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Abstract

Real-world data such as weather data, seismic activity data, sensor networks data

and social network data can be represented and processed conveniently using a

mathematical structure called Graph. Graphs are a collection of vertices and edges.

The relational structure between the vertices can be represented in form of a ma-

trix called the adjacency matrix. A Graph Signal is a signal supported on a given

graph. The framework of processing of signals on graphs is called Graph Signal

Processing (GSP). Various signal processing concepts (e.g. Fourier Transform, fil-

tering, translation, downsampling) need to be defined in the context of graphs.

A common approach is to define a Fourier Transform for a graph (called Graph

Fourier Transform - GFT), and use it to define other signal processing concepts.

There are two popular approaches to define GFT for a graph: 1) using Graph

Laplacian 2) using adjacency matrix. In the first method, GFT is interpreted as

expansion of a given signal in the eigenvectors of the Graph Laplacian. The sec-

ond method, i.e., using the adjacency matrix, results in an algebraic framework

for graph signals and shift invariant filters.

In the study of Graph Signal Processing, we often encounter signals which are

smooth in nature. Such signals, which have low variations, can be represented

efficiently using samples on fewer number of vertices. The process of selecting

such vertices is called graph downsampling. As graphs do not exhibit a natural

ordering of data, selection of vertices is not trivial.

In this thesis, we analyze a class of graphs called Bipartite Graphs from down-

sampling perspective and then provide a GFT based approach to downsample

signals on arbitrary graphs. For bandlimited signals on a graph, a test is provided

to identify whether signal reconstruction is possible from the given downsampled
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signal. Moreover, if the signal is not bandlimited, we provide a quality measure

for comparing different downsampling schemes. Using this quality measure, we

propose a greedy downsampling algorithm. The proposed method is applicable

to directed graphs, undirected graphs, and graphs with negative edge-weights.

We provide several experiments demonstrating our downsampling scheme, and

compare our quality measure with other existing measures (e.g. cut-index). We

also provide a method to assign adjacency matrix to the downsampled vertices

using an analogy from the bipartite graphs.

We also examine the concepts of homomorphism and isomorphism between

two graphs from signal processing point of view, and refer to them as GSP-isomorphism

and GSP-homomorphism, respectively. Collectively, we refer to these concepts

as Structure Preserving Maps. The fact that linear combination of signals and

linear transforms on signals are meaningful operations has implications on the

GSP-isomorphism and GSP-homomorphism, which diverges from the topolog-

ical interpretations of the same concepts (i.e. graph-isomorphism and graph-

homomorphism). When Structure Preserving Maps exist between two graphs,

signals and filters can be mapped between them while preserving spectral prop-

erties. We examine conditions on adjacency matrices for such maps to exist. We

also show that isospectral graphs form a special case of GSP-isomorphism and

that GSP-isomorphism and GSP-homomorphism is intrinsic to resampling and

downsampling process.
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CHAPTER 1

Introduction

A significant amount of research in the field of Digital Signal Processing (DSP)

is focused on processing regularly sampled signals such as speech, audio, image

and video. We refer to this body of work by the phrase Classical Signal Processing

(CSP). Key concepts involved in CSP framework include Discrete Fourier Trans-

form (DFT), filtering, downsampling, multirate signal processing, multiresolution

analysis, and others [25].

Despite the wide scope of the CSP framework, there exist real-world data,

which can not be represented suitably in the CSP framework. Examples of such

data include weather data, seismic activity data, sensor networks data, social net-

work data, transportation data etc. Graph provides an appropriate model to rep-

resent such data. Given the large scope of applications [36], analysis and process-

ing of signals on graph is important. For signals on graphs, there is no natural

ordering of the samples, rather the inter-relations between them are important.

Defining concepts such as shift, Fourier transform, convolution, downsampling

and wavelets is not trivial and diverges from similar concepts for classical signal

processing.

A graph is a collection of vertices with a given relation structure between the

vertices. Graphs are represented using a set of vertices (also called nodes) and

edges. The edges of a graph provide the relation between vertices and it can

be represented by a matrix called the graph adjacency matrix. For a graph with

N nodes, the adjacency matrix is an N × N matrix with entries representing the

edges of the graph. To understand adjacency matrix structures, we consider some

examples of social networks. Consider a social network where every individual is
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represented by a vertex and existence of an edge between to vertices indicates that

the two individuals are friends (e.g. Facebook). In this graph, every existing edge

has identical weight. Such a graph is called an unweighted graph. Thus, for an

unweighted graph, the adjacency matrix has binary entries (1 representing pres-

ence of an edge, 0 representing absence). If the aforementioned friendship social

network also has levels of friendship (e.g. acquaintance, colleague, close friends,

etc...), we require the edge to have multiple values, which can be represented as

a real number called edge-weight. If we require to model connections where two

individuals are negatively connected (e.g. two people having different ideologi-

cal leanings), negative edge-weights may also be required. Whether weighted or

unweighted, the friendship social network graph described is still undirected, as

the edge is defined by a property that is identical in either direction, i.e., person A

being friends with B is same as person B being friends with A. For an undirected

graph, the adjacency matrix is symmetric. In some other networks, the relation

may be directed. For example, a social network where the defining relationship

is ’follow’ (e.g. Twitter). If person A is following person B, it does not necessar-

ily mean that person B is also following person A. Thus giving rise to directed

graphs. For further details on graphs, refer [5].

Traditionally, spectral properties of graph signals are derived using graph Lapla-

cian, which is defined for undirected graphs. The study of eigenvalues and eigen-

vectors of graph Laplacian is called Spectral Graph Theory [9]. The eigenvectors of

graph Laplacian are useful in examining some topological properties of a graph.

The eigenvector associated with the second smallest eigenvalue is called the Fiedler

Vector, and it is used in partitioning of graphs [26]. An approach presented in [32]

indicates that the spectral analysis of graph signals can also be carried out effec-

tively using the graph adjacency matrix. This approach allows us to work with

signals on directed graphs, which is not possible with Graph Laplacian based ap-

proach. The adjacency matrix based processing on graphs result in an algebraic

structure, which connects the graph signal processing theory with Algebraic Sig-

nal Processing theory [29]. CSP can be viewed as a special case of Graph Signal

Processing with an appropriate choice of adjacency matrix [29] [27] [32].
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In this chapter, we review algebraic signal processing and graph signal pro-

cessing frameworks. We discuss the problem of downsampling of signals on

graphs and review some existing methods of graph downsampling. We also dis-

cuss structure preserving maps on graphs. Then, we summarize the contributions

of the thesis.

1.1 Background

In this section, we review the Graph Signal Processing framework. We define sig-

nals and filters on graph, and discuss popular approaches for defining the Graph

Fourier Transform (GFT) and provide a brief introduction to algebraic signal pro-

cessing on graphs.

As noted earlier, a graph is the collection of vertices and edges. A graph G is

denoted as (V , A), where V is the set of vertices {v1, ..., vN} (we assume the order

as mentioned) and A is the graph adjacency matrix which provides the relation

structure between the set of vertices. While the order of the vertices is necessary

for representation, it has no effect on the inter-relations between the vertices1. For

adjacency matrix A, each element ai,j is the weight connecting vertex vj to vertex

vi. The degree di of a vertex vi is defined as the sum of all the edge-weights

connecting to vi. For undirected graphs, Graph Laplacian is defined as L = D− A,

where D is a diagonal matrix with ith diagonal entry being the degree of vertex

vi. The Normalized Graph Laplacian is defined as Ln = D−1/2LD−1/2. A graph

signal on a graph G is defined as the vector s̄ = [s1, s2, · · · , sN]
T, where si is a

scalar value on vertex vi. Thus a signal s̄ can be viewed as an element in CN.

Figure 1.1 shows a sample graph along with a signal on the graph. With the

given definitions of graph signal and graph adjacency matrix, we now discuss

two popular approaches used to define the Graph Fourier Transform.

Graph Laplacian Based GFT: In CSP, the Fourier Transform of a signal can be

viewed as expansion of the signal into the eigenvectors of Laplacian. Analogously,

Graph Laplacian can be used to define the Graph Fourier Transform for a given

1If we change the vertex order using a permutation matrix P, then the adjacency matrix changes
to PAPT .
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Figure 1.1: (Top) A sample graph with 10 vertices. (Bottom) A signal on the given
graph

undirected graph. Thus, expanding a graph signal in terms of eigenvectors of

graph Laplacian can provide a way to determine the GFT. Since Graph Laplacian

is a symmetric matrix, it is always diagonalizable, and thus eigenvectors span the

entire signal space. Specifically, given Graph Laplacian L and its diagonalization

VΣVT, where Σ is a diagonal matrix and V is an orthogonal matrix, VT is the

designated Graph Fourier Transform based on Laplacian, denoted by GFTL. Columns

of matrix V are the eigenvectors of L, which are the basis for GFT representation

of a graph signal. Alternatively, Normalized Graph Laplacian can also be used

in place of Graph Laplacian in order to obtain GFT, which is denoted as GFTN.

In the case of GFTL and GFTN, the ascending frequency order corresponds to the

ascending order of the respective eigenvalues (which are all real). Note that both

these approaches of defining GFT are applicable only in case of undirected graphs.

Graph Adjacency Matrix Based GFT: As the Graph Laplacian based approach

is limited to undirected graphs, adjacency matrix based approach is also used in

graph signal processing. In CSP, the Fourier Transform can be viewed as expan-

sion of a signal in terms of the eigenvectors of the shift operator. Thus, for adja-
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cency matrix based approach, the adjacency matrix is axiomatically designated as

the shift operator for a given graph. Unlike Graph Laplacian, the adjacency matrix

is not always diagonalizable, thus the eigenvectors may not span the entire sig-

nal space. Following [32], we use the Jordan Normal Form (JNF) and generalized

eigenvectors in order to define the GFT. Let A = V JV−1 be the Jordan Canonical

Decomposition, with J being the Jordan Canonical Form for the adjacency ma-

trix. In this case, V−1 is designated as the Adjacency matrix based Graph Fourier

Transform, denoted as GFTA.

Once we obtain the Graph Fourier Transform in form of a matrix F, the GFT

of a graph signal s̄ can be computed using Fs̄. In this thesis, unless specified,

we assume Adjacency Matrix based GFT. We now elaborate the adjacency matrix

based approach and the algebraic structure related to the same.

1.1.1 Algebraic Signal Processing Theory

Traditionally, linear signal processing (i.e. processing of signals using linear trans-

forms) has been studied and explored in the light of vector spaces. In this tra-

ditional model, the signals are modeled as vectors and linear systems (also re-

ferred to as filters) are modeled as linear operators operating on these vectors.

This interpretation provides tools to design, implement and analyze various sig-

nal processing systems. A recently proposed algebraic interpretation of linear

signal processing called Algebraic Signal Processing Theory [27, 29] (abbreviated

as ASP) explores algebraic structures [17] present in the interplay of signals and

linear systems such as algebra, module and isomorphism between them. This ab-

straction provides us with generalized notions of z-Transform, Fourier transform,

spectrum, frequency response, convolution etc.

We focus on Linear and Shift-Invariant systems, which are referred to as LSI

systems. The concept of shift-invariance requires a shift operator to be defined

on the signal space. With a given shift operator, any filter that commutes with

the shift is called a shift-invariant filter. The set of LSI filters allow for addition,

multiplication and scaling of filters. Thus, it exhibits the structure of algebra. In

addition, the algebra of filters can be generated using the shift operator. The alge-
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bra of LSI filters is denoted as A. Similarly, the space of signals is a vector space.

Moreover, the signals can be operated upon by the LSI filters. Thus, the space of

signals can be modeled as A-module of the algebra of filters2. It is denoted asM.

A one-to-one and onto mapping Φ is the generalized z-transform which maps the

signal vector space to the module. The triplet (A,M, Φ) is called the algebraic

signal model.

Each signal model has its own notion of Fourier transform. For example, in

ASP framework, both DCT and DFT are Fourier Transforms which correspond to

two different shift operators. In traditional discrete-time signal processing, signals

are represented as vectors and systems as matrices. Linearity and shift-invariance

makes the matrix representation of the system to be circulant. The DFT, in case

of finite discrete-time signals, is simply a change of basis. The DFT changes the

basis in such a way that the circulant matrix (representing the system) is diago-

nalized. This diagonalization of the matrices, converts convolution (or circulant

matrix multiplication) to point-wise multiplication (multiplication between diag-

onal matrices). In the ASP framework, the Chinese Remainder Theorem is used to

obtain the Fourier Transform. Example 1 explains the algebraic signal processing

model for a periodic discrete signal.

Given an algebra A and corresponding A-module M, if M′ ⊂ M is such

thatM′ is also an A-module, thenM′ is called an A-submodule. Note that the

empty set and the setM are always submodules, hence a proper submodule is a

submodule besides the two. If a submodule does not have any proper submodule,

then it is called an irreducible submodule. Every one dimensional submodule is

an irreducible submodule. The irreducible submodules of a given module pro-

vide a way to define the Fourier Transform in the algebraic framework. It is pos-

sible to represent the signal moduleM as a direct sum of irreducible submodules

Mω. This decomposition is called the Fourier Transform. In [31] [30] [42] [28],

the algebraic signal processing models are used to obtain Cooley-Tukey [10] type

2It must be emphasized here that every vector space is also a module. However, the space of
signals is a vector-space with respect to the field of scalars. At the same time, it is an A-module
with respect to the algebra of the LSI filters.
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algorithms for various spectral transforms.

Example 1. Consider a periodic sequence s̄ with period N = 6, i.e., s̄ ∈ C6. Let

the shift operator on the signal space be defined as a unit periodic shift operator

(denoted as D). Thus, given s̄ = [s0, s1, · · · , s5]
T, the unit-shift on s̄ produces

Ds̄ = [s5, s0, s1, · · · , s4]
T. In matrix form, the shift operator is given by

D =



1

1

1

1

1

1


It can be seen that any arbitrary signal s̄ = [s0, · · · , s5]

T can be written as s̄ =

Σ5
i=0siDi δ̄, where Di is i−fold shift and δ̄ is the usual discrete impulse sequence.

Similarly, any LSI filter can also be written as a polynomial in D, i.e., filter H =

h(D). The shift operator D is generator of the algebra of all the LSI filters. Using

mapD 7→ x, signal s̄ and LSI filter H can be mapped to polynomials s(x) and h(x)

respectively. Filtering can be performed as h(x)s(x)mod mD(x), where mD(x) =

x6 − 1 is the minimal polynomial of D. In this example, A =M = C[x]/mD(x).

It is possible to view the signal model presented here as a graph by desig-

nating the shift operator as the adjacency matrix. The graph representation thus

obtained is shown in Figure 1.2. Each vertex is weighted by a polynomial, which

is used to convert a given signal into a polynomial. It should be noted here that

the matrix that diagonalizes D, is the DFT matrix. Thus the graph presented in

Figure 1.2 has the DFT as its GFT. This example explains how to map signals and

LSI filters onto polynomials. This principle is extended for arbitrary graphs in the

next subsection.

1.1.2 Algebraic Graph Signal Processing

Let us review some important results related to algebraic signal processing on

graphs, which will be useful in later chapters. The results are summarized for a

7



x0 x1 x2 x3 x4 x5

Figure 1.2: 1-D Uniform Directed Graph And Weighting Polynomials

graph G = (V , A) with |V| = N. Detailed discussion on the results along with

proofs can be found in [32, 34]. This approach rests on the foundations of alge-

braic signal processing theory (ASP) described in [27, 29]. The following proposi-

tion (refer Proposition 12.4.1 in [18] for a proof) is useful in deriving the algebraic

structure of graph filters.

Proposition 1 Given H, A ∈ CN×N such that HA = AH, then H can be represented

as a polynomial in A provided that the characteristic and minimal polynomials of the

matrix A are identical. We can write H = p(A), where p(x) is a polynomial of degree at

most N − 1.

We summarize the important results (along with assumptions) required for

the thesis, below.

1. The adjacency matrix A is designated as the shift operator. The character-

istic polynomial of A is denoted by pA(x) while the minimal polynomial is

denoted by mA(x). Here, we will assume that mA(x) = pA(x) 3.

2. A matrix H ∈ CN×N represents a linear transform (or filter) that operates

on a given graph signal. If a filter H is shift-invariant, then HA = AH.

Using Proposition 1, all Linear and Shift Invariant (LSI) filters can be ex-

pressed as polynomials in adjacency matrix A assuming mA = pA. Let

A = C[x]/pA(x), the set of polynomials in x with multiplication defined

as modulo-pA(x). Let F be the space of filters. As stated earlier, given

a shift-invariant filter H, it can be represented as a polynomial in A (as

mA(x) = pA(x)), i.e. H = h(A), where h is a polynomial. Now, using

the map A 7→ x, we get H = h(A) 7→ h(x), and thus, F ∼= A (read as, F is

isomorphic to A). This isomorphism is called the graph z transform.

3The case where mA(x) 6= pA(x) can be handled as described in [32]
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3. As noted earlier, given the Jordan Normal Form of adjacency matrix A as

V JV−1, the matrix V−1 is the GFT for the given graph. The spectrum of a

signal s̄ is computed as V−1s̄.

4. The signal space S is isomorphic to anA−moduleM given byM = C[x]/pA(x) =

{s(x)|s(x) = ∑N−1
n=0 snbn(x)} where s̄ = (s0, ..., sN−1) 7→ s(x). Here bn(x) are

polynomial basis which can be computed using adjacency matrix. Thus ev-

ery vertex of the graph is weighted by a polynomial which allows a signal to

be represented in form of a polynomial. If the eigenvalues of A are distinct,

then for a signal s̄ 7→ s(x), the spectrum is given by (s(λ0), ..., s(λN−1)),

where λis are eigenvalues of A.

5. If signal s̄ 7→ s(x) is filtered by H 7→ h(x), then filtered signal s̃ = Hs̄ 7→ s̃(x)

is given by, s̃(x) = h(x)s(x) mod pA(x).

In order to obtain the frequency ordering, we use Total Variation (TV), defined

in [34] as follows. For a given graph G,

TVG(s̄) = ‖s̄− Anorm s̄‖1,

where Anorm = 1
|λmax|A is the normalized shift operator and |λmax| is the max-

imum of the absolute eigenvalues of matrix A. This definition is derived us-

ing analogy from classical signal processing where Total Variation of a signal is

defined as the absolute sum of the first order difference of a given signal, i.e.,

TV(s̄) = ‖s−Ds̄‖1, where D is the shift operator for CSP. Under the assumption

that λmax = ‖A‖2, normalization of A avoids the attenuation/amplification of the

signal while shifting. This assumption is true in case of undirected graphs. If a

signal has a higher total variation, it is considered to have larger high frequency

content than a signal with lower total variation. For an eigenvector ē of matrix

A with eigenvalue λ, the total variation is given by |1− λ
|λmax| |‖ē‖1. Thus eigen-

vectors of A can be ranked using the corresponding eigenvalues. This provides a

frequency order on the GFT. A convention is to order the eigenvectors in ascend-

ing order of frequency.
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We now introduce the central problem considered in the thesis, that of down-

sampling graph signals. Following this, we discuss relations between graphs from

a signal processing point of view.

1.2 Downsampling of Signal on Graphs

With the graph signal processing framework defined, we proceed to the prob-

lem of downsampling of signals on graphs, which forms a key part of the thesis.

Often, we encounter signals on graph which are smooth in nature. Due to lower

amount of total variation, such signals exhibit low-pass behavior in spectral do-

main. When a graph signal does not contain frequency content above a certain

cut-off frequency, it is called a bandlimited signal. If the graph signal is bandlim-

ited, it can be reconstructed from fewer samples in vertex-domain. The process

of finding the collection of vertices which can reconstruct the original signal is

called graph downsampling (other phrases referring to similar process include graph

coarsening [12, 19] and site percolation [14]). Graph downsampling can be used for

compression and as a building block for multiresolution analysis for signals on

graph [15].

Downsampling of an arbitrary graph with respect to bandlimited signals di-

verges from CSP and its downsampling process. In CSP, there is an ordered set of

vertices, and the downsampling process amounts to selecting every alternate ver-

tex from the given set of vertices. From a spectral perspective, the selection of ev-

ery alternate vertex results in folding of spectrum exactly by a factor of two. If the

signal is bandlimited with upper-half of frequency content absent, then spectral

folding does not introduce any aliasing. Thus, any signal which has no spectral

content on the upper-half of the frequency spectrum can be recovered from the

downsampled vertices without any error. Thus the spectral view of the signal co-

incides with the topological view in case of classical signal processing. Downsam-

pling on graph, however, differs from the traditional view in both the domains

(the vertex domain and the spectral domain). This is because of the fact that a

graph does not provide any topology in which the vertices are ordered (except in

10



special cases), hence selecting every alternate vertex is not a meaningful operation.

Moreover, the spectrum of a graph (i.e. eigenvalues of Laplacian/adjacency ma-

trix) does not necessarily show symmetry, indicating that the spectral-folding phe-

nomena is not the same as that in classical signal processing. Another challenge

in downsampling on graphs is how to determine the inter-relations among the re-

duced set of vertices. The determination of new adjacency relation in the reduced

graph is essential to obtain a multi-resolution decomposition on graph [11,24,43].

In this thesis, we analyze the downsampling process on bipartite graph using

algebraic signal processing theory on graphs. In Chapter 3, we obtain a sampling

scheme for an arbitrary graph which takes into account the spectral properties of

the graph in order to downsample signals. The approach presented can be applied

to both directed as well as undirected graphs. In case the signal is not bandlim-

ited, we provide a measure that allows to choose a scheme with minimum recon-

struction error. We provide a greedy algorithm to solve the optimization problem

and analyze the methods to improve the computational complexity of the algo-

rithm. Using similar approach, we provide a method to design a frequency band

sensitive approach for downsampling of a graph signal.

1.2.1 Related Work

One key problem in graph downsampling is determining a sample-set, i.e., the

set of vertices from which a bandlimited signal can be recovered without any er-

ror. If the signal is bandlimited in spectral domain, then it can be downsampled

without loss of data. However, downsampling is often used for non-bandlimited

signals which have negligible (but non-zero) high frequency content. The error in-

troduced due to non-zero high frequency content gives rise to aliasing. It should

be emphasized here that the sample-set (of a given cardinality) for a given band-

width is not unique, and an algorithm may converge to one of those sample-sets.

However, different sample-sets have different sensitivity to aliasing in case of sig-

nals which are not bandlimited, which indicates that even among sample-sets, the

quality of signal-reconstruction differs. The methods to downsample graphs can

be divided into two broad categories: Topological and Spectral.
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Topological approaches rely on neighborhood properties of vertices in order

to downsample the graph. One major class of graphs is called bipartite graphs,

which provide a natural way to downsample. An analysis of downsampling k-

regular bipartite graphs is provided in [23]. However, not all graphs exhibit bipar-

tite structure, so to apply the downsampling to arbitrary graphs, a method pro-

posed in [22] locally approximates the bipartite structure using a graph-colouring

technique. On the other hand, Nguyen and Do [24] rely on Maximum Spanning

Tree(MST) of a graph in order to downsample4. A major limitation with topo-

logical approaches is that although the signal is assumed to be bandlimited in

spectral domain, the actual process of finding the downsampling scheme does

not take into account spectral properties of the graph in a direct way. Moreover,

these approaches cannot be applied to downsample a directed graph, or a graph

with negative edge-weights.

In contrast to topological approaches, the spectral approaches rely on the spec-

tral properties of the graph in order to downsample the same. The eigenvector

corresponding to highest frequency is used to obtain a downsampling scheme

in [4]. Based on polarity of eigenvector values, two equivalent sets of down-

sampled vertices are obtained. Another method to determine the sample-set of

an undirected graph is provided by Anis et al. [2], in which a greedy approach

is used to add a vertex in every iteration to the sample-set, which provides the

highest increase in bandwidth, until the cut-off threshold is reached. The method

presented in [8] obtains a stable frame for reconstruction in order to minimize the

error in samples.

Another issue in graph downsampling is measuring the quality of the affected

partition on graph. Cut-index [24] is one of the objective measure used to deter-

mine quality of the graph downsampling scheme, and is defined as the ratio of

sum of edgeweights of edges to be deleted in order to disconnect two selected

partitions, and the total edgeweights in the graph. A downsampling scheme with

higher cut-index is considered to have better quality (and hence better signal re-

construction properties). One major issue with cut-index is that a single cut pro-

4It should be noted here that every tree is a bipartite graph.
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vides us two downsampling options (i.e. both partitions are considered equally

good), selecting one of the two is an arbitrary choice.

1.3 Structure Preserving Maps on Graphs

Graph topology and relations between two graphs have been studied in detail

in past, e.g. graph-isomorphism and graph-homomorphism are well-researched

concepts in graph theory [5, 16, 21]. We focus primarily on the signal process-

ing implications of such relations. We define homomorphisms and isomorphisms

between graphs from signal processing point of view, and refer to them as GSP-

isomorphisms and GSP-homomorphisms. GSP-isomorphism and GSP-homomorphism

are collectively referred to as Structure Preserving Maps. We know that graph-

isomorphism defines equivalence between graphs upto re-ordering of the ver-

tices. We define GSP-isomorphism, which aims to extend the concept. One ex-

ample of GSP-isomorphism is the graph relation resulting from diagonalization

of the adjacency matrix (assuming the matrix to be diagonalizable). We may as-

sociate a graph to the diagonalized spectral domain, where there are no inter-

connections of vertices; however, each vertex has a self-loop. From signal pro-

cessing perspective, the filtering operation can be carried out in either of the two

representations with the same frequency response.

1.4 Contribution

In this thesis, we explore the problem of downsampling on graphs. We also ana-

lyze the structure preserving maps between graphs from signal processing point

of view. The contributions of the research work are summarized below.

• Bipartite graphs are closely related to downsampling process. We analyze

the downsampling on bipartite graphs from algebraic perspective and estab-

lish that downsampling on bipartite graphs exhibit several features (such

as optimality of downsampling, basis polynomial structures and aliasing)

which are also true for downsampling on classical signal processing.
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• We provide a downsampling measure named SVD based Downsampling

Quality Measure (SDQM), to measure the quality of a given downsampling

scheme. Based on SDQM, we propose an algorithm that downsamples an

arbitrary graph. We use the proposed algorithm to analyze the downsam-

pling of graphs which are related to Discrete Cosine Transform. We optimize

the proposed algorithm for computational complexity.

• We analyze the downsampling method further with respect to various bands

in high frequency. We propose an approach to tune the algorithm in order

to obtain a downsampling scheme with desired frequency sensitivity.

• We analyze structure preserving maps between two graphs (called GSP-

isomorphism and GSP-homomorphism). We analyze how GSP-isomorphism

and GSP-homomorphism are related to resampling and downsampling pro-

cess, respectively.

1.5 Organization of Thesis

We begin by analyzing downsampling of bipartite graphs in the context of alge-

braic graph signal processing in Chapter 2. In Chapter 3, we provide a method

(with a greedy algorithm) to downsample an arbitrary graph. In Chapter 4, we

explore ways to reduce the complexity of the greedy algorithm and provide a

method to downsample graphs with different sensitivity towards different fre-

quency bands. We discuss GSP-isomorphism and GSP-homomorphism in Chap-

ter 5, and we conclude the thesis in Chapter 6.
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CHAPTER 2

Downsampling of Bipartite Graphs: Algebraic

Analysis

The bipartite graphs are often used in the context of graph downsampling, no-

tably in [23], [2], [22]. In [23], downsampling of a special class of bipartite graphs

(called k-regular bipartite graphs) is analyzed from spectral perspective, which is

extended in [22] to arbitrary graphs. Thus, it is pertaining to analyze the down-

sampling of bipartite graphs. We analyze the downsampling of bipartite graphs

from algebraic perspective. We analyze the spectral properties of bipartite graph

using adjacency matrix based GFT (as opposed to graph Laplacian based GFT

used in prior work).

In this chapter, we show that the selection of a bipartite partition is optimal

downsampling using different measures. We also show that some of the popular

algorithms for graph downsampling converge to the selection of bipartite par-

tition. We analyze the aliasing properties of downsampling of bipartite graphs.

We begin by defining key terms which are used frequently in the chapter. We

also demonstrate how the downsampling on bipartite graphs shares many key

features to downsampling in classical signal processing.

Definition Given a graph G = (V , A), the process of selecting a proper subset

W ⊂ V is called graph downsampling. W is called the downsampled vertex-set or

reduced vertex-set. The signal values defined on the setW is called the downsampled

signal.

Definition For a graph G = (V , A), if there exist two sets of vertices Vk and Vp

with conditions Vk ∪ Vp = V and Vk ∩ Vp = ∅, such that there are no edges

15



between any two vertices in either Vk or Vp, then graph G is called bipartite graph.

The sets Vk and Vp are called partitions of bipartite graph G. We denote a bipartite

graph as (Vk,Vp, A).

Definition A bipartite graph with the degree of each vertex being k, is called a

k-regular bipartite graph.

In the next section, we focus on downsampling by a factor of two and analyze

the spectral properties of the same in context of adjacency matrix based GFT.

2.1 Analysis of Downsampling of Bipartite Graphs

Intuitively, downsampling of a bipartite graph is achieved by selecting signal val-

ues on a bipartite partition. Let us first obtain the GFT of a bipartite graph in order

to analyze the spectral and aliasing properties of such a downsampling process.

We focus on downsampling by a factor two for undirected bipartite graphs, with

same number of vertices in partitions Vk and Vp. If the vertices are ordered ac-

cording to partitions Vk and Vp, then the structure of the adjacency matrix A is as

follows

A =

 0 B

BT 0

 (2.1)

where B is an n× n matrix, while A is an N × N matrix, with N = 2n.

Let the SVD (Singular Value Decomposition) of matrix B be given by B =

UΣV∗, where U and V are orthogonal matrices and Σ is a diagonal matrix con-

taining singular values in ascending order. Following [9], the matrix A can be

diagonalized as

A = WΛW∗ (2.2)

where W = 1√
2

 U U

V −V

 and Λ =

 Σ 0

0 −Σ

. With the frequency order-
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ing mentioned in [34], it can be seen that the block corresponding to −Σ contains

the upper-half of frequencies.

In Subsection 2.1.1, we establish optimality of bipartite graph downsampling

using various optimization parameters as well as using different existing algo-

rithms. This discussion throws light on reconstruction errors, aliasing and ad-

jacency relations for downsampled vertices. We also explain how the algebraic

properties of bipartite-downsampling resembles their classical signal processing

counterparts. We demonstrate how some important properties related to down-

sampling in classical signal processing carry forward to bipartite graphs.

2.1.1 Optimality of Bipartite Partition Selection with respect to

Downsampling

Graph downsampling can also be seen as an optimization problem. One param-

eter to optimize is maximization of normalized cut-index. As there is no known

polynomial-time complexity algorithm to solve the optimization problem, SVD

based approach [24] relies on an approximate solution, which uses polarity of

highest frequency eigenvector for downsampling. Another parameter to maxi-

mize is stability of reconstruction frame [8], wherein a stable reconstruction frame

is desired as it is less susceptible to noise during reconstruction process.1. We de-

fine downsampling quality measures normalized cut-index and reconstruction frame-

stability and show that selecting one of the bipartite partition optimizes the same

in case of bipartite graphs.

Definition For graph G = (V , A), let sets Vk and Vp form a partition on set V .

Let the total edge-weight for graph be we while the sum of weights of edges con-

necting vertices in Vk to Vp be w, then the ratio w
we

is called normalized cut-index for

partition (Vk,Vp). Ideal value of this measure is 1.

Definition For graph G = (V , A), let sets Vk and Vp form a partition on set V . Let

V−1 be the GFT for the graph. Let VL denote the eigenvector matrix for preserved

1In Chapter 3, we introduce a metric named SDQM for measuring the quality of downsam-
pling scheme.
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low frequencies. If we denote selection of vertices for partition Vk by Ψk, then the

condition number for submatrix Ψk(VL), is defined as reconstruction frame-stability

(RFS) for partition Vk. Ideal value of this measure is 1.

The normalized cut index measures the amount of edges to be removed in

order to affect a partition on graph. Intuitively, maximization of normalized cut

index is akin to rejecting strongly connected neighbors to a given vertex for the

selection of partition.2 The second parameter defined above, RFS, measures the

stability of reconstruction frame. Maximization of RFS is necessary because an

unstable reconstruction frame results is susceptible to noise resulting in unfaith-

ful reconstruction. The following proposition establishes that selecting bipartite

partition (for downsampling of a bipartite graph) optimizes normalized cut-index

and RFS parameters.

Proposition 2 For a bipartite graph (Vk,Vp, A), selecting a bipartite partition (i.e. ei-

ther Vk or Vp) maximizes the normalized cut-index and reconstruction frame-stability.

Proof When a bipartite partition is selected, the graph is divided into partitions

Vk and Vp. The only edges that exist in the graph are the edges that connect

vertices in Vk to vertices in Vp. Hence, normalized cut-index of this partition is 1,

which is the maximum possible value.

RFS is computed as condition number of submatrix Ψk(V). The rows of ma-

trix V correspond to vertices, while the columns correspond to frequency compo-

nents. Thus, a submatrix of V is a matrix that selects vertices and frequency com-

ponents. As already noted, the matrix V for bipartite graph is of form 1√
2

 U U

V −V

.

A selection on bipartite partition on lower half of spectrum gives us a submatrix U

or V (ignoring the scalar 1√
2
). As both these matrices are orthogonal, the condition

number is optimal.

For arbitrary graphs, there are suboptimal algorithms for optimizing these

quality measures. We select MST-based downsampling [24], downsampling us-

ing highest frequency eigenvector and greedy vertex selection using RFS [6, 8] as
2On the other extreme, we can minimize the normalized cut index in order to achieve segmen-

tation on a given graph. [26]
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representative algorithms and prove that the given algorithm converge to selec-

tion of bipartite partition when applied to a bipartite graph. The proofs can also

be found in [40].

Proposition 3 For a bipartite graph (Vk,Vp, A), following algorithms for downsam-

pling graphs converge to selection of a bipartite partition. For algorithms to be applicable,

we assume that the edge-weights are non-negative.

(1) MST based downsampling (2) Downsampling based on polarity of eigenvector cor-

responding to highest frequency (3) Greedy vertex selection using Reconstruction Frame

Stability

Proof (1) MST based downsampling approach approximates the given graph by

its MST, and then divides the vertices into two partitions with even and odd dis-

tance from root node. For a given bipartite graph, the distance between any two

nodes in two different bipartite partitions is odd, and the distance between any

two nodes within the same bipartite partition is even. Thus, this approach yields

selection of bipartite partition as downsampled graph.

(2) For a graph with non-negative edge-weighs, the matrix B also has all non-

negative entries. If σm is the largest singular value of B, then the eigenvector of A

corresponding to eigenvalue −σm is the highest frequency eigenvector, which is

given by

 ū

−v̄

. Here ū and v̄ are left and right singular vectors of matrix B. We

know that matrix σūv̄T is the optimal rank-1 approximation for matrix B, hence,

respective entries of ū and v̄ have same signs. Similarly, all entries on singular

vector ū also have same signs, as a change in sign would result in a non-optimal

rank-1 solution. Hence, all entries of singular vectors ū and v̄ share identical signs.

Using this fact, it can be shown that the highest frequency eigenvector based ap-

proach provides the bipartite partition as downsampled vertex-set for given bi-

partite graph.

(3) The greedy algorithm that attempts to maximize RFS starts with an arbitrary

node and selects the rows of matrix

 U

V

 that maximizes minimum singular

value of the selected submatrix. Thus, such an algorithm will select orthogonal
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columns as long as they are available. Here, As both U and V are orthogonal

matrices, orthogonal columns are available until the downsampling process is

complete. Hence, the greedy approach converges to selection of a bipartite parti-

tion.

2.1.2 Spectral Folding for Downsampling of Bipartite Graphs

Now, let us explore how the spectrum behaves when we downsample a signal on

a bipartite partition. The objective is to examine the aliasing behavior on bipartite

graphs. Let the graph be (Vk,Vp, A) and let the graph signal be denoted as s̄. Let

the downsampled version of s̄ on vertex-sets Vk and Vp be s̄k and s̄p respectively.

In the Fourier domain, assume that the GFT of signal s̄ is b̄. We denote the GFT

matrix as F. If b̄ =

 b̄L

b̄H

, then the following equations describe the spectral

relations between downsampled signals and submatrices of matrix F.

Fs̄ = b̄⇔ 1√
2

 U∗ V∗

U∗ −V∗

 s̄k

s̄p

 =

 b̄L

b̄H

 (2.3)

⇒ U∗ s̄k + V∗ s̄p =
√

2b̄L (2.4)

U∗ s̄k −V∗ s̄p =
√

2b̄H (2.5)

⇒
√

2U∗ s̄k = b̄L + b̄H (2.6)

The Graph Fourier Transform for the signal s̄k is denoted by Fk and it is char-

acterized by relation Fk s̄k = b̄L. From Equation 2.3, we obtain Fk =
√

2U∗ for

bandlimited signals. Let us now look at the effect of this Graph Fourier Trans-

form on spectrum of s̄k, in order to examine the aliasing behavior on bipartite

graphs.

The above equation suggests that the GFT of s̄k is given by b̄L + b̄H, which
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shows the aliasing effect in the frequency domain. Here, the frequencies related to

eigenvalues σ and−σ for the original graph get merged and the respective Fourier

coefficients are added together to obtain the GFT on downsampled graph. From

above equations, we can make following two conclusions. 1) If b̄H = 0, then there

is no aliasing. 2) If b̄H = b̄L, then using Equation (2.3) and (2.6), we get s̄p = 0.

This is similar to classical signal processing case where zero-insertion results in

replication of spectrum.

In classical signal processing, the signal reconstruction from downsampled

vertices to original set of vertices is obtained by zero-insertion followed by low-

pass filtering. In case of bipartite graph, zero-insertion involves setting s̄p = 0

and then low pass filtering the signal s̄′ =

 s̄k

0

 with an ideal low pass filter.

It can be shown that the filtered signal is given by

 s̄k

VU∗ s̄k

 , which is desired

reconstruction. Thus, the reconstruction procedure for bipartite graph is identical

to that for the classical signal processing.3

2.2 Bipartite Graphs: Algebraic Model for Downsam-

pled Graph

In this section, we look at the algebraic model of the downsampling on bipartite

graphs. As we know, the algebraic model for graphs can be described using the

adjacency matrix. So, we need to provide a way to determine the adjacency matrix

for downsampled graph. Let the bipartite graph G = (Vk,Vp, A) be downsampled

to a graph Gk = (Vk, Ak). Here Vk is the set of vertices which are preserved in

order to form the new graph with half the number of vertices. We define Ak :=

BBT. This axiomatic choice of Ak is justified by the results provided in Theorems

2.1-2.4.

In the algebraic model, the graph adjacency matrix is designated as the shift
3A similar analysis of spectral folding phenomena can be found in [22], where the normalized

graph Laplacian is used in order to derive the spectral properties. The normalized Laplacian
has eigenvalues within interval [0, 2]. After downsampling, a frequency f ∈ [1, 2] folds onto
(2− f ) ∈ [0, 1].
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operator. Therefore, Ak is the new shift operator and also the generator of the

algebra of filters. The signal space for Gk is the set of vectors on ordered vertices

Vk. We discuss the Graph Fourier Transform, filtering and the homomorphism

that exist between the algebra of filters on graphs G and Gk.

Theorem 2.1 Consider a bipartite graph G = (Vk,Vp, A) where A =

 0 B

BT 0

. Let

Gk = (Vk, Ak) be the downsampled graph where Ak = BBT. Let the Singular Value

Decomposition of B be given by UΣV∗. Then,

1. The GFT for graph Gk is
√

2U∗

2. If P is the selection matrix that maps a signal on graph G to a signal on graph Gk

(i.e. Ps̄ = s̄k), then Ak = PA2PT

Proof 1) As Ak = BBT, we have Ak = UΣ2U∗ as diagonalization of Ak. This

shows that
√

2U∗ is the GFT for a graph which has Ak as adjacency matrix. The

scalar of
√

2 is included for consistency.

2) Given that Ps̄ = s̄k, also A2 =

 BBT 0

0 BTB

. It can be seen that PA2PT = BBT.

Hence Ak = PA2PT.

Theorem 2.2 Continuing notations from Theorem 2.1, if the set of filters is restricted to

filters with only even powers of A, then filtering operation h(A2)s̄ on bipartite graph is

homomorphic to filtering operation h(Ak)s̄k on the downsampled graph.

Proof As linearity of filters is given, proving PA2s̄ = AkPs̄ = Ak s̄k is sufficient

to show that h(Ak)Ps̄ = Ph(A2)s̄. Here, PA2s̄ = P

 BBT 0

0 BTB

 s̄k

s̄p

 =

P

 BBT s̄k

BTBs̄p

 = BBT s̄k = AkPs̄. This homomorphism property is also explained

via a commutative diagram in Figure 2.1.

This property suggests that every LSI filter with even powers on original graph

can be mapped to downsampled graph, thus giving us mapping A2 7→ Ak. This
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(h(A2), s̄) h(A2)s̄

(h(Ak), s̄k) h(Ak)s̄k

f iltering

P(downsample) P(downsample)

f iltering

Figure 2.1: The commutative diagram explaining the homomorphism that exist
between the bipartite graph and the downsampled graph. Note that s̄ ∈ CN, P
denotes downsampling operator. h(Ak)Ps̄ = Ph(A2)s̄

is analogous to classical DSP, where z−2 7→ z−1 in the z− trans f orm filter repre-

sentation, while downsampling by a factor of two.

Now, let us find out the structure of polynomial basis which act as weights on

each vertex. The details of findings are provided as Theorems 2.3 and 2.4.

Theorem 2.3 Given a bipartite graph (Vk,Vp, A), there exists a choice of polynomial

basis corresponding to each vertex such that the polynomials for one bipartite partition

are all even, while the same for the other bipartite partition are all odd.

Proof In the algebraic model of graphs, the graph signal is mapped to a polyno-

mial by means of polynomial basis (b0(x), · · · , bN−1(x)) such that s(x) = ΣN−1
i=0 sibi(x) =

b(x)T s̄, where b(x) = [b0(x), · · · , bN−1(x)]T. Each polynomial bi(x) can be seen

as a weight on the corresponding vertex. Let a basis polynomial be expressed as

bi(x) = ΣN−1
j=0 bijxj. Construct the basis coefficient matrix Bc = [bij] and matrix

Λ = [λi−1
j ], where 0 ≤ i, j ≤ N − 1. From [32], these matrices are related by

following equation

BcΛ =

 U U

V −V


Under the assumption that matrix Λ is invertible, the coefficients bij for 0 ≤ i ≤

N/2 − 1 and even values of j, are all zeroes. Similarly, the coefficients bij for

(N/2) ≤ i ≤ N − 1 and odd values of j, are all zeros. Hence, the basis corre-

sponding to one bipartite partition are all even polynomials while the same for

the other bipartite partition are all odd polynomials.

In the case where there are repeated eigenvalues, the system of equations is un-

derdetermined, with at least one solution where the basis can be chosen to have

the even and odd polynomial property for separate bipartite partitions.
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Theorem 2.4 In the algebraic model, the polynomial corresponding to downsampled sig-

nal can be obtained using even powered coefficients of the polynomial representing the

original signal.

Proof In the standard polynomial basis, the polynomial s(x) is given by a0x0 +

· · ·+ aN−1xN−1. Let ŝ be Fourier Transform for graph signal s̄. Then,

 s̄k

s̄p

 =
1√
2

 U U

V −V

 ŝ, where ŝ = ΛT


a0
...

aN−1


As already noted, the eigenvalues of A have following relation. λi = −λi+N/2, i =

0, · · · , N/2− 1. Let Λ1 = [λ2i
j ], Λ2 = [λ2i+1

j+N/2], 0 ≤ i, j ≤ (N/2) − 1 and āe =

[a0, a2, · · · , aN−2]
T, āo = [a1, a3, · · · , aN−1]

T. Using these notations, it can be shown

that

s̄k =
√

2UΛT
1 āe (2.7)

On the other hand, the GFT for downsampled graph is given by
√

2U∗. If the

signal on downsampled graph s̄k is mapped to polynomial sk(x) = b0x0 + · · ·+

bN/2−1xN/2−1, then

s̄k =
1√
2

UΛT
1 b̄ (2.8)

where b̄ =
[

b0 · · · bN/2−1

]T
. From (2.7) and (2.8), we can conclude that b̄ =

2āe. The scalar-multiplier of 2 can be removed by appropriate scaling of GFT of

original as well as downsampled graph.

Figure 2.2 gives an example of how polynomials are either even or odd de-

pending upon bipartite partition.

In this chapter, we explored the intertwined nature of downsampling process

and bipartite graphs. We analyzed the algebra, spectral and aliasing behavior

and the module structure in form of even-odd polynomial assignments depend-

ing upon bipartite partition. In the next chapter, we focus on downsampling of

arbitrary graphs.
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Figure 2.2: Example of polynomial basis for a bipartite graph, notice the even/odd
nature of polynomials.
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CHAPTER 3

Graph Downsampling by Minimizing the Alias-

ing Error

In Chapter 2, we proved the optimality of downsampling bipartite graphs by se-

lecting a bipartite partition. However, not all graphs exhibit bipartite structure.

In this chapter, we briefly discuss existing approaches to downsample arbitrary

graphs and propose an approach based on GFT to accomplish the same. Property

of bandlimitedness is important with respect to downsampling of a signal. It can

be defined in terms of bandwidth in context of graph Laplacian based GFT, as

used in [22]. However, if graphs are not undirected, such definition is restrictive

due to the presence of complex eigenvalues. Thus, we use alternative approach of

defining bandlimited signal where the number of spectral coefficients is used as a

measure of bandwidth. The concepts of bandlimitedness and sample-set are use-

ful in understanding the downsampling of arbitrary graphs, which are defined as

follows.

Definition For a signal s̄ on a given graph with GFT b̄, if b̄(i) = 0, ∀i ≥ n0, n0 ∈

N, then the signal is called bandlimited with bandwidth n0.

Definition For a given graph, the set of vertices from which a given bandlimited

signal can be reproduced uniquely without any error is called a sample-set.

To downsample arbitrary graphs, a method proposed in [22] locally approxi-

mates the bipartite structure using a graph-coloring technique. On the other hand,

Nguyen and Do [24] rely on Maximum Spanning Tree(MST) of a graph in order
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to downsample1 the same. Both the approaches rely on approximating the given

graph by a bipartite graph. These approaches do not consider the spectral aspect

of the graphs directly, as they rely on topology of the given graph in order to ob-

tain a sample-set. A major limitation with topological approaches is that although

the signal is assumed to be bandlimited in spectral domain, the actual process of

finding the downsampling scheme does not take into account spectral properties

of the graph in a direct way. Moreover, these approaches can not be applied to

downsample a directed graph, or a graph with negative edge-weights.

Spectral approaches to graph downsampling rely on GFT properties in order

to obtain the downsampled sample-set. In [4], the eigenvector corresponding to

the highest frequency is used to obtain a downsampling scheme. Based on po-

larity of eigenvector values, two equivalent sets of downsampled vertices are ob-

tained. Another method to determine the sample-set of an undirected graph is

provided by Anis et al. [2], in which a greedy approach is used to add a vertex

in every iteration to the sample-set, which provides the highest increase in band-

width, until the cut-off threshold is reached. Due to the greedy nature of the algo-

rithm, the sample-set so obtained is not necessarily optimal2. As an example, every

alternate sample is not necessarily selected during downsampling of a standard

1-D uniform grid. It should be emphasized here that the sample-set (of a given

cardinality) for a given bandwidth is not unique, and the algorithm indeed con-

verges to one of those sample-sets. However, different sample-sets have different

sensitivity to aliasing in case of signals which are not bandlimited, which indicates

that even among sample-sets, the quality of signal-reconstruction differs. The ob-

jective in [2] is to find the least number of samples (and corresponding sample-set)

for a signal with given bandwidth. On the other hand, our purpose is to provide

a way to select the best possible N/2 vertices for a graph with N vertices.

Another issue in graph downsampling is measuring the quality of the affected

partition on graph. Cut-index [24] is one of the objective measure used to de-

termine quality of the graph downsampling scheme (defined in Chapter 2). A

downsampling scheme with higher cut-index is considered to have better quality

1It should be noted here that every tree is a bipartite graph.
2The meaning of optimality will be provided in later sections
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(and hence considered to have better signal reconstruction properties). One major

issue with cut-index is that a single cut provides us two downsampling options

(i.e. both partitions are considered equally good), selecting one of the two is an

arbitrary choice. Another objective measure used to determine quality of graph

downsampling scheme is stability of the reconstruction frame [8] (also defined in

Chapter 2). The higher the stability of the frame, the better the quality of down-

sampling scheme.

For a graph G = (V , A) with N nodes, let the GFT matrix be denoted by F,

where F ∈ CN×N. N is assumed to be even as we focus on downsampling the

graph by two. If a signal on this graph is bandlimited with all the energy con-

tained in the lower half of the frequency spectrum, then the GFT of the signal is

of form [b1, b2, ..., bN/2, 0, ...0]T. The spectrum can be expressed as [b̄T
L , b̄T

H]
T, where

b̄L = [b1, b2, ..., bN/2]
T and b̄H = [0, ..., 0]T. Let Vp be the set of nodes to be purged

and Vk be the set of nodes to be kept, both containing N/2 nodes. For a given

graph signal s̄, let s̄k and s̄p be the signal values taken from nodes in the sets

Vk and Vp respectively. As both the sets are selections from V , we can write,

Pp s̄ = s̄p, Pk s̄ = s̄k where Pp and Pk are selection matrices. If we fix the order of

nodes in Vk and in Vp, then Pp and Pk are unique. We can also write,

Ps̄ =

 s̄k

s̄p

 (3.1)

where P is an invertible permutation matrix, with inverse PT.

Similarly, we can also define selection matrices PL and PH such that PLb̄ =

b̄L, PH b̄ = b̄H.

Since Fs̄ = b̄, FPTPs̄ = b̄.

∴ FP

 s̄k

s̄p

 =

 b̄L

b̄H

 (3.2)
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where FP = FPT. If we write FP as F1 F2

F3 F4

 ,

then we get  F1 F2

F3 F4

 s̄k

s̄p

 =

 b̄L

b̄H

 (3.3)

where F1, F2, F3 and F4 are N
2 ×

N
2 matrices. Given b̄H = 0, s̄p can be uniquely deter-

mined from s̄k if and only if the submatrix F4 is invertible. Note that F4 = PHFPT
p .

Moreover, using Schur Complement [44] on the above equation, we obtain a ma-

trix FkL such that

FkL s̄k = b̄L ⇔ FkL = F1 − F2F−1
4 F3 (3.4)

The matrix FkL can be understood as the GFT on the downsampled graph.

The signal on purged nodes, denoted as s̄p can be recovered from s̄k, using the

following reconstruction rule obtained from Equation (3.3):

s̄p = −F−1
4 F3s̄k. (3.5)

Thus, the procedure described above, allows us to find a condition for perfect re-

construction and at the same time, provides us with the GFT on the downsampled

graph. There can be multiple sample-sets of same cardinality for a given graph.

A similar analysis for condition for perfect reconstruction of bandlimited signals

is provided in [6].

3.1 Minimization of Reconstruction Error for Nonban-

dlimited Signals

The discussion so far indicates that if the matrix F4 = PHFPT
p is invertible, then

any bandlimited signal can be reconstructed without any error from nodes con-
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tained in Vk. This raises a question: Are all possible node-selections with corresponding

invertible F4, equivalent? As far as bandlimited signals are concerned, all sample-

sets are equivalent. However, the property of bandlimitedness is highly restric-

tive. In the analysis till now, we have assumed a perfectly bandlimited signal,

i.e., ‖b̄H‖ = 0. However, in real-world scenarios, we often encounter situations

where 0 < ‖b̄H‖ = ε << ‖b̄L‖. We refer to such signals as lowpass signals. In

this section, we will analyze this scenario which will help in obtaining an opti-

mal downsampling scheme from the signal reconstruction point of view. From

Equation (3.3)

F3s̄k + F4s̄p = b̄H ⇒ s̄p = −F−1
4 F3s̄k + F−1

4 b̄H (3.6)

The reconstruction error er is

er = F−1
4 b̄H ⇒ ‖er‖ ≤

ε

σmin(F4)
(3.7)

Here, σmin(F4) denotes the minimum singular value of F4 and characterizes the

sensitivity of the reconstruction error (from signal values on Vk) to high frequency

content. For a given partition (Vp,Vk) of a given graph, σmin(F4) is referred to as

the SVD based Downsampling Quality Measure (abbreviated as SDQM), whereas the

matrix F4 is referred to as the descriptor submatrix of the sample-set. It should be

observed here that if SDQM = 0, then F4 is not invertible and the signal cannot

be reconstructed. Maximizing SDQM reduces the upper-bound on error. As far as

bandlimited signals are concerned, all downsampling schemes with SDQM 6= 0

are equivalent. However, when the signal is not bandlimited, they exhibit differ-

ent amount of sensitivity towards the high frequency content of the signal. Thus,

the goal of downsampling should be to find a sample-set that maximizes SDQM.

With this analysis, the problem of downsampling can be stated as the follow-

ing optimization problem,

Popt = argmax
Pp∈{0,1}N/2×N

{σmin(PHFPT
p )} (3.8)
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Set of selected nodes SDQM
{1, 3, 5}, {2, 4, 6} 0.7071

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, ..., {6, 1, 2} 0.1691
Rest of the combinations (12 in total) 0.3568

Table 3.1: SDQM for all possible downsampling schemes for graph in Figure 3.1.
The consecutive selection (e.g. {1,2,3}) shows least SDQM, while every alternate node
selection (e.g. {1,3,5}) has the largest SDQM.

In the above optimization, PH is known (selection of high frequency compo-

nents), F is the GFT of graph G and Pp is to be found, which provides the selection

of the nodes to be purged. As we regard SDQM as a quality measure for a given

downsampling scheme, we explain the effect of this measure by an example on

uniform 1-D grid (also called DFT grid [29]). Figure 3.1 shows the well-known

downsampling on the grid and the resultant smaller grid for N = 6. The opti-

mal solutions based on SDQM criteria are {1, 3, 5} and {2, 4, 6}. Table 3.1 shows

various selected nodes combinations and corresponding SDQM.

The method presented in [8] attempts to obtain a stable reconstruction frame

in order to downsample the signal. This approach works on the inverse GFT ma-

trix, selects the columns (i.e. eigenvectors of adjacency matrix) which are to be

preserved and them selects the vertices (i.e. rows) such that the reconstruction

frame is stable. This approach can be expressed as following optimization prob-

lem using the notations used in this document.

Popt = argmax
Pk∈{0,1}N/2×N

{σmin(PkF−1PT
L )}

It should be noted that our formulation provides matrix Pp, which gives the set

of nodes to be purged, while the matrix Pk in the above formulation provides

the set of nodes to be kept. The formulations emphasize the differences in both

the approaches. The difference are more noticeable in downsampling of directed

graphs as shown in Section 3.4.3. It can be shown that the two formulations are

identical when the GFT matrix F is orthogonal. More discussion on the difference

between the two approaches is provided in Section 3.6.
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1 2 3 4 5 6 1 3 5

Figure 3.1: (left) A six-node directed circulant graph, (right) Corresponding
downsampled graph.

3.2 A Greedy Algorithm for Downsampling Based on

SDQM

In the relation F4 = PHFPT
p , the matrix PH is N/2× N rectangular matrix. Hence,

PHF is also an N/2× N rectangular matrix. Let FH = PHF, then the desired op-

timization turns into a column selection problem from FH such that the resultant

matrix has maximum smallest singular value. A similar problem is discussed

in [39], where the parameter to minimize is condition number of the selected

columns from FH. The number of combinations to select the columns in matrix

FH are ( N
N/2). An exhaustive search would require computing minimum singular

values ( N
N/2) times, which is computationally impractical for large values of N.

To the best of our knowledge, there is no known algorithm to solve the given

problem in polynomial time complexity. So, we propose a greedy strategy that

may yield a suboptimal solution. The proposed greedy algorithm is summarized

in Algorithm 1. Let Fi
4 denote an N/2× i matrix obtained by selecting i columns

from FH. Given Fi
4, Fi+1

4 is obtained by augmenting Fi
4 with a column from FH that

maximizes the smallest singular value Fi+1
4 . Iterations continue till i = N/2. The

indices of the columns selected from FH forms the set Vp, the set of vertices to be

purged.

As discussed earlier, the GFT for bipartite graph has two sets of equal-norm

orthogonal columns in the upper-half of frequency spectrum. This allows a single

orthogonal column to be selected at every iteration of greedy algorithm, eventu-

ally converging to the optimal solution for any bipartite graph with equal number

of nodes in each partition.
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Algorithm 1: Greedy algorithm for maximizing minimum singular value of
the selected columns

Input : FH, N
Output: Vk
Procedure: DownSample
i← 1
Vk ← {1, ..., N}
Vp ← {}
while i ≤ N/2 do

Nd = getNodeToDelete(FH,Vk,Vp)
Vp ← Vp ∪ {Nd}
Vk ← Vk − {Nd}
i← i + 1

return Vk

Input : FH,Vk,Vp
Output: index
Procedure: getNodeToDelete
Array minSVD
forall i ∈ Vk do

Fiter ← columns f rom FH given by Vp ∪ {i}
minSVD(i)← σmin(Fiter)

index = argmaxi{minSVD}
return index

3.3 Analysis of Standard Graphs in Context of SDQM

In Chapter 2, we analyzed downsampling on bipartite graphs in context of vari-

ous downsampling approaches. In this section, we analyze graphs related to DFT

and DCT in context of SDQM. We verify that the SDQM based approach provides

the every alternate vertex selection as a downsampling scheme for DFT graphs.

However, the same is not true for DCT graphs, which we analyze in detail.
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3.3.1 SDQM for DFT Graphs

In this subsection, we use the SDQM based approach to analyze the downsam-

pling of DFT graphs. If W is the N-point DFT matrix, then it is given by,

W =
1√
N



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

1 ω3 ω6 · · · ω3(N−1)

...
...

... . . . ...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


,

where ω = e−2πi/N. The matrix W can also be written as W = 1√
N
(ω jk)j,k=0,···N−1.

As we focus on downsampling by a factor of two, we assume that N is even.

Here, there are two possibilities, N is divisible by 4 or N + 2 is divisible by 4. For

maintaining simplicity, we analyze the case where N is divisible by 4. The other

case can be analyzed using a similar approach.

For downsampling by selecting every alternate vertex, (ignoring the scalar

multiplier) the descriptor submatrix is given by F4 = (ω jk)j,k, where j = N/4, N/4+

1, · · · , 3N/4− 1 and k = 1, 3, · · ·N− 1. It can be shown that columns of matrix F4

are orthogonal to each other. Thus, the SDQM for the corresponding sample-set

is optimal.

3.3.2 SDQM for DCT Graphs

In this subsection, we analyze the Discrete Cosine Transform (DCT-type II) and

its graph, and use the proposed graph downsampling technique to downsample

the same. A detailed study on the graphs for which the DCT is GFT is provided

in [29]. The graph for DCT-type II transform is given in Figure 3.2. DCT-type II

transform diagonalizes the adjacency matrix of this graph. The graph for DCT

is undirected, and has self-loops at the end-nodes. Looking at the structure of

graph, intuitively, selecting every alternate node is a good strategy for obtaining

the downsampled scheme. However, using the SDQM measure, we find that
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1 2 3 4 5 6

Figure 3.2: Graph For DCT-type II (|V| = 6). Notice the self-loops for end-nodes.

there exists a better quality downsampling scheme.

As mentioned earlier, one can visualize the DCT as a GFT by assigning an

appropriate adjacency matrix to the graph. Using details provided in [27], we

reproduce the graph related to DCT-type II. We call this form of graph as the DCT-

graph in short. Figure 3.2 provides a DCT-graph for 6-vertices. The corresponding

adjacency matrix is given by,

A =



1 1

1 1

1 1

1 1

1 1

1 1


(3.9)

Now, we will apply four different approaches of graph downsampling on the

DCT graph. The four approaches include bipartite approximation, MST approx-

imation, highest frequency eigenvector based approach and SDQM based ap-

proach. The results are provided in form of theorems.

Theorem 3.1 Given a DCT-graph with even number of nodes to be downsampled by a

factor of two, the approach using MST approximation provides every alternate sample

selection as the downsampled vertex-set.

Proof In the MST based approach, we first extract an MST from the given graph.

For DCT-graph, the only possible MST is when we remove the two self-loops at

end nodes. After extracting MST, we divide the nodes into two sets using even-

odd distance from an arbitrary root node. For DCT-graphs, this results in the

sample-set obtained by selecting every alternate vertex.
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Theorem 3.2 Given a DCT-graph with even number of nodes to be downsampled by a

factor of two, the approach using bipartite approximation provides every alternate sample

selection as the downsampled vertex-set.

Proof In the bipartite approximation approach, we first approximate a given graph

by a bipartite graph by removing some edges. In DCT-graphs, the optimal way

(i.e. by removing least number of edges) to obtain a bipartite graph is to remove

the self-loops at the end nodes. After this, there is unique way in which we can

obtain the bipartite partitions. This is identical to the sample-set obtained using

every alternate vertex selection.

With respect to Theorems 3.1 and 3.2, it must be reminded that every tree is a

bipartite graph. In case of DCT-graphs, the resultant bipartite graph is also a tree.

Hence, the procedures yield the same results.

Theorem 3.3 Given a DCT-graph with even number of nodes, the approach using high-

est frequency eigenvector provides every alternate sample selection as the downsampled

vertex-set.

Proof In this approach, the polarity of highest frequency eigenvector is used as

the feature to determine the downsampled vertex-set. To prove this result, we

first extract the highest frequency eigenvector and then show that it has alternate

polarity for every alternate sample value. Let N be the number of vertices in the

graph (i.e. length of signal). Note that N is even. If signal s̄ has DCT S̄, then

S̄[k] =
N−1

∑
n=0

s̄[n]cos(πk(n + 0.5)/N),

where k = 0, · · · , N − 1. Here, index k corresponds to frequency and index

n corresponds to vertex. For highest frequency, substitute k = N − 1. Let the

highest frequency eigenvector be denoted by ēH, then

ēH[n] = cos(π(N − 1)(n + 0.5)/N)
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Set of selected nodes SDQM
{1, 4, 6}, {1, 3, 6} 0.5978
{1, 3, 5}, {2, 4, 6} 0.5120
{1, 4, 5}, {2, 3, 6} 0.3827
{2, 3, 5}, {2, 4, 5} 0.3601

Rest of the combinations < 0.3

Table 3.2: SDQM for all possible downsampling schemes for graph in Figure 3.2.

where n = 0, · · · , N − 1. Simplifying above equation,

ēH[n] = −sin(πα)

where α = (n− n/N − 0.5/N).

Now, if n is even, then n = 2m and m = 0, · · · , (N − 2)/2. Thus, for even n, α

can be written as

α = 2m− 4m + 1
2N

For m < (N − 1)/2, it can be shown that 0 < 4m+1
2N < 1. Thus,

2m− 1 < α < 2m

Hence, we can conclude that ēH[n] > 0 if n is even. Using a similar approach,

we can also show that ēH[n] < 0 if n is odd. Thus, we can conclude that every

alternate sample in the highest frequency eigenvector has alternate polarity. This

proves the result.

Theorem 3.4 Given a DCT-graph with even number of nodes, selecting every alternate

vertex does not provide optimal result based on SDQM.

Proof We prove this result by providing a counter-example. We consider a six-

node DCT-graph and list various possible SDQM for different sample-sets. The

SDQMs are listed in Table 3.2. It is clear from the table that SDQM from every

alternate vertex-set is not the optimal case.

The reason for this counterintuitive result in the SDQM based approach is the
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boundary conditions for signal imposed upon the signals while computing the

DCT. For DCT, the signal is reflected and extended before computing the trans-

form. This results in different pattern of samples and thus selection of vertices is

not the same as the topological one. A similar pattern is observed in 8, 16 and

32 vertex DCT-graphs. We experimentally validate the results in Subsection 3.4.4.

The results presented in this subsection (i.e. the observations on downsampling

of DCT-graphs) are accepted for publication in [41].

3.4 Experimental Validation

In this section, we apply Algorithm 1 to downsample undirected and directed

graphs. The measure of quality of downsampling scheme is given by the recon-

struction error, from the downsampled graph to the original graph. In Section

3.4.1, we observe the effect of presence of negative edges on various downsam-

pling schemes. In Sections 3.4.2 and 3.4.3, we downsample undirected and di-

rected graphs respectively, and compare the reconstruction errors with existing

downsampling schemes. Downsampling of DCT-graphs is used in JPEG image

compression standard for the chrominance components of an image.

3.4.1 Downsampling Random Graphs

In order to test the SDQM based method on a large set of arbitrary graphs, random

graphs are chosen. Random graphs allow us to test our algorithm and compare its

performance to other approaches on a large number of instances. To generate ran-

dom graphs, we fix the number of vertices and then randomly draw edge-weights

from a predefined probability distribution. As noted in Chapter 1, negative edge-

weighs are required to model the cases where the relation between two vertices

can be expressed by a negative relation (e.g. negative correlation). On the other

hand, if the edge-weights are determined based on distance or probabilities, we

may arrive at an adjacency matrix with all entries being non-negative. We con-

duct the experiment for graphs with non-negative edge-weights and for graphs

which have negative as well as positive edge-weights.

38



MST Spectral Proposed
Nonnegative Edge-weights

SDQM: 0.0196 0.0178 0.1449
Cut Index: 0.5718 0.6158 0.5721

Negative And Positive Edge-weights
SDQM: 0.0162 0.0119 0.1555

Cut Index: 0.5710 0.5047 0.6037

Table 3.3: SDQM and cut-index for random undirected graphs

In the experiment, we randomly generate graphs with 100 vertices (|V| = 100).

For non-negative weights, each entry of adjacency matrix is drawn from a uni-

form distribution U(0, 1). For adjacency matrix with negative weights, each entry

is drawn from Gaussian distributionN (0, 1). The adjacency matrix thus obtained

is made sparse by sparsity ratio in range of 2%− 30%3. 1000 instances of such ma-

trices are generated for non-negative and negative-positive each. Table 3.3 sum-

marizes average SDQM and cut-index measures for the trial using MST based

approach, spectral approach and proposed approach (i.e. Algorithm 1).

One can observe from the table that presence of negative weights deteriorates

performance of both MST based and spectral approach according to SDQM and

cut-index measures. In case of spectral method, the difference (between graphs

with negative edge weights and those without them) can be explained by the fact

that the spectral method attempts to affect a max-cut on the given graph, hence

negative edge-weights adversely affects the performance. On the other hand, the

proposed approach, while optimizing SDQM also maintains cut-index compara-

ble to MST based approach. One more remarkable feature is that the performance

of proposed approach is unaffected by introduction of negative edge-weights.

This experiment establishes that the proposed approach maximizes SDQM while

maintaining a high cut-index and at the same time, it can also process graphs with

negative edge-weights.

3Sparsity is selected arbitrarily to simulate sparse matrices
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3.4.2 Downsampling Undirected Graphs

The data used in the experiment is temperature data from weather stations, pub-

licly available on [1]. When processing such data, statistical correlation or distance

based computations are often used to arrive at the edge-weights, which result in

the resultant graph being undirected. We will test the efficacy of proposed algo-

rithm for downsampling such undirected graph. From the database, we consider

196 nodes from which undirected graphs is constructed. Data for year 2014 is con-

sidered with data available on all nodes for 365 days. Thus, we have 365 graph

signals with number of nodes being 196. We use similarity measure given by sta-

tistical correlation. The diagonal entries of the correlation-matrix are all set to 0,

and the matrix is normalized with the largest eigenvalue. The matrix is then des-

ignated as the adjacency matrix of the graph. This matrix is symmetric, and hence

represents an undirected graph. We diagonalize the adjacency matrix in order to

obtain the GFT for the given graph.

We obtain the downsampled grids using MST based approach, spectral method

and proposed method. For each downsampled grid, we reconstruct the graph sig-

nal on purged nodes using the values on kept nodes. The reconstruction accuracy

is defined as 20 log
(
‖s̄‖
‖er‖

)
, where ‖ · ‖ denotes 2-norm. Figures 3.3 and 3.4 pro-

vide the downsampled grids (both purged and kept nodes) and reconstruction

accuracy. The reconstruction accuracies indicate that the proposed algorithm out-

performs both the methods. The value of SDQM for spectral downsampling ap-

proach and MST based approach are 0.003 and 0.004 respectively, while the same

for proposed approach is 0.15. This fact reflects directly in the reconstruction er-

rors.

It should be noted here that maximizing the cut-index amounts to selecting a

set of vertices which are strongly related to the purged set of vertices. This is a

first order operation, i.e., only the first order effects of vertices on each-other are

used to determine strength of relations. Due to strong relation, this allows us to

reconstruct a signal on purged set of vertices from the selected set of vertices. On

the other hand, the SDQM based approach takes a more direct route of minimiz-

ing the reconstruction error and thus able to provide a significant improvement
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over other approaches.

3.4.3 Downsampling Directed Graphs

For this experiment, we use the same dataset as used in Section 3.4.2. In some

cases [7], to normalize the effect of every vertex, the edge-weights are normal-

ized in a way that the sum of edge-weights coming into every vertex is identical.

This process helps prevent the scaling of values for graph signals when we ap-

ply graph filter as a higher order polynomial. Such a process results in a directed

graph. In order to create a directed graph for the temperature data, we first cre-

ate an 8-neighborhood distance-based adjacency matrix Ã, whose (i, j) entry is

ãi,j = e
− dist(i,j)2

d2
0 . Here, d0 is the mean distance over entire grid. Similarly, dist(i, j)

is geometric (Euclidean) distance between latitude and longitude of weather sta-

tions (nodes) numbered i and j. After this, each row of Ã is normalized to have

unit norm in order to obtain adjacency matrix A. This process makes the adja-

cency matrix asymmetric, hence the adjacency matrix based approach is used to

obtain GFT for this graph. Using this GFT and Algorithm 1, we obtain a down-

sampling scheme on graph. For this downsampling, the reconstruction error for

various levels of high-frequency content is shown in Figure 3.5. We compare the

proposed approach to the stable frame approach provided in [8]. The value of

SDQM for the obtained partition is 0.13.

3.4.4 Validation of Downsampling of DCT-graphs

In this subsection, we provide two experiments (one using 1-D data and another

using 2-D data) in order to validate the results provided in Subsection 3.3.2. For

1-D data, we use temperature data and for 2-D data, we use images.

Validation Of Downsampling Of DCT Graphs Using Temperature Data

In this experiment, we use the temperature data collected across 196 weather sta-

tions in US [1]. For a single weather station, data is collected as a vector. In order

to obtain vectors of different lengths, we vary the number of days considered

41



Figure 3.3: Result of downsampling undirected temperature data graph: (Top)
MST Based approach (Bottom) SVD Based approach, + denotes purged nodes, ◦
denotes preserved nodes.
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Figure 3.4: (Top) Result of downsampling undirected temperature data graph us-
ing proposed method, + denotes purged nodes, ◦ denotes preserved nodes (Bot-
tom) Reconstruction accuracy vs High frequency content in signal
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Figure 3.5: Reconstruction accuracy vs High Frequency content in signal (Directed
Graph).

from 20 to 200. Thus we obtain 196 vectors of various lengths for testing the DCT

downsampling.

To obtain the reconstruction errors for the every alternate vertex method, we

downsampled the signal using the same and use N/2-point DCT followed by

N-point inverse DCT (IDCT) reconstruction applied on zero-padded data. To ob-

tain reconstruction errors for SDQM based downsampling, we downsampled the

signal and use N/2-point derived GFT followed by N-point IDCT applied on

zero-padded data. If the original signal is s̄ and reconstructed signal is s̄r, then the

percentage error is computed as 100× ‖s̄−s̄r‖
‖s̄‖ .

Figure 3.6 shows the error curves for both the approaches. It is apparent from

the figure that SDQM based approach performs better in reducing the reconstruc-

tion error.

Validation Of Downsampling Of DCT Graphs Using Image Data

Downsampling of DCT-graphs is used in the JPEG compression standard for color

images. In the JPEG compression standard, a color image is first converted into

YUV components (Y is luminance, and U, V are chrominance components). For ef-

ficient implementation, the image is first divided into blocks, usual size being 16×
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Figure 3.6: Reconstruction errors for different approaches of downsampling the
DCT-graph

16. For V = 16, Algorithm 1 converges to the sample-set: Vk = {1, 3, 6, 8, 10, 12, 14, 16}.

Let us denote the selection of every alternate sample as set Vr = {1, 3, 5, 7, ..., 15},

which serves as reference for comparing the results. SDQM for Vk is 0.4865 while

for Vr, it is 0.4323. According to our hypothesis, Vk should outperform Vr in signal

reconstruction error.

As human eye is less sensitive to chrominance, every 16× 16 (non-overlapping)

block of U and V components, are first downsampled to 8× 8 block and then 2-D

DCT is applied on these blocks in order to compress the same4. In this experiment,

we change the downsampling set from Vr to Vk and show how the sample-set Vk

can reproduce original blocks with reduced error. For forward transform, 8-point

DCT is used for Vr and FkL (see Section 3.1) is used for Vk. The reconstruction into

16× 16 blocks is performed using 16-point 2-D IDCT on the transformed blocks

with appended zeros in both the cases. We select three images namely Lena, Bar-

bara and Baboon images (all of size 192× 192), which are shown in Figure 3.7. The

blockwise average percentage errors in U and V components are provided for all

three images for both the sample-sets in Table 3.4. The error for a single block is

computed using 2-norm of the error block, and then the error is averaged over all

4Note that a 16× 16 pixel block forms a graph that is the cartesian product of the graph given
in Figure 3.7 with itself. Hence GFT on the 16× 16 node graph is the Kronecker product of GFT
for graph in Figure 3.7, with itself. For details refer [33]
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1 2 3 14 15 16

Figure 3.7: (Top) Graph For DCT-type II (|V| = 16). (Bottom) Images (from left to
right): Lena, Barbara, Baboon

blocks to obtain blockwise average error. It can be seen that the sample-set de-

rived using the proposed algorithm reproduces the chromatic components with

reduced error compared to standard DCT-IDCT method. The difference in SDQM

explains the different performance of both schemes.

It should be emphasized here that the purpose of this experiment is not to

provide a new method of image-compression. Rather, the purpose is to show

how underlying graph structure provide non-intuitive downsampling schemes

which are captured well by the proposed quality measure SDQM.

Baboon Barbara Lena
Vr Vk Vr Vk Vr Vk

U-Component 4.2241 3.6605 1.3841 0.9817 0.9806 0.4970
V-Component 3.6346 3.0814 1.2641 0.8374 0.6843 0.4108

Table 3.4: Blockwise Average Percentage Errors For Downsampled Images

3.4.5 Data Dependent Downsampling: An Example

So far, we have used graphs which are not derived from the signal directly. How-

ever, in some applications, the graph for a given signal is derived from the sam-

ple values (e.g. graphs used for images in [36]). In this experiment, we observe

how the proposed downsampling affects the downsampling of data-dependent
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Figure 3.8: Variation in sampling in fast varying vs slow varying portions of signal

graphs. We generate a synthetic signal which has first half samples with high

variations and second half with low variations. We then create a 4-neighborhood

value based graph for the same signal. i.e., if node i and node j are within 4-

neighborhood of eachother, then weight connecting the two nodes is Ce−((si−sj)
2)/θ,

where θ = 0.2, while si, sj are signal values on nodes i and j respectively. Value of

C is 1 for nearest neighbor and 0.7 for second neighbor.

If we apply the bipartite graph based downsampling approach after finding

the MST, then the resultant scheme tends to pick alternate samples from the 1-D

grid, in the low variation part. This means, that the downsampling would purge

same number of nodes from both the high variation part and the low variation

part. On the other hand, the downsampling scheme obtained using the proposed

method tends to have higher number of samples in regions with high variations.

In Figure 3.8, the first half of the signal contains higher variations, and the down-

sampling scheme suggests that 60% samples in the downsampled signal would

come from first half of the signal.

3.5 Adjacency Matrix for Downsampled Graph

While downsampling of a graph allows us to reduce the number of vertices and

offers a simpler graph representation, the inter-relations between the vertices ob-
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tained via downsampling process are unknown. The adjacency matrix for the

downsampled vertices should also exhibit certain properties present in the origi-

nal graph. If the original graph is sparse, the downsampled graph should also be

sparse. If the original graph is undirected, then the downsampled graph should

also be undirected. In this section, we review common approaches to obtain the

adjacency matrix for the downsampled graph, discuss their shortcomings and

propose a method to do the same from an algebraic perspective using the analogy

from bipartite graphs.

Some approaches rely upon Kron-reduction which can be applied on the loopy-

Laplacian [11] or the adjacency matrix [43]. The Kron Reduction is a relatively

simple technique for eliminating nodes from a network when the signal value at

that node is always zero, e.g. grounded nodes in an electrical network always

have zero voltage at the node. As the assumption that the sample value on the

vertex is always zero is not true for an arbitrary graph, the scope of this approach

is limited. Another approach proposed in [8] relies on sampling the eigenvectors

on the lower half of the spectrum on the nodes that are selected. It is an algebraic

approach, and a major drawback of this approach is that it may not preserve the

structure of the original graph in a topological sense (e.g. properties like sparsity

and undirectedness).

We propose a simple approach to define the adjacency matrix of downsampled

graph in case of downsampling by a factor of two. Specifically, given a graph

G = (V , A), the selection matrix P (for selecting the vertices) and the resulting

downsampled graph Gk = (Vk, Ak), we define

Ak = PA2PT

The above equation is obtained by direct analogy from bipartite graphs (refer The-

orem 2.1).

In order to test the effect of filtering using the proposed adjacency matrix, we

generated random bipartite graphs with N = 100 nodes. We then added edges

to the graph making it non-bipartite. We quantified the amount of edges added

as a ratio of Frobenius norm of added matrix to the Frobenius norm of resultant
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Figure 3.9: Effect of filtering using two different (heuristics method [24] and the
the proposed method) adjacency matrices

non-bipartite matrix. We filtered the signal with filter h(A) = A.5 The results

are expressed in Figure 3.9. We can see that the proposed method performs with

better quality compared to the reference heuristic method [24]. In the reference

method, the edges between vertices that were present in the original graph (i.e.

graph before downsampling) are preserved in the downsampled graph as well.

In addition, new edges are introduced in the downsampled graph based on the

second order relations in the original graph.

It is evident that the method proposed for obtaining the adjacency matrix for

downsampled graph is limited by the nature of graphs. In order to generalize

the concept, there needs to be a deeper analysis on the relationship between the

adjacency matrices of two graphs, and the implications of such a relation on the

algebra of filters, signal modules and spectral properties. In Chapter 5, we analyze

such relationships.

3.6 Discussion

So far, we have assumed downsampling of a graph by an integer factor two. The

proposed approach can be adapted to downsampling for any number of samples.

5As all the LSI filters can be expressed as polynomials in A, this choice gives us an indication
of behavior of any LSI filter.
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If a graph with N nodes is to be downsampled into a graph with m(< N) nodes,

then we ignore the GFT coefficients corresponding to the N −m highest frequen-

cies. Thus the descriptor submatrix is of dimension (N − m)× (N − m) and the

downsampling scheme can be obtained by optimizing the SDQM.

In subsection 3.1, we mentioned the difference between proposed approach

and stable-frame approach. As indicated in [3], stable-frame approach minimizes

the aliasing error, which is the same parameter that we optimize. We verify that

both the approaches (i.e. proposed approach and stable-frame approach) are iden-

tical only if the GFT matrix has orthogonal columns, which is guaranteed for

undirected graphs. However, both the methods provide different downsampling

schemes in case of directed graphs which have non-orthogonal GFT. Example

given below provides such a case where the SDQM based optimization differs

from stable-frame approach.

Example 1. Consider a 6−node directed graph with adjacency matrix

A =



0 1 1 0 1 1

1 0 1 1 1 0

1 0 0 1 1 0

0 1 1 0 1 0

0 0 0 1 0 0

1 1 1 0 1 0


The four highest minimum singular values for descriptor submatix are 0.59, 0.58, 0.58

and 0.57 for selections {2, 5, 6}, {1, 2, 5}, {2, 3, 6} and {1, 2, 3} respectively. On the

other hand, the four highest minimum singular values for the selected frame are

0.46, 0.46, 0.36 and 0.36 for selections {1, 4, 5}, {4, 5, 6}, {3, 4, 6} and {1, 3, 4} re-

spectively. Thus, the optimization using the two parameters would yield different

downsampling schemes.

In previous section, we explored how the adjacency matrix for the downsam-

pled set of vertices can be inferred using the analogy with bipartite graph. Here,

we discuss how the adjacency matrix can be determined using algebraic prop-

erties for an arbitrary graph. We know that A = V JV−1. For graphs that are
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diagonalizable, J is a diagonal matrix which contains eigenvalues of A as diago-

nal entries. As given in Equation (3.4), the GFT for the downsampled graph FkL

is known. We also know the original graph and the frequencies (and hence eigen-

values) which are preserved in the downsampled graph. Combining this, we can

obtain the new adjacency matrix as VkL JLV−1
kL , where JL is a diagonal matrix de-

rived using eigenvalues which are preserved (i.e. the eigenvalues corresponding

to the frequencies to be preserved while downsampling) and VkL = F−1
kL . It can be

verified that this approach provides the desired adjacency matrix for downsam-

pling of graphs related to classical signal processing (i.e. graphs whose GFT is the

DFT). However, when applied to arbitrary graphs, this approach does not pre-

serve the properties of symmetry and sparseness of the original adjacency matrix.

Specifically, VkL JLV−1
kL is not guaranteed to be symmetric (as the matrix VkL is not

necessarily orthogonal) or sparse. However, when matrix VkL contains orthogonal

columns (e.g. classical signal processing), this approach provides a way to obtain

the adjacency matrix for the downsampled set of vertices.

In [24], the adjacency matrix for the downsampled graph is used for obtaining

multiresolution. However, we can also obtain a multiresolution on a given graph

without assigning the adjacency matrices to the downsampled graphs. Here, we

use the fact that the proposed downsampling method relies only on the GFT ma-

trix and not on the adjacency matrix in a direct way. We can also compute the

GFT matrix for the downsampled graph using Equation (3.4). Thus, the same al-

gorithm can be used on the new GFT matrix in order to obtain downsampling

of the same. Repeating this process, we can obtain a multiresolution on a given

graph.

A converse problem for graph signal processing is upsampling of graphs, i.e.,

adding vertices to a given graph (or merging two graphs) to produce a larger

graph. One way to resolve this is to use eigenvalues and eigenvectors of smaller

graphs and create a larger graph combining the two. Such a process can be shown

to produce appropriate results for DFT-graphs. However, for arbitrary graphs,

this problem requires multiple considerations, such as the resultant graph has to

have properties like sparsity and directedness from the graphs to be merged. This
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requires further research in that direction.

In this chapter, we proposed a downsampling schemes that is applicable to ar-

bitrary graphs. We framed the downsampling problem as an optimization prob-

lem and provided a greedy algorithm in order to obtain a suboptimal solution.

We validated the proposed approach and compared the same with various exist-

ing approaches. We also discussed a few possible ways to obtain the adjacency

matrix for downsampled graphs. In the next chapter, we analyze and improve

upon the computational complexity of the greedy downsampling algorithm and

study the frequency sensitivity of a given sample-set with respect to various fre-

quency bands.
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CHAPTER 4

Optimization of Algorithm for SDQM Down-

sampling and Frequency Selective Downsam-

pling

In the previous chapter, we derived a graph downsampling approach based on

minimization of aliasing error of a signal. We formulated the graph downsam-

pling problem as an optimization problem which was solved using a greedy algo-

rithm. In this chapter, we analyze and explore ways to reduce the computational

complexity of the proposed greedy algorithm. Additionally, the approach derived

in previous chapter has a limitation that it treats the whole higher frequency com-

ponents as a single band. We extend the same and design downsampling schemes

that are sensitive to different frequency bands. We validate our claims using ex-

perimental results.

4.1 Reducing the Complexity of SDQM Based Greedy

Algorithm

In previous chapter, we derived SDQM based graph downsampling as maximiza-

tion of σmin(F4), where F4 is the descriptor submatrix for the given downsampling

scheme. The computation of σmin requires O(N3) operations. In order to find

the optimal solution to this optimization problem, we require to compute σmin for

( N
N/2) (considering the problem of downsampling by a factor of 2) times. This

problem cannot be solved using a known polynomial time algorithm. Thus, in
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order to obtain an approximate solution, we use a greedy algorithm, which re-

quires computation of σmin for O(N2) times. This results in the computational

complexity of the proposed greedy algorithm to be O(N5). This computational

cost is impractical for larger graphs.

In order to reduce computational complexity, we focus on the computation of

σmin. Notice that maximization of σmin(F4) is identical to minimization of σmax(F−1
4 ).

This change in formulation does not provide any savings in the computational

cost. This is due to the fact that computing the inverse of a matrix as well as com-

putation of largest singular value of a matrix have same complexity (i.e. O(N3))

as computing the smallest singular value. However, in context of the greedy ap-

proach, we can reduce the computational complexity of computing the inverse

matrix by distributing the same along iterations. We can also use some alterna-

tive approaches to compute the maximum singular value of a matrix (spectral

norm of a matrix) which is useful in reduction of overall computational cost.

4.1.1 Reorganization of Greedy Algorithm for Computational Cost

The present organization of the algorithm is about selection of N/2 columns from

N given columns. We select a column and then iteratively add columns to the

selection such that the minimum singular value of the current iteration is maxi-

mized. To this end, we form an N/2× i matrix Si for ith iteration, and compute

the minimum singular value of the same and add a column that maximizes the

same. The minimum singular value of Si is the square-root of minimum eigen-

value of ST
i Si (which is an i × i matrix). If the matrix is nonsingular, then mini-

mum singular value can be obtained as 1
σmax((ST

i Si)−1)
. Here, it is clear that we need

to compute (ST
i Si)

−1 and σmax of the same in an efficient way in order to reduce

the computational complexity.

Now let j = i + 1, then Sj is given by [Si, c], where c is a column to be added to

the matrix for next iteration. Thus,

ST
j Sj =

ST
i Si ST

i c

cTSi cTc
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If cTc is non-zero (which is true for every non-zero column) and ST
i Si is non-

singular, then the matrix is invertible and the inverse can be computed efficiently

by following block inversion formula (as given in [20]).

(ST
j Sj)

−1 =

(ST
i Si)

−1 + (ST
i Si)

−1(ST
i c)∆(cTSi)(ST

i Si)
−1 −(ST

i Si)
−1(ST

i c)∆

∆(cTSi)(ST
i Si)

−1 ∆

 ,

(4.1)

where ∆ = (cTc− (cTSi)(ST
i Si)

−1(ST
i c))−1. If (ST

i Si)
−1 is stored at every iteration,

this computation can be accomplished in O(N2) operations.1 Thus, we can com-

pute the inverse of ST
j Sj efficiently using the inverse of ST

i Si. The next step is to

compute the norm of (ST
j Sj)

−1 in an efficient way.

As shown in Equation (3.7), reconstruction error is given by ‖er‖ ≤ ‖F−1
4 ‖2‖bH‖2.

For any matrix, the spectral norm is equal to or lower than the Frobenius norm.

Thus ‖er‖ ≤ ‖F−1
4 ‖F‖bH‖. Since computation of Frobenius norm is O(N2), using

the same in place of spectral norm (which is O(N3) when computed using SVD

expansion) results in computational gain. It should be noted here that the Frobe-

nius norm provides a more relaxed upper-bound compared to the one provided

by spectral norm. This may result in small degradation of the SDQM.

If it is undesirable to use the Frobenius norm, then we may compute the min-

imum singular value of Si as the inverse largest eigenvalue of (ST
i Si)

−1. As dis-

cussed above, (ST
i Si)

−1 can be computed efficiently using iterative nature of al-

gorithm. Additionally, we can use the power-method in order to compute the

largest eigenvalue of the same. Power method [13] is widely used to compute the

dominant eigenvalue of a given matrix (this is especially true if the matrix un-

der consideration is sparse). It is an iterative method of computation where the

rate of convergence depends upon the ratio of largest eigenvalue to second largest

eigenvalue.2

1 The order of evaluation of various terms in the above inversion formula needs to be examined
closely in order to achieve computational gain.

2In order to test the efficacy of the power method in computing the spectral norm, we used
randomly generated symmetric matrices (each entry of the matrix is drawn independently from
a uniform distribution) of sizes varying from 10× 10 to 1000× 1000 and used the power method
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Downsampling Method SDQM
Algorithm 1 0.15

Using Frobenius Norm (M1) 0.124
Using Power Method (M2) 0.14

Table 4.1: Optimized SDQM based downsampling and corresponding SDQMs

Now, we experimentally validate the methods proposed for computational

gains.

4.1.2 Experimental Validation

The data used in the experiment is temperature data from weather stations, pub-

licly available on [1] and also used in our experiments in Chapter 3. From the

database, we consider 196 nodes from which directed and undirected graphs are

constructed. Data for year 2014 is considered with data available on all nodes for

365 days. Thus, we have 365 graph signals with number of nodes being 196. We

construct the adjacency matrix for the graph using correlation matrix. We down-

sample this graph using Algorithm 1, the Frobenius norm based approach and

power method based approach. We note the SDQM values obtained for three

different downsampling schemes and observe the reconstruction accuracy.

Table 4.1 lists the SDQM values for the downsampled sample-sets obtained by

various methods. Note that the degradation in SDQM is relatively low. To ob-

serve the effect of the same on signal reconstruction, refer to Figure 4.1 and Figure

4.2. From Figure 4.1, it is clear that the reconstruction quality of the optimized

approach is close to the one obtained using Algorithm 1. As a reference, outcome

of MST based downsampling is also provided. More interestingly, the approach

using the power method (refer Figure 4.2) tracks so closely to one provided by

Algorithm 1 that the two are not distinguishable in the figure. In the figures and

Table 4.1, the approach using Frobenius norm and the one using power method

are referred to as M1 and M2 respectively.

with iteration count of log10(N). Thus the spectral norm can be computed in O(N2log(N)). We
found that the mean normalized error in the spectral norm is of the order of 10−16, which is ade-
quate for our purpose.
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Figure 4.1: Reconstruction quality using algorithm based on Frobenius norm
(M1). Reconstruction qualities using Algorithm 1 and MST based approach are
provided as reference.

Figure 4.2: Reconstruction quality using algorithm based on Power Method (M2).
Reconstruction quality using MST based approach provided as reference.
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4.2 Frequency Selective Downsampling Scheme

The optimization parameter SDQM indicates the sensitivity of a sample-set with

respect to upper-half of the frequency spectrum (higher SDQM implies lower sen-

sitivity). In this section, we extend this concept to individual frequencies and fre-

quency bands. We begin by defining a frequency sensitivity function and then

use the same in order to obtain different sampling schemes with desired sensi-

tivities in different frequency bands. The frequency sensitivity function defined

below measures the maximum normalized error in signal reconstruction when

the signal contains only the frequencies in the given band.

Definition For a given graph, let a band of frequencies be denoted by β, let Vβ

be the set of signals spanned by the eigenvectors corresponding to β, then the

sensitivity of a sample-set with respect to the band β, is defined as

T(β) = sup
s̄∈Vβ

‖s̄− s̄r‖
‖s̄‖ (4.2)

under a given reconstruction method, where s̄r is the reconstructed signal using

the sample-set.

Theorem 4.1 For a given graph, and a given sample-set and its descriptor submatrix as

F4,

1. The frequency sensitivity of any sample-set with respect to the preserved frequencies

(e.g. lower half f frequencies for downsampling by a factor of two) is always zero.

2. The sensitivity towards a band of frequencies is given by spectral-norm of the matrix

consisting of the corresponding columns of the matrix F−1
4 .

Proof 1. If a signal is bandlimited to lower frequencies, it can be reconstructed

without any error from a given sample-set. Thus, the frequency sensitivity, as

defined earlier, is always zero.

2. The error in reconstruction is given by Equation (3.7) as ‖F−1
4 b̄H‖2. Given a

signal confined to a frequency band, the contribution to the error is only the non-

zero coefficients in b̄H, and hence the corresponding columns of matrix F−1
4 . Thus
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the normalized error is given by the spectral norm of the submatrix constructed

by corresponding columns of F−1
4 .

Using Theorem 4.1, we can find the sensitivity to a given frequency band β as,

T(β) = σmax(F−1
4 (β))

where F−1
4 (β) is the submatrix of F−1

4 corresponding to the columns selected by

β.

The graph whose GFT is the Discrete Fourier Transform (DFT), the frequency

sensitivity of each frequency is uniform for the standard downsampling scheme

(i.e. selecting every alternate sample). Also, the frequency sensitivity of each band

with identical number of frequencies is identical. We use the results in Theorem

4.1 in order to obtain a greedy approach for designing frequency sensitive down-

sampling schemes.

4.2.1 Downsampling Algorithm Based on Optimizing Frequency

Sensitivity

We now explore the details of an approach that would allow us to design a desired

frequency sensitive sampling scheme using Theorem 4.1. Given the descriptor

submatrix F4, we are required to compute F−1
4 and then use the desired frequency

sensitivity as the optimization parameter. We consider two bands in the higher

frequency range, which are required to have desired relative sensitivity.

To simplify the details, let us assume that the graph has N nodes, where N is

divisible by 4. Consider the case of downsampling by a factor of two, thus the

higher frequencies constitute the upper half of the frequencies (Denoted by βH).

Within the upper-half of frequencies, let us assume that there are two equal sized

frequency bands, i.e. the lower portion of the upper-half (denoted by βHL and the

higher portion of the upper-half (denoted by βHH). We desire our downsampling

scheme to be less sensitive towards βHL and more sensitive towards βHH. This

assumption is valid in cases where the signal energy is significantly higher in band
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βHL compared to the energy in band βHH. The following optimization strategy

can be used in order to obtain the desired sample-set.

Popt = argmin
Pp∈{0,1}N/2×N

{αT(βHL) + (1− α)T(βHH)} (4.3)

where α ∈ (0, 1) is used to adjust the sensitivity to different bands. For exam-

ple, setting α closer to 1 would put more emphasis on the band βHL. It should be

noted here that setting α = 1 may result in an unstable frame for reconstruction.

Therefore, α should not be selected to be too close to 0 or 1.

The optimization problem given by Equation (4.3) can not be solved using

a polynomial time algorithm. Thus a suboptimal greedy approach is given in

Algorithm 2, which can solve the problem in polynomial time. In Algorithm 2,

FH is the GFT submatrix selected on upper-half of frequencies (i.e. rows). The

frequency bands βHL and βHH are known and we begin with an initial sample-

set Vinit. As computation of each T(βHL) and T(βHH) require computation of

F−1
4 , the algorithm differs from Algorithm 1 by avoiding rectangular matrices.

The Algorithm 2 changes the initial sample-set Vinit in order to obtain desired

frequency sensitivity for bands. As the algorithm does not intend to optimize the

overall SDQM of the sample-set, we must ensure the Vinit has acceptable SDQM.

To address the issue, the set Vinit is selected using Algorithm 1.

Algorithm 2: Greedy algorithm for frequency selective downsampling
FH, βHL, βHH,V ,Vinit
Vk ← Vinit
Vp ← V −Vk
FHk ← Columns of FH corresponding Vk
FHp ← Columns of FH corresponding Vp
FOR i = 1 · · ·N/2

Swap i− th column of FHk with a column of FHp that minimizes:
αT(βHL) + (1− α)T(βHH)
Update Vk and Vp
Update FHk and FHp

ENDFOR
RETURN Vk
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Approach SDQM T(βHL) T(βHH)
Uniform 0.1502 5.98 3.52
Weighted 0.1492 5.27 4.52

Table 4.2: SDQM and Frequency Sensitivity for two approaches

4.2.2 Experimental Validation

Now, we use the frequency selective optimization and Algorithm 2 in order to

obtain the desired downsampling scheme for the graph created on temperature

data. We select 196 weather stations and 365 days data for temperature across US

in year 2014 [1]. We construct an undirected graph using statistical correlation. We

find out a stable reconstruction frame using the SDQM optimized approach. As

this approach does not impose different weightage to different frequency bands, it

is referred to as uniform approach. The outcome of this approach is used as refer-

ence. We use the proposed approach in order to optimize the selected sample-set

with respect to the band βHL. This results in small degradation in SDQM and a rel-

atively larger trade-off in T(βHH). The sensitivities and SDQMs are summarized

in Table 4.2. The sensitivity T(βHL) reduces from 5.98 to 5.27, thus the sample-set

obtained exhibits lower sensitivity to changes in βHL.

In order to test our hypothesis, we modify the temperature data to have very

low energy content in band βHH. After this, we alter the content in the band βHL

to test the effect of both the sample-sets. As seen in Figure 4.3, even though the

SDQM for the weighted approach is marginally lower than the uniform approach,

the error in the uniform approach is higher than that in the weighted approach. It

can also be seen that the margin of error increases as the energy of content in the

band βHL increases.

In this chapter, we analyzed the greedy algorithm for downsampling pre-

sented in Chapter 3, in the context of computational cost and proposed two meth-

ods to reduce the same. We also analyzed the downsampling schemes with re-

spect to their sensitivity towards different frequency bands and provided an ap-

proach to obtain a downsampling scheme with desired frequency sensitivity. In
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Figure 4.3: The errors for the temperature data by two approaches. Uniform ap-
proach indicates non frequency selective approach while Weighted approach in-
dicates the proposed frequency selective optimization. High frequency content
indicates the relative energy in band βHL

the next chapter, we study GSP-isomorphism and GSP-homomorphism and ex-

plore their relationships with resampling and downsampling process.
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CHAPTER 5

Structure Preserving Maps

The phrase Structure Preserving Map (SPM) refers to how one graph can relate to

another graph, preserving certain algebraic properties such as algebra of filters

and module of signals. Our main objective is to study the signal processing prop-

erties of graph theoretical concepts such as homomorphism and isomorphism. We

study how the adjacency matrices are related to each other and what constraints

are imposed upon the adjacency matrices for the homomorphism and isomor-

phism to hold. To explain this, we present an example which provides us with

insights into SPM between graphs.

Example: As noted earlier, CSP can be interpreted as a special case of GSP via

an appropriate assignment of the adjacency matrix [28, 29]. Consider graph pro-

vided in Figure 5.1, which represents periodic sequence with period 4. The GFT

corresponding to this graph is given by 4-point DFT (Discrete Fourier Transform).

Figure 5.2 shows a graph obtained by applying a similarity transform with the

following matrix P on the adjacency matrix of graph in Figure 5.1.

P =


−1 0 1 0

0 −1 0 −i

−1 0 −1 0

0 −1 0 i


Consider a signal on graph in Figure 5.1, s̄1 = [1, 0, 0, 0]T. Let the image of this

signal on the graph in Figure 5.2 be s̄2, such that s̄1 = Ps̄2. Let a filter H 7→ h(x) be

h(x) = x + x2. The output of this filtering operation is h(A1)s̄1 = [0, 1, 1, 0]T. The
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Figure 5.1: 4-node graph representing classical DSP as a graph
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Figure 5.2: A graph obtained by a similarity transform on adjacency matrix in 5.1

output of the same filtering operation in second graph is h(A2)s̄2 = 1
2 [−1,−1,−1, i].

It can be seen that h(A1)s̄1 = Ph(A2)s̄2. Thus, the linear map P preserves the fil-

tering operation.

The above example shows us that there exist maps between graphs that pre-

serve the filtering operation. Our aim is to study such maps and the conditions

on the graphs which allow for the preservation of filtering operations.

5.1 Structure on Graphs

In this section, we first introduce graph signal processing framework (GSPF) and then

define structure preserving maps (more specifically, homomorphic and isomor-

phic maps) between two graph signal processing frameworks (or structure pre-

serving maps between graphs in brief).

Let G = (V , A) be the graph under consideration. Let S be a set of signals on

a graph G, and F be a set of linear and shift-invariant systems that operate on the

signals. Note that the sets S and F themselves also have structures of their own.

The set of signals S is a vector space, while the set of filters F forms an algebra with

well defined addition, scalar multiplication and composition operations. As per

Algebraic Signal Processing Theory, we know that S can be seen as an F−module,

and forms an algebraic module. We refer to the structure (S, F, ·) as graph signal
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(s1, f1) (s2, f2)

f1 · s1 ΦS( f1 · s1) = f2 · s2

f iltering

Φ = (ΦS, ΦF)

Φ

f iltering

Figure 5.3: Illustration of structure preserving map Φ between two GSPFs. A
pair of signal and filter (s1, f1) on one GSPF is mapped to a pair (s2, f2) (where
s2 = ΦS(s1) and f2 = ΦF( f1)) on the other. The filtering operation produces
signals f1 · s1 and f2 · s2 respectively.

processing framework for graph G. A fundamental property of an GSPF (S, F, ·) is

that for any signal s ∈ S and any filter f ∈ F, f · s is a well defined operation with

f · s ∈ S.

Definition Consider two graphs G1 and G2 with their GSPFs (S1, F1, ·1) and (S2, F2, ·2)

respectively. If linear maps ΦS : S1 → S2 and ΦF : F1 → F2 exist such that

∀ f1 ∈ F1, ∀s1 ∈ S1, ΦS( f1 ·1 s1) = ΦF( f1) ·2 ΦS(s1), (5.1)

then Φ = (ΦS, ΦF) is called GSP-homomorphism and the GSPFs (S1, F1, ·1) and

(S2, F2, ·2) are said to be homomorphic.

For maintaining simplicity, we will omit symbols ·1 and ·2, as the specifics of

filtering can be obtained from context of the expression. For example, instead of

writing f1 ·1 s, we will write f1 · s.

As ΦS and ΦF are linear maps, and considering the fact that f1 and f2 are linear

transforms, an important relation between ΦS and ΦF can be obtained, which is

provided in form of Theorem 5.1.

Theorem 5.1 If Φ = (ΦS, ΦF) defines a GSP-homomorphism between two GSPFs

(S1, F1) and (S2, F2), then

∀ f ∈ F1, ΦF( f )ΦS = ΦS f (5.2)
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Proof By definition of homomorphism, ΦS( f · s) = ΦF( f ) · ΦS(s). As, ΦS and

f both are linear transforms, they follow associative laws. Hence, we can write

(ΦF( f )ΦS)s = (ΦS f )s. As this relation has to be true for all signals s ∈ S1, fol-

lowing result can be obtained which proves the statement.

ΦF( f )ΦS = ΦS f (5.3)

Theorem 5.2 If Φ = (ΦS, ΦF) defines a GSP-homomorphism between two GSPFs

(S1, F1) and (S2, F2), then

∀ f1, f2 ∈ F1, ΦF( f1 f2)ΦS = ΦF( f1)ΦF( f2)ΦS (5.4)

Proof Using Theorem 5.1, ΦF( f1 f2)ΦS = ΦS f1 f2. Also, ∀s ∈ S1, ΦS( f1( f2 · s)) =

ΦF( f1)ΦS( f2 · s) = ΦF( f1)ΦF( f2)ΦS(s). As this has to be true ∀s ∈ S1, we get

ΦS f1 f2 = ΦF( f1)ΦF( f2)ΦS, which proves the desired result.

If Φ = (ΦS, ΦF) defines a GSP-homomorphism between two GSPFs (S1, F1)

and (S2, F2), and ΦS is surjective, then ΦF( f ) = ΦS f ΦR−
S , where ΦR−

S is right-

inverse of ΦS. It must be noted here that ΦR−
S is not unique. We now introduce

GSP-isomorphism based on GSP-homomorphism already defined.

Definition Let Φ = (ΦS, ΦF) be a GSP-homomorphism. If ΦS is bijective, then

the mapping is called GSP-isomorphism.

Theorem 5.3 If Φ = (ΦS, ΦF) defines a GSP-isomorphism, then ΦF( f ) = ΦS f Φ−1
S ;

where Φ−1
S is the inverse of ΦS.

Proof As per definition of GSP-isomorphism, ΦS is bijective (i.e. surjective and

injective). Thus, using Theorem 5.1, we get ΦF( f )ΦS = ΦS f . However, as ΦS is

bijective, with inverse Φ−1
S , we obtain ΦF( f ) = ΦS f Φ−1

S .

If ΦS is an invertible linear map, then we can write f = Φ−1
S ΦF( f )ΦS. Thus

ΦF is also an invertible linear map with Φ−1
F ( f ) = Φ−1

S f ΦS. Thus, the linear-

ity of ΦF is not independent of the nature of ΦS. In addition, if ΦS is invert-

ible, then ∀ f1, f2 ∈ F, ΦF( f1 f2) = ΦF( f1)ΦF( f2). Theorem 5.4 tells us that GSP-

homomorphism is transitive.
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Theorem 5.4 If (S1, F1), (S2, F2) and (S3, F3) are three GSPFs such that there exists a

GSP-homomorphism between (S1, F1) and (S2, F2), and between (S2, F2) and (S3, F3),

then there exists a GSP-homomorphism between (S1, F1) and (S3, F3).

Proof Let Φ = (ΦS, ΦF) be the GSP-homomorphism between (S1, F1) and (S2, F2).

Also let Ψ = (ΨS, ΨF) be the GSP-homomorphism between (S2, F2) and (S3, F3).

Now, let ΓS = ΨS ◦ΦS and ΓF = ΨF ◦ΦF. Using definition of GSP-homomorphism,

we obtain

∀ f1 ∈ F1, s1 ∈ S1, ΓS( f1s1) = ΨS ◦ΦS( f1s1)

⇒ ΓS( f1s1) = ΨS(ΦS( f1s1)) = ΨS(ΦF( f1)ΦS(s1)) = ΨF ◦ΦF( f1)ΨS ◦ΦS(s1)

⇒ ΓS( f1s1) = ΓF( f1)ΓS(s1) (5.5)

Through Theorems 5.1-5.4, we have focused on linearity and not explored

the shift-invariance aspect of the filters. As discuss earlier, the LSI filters on

graphs are polynomials in adjacency matrix. Hence, GSP-homomorphism and

GSP-isomorphism put constraints on adjacency matrices of the two graphs under

consideration. We examine the same in detail in following sections.

5.2 GSP-Isomorphism

Consider two graphs G1 = (V1, A1) and G2 = (V2, A2) and let Φ = (ΦS, ΦF) be

a GSP-isomorphism between the two. Let the number of vertices in G1 and G2 be

N1 and N2, respectively. We limit the set of filters in GSPF to be Linear and Shift-

Invariant. Let the GSPFs for graphs G1 and G2 be (S1, F1) and (S2, F2), respectively.

If N1 = N2,1 then GSP-isomorphism turns into graphs being isospectral, which is

explained in Section 5.2.1.

1If N1 6= N2, then the graphs can have GSP-isomorphism only if the dimension of signal spaces
S1 and S2 are identical. Here, the vectors representing the signals will have dimensions N1 × 1
and N2 × 1, however, the signal could belong to a lower dimensional subspace (e.g. bandlimited
signals). Limiting of the graph-signals to a subspace also has a limiting effect on the set of filters
as the closure needs to be maintained. Thus, the GSP-isomorphism between two graphs can be
achieved by limiting the signal-space and the filter-space for graph with more nodes to subspaces
of dimensions that comply with the other graph.
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5.2.1 Isospectral Graphs

In this section, we explore the properties of isospectral graphs2 (defined below). We

show that isospectral graphs have a GSP-isomorphism between them. We also

show that isospectral graphs exhibit one to one correspondence between signals

and filters of two graphs that preserves the algebraic properties.

Definition Two graphs G1 = (V1, A1) and G2 = (V2, A2) are called isospectral iff

matrices A1 and A2 are similar. They are also called co-spectral graphs.

The concept of isospectral graphs can be thought of as an extension to the con-

cept of graph-isomorphism. As ΦS is a linear map, it can be represented as a

matrix P. In graph-isomorphism, the matrix that relates the two adjacency matri-

ces (i.e. matrix P) is a permutation matrix, whereas in isospectral graphs, P is any

invertible matrix. The following result shows that isospectral graphs also share a

GSP-isomorphism.

Theorem 5.5 If two graphs are isospectral, a GSP-isomorphism can be established be-

tween the two.

Proof Let graphs G1 = (V1, A1) and G2 = (V2, A2) be isospectral. By defini-

tion, there exists an invertible matrix P such that A1 = P−1A2P. If we define

s1 ∈ S1, ΦS(s1) = Ps1 and f1 ∈ F1, ΦF( f1) = P f1P−1, then we can conclude by

definition that (ΦS, ΦF) constitutes a GSP-isomorphism between G1 and G2.

Theorem 5.6 Given two isospectral graphs G1 = (V1, A1) and G2 = (V2, A2) with

A1 = P−1A2P, then

(i) If H1 is the matrix representing a shift-invariant filter in G1, then there exists H2

similar to H1 which is a shift-invariant filter in G2.

(ii) If H1 be a shift-invariant filter in graph G1, then filter H2 = PH1P−1 in graph G2

has identical frequency response to H1.

(iii) Let H1 be a shift-invariant filter in graph G1. If filter H2 in graph G2 has identical

frequency response to H1, then H2 = PA1P−1.

2The isospectral relations between trees are studied in [35]
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Proof (i) H1 is a shift-invariant matrix in G1. With A1 being the shift operator for

G1, then H1A1 = A1H1.

Using A1 = P−1A2P, H1P−1A2P = P−1A2PH1. ⇒ PH1P−1A2 = A2PH1P−1

Substitute H2 = PH1P−1, we get H2A2 = A2H2. Hence, we can conclude that H2

is shift-invariant in G2.

(ii) Since the two graphs are similar, their adjacency matrices have identical set of

eigenvalues and hence their characteristic polynomials are identical. Let’s assume

the characteristic polynomials to be p(x).

Also assume that the filter H1 in graph G1 is mapped to a polynomial h1(x) ∈

C[x]/p(x). Similarly H2 in graph G2 is mapped to a polynomial h2(x) ∈ C[x]/p(x).

Thus, H1 = h1(x)|x=A1 = h1(A1) and H2 = h2(x)|x=A2 = h2(A2). Now, H1 =

h1(A1)⇒ H1 = ∑N−1
i=0 αi Ai

1. Using relation A1 = P−1A2P, H1 = ∑N−1
i=0 αi(P−1A2P)i

⇒ H1 = P−1(∑N−1
i=0 αi Ai

2)P⇒ H1 = P−1h1(A2)P. Combine the above result with

the fact that H1 = P−1H2P, we get H2 = h1(A2)⇒ H2 = h1(x)|x=A2 . The above

result indicates h1(x) = h2(x). Hence, the graph Fourier Transform of both H1

and H2 are also identical.

(iii) Result (iii) is the converse of (ii), and it can be proven using similar line of

arguments.

Theorem 5.7 Given two isospectral graphs G1 = (V1, A1) and G2 = (V2, A2) with

A1 = P−1A2P, then

(i) If V−1
1 and V−1

2 are the matrices representing graph Fourier transforms for graph G1

and G2 respectively, then the matrix P is given by P = V2V−1
1

(ii) The GFT of a signal on G1 and its image on G2 are identical.

Proof (i) As V−1
1 and V−1

2 are the graph Fourier transforms respectively, A1 and

A2 can be written as, A1 = V1 J1V−1
1 and A2 = V2 J2V−1

2 , where J1 and J2 are Jordan

Normal Forms of A1 and A2 respectively.

As matrices A1 and A2 are similar, their JNFs are identical. Hence, J1 = J2 ⇒

V−1
1 A1V1 = V−1

2 A2V2 ⇒ A1 = V1V−1
2 A2V2V−1

1 . Since A1 = P−1A2P, the desired

result can be achieved as P = V2V−1
1

(ii) Let signal on G1 be s̄1, and its image on G2 is given by s̄2 = Ps̄1. As P = V2V−1
1 ,

we obtain V−1
1 s̄1 = V−1

2 s̄2, which is the desired result.
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Using Theorem 5.6, one can transfer definitions of shift, shift-invariance and

linear shift-invariant filters from one graph to a graph which is isospectral to it.

There is a one-to-one correspondence between the set of filters and signals on the

two isospectral graphs. One of the applications of isospectral graphs is discussed

in [38], where a given graph is transformed into a graph with desired eigenvec-

tor structure for the purpose of multirate signal processing on graphs. Instead of

imposing a structure on the eigenvectors, in the next subsection we use the com-

patibility of shift operators between two graphs to obtain isospectral graphs. Thus

the isospectral graphs are not only algebraic manipulations mirroring similarity

transforms, but they also have a physical implication on the shift operator. In the

following subsection, we explain how the resampling process leads to isospectral

graphs using the example of 1-D nonuniform signals.

5.2.2 Nonuniform Signal Processing: Algebraic Model

We examine the signal processing model for 1-D signals which are non-uniformly

sampled. We show that under certain conditions, signals which are non-uniformly

sampled can be represented and processed as graph signals with appropriate

choice of adjacency matrix. Moreover, if we assume a finite number of continuous

time signals as a common basis for various sampling grids, we show that these

grids equipped with suitable interrelations between vertices give rise to graphs

which share GSP-isomorphism. This can be used for applications like signal re-

construction and filter-design for non-uniform 1-D signals.

Consider a signal s(t) (supported on a continuous domain of values) sampled

at two grids one uniform and the other nonuniform, giving two discrete signals

s̄1 and s̄2 respectively. Here, we assume that the signal s(t) can be reconstructed

without any error from either of the sampled versions. In such a case, the operator

P that maps s̄1 to s̄2 is invertible. The shift operator corresponding to the first sam-

pling grid is denoted by A1 and the shift operator for the second sampling grid is

denoted by A2. Figure 5.4 shows the scenario using a commutative diagram.

As A1 and A2 represent shift operators in their respective graphs, the effect

of shifting is assumed to be identical to the underlying signal s(t), i.e., the re-
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s̄1 A1s̄1

s̄2 A2s̄2

P

A1

A2

P

Figure 5.4: Commutative diagram for isospectral graphs. A signal s(t) is sampled
on two different grids giving signals s̄1 and s̄2. A1 and A2 are the adjacency ma-
trices representing the graphs while P is a linear and invertible operator which
allows reconstruction from one grid to another.

constructed shifted version of s(t) is the same whether the reconstruction is done

using A1s̄1 or using A2s̄2. Our objective here is to find out the adjacency matrix

for the non-uniform grid, which will allow us to use GSP to process non-uniform

signals. Given A1 (and its related information such as spectrum and GFT matrix),

we would like to find out the adjacency matrix (A2) for the non-uniform grid.

From the commutative diagram in Figure 5.4,

PA1s̄1 = A2s̄2 = A2Ps̄1 (5.6)

As the above condition has to be met for any s̄1,

A2 = PA1P−1 (5.7)

This indicates that the matrices A1 and A2 are related by a similarity transform.

Hence, the respective graphs are isospectral. Let s(t) ∈ span{b1(t), ..., bN(t)},

where each bi(t) is a basis vector. Let the samples obtained from uniform grid

be denoted by s̄1 and the samples obtained from nonuniform grid be denoted by

s̄2, each of which is an N-dimensional vector. Given the N sampling locations

(t1, ..., tN), we call the matrix β = [bi(tj)]i,j as the grid basis matrix. We thus get

two such grid-basis matrices β1 and β2, corresponding to uniform and nonuni-

form grids respectively. Both β1 and β2 are invertible as the grids allow perfect

reconstruction from sampled signals. Keeping consistency in notation, denote the

uniform DFT matrix as V−1
1 . As the underlying continuous signal corresponding
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to both the uniform and nonuniform samples is identical, their Fourier transforms

should be identical too, i.e., the graph Fourier transform for s̄2 should be identical

to the DFT of s̄1. It can be seen that,

∀s̄1 ∈ S1, s̄2 ∈ S2, V−1
1 s̄1 = V−1

2 s̄2 ⇔ V−1
1 β1 = V−1

2 β2 (5.8)

Using above framework, we derive information required to characterize the

graph representation of the non-uniform grid. Primarily, we derive the GFT, spec-

trum, adjacency matrix and boundary conditions. We will refer to graph repre-

sentation for non-uniform grid as non-uniform graph in short. The GFT on for non-

uniform graph is denoted V−1
2 and it is given by V−1

2 = V−1
1 β1β−1

2 . As discussed

before, we have all the information needed to compute the GFT matrix V−1
2 . Let

the Jordan Normal Form of A2 be given by A2 = V2 J2V−1
2 . Here, as A1 and A2

are similar, the matrix J2 is identical to that for A1. As the eigenvalues of the ma-

trix A1 are distinct 3, their characteristic and minimal polynomials are identical.

This results in J2 being a diagonal matrix. Thus A2 can be computed, which is

the designated shift operator for the non-uniform graph G2. Following example

explains the usefulness of the isospectral approach of constructing graphs using

nonuniform sampling.

Example 1. Consider the signals supported on interval [0, 4] which are sampled

on two different grids. The first grid is a uniform grid with sample-points given

by (0, 1, 2, 3, 4). To illustrate the effect of isospectral graphs, we select the second

grid as a non-uniform grid with sample-points, (0, 1, 2.1, 3, 4). Thus there is a

single sample location change from grid-1 to grid-2. The adjacency matrix for the

uniform grid is given as follows (for details of adjacency matrix, refer [29]),

A1 =



1

1

1

1

1


3The eigenvalues of matrix A1 of size N are the N complex roots of unity.
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Without using the principle of the isospectral graphs, and using analogy from A1,

one arrives at following adjacency matrix (Ã2) for nonuniform sampling.

Ã2 =



1

1

1.1

0.9

1


However, if we impose an isospectral graph structure described above, we can

arrive at following adjacency matrix (A2) for nonuniform sampling.

A2 =



1

1

−0.10 0.99 0.11 −0.08 0.07

−0.06 0.09 1.01 −0.11 0.06

1


Now, consider a signal s(t) = 1, ∀t ∈ [0, 4]. Thus, the sampled versions of the

signal on both the grids will be, s̄1 = s̄2 = [1, 1, 1, 1, 1]T. It can be seen that Ã2s̄2 =

[1, 1, 1.1, 0.9, 1] while A2s̄2 = [1, 1, 1, 1, 1]. Thus, the isospectral graph provides the

desired shift operation on the given signal.

In order to visualize the effect of shift operator produced using the proposed

approach, we create a longer duration nonuniform 1D signal by introducing jitter4

in sampling. We compare the signal shifted with the proposed shift operator and

the shift obtained using the adjacency matrix constructed via a distance based

approach (an approach similar to one used in [7]). The original signal, and the

two shifted signals are shown in Figure 5.5. This demonstrates the efficacy of the

matrix constructed using similarity property.

As the matrix A1 represents the shift operator for uniform grid, the adjacency

matrix is a circulant shift matrix, which has characteristic equation as xN − 1 = 0.

4Jitter in sampling is the variations in sampling positions from a predetermined uniform pat-
tern
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Figure 5.5: An Example of shifting a non-uniform (jittered in this case) signal by
means of proposed method of creating adjacency matrix compared to distance
based adjacency matrix

As matrix A2 is similar to A1, they have identical characteristic equations, which

provide us the boundary conditions. For example, shifting a signal N times on

either graphs would produce the original signal back.

5.2.3 Filtering using GSP-Isomorphism

Theorem 5.6 provides a way to filter non-uniform data directly, without convert-

ing it into uniformly sampled data. One can design filters for non-uniform data

using some of the well established methods (see [25]) of uniformly sampled signal

filter design. From Theorem 5.6, a filter H2 on the non-uniform graph is related to

a filter on uniform graph H1 by H2 = PH1P−1. Consider a signal s̄2 in nonuniform

graph which is to be filtered by filter H2. Using reconstruction formula s̄2 = Ps̄1,

H2s̄2 = (P−1H1P)(P−1s̄1) = (P−1H1s̄1). The above result indicates that given a

nonuniform signal, if we convert it into a uniform signal, apply the filter in uni-

form domain and then reconvert into non-uniform signal is the same process that

can be achieved by applying a filter on non-uniform signal directly. Following

example illustrates the procedure in the context of denoising.

Example 2. In this example, we use low-pass filtering as a means to remove

high frequency noise from a nonuniform signal. We generate a nonuniform sig-
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Figure 5.6: See Example 2. (Top) Original Signal, (Bottom) Noisy Signal. Signals
are nonuniformly sampled

nal using combination of sine waves and add high frequency noise to the same.

The original signal (i.e. without high frequency noise) and the noisy signal are

shown in Figure 5.6. The average sample-rate of nonuniform signal is 8 kHz.

The denoised signals with two different approaches (i.e. one with the proposed

isospectral approach and one with the distance based adjacency matrix as refer-

ence) are shown in Figure 5.7. The efficacy of the proposed approach is noticeable

in Figure 5.7.

In general, considering the same signal space being sampled on multiple equiv-

alent (i.e. signal can be reconstructed without any error from one grid to another)

non-uniform grids with respective adjacency matrices as A1, A2, · · · Ak, then these

matrices are all similar and all the respective graphs are isospectral. Not only that,

a particular signal is mapped to identical polynomials (irrespective of sampling-

grid) via the adjacency matrix. This is pictorially represented in Figure 5.8.

GSP-isomorphism is not limited to the Discrete Fourier Transform. The princi-

ples established so far can be applied to any graph. We now apply GSP-isomorphism

to Discrete Cosine Transform(DCT), which is often used in data compression. We

demonstrate the use of GSP-isomorphism in the case of compression of DCT-

compressible signals (i.e. signal that can be efficiently compressed using the DCT)
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Figure 5.7: See Example 2.Filtered signals (Top) Using proposed adjacency matrix
(Bottom) Using reference adjacency matrix.

Figure 5.8: Illustration of sampling grids and their algebraic relations via isospec-
tral graphs. The matrices are similar which give rise to identical spectral domains
and identical representation of signal in algebraic domain.
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in the context of nonuniform sampling, in the following example.

Example 3. In this example, we use the formula V−1
2 = V−1

1 β1β−1
2 , where

V−1
1 is the standard DCT, in order to construct the nonuniform DCT matrix de-

noted byV−1
2 . Assuming that the signal space is spanned by appropriate cosines

(DCT Type-II) of various frequencies, we can find β1 and β2, by uniform and non-

uniform sampling of the basis, respectively. We create a DCT-compressible (DCT

bandlimited) signal and sample the same at nonuniform intervals. We then use

the standard DCT and nonuniform DCT in order to compress the signal using

various compression ratios, i.e., the number of DCT coefficient used to the to-

tal number of DCT coefficients. It can be seen from Figure 5.9 that the derived

nonuniform DCT provides better compression compared to the standard DCT.

5.3 GSP-Homomorphism

In this section, we describe the GSP-homomorphism, the conditions for homo-

morphism, and application of the same in graph downsampling. Consider two

graphs GA = (VA, A) and GB = (VB, B) with their GSPFs (SA, FA) and (SB, FB)

respectively. Let Φ = (ΦS, ΦF) be a GSP-homomorphism between the two GSPFs.

Let the number of vertices in GA and GB be n and m respectively, with n > m. The

linear map ΦS, which maps signal s̄A on graph GA to a signal s̄B on graph GB, is

represented by matrix M, i.e. s̄B = Ms̄A. It is evident that matrix M is a rectangu-

lar m× n matrix. We assume that the matrix has rank m, so it has a right-inverse,

denoted by M+, such that MM+ = Im×m. As we focus on LSI filters, the filters are

polynomials in A and B for respective graphs. The GSP-homomorphism property

is pictorially explained in Figure 5.10.

We need to obtain the conditions on M for the homomorphism property to

hold in light of the fact that filters on both graphs are polynomials in adjacency

matrices. We also need to establish relation between A and B given s̄B = Ms̄A.

Thus, the matrix M plays the role of linear map ΦS in this case. We need to find

the map ΦF in order to describe the GSP-homomorphism completely. There can

be multiple GSP-homomorphisms for given pair of GSPFs, out of which we select
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Figure 5.9: Refer Example 3. (Top) The DCT profile of the signal undergoing com-
pression at various scales. (Bottom) Reconstruction Errors using various compres-
sion ratios by two different approaches.
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(A, s̄A) As̄A

(B, s̄B) Bs̄B

Shi f t A

M M
Shi f t B

Figure 5.10: The commutative diagram for GSP-homomorphism: Shifting

(h(A), s̄A) h(A)s̄A

(h(B), s̄B) h(B)s̄B

f iltering

M M
f iltering

Figure 5.11: The commutative diagram for GSP-homomorphism: Filtering

one in which the GSP-homomorphism (ΦF) maps the generator A of FA to the

generator B of FB. Thus

ΦF(A) = B

Using Theorem 5.1, ∀ f ∈ FA, ΦF( f )ΦS = ΦS f . For f = A, we get MA = BM.

This condition is represented using a commutative diagram in Figure 5.10.

Theorem 5.8 Consider graphs GA = (VA, A) and GB = (VB, B) with GSPFs (SA, FA)

and (SB, FB), where SA and SB are sets of signals on graphs GA and GB respectively, and

FA and FB are set of LSI filters on graphs GA and GB respectively. Let Φ = (ΦS, ΦF)

represent a GSP-homomorphism with ΦF(A) = B. Then, ∀i ∈N, MAi = Bi M

Proof In Theorem 5.4, let f1 = f2 = A and ΦS = M, then

ΦF(A)ΦF(A)M = M(A)(A)⇒ MA2 = B2M

Successively applying this formula proves MAi = Bi M for an arbitrary i ∈N.

Now, let h(A) be a filter in graph GA, then using Theorem 5.8 and the fact that

M is linear, gives us Mh(A) = h(B)M. This result is pictorially represented in

Figure 5.11.
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Theorem 5.8 shows that the GSP-homomorphism puts conditions on matrix

M and also matrices A and B. The following theorem (Theorem 5.9) explores a

condition that guarantees the existence of a GSP-homomorphism.

Theorem 5.9 Consider graphs GA = (VA, A) and GB = (VB, B). If eigenvalues of B

form a subset of eigenvalues of A, then there exists a GSP-homomorphism between two

respective GSPFs.

Proof We continue with notations used in Theorem 5.8. Here, relation between A

and B is provided and we need to show GSP-homomorphism. Let A = VAΛAVT
A

and B = VBΛBVT
B be the diagonalization of A and B respectively. As eigenvalues

of B form a subset of eigenvalues of A, we can express ΛA in form of ΛB with

proper ordering as ΛA = diag(ΛB, Λ′A).

Now, assign M = VBPVT
A , where P = [I, 0], with I being m×m identity matrix

and P being m × n matrix. For an arbitrary i ∈ N, MAi = VBPVT
A VAΛi

AVT
A =

VB[Λi
B, 0]VT

A and Bi M = VBΛi
BVT

B VBPVT
A = VB[Λi

B, 0]VT
A . Thus MAi = Bi M.

Using Theorem 5.8, we obtain the required result.

Now, we look at instances of GSP-homomorphism.

5.3.1 GSP-homomorphism Between a Graph and its Connected

Component

Consider a graph which has two connected components (i.e. the graph is discon-

nected). With appropriate ordering and without the loss of generality, the graph

adjacency matrix can be written as

A =

 A1 0

0 A2

 .

where A is the graph adjacency matrix, where A1 and A2 are adjacency matrices

corresponding to the connected components.

Theorem 5.10 There exists a GSP-homomorphism between a graph and its connected

component.
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Proof We provide proof for a graph with exactly two connected components. The

proof can then be generalized for any number of connected components.

Here,

A =

 A1 0

0 A2


Thus, for an arbitrary polynomial h,

h(A) =

 h(A1) 0

0 h(A2)


Consider a selection matrix S that maps a signal on original graph s̄ to a signal on

one of the connected components s̄1, e.g. component corresponding to A1. Let s̄2

be the signal corresponding to A2. Let h(A) 7→ h(A1) and s̄ 7→ s̄1. Now, Sh(A)s̄

= S

 h(A1) 0

0 h(A2)

 s̄ = [h(A1) 0]s̄ = h(A1)s̄1

Hence h(A)s̄ 7→ h(A1)s̄1, which provides the GSP-homomorphism.

Using Theorem 5.10, we can define a different type of GSP-homomorphism,

termed as Composite GSP-homomorphism.

Definition Given a graph G = (V , A), if there exist anther graph G1 = (V1, A1)

and a polynomial r such that r(A), with appropriate ordering of vertices, can be

written as

 A1 0

0 A2

, then G is said to have a composite GSP-homomorphism

with G1.

A prominent example of composite GSP-homomorphism is provided by graphs

representing classical DSP grids. Figure 5.12 provides one such instance.

5.3.2 GSP-homomorphism: Invariant Subspaces

Consider an N−node graph G = (V , A) with GSPF (S, F). Let S1 be an invariant

subspace (under the set of shift invariant filters F) of vector space S. In such a
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1 2 3 4 5 6 1 3 5

2 4 6

Figure 5.12: Illustration of composite GSP-homomorphism for (Left) 6-node clas-
sical DSP graph and (Right) graph obtained by squaring the adjacency matrix.

scenario, there exists an invertible matrix P such that it block diagonalizes matrix

A via a similarity transform. Thus PAP−1 can be written as

PAP−1 =

 A1 0

0 A2


Let G̃ and G1 be the graphs described by adjacency matrices Ã = PAP−1 and

A1, respectively. Using Theorem 5.10, G̃ has a GSP-homomorphism with G1. Let

(S1, F1) be the GSPF associated with G1. Thus Φ = (ΦS, ΦF), where ΦS defines

the projection from S to S1 and ΦF maps a filter h(A) in GSPF (S, F) to a filter

h(A1) in GSPF (S1, F1). Let us denote the graph corresponding to adjacency ma-

trix A1 as G1. As the graphs corresponding to A and PAP−1 are isospectral by

definition, they also share a GSP-isomorphism (which is a special case of GSP-

homomorphism). Moreover, the graph corresponding to PAP−1 shares a GSP-

homomorphism with the graph corresponding to A1. Thus, using Theorem 5.4,

we conclude that the graph G shares a GSP-homomorphism with the graph G1.

Let us assume that the adjacency matrix A has eigenvalues {λ1, · · · , λN} with

corresponding eigenvectors as {e1, · · · , eN}. Let SR = span{e1, · · · , eN1}, where

N1 < N, N1 ∈N. Let S1 = {ΠPs | ∀s ∈ S} (where Π = [IN1 0]N1×N) and F1 be the

set of polynomials in A1. The map P is such that eigenvalues of A1 are λ1, · · · , λN1 .

From above discussion, we know that there exists a GSP-homomorphism be-

tween GSPFs (SR, F) and (S1, F1). However, the map ΦS : SR → S1 is invert-

ible, thus there exists a GSP-isomorphism between (SR, FR) and (S1, F1), where

FR = {h(A) | h(A)ei = 0, i = N1 + 1, · · ·N}.
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5.4 GSP-Isomorhisms and GSP-homomorphisms in Down-

sampling of Bipartite Graphs

In this section, we analyze the bipartite graphs in the light of GSP-isomorphism

and GSP-homomorphism discussed in previous sections. We know that bipartite

graphs are closely coupled with the process of downsampling [22, 40]. We take

a look at the relations between a bipartite graph and its downsampled version

from the perspective of GSP-homomorphism and GSP-isomorphism. To maintain

simplicity, we focus on a bipartite graph with identical number of nodes in both

the bipartite partitions.

With appropriate ordering, the adjacency matrix for a bipartite graph can be

expressed as A =

 0 B

BT 0

. It is trivial to see that A2 =

 BBT 0

0 BTB

. As

explained in [37, 40], the designated adjacency matrix for a downsampled graph

on the bipartite partitions are BBT and BTB. Thus, a bipartite graph exhibits the

property of composite GSP-homomorphism with r(A) = A2. The whole down-

sampling process and the assignment of adjacency matrices can be re-looked in

the light of the concepts of GSP-homomorphism and GSP-isomorphism.

We can see that the matrix A2 represents a graph with at-least two connected

components. From Theorem 5.10, this graph has a GSP-homomorphism with its

connected components. Thus a bipartite graph exhibits GSP-homomorphism with

the downsampled graph on a bipartite partition. At the same time, we can also see

the two downsampled graphs with adjacency matrices BBT and BTB. It is trivial

to see that both are isospectral and hence they share a GSP-isomorphism. This

validates the observation that graphs sampled on the same space are isospectral.
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CHAPTER 6

Conclusion

The research carried out for the thesis helped us understand the nature of graph

signals and it also illuminated the fact that the classical signal processing frame-

work can be visualized as a special case of graph signal processing. Thus, we can

take inspiration from classical signal processing in order to analyze signal pro-

cessing on graphs and we can use graph signal processing framework to obtain

some new insights for classical signal processing. Traditionally, discrete time sig-

nal processing is studied using sampling of continuous time signals. With graph

signal processing framework, the discrete time signal processing can be analyzed

without using the continuous time signal processing. This also allows us to ac-

commodate various boundary conditions through different adjacency matrices,

which results in different spectral transforms (e.g. Discrete Fourier Transform,

Discrete Cosine Transform) as Graph Fourier Transforms. Thus, different spectral

transforms can also be analyzed using the graph signal processing framework.

In this thesis, we explored the downsampling of graphs from algebraic per-

spective. We analyzed the bipartite graphs in the context of downsampling and

obtained the algebraic model for the same. We obtained a measure (named SDQM)

to quantify the quality of a downsampling scheme and provided a greedy algo-

rithm using the same in order to downsample an arbitrary graph. Using the pro-

posed approach, we analyzed the downsampling for Discrete Cosine Transform.

We further analyzed the downsampling process for sensitivity towards different

frequency bands and provided algorithm to obtain a downsampling scheme with

desired frequency sensitivity. We also explored the structure preserving maps be-

tween two graphs and mapped nonuniform signal processing as a special case of
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graph signal processing using an appropriate assignment of adjacency matrix.

One major limitation of the proposed downsampling approach is its high com-

putational complexity. One research direction could be to examine the SDQM for

special class of graphs, and derive computationally efficient algorithms for down-

sampling of such graphs. Another research direction could be to use a hybrid

approach involving graph segmentation and downsampling together in order to

downsample large graphs. An open problem is the assignment of adjacency ma-

trix to the downsampled set of vertices. In the thesis, we have indicated the rela-

tion between adjacency matrix of a graph with that of a downsampled graph. This

can be explored further to find out adjacency matrix for downsampled graphs

based on preservation of algebraic properties. It would be interesting to study the

downsampling process for different reconstruction methods.
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