LLR= Log likelihood Ratio, DP = Dynamic Programming, SLNDTW = Segmentally Local
Normalized DTW, GP = Gaussian Posteriorgram, PP = Phonetic Posteriorgram, PhnRec= Phoneme Recognition.
All MTWV values are rounded off to 3 decimal places.

campaign. A brief summary of submitted systems at MediaEval SWS 2011 is as
follows.

• Articulatory decoders were used to convert speech into articulatory symbols,
and each articulatory tags have corresponding phonemic symbols in Telugu
database. Miss and false alarm probabilities on evaluation data was 96 %-98 %
and 0.1 % - 0.2 % [69].

• Performance of MFCC, GP and BUT phoneme recognizer was presented at
frame-level audio matching [153]. The system presented novel SSM technique
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along with DTW scores.

• Hindi as an Indian language should be acoustically close to other Indian lan-
guages, which are part of SWS 2011. With this motivation, Hindi phoneme
recognizer was used in [112]. Lattice and DP-based search were used.

• GMM/HMM keyword search model was found to be effective for SWS 2011
QbE-STD task. However, language-specific AKWS model did not give better
performance [152].

• Unsupervised hard clustering technique was used after GMM training in [68].
In addition, a binary representation of posteriorgram with Boolean distance
metric was explored.

2.8.2 Summary of MediaEval SWS 2012

SWS 2012 targets four African languages, namely, isiNdebele, Siswati, Tshivenda,
and Xitsonga [151]. Dev set contains 1580 audio documents (395 per language)
and 100 query examples. Eval set contains 1660 audio documents and 100 queries
[151]. The performance metric used is again MTWV. Table 2.2 shows the QbE-STD
submission to MediaEval SWS 2012 campaign. A brief summary of submitted
systems at MediaEval SWS 2012 is as follows [24]:

• The use of phoneme decoders and their mapping using IPA symbols were pre-
sented in [154, 155].

• The use of AKWS (the likelihood ratio of a query HMM and background model)
gave the promising results than the BNF-based DTW search system [139].

• To get the benefits from complementary information from different posterior
representations (from different tokenizer), a parallel tokenizer followed by
DTW detection (PTDTW) framework was explored in [118].

• RAILS algorithm was used to obtain scalable zero-resource search system by
representing the features as bit signatures and computing the matching using
image processing approaches [143].

• The majority voting scheme was introduced to keep the detection candidates
supported by at least two search systems [156].

• The novel CDTW was proposed, where the softmax operation is used instead
of hard maximum (or minimum) for accumulated distance computation [122].

• The SVM-driven unsupervised classification framework was proposed in [63],
which used the alignment cost (obtained using DTW) to label the segment pairs.
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Table 2.2: QbE-STD submission in SWS MediaEval 2012. The results of evaluation
in MTWV is reported

Study Front-end Search Algorithm MTWV

CUHK [118] MFCC-GMM, MFCC-ASM; PT: CZ-GMM,
HU-GMM, RU-GMM, MA-GMM,
EN-GMM

Segmental DTW, PRF
and score normalization

0.740

CUHK [118] PT: CZ-GMM, HU-GMM, RU-GMM,
MA-GMM, EN-GMM

SDTW, and score
normalization

0.720

CUHK [118] MFCC-GMM, MFCC-ASM SDTW, PRF and score
normalization

0.640

BUT [139] Mel filterbank, ANN/HMM decoder LLR 0.530

L2F [156] PLP-RASTA, modulation spectrogram,
MLP

AKWS, MV fusion 0.523

BUT [139] Mel filterbank, BNF DTW 0.488

JHU-HLTCOE [143] FDLP RAILS with SDTW 0.369

Telefonica [157] MFCC, GP IR-DTW 0.342

SpeeD, LAPI [154] Romanian PhnRec DTWSS 0.310

TUM [122] MFCC CDTW 0.296

Telefonica [157] MFCC, GP SDTW 0.311

GTTS [155] BUT PhnRec Approximating string
matching

0.081

TUKE [63] MFCC Supervised SVM with
MCA

0.000

PT: Phonetic Tokenizer, MCA : Minimum Cost of Alignment, MV: Majority Voting, AM = Acoustic Model,
PAKWS = Parallel Acoustic Keyword Spotting, LLR= Log likelihood Ratio, GP = Gaussian Posteriorgram, PP =
Phonetic Posteriorgram, PhnRec= Phoneme Recognition. All MTWV values are rounded off to 3 decimal places.

2.8.3 Summary of MediaEval SWS 2013

SWS 2013 targets nine languages [28]. These nine languages include four African
languages (namely, Isixhosa, isiZulu, Sepedi, and Setswana), Albanian, Roma-
nian, Czech, Basque and non-native English. The number of utterances are not
uniform for each language and the duration of database is almost 5 times than the
MediaEval SWS 2012 [28]. Dev set and Eval set contain 505 and 503 unique spo-
ken query examples, respectively. The performance metric used is again MTWV.
Table 2.3 shows the QbE-STD submission to MediaEval SWS 2013 campaign. Brief
novelties of submitted systems at MediaEval SWS 2013 are as follows:

• To expand the spoken query, Pitch Synchronous Overlap and Add (PSOLA)
technique was used in [158], where the query is expanded by two time-scale
factors, namely, 0.7 and 1.3.

• To exploit the multiple query examples and perform the single DTW to save the
execution time, the average query computation was used in [76]. The longest
duration query example was considered, and all the queries were aligned to the
frames of longest query example.
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Table 2.3: QbE-STD submission in SWS MediaEval 2013. The results of evaluation
in MTWV is reported

Team Front-End Search Algorithm MTWV

GTTS [76] BUT PhnRec subDTW, Score normalization and
calibration/fusion

0.399

L2F [62] PLP-RASTA, Modulation
Spectrogram; MLP, ANN/HMM
network

AKWS, DTW and calibration/fusion 0.342

GTTS [76] BUT PhnRec subDTW 0.346

CUHK [158] MFCC, GCC and CD-DNN DTW , Distance matrix fusion, PSOLA for
query expansion and Score normalization
(z-norm)

0.306

BUT [113] 13 atomic systems AKWS, score normalization (m-norm) 0.304

BUT [113] 13 atomic systems AKWS, DTW, score normalization
(m-norm)

0.297

CMTECH [102] SAT, TAM subDTW, score normalization
(CDF-equalization)

0.269

CMTECH [102] SAT, TAM subDTW, score normalization (z-norm) 0.264

IIIT-H [159] GP of FDLP+PH-BNF NSDTW 0.249

IIIT-H [159] GP of FDLP+AR-BNF NSDTW 0.241

ELIRF [73] MFCC subDTW 0.159

Telefonica [157] MFCC, GP IR-DTW 0.093

Georgia tech [144] MFCC, ergodic HMM model Viterbi search 0.084

SpeeD [160] Romanian PhnRec DTWSS 0.059

UNIZA [161] MFCC, quasi-phoneme HMM Viterbi search 0.001

TUKE [70] MFCC, audio segment unit GMM-FST, SDTW 0.000

SAM : Spectral Acoustic Model, TAM : Temporal Acoustic Model, AR-BNF: Articulatory BNF, GMM-FST : GMM-
Finite State Transducers, CD-DNN : Context-dependent DNN. All MTWV values are rounded off to 3 decimal
places.

• The KL divergence, which considered the inter-cluster and intra-cluster vari-
abilities in the distance was used in [102].

• The set of i-vectors for the query and the test utterance was used in [162]. The
alignment between two i-vectors of the query and the test utterance were com-
puted using DTW and used to detect the query.

• The unsupervised HMM, in particular, Semi-continuous density HMM [161]
and EHMM [144] were used for QbE-STD. The Viterbi algorithm was used to
detect the query.

• The novel m-norm was proposed to normalize the scores of the different query
[113]. In m-norm, the scores are subtracted from the mod (maximum) value
and divided by the standard deviation. To fuse several detection evidences, 13
search systems (i.e., atomic systems) were used [113].

• The articulatory information were used to train the MLP, and their BNF were
used for QbE-STD because of its language-independent characteristics [159].
The Gaussian posteriorgram of BNF with raw FDLP features gave the improve-
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ment than the MLP phonetic posteriorgram features.

2.8.4 Summary of MediaEval QUESST 2014

MediaEval QUESST 2014 database targeted six languages, namely, Albanian,
Basque, Czech, non-native English, Romanian, and Slovak. In addition to the
exact lexical match, this evaluation contains query with lexical variation at start
or end as well as word reordering in multiple words [29]. The audio documents
consists duration of 23 hours (12492 files). The Dev and Eval sets contain 555 and
560 queries, respectively [29]. The primary evaluation metric used in QUESST
2014 is Cnxe. Table 2.4 shows the QbE-STD submission to MediaEval QUESST
2014 campaign. Brief novelties of submitted systems at MediaEval QUESST 2014
are as follows:

• MSC is used to perform labeling to segments of posterior feature vectors. After
initial label estimation, HMM training and decoding are performed iteratively
until label sequence converges [163].

• The raw and choi processed MFCCs were used in a zero-resource approach
in [164]. The results showed that choi processed MFCC did not give any im-
provement than the MFCC. Similarly, PNCCs were used in [64] as noise-robust
acoustic representation.

• Various supervised [64, 140, 149, 165] and unsupervised [163, 165, 166] feature
representation were used to improve the detection performance.

• The split query with AKWS was used to improve the performance of non-exact
matched type of query, which is having lexical variation either at start, end or
middle [149].

• Partial matching schemes were used to perform non-exact query matching task
to deal with truncation, filler and re-ordering cases [167].

2.8.5 Summary of MediaEval QUESST 2015

MediaEval QUESST 2015 focused on seven languages, namely, Albanian, Czech,
English, Mandarin, Portuguese, Romanian, and Slovak. QUESST 2015 evaluation
comprises about 450 spoken queries in Dev and Eval sets. These queries have ex-
act as well as non-exact match having filler and reordering. The noise and room
reverberation effect were artificially introduced in recorded queries by simula-
tion [30]. Most of the QbE-STD systems developed by the participants uses more
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Table 2.4: QbE-STD submission in QUESST MediaEval 2014. The results of eval-
uation in Cmin

nxe is reported

Team Front-End Search Algorithm Results (Eval)
BUT [149] 10 PhnRec AKWS, DTW; score normalization

(m-norm); calibration/fusion
0.464

( 0.323 / 0.470 / 0.660 )
BUT [149] 10 PhnRec AKWS, DTW; score normalization

(m-norm); calibration/fusion with
side information.

0.465
( 0.310 / 0.461 / 0.673 )

SPL-IT [167] BUT PhnRec (CZ, HU,
RU)

Partial matching DTW 0.5080

GTTS [75] BUT PhnRec subDTW, calibration/fusion 0.5994
(0.440 / 0.641 / 0.770)

NNI [166] PhnRec DTW, WFST-based AKWS 0.6023
( 0.507 / 0.621 / 0.725 )

CUHK [163] GP, ASM; PhnRec: CZ,
HU, RU, MA, EN

DTW, distance matrix fusion 0.659
( 0.486 / - / - )

NNI [166] 9 PhnRec DTW 0.6925
(0.573 / 0.730 / 0.803)

TUKE [165] Slovak PhnRec Weighted fast sequential variant of
DTW

0.891

IIIT-H [140] FDLP, GP of
FDLP+AR-BNF

NS-DTW 0.922
(0.812 / 1.021 / 1.001)

TUKE [165] MFCC, Viterbi decoding Weighted fast sequential variant of
DTW

0.934

IIIT-H [140] Telugu PhnRec NS-DTW 0.949
(0.933 / 0.960 / 0.964)

ELIRF [164] MFCC, GP subDTW 0.965

ELIRF [164] MFCC (choi processing),
GP

subDTW 0.967

SPEED [64] PNCC; Romanian,
Albanian, English PhnRec

DTWSS 0.972
( 0.972 / 0.970 / 0.963 )

PhnRec : Phoneme recognizer, MA : Mandarin, AR-BNF : Articulatory BNF, DNN : Deep Neural Network, LSTM
: Long Short-Term Memory, RNN : Recurrent Neural Network, TRAP : TempoRAl Pattern, BNF : Bottleneck
Features, SBNF : Stacked BNF. All Cmin

nxe values are rounded off to 3 decimal places. The dash (-) symbol indicates
no values reported in the respective papers.

than the single phoneme recognizer (PhnRec) front-end and subsequence DTW.
Finally, discriminative calibration was performed to execute score-level fusion.
Table 2.5 shows the QbE-STD submission to MediaEval QUESST 2015 campaign.
Brief novel concepts that were the outcome of QUESST 2015 evaluation are as
follows:

• Noise filtering and pre-processing were introduced before feature extraction
stage. The spectral subtraction was used to remove noise from audio by esti-
mating the power spectral density (PSD) of noise [168, 172]. The Wiener filter
approach was used in [177] to reduce the noise. In addition, data-augmentation
approach was used, where noise is artificially added in training to establish the
matching condition with QUESST 2015 [177].

• Several deep learning frameworks were used for zero resource and low re-
source scenarios. The zero-approach Recurrent Neural Networks (RNN)-based
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Table 2.5: QbE-STD submission in MediaEval QUESST 2015. The results of eval-
uation in Cmin

nxe is reported

Team Front-End Search Algorithm Results (Eval)
NNI [166] Phonetic symbol, BNF, SBNF DTW; score-level fusion of 66

systems
0.747

( 0.577 / 0.831 / 0.769 )

SPL-IT-
UC [168]

5 PhnRec SubDTW with 6 different partial
matching strategies;
calibration/fusion, side information

0.781

BUT [169] 7 PhnRec: SpeechDat,
GlobalPhone: 1 stacked BNF

DTW with slope constraint; Partial
match in 2 and 3 bands

0.812
( 0.742 / 0.845 / 0.821 )

BUT [169] 7 PhnRec: SpeechDat,
GlobalPhone: 1 stacked BNF

DTW with slope constraint 0.818
(0.741 / 0.852 / 0.831)

BUT [169] 7 PhnRec: SpeechDat,
GlobalPhone

DTW; majority voting
calibration/fusion with side
information

0.826
( 0.757 / 0.865 / 0.834 )

ELiRF [170] BUT PhnRec SubDTW; calibration/fusion 0.875
GTM-
Uvigo [171]

11 PhnRec: DNN, LSTM, TRAP Phoneme unit selection, DTW;
calibration/fusion

0.905
(0.861 / 0.928 / 0.904 )

IIT-B [172] 3 PhnRec, GP DTW; majority voting
calibration/fusion

0.908
(0.868 / 0.911 / 0.921 )

TUKE [173] 4 PhnRec: GMM training DTW; max score merging 0.971

CUNY [174] MFCC LB Keogh for search score reduction
followed by subDTW

0.985

SPEED [175] Multilingual common phones DTWSS 0.993

NTU [176] MFCC: zero-resource RNN DTW 0.997

PhnRec : Phoneme recognizer, MA : Mandarin, AR-BNF : Articulatory BNF, DNN : Deep Neural Network, LSTM
: Long Short-Term Memory, RNN : Recurrent Neural Network, TRAP : TempoRAl Pattern, BNF : Bottleneck
Features, SBNF : Stacked BNF. All Cmin

nxe values are rounded off to 3 decimal places.

approach was presented in [176]. The phoneme posteriorgram trained using
a long-short-term memory (LSTM) neural networks and DNN were presented
in [171].

• To address non-exact matching, several partial matching strategies were em-
ployed at frame-level or at symbol-level. In particular, the phone sequence ap-
proximate matching was used in [177] and the partition in DTW distance matrix
at different locations were used in [168, 169].

• The most common relevant phoneme unit selection approach to improve search
performance was presented in [171].

• One common observation was the problem of non-exact matching is too hard,
and many times, while dealing with non-exact matching, the performance of an
exact match T1 type of query got affected.

2.9 Chapter Summary

In this chapter, we discussed the literature survey of various methods for QbE-
STD task, where the spoken content retrieval task is attempted using spoken form
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of a query. The STD uses the text-based query and retrieval is conducted using the
ASR and information retrieval system. Due to a scarcity of adequate transcribed
data in low-resourced languages, ASR is not feasible in many such languages. To
retrieve spoken content in the audio of such languages, a spoken example is ex-
ploited and is regarded as a query in the QbE-STD framework. This chapter sum-
marized various subsystems of QbE-STD system, namely, front-end subsystem,
searching subsystem, and detection subsystems. Finally, we presented various
submission of QbE-STD systems in MediaEval from years 2011 to 2015. In the
next chapter, we will present the brief details of experimental setup that is used
in this thesis to perform QbE-STD task.
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CHAPTER 3

Experimental Setup

3.1 Introduction

In this chapter, the details of an experimental setup used in QbE-STD system
is discussed. The organization of this chapter is as follows. Section 3.2 gives
the details of databases used in the QbE-STD. In this thesis, we have used three
databases, namely, SWS 2013 and QUESST 2014. As discussed earlier in Section
2.2, QbE-STD system constitutes many components (i.e., sub-systems), namely,
front-end subsystem, searching sub-system and detection sub-system. In that
framework, the thesis considers on the frame-based posteriorgram representation
and subDTW as a searching algorithm. Section 3.3 presents the details of acoustic
representation and posteriorgram representation. Section 3.4 presents the details
of the subDTW algorithm, which is extensively used in this thesis. Section 3.5
presents the details of score normalization in detection subsystem along with, the
effect of local constraints and dissimilarity functions (or distance metrics).

3.2 Databases Used

In this thesis, three databases are used for QbE-STD task, namely, (A) SWS 2013
database, and (B) QUESST 2014 database. Next, the details of these databases,
such as, the number of keywords (queries), their instances, duration (average),
the number of utterances in test dataset, etc. are described in brief.

(A) SWS 2013 database
MediaEval SWS 2013 dataset is used for unranked evaluation, where the detection
of query is made based on the threshold value. All audio recordings are having 8
kHz sampling rate with 16 bits/sample PCM encoded *.wav format. The statistics
of the database is given in Table 3.1. Two sets of a query are categorized as Devel-
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Table 3.1: Statistics of MediaEval SWS 2013 database. After [178]

Data # Utterances Average duration
(in sec.)

Test 10762 6.67
Dev query 505 1.35
Eval query 503 1.38

Table 3.2: Statistics of MediaEval QUESST 2014 database. After [31]

Data # Utterances Average duration
(in sec.)

Test 12492 6.65
Dev query 560 2.18
Eval query 555 2.10

opment (Dev), and Evaluation (Eval) sets. Common test audio data is provided,
which is used for both the query types. The objective of development set is to fine
tune the parameters in the design of QbE-STD system. The performance of eval-
uation set is investigated under this tuned parameters. SWS 2013 data consists of
two types of queries, namely, normal or basic type (which involve only one exam-
ple per query), and extended type (which includes multiple examples per query).
We use the cepstral-domain features from test data for GMM training.

(B) QUESST 2014 database
MediaEval QUESST 2014 consists of 23 hours total search data. All audio record-
ings are having 8 kHz sampling rate with 16 bits/sample PCM encoded *.wav
format [31]. The statistics of QUESST 2014 database is given in Table 3.2. Find-
ings from SWS 2013 database suggests that though Czech (CZ) have a similar
acoustic condition in audio documents and query, it was performing worse. One
of the possible reasons could be rapid variations in speaking rate of conversa-
tional speech that might give short query, when excised through speech cuts us-
ing forced alignment [31]. This motivates to record the query from speech directly
from the user for QUESST 2014.

The major distinctive characteristics of this database lies into the form of query.
The structure of the query can motivate to match audio using approximate search
rather than only the exact search. The matching between audio can be categorized
into three different types, namely, Type 1, Type 2 and Type 3.

• Type 1 : This type of audio matching refers to the exact match. For example, if
a query is Funny joke, it should match the audio document containing ‘This is a
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funny joke.’

• Type 2 : This type of audio matching refers to the lexical variation of query
either at the begin or at the end. The ground truth of such query is prepared
such that matching part should be more than 250 ms than a non-matching part.
In addition, the matching part should be more than a non-matching part. For
example, if a query is ‘perform’, it should match the audio document containing,
‘That was a nice performance’ and vice-versa. In addition, if a query is, ‘encounter’,
it should match the audio containing, ‘Please! come at the first counter’ and vice
versa.

• Type 3 : This type of audio matching refers to the reordering and filler cases
of a query. The audio document contains all the words of multi-word query;
however, the sequence of words may be different than the query. In addition,
some filler words can be present the audio contents. For example, if a query is,
‘Funny joke,’ it should match the audio document containing, ‘This joke is funny.’

3.2.1 Challenges in Databases

QUESST 2014 requires to perform non-exact matching of spoken query, which
is not straightforward. Thus, subDTW does not able to perform non-exact match,
and thus, the results of a non-exact match are poor as compared to the exact match
with the subDTW search algorithm. We will discuss the subDTW search algo-
rithm in Section 3.4.

3.3 Front-end Subsystem

3.3.1 Acoustic Representation

In this thesis, Mel Frequency Cepstral Coefficients (MFCC) [51], Perceptual Linear
Prediction (PLP) cepstral coefficients [55] and MFCC-TMP [179] features are used.
The objective of using different types of cepstral-domain features is to analyze
the proposed representation, namely, VTL-warped Gaussian posteriorgram and
posteriorgram using a mixture of GMMs are not biased with any particular type of
representation. PLP features are better for formant matching across different age
groups as reported in [55] and hence, expected as a good cepstral representation
of speech.
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Figure 3.1: Schematic block diagram of MFCC-TMP feature extraction. After [179,
182].

3.3.1.1 MFCC and PLP

We have used 26 subband filters spanning 0-4000 Hz frequency range and 13 DCT
coefficients (Type III of DCT) for feature extraction. Features are extracted on 25
ms window duration with 10 ms frame shift. Here 13 coefficients along with their
delta (∆) and delta-delta (∆2) features are considered. The details of the feature ex-
traction computation and feature vector formation scheme are as follows. MFCC
and PLP features are extracted using Hidden Markov Model Toolkit (HTK) [180].

3.3.1.2 MFCC-TMP

MFCC-TMP stands for Mel Frequency Cepstral Coefficients where subband en-
ergy is computed via Teager Energy Operator (TEO) considering Magnitude and
Phase part of subband signal. In MFCC feature extraction, conventional l2 norm
is used for subband energy computation. Hence, the energy of subband signal
is equal to the sum of squared values of magnitude spectrum [51], whereas, in
MFCC-TMP, Teager energy (which is running estimate of signal’s energy) is used
instead of l2 energy. The time-domain signal is used to compute TEO of subband
signal [179]. A nonlinear energy tracking operator referred to as Teager Energy
Operator (TEO) (denoted as ψ) for discrete-time signal, x(n), is defined as [181]:

TEO{x(n)} = ψ{x(n)} = x2(n)− x(n + 1)x(n− 1). (3.1)

The feature extraction procedure for MFCC-TMP is shown in Figure 3.1. Fi-
nally, normalized subband energy is computed followed by logarithm and Dis-
crete Cosine Transform (DCT) operations to get proposed feature set, namely,
MFCC-TMP, i.e.,

MFCC− TMPi(k) =
NF

∑
j=1

Sli,jcos
(

k(j− 0.5)π
NF

)
, (3.2)

where k = 1, 2, · · · , Nc, Nc = dimensions of feature vector (13 in this work), NF =
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number of filters used in the Mel filterbank (26 in this work) and Si,j = logarithm
of subband energy for ith frame index and jth subband filter.

3.3.2 Posterior Representation

These acoustic representations are transformed into the posterior representation
for better query detection. Conventionally, Gaussian posteriorgram are computed
with the help of acoustic representations (such as, MFCC, PLP, MFCC-TMP).

3.3.2.1 Motivation for GMM

There are two major motivations behind using GMM for cepstral representation.
The first reason is the belief that each component of multi-modal distributions,
such as GMM represents the distinct acoustical events in the speech [183]. Each
such acoustic events are caused due to average vocal tract configuration, which is
characterized by the mean component µi. The variation in vocal tract structure is
characterized by the covariance Σi. The unbalanced number of different acoustic
classes can be characterized in terms of the weights in GMM. The second reason is
the approximation capability of GMM that a GMM can be useful to approximate
any arbitrary distribution without any labels [183]. Thus, we can also represent
the cepstral-domain features with the help of a weighted linear combination of
mean vectors.

The details of Gaussian posteriorgram is presented in sub-Section 2.4.3.2. We
will discuss VTLN-warped Gaussian posteriorgram and mixture of GMMs poste-
riorgram in the Chapter 4.

As discussed earlier in sub-Section 2.4.3.2, the Gaussian posterior probability
P(Ck|ot) (for kth cluster and tth speech frame index) is:

P(Ck|ot) =
πkN (ot; µk, Σk)

∑
Np
j=1 πjN (ot; µj, Σj)

, (3.3)

where the likelihood of feature ot being in kth cluster is,

N (ot; µk, Σk) =
1√

(2π)N|Σk|
exp

(
−1

2
(ot − µk)

TΣ−1
k (ot − µk)

)
. (3.4)

The GMM parameters are estimated using Expectation-Maximization (EM) algo-
rithm. The initial parameters are set by the vector quantization (VQ) codebook
computed via Linde-Buzo-Gray (LBG) algorithm [184]. The procedure of VQ
codebook preparation is demonstrated in Figure D.1.
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In addition to Gaussian posteriorgram, we have also used phonetic posteri-
orgram. The phone posterior is obtained using open source Brno University’s
phoneme recognizer [61]. Czech (CZ), Hungarian (HU) and Russian (RU) pho-
netic recognizer systems were trained on the SpeechDat-E databases. We merge
the state posterior probability into single as performed in the study presented
in [74]. Furthermore, we perform Speech Activity Detection (SAD) using all the
phone posteriorgram (i.e., CZ, HU, and RU). Speech Activity Detection (SAD)
separates the speech and non-speech part from the spoken audio. Non-speech
regions may be background noise, babble or silence regions present in the speech
signal. In QbE-STD task, the non-speech region of the speech is not important
in the detection and consumes unnecessary search processing time. In addition,
silence region or babble may resemble the similarity in posteriorgram features,
and hence, it may create an ambiguity in the query detection and reduces the
search performance. We considered the average of the posterior probability of
non-speech units (such as, pau, int, and spk) from CZ, HU and RU to perform
speech activity detection (SAD). Thus, we have 43, 59 and 50 speech units, corre-
sponding to CZ, HU and RU phoneme posteriorgrams, respectively [74].

In the thesis, we proposed VTL-warped Gaussian posteriorgram and mix-
ture of GMMs posteriorgram. VTL-warped Gaussian posteriorgram removes the
speaker variability caused due to spectral scaling variations (Please refer Section
4.2 in Chapter 4). The mixture of GMMs brings broad phoneme posterior prob-
ability during while training of GMM. Hence, this might be useful to emphasize
broad phoneme class-related information into the posteriorgram (please refer Sec-
tion 4.3 in Chapter 4).

3.4 Searching Subsystem

The searching subsystem consists of subsequence DTW (subDTW) as searching al-
gorithm [120]. Let the dimension of posteriorgram be Np and a posteriorgram fea-
ture vector sequence for spoken query, qy = (q1

y, q2
y, · · · , qN

y ) and a test utterance,
tx = (t1

x, t2
x, · · · , tM

x ). The local distance between two posterior vectors, namely, ti
x

and qj
y, is computed using the symmetric Kullback-Leibler (KL) divergence and is

defined as [82, 98]:

Dis
ti
x,qj

y
=

Nd

∑
k=1

ti
x(k)log

(
ti
x(k)

qj
y(k)

)
+

Nd

∑
k=1

qj
y(k)log

(
qj

y(k)
ti
x(k)

)
. (3.5)
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Figure 3.2: (a) Generation of warping path using subDTW and (b) local constraints
used in subDTW. The red circles show initial points and the rest of the circles are
computed recursively. The values of accumulated distance matrix at an arbitrary
node (i, j) can be determined by the adjacent nodes, which is shown in Figure 3.2
(a). After [2].

As posteriorgram represents the probability density function (pdf ) across differ-
ent phonetic class, KL-divergence between two posterior vectors corresponds to
the divergence between two pdf s [82, 98]. The KL divergence between two pdf s
shows the relative entropy, which does not hold symmetric property. However,
we have used symmetrical version of KL divergence to find the distance between
two posteriorgram vectors. The KL divergence-based local distance was found
to be effective on posterior feature vectors [52]. This might be because of the na-
ture of posterior feature vectors, which can be regarded as pdf or probability mass
function (pmf ). We consider the local constraints as shown in Figure 3.2.

Each cell represents the pair of test utterance frame and query frame. The cells
on rows and columns indicate frames associated with test utterance and query, re-
spectively. The matrix S stores the accumulated distance for the optimal warping
path and the frame-counting matrix T stores the length of the optimal warping
path. The starting frame indicator matrix P is used to store the starting frame
index for the corresponding warping path, which removes the need of backtrack-
ing. The procedure is used to execute subsequence DTW with local constraints
is specified as in Figure 3.2. For a single query, qy, and test utterance pair, tx, the
local distance matrix D = Distx,qy .

Initialization:
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For j = 1, i = 1, 2, · · · , M :

S(i, j) = D(i, j),

T(i, j) = 1, (3.6)

P(i, j) = i.

Path-tracing: For i = 1 :

S(i, j) =
j

∑
k=1

D(i, k),

T(i, j) = j, (3.7)

P(i, j) = i = 1.

For j > 1, i = 2, 3, · · · , M :

Ω = {(i, j− 1), (i− 1, j− 1), (i− 1, j)}, (3.8)

(r, s) = argmin
(a,b)∈Ω

S(a, b), (3.9)

S(i, j) = S(r, s) + D(i, j), (3.10)

T(i, j) = T(r, s) + 1, (3.11)

P(i, j) = P(r, s). (3.12)

An algorithm 1 presents the pseudo-code for subDTW with symmetrical local
constraint. Figure 3.3 (a) shows a local distance obtained using eq. (3.5) between
each frame of query and test utterance. Figure 3.3 (b) shows the accumulated
distance (computed as per eq. (3.10)) indicating the diagonal trace indicating
the presence of the query. The warping path along distance accumulation can
be traced with backtracking (which is shown as a white colored path). To count
the number of cell on the white colored warping path (as shown in Figure 3.3 (b)),
we used frame counting matrix T (computed as per eq. (3.11)). The image plot for
frame counting matrix T is shown in Figure 3.3 (c). It can be that as query frame
index increases, the value of T matrix increases indicating that more number of
cells traced as query frame index increases. The backtracking requires additional
computation, and the exact alignment path is not required rather the start and end
time stamps are important. With this consideration, we used start frame indicator
or path tracing matrix P. Figure 3.3 (d) shows the path tracing matrix P that con-
tains few distinct colors indicating different warping paths for different starting
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Algorithm 1 An algorithm for matrices S, T and P computation from the matrix
D for symmetrical local constraint, LC1 (as specified in Figure 3.2 (b).). After [120].

Input: Matrix D
Output: Matrices S, T and P

Initialization : # 1st column, i.e., j = 1
1: for i = 1 to M do
2: S(i, 1) = D(i, 1)
3: T(i, 1) = 1
4: P(i, 1) = i
5: end for

Path tracing : # 1st row, i.e., i = 1
6: for j = 2 to N do
7: S(1, j) = S(1, j− 1) + D(1, j)
8: T(1, j) = j
9: P(1, j) = 1

10: end for

Path tracing : # For the rest: i > 1 and j > 1
11: for i = 2 to M do
12: for j = 2 to N do
13: Ω = {(i, j− 1), (i− 1, j− 1), (i− 1, j)}
14: (r, s) = argmin

(a,b)∈Ω
S(a, b)

# Selecting the predecessor
15: S(i, j) = S(r, s) + D(i, j)
16: T(i, j) = T(r, s) + 1
17: P(i, j) = P(r, s)
18: end for
19: end for
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frame index. In this thesis, warping path interval less than twice the length of the
query length (i.e., 2N), and greater than half of the query length (i.e., N/2) are
considered as valid warping paths, and hence, remaining warping paths, which
do not satisfy this condition are not considered here.

For SWS 2013 and QUESST 2014 details, we employ different strategies to ob-
tain DTW distance due to different nature of the task. There are different warping
paths across the test utterance. For SWS 2013, we select the warping path hav-
ing the least average DTW distance. In this way, we considered maximum seven
warping path intervals and the associated distances for each query and test utter-
ance pair. In practice, the execution of selection of seven warping paths for each
query and test utterance pair is given in Algorithm 2. Each endpoint and corre-
sponding start points corresponds to warping paths (determined by the matrix P)
and warping cost (determined by the matrices S and T). We select the warping
paths having length lesser than the twice and greater than the half of the query
length. Later, we select the minimum cost warping paths across different groups
and store them (as valid start point (spv), end point (epv) and DTW distances (dv))
as shown in Algorithm 2. The more than one presence of a query in test utterance
(in SWS 2013 dataset) demands to consider more than one warping path. The
selection of seven warping paths was made based on the optimal performance
on the Dev set. The top Ntop =1000 minimum distance values are considered.
The rationale behind taking maximum seven warping paths for each query and
utterance pair and Ntop =1000 distance values, is due to the high performance
gain with these settings as reported in [74]. For QUESST 2014, the objective is
to retrieve the test utterance rather than detecting the location (time stamp) of a
query. Hence, we consider distances for all the test utterance with a query. Thus,
for QUESST 2014, Ntop = 12492, i.e. , total number of test utterances (as stated in
Table 3.2).

3.5 Detection Subsystem

The distance values per query are taken and the negative of their normalized dis-
tance are treated as scores. For instance, consider the top Ntop distances based on
their minimum value per query are, i.e., ds1, ds2, . . ., dsNtop . Now, score normaliza-
tion is performed to the obtained normalized distance values d̃s1, d̃s2, . . ., d̃sNtop ,

respectively, where d̃si =
dsi−µq

σq
and µq and σq indicate the mean and the standard

deviation of ds1, ds2, . . ., dsNtop , respectively. The respective scores associated with
each detection are s1, s2, . . ., sNtop , where si = −d̃si. Algorithm 3 shows the proce-
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Algorithm 2 An algorithm for warping path selection for each test utterance hav-
ing M frames and query having N frames pair for SWS 2013 database.

Input: Matrices S, T and P.
Output: Nbst or less warping paths (starting point spv and ending point epv)

with their distances (dv). In this thesis, Nbst = 7.
Group warping paths :

1: for i = 1 to M do

2: dist(i) = S(i,N)
T(i,N)

# Path length normalized DTW distance

3: wr(i) = (i−P(i,N))
N #

Slope constraint
Check valid warping path :

4: if (wr(i) ≤ 2)&(wr(i) ≥ 1
2) then

5: Vwr(i) = 1
6: else
7: Vwr(i) = 0
8: end if
9: G = {0}M×1 # Initialize group assignment as 0 (no group)

10: CG = 1 # Current group
11: if Vwr(i) = 1 then
12: G(i) = CG
13: else
14: CG = CG + 1
15: end if
16: end for

Select best warping paths :
17: for k = 1 to max(G) do

18: Let, the set Sk := {i|G(i) = k}
19: dv(k) = min

i∈Sk
dist(i)

20: epv(k) = argmin
i∈Sk

dist(i)

21: spv(k) = P(epv(k), N)

22: end for
23: Sort and select Nbst best warping paths based on minimum distance values.

If max(G) ≤ Nbst then select all warping paths.
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Figure 3.4: The distribution of unnormalized and normalized scores. (a) Unnor-
malized scores (DTW distance/cost), and (b) normalized scores. The PDF is ap-
proximated from the histogram with 20 bins.

dure to execute score normalization for a single query, that is adapted from [62].

Algorithm 3 An algorithm for score normalization for a single query. Adapted
from [74].
Input: Unnormalized Ntop distance values: ds1, ds2, . . ., dsNtop .

Output: Normalized Ntop score values: s1, s2, . . ., sNtop .

1: Sample mean: µq =
1

Ntop
∑

Ntop
k=1 dsk

2: Sample standard deviation: σq =

√
1

Ntop−1 ∑
Ntop
k=1 (dsk − µq)2

3: Normalized scores: si = −
(dsi−µq)

σq
, for 1 ≤ i ≤ Ntop

Figure 3.4 (a) shows the probability density function (pdf ) for unnormalized
scores (DTW alignment cost/distance) of the same query (‘intelligence’) spoken by
two different speakers. It can be observed from Figure 3.4 (a), that the distribu-
tion of unnormalized scores follows Gaussian distribution. The reason could be
explained as follows. Note that, the distance value computed from subDTW are
the accumulation distance over warping. The accumulation process is summing
the distances across the warping path. With an assumption that the distribution
of local distance matrix values has finite mean and variance, the unnormalized
scores (DTW distances) follow a Gaussian distribution according to the law of
large numbers [185]. Figure 3.4 (b) shows the probability density function for nor-
malized scores for the query (‘intelligence’) spoken by two different speakers. The
distribution seems identical after score normalization and also both pdf s in 3.4 (b)
are in the vicinity of 0 indicating the distribution is centralized to zero (i.e., mean
equals to zero).
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As discussed in sub-Section 1.2.1, the score normalization is important because
the threshold for query detection should not be biased to particular sets of queries.
After normalization, we used an arbitrary threshold value 2, for Dev set. The op-
erating threshold at which Dev set gives MTWV is used for Eval set. For QUESST
2014, we optimized the threshold to achieive MTWV on Dev set and calibrate
the scores that minimizes Cnxe. We use Bosaris toolkit to compute the Cnxe and
weights to obtain minimum Cnxe across all types of queries [186]. The details re-
lated to the threshold θ selection is given in Appendix E.

3.5.1 Score-level Fusion of Multiple Systems

Earlier different speaker and language recognition systems were fused at score-
level to improve the performance of speaker and language recognition task
[187, 188]. The score-level fusion approaches assume that the scores are available
for each trial, which is not in the case of QbE-STD. All the detection candidates
from several QbE-STD systems may not be synchronized, i.e., having different
(time-stamps) start and end positions that hypothesize the location of the query
in the utterance. For instance, in Figure 3.5 (a) shows three QbE-STD systems that
does not have the exact time-synchronous detection candidates. However, they
are aligned as part of the each detection candidates may have overlap with an-
other. Thus, the time stamps that covers all the detection candidates are taken.
In some cases, few QbE-STD systems might not produce the output, i.e., does not
give the detection scores, whereas other QbE-STD systems produce the detection
scores for that detection candidate. As shown in Figure 3.5 (b) that detection can-
didates from two QbE-STD systems are aligned, and the system-3 does not pro-
duce the score for that detection candidate. The detection score (missing score) for
such detection candidate is the default score, which is minimum score per query
or minimum score per system. Thus, the detection regions from various search
systems are aligned such that their time-stamps overlap based on the majority
voting decision. In few of the cases, if there is no detection region for a particular
search system (i.e., missing scores), a default score is assigned. In this thesis, the
missing score is considered as the minimum score per query.

After the alignment, scores are calibrated using logistic regression, where in-
ferences (i.e., the ground truth) are taken from the Dev set. The scores obtained
from different systems are combined using the discriminative fusion approach
presented in [62]. For given NS systems having t trials are fused as [62]:
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tei indicate the start and end times of detection candidate for ith QbE-STD system.
After [62].

ŝt = ξ0 +
NS

∑
i=1

ξisi
t, (3.13)

where si
t is the score of ith system for tth trial, ξi’s are fusion/calibration coef-

ficients, which are estimated by binary logistic regression [62]. The scripts for
fusion multiple QbE-STD systems is available online [189].

3.6 Effect of Local Constraints (LC)

The relative local temporal mismatch between a query and utterance due to dif-
ferent speaking rates by various speakers may require additional treatments in
the search algorithm. In particular, the locality constraints considered during
DTW distance accumulation has to be adjusted. The feature alignment is per-
formed by similarity matching of consecutive features by considering different
local constraints. We analyze the performance of the QbE-STD task for various
local constraints in subDTW. To that effect, Figure 3.6 shows three different local
constraints for DTW-based searching. To use these local constraints, we need to
change the initialization of subDTW algorithm and modify the eq. (3.6) and eq.
(3.7). The rest of the computation remains the same for all the local constraints
that are used in this theses. In the analysis of DTW presented earlier in Figure 3.3,
we used the local constraint, LC1. The pseudo codes for other asymmetrical lo-
cal constraints, i.e., LC2 and LC3, pseudo codes are described in Algorithm 4 and
Algorithm 5, respectively (modified after [120]).

The relative temporal mismatch between the query and the instance of query,
which is present in the utterance (due to different speaking rates by the various
speakers) may require additional treatments in the search algorithm. In particular,
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Algorithm 4 An algorithm for matrices S, T and P computation from the matrix
D for asymmetrical local constraint, i.e., LC2 (as specified in Figure 3.6 (b).) Note
that, in local constraints LC2, the values in matrix T depends only on the number
of frames in query, i.e., N.

Input: Matrix D
Output: Matrices S, T and P

Initialization : # 1st column, i.e., j = 1
1: for i = 1 to M do
2: S(i, 1) = D(i, 1)
3: T(i, 1) = 1
4: P(i, 1) = i
5: end for

Path tracing : # 1st two rows, i.e., i = 1, 2
6: for i = 1 to 2 do
7: for j = 2 to N do
8: S(i, j) = S(i, j− 1) + D(i, j)
9: T(1, j) = j

10: P(1, j) = i
11: end for
12: end for

Path tracing : # For the rest: i > 2 and j > 1
13: for i = 3 to M do
14: for j = 2 to N do
15: Ω = {(i, j− 1), (i− 1, j− 1), (i− 2, j− 1)}
16: (r, s) = argmin

(a,b)∈Ω
S(a, b) #

Selecting the predessor
17: S(i, j) = S(r, s) + D(i, j)
18: T(i, j) = T(r, s) + 1
19: P(i, j) = P(r, s)
20: end for
21: end for
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Algorithm 5 An algorithm for matrices S, T and P computation from the matrix
D for asymmetrical local constraint, i.e., LC3 (as specified in Figure 3.6 (c).)

Input: Matrix D
Output: Matrices S, T and P

Initialization : # 1st two columns, i.e., j = 1, 2
1: for j = 1 to 2 do
2: for i = 1 to M do
3: S(i, j) = D(i, j)
4: T(i, j) = j
5: P(i, j) = i
6: end for
7: end for

Path tracing : # 1st row, i.e., i = 1
8: for j = 2 to N do
9: S(1, j) = S(1, j− 1) + D(1, j)

10: T(1, j) = j
11: P(1, j) = 1
12: end for

Path tracing : # For the rest: i > 1 and j > 2
13: for i = 2 to M do
14: for j = 3 to N do
15: Ω = {(i− 1, j− 2), (i− 1, j− 1), (i− 1, j)}
16: (r, s) = argmin

(a,b)∈Ω
S(a, b) #

Selecting the predessor
17: S(i, j) = S(r, s) + D(i, j)
18: T(i, j) = T(r, s) + 1
19: P(i, j) = P(r, s)
20: end for
21: end for
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Figure 3.6: Types of local constraints (LC) used: (a) LC1, (b) LC2, and (c) LC3.
After [2].

Table 3.3: Performance of SWS 2013 QbE-STD system for various local constraints
(in TWV). The numbers in the brackets indicate ATWV. After [2]

Feature Dev Set Eval Set
Vector LC1 LC2 LC3 LC1 LC2 LC3

CZ 0.348 0.375 0.356 0.318 (0.313) 0.342 (0.340) 0.324 (0.323)
HU 0.357 0.374 0.368 0.331 (0.325) 0.341 (0.340) 0.342 (0.336)
RU 0.367 0.386 0.378 0.340 (0.338) 0.359 (0.357) 0.347 (0.347)

locality consideration during computation of accumulated distance matrix. The
feature alignment is performed by similarity matching of consecutive features by
considering different local constraints. Table 3.3 shows the performance of differ-
ent local constraints for CZ, HU, and RU posteriorgrams. It can be seen from Table
3.3 that the local constraint LC2 gives relatively better performance than the LC1

and LC3 [2, 53]. The local constraint LC2 allows more frames to be inserted from
test utterance to the query, which is suited for QbE-STD [53]. Hence, we have
used, LC2, for the rest of the experiments reported in this thesis if not specified.

We do not perform length normalization for every transition (i.e., on-the-fly
length normalization) as opposed to the study reported in [53, 148]. It was ob-
served that on-the-fly length normalization (OLN) prefers the longer alignment
path over shorter alignment path [45, 148]. In subDTW, only single DTW is per-
formed for each query and test utterance pair. The query can start at any time
instant within test utterance. The warping path is selected based on the adjacent
accumulated distances. The on-the-fly length normalization (OLN) is performed
by selecting the warping path based on adjacent accumulated local distance nor-
malized by the path length. The performance w.r.t. OLN using local constraints
LC1 is shown in Table 3.4. It can be observed that a slight improvement in LC1 is
obtained. However, the performance is still not better than the LC2.

In the search algorithm, the matrix S is normalized independently of the ma-
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Table 3.4: Performance of SWS 2013 QbE-STD for on-the-fly length normalization
(OLN) for local constraint LC1 (in MTWV). The numbers in the brackets indicate
ATWV. After [2]

Feature Dev Set Eval Set
Vector no OLN OLN no OLN OLN

CZ 0.348 0.357 0.318 (0.313) 0.324 (0.322)
HU 0.357 0.359 0.331 (0.325) 0.334 (0.332)
RU 0.367 0.360 0.340 (0.338) 0.349 (0.346)
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Figure 3.7: Performance of various dissimilarity functions on SWS 2013 QbE-STD
task: (a) Dev set, and (b) Eval set. The number on the top of bars indicate MTWV.
After [2].

trix T and then the matrix T is applied to normalized matrix S in order to compute
the DTW alignment distance. For the local constraint, LC2, the optimization of
the matrix S does not involve the normalization by the length matrix T. This is
because of the fact that for LC2, T(a, b) = b = j− 1 and hence, for the local con-
straint, LC2, the optimization of the matrix S does not involve the normalization
by the length matrix T. This is because of the fact that for LC2, T(a, b) = b = j− 1
and hence,

(r, s) = argmin
(a,b)∈Ω

S(a, b)
T(a, b)

= argmin
(a,b)∈Ω

S(a, b)
j− 1

= argmin
(a,b)∈Ω

S(a, b). (3.14)

After complete path tracing, the accumulated distance matrix S is normalized
by the path length matrix T to compute the DTW alignment cost. Thus, for lo-
cal constraint, LC2, OLN does not make any difference because of the constant
denominator in minimization.
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3.7 Effect of Dissimilarity Functions

Various studies in QbE-STD used different dissimilarity functions (such as, co-
sine distance, correlation distance, log-cosine distance, Euclidean distance and
KL-divergence) to compute the local distance matrix. For example, the logco-
sine distance was used in [39, 77, 121, 126, 148]. The cosine measure was used
in [103, 111, 148]. The Pearson’s correlation coefficient was used in [66, 148]. The
study presented in [52,86,98] uses KL divergence metrics. As shown in the Figure
3.7, the symmetrical version of KL divergence gave relatively better performance
over other distance metric (for both Dev and Eval sets), followed by the negative
logarithm of cosine similarity. KL divergence is better suited because the poste-
rior probabilities have a flatter distribution [86]. The performance obtained using
cosine and correlation distance metric is similar. The Euclidean distance metric is
not suitable for posterior template matching, as suggested in [81].

3.8 Chapter Summary

In this chapter, we discussed the experimental setup for QbE-STD systems used
in this thesis. The front-end component converts speech signal into frame-level
representation (such as, acoustic features or posteriorgram of acoustic features).
It also performs removal of non-speech regions with the help of SAD. The search-
ing subsystem performs matching between the query representation and the rep-
resentation of the utterance. Detection subsystem pools the distances from sev-
eral detection candidates and normalizes them, which are interpreted as detec-
tion scores. Performance evaluation metrics are mainly p@N, recall and MAP for
ranked evaluation task. For unranked evaluation task, the performance is evalu-
ated with MTWV and Cmin

nxe . In the next chapter, we will discuss the representation
perspective for the design of QbE-STD system.
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CHAPTER 4

Representation Perspective

4.1 Introduction

This chapter presents the details of acoustic representation for QbE-STD system.
As discussed in Section 2.4, the front-end subsystem transforms speech (acoustic)
signal into an appropriate representative vector, which is used by the search sub-
system for audio matching. The acoustic representation should be speaker and
channel-invariant and resemble the similar behavior for the same spoken content
(same word or same sentence). In this chapter, we will discuss the use of Vo-
cal Tract Length Normalization (VTLN) warping factor estimation approach and
mixture of GMMs approach to representing the speech signal with restricting the
posterior probability w.r.t. broad phoneme classes for the QbE-STD task. Section
4.2 discusses the VTLN warping factor estimation with GMM and VTL-warped
Gaussian posteriorgram. Section 4.3 presents the mixture of GMMs framework
for posteriorgram design.

4.2 Vocal Tract Length Normalization (VTLN)

It has been studied in the speech processing literature that for a uniform vocal
tract model, the formants of the vocal tract are inversely related to the length of the
vocal tract [190]. The formant frequencies of the vocal tract are given by [190]:

Fn =
(2n− 1)v

4L
, n = 1, 2, · · · , (4.1)

where L = length of the vocal tract (which is typically 13 cm to 18 cm [191]) and
v = velocity of the sound wave (≈ 344 m/s, at sea-level and 70o F [190]). For
instance, formant frequencies of two speakers, namely, speaker A and speaker B
having an average vocal tract length, LA and LB, respectively, are FA ∝ 1

LA
and

FB ∝ 1
LB

. This results into FA = αABFB, where αAB represents VTLN warping
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Figure 4.1: Mel filterbank for different VTLN warping factors: (a) α = 0.88, (b)
α = 1 and (c) α = 1.12.

factor associated with only two speakers, namely, speaker A and speaker B. This
is also referred to as uniform scaling in the frequency domain spectra vowel pro-
duced (spoken) by two different speakers [192]. In practice, the VTLN warping
factor is estimated from each utterance w.r.t. to a general speaker model. Human
vocal tract length can vary from nearly 13 cm for adult female up to 18 cm for
adult male [191]. Due to this, formant frequencies can deviate by 25 % among
various speakers. To reflect this deviation, the VTLN warping factor is generally
taken from a set of 13 distinct values (at equally-spaced points between 0.88 and
1.12) [191]. The introduction of the VTLN warping factor creates an adjustment
in the frequency analysis to cope with such spectral scaling variations. In general,
this is performed by considering different versions of the Mel filterbank (whose
center frequencies are scaled linearly). Figure 4.1 shows the Mel filterbank for dif-
ferent VTLN warping factors (namely, α = 0.88, 1, and 1.12). In practice, warping
factors are obtained via statistical modeling framework, i.e., Maximum Likeli-
hood Estimation (MLE) [193]:

α̂ = argmax
0.88≤α≤1.12

P(Xα|λT, W). (4.2)

Since the closed form expression of Eq. (4.2) is not available, MLE is computed
for all the different warped feature vector Xα against model λT for a given tran-
scription, W. In this thesis, we refer to this estimation approach as HMM-based
VTLN warping factor estimation (because this approach requires HMM model λT

and the transcription W). The transcription is either known (i.e., supervised) or
estimated first. This framework computes the alignment cost of features to the
states of HMM. To investigate the effectiveness of warping factor estimation, we
estimate the α from 10 male and 10 female subjects of Gujarati (G) and Marathi (M)
languages [194]. As shown in Figure 4.2, higher values of α is for male speakers
(indicating longer VTL) and smaller values of α are for female speakers (indicat-
ing shorter VTL).
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4.2.1 Prior Studies in VTLN

In previous work, VTLN was addressed by normalizing the vocal tract shape
considering the stationary (steady-state) part of American English vowels [54].
VTLN warping factor estimation was mostly performed by considering the
estimation of a formant frequency, in particular, the 3rd formant frequency
[195, 196]. Data-driven methods, such as, elastic registration [197] and dynamic
programming(DP)-based method, such as, Dynamic Frequency Warping (DFW)
[198] were used for VTLN warping factor estimation. The study presented in [199]
presents a scale transform for speaker normalization, whereas the study reported
in [200] suggested the use of a conformal map (i.e., an allpass transformation) to
perform VTLN in the cepstral-domain instead of frequency-domain. Linear trans-
formations in the cepstral-domain were also used for VTLN in [201, 202] (called
LT-VTLN) with less computational complexity and easy Jacobian matrix compu-
tation.

A Vector Quantization (VQ) codebook approach was suggested for VTLN for
text-independent speaker normalization [203]. Frequency warping-based VTLN
was suggested in [204]. The VTLN warping factor estimation problem was posed
as frequency translation (shifting) factor estimation under the MLE framework
in [205]. Spectral variations in speech among different speakers are phone-
dependent and cannot be fully captured using a single warping factor for a single
utterance. In order to capture the dynamics of the VTLN warping factor along
utterances, frames are converted into a sequence of regions and over each region,
VTLN warping factor is estimated [206].

Most of these approaches for VTLN warping factor estimation approaches are
used for ASR tasks. This framework is possible when a reference phoneme-level
transcription is given along with the speech signal. The phoneme-level transcrip-
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tion is not available, when considering unsupervised QbE-STD task. In the ab-
sence of transcription (i.e., in unsupervised scenarios, such as the study reported
in [78]), speech sound units are clustered to form a reference transcription. Since
these new sound units are generated from the acoustic observation after seg-
mentation, they were called Acoustic Segment Model (ASM) [78]. This process
generates a transcription and finds the VTLN warping factor, α, under an MLE
framework. The scope of the present work is to exploit the capability of GMM
to estimate VTLN warping factor and its application for the QbE-STD task. The
approach is rooted from the fast VTLN approach and the two-pass approach pre-
sented in [207, 208]. However, we attempt to perform multiple passes, i.e., an
iterative framework of VTLN warping factor estimations for the QbE-STD task.
Later, we considered a reduced number of frames (belonging to vowels) for VTLN
warping factor estimation.

The conventional method (such as, Lee-Rose method [193]) for VTLN warp-
ing factor estimation requires a phoneme-level transcription, whereas the GMM
framework does not require a phoneme-level transcription. In this work, we re-
fer to the Lee-Rose method of VTLN warping factor estimation as HMM-based
VTLN warping factor estimation, which is supervised as it requires transcription.
In addition, this approach uses GMM that can also be exploited for Gaussian pos-
teriorgram design. Hence, the presented work exploits trained GMM for VTLN
warping factor estimation and then use VTL-warped features to re-train the GMM
Gaussian posteriorgrams, used for QbE-STD tasks. The major contributions in
this work are as follows:

• A GMM-based VTLN warping factor estimation is presented, which does
not require manual transcription.

• The correlation between VTLN warping factor estimation using GMM (un-
supervised) and HMM (supervised) framework is analyzed.

• Three different feature extraction schemes to incorporate linear VTLN,
namely, MFCC, PLP and MFCC-TMP are used.

• The iterative approach for VTLN warping factor estimation under GMM
framework and the likelihood values at the different stage of estimation pro-
cedure is presented.

• The application of GMM-based VTLN warping factor estimation to
phoneme recognition task is presented.

• The QbE-STD tasks are performed with various experimental conditions,
such as, the number of iterations of VTLN warping factor estimation, mul-
tiple examples of spoken query, the score-level fusion of various search sys-
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tems and reduced number of feature vectors for VTLN warping factor esti-
mation.

4.2.2 GMM-based VTLN

A GMM-based framework differs from an HMM-based framework in terms of
the objective function used to estimate the VTLN warping factor. In HMM model,
61 phoneme units are modeled as three hidden states and each state of HMM is
modeled with eight mixture component GMM. A GMM consists 64-mixture com-
ponents. The current work is focused on linear warping factor estimation, which
is implemented in the frequency-domain. To that effect, we used Gaussian Mix-
ture Model (GMM) likelihood scores to obtain the VTLN warping factor. The be-
lief behind the GMM based VTLN is GMM trained over large number of speakers
may contain speaker generalized behavior. The spectral variation w.r.t. the gen-
eralized model can be useful to adjust filterbank for each speaker. Furthermore,
we kept on doing iteratively to obtain further normalization in spectral variation
w.r.t. to general speaker model. The process of VTLN warping factor estimation
and modified posteriorgram feature extraction is as follows.

1. Feature Extraction: Compute warped features, i.e., xα
t that carry information

from different warping factors, namely, α = 0.88, 0.90, · · · , 1.12. Note that the
number of distinct values of α is user-defined and can be empirically decided.

2. Initial Training: Train the GMM without warped features, i.e., xα
t , where α = 1,

i.e., no VTLN warping. Let the initial GMM model be
λinit ∼ (µinit, Σinit, winit).

3. VTLN warping factor estimation: The likelihood is computed for all the different
warped feature vectors xα

t against the initial model, λinit, i.e.,

α̂ = argmax
0.88≤α≤1.12

P(Xα|λinit). (4.3)

VTLN warping factor is chosen by performing grid search within 0.88 to 1.12.
4. Retraining GMM: GMM is re-trained on this optimal warped features, i.e., xα̂.

This new model λr ∼ (µr, Σr, wr) is different from the earlier GMM model λinit.
5. Posteriorgram Computation: Now, the VTLN warping factors of test and query

features are estimated against the new GMM model λr. Based on the estimated
warping factors, Gaussian posteriorgrams are computed.

VTL-warped Gaussian posteriorgram obtained are used for QbE-STD task.
Figure 4.3 shows the overall block diagram for VTLN-based Gaussian posteri-
orgram feature extraction. In the next sub-Section, we will investigate the phone
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recognition performance of VTLN warping factor estimation. The idea of GMM-
based VTLN warping factor estimation can be explained as follows. Let VTL-
warped features be Xα, 0.88 ≤ α ≤ 1.12. Initially, the GMM is trained on un-
warped features, i.e., α = 1 and hence, (Xα ≡ X1), i.e.,

λinit = argmax
λ

P(X1|λ). (4.4)

Now, VTLN warping factors are estimated based on MLE, i.e.,

α̂ = argmax
0.88≤α≤1.12

P(Xα|λinit). (4.5)

In the next iteration, we consider VTL-warped features to train GMM,

λ(1) = argmax
λ

P(Xα̂|λ). (4.6)

This implies P(Xα̂|λ(1)) ≥ P(X1|λinit). Thus, maximization in likelihood re-
sults into better Gaussian posteriorgram representation in the following itera-
tions.

Next, we will investigate the relation between two VTLN warping factor esti-
mates (using both GMM and HMM approach) on MFCC feature sets. The VTLN
warping factor is estimated using the GMM and HMM-based approaches using
the train set of TIMIT, consisting 3696 utterances. We employed linear frequency
scaling to implement VTLN, i.e., α = 0.88, 0.90, · · · , 1.12. Fig. 4.4 displays the
mapping between these two VTLN warping factor estimates using a supervised
Lee-Rose method [191] and the unsupervised method. The relatively diagonal
darker band in Figure 4.4 indicates that most of the warping factors obtained
through these two techniques are nicely correlated with each other. Moreover,
it was observed that around 35 % utterances have the same VTLN warping fac-
tors (falling on the line y = x of Figure 4.4) for both HMM-based estimation and
GMM-based estimation. This analysis shows the potential of GMM-based VTLN
warping factor estimation under the absence of transcription. TIMIT corpus con-
tains more number of male speakers (for which α > 1) than the female speakers.
Now, due to the differences between the GMM and HMM-based VTLN warping
factor estimates, VTLN warping factors that estimated from GMM framework
are distributed more to the left of y = x line. This results in an upward bend-
ing/tilting line (as shown in Figure 4.4).

To understand the effect of multiple utterances in VTLN warping factor esti-
mation, we estimate VTLN warping factor per speaker for TIMIT train set. The
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Figure 4.4: Estimated values of VTLN warping factor using two different meth-
ods, namely, HMM (supervised) and GMM (unsupervised). The red dashed line
indicates the line y = x. After [1].

effect of a number of utterances in VTLN warping factor estimation is shown in
terms of the difference in α between utterance wise and speaker wise. It can be ob-
served from Figure 4.6 that the estimated VTLN warping factor per speaker and
an utterance is too close and the difference is between 0.02 to 0.03. If the number
of utterances or the duration increases, the difference between utterance-specific
and speaker-specific VTLN warping factor gets reduced. That means, we get the
almost same warping factor for multiple utterances.

4.2.3 Iterative Approach for VTLN

As discussed earlier in sub-Section 4.2.2, the iterative scheme of VTLN warping
factor estimation leads to an increase in the likelihood of the training data. Algo-
rithm 6 presents the details of the GMM-based approach used for VTLN warp-
ing factor estimation and corresponding Gaussian posteriorgrams extraction. The
plot of the values of log-likelihood w.r.t. the iteration index is shown in Figure
4.5. This plot is for MFCC cepstral features and 128 mixtures of components. To
compute log-likelihood, we start with no VTLN warping (i.e., α(0) = 1) and es-
timate initial GMM model λ(1) = λinit (please refer eq. (4.4), the log-likelihood
log(P(Xα(0) |λ(1))) is computed. Now, new VTLN warping factors are estimated
as per eq. (4.5) and the log-likelihood log(P(Xα(1) |λ(1))) is computed.

In the GMM-based approach for VTLN warping factor estimation, we initially
build a GMM on unwarped (i.e., α = 1, no VTLN) features and estimate the ap-
propriate VTLN warping factor using MLE.

Initially, we don’t have speaker labels or phonetic transcription and hence,
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Algorithm 6 An algorithm for proposed iterative approach for unsupervised
GMM-based VTLN warping factor estimation and Gaussian posteriorgram ex-
traction.
Input: VTL-warped features: Training Xα

tr, Testing Xα
te, Number of iterations Niter.

Output: Optimal VTLN warping factor and corresponding Gaussian posterior-
gram.
Initialization :

1: Initial GMM training on α = 1. (No VTLN)
2: Build GMM λinit on Xα

tr, (α = 1), i.e.,
λinit ∼ (µinit, Σinit, winit).
VTLN warping factor estimation and re-training :

3: k = 0 # set iteration index counter to 0
4: while (k ≥ Niter) do
5: for each training utterance i do
6: Estimate VTLN warping factor using

α̂i = argmax
α

P(Xα
tr,i|λinit).

7: end for
8: Build GMM on optimal VTL-warped features (Xα̂

tr), i.e., λr ∼ (µr, Σr, wr).
9: k = k + 1 # increment iteration index counter.

10: λinit ← λr # store new model as old model.
11: end while

VTLN warping factor estimation and Gaussian posteriorgram computation for test-
ing database :

12: for each testing utterance i do
13: Estimate VTLN warping factor using

α̂i = argmax
α

P(Xα
te,i|λr).

14: Compute Gaussian posteriorgram using
GP(Xα̂i

te,i) = [P(C1|Xα̂i
te,i), · · · , P(CNG|Xα̂i

te,i)]
T,

where P(Cp|Xα̂i
te,i) =

wp
rN (X

α̂i
te,i;µ

p
r ,Σp

r )

∑NG
j wj

rN (X
α̂i
te,i;µ

j
r,Σj

r)
.

15: end for
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Figure 4.5: (a) Log-likelihood values w.r.t.the iteration index, and (b) the change
in VTLN warping factor estimation from previous estimates. The red points (in
Fig. 4.5 (a)) indicate log-likelihood after GMM training, whereas the blue points
(in Fig. 4.5 (a)) indicate log-likelihood after VTLN warping factor estimation.

we started with unwarped features. We assumption that GMM trained with un-
warped features captures the information from different speakers and it captures
speaker-independent information. The proposed approach of VTLN warping fac-
tor estimation is rooted from the study presented in [207]. As an initial seed,
VTLN warping factors from different speakers are taken as α = 1, then the model
is trained and GMM is retrained on warped features. Again new VTLN warp-
ing factors are estimated with retrained GMM. This process is continued for 5
iterations. As iteration increases, the difference between VTLN warping factors
estimated with current iteration and previous iteration gets reduced. Figure 4.5
(b) also indicates the change in VTLN warping factor estimates w.r.t. previous
estimates. It can be observed that as number of iterations increase,the difference
between VTLN warping factors estimated with current iteration and previous it-
eration gets reduced.

In the next sub-Section, we observe the effectiveness of the VTLN warping
factor estimation for phoneme recognition task.

4.2.4 Results for Phoneme Recognition

We considered the TIMIT database without /sa/ sentences that are common
across all the speakers and these sentences may bias the results. We used the
training set from TIMIT for HMM monophone training for a phoneme recog-
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Figure 4.6: Effect of number of utterances in GMM-based VTLN warping factor
estimation.

nition task. The HTK was used to perform ASR (phoneme recognition) experi-
ments [180]. The phoneme recognition is evaluated in terms of % phoneme accu-
racy [180]. We used MFCC and PLP as acoustic features that are extracted using
HTK. The details of feature extractions were presented in sub-Section 3.3.1.

Table 4.1: Effect of VTLN warping factor estimation on phoneme recognition per-
formance (% Phoneme Accuracy)

VTLN × L L P P P P P
(TRAN) (DEC) (1) (2) (3) (4) (5)

MFCC 67.44 70.62 68.90 69.02 69.67 69.73 69.80 69.81
PLP 67.25 70.89 68.70 69.45 70.16 70.19 70.21 70.26

(× = No VTLN, L = Lee-Rose VTLN and P=Proposed iterative approach for GMM-based
VTLN warping factor estimation, TRAN= with actual phonetic transcription, DEC=with
decoded phonetic transcription. The numbers in brackets indicate the iteration index in

proposed iterative GMM-based VTLN warping factor estimation.)

Table 4.1 shows the performance of the VTLN warping factor estimation on
phoneme recognition task in terms of % Phoneme Accuracy. We consider context-
independent monophone models trained over 61 TIMIT phoneset, then merged
them into 39 phoneset as suggested in [209]. A bi-gram phoneme-based language
model is trained under HTK framework. In HMM-based approach, we consid-
ered the two cases for VTL-warping factor estimation. The Transcription (TRAN)
case , in which the exact phonetic transcription along with the test utterance is
given to estimate VTLN warping factor. The Decode (DEC) case, where only test
utterance is given without the transcription and the transcription is decoded with
the help of trained HMM model to estimate the VTLN warping factor. Better
phoneme recognition accuracy with the TRAN case than the DEC case indicates
the dependency of transcription because the errors introduced while decoding
might result into incorrect VTLN warping factor estimation. In GMM-based ap-
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proach, we retrain the GMM for new VTL-warped features and use VTL-warped
test audio to decode. It can be observed that the GMM-based VTLN warping
factor estimation improves the performance due to this VTLN-based speaker nor-
malization. It can be observed that as a number of iterations increases, the perfor-
mance of VTL-warped features also increases. The improvements in phoneme ac-
curacy saturates as iteration increases to 4 or 5. GMM-based approach gives better
phoneme accuracy than the DEC case. However, poor phoneme accuracy (across
all the iterations considered here) than the TRAN case. The better phoneme recog-
nition performance with the GMM-based approach for VTL-warping factor esti-
mation over no VTLN case, motivated the authors to exploit unsupervised GMM-
based framework for a QbE-STD task.

4.2.5 Experimental Results

The performance obtained using GMM-based approach is better than no VTLN
is applied. This is analyzed in Figure 4.7. It shows accumulated distance matrix,
when the query is present in test utterance. In this example, we consider two
queries, namely, government and meeting from TIMIT corpus. The corresponding
detections for Gaussian posteriorgram and VTL-warped Gaussian posteriorgram
are shown by blue and red arrows, respectively. The green arrow corresponds
to the actual endpoint (i.e., the ground truth) of the query within test utterance.
In this example, it can be observed that Gaussian posteriorgram shows the wrong
detection, whereas VTL-warped Gaussian posteriorgram detection falls very close
to the ground truth. It can be observed that VTLN Gaussian posteriorgram ex-
hibits more similarity towards the actual location of the query within test ut-
terance and hence, can be useful for the QbE-STD task. More results on TIMIT
dataset for various experimental conditions are given in Appendix A. In the next
sub-Section, we will discuss the experimental results for SWS 2013 dataset.

This sub-Section discusses experimental results on MediaEval SWS 2013. With
128 mixture components, we investigate the effect of VTL-warped GP. Figure 4.8
shows the performance for various numbers of iterations used in VTLN warping
factor estimation. It can be observed that VTLN improves the QbE-STD perfor-
mance. As discussed earlier in sub-Section 4.2.3, we used 5 iterations in iterative
VTLN warping factor estimation framework. It can be observed from Figure 4.8
that performance of QbE-STD system improves as the number of iterations in-
creases. As discussed in sub-Section 4.2.3, the stopping criteria can be set at 2nd or
3rd iteration. The performance does not vary significantly after that. The stopping
criteria in iterative approach can be set by examining MTWV in Dev set. It can
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Figure 4.8: Effect of the number of iterations for VTLN warping factor estimation
on SWS 2013 QbE-STD performance. (a) MTWV for Dev set, (b) ATWV for Eval
set. The number on the top of bars indicate MTWV.

be observed that from Figure 4.8 that MTWV is relatively higher at 3rd iteration.
Hence, 3 iterations would be a reasonable choice, and we may stop after 3 itera-
tions. Interestingly, for Eval set MTWV at 3rd iteration is higher than the no VTLN
case. It can also be noted that the different feature sets achieved maximum MTWV
at different iterations. This is because of varying acoustical property captured by
different feature sets used in this thesis.

4.2.5.1 Effect of Number of Gaussians

The number of Gaussian components in Gaussian posteriorgram plays an impor-
tant role in QbE-STD task [53, 77, 98]. In this Section, we investigate the effect
of the number of mixture components used in VTLN warping factor estimation
on QbE-STD task. In particular, we considered 64, 128, and 256 mixture compo-
nents in GMM for both training and VTLN warping factor estimation. It can be
observed from Figure 4.9, that performance using the GMM-based VTL-warped
posteriorgram is better than the Gaussian posteriorgram. In addition, it can be
observed from Figure 4.9, that an increasing number of mixture components im-
proves the performance of a QbE-STD system. This finding matches a previous
study reported in [53]. This might be because of the increasing number of clusters
(in GMM) that better represents the speech signal at the frame-level. However,
increasing number of Gaussians demands additional processing and storage cost
and hence, we restrict our experiments till 128 number of clusters. The lower
number of Gaussian components might be insufficient to capture the distribution
of feature vectors and hence, the Gaussian posteriorgram of 64 components does
not give better performance as compared to the Gaussian posteriorgram of 128

84



0

0.05

0.1

0.15

0.2

0.25

NG
64

NG
128

NG
256

NG
64

NG
128

NG
256

NG
64

NG
128

NG
256

M
T

W
V

 

 
No VTLN VTLN

MFCC PLP MFCC−TMP

0

0.05

0.1

0.15

0.2

NG
64

NG
128

NG
256

NG
64

NG
128

NG
256

NG
64

NG
128

NG
256

A
T

W
V

 

 
No VTLN VTLN

MFCC PLP MFCC−TMP

(a) (b)

Figure 4.9: Effect of the number of Gaussians on SWS 2013 QbE-STD systems on
performance. Results on (a) Dev set, and (b) Eval set.

components.

4.2.5.2 Effect of Local Constraints

Figure 3.6 shows three different local constraints for DTW-based searching in
QbE-STD. The relative local temporal mismatch between a query and utterance
due to different speaking rates by various speakers may require additional treat-
ments in the search algorithm. In particular, the locality constraints considered
during DTW distance accumulation has to be adjusted. The feature alignment is
performed by similarity matching of consecutive features by considering different
local constraints.

Figure 4.10 shows the performance of QbE-STD systems for different local con-
straints. It can be observed from Figure 4.10 that LC2 performs relatively better
than the other local constraints, probably due to its property of mapping more
features along test utterances than the query. Thus, it allows to map more feature
vectors from the test utterance than the query, which might be suitable in QbE-
STD due to the nature of problem [53], where a test utterance is having longer
duration than the query. In the experimental results presented earlier in this the-
sis, we used local constraint, LC2 unless not specified. For every local constraint,
it can be also observed that VTL-warped Gaussian posteriorgram improves QbE-
STD performance over Gaussian posteriorgrams.

4.2.5.3 Multiple Examples per Query

As discussed earlier Section 3.2, SWS 2013 data consists of two sets of queries,
namely, normal or basic (which involve only one example per query), and ex-
tended (which includes multiple examples per query). It was recommended in
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Figure 4.10: Effect of local constraints (LC) on SWS 2013 QbE-STD systems (in
MTWV). Results on (a) Dev set, and (b) Eval set. The number on the top of bars
indicate MTWV.

MediaEval’s SWS 2013 to use basic query sets. However, multiple examples of
a single query capture multiple realizations of the spoken content and might be
effective as suggested in [78]. In this Section, experimental results for multiple
examples per query are presented. For instance, two languages, namely, Basque
and Czech, have 3 and 10 examples, respectively, in Dev and Eval sets of the SWS
2013 dataset. In order to exploit the multiple examples, we prefer to use a simplis-
tic yet effective approach to combine multiple query examples into a single query
example as suggested in [74]. In this method, a single average query example is
generated by DTW alignments of the multiple queries onto the longest duration
query. After this operation, the number of queries in the extended set gets re-
duced to the number of queries in the normal type (since only one average query
represents all the multiple queries). Hence, this process of exploiting the multiple
query examples is quite computationally cheaper than considering each example
individually. Figure 4.11 shows the performance of using multiple examples per
query. It can be observed from Figure 4.11 that after fusing multiple examples,
the performance improved for all the feature sets. The MTWV is improved after
using VTL-warped Gaussian posteriorgrams (i.e., 4 % absolute and 15.5 % relative
improvement for MFCC feature sets).

4.2.5.4 Score-level Fusion of VTL-warped Gaussian Posteriorgrams

The details for score-level fusion for different QbE-STD systems were discussed
in sub-Section 3.5.1. Here, we are fusing three different systems (i.e., NS = 3),
corresponding to three cepstral feature sets, namely, MFCC, PLP and MFCC-TMP
(as per the eq.(3.13)). Table 4.2 shows the performance of score-level fusion after
(indicated by X) and before (indicated by ×) VTLN for normal and extended
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Figure 4.11: Effect of the number of iterations for VTLN warping factor estimation
on SWS 2013 QbE-STD performance with multiple examples of query: (a) Dev set,
(b) Eval set. The number on the top of bars indicate MTWV.

Table 4.2: Performance of score-level fusion for SWS2013 QbE-STD.

Query Features VTLN Dev Eval
Type set set

Normal
ALL × 0.236 0.178

ALLV X 0.256 0.194

Extended
ALL × 0.267 0.207

ALLV X 0.296 0.231

Normal

CZ P 0.375 0.342
ALLV+CZ PX 0.445 0.398

HU P 0.374 0.341
ALLV+HU PX 0.445 0.394

RU P 0.386 0.359
ALLV+RU PX 0.456 0.412

(× = No VTLN, X = VTLN, ALL = All three cepstral representations, ALLV = All three
cepstral representations with VTLN warping, P = phonetic posteriorgram, and PX = the
score-level fusion of ALLV with phonetic posteriorgram, + = score-level fusion)

query sets. From Table 4.2, it can be observed that MTWV increases and Cmin
nxe

reduces in the case of VTL-warped Gaussian posteriorgrams. VTLN Gaussian
posteriorgram improves the Maximum Term Weighted Value (MTWV) by 0.02
(i.e., 2 %) and 0.016 (i.e., 1.6 %), for the Dev and Eval sets, respectively.

The performance of VTL-warped Gaussian posteriorgram can be further im-
proved if the score-level fusion with phonetic posteriorgram is performed. We
explore three BUT phoneme recognizers, namely, CZ, HU, and RU for this task.
The performance of the score-level fusion of phonetic posteriorgrams (i.e., CZ,
HU, and RU) and VTL-warped Gaussian posteriorgram with all the three cepstral
representations, namely, MFCC, PLP, and MFCC-TMP, i.e., ALLV is shown in Ta-
ble 4.2. It can be seen that score-level fusion gave an improvement in MTWV than
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the VTL-warped Gaussian posteriorgram. The performance is statistically sig-
nificant as it is consistently better for all the three phonetic posteriorgrams than
the VTL-warped Gaussian posteriorgram. After score-level fusion for phonetic
posteriorgram, MTWV of Eval query set is comparable with several SWS 2013
benchmark systems [31] (In particular, as shown in Table 2.3, GTTS: 0.399, L2F:
0.342, CUHK: 0.306, BUT: 0.297, CMTECH: 0.257, IIITH: 0.224, ELIRF: 0.159, TID:
0.093, GT: 0.084, SPEED: 0.059, Proposed (CZ + ALLV): 0.398, Proposed (HU +
ALLV): 0.394, Proposed (RU + ALLV): 0.412, Proposed (ALLV) : 0.194).

4.2.5.5 VTLN on Reduced/Expanded Number of Features

In this Section, we investigate the effect of GMM-based VTLN warping factor
estimation on reduced number of feature vectors on QbE-STD task. The broad
phoneme class of vowel are relatively stable and longer as compared to other
speech sound units, such as, fricatives, nasals, etc. With this consideration, we
reduced the number of features from a query by only considering the frames as-
sociated with a vowel. We then perform GMM-based VTLN warping factor for
each query. The objective of this experiment is to reduce computational complex-
ity during VTLN warping factor estimation. To detect frames associated to broad
phoneme class of vowel, we took the posterior probabilities from broad vowel
class. These posterior probabilities are computed from BUT phoneme recognizer.
This approach of vowel frame selection from SWS 2013 queries, select about 52
% frames per query. The performance of SWS 2013 QbE-STD task is reported in
Table 4.3. It can be observed from Table 4.3 that VTL-warped Gaussian posterior-
gram performs better than the Gaussian posteriorgram.

DET curves for VTL-warped Gaussian posteriorgrams obtained from reduced
features are shown in Figure 4.12. DET curve indicates that VTLN warping factor
estimates obtained through less number of features can also perform better than
the Gaussian posteriorgrams. It can also be seen from Figure 4.12 that perfor-
mance on DET is very much similar for both VTLN warping estimations, i.e., for
all the frames and the frames that corresponds to a vowel. This is an important
observation that after considering only vowels to estimate VTLN warping factor,
the performance of QbE-STD remains almost the same. Thus, VTLN warping factor
estimation can be executed rapidly as compared to considering entire frames and
hence, possibly this approach is computationally less intensive.

In contrast to above experimental condition, we conducted the experiments by
considering expanding more training data for VTLN warping factor estimation.
To that effect, we pooled the data from QUESST 2014 dataset [29] and used the
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Table 4.3: Performance (MTWV) of QbE-STD with reduced number of frames. S=
Single spoken example per query, M=Multiple spoken example per query,× = No
VTLN, and X = proposed approach. The numbers in the bracket indicate ATWV
for Eval set.

Feature # query VTLN Dev Eval
sets example set set

MFCC
S

× 0.188 0.138 (0.137)
X 0.211 0.155 (0.154)

M
× 0.218 0.161 (0.161)
X 0.240 0.184 (0.181)

PLP
S

× 0.195 0.145 (0.145)
X 0.237 0.169 (0.168)

M
× 0.221 0.169 (0.164)
X 0.270 0.207 (0.204)

MFCC-TMP
S

× 0.197 0.147 (0.143)
X 0.230 0.166 (0.166)

M
× 0.227 0.169 (0.168)
X 0.263 0.199 (0.196)
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Figure 4.12: Effect of reduced features in VTLN warping factor estimate at itera-
tion index=5 on DET curve.

features to train GMM and estimate VTLN warping factor. The performance in
MTWV for different feature sets is shown in Table 4.4. It can be seen from the Table
4.4 that proposed GMM-based framework improves the QbE-STD performance
with pooled data as well.

4.2.5.6 Deterministic Annealing Expectation Maximization (DAEM)

EM algorithm iteratively estimates the Maximum Likelihood (ML) of model pa-
rameters in the presence of incomplete or hidden data. Though EM algorithm
has several issues, it suffers from local optimal value. To address this, problem
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Table 4.4: Performance of SWS 2013 QbE-STD with pooled data from QUESST
2014 (in MTWV). The numbers in the brackets indicate ATWV for Eval set.

Dev Set Eval Set
VTLN MFCC PLP MFCC-TMP MFCC PLP MFCC-TMP
× 0.188 0.198 0.181 0.143 (0.137) 0.159 (0.157) 0.144 (0.141)
X 0.203 0.231 0.207 0.154 (0.153) 0.173 (0.172) 0.150 (0.146)

(× = No VTLN, X = VTLN)
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Figure 4.13: Values of annealing factor (ζ) at every iterations.

Deterministic Annealing EM algorithm was proposed in 1998 [210]. DAEM algo-
rithm uses the principle of maximum entropy and statistical mechanism analogy.
DAEM is an alternative to Expectation Maximization problem, where maximiza-
tion of likelihood problem is posed as minimizing free energy [210–212]. This
results into modified posterior probability that takes into account annealing fac-
tor ζ that is inversely proportional to the temperature.

The parameters of GMMs in EM framework, i.e., θ := {πk, µk, Σk}K
k=1 can be

estimated using EM algorithm. The class assignments for each observation vector
ot can be made based on the responsibility terms, which is given by [212]:

γk
t = Eθ0 [Z

k
t ] =

π̃kN (ot; µ̃kΣ̃k)

∑K
k=1 π̃kN (ot; µ̃kΣ̃k)

, (4.7)

where θ0 := {π̃k, µ̃k, Σ̃k}K
k=1 is old parameter values. For DAEM, eq. (4.7) is mod-

ified by annealing parameter ζ as [212]:

γk
t = Eθ0 [Z

k
t ] =

(π̃kN (ot; µ̃kΣ̃k))
ζ

∑K
k=1(π̃kN (ot; µ̃kΣ̃k))ζ

. (4.8)

The values of ζ changes as shown in Figure 4.13. At equilibrium, a thermo-
dynamic system approaches to the state that has minimum free energy. Similarly,
as number of iteration increases, the parameters of GMM attains maximum like-
lihood. The annealing factor ζ (in eq. (4.8)) that is analogues to the temperature
in thermodynamics and annealing factor is inversely related to the temperature.
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Here, we perform anti-annealing and annealing in DAEM algorithm. We experi-
mented with DAEM-based parameter estimation approach for SWS 2013 database
(as discussed in sub-Section 4.2.5.6). SWS 2013 QbE-STD task, the performance of
EM and DAEM is shown in Table 4.5. It can be observed that VTL-warped Gaus-
sian posteriorgram gave better performance than the Gaussian posteriorgram. In
the next Section, we present novel mixture of GMMs approach for QbE-STD task.

Table 4.5: Performance of DAEM on SWS 2013 QbE-STD (in MTWV). The num-
bers in the brackets indicate ATWV. After [1].

VTLN
Dev Set Eval Set

EM DAEM EM DAEM
MFCC PLP MFCC PLP MFCC PLP MFCC PLP

× 0.188 0.195 0.188 0.200 0.138 (0.137) 0.145 (0.145) 0.139 (0.137) 0.146 (0.145)
X 0.209 0.222 0.211 0.222 0.159 (0.154) 0.169 (0.168) 0.159 (0.158) 0.160 (0.159)

4.3 Mixture of GMMs

In this Section, we introduce a modification in Gaussian posteriorgram by im-
posing the constraints from broad phoneme recognition system. In particular, we
used broad phoneme classes (such as, vowels, semi-vowels, fricatives, nasals, plo-
sives) to provide constraints in Gaussian Mixture Model (GMM) clustering. The
earlier studies used prior constraints from labeled data to provide better initial-
ization during GMM training [101]. In addition, the mixture of Auto-associative
Neural Network (AANNs) was introduced to improve the performance obtained
by using single AANN for speaker recognition task [213]. The mixtures are tied
using broad phoneme class probabilities derived from the Multilayer Perceptron
(MLP). With these two motivations, in this thesis, we present a novel mixture of
GMMs for QbE-STD task. The GMM is trained with complete speech data, where
no phonetic constraints are imposed during training. GMM parameters can be
controlled by using prior information supplied by phonetic inferences. The nov-
elty of proposed approach lies in prior probability assignment as weights of mix-
ture of GMMs. In the next sub-Section, the mathematical formulation of proposed
approach is presented.

4.3.1 Mixture of GMM Posteriorgram

The speech data governs acoustically similar broad phonetic structures. The
mixture of GMMs, comprises of a group of GMMs, where each group corre-
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Figure 4.14: An illustration of mixture of GMMs as set of broad phoneme classes
(that are mutually exclusive and exhaustive events) each representing a GMM.
After [214].

sponds to broad phoneme categories. Consider a set of K broad classes, namely,
B := {B1, B2, · · · , BK} and number of Gaussians in each kth broad class is Mk.
As illustrated in Figure 4.14, acoustic feature vectors (except for silence regions)
are classified into five broad phoneme classes. All five broad classes of a proba-
bilistic sample space are B1, B2, · · · , B5 are assumed to be mutually exclusive and
exhaustive events.

The probability of data under mixture of GMMs is given by [215]:

P(ot|θ) =
K

∑
k=1

P(Bk|ot)

(
Mk

∑
i=1

πk
iN (ot; µk

i , Σk
i )

)
, (4.9)

where parameters, θ = {πk
i , µk

i , Σk
i }K

k=1
Mk
i=1 containing set of Mk GMM parameters

for each kth broad phoneme classes. Each broad class consists of Mk Gaussian
components. The log-likelihood of observation feature sequence, o := {ot}T

t=1

having T length, can be expressed by considering observations from independent
identical distribution (i.i.d.) and taking logarithm on both sides of eq. (4.9), we
get,

Lθ(o) =
T

∑
t=1

log P(ot|θ), (4.10)

=
T

∑
t=1

log

(
K

∑
k=1

P(Bk|ot)
Mk

∑
i=1

πk
iN (ot; µk

i , Σk
i )

)
. (4.11)

Now, applying Jensen’s inequality [216] for logarithm function (which is a con-
cave function), we have,
log(λx1 + (1− λ)x2) ≥ λ log x1 + (1− λ) log x2.

∴ log P(o|θ) ≥
T

∑
t=1

K

∑
k=1

P(Bk|ot) log

(
Mk

∑
i=1

πk
iN (ot; µk

i , Σk
i )

)
.
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Here, the role of multipliers, i.e., λ and 1 − λ, is played by the P(Bk|ot) as
∑K

k=1 P(Bk|ot) = 1. Hence, we can pull them outside the logarithm and thus
the inequality comes into the picture. The parameters of mixture of GMMs, i.e.,
θ := {πk, µk, Σk}K

k=1 can be estimated using Expectation-Maximization (EM) al-
gorithm. In order to invoke EM algorithm, a latent variable Zk

ti is introduced,
which represents the assignment of observation vector, ot, being in ith Gaus-
sian component of kth broad phoneme class. The latent variable Zk

ti governs the
Bernoulli distribution. Hence, the objective function in E-step for initial model,
θ0 = {π̃k

i , µ̃k
i , Σ̃k

i }K
k=1

Mk
i=1 is given by [215]:

Q(θ|θ0) =
T

∑
t=1

K

∑
k=1

P(Bk|ot)
Mk

∑
i=1

Eθ0 [Z
k
ti] log

(
πk

iN (ot; µk
i , Σk

i )
)

.

The class assignments for each observation vector, ot, can be made based on the
responsibility term, which is given by [215]:

γk
ti = Eθ0 [Z

k
ti] =

π̃k
iN (ot; µ̃k

i Σ̃k
i )

∑Mk
j=1 π̃k

jN (ot; µ̃k
j Σ̃k

j )
. (4.12)

During maximization, M-step, parameters are updated as follows [215]:

πk
i =

∑T
t=1 P(Bk|ot)γk

ti

∑T
t=1 P(Bk|ot)

, (4.13)

µk
i =

∑T
t=1 otP(Bk|ot)γk

ti

∑T
t=1 P(Bk|ot)γk

ti

, (4.14)

Σk
i =

∑T
t=1(otoT

t )P(Bk|ot)γk
ti

∑T
t=1 P(Bk|ot)γk

ti

− µk
i µk

i
T

. (4.15)

More details of the mixture of GMMs are given in [215].

4.3.2 Practical Implementation

4.3.2.1 Broad Phoneme Posterior Probability

To compute the posterior probability associated with broad phonetic classes,
P(Bk|ot), we have used MLP posterior values. In particular, we have used open
source BUT phoneme recognizer trained for multiple languages, namely, Czech
(CZ), Hungarian (HU) and Russian (RU) [61]. Later on, we combined the to-
tal probabilities w.r.t. each phoneme associated with the same broad phoneme
classes by summing them up for each recognizer. Thereafter, we normalized each
broad phoneme class posterior values by 3, which is a number of phoneme rec-
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ognizer. We treated affricate and plosive as a common broad phoneme category
as a plosive broad phoneme class. Another alternatives could be use of ergodic
HMM for broad phoneme computation that requires labels. We can also generate
initial labels from foreign recognizer such as, BUT phoneme recognizer and train
ergodic HMM.

4.3.2.2 Relative Significance of Each Broad Class

In order to evaluate the discrimination capability of relative significance differ-
ent broad phoneme classes followed by possible assignments of different number
of Gaussians, we conducted the following experiments. The spoken queries in
Czech language in Dev set of SWS2013 are taken and the discrimination between
two different queries having different contents are time-aligned using DTW. Then,
the distance corresponding to each broad class is pooled. For instance, if two
spoken queries X i and Y i are the ith pair of queries. DTW between them gives
time-aligned queries X i

a and Y i
a having length Li. The claim is to investigate the

relative importance of the broad phoneme class that maximizes the discrimination
by more distance value. In this context, we propose the discrimination capability
of each broad class, dB(k), associated in each broad phoneme class as:

dB(k) =
1
IL

I

∑
i=1

Li

∑
l=1

P(Bk|X i
a(l))d

i
a(l), (4.16)

where di
a(l) = dist(X i

a(l),Y i
a(l)) is the distance between feature vectors and k

corresponds to five broad phoneme class (1 ≤ k ≤ 5). Here, L = ∑I
i=1 Li is a

total number of aligned frames, and I is the total number of frame pairs. The
values of dB(k) obtained using MFCC and PLP Gaussian posteriorgram features,
i.e., MFCC-GP and PLP-GP, are shown in Table 4.6. The higher the distance cor-
responds to better discrimination and as shown in Table 4.6, broad vowel class
gives higher discrimination capability across different word pairs. This higher
discrimination for broad vowel class motivated authors for using more number
of Gaussians in vowel broad class. In addition, the most of the phonemes are
belonging from vowel category. Hence, we set more GMMs to vowel category
than other broad phoneme categories. In addition, it was studied that the vowel
sounds can be much compressed than the consonant preserving the same intel-
ligibility [190]. In this thesis, we considered two cases, where total number of
Gaussian components are 64 (= 32, 8, 8, 8, and 8) and 128 (= 64, 16, 16, 16, and 16)
as assignments for broad phoneme classes, namely, vowel, plosive, semivowel,
nasal and fricative, respectively.
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Table 4.6: Contribution in each broad phoneme class (i.e., dB(k)) for discriminat-
ing different spoken words. After [214]

PPPPPPPPPPPPFeatures

Broad
Class Vowel Plosive Semivowel Nasal Fricative

MFCC-GP 7.26 4.19 2.25 2.52 1.17
PLP-GP 7.62 4.39 2.36 2.62 1.23

4.3.2.3 Training Procedure and Posteriorgram Computation

The initialization of mixture GMMs is done with the P(Bk|ot). Initially, all the
features are split into K = 5 broad classes based on the

ok
t := {ot|argmax

1≤≤K
P(Bj|ot) = k}. (4.17)

Now to capture the spread within each broad class, Vector Quantization (VQ)
is performed with Linde-Buzo-Gray (LBG) algorithm with splitting parameter,
ε = 0.2 [184]. More detail about VQ algorithm used in the thesis is discussed in
Figure D.1 of Appendix D. After initial model parameter estimation, the param-
eters of mixture of GMMs are estimated with 10 iterations. The convergence in
terms of log-likelihood, Lθ(o), is shown for MFCC and PLP feature sets in Figure
4.15. It can be observed that as number of iterations increases, likelihood, Lθ(o),
converges.
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Figure 4.15: Plot of log-likelihood (i.e., Lθ(o)) w.r.t. number of iterations. After
[214].

Now, for computing the posterior probability under the mixture of GMMs
framework, consider Gk

i be the ith Gaussian component in the mixture of GMMs.
We represent Gk

i as a joint event of kth broad class, Bk, and Ci
k as the ith Gaussian

component in kth broad class. Both of these events are conditionally-independent.
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Figure 4.16: Comparison between Gaussian posteriorgram and mixture of GMM
posteriorgram for two different words taken from TIMIT database, namely, meet-
ing and ocean. Mixture of GMMs posteriorgram for (a) meeting, and (b) ocean.
Gaussian posteriorgram for (c) meeting, and (d) ocean. The red circles in (b) and
(d) indicates better representation via mixture of GMMs than its GMM counter-
part. After [214].

Hence, the posterior probability is given by:

P(Gk
i |ot) = P(BkCk

i |ot),

P(Gk
i |ot) =

P(Bk|ot)P(Ck
i )P(ot|Ck

i )

∑K
k=1 ∑Mk

j=1 P(Bk|ot)P(Ck
j )P(ot|Ck

j )
, (4.18)

P(Gk
i |ot) =

P(Bk|ot)πi
kN (ot; µi

k, Σi
k)

∑K
k=1 ∑Mk

j=1 P(Bk|ot)π
j
kN (ot; µ

j
k, Σj

k)
. (4.19)

An algorithm for training of mixture of GMMs is shown in Algorithm 7. Fig-
ure 4.16 shows the posteriorgram of the mixture of GMMs for the word /meet-
ing/ and /ocean/ and corresponding Gaussian posteriorgrams (GP). AS shown in
Figure 4.16 (a) and (b), posterior probabilities in GP is scattered along multiple
clusters. This indicates that the mapping between phonetic classes and Gaussian
components is one-to-many (which is also discussed in [97]). It can be observed
that the highest probability of posterior falls onto the broad phoneme categories.
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Algorithm 7 Proposed algorithm for training of mixture of GMMs

Input: Feature vector, ot, and broad phoneme posterior probability P(Bk|ot), 1 ≤
k ≤ K, and Mk number of Gaussian components in each kth broad phoneme
class.

Output: The parameters of mixture of GMMs, i.e., θ := {πk, µk, Σk}K
k=1.

Initialization :
1: for k = 1 to K do
2: Let ok

t := {ot|argmax
1≤j≤K

P(Bj|ot) = k}.

3: Perform vector quantization (VQ) on feature vectors, ok
t and let the code-

book centroids be ck
i , 1 ≤ i ≤ Mk

4: Initial mean: µ̃k
i := ck

i
5: Codebook data assignment:

ok
ti = {ok

t |argmin
1≤ l≤Mk

dEuc(ok
t , ck

l ) = i}

# Set of the closest feature vectors to the centroid
6: Initial weights: π̃k

i := |ok
ti|
|ok

t |
# Ratio of number of features, ok

ti to number of features, ok
t

7: Initial covariance: Σ̃k
i := E

[
(ok

ti − ci
k)(o

k
ti − ci

k)
T]

8: end for
Run EM algorithm for Niter times

9: for niter = 1 to Niter do
10: Expectation (E-Step)

γk
ti =

π̃k
iN (ot;µ̃k

i Σ̃k
i )

∑
Mk
j=1 π̃k

jN (ot;µ̃k
j Σ̃k

j )
.

11: Maximization (M-Step)

12: Updated weight: πk
i =

∑T
t=1 P(Bk|ot)γ

k
ti

∑T
t=1 P(Bk|ot)

,

13: Updated mean: µk
i =

∑T
t=1 otP(Bk|ot)γ

k
ti

∑T
t=1 P(Bk|ot)γk

ti
,

14: Updated covariance: Σk
i =

∑T
t=1(otoT

t )P(Bk|ot)γ
k
ti

∑T
t=1 P(Bk|ot)γk

ti
− µk

i µk
i

T
.

15: Substitution:
π̃k

i = πk
i , µ̃k

i = µk
i and Σ̃k

i = Σk
i .

16: end for

For example, in Figure 4.16 (c) highest posterior values around phoneme /m/ and
/n/ fall on nasal broad phoneme category.
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Table 4.7: Performance of mixture of GMMs for SWS 2013 QbE-STD. The numbers
in the brackets indicate ATWV for Eval set. After [214]

Feature Query GMM Mixture of GMMs
Sets NG Type Dev Eval Dev Eval

64 Normal 0.156 0.111 (0.111) 0.217 0.180 (0.180)
MFCC 128 Normal 0.188 0.138 (0.137) 0.240 0.195 (0.194)

128 Extended 0.218 0.161 (0.161) 0.281 0.227 (0.224)
64 Normal 0.158 0.126 (0.123) 0.228 0.196 (0.192)

PLP 128 Normal 0.195 0.145 (0.145) 0.246 0.208 (0.203)
128 Extended 0.221 0.169 (0.163) 0.283 0.238 (0.233)

NG=Number of Gaussians.

Table 4.8: Performance of score-level fusion with mixture of GMMS for SWS 2013
QbE-STD. The numbers in the brackets indicate ATWV for Eval set. After [214]

Feature Sets
Normal Query Extended Query

Dev Eval Dev Eval
CZ 0.375 0.342 (0.340) 0.401 0.371 (0.367)

CZ + MFCCGP 0.427 0.378 (0.375) 0.463 0.418 (0.400)
CZ + MFCCmixGP 0.442 0.398 (0.396) 0.479 0.441 (0.423)

CZ + PLPGP 0.424 0.381 (0.377) 0.456 0.422 (0.403)
CZ + PLPmixGP 0.444 0.397 (0.394) 0.479 0.435 (0.420)

MFCCGP + PLPGP +
0.276 0.226 (0.211) 0.315 0.265 (0.254)

MFCCmixGP + PLPmixGP
CZ + MFCCGP + PLPGP +

0.455 0.412 (0.400) 0.494 0.453 (0.449)
MFCCmixGP + PLPmixGP
+ indicates the score-level fusion

4.3.3 Experimental Results

The search performance obtained on SWS 2013 database is reported in terms of
MTWV and shown in Table 4.7. The MTWV for SWS 2013 dataset is improved by
0.057 and 0.063 w.r.t. Gaussian posteriorgram for MFCC and PLP, respectively.

4.3.3.1 Score-level Fusion

The details for score-level fusion for different QbE-STD systems were discussed in
sub-Section 3.5.1. Here, all the four search systems, namely, Gaussian posterior-
grams and a mixture of Gaussian posteriorgram from MFCC and PLP, participate
into the fusion. The performance in terms of MTWV is reported in Table 4.8.
It can be observed that score-level fusion further improves the performance of
QbE-STD system. To further improve the query detection performance, phonetic
posteriorgram is used. We have used BUT phoneme recognizer’s CZ phoneme de-
coder. After score-level fusion for phonetic posteriorgram, MTWV of Eval query
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Figure 4.17: Effect of amount of labeled data used for broad phoneme posterior
probability computation on SWS2013 QbE-STD for (a) Dev set , and (b) Eval set.
The numbers with percentage indicate amount of training data used in DNN. The
numbers on the top of plots indicate the Phone Error Rate (PER) and Broad class
Frame Error Rate (BFER). The numbers on the bar plots indicate MTWV.

set is comparable with several SWS 2013 benchmark systems [31] (In particular, as
shown in Table 2.3, GTTS: 0.399, L2F: 0.342, CUHK: 0.306, BUT: 0.297, Proposed
(CZ + MFCCmixGMM): 0.398, Proposed (CZ + PLPmixGMM): 0.397), where ‘+’
indicates score-level fusion.

4.3.3.2 Effect of Amount of Labeled Data

In mixture of GMMs, we use the phoneme posterior probabilities to derive broad
phoneme posterior probabilities, i.e., P(Bk|ot). In order to investigate the impor-
tance this supervised posterior probability, we vary the amount of labeled data for
posterior probability computation. We use TIMIT training database without |sa|
sentences and we took different size of training data (i.e., 25 %, 50 %, 75 %, and 100
%). A deep neural network (DNN)-based phoneme recognizer was trained using
the KALDI toolkit following Karel’s DNN training implementation [217]. DNN
contains 3 hidden layers with 1024 hidden units. These broad phoneme posterior
probabilities are used to produce a mixture of GMMs. It can be observed from
Figure 4.17 that the amount of training data does not change the performance sig-
nificantly. The numbers on the top of plots show Phone Error Rate measured with
TIMIT test set (excluding |sa| sentences ). It can be observed from Figure 4.17 that
the PER decreases as amount of labeled data increases. However, Broad classwise
Frame Error Rate (BFER) is not decreasing much. This is because by considering
broad class, the classification error is reduced as the different phonemes of same
broad class is treated as the same class. MTWV does not vary significantly with
the different size of labeled data used in DNN training. However, MTWV is bet-
ter than the Gaussian posteriorgram alone. MTWV obtained with TIMIT is not as
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comparable as the results presented in Table 4.7. This may be due to the language
mismatch and sampling rate conversion. We downsampled TIMIT (16 kHz) data
by 2 to match the sampling rate of SWS 2013 (8 kHz). However, the performance
in MTWV is better for different amount of labeled data. This indicates only 25 %
of TIMIT data can be used to train DNN and broad phoneme posterior gave better
performance than the Gaussian posteriorgram alone. This observation is same for
both Dev and Eval set.

4.4 Chapter Summary

This chapter presented novel frame-level acoustic representation, namely, VTL-
warped Gaussian posteriorgram and mixGP for QbE-STD task. GMM-based ap-
proach VTLN warping factor reduces the speaker variability and does not require
transcription to estimate VTLN warping factor α. We experimented QbE-STD
with different evaluation conditions, such as, local constraints, number of Gaus-
sian, EM vs. DAEM, etc. The experimental results show that iterative approach
gave better performance at 3 or 4 iterations, and hence, further iteration may lead
to overfitting. In the second part of this chapter, we discussed novel mixture
of GMM for posteriorgram representation. The mixture of GMM utilizes broad
phoneme constraints, which makes it better than the state-of-the-art GP. The ex-
perimental results shows that mixture of GMM gave better performance than the
GP in all the experiments conducted in this chapter and thus, the proposed mix-
ture of GMM posteriorgram shows promising results over the GP posteriorgram.
In the next chapter, we will discuss the matching perspective for the design of
QbE-STD system.
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CHAPTER 5

Audio Matching Perspective

5.1 Introduction

Chapter 4 discussed several representations for improving performance of QbE-
STD system. In this chapter, we will discuss the matching perspective of QbE-STD
system. In particular, this chapter will present modified DTW search algorithm to
deal with partial matching. The need for partial matching is essential when the
instance of query present in test document has variations either at suffix, prefix
or word order. The proposed modified DTW search algorithm combines the ev-
idences from various partial matching strategies via different functions (namely,
harmonic mean, arithmetic mean and minimum value). MediaEval QUESST 2014
database was used to investigate the effectiveness of partial matching of spoken
query. We found that the combined distance pulled using harmonic mean gave
better performance for a non-exact match (i.e., T2 and T3 queries), whereas it
slightly degrades the performance for the exact match (T1 query) because of the
influence of other partial matching distances.

In the next part, we will discuss computational improvement during DTW-
based searching using two approaches, namely, feature reduction approach and
BoAW approach. DTW-based search requires huge computation as dataset size
grows. The speed up of subDTW is necessary for scaling the QbE-STD task to sig-
nificantly large dataset. In feature reduction approach, consecutive feature vec-
tors within phonetic segment boundaries are merged and DTW is performed on
the reduced number of feature vectors. Thus, a lesser number of feature vec-
tors reduces the computational cost by reducing the number of comparison op-
erations. BoAW is two-stage search approach for the QbE-STD task. In the first
stage, BoAW models are built by computing the term-frequency (tf) and inverse-
document frequency (idf). In posterior feature framework, term corresponds to
the phoneme class.

The organization of this chapter is as follows: Section 5.2 discusses the par-
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tial matching for non-exact query matching task. Frame-merging approach for
search space reduction is discussed in Section 5.3. Proposed segment-level BoAW
is discussed in Section 5.4.

5.2 Partial Matching for Non-exact Query Matching

The proposed modified approach does not require to run DTW for multiple times
for each query and test utterance pair. Following are the various partial matching
strategies employed in modified DTW search algorithm [2]. Figure 5.1 demon-
strates partial matching cases along with the exact-matching case.

• Type-1 (T1) exact match: We do not need any modification to detect T1 query,
since it is an exact match. Hence,

dist1(tx, qy) = min
i

(
S(i, N)

T(i, N)

)
. (5.1)

• Type-2 (T2) forward partial match: Here, the query is truncated at the end and
we assumed that the truncated duration is no more than 250 ms. Hence,

dist2(tx, qy) = min
i,N−24≤j≤N

(
S(i, j)
T(i, j)

)
. (5.2)

Here, 250 ms corresponds to 25 frames (as discussed in sub-Section 3.3.1, the
frame rate is 100 frames per second). The warping path of this partial matching
aligns to the initial warping path of exact match and hence, this partial match-
ing distance supports the alignment distance obtained using exact match.

• Type-2 (T2) backward partial match: The truncation is at the beginning and
no more than 250 ms. Since DTW algorithm accumulates distance in the for-
ward direction, this procedure needs to perform the backtracking. Here, our
approach consider only single backtracking instead of multiple backtracking.
The reason for considering single backtracking is to avoid false detection due
to the partial matching. To perform that, we first detect the end frame index,
ebt, and corresponding start frame index, sbt, of test utterance, i.e.,

ebt = argmin
i

(
S(i, N)

T(i, N)

)
, (5.3)

sbt = P(ebt, N). (5.4)
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After that, we compute backward partial match using the following eqs.,

dist3(tx, qy) = min
{(i,j)|1≤j≤25,P(i,j)=sbt}

(
S(ebt, N)− S(i, j)
T(ebt, N)− T(i, j)

)
. (5.5)

Here, 250 ms corresponds to 25 frames (as discussed in sub-Section 3.3.1, the
frame rate is 100 frames per second). The warping path of this partial matching
aligns to the last portion of the warping path of exact match, and hence, this
partial matching distance supports the alignment distance obtained using the
exact match.

To investigate the effectiveness of proposed partial matching on the perfor-
mance of T2 query, we took the harmonic mean scores of dist2 and dist3 for each
query. The results for the partial matching against the exact match is presented
for T2 query in Table 5.1. It can be seen from the Table 5.1 that the combina-
tion of partial matching dist2 and dist3, i.e., dist23, gave better performance for
T2 query than no partial matching case. Hence, this contributes to the overall
harmonic distance score dh.

Table 5.1: Performance of T2 query using no partial matching and dist23 on
QUESST 2014 Dev set (in MTWV). After [2].

Feature MTWV Cmin
nxe

Vector No Partial dist23 No Partial dist23
Matching Matching

CZ 0.313 0.345 0.697 0.689
HU 0.295 0.304 0.727 0.718
RU 0.313 0.321 0.693 0.694

• Type-3 (T3) word re-ordering and filler: T3 query considers the cases of word
reordering (i.e., jumbling of words) or filler contaminant (i.e., some different
word/words in between words of query). To detect such modification of a
query, we assume warping path is broken into two parts. To do that, we split the
query into an equal number of frames with an assumption that a query contains
two words and each word has equal duration. We execute the similar partial
matching strategy, as we used for the T2 forward match and the T2 backward
match. Then, we combine the accumulated distance and normalize with a total
number of frames falling on a particular warping path.

– Forward half match: We compute accumulated distance value S
′
3(tx, qy) =

S(ehbt, dN
2 e) and path counting value T

′
3(tx, qy) = T(ehbt, dN

2 e) where ehbt

is the end frame index corresponds to forward half match and ehbt =
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argmin
i

(
S(i,d N

2 e)
T(i,d N

2 e)

)
. dze is the ceiling function, which is equal to the small-

est integer greater than or equal to z.
– Reverse half match: To obtain the reverse partial matching, first we com-

pute the start frame index of reverse half matching srhbt and end frame
index of reverse half matching erhbt as follows:

erhbt = argmin
{i|P(i,d N

2 e)=sbt}

(
S(ebt, N)− S(i, dN

2 e)
T(ebt, N)− T(i, dN

2 e)

)
,

srhbt = P(erhbt, d
N
2
e).

Now, reverse half accumulated distance value S
′′
3(tx, qy) and reverse half

path counting value T
′′
3 (tx, qy) are computed as follows:

S
′′
3(tx, qy) = S(ebt, N)− S(srhbt, d

N
2
e),

T
′′
3 (tx, qy) = T(ebt, N)− T(srhbt, d

N
2
e).

Now, we compute forward and reverse half match DTW values as dist4(tx, qy),
where

dist4(tx, qy) =
S
′
3(tx, qy) + S

′′
3(tx, qy)

T′3(tx, qy) + T′′3 (tx, qy)
. (5.6)

For T1 query, the warping paths of the first half query and the second half query
overlap to the warping path obtained for the exact match. Thus, the distance
obtained through this split query supports the distance obtained by an exact
match.

To investigate the effectiveness of dist4 on the performance of T3 query detec-
tion, we compare the performance of no partial matching, i.e., exact matching
with dist4 score. The performance of QbE-STD for T3 query is shown in Table
5.2. It can be seen from the Table 5.2, dist4 gave higher MTWV and lower Cmin

nxe ,
indicating that it improves the T3 query detection as compared to the exact
matching.

• These partial matching DTW distances, namely, dist1(tx, qy), dist2(tx, qy),
dist3(tx, qy) and dist4(tx, qy) are combined using three different functions,
namely, harmonic mean dh(tx, qy), minimum value dmi(tx, qy) and arithmetic
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Table 5.2: Performance of T3 query using no partial matching and dist4 on
QUESST 2014 Dev set (in MTWV). After [2].

Feature MTWV Cmin
nxe

Vector No Partial dist4 No Partial dist4
Matching Matching

CZ 0.131 0.169 0.742 0.716
HU 0.119 0.129 0.765 0.759
RU 0.144 0.152 0.735 0.710

mean dmn(tx, qy), which are computed as follows [2]:

dh(tx, qy) = 4

(
4

∑
k=1

1
distk(tx, qy)

)−1

, (5.7)

dmi(tx, qy) = min
1≤k≤4

{distk(tx, qy)}, (5.8)

dmn(tx, qy) =
1
4

4

∑
k=1

distk(tx, qy). (5.9)

The performance of proposed modified search algorithm for Dev and Eval sets
are shown in Figure 5.2 and Figure 5.3, respectively. It can be seen that the overall
performance of modified search algorithm is better than the conventional DTW
search. However, for T1 query, the performance of modified search algorithm is
slightly poor than the conventional approach. This is because conventional DTW
search algorithm is designed for T1 query, i.e., an exact match, whereas modified
approach considers all the kinds of non-exact variations in the query. Modified
search approach with minimum value selection performs better on T3 query. This
might be because minimum value always selects the best match among different
partial matching distances. However, it also detects a partial match to the test ut-
terance, which does not contain the query and hence, this introduces false alarms.
The harmonic mean of different partial matching distances is less affected, which
avoids the higher valued outliers [218]. Hence, in this work, we prefer harmonic
mean over arithmetic mean to combine the partial matching distances.

The truncation point for T3 query can be anywhere in the middle. We also
checked with case of equal phone segment split, where we split the query based
on an equal number of phone segments. The results on QUESST 2014 Dev set
are shown in Figure 5.4. It can be seen from Figure 5.4, that overall performance
is almost similar for most of the query types. In majority of the cases, it can be
seen that using equal segment split for dist4 computation, the performance of T3
query slightly improves. However, it slightly degrades the performance of T2
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Figure 5.2: Performance of partial matching for QUESST 2014 Dev set. Panel (I)
MTWV, and Panel (II) Cmin

nxe . After [2].
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Figure 5.4: Results of QbE-STD for equal frame split and equal phone segment
split QUESST 2014 Dev set. Panel (I) MTWV, and Panel (II) Cmin

nxe . After [2].
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query. Hence, we will split the query into an equal number of frames for dist4

computation.

In this Section, we investigated the searching algorithm for partial matching
and combine the evidences from various partial matching strategies. Next, two
Sections present the issue of search space complexity and the approaches to re-
duce search space, namely, feature reduction and BoAW.

5.3 Feature Reduction Approach

Feature vectors are extracted and then the reduction is performed on feature vec-
tors with different reduction factor β. In this thesis, we used three reduction fac-
tor, namely, β = 2, 3, 4, and we analyzed the search performance and the time
required to perform the search. Further reduction in β value was found to im-
prove the speed of search at the cost of degradation in search performance. As
suggested in [53], computation time is reduced from O(MN) to O(MN

β2 ), where
M and N are the number of features in test utterance and query, respectively. For
the analysis, we refer the feature reduction suggested in [53] as original feature
reduction strategy. The code for sequential DTW is scripted in C language and
compiled under MATLAB EXecutable (MEX) environment. All the experiments
are conducted on a general purpose CPU having hardware specifications: 64-bit
Intel i5 @ 2.80 GHz, 4 GB installed RAM. We applied phone segmentation on
test utterance and query and then perform feature reduction. To illustrate this,
consider Figure 5.5, which shows the feature reduction factor, β = 3. The pho-
netic segmentation is performed using well known Spectral Transition Measure
(STM) [219], which is discussed in the following sub-Section. The performance of
phone segmentation is discussed in [84]. Feature reduction approach reduces the
number of frames used in DTW comparison.

Feature 
vectors

Reduced 
Feature  vectors

Feature 
vectors

Modified Reduced 
Feature  vectors

Figure 5.5: An illustrative diagram of feature reduction (reduction factor, β = 3).
Dashed line represents the phonetic boundaries. After [84].
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Figure 5.6: Phonetic boundary segmentation using STM: (a) speech signal taken
from TIMIT database, ‘Now he’ll choke for sure‘, and (b) STM contour, detected pho-
netic boundaries (continuous) and manually marked phonetic reference (dotted)
boundaries. After [2, 84].

Recently, for spoken word discovery task, uniform and non-uniform down-
sampling approach was suggested in [220]. In both the approaches, acoustic fea-
ture vectors series are segmented into k acoustic regions and the corresponding
mean feature vectors are concatenated to form a single feature vector. However,
in our present work, consecutive features are averaged out, which does not in-
crease the dimension of the posterior feature vector.

5.3.1 Phone Segmentation

During speech production mechanism, there is a change in the vocal tract appara-
tus (system) as well as (a vocal) source of a speaker. The excitation source and sys-
tem characteristics might be relatively steady as well as transitional. In addition,
human perception for hearing system responds better to the transitional stimuli
than the steady-state stimuli [219, 221]. Generally, the steady characteristics are
often observed around the middle region of vowels, nasals, fricatives, etc. Tran-
sitions occur between the adjacent phonemes due to the transitional movements
of the articulators (such as, lips, tongue, jaw muscles, velum, etc.). This might
be reflected in the spectral and temporal structure of the speech signal. In order to
capture such variations, spectral transition measure (STM) is used [219, 222]. To
estimate STM contour, cepstral information is extracted from the speech signal.

STM(t) =
1
K

K

∑
i=1

ait, (5.10)
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where ait =
∑

k0
k=−k0

kCi(t+k)

∑
k0
k=−k0

k2
, and Ci(k) is the ith cepstral coefficients. Figure 5.6

shows an utterance taken from TIMIT database and corresponding STM contour.
Figure 5.6 also shows the detection obtained as an output of STM algorithm and
manually marked phonetic boundaries are almost aligned. Though there are var-
ious missing and extra boundaries, which should be incorporated while evaluat-
ing the performance of phonetic boundary detection task.

There are several advantages of STM over phoneme decoders for phone seg-
mentation. In particular, STM does not require training rather it uses spectral
transitions over the consecutive frames and hence, it is language-independent
approach. However, the boundaries detected by the phoneme recognizer (i.e.,
phoneme decoders) are language-dependent because phoneme recognizers are
trained on a particular language. To understand the effectiveness of phoneme
segmentation using STM, we conducted the phone segmentation task on TIMIT
dataset using STM and BUT phoneme decoders (namely, CZ, HU and RU). The
performance of phone segmentation task is evaluated at different agreement in-
terval (AgInt). x % agreement interval for ith segment, i.e., εi is defined as:

ζi −
x

100
(ζi − ζi−1) ≤ εi ≤ ζi +

x
100

(ζi+1 − ζi) , (5.11)

where ζi’s are the ground truth boundaries. The evaluation metrics are % detec-
tion rate (% DR) within the agreement duration and % over segmentation within
agreement (% OSWA) and % over segmentation outside agreement window (%
OSOA). Formally, performance evaluation metrics are defined based on the posi-
tion of hypothetical boundary (HyB) and agreement interval (AgInt), i.e.,

% DR =
# Times HyB fall within AgInt
# Total reference boundaries

× 100 %, (5.12)

% OSOA =
#Times HyB fall outside AgInt

#Total HyB
× 100 % (5.13)

% OSWA =
# Times HyB fall inside AgInt

# Total HyB
× 100 %, (5.14)

The % DR should be high (ideally 100 %), and over segmentations rates %
OSWA and % OSOA should be low (ideally 0 %). As shown in Figure 5.7, as
agreement duration (% AgInt) increases, detection rate increases and over seg-
mentation (false detection) outside decreases. It can be seen from Figure 5.7 that
STM gave relatively higher % DR, lower % OSOA and lower % OSWA than the
phoneme decoders. Hence, we have used STM for phone segmentation over the
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Figure 5.7: Performance of phonetic segmentation using STM and BUT’s phonetic
decoders (CZ, HU and RU): (a) % DR, (b) % OSOA, and (c) % OSWA.

phoneme decoders. Authors have used STM for various tasks, namely, for the
obstruent sound detection from the speech signal [223] and the phoneme-level
segmentation for Gujarati Text-to-Speech (TTS) synthesis development [224].

5.3.2 Results for SWS 2013

Table 5.3 shows the average time required to complete the search. The number
in the bracket shows the time reduction w.r.t. no feature reduction case (β = 1).
As the feature reduction factor β increases, the searching time is found to reduce
drastically. It is also observed that as the dimension of feature vector increases,
the search time also increases (which is only due to local distance computation). It
can be observed from the Figure 5.8, as β increases, search performance degrades.
This might be because of transition between two adjacent phonemes is averaged
out. In addition, as suggested in [53], β = 2 is an appropriate choice, which ad-
justs the trade-off between search performance and searching speed. For all the
values of feature reduction factor β (i.e., β = 1, β = 2 and so on), feature vectors
are loaded before subDTW search. Hence, the CPU measured time does not indi-
cate the only time for search execution. Thus, the time consumed in loading the
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Table 5.3: The average time (minutes) required to execute search using feature
reduction. The number in the bracket shows the (%) time reduction w.r.t. β = 1

Reduction Dev Set Eval Set
Factor Original Modified Original Modified
β = 1 485.55 491.94

β = 2
192.29 261.45 197.5 250.08
(60.40) (46.15) (59.85) (49.16)

β = 3
131.35 182.95 136.71 175.95
(72.95) (62.32) (72.21) (64.23)

β = 4
107.88 160.63 109.57 146.07
(77.78) (66.92) (77.73) (70.31)

(original= feature reduction without phone boundaries into consideration, modi-
fied=feature reduction with phone boundaries into consideration (Pleaser refer to Figure
5.5))
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Figure 5.8: Effect of feature reduction approach on performance of SWS 2013 (in
terms of MTWV): (a) Dev set, and (b) Eval set. After [2].

feature vectors could be the possible reason behind obtaining less computational
time reduction as expected from theoretical, i.e., 1

β2 for feature reduction factor β.

5.3.3 Results for QUESST 2014

As discussed, we found better performance with harmonic mean and feature re-
duction factor β = 2. Hence, the next set of experiments in this thesis use β = 2
and harmonic mean among partial DTW distances dh. Figure 5.9 and Figure 5.10
show the performance of search space reduction using feature reduction on the
Dev set and Eval set of QUESST 2014, respectively. It can be observed that per-
formance after feature reduction gets reduced slightly and the performance of
modified search is better than the performance of subDTW search for both β = 1
and β = 2. This supports our earlier results, which were discussed in Section
5.2. It is also shown in Figure 5.9 that performance with reduced number of fea-
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ture vectors β = 2 using modified search is better than the simple search and no
feature reduction (i.e., for β = 1). This indicates that we can obtain better per-
formance with reduced number of features for non-exact match (T2 query and T3
query). However, the performance for an exact match is slightly worse because of
the influence of other partial matching evidences (T1 query). In the next Section,
we will discuss the BoAW model to reduce the search space at the first-level and
then DTW is performed on the selected test utterances to detect the query.

5.4 Segment-level Bag-of-Acoustic Words (BoAW)

In Bag of Acoustic Words (BoAW) approach, we perform search space reduction
using two-stage operations. In the first stage, we select few audio documents (test
utterances) by computing the score (modified cosine similarity) between BoAW
(tf-idf) vector of audio document and query. In the second stage, subDTW is per-
formed for QbE-STD on the selected test utterances. The number of selected test
utterances are less as compared to the total test utterances and hence, the DTW
takes less time for QbE-STD as compared to the time required to perform QbE-
STD on the entire set of test utterances. Thus, BoAW helps in search space reduc-
tion. Figure 5.11 shows the schematic block diagram of the two-stage approach. In
another words, segment-level BoAW use reasonably well defined short stretches
of the speech signal to execute quick matching. These short stretches of speech
signal span a predefined number of acoustic segments, where each acoustic seg-
ment more or less corresponds to a phone or a Gaussian components.

5.4.1 BoAW Model

BoAW term is derived from the “Bag-of-words" which is originally motivated from
text-document retrieval [43]. To retrieve the similar word image pattern from the
large word image datasets, the Bag of Visual Words (BoVW) was used for word
image retrieval task [134]. The ’word’ in BoAW is not directly related to the ac-
tual spoken word. In bag of acoustic word, the acoustic word is referred to as the
class (i.e., phoneme label for phoneme posteriorgram and Gaussian component
for GMM posteriorgram). The phonetic content of speech is not uniformly spread
along the time and hence non-uniform segments should be created in order to pre-
serve the similar speech production characteristics. The spectral transition mea-
sure is used to produce such segments and concatenation of these consecutive
segments is regarded as a bag in BoAW framework. Thus, the bag corresponds to
the the concatenation of the consecutive segments. In this thesis, we characterize
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BoAW by term frequency (tf ) and inverse-document frequency (idf ) at a segment-
level. The term frequency, t f (t, d) represents the total number times the term t is
present in the document d. The inverse frequency document frequency for each
term id f (t) = log

(
Nd
d ft

)
, where d ft indicates number of documents that contains

term t and Nd indicates total number of documents.

To understand this, consider schematic shown in Figure 5.11, which shows
how term-frequency is computed at segment-level. We perform automatic pho-
netic segmentation using STM to group the feature vectors into acoustically ho-
mogeneous segments. The segment is referred to as phonetic segments obtained
using STM. Then, we accumulate the consecutive segments to compute term fre-
quency vector. This process remains the same for the spoken query as well.
The phones and word boundaries are not directly available. Thus, we estimate
the phone boundaries using spectral transition measure (STM). We experimented
with different values of Nseg (that corresponds to number of phones) for BoAW
and we select the best value of Nseg from the Dev set. The proposed approach
accumulates local histogram properties and we may have multiple BoAW vectors
for each query and test utterance. We denote di as ith sub-document and |D| as to-
tal number of sub-documents obtained after segment accumulation. We call di as
sub-document because the test utterances in QbE-STD literature are also referred
to as audio documents. In addition, we considered only the part of test utterance
by combining the consecutive segments. Hence, the sub-document notation is used
in this thesis.

In BoAW framework, the term t corresponds to tth phonetic class of poste-
rior feature representation, respectively. ft,di indicates the sum of posteriors at tth

class (where, t ∈ [1, Np]) in sub-document di. Formally, the definitions of term-
frequency t f (t, di) and inverse document frequency id f (t) are as follows [43]:

t f (t, di) = ft,di , (5.15)

id f (t) = log

(
|D|

∑|D|i ft,di

)
. (5.16)

5.4.1.1 Score Computation

The score between test utterance uk and query qj is defined as the maximum mod-
ified cosine similarity between the BoAW of test utterance uk and query qj, i.e.,

score(uk, qj) = max
l,m

< buk
m , b

qj
l >, (5.17)
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where buk
m and b

qj
l represent normalized tf-idf vector (BoAW) for mth sub-

document of kth test utterance, uk, and lth sub-document of jth query, qj,
respectively. The group of Nseg consecutive segments features are combined
to form the sub-document and characterized by tf vectors (in Figure 5.11 (a),
Nseg = 5). The sub-document BoAW is computed by computing normalized
tf-idf vector. Formally, buk

m and b
qj
l are defined as follows [2]:

buk
m =

t f (t, duk
m ) ◦ id f (t)

‖t f (t, duk
m ) ◦ id f (t)‖

, and (5.18)

b
qj
l =

t f (t, d
qj
l ) ◦ id f (t)

‖t f (t, d
qj
l ) ◦ id f (t)‖

, (5.19)

where ‖·‖ represents the l2 norm and ◦ represents the Hadamard product
(element-wise multiplication) between t f and id f vectors. Eq. (5.18) Eq. (5.19)
give Np-dimensional vector (i.e., number of Gaussians in GP and number of
classes in phonetic posteriorgram). We considered the matching score between
test utterance and query according to eq. (5.17). I and L are the total number of
BoAW (total number of sub-documents) in test utterance uk, and query qj, respec-
tively, which gives IL number of cosine similarity values. Hence, the score(uk, qj)

is set equal to the maximum value out of IL cosine similarity values. The spoken
query can have more than one BoAW and to incorporate more than one modified
cosine similarity score across BoAW, we have used the number of context (NC).
NC is used to accumulate NC consecutive cosine similarity scores from the con-
secutive BoAW vectors. Hence, the eq. (5.20) is modified as [2]:

score(uk, qj) = max
1≤l≤L,1≤i≤I−NC+1

i+NC−1

∑
m=i

< buk
m , b

qj
l > . (5.20)

Now, the score value, i.e., score(uk, qj) takes the maximum value out of L(I −
NC + 1) number of accumulated cosine similarity scores.

5.4.2 Results for SWS 2013 using Phonetic Posteriorgram

The experimental results are discussed for four different test utterance selection
(or pruning) procedures.

• Random selection: Here, test utterances are randomly selected from an entire
set of test utterances. This selection does not incorporate the feature vector
(posteriorgram) information into account.
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• Frame-merging: A single tf-idf vector is computed for each test utterance and
query. This is performed by averaging of the feature vectors (posteriorgram).
The local tf-idf vector information is blunted and a single BoAW represents a
query or a test utterance. The modified cosine similarity between the test utter-
ance and query is used to rank the documents.

• Proposed: The group of tf-idf vectors, which corresponds to Nseg consecutive
segments are combined to form a segment-level BoAW. As compared to the
frame-merging BoAW, this approach accounts to local feature vectors in terms
of tf-idf BoAW vectors. After taking the modified cosine similarity, a ranking is
performed and test utterances are selected.

• Segment-based DTW (segDTW): In this approach, subDTW is performed onto
the segment (inspired from [121]). We have used STM to segment the speech
into phone-level, as discussed in sub-Section 5.3.1. The segDTW approach pro-
vides more stronger first stage for query detection as compared to the random
selection approach.

5.4.2.1 Performance of the First Stage

We refer pruning threshold δ, which is the percentage of test utterances selected
after ranking and the remaining (100− δ %) utterances are pruned (or discarded).
In a particular case, δ = 100 indicates no pruning, i.e., an entire set of test utter-
ances are selected. To investigate the effectiveness of proposed pruning on recall
value, we vary δ from 50 % to 100 %. Figure 5.12 shows the recall values at dif-
ferent pruning threshold δ. It can be observed that recall values approach to 1 as
δ increases from 50 to 100. For a random selection, recall values follow a straight
line, which intuitively makes sense because the presence of query is uniformly
distributed among the test utterances. For a given pruning threshold δ, proposed
segment-based approach gives a high value of recall than the frame merging. This
might be because we hypothesize query detection by considering local BoAW vec-
tor. In addition, it can be observed that for a given pruning threshold δ, segDTW
gave more recall values than our proposed segment-based BoAW. This is because
of the fact that DTW algorithm provides temporal information in consecutive seg-
ments, whereas segment-based BoAW does not.

The computation of score for a given utterance and query requires more num-
ber of comparison operations in segDTW, whereas single comparison across all
the possible modified cosine similarity is performed in segment-based BoAW
approach. No comparison operation is performed in frame-merging BoAW be-
cause a single BoAW represent an utterance or a query. If Ms and Ns are the
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Figure 5.12: Recall values at various levels of pruning for different posterior-
grams: (a) CZ, (b) HU, and (c) RU posteriorgram. After [2].

total number of segments in test utterance and query, respectively, then order of
comparison is O(MsNs) in segment-based DTW across three elements (selection
of optimal warping path as discussed in Section 3.4, but for the segments rather
than the frames), whereas a single comparison is performed for NC = 1 across
(Ms − Nseg + 1)(Ns − Nseg + 1) elements, indicating that proposed segment-
level BoAW is computationally less complex than the segDTW. Time and storage
computation is discussed in the next sub-Section.

Here, in this experiments, we varied the number of segments (Nseg) for BoAW
formulation between 3 to 12. The retrieval efficiency in terms of recall is shown
in Figure 5.13. It was found that the combination Nseg = 9 and NC = 1 gave
overall better performance for recall. However, the recall values does not vary
significantly w.r.t. NC and hence, we will take NC = 1 in this thesis.

5.4.2.2 Performance of the Second Stage

The second stage performs DTW between a query and the selected test utterances.
The performance in terms of MTWV is shown in Table 5.4 and Table 5.5. MTWV
at δ = 100, no pruning, considered entire test database for QbE-STD. Again, it
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Figure 5.13: Average recall values of SWS QbE-STD for (a) different Nseg and
NC = 1, and (b) different NC and Nseg = 9. After [2].

can be observed that random selection follows linear increment in MTWV for
most of the cases. The proposed selection approaches to MTWV at δ = 100. In
all the cases, proposed BoAW can give better MTWV over frame merging-based
approach. The execution time and footprint size of BoAW are reported in Table
5.6. For the case of CZ-phonetic posteriorgram, the execution time of scoring
using BoAW is about 41.05 sec, 829.24 sec and 4777 sec (≈ 79 minutes) for frame-
merging BoAW, segment-level BoAW and segDTW, respectively. In comparison,
a segment-level BoAW approach takes high time for scoring because of multiple
sub-document formations. However, the second stage of subDTW takes, even
more time (about 445 minutes), which is significant compared to the time required
in first stage pruning. However, the segDTW takes 79 minutes, that is high as
compared to the BoAW approaches. This might be because of computationally
intensive DTW operation in segDTW. After pruning the test utterances in phonetic
posteriorgram, MTWV is still comparable with several SWS 2013 baseline systems
[31] (In particular as shown in Table 2.3, GTTS: 0.399, L2F: 0.342, CUHK: 0.306,
BUT: 0.297, Proposed CZ at 50 % Pruning: 0.315).
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Table 5.4: Effect of BoAW pruning on search performance for SWS 2013 Dev set
(in MTWV). The bold numbers indicate the highest MTWV performance for pro-
posed approach at various pruning threshold δ. After [2]

Feature Pruning Proposed Frame segDTW Random
Vector Threshold (δ)

CZ

50 0.357 0.260 0.375 0.201
60 0.366 0.277 0.375 0.229
70 0.373 0.296 0.375 0.270
80 0.374 0.317 0.375 0.302
90 0.374 0.345 0.375 0.339

100 0.375

HU

50 0.346 0.245 0.374 0.203
60 0.361 0.268 0.374 0.231
70 0.372 0.294 0.374 0.258
80 0.373 0.321 0.374 0.292
90 0.374 0.353 0.374 0.344

100 0.374

RU

50 0.360 0.243 0.385 0.189
60 0.373 0.278 0.385 0.216
70 0.377 0.311 0.385 0.270
80 0.382 0.341 0.385 0.313
90 0.385 0.372 0.386 0.348

100 0.386
Table 5.5: Effect of BoAW pruning on search performance SWS 2013 Eval set (in
MTWV). The bold numbers indicate the highest MTWV performance for pro-
posed approach at various pruning threshold δ. The numbers in the brackets
indicate ATWV. After [2]

Feature Pruning Proposed Frame segDTW Random
Vector Threshold (δ)

CZ

50 0.315 (0.308) 0.235 (0.232) 0.341 (0.339) 0.176 (0.176)
60 0.331 (0.318) 0.247 (0.243) 0.341 (0.340) 0.205 (0.199)
70 0.335 (0.332) 0.261 (0.259) 0.342 (0.340) 0.233 (0.231)
80 0.341 (0.332) 0.292 (0.288) 0.342 (0/340) 0.271 (0.268)
90 0.342 (0.339) 0.315 (0.314) 0.342 (0.340) 0.308 (0.303)
100 0.342 (0.340)

HU

50 0.312 (0.309) 0.226 (0.224) 0.340 (0.340) 0.165 (0.164)
60 0.327 (0.327) 0.242 (0.241) 0.340 (0.340) 0.203 (0.201)
70 0.333 (0.330) 0.261 (0.260) 0.341 (0.340) 0.232 (0.230)
80 0.337 (0.334) 0.284 (0.283) 0.341 (0.341) 0.261 (0.259)
90 0.340 (0.339) 0.315 (0.315) 0.341 (0.341) 0.304 (0.302)
100 0.341 (0.340)

RU

50 0.324 (0.321) 0.248 (0.246) 0.358 (0.356) 0.174 (0.173)
60 0.340 (0.338) 0.269 (0.267) 0.358 (0.355) 0.211 (0/211)
70 0.350 (0.349) 0.290 (0.287) 0.359 (0.355) 0.251 (0.251)
80 0.356 (0.352) 0.314 (0.309) 0.359 (0.355) 0.284 (0.284)
90 0.359 (0.357) 0.337 (0.337) 0.359 (0.355) 0.324 (0.323)
100 0.359 (0.357)
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Table 5.6: Time and space requirement for BoAW stage on Dev set of SWS 2013.
The bold fonts indicate the least space and time complexity using phonetic poste-
riorgram. (CPU hardware specifications: 64-bit Intel i5 @ 2.80 GHz, 4 GB RAM).
After [2].

Frame-merging Segment-based Segment-based
Feature BoAW BoAW DTW
Vector Time Footprint Time Footprint Time Footprint

(sec.) (MB) (sec.) (MB) (sec.) (MB)
CZ 41.05 1.77 829.24 155.98 4777.00 169.02
HU 41.50 2.42 875.88 213.56 4984.40 231.87
RU 41.09 2.05 843.56 181.19 4938.40 196.52
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Figure 5.14: Recall performance of Gaussian posteriorgram representation: (a) for
different Nseg and (b) at various levels of pruning threshold.

5.4.3 Results for SWS 2013 using Gaussian Posteriorgram

The experimental results are discussed for three different test utterance selection
(or pruning) procedures.

5.4.3.1 Performance of the First Stage

At first, we ran the the experiments by varying the number of segments (Nseg)
for BoAW formulation between 3 to 15 for Dev set query. The retrieval efficiency
for different Nseg value, in terms of recall is shown in Figure 5.14 (a). It was
found that the MFCC-GP, and PLP-GP posteriorgram gave relatively better
performance for Nseg = 13, and Nseg = 11, respectively. We used these optimal
Nseg values in BoAW computation for respective posteriorgram. Figure 5.14 (b)
shows the recall values at different pruning threshold δ. It can be observed that
recall values approach to 1 as δ increases. For a random selection, recall values
follow a straight line, which intuitively makes sense because the presence of
query is uniformly distributed among all the test utterances.
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Table 5.7: Performance of SWS 2013 (in terms of MTWV) for feature reduction on
Dev set.

Features Pruning Segment-level Frame-merging Random
Vector Threshold (δ) BoAW BoAW Approach

MFCC-GP

50 0.186 0.163 0.101
60 0.188 0.170 0.117
70 0.188 0.175 0.134
80 0.188 0.183 0.152
90 0.188 0.186 0.171

100 0.188

PLP-GP

50 0.189 0.160 0.100
60 0.194 0.167 0.114
70 0.195 0.175 0.135
80 0.195 0.18 0.16
90 0.195 0.187 0.174

100 0.195

For a given pruning threshold δ, proposed segment-level approach gives a
high value of recall than the frame-merging. This might be because we hypothe-
sized query detection by considering local BoAW vectors. It can be observed that
for both the posteriorgram cases, recall value of proposed segment-level BoAW at
given pruning threshold (δ) is much higher than the other pruning approaches. In
addition, for all the posteriorgrams considered here, the recall values of segment-
level BoAW converges faster to 1, than the frame-merging approach, indicating
that the segment-level BoAW is relatively better pruning method.

5.4.3.2 Performance of the Second Stage

The second stage performs DTW between a query and the selected test utterances.
The performance in terms of MTWV is shown in Table 5.7 and Table 5.8 for Dev
and Eval sets, respectively. Again, it can be observed that random selection ap-
proach follows linear increment in MTWV for most of the cases. The proposed
selection approaches to MTWV at δ = 100. In all the cases, proposed BoAW can
give better MTWV over frame-merging. The MTWV performance after pruning
70 % test utterances, does not deteriorate much and this holds consistent across
all the three posteriorgrams. On the contrary, at δ = 70, proposed test utterance
selection procedure gave the same performance over respective δ = 100, which
might be due to the lower false alarm.

The execution time and footprint size of BoAW using different posteriorgram
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Table 5.8: Performance of SWS 2013 (in terms of MTWV) for feature reduction on
Eval set. The numbers in the brackets indicate ATWV.

Features Pruning Segment-level Frame-merging Random
Vector Threshold (δ) BoAW BoAW Approach

MFCC-GP

50 0.137 (0.132) 0.128 (0.127) 0.072 (0.067)
60 0.138 (0.134) 0.131 (0.128) 0.082 (0.078)
70 0.138 (0.135) 0.134 (0.131) 0.103 (0.102)
80 0.138 (0.135) 0.137 (0.133) 0.110 (0.109)
90 0.138 (0.135) 0.138 (0.135) 0.125 (0.121)

100 0.138 (0.137)

PLP-GP

50 0.143 (0.143) 0.136 (0.136) 0.066 (0.064)
60 0.145 (0.143) 0.140 (0.139) 0.091 (0.088)
70 0.145 (0.145) 0.142 (0.141) 0.105 (0.103)
80 0.145 (0.145) 0.143 (0.143) 0.118 (0.117)
90 0.145 (0.145) 0.143 (0.142) 0.131 (0.131)

100 0.145 (0.145)

Table 5.9: Time and space requirements for BoAW stage on Dev set of SWS 2013
using Gaussian posteriorgram (CPU hardware specifications: 64-bit Intel i5 @ 2.80
GHz, 16 GB RAM)

Frame-merging Segment-level sub.
Feature BoAW BoAW DTW
Vector Time Footprint Time Footprint Time

(sec.) (MB) (sec.) (MB) (minutes)
MFCC-GP 201.76 5.25 1104.11 440.26 681

PLP-GP 199.12 5.25 994.43 450.54 669

representations are reported in Table 5.9. The footprint size of segment-level
BoAW is larger than the frame-merging due to multiple BoAW for each utter-
ance. This translates into more number of comparison for similarity computation
and hence, the computational cost is more for segment-level BoAW. However,
in comparison with only subDTW, the computational cost (in terms of time re-
quired for execution) is very low. As shown in 5.9, for MFCC-GP the execution
time of scoring using BoAW is about 201.76 sec and 1104.11 sec for frame-merging
and segment-level approach, respectively. However, the second stage of subDTW
takes, even more time about 681 minutes, that is significant as compared to the
time required in first pruning stage. The same footprint size in frame-merging
BoAW for MFCC and PLP is due to the same number of BoAW vectors and the
same dimension of Gaussian posteriorgram representation.
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Figure 5.15: Recall values for at various levels of pruning QUESST 2014. After [2].

5.4.4 Results for QUESST 2014

As discussed in earlier sub-Section 5.4.2, proposed segment-level BoAW has a
higher recall at every pruning threshold. Hence, we will perform segment-level
BoAW pruning at first stage. The recall values for posteriorgrams on QUESST
2014 task are plotted in Figure 5.15. It can be seen that top 50 % test utterances,
contains more than 70 % recall value, which approaches to 1 at the exponential
growth. Again, it can be seen that curve is not exponential and hence, the growth
is better than the random selection. As discussed in sub-Section 5.2, modified
DTW search algorithm improves the search performance in the case of partial
matching, which is part of QUESST 2014. We used modified DTW search with
harmonic mean to combine the partial matching evidence for the selected test ut-
terances from BoAW model. Figure 5.16 shows the MTWV and Cmin

nxe for Eval set.
It can be seen from Figure 5.16 that MTWV is more as compared to the random se-
lection of test utterance. Hence, BoAW approach reduces the search space, which
is useful for the QbE-STD task. In addition, it can be seen that MTWV and Cmin

nxe

gradually approaches to the performance without pruning. The value of Nseg = 9
is chosen empirically by tuning Nseg from 3 to 12.

5.5 Chapter Summary

This chapter presented the matching subsystems used in QbE-STD problem. We
discussed partial matching strategies for non-exact query matching task. We
found that this partial matching strategies improve the detection of non-exact
query yet giving almost the equal performance for the exact query matching. In
addition, we proposed two search space reduction approaches, namely, feature
reduction approach and segment-level BoAW approach. The proposed feature
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Figure 5.16: Performance of BoAW model in terms of (a) MTWV and (b) Cmin
nxe , for

QbE-STD on QUESST 2014 Eval set. After [2].

reduction approach, which considers the phone boundaries into consideration,
gave relatively better performance than the conventional feature reduction ap-
proach. Proposed segment-level BoAW gave relatively better performance than
the frame-merging and random selection approach. In the next chapter, we will
discuss multiple acoustic features and detection sources for re-scoring the detec-
tion of QbE-STD.
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CHAPTER 6

Exploring Multiple Resources

6.1 Introduction

Most of the research studies in QbE-STD mainly focus on the representation of
speech signal to improve the detection as a stand-alone system. QbE-STD prob-
lem aims to detect all possible presence of the spoken query within the audio
documents. There could be many reasons, such as, variabilities across the speak-
ers, recording channels, and the context. The earlier studies that combined the
evidences (along with the relevance scores across multiple search systems) were
found to be successful for QbE-STD task [62]. However, this approach requires the
development of multiple QbE-STD systems, which is not feasible because as size
of audio data grows, DTW takes huge time for searching. The another solution is
to exploit multiple examples of spoken query, which can be performed by using
either all the examples [39] or selectively combined the examples [59, 74, 225]. In
QbE-STD, the retrieval output is heavily dependent on the single example of au-
dio, and hence, the detected candidates may not be robust. Though the posterior-
gram representation helps to eliminate the non-linguistic variation in the spoken
query, we still lack the performance of QbE-STD. Previous studies used detec-
tion from the first retrieval to re-score the detection. Fewer studies discussed the
information retrieval-based approach, i.e., relevance feedback to hypothesize the
detection with additional query [121, 226].

In this context, this chapter presents a two-stage approach for re-scoring the
detection hypothesis with the help of another acoustic features and detection
sources (or detection cues). In other words, the objective is to use multiple acous-
tic features and detection sources to mainly combine the subDTW scores obtained
with the posteriorgrams. The organization of this chapter is as follows: Section 6.2
discusses the several acoustic features used in stage-2 for re-scoring. Section 6.3
discusses the detection sources and exploiting them to improve the performance
obtained using Gaussian posteriorgram as well as phonetic posteriorgram. Ex-
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Figure 6.1: A schematic block diagram of proposed two-stage QbE-STD search
system using acoustic features. The block arrow indicates the transition from
Stage-1 to Stage-2. Dotted box indicates acoustic features used in the framework.
After [36].

perimental results for acoustic features, detection sources, and their score-level
fusion are discussed in Section 6.3.6. The posteriorgrams used in stage-1 are Gaus-
sian posteriorgram (GP), VTL-warped GP, mixture of GMMs posteriorgram, and
phonetic posteriorgram. We have used 128 number of clusters to compute the pos-
teriorgrams and BUT phoneme recognizer to compute phonetic posteriorgram.

6.2 Acoustic Features

The schematic block diagram of the two-stage QbE-STD system with acoustic fea-
tures is shown in Figure 6.1. In stage-1,posteriorgram features are used to per-
form subDTW to obtain fewer detected segments. In the stage-2, we used several
acoustic features to improve the detection scores. The score-level fusion of all the
detection scores gave the improved performance on SWS 2013 database.

We refer acoustic features as the first-level parameterization conventionally at
short-time or segment-level (i.e., duration of 25 ms). To characterize production
and perception properties, linear prediction (LP) [50], mel cepstrum [51], and LP-
based features, such as, perceptual linear prediction (PLP) have been used as an
acoustic representation. DTW is performed with detected segments and query.
The global mean and variance are computed from all the features from test ut-
terances, and we normalize the features (along with delta coefficients) with this
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mean and variance.

Pearson correlation distance between the features is used during DTW compu-
tation. The reason behind using the Pearson correlation distance is that it achieved
superior performance. The Pearson correlation distance between two posterior
vectors ti and qj is given by [46]:

D(ti, qj) = 1−
〈ti − µti , qj − µqj〉
||ti − µti ||qj − µqj ||

, (6.1)

where || · || represents the l2 norm, <,> represents the dot or inner product, µti

and µqj are the mean of feature ti and qj, respectively. µti =
1
D ∑D

k=1 ti(k) and

µqj =
1
D ∑D

k=1 qj(k). The acoustic features used in this study are described in the
next sub-Section:

6.2.1 Warped Linear Prediction (WLP)

This feature set provides Bark scale-based frequency warping via warped linear
prediction (WLP). WLP is obtained by replacing unit delays of classical LP filter
by first-order allpass filters with transfer function, which is given by [227]:

D(z) =
z−1 − λ

1− λz−1 , (6.2)

and phase response is given by [227]:

Ψ(ω) = ω + 2 tan−1
(

λ sin ω

1− cos ω

)
, (6.3)

where −1 < λ < 1 is the warping factor. For 0 < λ < 1, lower frequencies are
compressed and higher frequencies are expanded. The reverse warping happens
for 0 > λ > −1. An analytical expression provides the value of λ for warping
similar to Bark scale [227] depending on the sampling frequency (i.e., fs) and is
given by:

λ f s ≈ 1.0674
(

2
π

arctan
(

0.6583
f s

1000

)) 1
2

− 0.1916. (6.4)

In this thesis, 13 DCT coefficients of warped spectra are taken as the WLP coeffi-
cients.
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6.2.2 Modified Group Delay Function

The negative derivative of the Fourier transform phase is called as group delay
function. The group delay function has the better formant resolving capability
than the magnitude spectrum of Fourier transform [228]. The modified group
delay function is defined as follows:

τx(k) = sign.
∣∣∣∣XR(k)YR(k) + YI(k)XI(k)

S(k)2γ

∣∣∣∣α , (6.5)

sign is given by XR(k)YR(k)+YI(k)XI(k)
S(k)2 . Here, XR(k) and XI(k) are the real and imag-

inary parts of X(k), respectively, (i.e., Fourier transform of x(n)), YR(k) and YI(k)
are the real and imaginary parts of Y(k), respectively, (i.e., Fourier transform of
y(n) = nx(n)). |S(k)|2 is the cepstral smoothed spectra, α and γ are the smoothing
parameters, which are kept as 0.4 and 0.9, respectively.

6.2.3 OpenSMILE Library Features

The OpenSMILE library [229] is used to capture 36 acoustic features and their
delta features. The list of features computed using the OpenSMILE library is given
in Table 6.1. All these features were extracted at every 10 ms using 25 ms window,
except for fundamental frequency (F0), a probability of voicing, jitter, shimmer
and Harmonic-to-Noise Ratio (HNR), where 60 ms window was used. The jitter
and shimmer are used as to represent voice excitation source information, giving
voicing related cues.

In addition to that, we also used MFCC, mel filterbank energy, PLP and MFCC-
TMP acoustic features in stage-2 for re-scoring. The details of MFCC, PLP and
MFCC-MTP are given in sun-Section 3.3.1. We used 26-D mel filterbank energy
features corresponds to 26 subband filters, where filters span 0-4000 Hz frequency
regions.

6.2.4 Experimental Results

The DTW distance obtained with acoustic features and scores obtained using sub-
DTW are fused at the score-level. Since the DTW is performed on the detected
segments (as shown in Figure 6.1), all the detection candidates and correspond-
ing detection scores are synchronized to the time stamps of the stage-1. The results
are presented for four different types of posteriorgrams, namely, Gaussian poste-
riorgram, VTL-warped Gaussian posteriorgram, mixture of GMMs posteriorgram
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Table 6.1: Acoustic Features Extracted using OpenSMILE [229]

Description # Features
Zero-Crossing Rate 1
Frame Intensity 1
Frame Loudness 1
Root Mean Square (RMS) Energy and log-energy 2
Energy in Frequency Bands 250-600 Hz and 1000-4000 Hz 2
Spectral Flux 1
Spectral Entropy 1
Spectral Variance 1
Spectral Skewness 1
Spectral Kurtosis 1
Spectral Sharpness 1
Spectral Harmonicity 1
Spectral Flatness 1
Line Spectral Pairs (LSP) 8
LPC Formant (Frequency and Bandwidth) 6
Fundamental Frequency (F0) 1
Probability of Voicing 1
Voicing Quality 1
log Harmonic-to-Noise Ratio (logHNR) 1
Jitter (local and periodic variation) 2
Shimmer 1
Total 36

and phonetic posteriorgram. Scores obtained from different detection sources are
normalized to have zero-mean and unit-variance and then combined using the
discriminative fusion approach presented in [62] and discussed in Chapter 3.

The performance of QbE-STD systems is shown in Figure 6.2. The perfor-
mance of raw acoustic features was measured by DTW similarity. It can be ob-
served that the performance of each acoustic features is slightly lower than the GP.
However, the performance due to cepstral features, such as, MFCC, PLP, MFCC-
TMP and mel filterbank energy is much relatively higher than other features. This
might be due to their capability of mimicking the human perception. The perfor-
mance of WLPC and MGD are slightly lower. This might be because the coeffi-
cients are computed on the entire frequency range. In addition, MGD requires
additional parameters to be tuned, i.e., γ and α. The acoustic features derived
from OpenSMILE may give better performance if features are selected based on
the dataset as suggested in [67].

Finally, the score-level fusion of all the systems gave better performance than
the posteriorgram representation alone. Since the acoustic features used are the
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Figure 6.2: Performance of two-stage QbE-STD systems using several acoustic
features with (a) Gaussian posteriorgrams, (b) VTL-warped Gaussian posterior-
grams, (c) mixture of GMMs posteriorgram, and (d) phonetic posteriorgram sys-
tem for SWS 2013 Dev set. Post = posteriorgram, M-T = MFCC-TMP, MF= mel
filterbank energy, and OSM = OpenSMILE features.

same for different posteriorgram used in stage-1 for subDTW, the performance
is highly dependent on the time-stamps generated during stage-1. For instance,
comparing the performance of OpenSMILE feature that is relatively lower than
the other acoustic features. However, phonetic posteriorgram-based stage-1 with
OpenSMILE features gave 0.215 MTWV, which is almost double than all the other
posteriorgrams used in stage-1. This observation is the same for all the acous-
tic features, which indicates the importance of miss detection. Similarly, VTL-
warped GP and a mixture of GMMs posteriorgram in the stage-1 gave relatively
better performance than the GP. After applying the score-level fusion, GP, VTL-
warped GP, a mixture of GMM posteriorgram and phonetic posteriorgram gave
0.235, 0.268, 0.265 and 0.437 MTWV scores, respectively. The use of different de-
tection sources for re-scoring the detection is discussed in the next Section.
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Figure 6.3: A schematic block diagram of proposed two-stage QbE-STD search
system using detection sources. The block arrow indicates the transition from
Stage-1 to Stage-2. Dotted box indicates detection sources used in the framework.
After [37].

6.3 Detection Sources

The schematic block diagram of the two-stage QbE-STD system with detection
sources is shown in Figure 6.3. In stage-1, the posteriorgram features are used to
perform subDTW to obtain fewer detected segments. Instage-2, we used several
detection sources to improve the detection scores. The score-level fusion of all the
detection scores gave the improved performance on QbE-STD task. These detec-
tion sources are generated from either single execution of DTW or no execution of
DTW and hence, does not require additional computational overheads. In addi-
tion, we perform the re-scoring on the candidates obtained by using stage-1. The
proposed detection sources are term frequency-Bag of Acoustic Word (BoAW),
Self-Similarity Matrix (SSM), an average query using pseudo relevance feedback
(PRF), depth of detection along warping path of DTW and weighted mean cep-
stral representation obtained using posteriorgram. The proposed two-stage block
diagram is shown in Figure 6.3. Similar to the acoustic feature-based re-scoring,
here also stage-1 performs subDTW using posteriorgram representation and stage-
2, performs re–scoring with the detection sources. All the detection candidates
and corresponding detection scores are synchronized to the time stamps of the
stage-1.
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6.3.1 Depth of Detection Valley

The depth of the valley in the vicinity of warping path can be computed as follows
[37]:

depth =
1
N

N

∑
i=1

(
max
r∈Sj

(
S(i, r)
T(i, r)

)
−min

r∈Sj

(
S(i, r)
T(i, r)

))
, (6.6)

where Sj is the set of test utterance frame index for which P(i, j) = sp, i.e.,
Sj ≡ {j|P(i, j) = sp}, sp is the starting frame index for given warping path under
consideration and N is the number of feature vectors in the query. The details of
computation of matrices S, T, and P are given in Section 3.4. Earlier, depth of the
valley was used to select the features [66]. The similarity plot and the computation
of valley depth are illustrated in Figure 6.4.

6.3.2 Term Frequency Similarity

The Term-Frequency (TF) similarity score indicates the total number of times the
term is present in the document. We define the Term-Frequency (TF) similarity
score between the query q and the detection candidate sg as follows [37]:

score(q, sg) = 〈
t fq

‖t fq‖
,

t fsg

‖t fsg‖
〉, (6.7)

where ‖·‖ represents the l2 norm and <,> represents the dot or inner product.
The TF vector t fq and t fsg are normalized by its l2 norm before computing the
similarity score. The term corresponds to the Gaussian component and phonetic
class for Gaussian posteriorgram and phonetic posteriorgram, respectively [133].
Hence, TF is computed simply by summing the posterior probabilities for each
component.

6.3.3 Self-Similarity Matrix (SSM)

The SSM represents the (dis)similarity between a pair of feature vectors within a
segment [146, 230]. The SSM of feature vectors xt (where 0 ≤ t ≤ T) is a T × T
squared symmetric matrix such that Φ(i, j) = d(xi, xj), where d(., .) defines the
distance between two feature vectors xi and xj. The feature vectors used to carry
linguistic information as well as non-linguistic information, such as, speaker in-
formation and channel information. Thus, the feature vector xj can be modeled as
an additive noise model, i.e., xi = si + N, where si and N resemble the linguistic
and non-linguistic characteristics from the speech signal, respectively. The SSM is
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Figure 6.4: An illustration of depth of detection valley: (a) similarity normal-
ized accumulated distance matrix between the query and test utterance, the patch
along the warping path is shown in rectangle box and (b) the DTW distance value
within selected rectangle box showing the depth of the valley surrounded by
warping path. After [37].

computed for a small segment that is expected to be from the same speaker and
the same channel. Hence, under this additive noise model, the SSM is expected
to show linguistic information present in the speech segment. Many empirical vi-
sual observations suggest that different instances of the same word spoken by dif-
ferent speakers or undergoing different recording channels exhibit similar visual
resemblance [146]. In addition, SSM brings out the similarity and dissimilarities
between all the feature vectors of spoken query and detected candidates. Hence,
the difference between these two can be an important detection source. The lesser
the SSM value indicates better similarity between the query and detection candi-
dates. The SSMs for the query and a segment of the test utterance are shown in
Figure 6.5.

6.3.4 Pseudo Relevance Feedback (PRF)

The user relevance feedback has been widely used in text retrieval problem [43].
Inspired from the Information Retrieval (IR) literature, several studies in QbE-
STD problem exploited the concept of relevance feedback. In relevance feedback
scenario, the detection candidates (i.e., the part of spoken audio detected) at first
few hits are assumed to be close to the query. Hence, these detected part of spoken
audio may be treated as a query (which is referred to as pseudo-query or pseudo-
relevant example) and the searching can be employed with this query. This ap-
proach has been called as pseudo-relevance feedback (PRF) [145, 226]. The scores
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Figure 6.5: An illustration of Self-Similarity Matrix (SSM): (a) similarity local dis-
tance matrix between the query and test utterance, the dotted rectangle block
shows the detected candidate within utterance and (b) SSM for query and (c) SSM
for detected candidate. After [37].

obtained using pseudo queries are merged to the scores using actual query. To
avoid the error for using pseudo-query directly, we generate the average query
with the help of the original spoken query and the pseudo-query. We exploit the
original query and align each feature of query onto pseudo-query so as to pro-
duce the average query. The average query Xavg for two different spoken queries
X = [x1, x2, . . . , xLX ] and Y = [y1, y2, . . . , yLY

] can be performed as follows [74]:

Xavg
t =

1
1 + |St|

(
Xt + ∑

v∈St

v

)
, (6.8)

where St is the set of all the features of Y that are aligned to tth frame of X (i.e., xt)
and 1 ≤ t ≤ LX. We have used three different average queries with top 3 pseudo-
relevant queries. The average query obtained using pseudo-query is shown in
Figure 6.6, which shows that the average query is very much similar to the actual
query.

6.3.5 Weighted Mean Features

The correspondence between phonetic classes and Gaussian components is one-
to-many, i.e., each phonetic class is defined in terms of a group of Gaussian com-
ponents. In other words, multiple Gaussians are aligned to a single phonetic
class [97]. The posterior probabilities for a given phonetic unit are split into mul-
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Figure 6.6: An illustration of average query with PRF: (a) Gaussian posteriorgram
for query and (b) Gaussian posteriorgram for dynamically aligned time average
query with first detection candidate. The dotted boxes show similarities in both
representations. After [37].

tiple components, since the many of Gaussian components are close to each other
in the feature space. With an assumption that the means of Gaussian components
form the basis functions of cepstral features. A feature is represented in terms of
the linear combination of means of Gaussian components. The weights in the lin-
ear combination are assigned by the Gaussian posterior probabilities. This repre-
sentation assumes that means of Gaussian components constituted the basis func-
tions of spectral feature space and known as weighed-mean feature [97]. For NG
components, the posterior probability of data ot being in kth Gaussian component
is given by [77]:

P(Ck|ot) =
wkN (ot; µk, Σk)

∑NG
j=1 wjN (ot; µj, Σj)

, (6.9)

where (wk, µk, Σk) are model parameters of GMM. The weighted mean feature x̂t

can be expressed as follows [97]:

ôt ≈
Np

∑
j=1

µjP(Cj|ot). (6.10)

The rational behind using weighted mean features is that it minimizes the fluctu-
ation around mean and eliminates the variabilities. Thus, the resulting weighted
mean features are better than the original acoustic representation, i.e., MFCC, PLP
or MFCC-TMP. We use this weighted mean features as an additional detection
source to subDTW scores. To compare two weighted average cepstral features,
Pearson correlation distance metric is used. The pictorial view of cepstral repre-
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Figure 6.7: An illustration of weighted mean representation of a query: (a) MFCC
representation of query, and (b) weighted mean feature of query. The dotted boxes
on (b) shows the smoothed feature of corresponding dotted boxes on (a). After
[37].

sentation and weighted mean cepstral features is shown in Figure 6.7. It can be
seen that weighted mean cepstral representation is smoothed version of cepstral
features (indicated by dotted boxes).

6.3.6 Experimental Results

The experimental results with posteriorgram representation are shown in Figure
6.8. The results are presented for four different types of posteriorgrams, namely,
GP, VTL-warped GP, a mixture of GMMs posteriorgram and phonetic posterior-
gram. Scores obtained from different detection sources are normalized to have
zero-mean and unit-variance and then combined using the discriminative fusion
approach presented in [62] and as discussed in Chapter 3. We have not used a
weighted mean representation for a mixture of GMMs and phonetic posterior-
gram. The average MTWV for a weighted mean feature for SWS 2013 Dev set is
0.148 and 0.155 for GP and VTL-warped GP, respectively. The relative better per-
formance (in MTWV) with VTL-warped GP than the GP indicates VTL-warped
GP as better representation than the GP. MTWV obtained using Term-Frequency
(TF) is very low, since it does not exploit the temporal dynamic matching. The TF
relatively gave better performance with phonetic posteriorgram, however, due to
this missing temporal information, it possibly contributes very less in the score-
level fusion.

The valley depth along warping path is another detection source that indi-
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Figure 6.8: Performance of of two-stage QbE-STD systems using several detection
source with (a) Gaussian posteriorgrams, (b) VTL-warped Gaussian posterior-
grams, (c) mixture of GMMs posteriorgram, and (d) phonetic posteriorgram sys-
tem for SWS 2013 Dev set. Post = Posteriorgram, Wmf= Weighted mean features,
PRF1=pseudo relevance feedback with 1st detected candidates, PRF2=pseudo rel-
evance feedback with 2nd detected candidates, PRF3=pseudo relevance feedback
with 3rd detected candidates, Vdepth=Depth of detection valley. After [37].

cates the presence of query in an utterance. The average MTWV for valley depth
for SWS 2013 Dev set is 0.133, 0.168, 0.154 and 0.208 for GP and VTL-warped
GP, respectively. VTL-warped GP and mixture of GMM posteriorgram gave rela-
tively better performance than the GP. The performance of detection valley with
phonetic posteriorgram is better than all the posteriorgrams. SSM and weighted
mean feature detection sources gave relatively better performance as they resem-
ble acoustic property well. PRF1, PRF2, and PRF3 indicate the performance due
to 1st, 2nd and 3rd pseudo-relevant examples, respectively. As shown from Fig-
ure 6.8, the performance in MTWV slightly declines from PRF1 to PRF3. This is
intuitively correct, since the 1st pseudo-query is more relevant to the original spo-
ken query than the 3rd pseudo-query. With SSM and weighted mean features, we
have a similar observation. From Figure 6.8, comparing the performance across
different posteriorgrams, it can be observed that VTL-GP and mixture of GMMs
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gave better performance than the GP. Furthermore, to incorporate their contribu-
tion, the score-level fusion of Gaussian posteriorgram features is presented. The
score-level fusion of all the detection sources gave on an average improvement
of 4.1 %, 4.5 %, 3.3 % and 1.5 % in MTWV for GP, VTL-warped GM, mixture of
GMMs posteriorgram and phonetic posteriorgram, respectively, than their poste-
riorgram alone. The relatively better performance improvement with the GP and
VTL-warped GP suggest the importance of re-scoring with the help of detection
sources for unsupervised posteriorgram.

In addition from Figure 6.8, we can observe that the relatively consistency in
the results across all the different posteriorgrams used. The performance of valley
depth is slightly improved. The Gaussian posteriorgram are computed from mul-
tivariate Gaussian and their posterior probabilities are split across many Gaussian
components. Phonetic posteriorgrams are derived from trained phoneme recog-
nizer supervisedly and they produce relatively distinct posterior probability than
the corresponding Gaussian posteriorgram (Please refer Figure 2.4 for phonetic
posteriorgram and Figure 2.5 for Gaussian posteriorgram). Hence, Gaussian pos-
teriorgram may give a much false alarm in detection valley depth relatively than
the phonetic posteriorgram. Again, the score-level fusion improves the perfor-
mance than the phonetic posteriorgram alone. In particular, the score-level fusion
of phonetic posteriorgram along with their various detection sources considered
in this study gave on an average improvement of 1.5 % in MTWV indicating that
detection sources carry complementary information than the phonetic posterior-
gram alone. After score-level fusion for phonetic posteriorgram, MTWV is com-
parable with several SWS 2013 baseline systems [31] (In particular as shown in
Table 2.3, GTTS: 0.399, L2F: 0.342, CUHK: 0.306, BUT: 0.297, Proposed (CZ): 0.355).

6.3.6.1 Combining Acoustic Features and Detection Sources

Next, we combined the evidences from all the acoustic features and detection
sources for four different types of posteriorgrams, namely, Gaussian posterior-
gram, VTL-warped Gaussian posteriorgram, a mixture of GMMs posteriorgram
and phonetic posteriorgram. The performance with a fusion of these multiple
evidence, is shown in Table 6.2. As discussed in sub-Section 6.2.4, the acoustic
features gave relatively better improvement for phonetic posteriorgram due to
better representation. In addition, as discussed earlier in this sub-Section that de-
tection sources improve the performance for unsupervised posteriorgram, such
as, GP and VTL-warped GP. Thus, for Dev set on average, MTWV scores after
combining all the evidences are improvement of 6.4 %, 6.8 %, 4.9 % and 6.8 % for
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Table 6.2: Score-level fusion of several acoustic features and detection sources

Dev Set Eval Set
PPPPPPPPPPPPFusion

Stage1
Post. MFCC PLP MFCC-TMP MFCC PLP MFCC-TMP

Posteriorgram 0.188 0.195 0.197 0.138 0.145 0.147
Detection sources 0.235 0.236 0.233 0.166 0.167 0.173
Acoustic Features 0.227 0.233 0.231 0.166 0.173 0.173

All 0.257 0.261 0.253 0.187 0.189 0.193
(a) Gaussian posteriorgram

Dev Set Eval Set
PPPPPPPPPPPPFusion

Stage1
Post. MFCC PLP MFCC-TMP MFCC PLP MFCC-TMP

Posteriorgram 0.212 0.233 0.224 0.160 0.166 0.177
Detection sources 0.261 0.276 0.268 0.188 0.195 0.201
Acoustic features 0.252 0.266 0.264 0.193 0.204 0.199

All 0.284 0.297 0.293 0.216 0.217 0.218
(b) VTL-warped Gaussian posteriorgram

Dev Set Eval Set
PPPPPPPPPPPPFusion

Stage1
Post. MFCC PLP MFCC-TMP MFCC PLP MFCC-TMP

Posteriorgram 0.240 0.246 0.233 0.195 0.208 0.201
Detection sources 0.266 0.268 0.283 0.217 0.229 0.245
Acoustic features 0.262 0.267 0.267 0.216 0.237 0.223

All 0.287 0.286 0.292 0.239 0.257 0.256
(c) Mixture of GMMs posteriorgram

Dev Set Eval Set
PPPPPPPPPPPPFusion

Stage1
Post. CZ HU RU CZ HU RU

Posteriorgram 0.375 0.374 0.386 0.341 0.341 0.361
Detection sources 0.386 0.396 0.400 0.355 0.356 0.375
Acoustic features 0.429 0.430 0.453 0.386 0.392 0.428

All 0.438 0.442 0.457 0.399 0.401 0.441
(d) Phonetic posteriorgram
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GP, VTL-GP, a mixture of GMMs and phonetic posteriorgram, respectively.

6.4 Chapter Summary

In this chapter, we explored various detection sources, namely, Term-Frequency,
Self-Similarity Matrix (SSM), depth of detection along DTW warping path,
pseudo-relevance feedback generated an average query and weighted mean fea-
ture, obtained using posteriorgram for QbE-STD. The several detection sources
are exploited on the candidates obtained after subDTW. The results obtained us-
ing each detection source is encouraging as a stand-alone detector. Furthermore,
the score-level fusion brings complementary information in score assignment re-
sulting in better performance than the posteriorgram alone. However, the perfor-
mance of unsupervised Gaussian posterior is still lacking, which demands further
exploration. In the next chapter, the overall summary of the thesis is presented
with its limitations and future research directions.
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CHAPTER 7

Summary and Conclusions

This chapter presents the summary of the entire thesis work, limitations of current
work, and future research directions.

7.1 Summary of the Thesis

In this thesis, novel VTL-warped Gaussian posteriorgram is presented to re-
move the speaker variations between query and test utterance. Proposed GMM-
based framework does not require phonetic transcription yet powerful to estimate
VTLN warping factor estimation and phoneme recognition. We further proposed
an iterative scheme to VTLN and reduced number of features for QbE-STD. A
mixture of GMM was proposed to introduce broad phonetic priors in unsuper-
vised GMM training. A mixture of GMM posteriorgram performs better for QbE-
STD than the GMM posteriorgram. Their score-level fusion is found to improve
the search performance further.

The modified DTW search algorithm to deal with partial matching is pre-
sented. The need for partial matching is essential, when the instance of query
present in test document has variations either at suffix, prefix or word re-order.
The proposed modified DTW search algorithm combines the evidences from var-
ious partial matching strategies via different functions, namely, harmonic mean,
arithmetic mean and minimum value. MediaEval QUESST 2014 database was
used to investigate the effectiveness of partial matching strategies. We found that
the combined distance pulled using harmonic mean gave relatively better perfor-
mance than the subDTW for a non-exact match (i.e., T2 and T3 queries), whereas
slightly degrades the performance for the exact match (T1 query) because of the
influence of other partial matching distances.

In the next part of the thesis, we discussed computational improvements dur-
ing DTW-based searching using two approaches, namely, feature reduction ap-
proach and BoAW approach. We adopted two feature reduction schemes, namely,
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approach that merges consecutive features, and proposed approach merges con-
secutive features within phone segment. In proposed feature reduction approach,
we merged consecutive feature vectors within phonetic segment boundaries and
executed subDTW by reduced number of feature vectors. Thus, a lesser num-
ber of feature vectors reduces the computational cost by reducing the number of
comparison operations. We found that feature reduction factor β = 2 gave com-
parable performance with no feature reduction case (i.e., β = 1). Theoretically,
computation time is reduced from O(MN) to O(MN

β2 ), where M and N are the
number of features in test utterance and query, respectively, for feature reduction
factor β ∈ N. Practically, we obtained slightly lower MTWV with almost two
times computational requirements for SWS 2013 evaluation. For QUESST 2014
evaluation, we observed that feature reduction β = 2 with modified DTW search
algorithm gave relatively better performance than the conventional subDTW.

BoAW is two-stage search approach for a QbE-STD task. In the first stage,
BoAW models are built by computing the term-frequency (t f ) and inverse-
document frequency (id f ). In posterior feature framework, term corresponds to
the phoneme class. The term-frequencies are computed from the entire test set of
SWS 2013 and QUESST 2014. Proposed segment-based BoAW model constructs
term vector over phoneme segments, and t f and id f vectors are computed. As a
comparison, we built BoAW per test utterance and per query by merging frames.
The similarity score between test utterance and a query is performed by modi-
fied cosine similarity. After scoring, test documents are retrieved based on the
scoring. Proposed segment-level BoAW gave more recall values than the frame-
based BoAW and random selection. We conduct subDTW (for SWS 2013) or mod-
ified DTW (for QUESST 2014) to evaluate the search on selected test utterances by
BoAW. Proposed approach reduces the search space and gave better performance
(in terms of recall, MTWV and Cmin

nxe ) over random selection.

There is a trade-off between search performance and search execution time.
Given advanced hardware and computation, the performance is relatively more
important than the execution time. The speed of execution is an important met-
ric to quantify real-time processing of searching and to improve the detection by
searching again with multiple query examples as well as relevance feedback sce-
nario. Under PRF scenario [226], we can use the detected location at the top hit
within test utterance as a pseudo-query. This query can be used to perform QbE-
STD again and improve the detection [121]. Hence, faster execution time helps
in detection error correction. The QbE-STD system is formed by cascading multi-
ple subsystems. Thus, the errors introduced by one subsystem affects the perfor-
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mance of other subsystems. To avoid such errors, we eliminate spurious detection
at different stages, such as, speech activity detection and warping path selection.
SAD removes the silences around queries. During warping path selection, the
length of warping path and duration of a query is compared. To improve the
detection performance, we may include pseudo-relevance query, i.e., detection
within the test utterance at the top hit.

7.2 Limitations of the Work

• We considered 5 iterations in an iterative framework for VTLN warping factor
estimation. As observed in Figure 4.5, the likelihood increases as iteration in-
creases. We need Dev query set to stop the iterations, which might not give the
optimal performance (MTWV) for Eval set.

• In mixture GMM posteriorgram, we considered fixed number of Gaussian com-
ponents. Several studies, such as, Dirichlet Process Gaussian Mixture Model
(DPGMM), Minimum Description Length (MDL) can be used to self-determine
the optimal number of Gaussian components, when modeling each broad
phoneme class. This might improve the design of posteriorgram and can avoid
overfitting.

• All the experiments are conducted on SWS 2013 and QUESST 2014. One of the
limitations of these data is they do not contain reverberant speech. However,
QbE-STD in reverberation and noisy environment definitely improves the ap-
plicability of the system in real-life settings.

• We presented the partial matching approach for the detection of the non-exact
query. The results for partial matching shows slight degradation for the case of
the exact query matching (Type-I query).

7.3 Future Research Directions

The future modification can be suggested from various aspects of subcomponents.
Few future research directions could be as follows:

1. Use of Language Recognition: In multilingual audio retrieval scenario, the us-
age of language identification (LID) provides additional information. The LID
scores can prune many hypotheses at first-level and hence, it can be useful in
search space reduction. In addition, it can also be useful as a side information
along with detection score [148, 149].
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2. User Interface and Deployment: The information technology (IT) development
demands rapid deployment of a user interface as to retrieval audio informa-
tion. Various applications can be thought, which exploits voice search that
includes spoken dialog systems [231]. In a practical system, the user feedback
can be used to generate the secondary (pseudo) query from the detection [232].

3. Use of signal processing for better audio representation : One can explore the pos-
sible signal information processing schemes to exploit voice source, vocal tract
and modulation information. It was observed that syllabic information is
prominent around the vowel onset location [233]. In fact, few studies have been
exploited the syllable nuclei at first level of audio search [234]. In addition, Hi-
erarchical Agglomerative Clustering (HAC) has been used for the segmenting
the speech signal in terms of phone-like units [121]. The future research efforts
can be directed towards exploiting region-specific VTLN warping factors [206],
to investigate their effect on the performance of QbE-STD tasks (the regions
formed by a division of frames of an utterance). In the present work, VTLN
warping is performed on the frequency-domain and hence, Jacobian compu-
tation is difficult, thus the objective function neglects Jacobian into considera-
tion. It would be interesting to observe the effect of Jacobian by considering
LT-VTLN as suggested in [202, 235].

4. Use of Signal Processing for Fast Audio Matching: DTW-based approach has
been widely used for QbE-STD system design. DTW takes more time as data
size grows, in particular, the number of comparison operation to execute the
search task for a query having length N frames and test utterance having
length M frames is of the order ofO(MN) using subsequence DTW. The signal
processing-based constraint might avoid few detection [97, 128]. Earlier, sylla-
ble nuclei and the syllable segmentation were explored to reduce the search
complexity. This is still an open area of research. In addition, we have not ex-
plored the advanced hardware, such as, Graphical Processing Units (GPU) to
parallelize of computation during searching the query [123, 124, 236].

5. Use of deep learning models: It has been analyzed that restricted Boltzmann Ma-
chines (RBM) [79] can learn the distribution of features and can form an al-
ternative representation of Gaussian posteriorgram. In addition, it was also
observed that deep belief networks could be used to modify the Gaussian pos-
teriorgram [80]. There is further scope to exploit unsupervised and supervised
models, such as, convolution network, a recurrent network for modeling the
speech data. Furthermore, weighted mean representation from Gaussian pos-
teriorgram can be useful to convert Gaussian posteriorgram representation to
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feature representation [97]. Recently, multilingual bottleneck features (BNF)
were used to capture the multilingual information into lower dimensional bot-
tleneck layer [237].

6. Other detection sources: Many times the performance QbE-STD depends only
on the DTW scores. Other detection evidences, such as, depth of the detec-
tion valley [37], SSM [146], PRF [226] and term-frequency vector [36] are ex-
pected to give the additional information, which might be useful for QbE-STD.
Many other pieces of evidences were exploited, such as, duration, a number of
phonemes, language recognition score, etc. in order to combine the scores for
improving the QbE-STD performance [60]. The use of LID can be very much
useful especially in the case of multilingual QbE search [149]. A potential fu-
ture work could be to remove the redundant features in the score-level fusion.
In addition, one can explore the data augmentation approaches [238] and query
expansion approaches [158] to improve the performance.

7. Non-exact query : DTW due to its monotonic property has to be modified to per-
form non-exact query matching task. Partial matching techniques were used
in [83,239], where multiple warping paths were used for backtracking. For non-
exact matching, query splitting approach into two bands or three bands were
employed in [148]. The study presented in [60] discusses the phoneme bound-
aries and approximation phoneme search. The major issue with all these ap-
proaches is their average performance. Each approach is specifically designed
for particular kind of partial matching. Hence, to combine the scores from var-
ious strategies without affecting the performance much, is still an open area of
research. That could be a possible reason for slight degraded performance of
Type-I query with proposed partial matching approach.

8. Query-by-Humming (QbH) : Consider a scenario where a person wants to re-
trieve a ringtone of a particular song. If a person forgets the correct lyrics and
words about this song, then the text-based information retrieval system cannot
be used here [182]. In that context, the QBH paradigm has been introduced to
perform music information retrieval (MIR) task [240]. The approaches used in
QbE-STD, such as, posteriorgram, DTW, etc. can be explored for QbH frame-
work as an independent research problem in its own right. Earlier, deriva-
tive DTW-based approach was used to retrieve Hindi humming songs with
humming query [241]. In addition, the progressive filter (PF) framework was
proposed to speed up the DTW computation for query-by-singing/humming
(QbSH) task in [242]. QbSH systems can also be extended to person-dependent
mode [182].
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Appendix A. TIMIT QbE-STD

TIMIT data contains training and testing sets. Spoken queries are taken from
the training set and testing set forms audio documents, where query needs to be
searched. TIMIT database contains good quality speech recording in American
English [243]. TIMIT dataset is used to perform ranked evaluation of QbE-STD
system, where QbE-STD system rank the utterance according to their relevance to
the query. The task is to retrieve the test utterances that contains the query rather
locating them in utterance.

This experimental setup neglects /sa/ sentences from TIMIT, which is com-
mon across all the speakers of TIMIT. Table A.1 shows the list of keywords used
for the experiments of QbE-STD in this thesis. #Train and #Test indicate the num-
ber of times query present in training (total examples) and testing set (total oc-
currences), respectively. We refer to this setup as Q-20. We have also considered
more number of queries in TIMIT QbE-STD. In this experimental setup, we have
used 84 queries that contains 7 to 20 occurrences in the testing dataset and having
at least six letters. Spoken queries are taken from the training dataset. We will
refer this to as Q-84. All the queries are distributed across all the speakers such
that at least one speaker contains at least one query.

Table A.1: List of keywords used in TIMIT QbE-STD. Inst. refers to total instances
of a query, Occ. refers to total number of occurrences

Keyword Inst. Occ. Keyword Inst. Occ. Keyword Inst. Occ.
Artists 7 7 Intelligence 8 7 Problems 5 7

Beautiful 3 8 Love 4 16 Shellfish 14 7
Birth 4 7 Marriage 3 7 Simple 8 8

Destroy 9 7 Meeting 7 7 Surface 3 7
Development 9 8 Morning 15 14 Tomorrow 3 7

Garbage 8 7 Ocean 7 7 Youngsters 7 7
Government 14 8 Organizations 7 7
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A.1 VTL-warped Gaussian Posteriorgram

This Section discusses the QbE-STD system developed for TIMIT dataset. The
TIMIT QbE-STD system performance is evaluated on p@N and MAP [7,43]. QbE-
STD systems with different posteriorgram representations are considered. Gaus-
sian posteriorgrams and VTL-warped Gaussian posteriorgrams are extracted on
64 mixture components. ASM models are built using Gaussian Component Clus-
tering (GCC)-based segment labeling as suggested in [96, 244]. Here, we consid-
ered 61 labels and performed VTLN using the Lee-Rose method using unsuper-
vised decoded ASM labels. To evaluate the clustering using ASM, we compute
clustering purity and Normalized Mutual Information (NMI) as defined in [96].
The clustering purity of ASM model for MFCC, PLP and MFCC-TMP is 0.386,
0.392 and 0.404, respectively, and NMI of MFCC, PLP and MFCC-TMP is 0.371,
0.373 and 0.383, respectively. It can be seen from Table A.2, the performance of
VTLN is better than the conventional Gaussian posteriorgram for each case.

The performance improvement using GMM-based VTLN warping factor esti-
mation is consistent with all the three cepstral representations. The performance
of MFCC-TMP is better than the MFCC and PLP. This might be because MFCC-
TMP exploits Teager Energy Operator (TEO) on the subband signal, which is a
different form of energy measure than the usual l2 norm (in the sense of compu-
tation) used (for short-time energy calculation) in MFCC.

The performance of GMM-based VTLN warping factor estimation is better
than the ASM. This can be explained as follows. The HMM-based framework re-
quires transcription in order to compute the likelihood and estimate VTLN warp-
ing factor, α (as per Eq.(4.2)). The warping factors in VTLN for short utterances
are not consistent because of incorrectly decoded transcriptions. This problem
is apparent for QbE-STD tasks due to the short duration of queries. It was ex-
pected that Lee-Rose VTLN warping factor estimation gave better performance.
However, study shows that Lee-Rose VTLN warping factor estimates are incon-
sistent across the same speaker in case of short utterances [191]. The reasons for
this can be explained as follows. The short duration of utterance contains very
fewer observation vectors, and the warping factor estimation depends on the
decoded transcription and hence, any error in decoded transcription affects the
VTLN warping factor estimation significantly. In GMM-based approach, VTLN
warping factor estimation depends on only the model parameters, not the tran-
scription. The estimates are much away in the case of HMM-based VTLN warping
factor estimation than the GMM-based VTLN warping factor estimation, which
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Table A.2: Performance of TIMIT QbE-STD systems for individual query example
for VTL-warped Gaussian posteriorgram.

Feature sets VTLN p@N MAP

MFCC

× 34.91 36.71
P 36.26 39.62

ASM-× 28.77 28.89
ASM-X 30.69 31.54

PLP

× 35.50 37.58
P 37.48 39.95

ASM-× 30.89 32.57
ASM-X 34.26 36.17

MFCC-TMP

× 40.03 41.50
P 42.88 45.52

ASM-× 30.41 31.29
ASM-X 31.94 32.00

(× = No VTLN, P= GMM-based approach, ASM-× = ASM No VTLN and
ASM-X=ASM with VTLN)

is shown in Figure A.1. The HMM-based approach for VTLN warping factor esti-
mation is not reliable for shorter duration utterances [193].

A.1.1 Effect of Number of Gaussians

It can be analyzed from Figure A.2 that an increasing number of mixture com-
ponents improves the performance of a QbE-STD system. This finding matches
a previous study reported in [53]. This might be because of the increasing num-
ber of clusters better represents the speech signal at the frame-level. However,
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Figure A.1: Probability density function (pdf ) of the difference between two VTLN
warping factor estimates of shorter and longer utterances from the same speaker:
(a) using the Lee-Rose (HMM-based) method, and (b) using the GMM-based
method.
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Figure A.2: Effect of the number of Gaussians on Q-84 TIMIT QbE-STD systems
on performance. (a) p@N, and (b) MAP. After [1].

increasing number of Gaussians demands additional processing and storage cost
and hence, we restrict our experiments till 128 number of clusters. In addition,
performance using the proposed approach is better than the Gaussian posterior-
gram. Hence, we will use 128 Gaussian components in GMMs in the next set of
experiments.

A.1.1.1 Effect of Local Constraints

Figure A.3 shows the performance of QbE-STD systems for different local con-
straints, namely, LC1, LC2 and LC3. It can be observed from Table A.3 that LC2

performs better than other local constraints (especially, relatively better jump in
performance from no VTLN case to VTLN for LC2), probably due to its ability to
capture a wide range of features along test utterances. For each local constraint,
it can be also observed that VTL-warped Gaussian posteriorgrams improve QbE-
STD performance over Gaussian posteriorgrams.

A.1.1.2 Effect of Number of Iterations in Proposed Iterative Approach

Figure A.4 shows the performance with various iteration index used in VTLN
warping factor estimation. It can be observed that performance improves as the
iteration index increases. After a certain number of iterations, performance satu-
rates that might be due to possible overfitting to training dataset.

A.1.2 Deterministic Annealing Expectation Maximization

(DAEM)
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Figure A.3: Effect of local constraints on TIMIT QbE-STD. (a) p@N for Q-20 TIMIT,
(b) MAP for Q-20 TIMIT, (c) p@N for Q-84 TIMIT, and (d) MAP for Q-84 TIMIT.
After [1].
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Figure A.5: Values of annealing factor (ζ)
at every iterations.

We experimented with DAEM-based
parameter estimation approach for
TIMIT Q-84 database (as discussed in
sub-Section 4.2.5.6). The values of ζ are
varied as shown in Figure 4.13. It can
be seen that performance of DAEM is
comparable to the EM. This might be
due to initial parameters that are set
from vector quantization (which are

the common for all two DAEM approaches, i.e., ζ1 and ζ2).

A.2 Mixture of GMMs

The results are reported in Table A.4 which clearly shows the significance of mix-
ture of GMMs posteriorgram over the traditional GMM posteriorgram. It can be
observed that the proposed approach of the mixture of GMM posteriorgram gave
more MAP scores than the GMM posteriorgram (indicating that proposed mix-
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Figure A.4: Effect of number of iterations in iterative VTLN warping factor esti-
mation on TIMIT QbE-STD. (a) p@N for Q-20 TIMIT, (b) MAP for Q-20 TIMIT, (c)
p@N for Q-84 TIMIT, and (d) MAP for Q-84 TIMIT. After [1].

Table A.3: Performance of DAEM on Q-84 TIMIT QbE-STD. After [1].

Feature
VTLN

EM DAEM (ζ1) DAEM (ζ2)
sets p@N MAP p@N MAP p@N MAP

MFCC × 33.70 34.84 33.72 35.04 33.72 35.07
X 37.95 40.40 37.77 40.41 37.84 40.39

PLP × 36.36 37.12 35.95 37.06 36.08 37.01
X 41.11 42.95 40.91 42.96 40.96 43.00

(× = No VTLN, X = VTLN)

ture of GMM approach has a good promise for the QbE-STD task). It is due to the
restriction imposed by broad phoneme posterior probabilities.

In order to investigate the effect of proposed mixture of GMM approach w.r.t.
various local constraints, we consider three local constraints (as shown in Figure
3.6). Figure A.6 shows the performance of mixture of GMMs vs. GMM poste-
riorgram for local constraints, LC1, LC2, and LC3. It can be observed that local
constraint LC2 gave better search performance than the local constraints for most
of the cases. The reasoning for this is given in sub-Section 3.6.
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Table A.4: Performance of proposed mixture of GMM (mixGP) posteriorgram for
TIMIT QbE-STD task in terms of (a) p@N, and (b) MAP (with local constraint LC2
and 128 Gaussian components)

Feature GMM Mixture of GMMs
Sets p@N MAP p@N MAP

MFCC 36.81 38.34 41.34 44.29
PLP 37.30 40.18 43.14 45.14

MFCC-TMP 40.99 42.59 41.87 43.52
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Figure A.6: Performance in MAP of mixture of GMM posteriorgram for (a) Q-20
TIMIT QbE-STD, and (b) Q-84 TIMIT QbE-STD (NG=Number of Gaussians).
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Appendix B. Miscellaneous Studies

B.1 Prosodically Guided Phonetic Engine

This work is done under the DeitY sponsored consortium project at DA-IICT, in
which author of this thesis was a project staff (during April 2012-June 2014). DA-
IICT team has collected speech data and other relevant metadata in two Indian
languages, namely, Gujarati and Marathi. These two languages are spoken mostly
in two states of India, i.e., Gujarat and Maharashtra, respectively. The data is
recorded in three different modes, namely, read, spontaneous and lecture modes.
The data has been collected using portable handy recorder (Zoom H4n) as most of
the data was recorded from remote villages and real field environments (i.e., real-
life settings). The recording was performed at 44.1 kHz sampling frequency with
16 bits/sample resolution. For the collection of Gujarati speech data, author of this
thesis along with other team member visited several places of Gujarat state to col-
lect speech data and other metadata. The places selected includes Gandhinagar
(Vavol, Paliyad), Navsari (Moti kakrad, Navsari), Surat, Anand (Umreth), Jam-
nagar (Vijarkhi, Mota thavariya), Rajkot, Bhavnagar (Chamardi, Bhavnagar) and
Kutch (Kera, Anjar). These places cover three dialectal regions of Gujarat state,
namely, Saurashtra, South Gujarat and North East Gujarat. For the collection of
Marathi speech data, other team member visited several places of Maharashtra
state. The places for both the states are mainly, Ahmedanagar (Kakti), Nanded
(Basmath), Latur, Solapur, Sangli (Vibhutvadi), Kolhapur (Ichalkaranji), Pune and
Lonavala. The places are shown by a circle around the surrounding region as
in Figure B.1. The places for data collection, experiences, observation and vari-
ous statistics related to phonetic transcription are discussed in [194, 245, 246]. The
followings are the observations found while transcribing the speech signal [246].

• Many times listener finds overlap across two phonetic symbols.

• Due to ambiguity between aspirated plosive and fricative sounds, tran-
scriber often get confused [245].

• Human perception of phonetic symbols at different-level is different. It
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(a) (b)

Figure B.1: Places of Gujarat and Maharashtra states. The circles indicate the
dialectal regions, where data has been collected. After [247, 248].

means that person may not recognize the same phonetic symbol at word or
syllable-level than at sentence-level. Thus, there are variation in perception
at various levels of speech sound units.

• Any two transcribers may not identify the exact the same phone and word
boundaries. Since human perception of hearing is subjective.

• Diacritic marks are very error prone in terms of an agreement between two
transcribers.

• In a lecture mode, speech subject tries to prolong the vowels in order to
create interest among listeners (Here, children of primary school are the lis-
teners mostly).

• In both the languages, diphthongs and associated vowels may be perceived
as two distinct vowels. Hence, the transcriber may mark as two different
syllables instead of a vowel.

The motivation behind the data collection is to capture the diversity in regional
languages in terms of recording modes.

B.1.1 Phonetic Engine (PE)

The objective here is to develop the resources from the spoken data and use it
for QbE-STD task. The manual transcription is performed on spoken data in Gu-
jarati and Marathi languages. This transcription along with spoken data is used
to build the phonetic engine (PE). The phonetic posteriorgram obtained by train-
ing is used as a representation of spoken documents and spoken query. As a
part of DeitY consortium project at DA-IICT, we built our in-house speech rec-
ognizer in Gujarati and Marathi languages. The objective was to annotate the
speech sounds into International Phonetic Alphabet (IPA) by listening the speech
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Table B.1: Phoneme recognition (% Correct) performance of MFCC and PLP in
classification of phonetic units for Gujarati and Marathi

Feature Sets G-R G-C G-L M-R M-C M-L
MFCC 67.11 62.37 59.84 59.19 49.81 39.64

PLP 66.89 62.75 60.18 60.36 48.82 41.76
G = Gujarati, M= Marathi, R = Read, L=Lecture, and C= Conversational

signal carefully. This is generally called as transcribing the speech signal. Since
IPA symbols are close to the production of speech signal, the output is production
units, which is called as phones (generally independent of languages of speech
signal). We built recognizer based on HMM statistical model. Since the speech
signal is represented in terms of phonetic symbols, the recognizer is referred to
as Phonetic Engine (PE). However, training is similar to conventional phoneme
recognizer [209]. Two different sets of feature vectors, namely, MFCC and PLP are
used in the development of PE. Phonetic units that are manually transcribed by
the transcribers are used to train HMMs for each phonetic unit using HTK (HMM
Toolkit) [180]. Since the speech signal is not aligned w. r. t. every phonetic sym-
bol, a flat start-based approach is employed. Five-state HMMs, which include
two non-emitting and three emitting states with single Gaussian model per state
are initialized. HMM embedded re-estimation is performed several times. Fi-
nally, the test data is decoded into a single phonetic string. No phone language
model (LM) is used here, since it is expected that consecutive phone sequence
might not capture effective information, which is derived from manual phonetic
transcription. The similar design procedure is used to develop PEs for both the
languages, namely, Gujarati and Marathi and for all the three recording modes
(namely, read, conversational and lecture). PE is designed using the two kinds of
feature sets, namely, MFCC and PLP and their performance in the three modes of
speech (as shown in Table B.1). Performance is evaluated in terms of % accuracy
and % correct detection [180]. From Table B.1, the performance for read speech
is observed to be better (in both Gujarati and Marathi databases) as compared to
the spontaneous speech and lecture speech. This may be due to the fact that read
speech has least prosodic variations, whereas lecture speech has higher variations
in intonation (and thus, speech prosody in general). In read speech, the speakers
are constrained by the given fixed text material and hence, there are less prosodic
variations, which is not the case in spontaneous and lecture speech.

Major misclassification happen with aspirated and non-aspirated forms of
consonants [249]. Most of the aspirated consonants are observed to be misclas-
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sified to their non- aspirated versions. This might be because of the same manner
and place of articulation. For example, most confusing aspirated consonants are
[b] - [bh], [Ù] - [Ùh], [d] - [dh], [g] - [gh], [k] - [kh], [p] - [ph] and [t] - [th]. The
basic difference between the aspirated and non-aspirated consonants is that in
aspirated ones, an aspiration occurs simultaneously with the voicing. The rea-
son for non-aspirated consonants being detected as aspirated ones might be the
presence of some noise followed by the consonant that is being detected as as-
piration. On the other hand, the aspiration part of aspirated consonants may be
missed leading to misclassification as non-aspirated. In addition, as most of the
Indian languages have phones followed by schwa (i.e., [@]), this results in confu-
sion for transcribers as to whether to put [@] or not and human errors take place.
It is observed from confusion matrix that schwa is confused with almost all the
phonemes and there have been a large number of insertions and deletions. This
type of misclassification can be reduced to a certain extent by improving and mak-
ing precise transcriptions. For very small occurrences, silence is detected as plo-
sive, such as, [ú], [t], [k], [p], etc. Presence of bursts might be detected due to the
presence of unavoidable noise in the real-field environment. It is found that most
of the times, vowel gets confused with vowels, such as, [A] gets confused with
[@], [E] and [o]; [E] gets confused with [i] and vice-versa; [o] gets confused with
[@] and [u]. In addition, plosive consonants get confused with plosive consonants.
For example, [t] gets confused with [ú], [d], [k] and [p]; [d] gets confused with [ã],
[b] and [g]; [b] gets confused with [d] and [g]. This is because of the short dura-
tions of plosive, which are not easily captured even though derivative (i.e, ∆) and
acceleration (i.e., ∆− ∆) coefficients are used to capture dynamics of vocal tract.
Fricatives get confused with other fricatives, such as, [z] gets confused with [Ã]
and [s] gets confused with [z] and nasals get confused with other nasals, such as,
[m] gets confused with [n]. Another observation is misclassification of fricative
[s] as aspirated consonants like [Ùh] and [ph]. Similar analysis is observed across
different phonetic representations.

B.1.2 QbE-STD system

To apply this GMM-HMM recognizer for QbE-STD, we estimated the likelihood
probability for each state associated with HMM and treated as a posterior proba-
bility of GMM (with uniform prior assumption) and then, we normalize the prob-
abilities for each frame vector. To reduce the dimensionality, we further summed
up all the state posterior probability into a single posterior probability for each
phonetic unit. This results into 37-dimensional posteriorgram vector.
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Table B.2: Performance (MTWV and Cmin
nxe ) of Phonetic Engine (PE) for SWS 2013

QbE-STD Task

PE Dev Set Eval Set
MTWV Cmin

nxe MTWV Cmin
nxe

G 0.0598 0.8792 0.0464 0.8902
M 0.0526 0.8977 0.0319 0.9089

G-M 0.0544 0.8822 0.0431 0.8934
G= Gujarati, M=Marathi, and G-M=Average
posteriorgram of Gujarati and Marathi.

Table B.2 shows the performance of phonetic engine (PE) for QbE-STD task
conducted on SWS 2013 data. The poor performance of QbE-STD might be be-
cause of an inability of Gujarati and Marathi PE to cover the phones of the lan-
guages that are preset in the SWS 2013 database (which is mostly African and
European). This might need verification of transcription as manual transcription
is error prone task and was performed by non-professional transcribers. QbE-STD
performance of Gujarati PE is better than the Marathi PE. This is due to the per-
formance (in terms of phone recognition) of Gujarati PE is better than the Marathi
PE as discussed in Table B.1.

B.2 Effect of Isolated Query vs. Query in Carrier

Phrase

The earlier studies have been subjective and tested the intelligibility of syllables
and words in isolation and within the carrier sentences [250,251]. The objective is
to investigate significance of embedding a query in a carrier phrase for automatic
recognition of words via template matching using DTW algorithm. For this, a
query word is matched with a reference word from a carrier phrase. The main
difference between a query spoken in isolation and in carrier phrase is the transi-
tion of articulatory features, such as, tongue position, velum position, etc. For the
query spoken in isolation, the articulatory features come into a particular position
for the production of query from the rest position. On the other hand, when a
query is spoken after another word, i.e., query is embedded in a carrier phrase, the
articulators are already in motion. This induces constraints in the production of
a word, which is not present when the articulators are at rest (as in the case of
production of isolated query). Though the query in a carrier phrase has effects
of coarticulation, the movement of articulators is constrained by the previously
spoken word (due to local coarticulation) and many words in the future (due to
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global articulation) and variations are less. This leads to lesser variations in acous-
tic features of query in carrier phrase than in the isolation.

The effects of coarticulation occur mostly at the beginning and the end of the
spoken words. These effects can be handled by removing certain frames of the
reference and query digits from the beginning and the end. Since the durations
of digits are not the same, frames are truncated w. r. t. % of the total number
of frames. Various experiments were performed to find the optimal % number
of frames to be truncated from the beginning and the end. In these experiments,
isolated queries are taken. Table B.3 shows the performance of template matching
with different % number of frames truncated from the beginning. It is observed
that for 10 % truncation of the frames from the beginning provides better perfor-
mance (in terms of % EER) than the case, where queries are taken from the carrier
phrases.

Table B.3: Performance for isolated queries truncated by different % number of
frames from the beginning (in % Precision and % EER).

Query Type % Truncation % Precision % EER
Carrier - 51.31 24.94

Isolation - 45.40 29.40
Isolation 5 52.88 23.39
Isolation 10 52.74 23.22
Isolation 15 51.08 24.13
Isolation 20 48.05 25.86

B.3 Non-uniform Frequency Warping Approaches

We explore universal frequency warping in two spectral features, namely, Scale
Transform Cepstral Coefficients (STCC) and Warped Linear Prediction Cepstral
Coefficients (WLPCC) in order to develop speaker-invariant features for audio
search task. STCCs compensate for the differences in Vocal Tract Length (VTL)
using log-warping. WLP coefficients (WLPC) are easily obtained by Levinson-
Durbin algorithm using warped autocorrelation function. Bark scale-warped LP
spectrum is obtained by the WLPCs. Cepstral features are obtained by taking
DCT of logarithm of the warped spectra [252]. The detailed procedure of STCC
and WLPCC feature extraction is shown in Figure B.2.

The overall performance of the audio search system is shown in Table B.4. It
can be observed that the VTLN-based feature sets, namely, STCC and WLPCC
perform better than the MFCC alone. About 3 % absolute improvement can be
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Figure B.2: Schematic block diagram for feature extraction of (a) STCC and (b)
WLPCC. After [199, 227].

Table B.4: Experimental results of non-uniform frequency warping features for
TIMIT QbE-STD task. After [253]

Feature Sets p@N %EER Feature Sets p@N
MFCC 24.65 25.30 MFCC-fused 40.17
STCC 27.98 23.73 STCC-fused 44.68
WLPCC 27.13 23.25 WLPCC-fused 41.29

observed using STCC and WLPCC features. In Table B.4, the performance of each
isolated query of each feature sets are mentioned as MFCC, STCC, and WLPCC,
respectively. In addition, distortion score from the same query is fused. This
will improve the statistical confidence about the query detection task. The fused
features are called as MFCC-fused, STCC-fused and WLPCC-fused, respectively.
From Table B.4, it can be observed that the fusing of multiple evidences indeed
improves the audio search performance for all these three feature sets. The aver-
aging of distortion score is used as fused score. 5th column of Table B.4 shows the
performance using fused score improves.

B.4 QbE-STD System for Gujarati Language

In this Section, we present the results of VTL-warped Gaussian posteriorgram and
mixture of GMMs posteriorgram for our in-house database. This dataset contains
1400 test utterances (duration is about 3 hours). We have used 25 queries spoken
by the two speakers (one male and one female) in the experimental setup. Table

Table B.5: The list of queries used in Gujarati QbE-STD

agaNAnevu kudaratI taMdurastI paMchataMtra mahadaaMshe
asafaLatA gAjara turiyA paMchyAshI ratALu

Adato jamarukha temaNe paushhTIka saMgharshha
OgaNapachAsa TAmeTA duraMdeshI filosofI sItAfaLa

kArelA tarabucha nAnapaNa magafaLI svAdIshhTa
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Table B.6: Experimental results for Gujarati QbE-STD

Feature p@N MAP
Sets GP VTL-warp mix GMM GP VTL-warp mix GMM

MFCC 16.71 22.10 22.12 14.93 21.86 19.76
PLP 17.70 23.36 24.41 17.34 24.89 24.99

MFCC-TMP 19.02 24.19 23.73 18.31 23.36 22.47

B.5 shows the list of 25 queries used in Gujarati QbE-STD. Table B.6 shows the
results of Gujarati QbE-STD for ranked evaluation task. It can be shown from
the Table B.6 that the performance of mixture of GMM and VTL-warped GP out-
performs GP. The average p@N is increased by 5.4 % and 5.6 % for VTL-warped
GP and mixture of GMMs posteriorgram, respectively. Thus, the results confirms
VTL-warped GP and mixture of GMM posteriorgram are better audio representa-
tion than the GP for QbE-STD task.
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Appendix C. Frequency Warping

There are many ways to incorporate warping in feature extraction. In VTLN prob-
lem formulation, the first problem is to define warping relation between source
and target spectrum and then estimate the warping factor (i.e., amount of warp-
ing (compression or dilation)). It is very difficult to know the exact warping rela-
tion between both the spectra. Mostly linear or piecewise linear warping relation
is considered. The primary motivation behind using piecewise linear relation is
due to the fact that warping relation across different frequency bands is found to
behave differently. Hence, it is better to approximate in terms of piecewise linear
relationship. The second task is to estimate warping factor, which is estimated in
the feature domain instead of frequency-domain. It means that warping relation
across the frequency points is well exploited in terms features in mel-warped tri-
angular filters. Hence, mel filterbank is modified in order to capture these warp-
ing relation into it.

C.1 Time-Resampling

The time scaling property suggest that the scaling in time, means changing
sampling rate compresses or expands the spectrum [254]. In particular, for a
continuous-time signal,

x(t) F
←→

X( f ), (C.1)

x(at) F
←→

1
|a|X

(
f
a

)
. (C.2)

Thus, resampled version of the signal can be used for different warped feature
computation xα

t .

C.2 Filterbank Modification

There can be possibilities to design filterbank, which are used in feature extraction
[255]. This can be done by changing the frequency relationship by introducing
warping factor into the conventional auditory frequency scales, namely, mel and
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Bark scale. Bark scale is originally defined as [55]:

B( f ) = 6 ln

(
f

600
+

(
(

f
600

)2 + 1
)0.5

)
. (C.3)

That can be modified in warped frequency-domain by considering new scale,

Bα( f ) = 6 ln

(
f

α600
+

(
(

f
α600

)2 + 1
)0.5

)
. (C.4)

Similarly, mel scale is originally defined as [256]:

M( f ) = 2595 log10

(
1 +

f
700

)
. (C.5)

That can be modified in warped frequency-domain by

Mα( f ) = 2595 log10

(
1 +

f
700α

)
. (C.6)

Bandwidth Issue in Filterbank design: For lower warping factor, subband
filters are stretched away. In this case, the last filter crosses the bandwidth or
Nyquist frequency, which leads to the aliasing effect due to violation of condition
given by Shanon sampling theorem. Hence, a cutoff frequency is introduced to
overcome such cases, where these exceeding frequency components are mapped
to the Nyquist frequency. In this thesis work, we set higher cutoff frequency as
3500 Hz, and 7000 Hz corresponding to sampling frequencies of 4000 Hz, and
8000 Hz, respectively.
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Appendix D. Flowchart of Vector Quantization

Figure D.1: Flowchart of K-means vector quantization (VQ) [184]. Nclust is the
number of desired clusters (codebook vectors). ε = 0.2 constant and mean µ and
standard deviation σ is per dimension with data uncorrelated assumption.
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Appendix E. Selection of Operating Threshold θ in

TWV

The objective of QbE-STD is to maximize Term Weighted Value (TWV). Since
Pmiss(q, θ) and Pf a(q, θ), the selection of θ is made by maximizing TWV on the
Dev set. As θ increases, Pmiss(q, θ) increases, whereas Pf a(q, θ) decreases. We se-
lect θ that maximizes TWV, i.e., TWV(θ) = MTWV. This threshold is optimal
threshold, θopt. Now, threshold θopt is used to evaluate the performance of eval-
uation set and TWV at θopt is called as Actual TWV (ATWV). It is expected that
ATWV should be very much close to the Maximum TWV (MTWV) indicating the
well optimized QbE-STD. Table E.1 shows the ATWV and MTWV for CZ poste-
riorgram and θopt at which TWV is maximum. From Dev set, optimal threshold
θopt is obtained, which is 1.552. The TWV performance of Eval set at θ = 1.552,
i.e., ATWV is 0.339. However, the MTWV is 0.342, which is obtained at θ = 1.512.
The TWV and threshold for Dev and Eval sets are plotted in Figure E.1.

Table E.1: TWV values for Dev and Eval sets
Query set MTWV ATWV θopt

Eval 0.375 0.375 1.552
Dev 0.342 0.339 1.512

0 2 4 6 8 10 12

−0.2

0

0.2

0.4

0.6

0.8

Threshold (θ)

D
et

ec
tio

n 
P

er
fo

rm
an

ce

 

 
P

fa

P
miss

TWV
MTWV

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

Threshold (θ)

D
et

ec
tio

n 
P

er
fo

rm
an

ce

 

 
P

fa
P

miss

TWV
MTWV
ATWV

(a) (b)

Figure E.1: The selection of optimal threshold θ optimizing TWV: Detection per-
formance for (a) Dev set, and (b) Eval set.

173





Appendix F. Role of β in TWV

Consider the following notations for defining the Term Weighted Value (TWV):
q = query, t = test utterance, θ = threshold,
Nact(q) = number of actual occurrences for a query q,
Nnt(q) = number of non-targets (non-occurrences)for a query q,
Nmiss(q, θ) = number of misses at a given threshold θ for a query q,
N f a(q, θ) = number of false alarms (false acceptances) at given threshold θ for a
query q,
Pf a = probability of false alarm (false acceptance),
Pmiss = probability of miss detection,
ntps = number of targets per second, which is taken as 1,
Taudio = total duration of audio documents in seconds,
CDet = Detection Cost Function (DCF),
CDe f ault = Default trivial value of DCF,
CNorm = Normalized value of DCF,
Cmiss = Cost associated with miss detection,
C f a = Cost associated with false acceptance (false alarm),
Ptarget = prior probability of target trial.

The number of non-occurrences, Nnt(q), are spread across the speech and
hence, it is not explicitly defined. The total number of virtual targets are
N = ntpsTaudio and hence, Nnt(q) = N − Nact(q).

Pf a =
N f a(q,θ)
Nnt(q)

, Pmiss =
Nmiss(q,θ)

Nact(q)
.

DCF value, i.e., CDet as per NIST 2010 Speaker Recognition Evaluation [257]:

CDet = CmissPmissPtarget + C f aPf a(1− Ptarget). (F.1)

Consider the trivial cases of accepting all the hypothesis or rejecting all the hy-
pothesis:

CDe f ault = min

CmissPtarget,

C f a(1− Ptarget).
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Figure F.1: Impact on TWV for different β.

For trivial system that reject all the hypothesis, i.e., CDe f ault = CmissPtarget

CNorm =
CDet

CDe f ault
. (F.2)

Using Eq.(F.1),

CNorm = Pmiss +
C f a(1− Ptarget)

CmissPtarget
Pf a. (F.3)

Intuitively, TWV is given by TWV = 1− CNorm. The parameter β is defined as :

β =
C f a(1− Ptarget)

CmissPtarget
. (F.4)

For MediaEval 2013 SWS, Ptarget = 0.00015, C f a = 1, Cmiss = 100, so β = 66.66.
TWV for query q and threshold θ is:

TWV(θ) = 1− 1
|Q|∑q

(
Pmiss(q, θ) + βPf a(q, θ)

)
. (F.5)

As per eq. (F.5), TWV is function of (Pmiss(q, θ) and Pf a(q, θ), where β is kept
constant. β and θ are independent. We conducted QbE-STD task on SWS 2013
Dev set using on CZ phonetic posteriorgram (BUT phoneme recognizer in Czech
language). The plot of Pf a and Pmiss w.r.t. threshold (θ) is shown in Figure F.1. It
can be seen from Figure F.1 that Pmiss increases as θ increases, Pf a increases as θ

increases. Pmiss and Pf a are dependent on threshold θ. As indicated by Fig. F.1
that the value of Pf a is much lower, so β emphasizes the Pf a. In order to compute
TWV, we considered different β in eq. (F.5), i.e., β = 40, 66.66 and 100. The
Maximum TWV (MTWV) are different for different values of β. At the same time,
the optimal value of Pmiss and Pf a are different.
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