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Abstract

Due to the rapid growth of new wireless communication services and applica-

tions, need for radio frequency (RF) spectrum is continuously increasing. Most

of the available RF spectrum is already been licensed to the existing wireless sys-

tems. On the other hand, it is found that spectrum is significantly underutilized

due to the static frequency allocation to the dedicated users and hence the spec-

trum holes or spectrum opportunities arise. Considering the scarce RF spectrum,

supporting new services and applications is a challenging task that requires in-

novative technologies capable of providing new ways of exploiting the available

radio spectrum. Cognitive Radio (CR) has received immense research attention,

both in the academia and industry, as it is considered a promising solution to the

problem of spectrum scarcity by introducing the notion of opportunistic spectrum

usage. A CR is a device that senses the spectrum of licensed users (also known

as primary users) for spectrum opportunities, and transmits its data only when

the spectrum is sensed to be not occupied. For the efficient utilization of the spec-

trum while limiting the interference to the licensed users, the CR should be able to

sense the spectrum occupancy quickly as well as accurately. This makes spectrum

sensing one of the main functionalities of the cognitive radio. Spectrum sensing is

a hypothesis testing problem, where the goal is to test whether the primary user is

inactive (the null or noise only hypothesis), or not (the alternate or signal present

hypothesis). Spectrum sensing can be broadly classified into two types, namely,

narrowband and wideband sensing. Narrowband sensing is used for finding the

occupancy status of a single licensed band where as wideband sensing deals with

the scenario where multiple licensed bands are sensed for spectrum opportuni-

ties.

vii



In this thesis, our focus is on the analysis of the existing spectrum sensing

algorithm considering practical scenarios and propose novel techniques for spec-

trum sensing. Energy detection (ED) also known as conventional energy detection

(CED) based spectrum sensing is a very popular technique due to its simplicity

and reduced computational complexity. In our first work, we analyze the ED

based narrowband spectrum sensing over η − λ− µ fading channel model. It is

a general model and includes other fading models as its special cases and can

be used to study the performance of ED under practical scenarios. The perfor-

mance improvement is shown using antenna diversity and cooperative sensing.

The analysis is then extended to the case when there exists shadowing in addition

to fading.

ED is generalized by changing the squaring operation while computing energy

by an arbitrary positive number p which is known as generalized energy detector

(GED). To decide the threshold for GED, the true value of the noise variance is

required but in practice only its expected value is known. The true value of noise

variance varies over time and location giving rise to noise uncertainty. Due to

this there exist a phenomenon known as signal to noise radio (SNR) wall which

says that in the presence of noise uncertainty below certain SNR value known

as the SNR wall, it is not possible to detect the presence of signal even if very

large number of samples are taken for detection. In our second work, we study

the SNR wall for GED considering no diversity, diversity and cooperative sensing

scenarios under noise uncertainty and fading. All the derived expressions are

validated using Monte Carlo simulations.

In literature, the use of antenna diversity to improve the detection perfor-

mance of narrowband spectrum sensing is extensively studied. In our next work,

we propose new detection algorithms that make use of square law combining

(SLC) and square law selection (SLS) diversities for wideband spectrum sensing.

We provide complete theoretical analysis of the proposed algorithms and validate

them using Monte Carlo simulations. The performance improvement is shown

against the algorithm that do not use diversity. We also study the effects of differ-

ent parameters on the performance of the proposed algorithms.
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An alternative to antenna diversity is the cooperative spectrum sensing where

multiple secondary users also known as cooperating secondary users collaborate

by sharing their sensing information for the detection of the spectrum opportuni-

ties. Finally, in our last work, we propose novel detection algorithm for coopera-

tive wideband spectrum sensing. We make use of hard combining for data fusion

since it minimizes the bandwidth requirements of the control channel. We show

that the proposed algorithm performs better than algorithm without cooperative

sensing. Also, it performs better than our previously proposed algorithms that

use antenna diversity by choosing appropriate number of cooperating secondary

users. We also study the effects of different parameters on the performance.

Keywords:

Cognitive radio, spectrum sensing, narrowband spectrum sensing, wideband spec-

trum sensing, energy detection, generalized energy detection, noise uncertainty,

SNR wall, diversity, cooperative wideband spectrum sensing, hard combining.
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CHAPTER 1

Introduction

Wireless communication systems utilize the radio frequency (RF) spectrum as

their propagation environment. The need for RF spectrum is increasing due to

the rapid growth in users, applications and bandwidth of modern wireless com-

munication systems. Most of the available RF spectrum has already been allocated

to the existing wireless systems. However, only a small part of it can be licensed

to new wireless applications. A study by the Spectrum Policy Task Force (SPTF)

of the Federal Communications Commission (FCC) has showed that the RF spec-

trum is significantly underutilized due to the static spectrum allocation and ded-

icated access through licensing resulting in the wastage of the resources [41, 42].

Spectrum holes or spectrum opportunities arise due to the current static spectrum

licensing scheme. Spectrum holes are defined as frequency bands which are al-

located to the licensed users but are not utilized in some locations at some times

and therefore can be used by the unlicensed users or cognitive users or secondary

users (SUs) [56]. Cognitive Radio (CR) is a new paradigm of designing wireless

communications systems which aims to maximize the utilization of the under-

utilized RF spectrum. The term cognitive radio was first introduced by Joseph

Mitola III in his papers in 1999 [81, 82, 83]. Simon Haykin in [56] defines the

cognitive radio, built on the the software defined radio, as an intelligent wireless

communication system that is aware of its environment and uses the methodol-

ogy of understanding-by-building to learn from the environment and adapt to

statistical variations in the input stimuli, with two primary objectives in mind: (1)

highly reliable communication whenever and wherever needed and (2) efficient

utilization of radio spectrum. CR users, i.e., secondary users (SUs), are allowed to
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access the licensed spectrum bands of primary users (PUs), i.e., licensed users, as

long as they do not cause unacceptable interference to the PUs. CR is a promising

solution to the continuously increasing RF spectrum demands and the spectrum

scarcity caused by the fixed frequency allocations [41, 42]. This resulted in CR

technology gaining increased attention and has been highlighted by both stan-

dards and regulatory bodies [31, 43, 95]. The main functions of cognitive radio to

support intelligent and efficient dynamic spectrum access are as follows:

• Spectrum sensing: The goal of the spectrum sensing is to determine the oc-

cupancy status of the primary users in the licensed bands by periodically

sensing the target frequency bands. In other words, CR detects the spec-

trum opportunities or spectrum holes and also determines the method of

accessing it without causing interference to the licensed primary user.

• Spectrum analysis: The unlicensed secondary users make use of information

obtained from spectrum sensing to schedule and plan spectrum access. In

spectrum analysis, information obtained from spectrum sensing is analyzed

to gain knowledge about the spectrum hole, i.e., interference estimation, du-

ration of availability and the probability of collision with a PU due to miss

detection.

• Spectrum access: The spectrum holes are accessed by the secondary users

once a decision is made on spectrum access based on spectrum analysis.

Spectrum access is performed based a cognitive media access control (MAC)

protocol, which aims to avoid interference to the primary users and also

with other secondary users. The CR transmitter is also required to perform

negotiation with the CR receiver to synchronize the transmission so that the

effective communication can be achieved successfully.

• Spectrum mobility: It is the function related to the change of frequency band

of CR users. When a PU starts transmitting in the licensed band which is

currently utilized by the secondary user, the secondary user can change to

a spectrum band which is idle. This change in operating frequency band is

referred to as spectrum handoff.
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One of the main functionalities of CR is the spectrum sensing [19, 57]. In this dis-

sertation, our main focus is on spectrum sensing. This thesis presents the study of

existing narrowband spectrum sensing techniques for practical scenarios and also

presents novel detection algorithms for wideband spectrum sensing to improve

the detection performance. One of our approaches also uses cooperative spec-

trum sensing for wideband spectrum sensing. In what fallows, we provide quick

introduction to the spectrum sensing where we discuss narrowband, wideband

and cooperative spectrum sensing.

1.1 Spectrum Sensing

One of the crucial requirements of SU is to monitor the usage activity in the li-

censed spectrum to exploit underutilized spectrum (referred to as the spectrum

opportunity or spectrum holes) without causing harmful interference to the PUs.

Furthermore, PUs do not have any obligation to share and change their operating

parameters for sharing spectrum with SUs. Hence, SU should be able to inde-

pendently detect spectrum holes without any help from PUs; this ability is called

spectrum sensing, which is considered as one of the critical components in cog-

nitive radio networks [109]. Before utilizing the licensed spectrum, SUs need to

identify whether the band is occupied by any PU. During the use of a particular

licensed band, SUs need to continuously monitor whether any PU has become

active in that band and if so, the SUs need to vacate that band. To achieve this, we

need efficient spectrum sensing techniques that minimize interference to the PU

and at the same time maximize the spectrum utilization. There are mainly two

types of spectrum sensing, namely, narrowband and wideband sensing. Excellent

survey on spectrum sensing can be found in [5]. In the following sections, we give

brief introduction to both narrowband and wideband sensing.

1.1.1 Narrowband Spectrum Sensing

Narrowband spectrum sensing is used for finding the occupancy status of a sin-

gle PU licensed band. The term narrowband implies that the bandwidth of the
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signal is sufficiently small such that the channel frequency response can be con-

sidered flat. In other words, the bandwidth of our interest is smaller than the

coherence bandwidth that represents the maximum bandwidth over which the

channel response is flat. We now give a brief explanation on some of the narrow-

band spectrum sensing techniques. The detailed survey on narrowband spectrum

sensing can be found in [74, 131].

Match Filter Detection

The matched filter (MF) [19, 62] based spectrum sensing is on optimal detection

scheme since it maximizes the signal to noise ratio (SNR) in the presence of ad-

ditive noise. This is a coherent detection technique in which the received signal

is correlated with the template for detecting the presence of the known signal in

the received signal. Here, the CR requires the prior knowledge about PUs. Also,

it is required that CRs to be equipped with carrier synchronization and timing

devices, leading to increased implementation complexity.

Cyclostationary Detection

Man-made signals are generally nonstationary. Some of them are cyclostation-

ary, i.e., their statistics exhibit periodicity, which may be caused by modulation

and coding or even be intentionally produced to aid channel estimation and syn-

chronization or intentionally induced to assist spectrum sensing [76, 114, 115]. In

cyclostationary detection [26, 27, 46, 63, 70, 98], such periodicity is utilized for de-

tection of random signal with a particular modulation type in a background of

noise and other modulated signals. This detection scheme is capable of differen-

tiating the primary signal from the interference and noise. However, this scheme

requires partial prior information about the primary signal and its computational

cost is relatively high.

Covariance-Based Detection

The primary signal received at the SU is usually correlated due to the dispersive

channel, use of multiple antennas, or even over sampling. Hence, the covariance
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of the received signal when PU is transmitting is different from when it is not

transmitting. This property is used to differentiate the case where the PU signal is

present from the the case where it is absent [134, 136].

Eigenvalue Based Detection

In eigenvalue based detection [135, 137, 138], eigenvalues of the covariance matrix

received at the secondary user are utilized for signal detection. Detection schemes

based on covariance matrix and eigenvalues represent blind detection schemes

and they do not require any information about the PU signal. These schemes

performance better when the signals to be detected are highly correlated.

Energy Detection

Energy detection (ED) [37, 38, 65, 123] is a non-coherent detection method that do

not require any prior knowledge about the PUs. The computational complexity of

ED based spectrum sensing is relatively low. However, ED performs poor under

low SNR scenario and when noise uncertainty is considered. Due to its simplicity

and reduced computational complexity, ED represents a very popular spectrum

sensing technique even though other techniques may exhibit better performance.

Considering the advantages of ED, we adopt it for our study in this thesis and

propose different algorithms based on the same.

1.1.2 Wideband Spectrum Sensing

In wideband spectrum sensing, multiple spectrum bands are sensed for spectrum

opportunities. Ultimately, our aim is to sense a frequency bandwidth that ex-

ceeds the coherence bandwidth of a channel. To do this, one should note that

narrowband sensing techniques cannot be directly used for wideband case. This

is because these techniques make single binary decision for the whole spectrum

and thus cannot identify individual spectrum holes that lie within the wide fre-

quency spectrum. The wideband spectrum sensing can be broadly classified into

two classes, i.e., Nyquist and sub-Nyquist wideband sensing. Detailed survey on

wideband spectrum sensing can be found in [109].
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Nyquist Wideband Spectrum Sensing

In Nyquist wideband spectrum sensing [40, 96, 97, 112, 117], we directly acquire

the wideband signal using a standard analog to digital converter which samples

the wideband signal at the Nyquist sampling rate. We then use signal processing

techniques to detect the spectrum opportunities. The sampling rate required in

this case is very high and hence practically unaffordable. Due to this reason, sens-

ing the wideband at Nyquist rate poses significant challenge in terms of building

the necessary hardware that operates at a sufficiently high sampling rate and in

designing high speed signal processing algorithms.

Sub-Nyquist Wideband Spectrum Sensing

The problem of high sampling rate or high implementation complexity in Nyquist

wideband spectrum sensing can be solved by using sub-Nyquist wideband spec-

trum sensing. In this type of sampling, we acquire the wideband signal at the

sampling rates which are lower than the Nyquist rate and detect the spectrum

opportunities using these partial measurements. There are mainly two types of

sub-Nyquist wideband spectrum sensing which are compressive sensing based

[51, 54, 118, 119, 121, 127] and multichannel sub-Nyquist wideband sensing [80,

108, 124].

1.1.3 Cooperative Spectrum Sensing

Spectrum sensing is an important functionality of CR to improve the spectrum

utilization and at the same time limiting the harmful interference to the licensed

users. However, the detection performance in practice is greatly affected by the

effect of multipath fading and shadowing. To combat the effect of these issues,

cooperative spectrum sensing (CSS) has been shown to be effective method to im-

prove the detection performance by exploiting the spatial diversity. In CSS, mul-

tiple secondary users known as cooperating secondary users (CSUs) collaborate

by sharing their information in order to detect the spectrum opportunities. The

CSS can be used for both narrowband and wideband sensing. The detailed survey
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on cooperative spectrum sensing can be found in [3] where issues of cooperation

methods, cooperative gain and the cooperation overhead are discussed.

1.2 Thesis contribution

Having provided brief introduction to spectrum sensing, we now summarize the

important contributions of this thesis, the details of which are discussed in the

subsequent chapters.

The energy detection (ED) based spectrum sensing [37, 38, 65, 123] is a popu-

lar spectrum sensing technique due to its simplicity. However, the performance of

ED degrades under low SNR, noise uncertainty, multipath fading and shadowing.

Hence, it is necessary to study the performance of ED under different scenarios.

The performance of ED for narrowband spectrum sensing is studied under differ-

ent fading channels [11, 12, 37, 38, 102]. In our first work, we give the performance

of ED under general fading model which includes other existing fading models

as the special cases. We also show performance improvement using diversity and

cooperative detection. This analysis is then extended to the case when there exists

shadowing in addition to fading.

The ED is generalized by changing the squaring operation while computing

energy by an arbitrary positive power p which is known as the generalized en-

ergy detector (GED). In our next work, we study SNR wall for GED consider-

ing narrowband spectrum sensing under no diversity, diversity and cooperative

spectrum sensing in the presence of noise uncertainty and fading. First, the SNR

wall expressions are obtained considering AWGN channel and the conclusions

are drawn based on them. The effects of diversity on the SNR walls are discussed.

The analysis is then extended to channel with Nakagami fading where the SNR

walls are obtained numerically. The effect of fading on SNR wall is discussed. All

the obtained for SNR walls are validated using Monte Carlo simulations.

In literature, the use of diversity for performance improvement is mostly lim-

ited to narrowband spectrum sensing. To this end, we propose the use of diver-

sity for wideband spectrum sensing in our next work. We make use of square
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law combining (SLC) and square law selection (SLS) diversity schemes in our

proposed algorithms. The performance improvement is shown against the ex-

isting algorithm. Also in existing literature, the theoretical analysis for wideband

spectrum sensing is limited to no fading. In our work, we give theoretical analysis

considering Nakagami fading channel and also validate it using Monte Carlo sim-

ulations. The effects of different parameters on the performance of the proposed

algorithms are also discussed.

Finally, in our last work, we propose novel detection algorithm for coopera-

tive wideband spectrum sensing that make use of hard combining. We use hard

combining because it incurs reduced cooperation overhead. We provide complete

theoretical analysis of the proposed algorithm and validate it using Monte Carlo

simulation. We show that the proposed algorithm outperforms the existing al-

gorithm used without cooperation. Also, it performs better than our previously

proposed algorithms that make use of diversity by choosing appropriate number

of cooperating secondary users.

To summarize, in this thesis, we have addressed the problem of narrowband

as well as wideband spectrum sensing. This includes our following works:

• Performance of energy detection (ED) based spectrum sensing for narrow-

band over η − λ− µ fading channel,

• Performance of generalized energy detector (GED) under diversity and co-

operation by considering noise uncertainty and fading,

• Use of diversity for wideband spectrum sensing under fading,

• Detection algorithm for cooperative wideband spectrum sensing.

1.3 Thesis organization

The contents of this thesis are organized as follows. The literature review is pre-

sented in chapter 2. As already discussed, the performance of energy detector de-

grades under low SNR, fading and shadowing and hence it is important to study

its performance under different fading scenarios. We analyze the performance of
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energy detection based narrowband spectrum sensing for under η− λ− µ fading

channel in chapter 3. It is a general fading model which includes other fading

models as the special cases. Here, the expressions for average probability of false

alarm and the average probability of detection are derived. We also show the per-

formance improvement using diversity and collaborative detection. The analysis

under only fading is then extended to the case when there exists shadowing in

addition to fading.

Generally, it is assumed that the true noise variance is known. In practice, what

is actually known is the expected value of the noise variance. The true value of the

noise variance varies with time and location giving rise to what is known as noise

uncertainty. The performance of GED is greatly affected by noise uncertainty and

fading which gives rise to the phenomenon known as the SNR wall. In chapter 4,

we analyze SNR wall for GED under diversity and cooperation in the presence of

noise uncertainty and fading.

We next consider the case of wideband spectrum sensing. The use of diversity

for performance improvement in narrowband spectrum sensing is well studied

in the literature. We propose the use of diversity for wideband spectrum sensing

in chapter 5. Two new detection algorithms are proposed and it is shown that

the performance improves when compared to the no diversity case. The complete

theoretical analysis for the proposed algorithms are given under Nakagami fading

channel and validated using simulations.

In chapter 6, we propose novel detection algorithm that uses cooperative spec-

trum sensing with hard combining for wideband sensing. Hard combining is

used for data fusion because it incurs reduced cooperation overhead. Complete

theoretical analysis for the proposed algorithm is given and validated using sim-

ulation. Performance improvement is shown against no cooperation. Also, by

choosing appropriate number of cooperating secondary users, the algorithm per-

forms better than our algorithms that use diversity.

Finally, in chapter 7, we conclude the thesis by summarizing the main con-

tributions and by listing out future research directions. Most of the material dis-

cussed in this thesis has been published in our works [20, 21, 22, 23, 24].

9



CHAPTER 2

Literature Review

In this Chapter, we provide a review of the literature for spectrum sensing high-

lighting the insights of current research status in these areas. We first review the

literature on narrowband spectrum sensing in Section 2.1 followed by wideband

spectrum sensing in Section 2.2 and cooperative spectrum sensing in Section 2.3.

2.1 Narrowband Spectrum Sensing

Various detection techniques for narrowband spectrum sensing have been inves-

tigated, namely, matched filtering based detection [19, 62], cyclostationary detec-

tion [26, 63, 70], covariance based detection [134, 136], eigenvalue based detection

[135, 137, 138] and energy detection [37, 38, 65, 123]. The optimal way to detect

the occupancy status of the PU signal under AWGN is the matched filter detection

[19, 62], since it maximizes the received signal to noise ratio. However, a matched

filter effectively requires demodulation of primary user signal. This means that

cognitive radio has a priori knowledge of primary user signal at both PHY and

MAC layers. The main advantage of matched filter is that it does not require

significant amount of time to achieve high processing gain since only O(1/SNR)

samples are needed to meet a given probability of detection constraint [35]. How-

ever, the main drawback of a matched filter detection is that a CR would need

a dedicated receiver for every PU class. Man-made signals are generally nonsta-

tionary. However, few of these signals are cyclostationary, i.e., their statistics ex-

hibit periodicity, which may be caused due to the use of modulation and coding

or even it may intentionally introduced to aid channel estimation and synchro-
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nization. Such periodicity can be utilized for detecting a random signal with a

particular modulation type in a background of noise and other modulated sig-

nals. This is called cyclostationary detection which was first introduced in [45].

The cyclostationary detection is realized by analyzing the cyclic autocorrelation

function (CAF) [32] of the received signal, or, equivalently, its two-dimensional

spectrum correlation function (SCF) [46], since the spectrum redundancy caused

by periodicity in the modulated signal results in correlation between widely sep-

arated frequency components [46, 67]. In [26], the noise rejection property of the

cyclostationary spectrum is used to perform spectrum sensing at very low signal

to noise ratio (SNR). The spectrum sensing algorithm for IEEE 802.22 WRAN is

developed. It is shown using simulation that for the probability of false alarm as

0.1, the probability of miss detection of 0.1 is achieved using the proposed algo-

rithm at SNR= −25 dB. The cycle frequency domain profile (CDP) is used for

signal detection and preprocessing for signal classification in [63]. Signal features

are extracted from CDP and a Hidden Markov Model (HMM) has been used for

classification. It is shown that the CDP-based detector and the HMM-based classi-

fier can detect and classify PU signals at low SNRs. A generalized likelihood ratio

test (GLRT) for detecting the presence of cyclostationarity using multiple cyclic

frequencies is proposed in [70] and the performance improvement is shown us-

ing simulations in low SNR regime. The cyclostationary detection can be used to

differentiate the primary signal from the interference and noise. It works even in

very low SNR region and its performance is independent of the noise uncertainty.

But, the limitation of the cyclostationary detection is that, similar to matched fil-

ter, it also requires prior knowledge about the PU signal. Added to this, the

computational complexity is also high when compared to energy detector. Re-

searchers have also attempted to solve the spectrum sensing problem by using

the covariance of the received signal. We know that the statistical covariance of

the signal and noise are different and hence can be used to differentiate the case

where the primary user’s signal is present from the case where there is only noise.

The spectrum sensing algorithms based on this idea are proposed in [134, 136]

in which sample covariance matrix is calculated using the limited number of re-
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ceived signal samples. Based on the eigenvalues of the sample covariance matrix,

different spectrum sensing algorithms are proposed in [135, 137, 138]. Authors in

[138] propose spectrum sensing method based on the maximum eigenvalue. The

spectrum sensing method based on the ratio of the maximum eigenvalue to the

minimum eigenvalue is proposed in [135, 137]. The detection scheme based on

the ratio of the average eigenvalue to the minimum eigenvalue is also proposed

by the authors in [137]. Spectrum sensing methods based on covariance matrix

and its eigenvalues do not need any kind of knowledge about the signal, channel

and the noise power. These methods performs better than ED when the received

signal samples are correlated. Also, the computational complexity of these ap-

proaches are high. Energy Detection (ED) based spectrum sensing proposed in

[37, 38, 65, 123] is the most popular technique due to its simplicity. ED is a non-

coherent blind detection technique and it does not require any prior knowledge

about the PU signal. It is simple to design and implement in practice. The compu-

tational complexity of ED is significantly less when compared to other techniques.

Looking at the advantages of ED, we make use of ED in all our works.

In the literature, many studies have been dedicated to the analysis of ED based

spectrum sensing by considering different communication scenarios. In [123],

Urkowitz derive the probability of detection (PD) and probability of false alarm

(PF) under additive white Gaussian noise (AWGN) channel. Kostylev in [65],

revisited the problem of ED considering the fading conditions and obtained the

expressions for PD and PF under Rayleigh, Rice and Nakagami fading channels.

Closed form expressions for the average probability of detection (P̄D) for no di-

versity and with diversity under Rayleigh, Rician and Nakagami fading channels

are derived in [37]. Authors in [58] derive the expressions for P̄D for the no di-

versity case and the maximal ratio combining (MRC) diversity case considering

Nakagami-m and Rician fading by using the moment generating function (MGF)

method and probability density function (pdf) method. In [13], the detection per-

formance of ED is investigated under very low SNR levels. The closed form ex-

pressions are derived for the average probability of missed detection considering

Rayleigh and Nakagami−m fading channels. The performance of ED over gen-
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eralized k− µ and k− µ extreme fading channels have been investigated in [102]

where the expressions for P̄D are derived for no diversity case which are then sub-

sequently extended to square law selection (SLS) diversity and for cooperative

detection. The performance of ED over wireless channels with composite multi-

path fading and shadowing is studied in [12]. The performance of energy detector

over η−µ fading channel is analyzed in [11]. The performance of ED over mixture

gamma distribution is studied in [4] where the expressions for average probabil-

ity of detection are derived. The analysis is then extended to square law selection

and square law combining diversity schemes. Recently, in [14], the performance

of ED is investigated over Nakagami−q/ Hoyt fading channel. Authors in [18],

study the effects of RF impairments such as in-phase and quadrature-phase im-

balance, low-noise amplifier nonlinearities, and phase noise on the performance

of ED based spectrum sensing. Although in literature, ED based spectrum sensing

is studied in different scenarios, there is still scope in analyzing the performance

of ED under more general fading channel. In our work, we investigate the perfor-

mance of ED under η − λ− µ fading model which is more general and includes

other fading models as its special cases.

In ED, also known as conventional energy detector (CED), if the noise vari-

ance is known exactly, it is possible to detect the PU signal even at very low SNR

if the sensing time is made sufficiently large [62]. In practice, the noise variance

varies with time as well as location giving rise to noise uncertainty [116]. The ef-

fect of worst case noise uncertainty on CED is discussed in [104, 116]. In [116], a

phenomenon called SNR wall is studied. The effect of uniformly distributed noise

uncertainty on the performance of CED is studied in [52, 139]. The authors in [139]

derive the the expression for SNR wall for CED assuming a uniform distribution

for noise uncertainty. In [77], an asymptotic analysis of noise power estimation

is performed for CED. The condition for existence of SNR wall is obtained and

the effect of noise power estimation on the performance is studied. The SNR wall

for cooperative spectrum sensing (CSS) assuming the same SNRs and the noise

uncertainties for all the cooperating secondary users is discussed in [126, 133].

The CED is generalized by replacing the squaring operation of received signal
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amplitude by an arbitrary positive power p, which is referred to as the general-

ized energy detector (GED) [59, 60] or the improved energy detector [28, 100, 101]

or p-norm detector [16, 17] or the Lp−norm detector [84]. In [28, 101, 103], it

is shown that performance of the CED can be improved by choosing a suitable

value for p that depends on PF, the average SNR as well as on the sample size.

In [16, 17], different approximations for PF and PD are developed by considering

different fading scenarios. Also, for antenna diversity reception, new detection

schemes called p−law combining (pLC) and p−law selection (pLS) are proposed.

In [59, 60], the performance of GED is studied under noise uncertainty where the

authors in [59] show that under worst case of noise uncertainty the SNR wall is

not dependent on the value of p. It is also shown that under the assumption of

uniform distribution of noise uncertainty, the CED represents the optimum ED.

The expression for SNR wall is obtained in [60] where the noise uncertainty is

once again chosen as uniformly distributed. It is also shown that the SNR wall

does not depend on the value of p. The study of the detection performance is

then extended to noise uncertainty having log normal distribution and the SNR

wall for the same is calculated numerically. Authors in [59, 60] have derived the

SNR wall for GED under noise uncertainty considering no diversity.

2.2 Wideband Spectrum Sensing

A simple approach of wideband spectrum sensing (WSS) is to acquire the wide-

band signal by sampling at the corresponding Nyquist rate using standard ana-

log to digital converter (ADC) and then apply digital signal processing techniques

to detect the spectrum opportunities. Number of researchers have studied WSS

based on Nyquist sampling. Authors in [96, 97] have proposed an optimal multi-

band joint detection scheme for WSS in which a bank of multiple narrowband

detectors are jointly optimized to improve the aggregate opportunistic through-

put of a CR system while limiting the interference to the PU system. This tech-

nique suffers from issues such as power consumption and non feasibility of ultra

high sampling ADCs. As the extension of this, authors in [44] propose an adaptive
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multiband spectrum sensing algorithm. The algorithm consists of two phases: the

exploration phase, where substantial portion of the available channels are elimi-

nated according to accumulated statistics and the detection phase, where multi-

ple spectrum opportunities are finally identified among the remaining channels.

A wavelet based spectrum sensing algorithm is proposed in [117] and [39] where

the power spectral density (PSD) of the wideband spectrum is modeled as a se-

ries of consecutive frequency subbands, in which the PSD is smooth within each

subband but exhibits discontinuities and irregularities on the border of two neigh-

boring subbands. The wavelet transform is then used to locate the boundaries of

the subbands and the occupancy status of the subbands are decided based on the

PSD levels in each subband. Farhang-Boroujeny in [40] proposes a filter bank ap-

proach for wideband spectrum sensing where a bank of prototype filters is used

to process the wideband signal. Here, the baseband is directly estimated by using

a prototype filter and the other bands are obtained by modulating the prototype

filter. In each band, the corresponding portion of the wideband is down converted

to form a baseband version of that subband on which a narrowband sensing al-

gorithm is applied. The drawback of this approach is that, due to the parallel

structure of the filter bank, the implementation of this algorithm requires a large

number of radio frequency (RF) components. The extension of this work can be

found in [64, 69]. In general a SU may not be interested in finding all the spectrum

opportunities, instead the interest lies in finding sufficient numbers of spectrum

opportunity. This can be achieved if we consider only a part of the wideband

spectrum for sensing. Keeping this into consideration, authors in [112] propose

partial band Nyquist sampling (PBNS) which samples part of the wideband in-

stead of entire wideband thus reducing the sampling rate. Since PBNS uses the

traditional Nyquist sampling it represents the simplest wideband spectrum sens-

ing scheme.

Due to the drawback of high sampling rate in Nyquist WSS, sub-Nyquist sens-

ing is drawing more and more interest. Two important types of sub-Nyquist

wideband sensing are compressive sensing-based and multichannel sub-Nyquist

based wideband sensing. Compressive sensing based wideband spectrum sens-
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ing was first introduced in [118] where fewer samples are used to perform wide-

band spectrum sensing. The number of samples closer to the information rate are

used, rather than the inverse of the bandwidth. Here, the wideband spectrum is

reconstructed and then wavelet based edge detection is used to detect the spec-

trum opportunities. To improve the robustness against noise uncertainty, a cyclic

feature detection based compressive sensing algorithm for wideband spectrum

sensing is proposed in [119]. Authors in [132] proposed a distributed compres-

sive sensing based sensing algorithm for cooperative multihop cognitive radio

networks in order to reduce the acquisition cost. To realize the analogue compres-

sive sensing, an analogue-to-information converter (AIC), is proposed in [121].

A quadrature analogue-to-information converter is introduced in [129] to rapidly

sense the spectrum of interest. Comparison of various architectures in compres-

sive sensing are presented in [30]. In addition to this, number of wideband spec-

trum sensing techniques that make use of compressive sensing can also be found

in [51, 54, 127]. Mishali and Eldar proposed a multichannel sub-Nyquist sampling

approach known as modulated wideband converter (MWC) in [80] by modifying

the AIC model. An alternative multichannel sub-Nyquist sampling approach is

the multi-coset sampling. Multi-coset sampling is equivalent to choosing some

samples from a uniform grid, which can be obtained using a sampling rate fs

higher than the Nyquist rate. The uniform grid is then divided into blocks of m

consecutive samples and in each block v (v < m) samples are retained. Thus, it

is often implemented by using v sampling channels with sampling rate of fs/m,

with different sampling channels having different time offsets. To obtain a unique

solution for the wideband spectrum from these partial measurements, the sam-

pling pattern should be carefully designed. In [124], some sampling patterns were

proved to be valid for unique signal reconstruction. The advantage of the multi-

coset approach is that the sampling rate in each channel is m times lower than

the Nyquist rate. One drawback of the multi-coset approach is that the channel

synchronization should be met such that accurate time offsets between sampling

channels are required to satisfy a specific sampling pattern for robust spectral

reconstruction. To relax the multichannel synchronization requirement, an asyn-
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chronous multirate wideband sensing approach was studied in [108]. The multi-

coset sub-Nyquist sampling has been carefully analyzed in [130]. The complexity

and the power consumption of the presented implementation are considered in

details.

2.3 Cooperative Spectrum Sensing

Cooperative spectrum sensing (CSS) has been shown to be an effective method

to combat the adverse effects of multipath fading and shadowing by exploiting

spatial diversity [48]. Traditionally, the cooperative spectrum sensing methods

focused on narrowband sensing. Cooperative spectrum sensing can be classified

as either centralized [48, 122, 125] or distributed [49, 68]. In centralized CSS, all the

CSUs send their sensing information to a central entity called fusion center (FC).

The FC combines the received local sensing information and then takes decision

on the occupancy of the PU channel. Distributed cooperative sensing is another

approach where instead of reporting them to a FC, the CSUs exchange sensing

information with one another. Data fusion is a process of combining local sensing

information for hypothesis testing. In general, the sensing results reported to the

FC or shared with neighboring users can be combined in two different ways (i)

Soft Combining [72, 73, 140]: CR users can transmit the entire local sensing sam-

ples or the complete local test statistics for soft decision, can utilize the conven-

tional combining techniques such as equal gain combining (EGC) and maximal

ratio combining (MRC). (ii) Hard combining [93, 141]: CSUs make a local deci-

sion and transmit the one bit information for hard combining. The three rules

that are applied by hard decision combining are the OR, AND, and k out of M

rule.

The performance of cooperative spectrum sensing scheme based on hard com-

bining over Nakagami-m fading channel is studied in [29]. In [86], the perfor-

mance using energy detection is investigated to improve the sensing performance

in channels such as log-normal shadowing and Nakagami fading. Here, the hard

decision combining rule is performed at fusion center (FC) to make the final deci-
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sion on the ON/OFF status of PU. Comparison among data fusion rules has been

investigated for a wide range of average SNR values is also studied in [86]. A

similar analysis is done in [85] over Hoyt/Nakagami-q fading channel. The anal-

ysis for hard combining over Hoyt and Weibull fading channel is carried out in

[88]. Authors in [87] study CSS using energy detection which uses soft combining.

Here, the performance is studied under several soft data fusion schemes namely,

square law selection (SLS), square law combining (SLC) and maximal ratio com-

bining (MRC), that are implemented at fusion center (FC). The performance has

been assessed under AWGN, log-normal shadowing, Rayleigh and Rician fading

channels.

The performance of energy detection based spectrum sensing is greatly af-

fected by noise variance uncertainty. Noise uncertainty in spectrum sensing makes

the detector unreliable due to "SNR walls". The detection performance of the CSS

based on soft combining, where the cooperating CR nodes experience different

noise power uncertainties is studied in [52]. A detection scheme is proposed that

is more robust to noise uncertainties than the conventional detection schemes. In

[25], CSS with adaptive thresholds is proposed to improve the detection perfor-

mance under noise uncertainty. In this algorithm, each SU uses a two-thresholds

detector for local detection and the threshold at each SU is chosen according to the

noise uncertainty at that SU. After each detection, the detection results are fused

to give the final decision. In [126], the performance under noise uncertainty is

analyzed and a new approach to obtain the SNR wall is proposed. In addition,

a suboptimal cooperative sensing algorithm with wavelet denoising is proposed

to reduce the impact of noise uncertainty. The SNR wall phenomenon under CSS

using AND/OR hard decision and EGC soft decision is analyzed.

The cooperative spectrum sensing can also be used for wideband sensing. An

overview of the challenges and possible solutions for the design of cooperative

wideband spectrum sensing in CR networks is presented in [96]. In [97], the spec-

trum sensing problem is formulated as a class of optimization problems that max-

imize the aggregated opportunistic throughput of a cognitive radio system under

the constraints as the interference to the primary users. The cooperative sens-
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ing problem is also mapped into an optimization problem, for which suboptimal

solutions are obtained through mathematical transformation under conditions of

practical interest. An expectation maximization (EM) based joint detection and

estimation (JDE) scheme for cooperative spectrum sensing in multiuser multi-

antenna CR network is proposed in [10], where multiple spatially separated SUs

cooperate to detect the state of occupancy of a wideband frequency spectrum. The

implementation of a compressive sensing based cooperative wideband sensing is

addressed in [71]. In this technique, the implementation of the conventional ar-

chitecture that relies on fast Fourier transform (FFT) engine has been adopted and

modified to include the multi-coset sampling. As a cooperative wideband sens-

ing, the "frugal sensing" has been proposed in [78] to reduce the bandwidth re-

quirements for the control channel. Number of studies on cooperative wideband

spectrum sensing can also be found in [33, 75, 105, 111, 120].
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CHAPTER 3

Performance of Energy Detection based Spec-

trum Sensing Over η − λ− µ Fading Channel

In the literature, many studies have been dedicated to the analysis of energy de-

tection based spectrum sensing by considering different communication scenar-

ios. In [123], Urkowitz derived the probability of detection (PD) and probability

of false alarm (PF) under additive white Gaussian noise (AWGN) channel. He

found that decision statistic follows central chi-square distribution when the PU

is inactive and when it is active it has non-central chi-square behavior. Kostylev

in [65], revisited the problem of ED considering the fading conditions. He derived

PD and PF under Rayleigh, Rice and Nakagami fading channels. The closed form

expressions for the average probability of detection (P̄D) for both single channel

and diversity combining scenario under Rayleigh, Rician and Nakagami fading

channels are derived in [37]. The performance of ED over wireless channels with

composite multipath fading and shadowing is studied in [12]. These effects were

modeled by K and KG channel models. Here, the closed form expressions for P̄D

for no diversity were derived and analysis was then extended to diversity sce-

nario. The performance of energy detector over η − µ fading channel is analyzed

in [11]. The authors in [102] discussed the ED performance over κ − µ and κ − µ

extreme fading.

The η-λ-µ distribution is a generalized fading model and provides better char-

acterization of the practical channel conditions [91]. In addition to Rayleigh and

Nakagami Fading channels, other fading channels occurring in practice can be

modeled by adjusting η, λ and µ. Numerical results in [91] show that the η-λ-µ
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fading model provides better fit to the experimental data than the other mod-

els available in the literature. Also, since the shape of the distribution is set by

three parameters, it is more flexible. This distribution includes Rayleigh, Rician,

Nakagami-m, Hoyt, η − µ, λ − µ, etc distributions as special cases. In spite of

the usefulness of this model, no work related to the ED considering this fading

is reported in the literature. These factors motivate us to study the performance

of the energy detection based spectrum sensing by considering the η− λ− µ fad-

ing. In this chapter, we provide the analysis to ED over η-λ-µ fading channel.

We first derive the novel expression for P̄D for the case of no diversity. The work

is then extended to include selection diversity and cooperative spectrum sensing

(CSS) scenarios. The P̄D under composite multipath fading and shadowing is de-

rived. The analysis includes analysis for K and KG channel model derived in [12]

as special cases.

3.1 System and Channel model

3.1.1 Energy Detection (ED)

The received signal at the secondary user can be represented as [37]

y(t) =

n(t); H0,

h · s(t) + n(t); H1,
(3.1)

where, s(t) is an unknown deterministic signal, h denotes the amplitude of the

channel coefficient and n(t) is an additive white Gaussian noise (AWGN) process.

The hypotheses H0 and H1 correspond to absence and presence of the primary

signal s(t). The received signal y(t) is filtered by the bandpass filter (BPF) with

bandwidth W Hz which removes the out of band noise power. The output of the

filter is then squared, integrated and multiplied by 2/N0, which is expressed as

Tm = (2/N0)
∫ T

0 |y(t)|
2 dt [37], where N0 (W/Hz) is the one sided power spectral

density of the AWGN at the receiver and T is the observation interval. The mul-

tiplication factor 2/N0 is utilized to normalize the noise variance. Under AWGN
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channel, the decision statistic (Tm) follows central chi-square distribution under

H0 and non-central chi-square distribution with N = 2u degrees of freedom un-

der H1 [37], where u = TW is the time-bandwidth product. Therefore we have

Tm ∼

χ2
N; H0

χ2
N(2γ); H1,

(3.2)

where, γ = h2Es/N0 is the signal to noise ratio (SNR) at the input of secondary

user, Es denotes the signal energy.

At the end of the interval (0, T), the detector decides occupancy status of the

primary user by comparing the measured energy with the predefined energy

threshold τ. If Tm ≥ τ then the PU is present otherwise it is absent. The PF

and PD are then obtained as [37]

PF = Pr {Tm > τ|H0} =
Γ
(N

2 , τ
2

)
Γ(N

2 )
and (3.3)

PD = Pr {Tm > τ|H1} = Q N
2

(√
2γ,
√

τ
)

, (3.4)

where, Γ (x) =
∫ ∞

0 tx−1e−tdt is the gamma function [50], Q N
2
(·, ·) is the general-

ized Marcum Q-function [90], Γ(a, x) =
∫ ∞

x ta−1e−tdt and γ(a, x) =
∫ x

0 ta−1e−tdt

represent upper and lower incomplete gamma functions [2], respectively.

3.1.2 η-λ-µ Fading Model

In [91], a new general fading model for mobile communication is proposed. This

model combines the properties of the λ-µ and η-µ distribution models. As already

discussed, this is a flexible model since it is defined in terms of three parameters

η, λ and µ. Here, the parameter η accounts for unequal powers of the in-phase

and quadrature components of the fading signal, λ accounts for the correlation

between the in-phase and quadrature components while µ represents the number

of multipath clusters.
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The probability density function (pdf) of instantaneous SNR γ under η−λ− µ

fading is given by [91]

fγ(γ) =

√
π
(√

η(1− λ2)b̃
)2µ

γµ− 1
2 Iµ− 1

2

(
d̃ γ

γ̄

)
2−µ− 1

2 Γ(µ)d̃µ− 1
2 γ̄µ+ 1

2 ec̃ γ
γ̄

, (3.5)

where, Iv(·) is the modified Bessel function of first kind with order v [2], b̃ =
µ(1+η)

2η(1−λ2)
, c̃ = µ(η+1)2

2η(1−λ2)
, d̃ = b̃

√
(η − 1)2 + 4ηλ2, γ̄ represents the average SNR.

3.2 Average Probability of detection Over η-λ-µ Fad-

ing Channel

Here, we consider three cases for detection schemes i.e., no diversity, diversity

and cooperative detection. In this work, our aim is to show that the performance

can be improved by using diversity as well as by using cooperative detection.

Hence, we derive P̄D considering square law selection (SLS) only. One can also

derive P̄D considering other diversity techniques. Similarly, we derive P̄D for CSS

using OR hard combining only which can be extended to other hard combining

techniques.

3.2.1 No Diversity

Eq. (3.3) and Eq. (3.4) give the probability of false alarm (PF) and probability

of detection (PD) under AWGN channel, respectively. The probability of false

alarm remains same under fading conditions since it is independent of SNR and

H0 corresponds to only noise signal. The probability of detection under fading

channel is obtained by averaging PD under AWGN channel in Eq. (3.5) over pdf

of SNR over fading channel, i.e.,

P̄D =
∫ ∞

0
Q N

2
(
√

2γ,
√

τ) fγ(γ)dγ. (3.6)
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Substituting Eq. (3.5) into Eq. (3.6), we get

P̄D =
∫ ∞

0

Q N
2
(
√

2γ,
√

τ)
√

π
(√

η(1− λ2)b̃
)2µ

Iµ− 1
2

(
d̃ γ

γ̄

)
2−µ− 1

2 Γ(µ)d̃µ− 1
2 γ̄µ+ 1

2 ec̃ γ
γ̄ γ−µ+ 1

2

dγ. (3.7)

Using the series representation of generalized Marcum Q function [61, Eq. (29)]

and modified Bessel function of first kind [50], i.e.,

Q N
2
(
√

2γ,
√

τ) = e−γ
∞

∑
l=0

γlΓ(l + u, τ
2 )

Γ(l + 1)Γ(l + u)
and Iv(x) =

∞

∑
j=0

x2j+v

j!22j+vΓj + v + 1
,

(3.8)

we can write P̄D as

P̄D =
∞

∑
l=0

∞

∑
j=0

√
π(
√

η(1− λ2)b̃)2µΓ(l + u, τ
2 )(d̃

2j)

22j−1Γ(µ)γ̄2j+2µl!j!Γ(l + N
2 )Γ(j + µ + 1

2)

∫ ∞

0
γl+2µ+2j−1e−γ(1+ c̃

γ̄ )dγ.

(3.9)

Now consider the integral in Eq. (3.9) which is represented by

I =
∫ ∞

0
γl+2µ+2j−1e−γ(1+ c̃

γ̄ )dγ. (3.10)

Applying the change of variable as x = γ(1 + c̃
γ̄ ), this integral reduces to

I = (1 +
c̃
γ̄
)−(l+2µ+2j)

∫ ∞

0
xl+2µ+2j−1e−xdx = (1 +

c̃
γ̄
)−(l+2µ+2j)Γ(l + 2j + 2µ).

(3.11)

Substituting back Eq. (3.11) into Eq. (3.10) the series representation for P̄D can be

written as

P̄D =
∞

∑
l=0

∞

∑
j=0

γ̄l√π(
√

η(1− λ2)b̃)2µΓ(l + u, τ
2 )d̃

2jΓ(l + 2j + 2µ)

22j−1Γ(µ)l!j!Γ(l + N
2 )Γ(j + µ + 1

2)(γ̄ + c̃)l+2µ+2j
. (3.12)

The series in Eq. (3.12) converges for l → ∞ and j → ∞. However, we observe

that the series nearly converges when the sum is considered over a relatively small

values of l and j and can be computed easily using a mathematical software (e.g.
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Figure 3.1: Block diagram of SLS diversity technique.

MATHEMATICA [128]). For example, with η = 0.4, λ = 0.5, µ = 1, N = 10,

γ̄ = 10 and PF = 0.1, the series in Eq. (3.12) converges upto four decimal points

for l = 79 and j = 11. Hence, P̄D for these parameters can be obtained by taking

the finite sum as

P̄D =
79

∑
l=0

11

∑
j=0

γ̄l√π(
√

η(1− λ2)b̃)2µΓ(l + u, τ
2 )d̃

2jΓ(l + 2j + 2µ)

22j−1Γ(µ)l!j!Γ(l + N
2 )Γ(j + µ + 1

2)(γ̄ + c̃)l+2µ+2j
, (3.13)

3.2.2 Square Law Selection (SLS) Diversity

As shown in Fig. 3.1, in SLS diversity scheme, the branch with maximum de-

cision statistic is chosen [89], i.e., TSLS = max(T1, T2, . . . , TP), where TSLS is the

selected diversity branch and P represents the number of diversity branches. The

probability of detection (PSLS
D ) under AWGN channel with SLS diversity scheme

is derived in [37] and is given by

PSLS
D = 1−

P

∏
i=1

[
1−Q N

2
(
√

2γi,
√

τ)
]

. (3.14)
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Based on this, P̄SLS
D in the case of η-λ-µ can be obtained by averaging PSLS

D over P

independent branches, i.e.,

P̄SLS
D = 1−

∫ ∞

0
· · ·

∫ ∞

0

P

∏
i=0

[
1−Q N

2
(
√

2γi,
√

τ)
]

fγi(γi)dγi. (3.15)

Since
∫ ∞

0 fγi(γi)dγi , 1, the average probability of detection with SLS diversity is

obtained as

P̄SLS
D = 1−

P

∏
i=1

[
1−

∫ ∞

0
Q N

2
(
√

2γi,
√

τ) fγi(γi)dγi

]
. (3.16)

Note that the integral that needs to be evaluated in Eq. (3.16) is same as that of no

diversity case. Therefore, following the same steps, P̄SLS
D can obtained as

P̄SLS
D = 1−

P

∏
i=1

[
1−

∞

∑
l=0

∞

∑
j=0

γ̄i
l√π(

√
η(1− λ2)b̃)2µΓ(l + N

2 , τ
2 )d̃

2jΓ(l + 2j + 2µ)

22j−1Γ(µ)l!j!Γ(l + N
2 )Γ(j + µ + 1

2)(γ̄i + c̃)l+2µ+2j

]
.

(3.17)

The probability of false alarm in case of SLS remains same as that of AWGN chan-

nel since it is independent of SNR and is given by [37, Eq. (14)]

PSLS
F = 1−

[
1−

Γ(N
2 , τ

2 )

Γ(N
2 )

]P

. (3.18)

3.2.3 Cooperative Spectrum Sensing

Using diversity to improve performance requires multiple diversity branches.

The detection performance can also be improved by multiple secondary users

sharing their information. The performance of energy detection based spectrum

sensing improves when secondary users collaborate by sharing their information.

In Fig. 3.2, we show the schematic for centralized cooperative spectrum sensing

where all the cooperating secondary users (CSUs) report their sensing information

to the fusion center (FC). The FC then takes the final decision on the occupancy

of the PU channel. There are two possible way for data fusion at the FC which
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Figure 3.2: Centralized cooperative spectrum sensing.

are hard and soft combining. In this chapter, we focus on one of the hard com-

bining technique, namely, OR combining. In CSS using hard combining, all the

CSUs take their own decisions on the occupancy of the PU channel and report

their decisions to the FC which then takes decision on the status of PU channel.

In OR combining scheme, if any one CSU reports the PU channel as occupied,

the FC declares the PU channel as occupied. The block diagram for CSS using

OR combining is shown in Fig. 3.3 with three CSUs where CSU 1 has reported

channel as occupied and the other two CSUs have reported channel as free. The

FC has declared PU channel as occupied since one of the CSUs has reported the

channel as occupied. In this scenario, the average probability of detection and

false alarm considering OR hard combining at the FC with M independent CSUs

are given by [47]

Q̄D , 1− (1− P̄D)
M and QF , 1− (1− PF)

M. (3.19)
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Figure 3.3: Block diagram for CSS using OR combining.

The average probability of detection with M cooperating secondary users is

obtained by substituting Eq. (3.12) into Q̄D in Eq. (3.19) as

Q̄D = 1−
[

1−
∞

∑
l=0

∞

∑
j=0

γ̄l√π(
√

η(1− λ2)b̃)2µΓ(l + u, τ
2 )d̃

2jΓ(l + 2j + 2µ)

22j−1Γ(µ)l!j!Γ(l + N
2 )Γ(j + µ + 1

2)(γ̄ + c̃)l+2µ+2j

]M

.

(3.20)

As already stated PF remains same as under AWGN channel and hence QF is

given by

QF = 1−
(

1−
Γ(N

2 , τ
2 )

Γ(N
2 )

)M

. (3.21)

3.3 Average Probability of Detection over channels with

η − λ− µ Fading and Shadowing

Apart from the multipath fading, the signal received at the SUs also undergo

shadowing. The shadowing process is typically modeled by a lognormal distribu-

tion [106]. Therefore, some practical communication channels can be modeled as

multipath fading superimposed on lognormal shadowing. Due to the difficulty of

analyzing spectrum sensing techniques over composite fading models, the shad-

owing effect is usually neglected in the literature. In this section, we derive the

expression for average probability of detection where the signal undergoes shad-

owing in addition to η − λ− µ fading. In [1], Gamma distribution is used to ap-

28



proximate lognormal distribution to derive K and generalized K (KG) distribution

as a composite multipath fading and shadowing. K channel model corresponds to

the mixture of Rayleigh distribution and gamma distribution while KG represents

mixture of Nakagami and Gamma distributions. Average probability of detection

under K and KG channel models have been derived in [12]. Similar procedure is

followed here to derive the average probability of detection under η − λ− µ fad-

ing and shadowing. The average probability of detection under multipath fading

and shadowing is given as

P̄Shd
D =

∫ ∞

0
P̄Fad

D (y) fY(y)dy, (3.22)

where, P̄Fad
D is the average probability of detection under fading only for a spe-

cific Y value that represents the SNR with only shadowing effect, which follows a

lognormal distribution and can be approximated by gamma distribution [1].

fY(y) =
yk−1e−

y
Ω

Γ(k)Ωk , y ≥ 0, (3.23)

where, k is the shaping parameter and Ω represents the scale parameter which is

also the mean signal power and P̄Fad
D (y) is obtained by replacing every γ̄ in Eq.

(3.12) with y. Using this P̄Fad
D (y) in Eq. (3.22) and averaging over pdf in Eq. (3.23),

we get P̄Shd
D as

P̄Shd
D =

∞

∑
l=0

∞

∑
j=0

√
π(
√

η(1− λ2)b̃)2µΓ(l + u, τ
2 )d̃

2j

22j−1Γ(µ)l!j!Γ(l + N
2 )Γ(j + µ + 1

2)

× Γ(l + 2j + 2µ)

Γ(k)Ωk

∫ ∞

0
yl+k−1(y + c̃)−(l+2µ+2j)e−

y
Ω dy. (3.24)

The integral in Eq. (3.24) can be written as

I = c̃−(l+2µ+2j)
∫ ∞

0
y(l+k)−1(1 +

1
c̃

y)−(l+2µ+2j)e−
y
Ω dy

= Γ(l + k)c̃k−2µ−2jU(l + k; k− 2µ− 2j + 1;
c̃
Ω
), (3.25)
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where, U(; ; ) is the confluent hypergeometric function of the second kind defined

as [50, Eq. (3.383.5)]:

∫ ∞

0
e−pxxq−1(1 + ax)−vdx =

Γ(q)
aq U(q; q + 1− v;

p
a
) (3.26)

with Re {q} > 0, Re {p} > 0, Re {a} > 0 and v is a complex value with Re(·)

representing the real operator which gives real part of the complex number.

Substituting Eq. (3.25) into Eq. (3.24), the average detection probability under

multipath fading and shadowing can be written as

P̄D
Shd

=
∞

∑
l=0

∞

∑
j=0

√
π(
√

η(1− λ2)b̃)2µΓ(l + u, τ
2 )d̃

2j

22j−1Γ(µ)l!j!Γ(l + N
2 )Γ(j + µ + 1

2)

×
Γ(l + 2j + 2µ)Γ(l + k)U(l + k; k− 2µ− 2j + 1; c̃

Ω )

Γ(k)Ωk c̃(2µ+2j−k)
. (3.27)

It may be of interest to note that the detection performance can be improved by

using diversity as well as the cooperative detection. Once P̄Shd
D is obtained, the

average probability of detection with fading and shadowing under SLS diversity

can be obtained by averaging P̄SLS
D in Eq. (3.17) over gamma distribution in Eq.

(3.23) after replacing each γ̄i by yi in Eq. (3.17) and each y by yi in Eq. (3.23). The

average probability of detection under cooperative detection can be obtained by

substituting P̄Shd
D from Eq. (3.27) into Eq. (3.19).

3.4 Results and Discussion

In this section we carry out the analysis for testing the performance of energy de-

tection under η-λ-µ fading channel for several cases of interest. The performance

is studied using γ̄ VS. P̄D curve, i.e., average SNR VS. average probability of de-

tection and complementary receiver operating characteristic (ROC) curves, i.e., PF

VS. PM = 1− PD. In addition, η-λ-µ fading channel provides analysis for other

fading channels as special cases.

Fig. 3.4(a) displays γ̄ VS. P̄D for no diversity case under η-λ-µ fading channel

for PF = 0.1, N = 4, η = 0.4, λ = 0.5 and µ = 1. As expected, the detection per-
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Figure 3.4: (a) γ̄ vs P̄D for no diversity considering for PF = 0.1 and (b) PF vs P̄M
for γ̄ = 5 dB with N = 4, η = 0.4, λ = 0.5, µ = 1.

formance improves with increase in SNR. Fig. 3.4(b) shows the complementary

ROC curve using γ̄ = 5 dB and keeping the other parameters same as that of γ̄

versus P̄D shown in Fig. 3.4(a).

The analysis for η-λ-µ fading channel is general since the other fading channels

are special cases of η-λ-µ fading distribution [91]. The Nakagami-m distribution

can be obtained by setting η → 1, λ → 0 and µ = 0.5m. The Rayleigh, One-Sided

Gaussian and Nakagami-q (Hoyt) distribution can be obtained from Nakagami-m

distribution by setting m = 1, m = 0.5 and m = (1 + q2)2/2(1 + 2q4) respectively.

The η− µ distribution can be obtained by setting λ→ 0 and µ = µ′, where µ′ cor-

responds to the simpler model. Similarly, the λ− µ distribution can be obtained

by setting η → 1 and µ = µ′. In Fig. 3.5 we display the complementary ROC

curves for different fading channels obtained from η-λ-µ fading channel as spe-

cial cases discussed above. For this analysis we used SNR = 10 dB and N = 10.

Fig. 3.6(a) shows plots of PF VS. P̄SLS
M = 1− P̄SLS

D by varying the number of

diversity branches L from 1 to 5 where P = 1 corresponds to no diversity. For this

analysis, we used η = 0.4, λ = 0.5, µ = 1, N = 4 and the average SNRs are set to

γ̄1 = 0 dB, γ̄2 = 1 dB, γ̄3 = 2 dB, γ̄4 = 3 dB, and γ̄5 = 4 dB. Here, we see that

the detection performance improves with the increase in the number diversity

branches. For example, for PF = 0.1, the value of P̄M for P = 1 is approximately

twice as large as P̄M for P = 5.

Fig. 3.6(b) demonstrates the complementary ROC curve for energy detector

under η, λ and µ fading channel considering upto eight cooperating secondary
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Figure 3.5: PF vs P̄M for other fading channels as a special case of η-λ-µ fading
distribution with γ̄ = 10 dB and N = 10.
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Figure 3.6: ROC plots under η-λ-µ fading channel using η = 0.4, λ = 0.5, µ = 1,
N = 4 for (a) SLS diversity with γ̄1 = 0 dB, γ̄2 = 1 dB, γ̄3 = 2 dB, γ̄4 = 3 dB, and
γ̄5 = 4 dB for different P values and (b) cooperative spectrum sensing with γ̄ = 0
dB and M cooperative secondary users.

users. The analysis is performed using the same parameters setting as that of SLS

diversity scenario, and the γ̄ is set to 0 dB. As expected the detection performance

improves with the increase in the number of cooperating secondary users. For

example, the value of P̄M for M = 1 is approximately 1.4 times as large as P̄M for

M = 8.

Fig. 3.7 shows the plots for P̄Shd
D versus PF for channel that undergoes shadow-

ing in addition to η − λ− µ fading. The plots are obtained by choosing different

values for the shadowing parameter k, i.e., by choosing k = 0.5 and k = 1. The

analysis includes the analysis for K and KG channels as special cases. The anal-

ysis for K channel model can be obtained by setting η → 1, λ → 0, m = 1 and
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Figure 3.7: PF vs P̄Shd
D for composite multipath fading and shadowing channel for

k = 0.5 and k = 1 with γ̄ = 10 dB and N = 10.

µ = 0.5m. Similarly, by setting η → 1, λ → 0, m = 2 and µ = 0.5m, the analysis

for KG channel model can be deduced. The results for K and KG channel models

match the results in [12]. The plot also shows results for shadowing in addition

to fading with fading parameters η = 0.4, λ = 0.5 and µ = 1 for γ̄ = 10 dB.

As already discussed, the detection performance can be improved by using the

diversity schemes and cooperative detection.

3.5 Conclusion

This chapter illustrates the performance of energy detector in η-λ-µ fading chan-

nel. It also includes analysis for shadowing in addition to fading. Novel analytical

expressions are derived for average probability of detection. The effect of differ-

ent fading parameters on the detection performance is discussed. The detection

performance of other fading channels is also provided since η-λ-µ distribution

provides those distributions as special cases. The result for no diversity scenario is

then extended to square low selection and cooperative detection. It is found that

under selection diversity and cooperative detection, the detection performance

improves. The analysis is then extended to the case when there exists shadowing

in addition to η − λ− µ fading.
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CHAPTER 4

SNR Wall for GED in the Presence of Noise

Uncertainty and Fading

In Chapter 3, we have discussed conventional energy detector (CED) based spec-

trum sensing. In this chapter, we discuss generalized energy detector (GED)

which is obtained replacing the squaring operation of the received signal ampli-

tude in CED by an arbitrary positive power p. As in CED, here also, the decision

on the occupancy of a channel is made based on the predefined threshold. A

proper value of threshold can be determined by the noise variance at the input of

the SU and hence it plays an important role in determining the performance of the

detector. In this chapter, we consider the noise uncertainty (NU) in determining

the threshold. One has to know true noise variance to determine the value of this

threshold. If known exactly, it is possible to sense the occupancy of PU even at

very low SNR if the sensing time is made sufficiently large [62], i.e., a large num-

ber of samples (N) are used in sensing. In practice the noise variance at the input

of the SU varies with time as well as location and hence it is not possible to find

its exact value. Due to this, there exists unpredictability about the true variance

of noise which is known as noise uncertainty. The effect of worst case NU is dis-

cussed in [104, 116]. In [116], a phenomenon called SNR wall is studied for CED

based sensing method, which says that if the noise variance is not known exactly

and is confined to an interval, it is not possible to achieve targeted detection per-

formance when the SNR falls below certain value regardless of sensing time. This

makes ED an inefficient sensing method.

The effect of uniformly distributed NU on the performance of CED is studied
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in [52, 139]. The authors in [139] derive the the expression for SNR wall for CED

assuming a uniform distribution for NU. The detection performance of the coop-

erative spectrum sensing (CSS) is studied in [52]. In [77], an asymptotic analysis of

noise power estimation is performed for CED. The condition for existence of SNR

wall is obtained and the effect of noise power estimation on the performance of

CED is studied. In [59, 60], the performance of GED is studied under NU where in

the authors in [59] show that under worst case of NU the SNR wall is independent

of value of p. It is also shown that under the assumption of uniform distribution

of NU, the CED represents the optimum ED. The expression for SNR wall is ob-

tained in [60] where the NU is once again chosen as uniformly distributed. It is

also shown that the SNR wall does not depend on the value of p. The study of

the detection performance is then extended to NU having log normal distribution

and the SNR wall for the same is calculated numerically.

Authors in [59, 60] derive the SNR wall for GED under NU considering no

diversity. The SNR wall for CSS with CED assuming the same SNRs and the

noise uncertainties for all the cooperating secondary users (CSUs) is discussed

in [126, 133]. However, in practice the SNR varies with the time and the loca-

tion. Also, the NU depends on calibration error, variations in thermal noise and

changes in low nose amplifier gain. Hence, the assumption of the same SNR and

NU at all the SUs is not valid in practice. The scenario in which different CSUs

have the varying noise uncertainties is studied in [25, 52] but the authors do not

discuss the SNR wall. We notice that the existing analysis is only limited to no di-

versity or CSS case. Also, the available analysis do not consider NU with fading.

We know that the diversity is suited to combat the adverse effects of multi-path

fading as well as shadowing [11, 12, 37, 38, 89, 102]. Two new diversity schemes

namely p−law combining (pLC) and p−law selection (pLS) are proposed in [16],

in which GED is used at each of the diversity branches. Both pLC and pLS diver-

sity schemes are non-coherent combining techniques. Here, they consider diver-

sity and fading without considering NU. This motivates us to analyze the SNR

wall for GED under diversity and CSS considering NU and fading. For CSS we

consider both hard as well as soft combining. For hard combining we consider all
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three possible cases, i.e., OR, AND and k out of M combining rule. We first derive

the SNR wall considering AWGN channel and then extend it to the channel with

Nakagami fading. It is a generalized fading model and includes Rayleigh, Rice

and Hoyt fading models as its special cases and can be used to model propagation

in urban and sub-urban areas by setting the Nakagami parameter m. In Chapter

3, we analyzed ED based spectrum sensing under η− λ− µ fading channel where

we did not consider the NU. Although η − λ− µ fading model is more general,

theoretical analysis considering this model is mathematically too involved and

hence we give theoretical analysis considering Nakagami fading only. To the best

of our knowledge, researchers have not worked on GED under diversity and CSS

considering NU and fading.

4.1 System Model

In cognitive radio, the signal received at the SU can be written as

y(n) =

w(n); H0,

h(n)s(n) + w(n); H1,
(4.1)

where h(n), s(n) and w(n) correspond to nth sample of the complex fading chan-

nel gain, PU signal and the noise, respectively with n = 1, 2, · · · , N. The signal

and noise samples are independent and identically distributed (iid) with s(n) ∼

CN (0, σ2
s ) and w(n) ∼ CN (0, σ2

w). Here, the notation CN (x̄, σ2
x) denotes com-

plex Gaussian distribution with mean x̄ and variance σ2
x . The signal and noise are

statistically independent of each other. The hypotheses H0 and H1 correspond to

free and occupied primary channel, respectively.

In CED, the absolute values of received samples are squared and summed

over the number of collected samples and then compared with the predetermined

threshold to decide on the presence and the absence of the PU. In the generalized

energy detector (GED) [28], the squaring operation is replaced by an arbitrary
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positive value p. Hence, the received signal decision statistic for GED is given by

T =
1
N

N

∑
n=1
|y(n)|p, (4.2)

where, p > 0 is an arbitrary constant.

4.2 Noise Uncertainty Model

The characterization of AWGN, i.e., w(n), in Eq. (4.1) depends on its variance. In

general for many detection methods it is assumed that the true noise variance at

the input of SU is known a priori. These methods use this knowledge to choose a

threshold in detecting the presence or the absence of PU signal. But in practice, the

noise variance may vary over time and location, thus giving rise to a phenomenon

called noise uncertainty [116, 139], which makes it difficult to obtain exact noise

variance at a particular time and location.

The average value, i.e., the expected value of the noise variance σ̂2
w is known

in practice. As already mentioned, let the true noise variance at a particular time

and location be σ2
w which may vary from the average noise variance giving rise

to NU. Using this, the NU factor β is defined as β = σ̂2
w

σ2
w

. Note that β is a random

variable since σ2
w is random. Let the upper bound on the noise uncertainty be L

dB, which is defined as L = sup {10log10β} .

In this work, we assume that β in dB is uniformly distributed in the range

[−L, L] [116], which implies β is restricted in the range [10
−L
10 , 10

L
10 ]. The pdf of β

can be obtained by using simple transformation of random variable as

fβ(x) =


0, x < 10

−L
10

5
[ln(10)]Lx , 10

−L
10 < x < 10

L
10

0, x > 10
L
10

(4.3)

where, ln(z) is the natural logarithm of z.
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4.3 SNR Wall for AWGN Channel

For a given SNR > 0, if there exists a threshold for which

lim
N→∞

P̄F = 0 and lim
N→∞

P̄D = 1, (4.4)

then the sensing scheme is considered as unlimitedly reliable [139]. In other

words, if the channel is sensed for sufficiently long time, i.e., N → ∞, one can

achieve desired target probability of false alarm and the probability of detection at

any SNR level. However, this is possible only when there is no noise uncertainty.

When there exists noise uncertainty, it is not possible to achieve this performance

even with the use of unlimited sample size (N) below some SNR value [139]. The

SNR value below which it is not possible to achieve unlimited reliability is defined

as the SNR wall [139]. At least one of the conditions in Eq. (4.4) is not satisfied if

the SNR falls below the SNR wall. However, when the SNR is above the SNR wall

there exists a threshold for which both the conditions in Eq. (4.4) are satisfied.

In this section, we derive P̄F and P̄D in AWGN channel under noise uncertainty

for no diversity, diversity and for CSS. Using them, we derive the expressions for

SNR wall for each case. For relatively large N, using central limit theorem (CLT),

the pdf of the decision statistic given in Eq. (4.2) can be modeled by Gaussian

distribution [16, 59, 60, 126, 133] which can be represented by mean and variance

only. Using these, the mean and variance of decision statistic are given as

µ0 = Gpσ
p
w, σ2

0 =
Kp

N
σ

2p
w , and µ1 = Gp(1 + γ)

p
2 σ

p
w, σ2

1 =
Kp

N
(1 + γ)pσ

2p
w , (4.5)

where, µ0, σ2
0 and µ1, σ2

1 correspond to mean and variance of T under H0 and

H1, respectively. Here, γ = |h|2 σ2
s

σ2
w

is the instantaneous SNR and since we are

considering AWGN channel in this section, h = 1. Note that, in the remainder of

this chapter, the term "SNR" without instantaneous means the average SNR. The
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Gp and Kp are given as

Gp = Γ
(

p + 2
2

)
, and Kp = Γ (p + 1)− Γ

(
p + 2

2

)2

. (4.6)

4.3.1 No Diversity

Using the means and variances given in Eq. (4.5), one can obtain PF and PD as

PF = Q

(
τ − µ0

σ0

)
, and PD = Q

(
τ − µ1

σ1

)
, (4.7)

where Q(t) = 1√
2π

∫ ∞
t e−

(
x2
2

)
dx.

When we consider NU, the mean and the variance of the decision statistic are

given by

µ0,nu = Gpσ
p
w, σ2

0,nu =
Kp

N
σ

2p
w , (4.8)

µ1,nu = Gp(1 + βγ̃)
p
2 σ

p
w, σ2

1,nu =
Kp

N
(1 + βγ̃)pσ

2p
w , (4.9)

where µ0,nu, σ2
0,nu and µ1,nu, σ2

1,nu correspond to the mean and the variance under

H0 and H1, respectively and γ̃ = σ2
s

σ̂2
w

is the average SNR. The subscript nu indicates

that the mean and variances are under NU.

Now, PF and PD for fixed uncertainty factor β can be obtained by substituting

means and variances from Eq. (4.8) and Eq. (4.9) in Eq. (4.7). The threshold τ is

chosen as λσ̂
p
w for GED, where λ ≥ 0 is a constant. However, when there exists

noise uncertainty, β is a random variable. In this case, one can obtain the average

PF and PD, i.e., P̄F and P̄D, by averaging the PF and the PD obtained for fixed β

over the pdf of β given in Eq. (4.3). Since they are functions of random variable β,

after carrying out mathematical simplification, P̄F and P̄D can be obtained as

P̄F =
∫ b

a
Q

((
λx

p
2 − Gp

)√ N
Kp

)
5

Lxln(10)
dx, and (4.10)
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P̄D =
∫ b

a
Q

(
λx

p
2 − Gp(1 + xγ̃)

p
2

(1 + xγ̃)
p
2

√
N
Kp

)
5

Lxln(10)
dx, (4.11)

where, a = 10
−L
10 and b = 10

L
10 .

To derive the SNR wall, we need to take limits as N → ∞ in the expressions

given in Eq. (4.10) and Eq. (4.11). After applying the limit, the reduced expres-

sions for P̄F and P̄D are given by Eq. (4.12) and Eq. (4.13), respectively.

P̄F =


0, λ ≥ Gp (b)

p
2

5
L ln(10)

[
ln
(

max
{

min
{(

Gp
λ

) 2
p

, b
}

, a
})
− ln (a)

]
, Gp (a)

p
2 < λ < Gp (b)

p
2

1, λ ≤ Gp (a)
p
2

(4.12)

P̄D =



0, λ ≥ Gp (γ̃ + b)
p
2

5
L ln(10)

ln

max

min

 1(
Gp
λ

) 2
p−γ̃

, b

 , a


− ln (a)

 , Gp (γ̃ + a)
p
2 < λ < Gp (γ̃ + b)

p
2

1, λ ≤ Gp (γ̃ + a)
p
2

(4.13)

Here, we choose not to give the derivation for these expressions since the steps

involved in deriving these expressions also appear in Section 4.3.2 for which the

steps involved are given in Appendix A.1.

Since the threshold is chosen by setting the value of λ, we need to find λ for

which both the conditions given in Eq. (4.4) are satisfied. Using Eq. (4.12) and Eq.

(4.13), λ should be chosen as

Gp

(
10

L
10

) p
2 ≥ λ ≥ Gp

(
γ̃ + 10

−L
10

) p
2 , (4.14)

which gives us the condition on γ̃ for unlimited reliability as

γ̃ ≥ 10
L
10 − 10

−L
10 . (4.15)
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The equality sign in Eq. (4.15) gives the lowest SNR for which unlimited reliability

can be achieved and hence gives the SNR wall. It can be seen from Eq. (4.15) that

when there is no NU, i.e., L = 0, it is possible to find the threshold for unlimited

reliability for any γ̃ > 0. Hence, under no noise uncertainty, the GED is unlimit-

edly reliable. However, when there exists NU, i.e., L > 0, GED is not unlimitedly

reliable. One can also see from Eq. (4.15) that the SNR wall is independent of the

value of p.

4.3.2 pLC Diversity

In pLC diversity scheme, the decision statistic T obtained at all the diversity

branches are added and scaled by the total number of diversity branches in or-

der to obtain a new decision statistic. The final decision on primary occupancy

is taken after comparing the decision statistic against a threshold. The decision

statistic using pLC diversity can be written as

Tplc =
1
P

P

∑
i=1

Ti, (4.16)

where, P and Ti represent the total number of diversity branches and the decision

statistic obtained at the ith diversity branch, respectively.

In order to make the analysis easy to understand, first we consider a diversity

scheme in which we have only two branches, i.e., P = 2, which is then extended to

any number of diversity branches. Note that in practice the noise uncertainties are

different at each diversity branch which makes us to consider varying β’s at each

branch. Let us also assume that the NU associated with first branch is β1 =
σ̂2

w1
σ2

w1

and that with branch two is β2 =
σ̂2

w2
σ2

w2
, where σ̂2

w1
and σ̂2

w2
are the average noise

variances at diversity branches 1 and 2, respectively, which are known and σ2
w1

and σ2
w2

represent the true noise variances. With this setting, we have two noise

uncertainties β1 and β2 which are uniformly distributed in the range [−L1, L1]

and [−L2, L2], respectively. The NU depends on calibration error, variations in

thermal noise and changes in low noise amplifier (LNA) gain and hence different

diversity branches can have different noise uncertainties.
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Since the decision statistic obtained at two diversity branches, i.e., T1 and T2,

are Gaussian distributed, the decision statistic Tplc also follows Gaussian distribu-

tion with means and variances as

µ0,nu =
Gp

2
[
σ

p
w1 + σ

p
w2

]
, and σ2

0,nu =
GpKp

22N

[
σ

2p
w1 + σ

2p
w2

]
, (4.17)

under H0 and

µ1,nu =
Gp

2

[
(1 + β1γ̃1)

p
2 σ

p
w1 + (1 + β2γ̃2)

p
2 σ

p
w2

]
,

σ2
1,nu =

GpKp

22N

[
(1 + β1γ̃1)

pσ
2p
w1 + (1 + β2γ̃2)

pσ
2p
w2

]
,

(4.18)

under H1, respectively. Here, γ̃1 and γ̃2 represent the average SNRs at diversity

branches 1 and 2, respectively. We assume that the diversity branches are placed

sufficiently far apart so that they are independent and hence can have different

SNRs. Note that, though we have obtained mean and variance considering two

diversity branches only, this can be extended to any number of diversity branches

by following a similar procedure.

Similar to the no diversity case, one can obtain PF and PD for fixed β1 and β2 by

substituting means and variances from Eq. (4.17) and Eq. (4.18) into Eq. (4.7). We

know that when there is no diversity, the threshold τ has to be chosen as λσ̂
p
w and

hence when we consider two diversity branches, the threshold has to be chosen

as λ
2

(
σ̂

p
w1 + σ̂

p
w2

)
. Since σ̂2

w1
and σ̂2

w2
are known, the threshold in this case can be

varied by changing the value of λ. After few mathematical manipulation, PF and

PD for pLC diversity considering fixed values of β1 and β2 can be obtained as

PF,plc = Q

2λβ
p
2
1 β

p
2
2 − Gp

(
β

p
2
1 + β

p
2
2

)
√

β
p
1 + β

p
2

√
N
Kp

 and, (4.19)

42



PD,plc = Q


2λβ

p
2
1 β

p
2
2 −

Gp(1+β1γ̃1)
p
2

β
− p

2
2

− Gp(1+β2γ̃2)
p
2

β
− p

2
1√

Kp
N

√
(1 + β1γ̃1)pβ

p
2 + (1 + β2γ̃2)pβ

p
1

 . (4.20)

Now, the NU being a random variable, one can obtain the average probabil-

ity of false alarm (P̄F,plc) and detection (P̄D,plc) by averaging PF,plc in Eq. (4.19)

and PD,plc in Eq. (4.20) over joint probability density function (jpdf) of random

variables β1 and β2. Assuming that the two noise uncertainties β1 and β2 are

independent, the jpdf of β1 and β2 can be given by

fβ1,β2(x, y) =


0, x < a1, y < a2,

25
L1L2xy[ln(10)]2

, a1 < x < b1, a2 < y < b2

0, x > b1, y > b2,

(4.21)

where, a1 = 10
−L1
10 , b1 = 10

L1
10 , a2 = 10

−L2
10 and b2 = 10

L2
10 . Using Eq. (4.21), P̄F,plc is

obtained as

P̄F,plc =

b1∫
a1

b2∫
a2

Q

2λ(xy)
p
2 − Gp

(
x

p
2 + y

p
2

)
√

xp + yp

√
N
Kp

 25

[ln(10)]2 L1L2xy
dydx. (4.22)

Similarly, one can obtain P̄D,plc as

P̄D,plc =

b1∫
a1

b2∫
a2

Q


2λ(xy)

p
2 − Gp(1+xγ̃1)

p
2

y−
p
2

− Gp(1+yγ̃2)
p
2

x−
p
2√

Kp
N

√
(1 + xγ̃1)pyp + (1 + yγ̃2)pxp

 25

[ln(10)]2 L1L2xy
dydx.

(4.23)

Now, to derive the SNR wall, we need to consider N → ∞ in Eq. (4.22) and

Eq. (4.23). After carrying out the mathematical simplifications, the P̄F,plc can be
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reduced and the same is given by

P̄F,plc =



0, λ ≥ Gp
2

(
e

cp
2 + e

dp
2

)
C1

[
dp (A1 + A2)

2
−

ln
(

A− e−A2
)

(A2 + ln(A))−1 + Li2

(
A− e−A2

A

)
+

ln
(

A− e−A1
)

(A1 + ln(A))−1 − Li2

(
A− e−A1

A

)
+

cdp2

2

]
,

Gp
2

{
e
−cp

2 + e
−dp

2

}
< λ <

Gp
2

(
e

cp
2 + e

dp
2

)

1, λ ≤ Gp
2

(
e
−cp

2 + e
−dp

2

)
(4.24)

where Lin(z) represents the polylogarithm [2]. Here also we avoid giving steps in-

volved in the derivation since it involves steps similar to that given in APPENDIX

A.1. In the expression given in Eq. (4.24), we have used c = ln (b1), d = ln (b2),

A = 2λ
Gp

, C1 = 100
L1L2[pln(10)]2

, R1(z) = − ln
(

A− e
zp
2

)
, A1 = max

[
−cp

2 , R1(−d)
]

and

A2 = min
[ cp

2 , R1(d)
]
. Similarly, the expression for P̄D,plc can be derived which

can be approximated as given in Eq. (4.25),

P̄D,plc ≈



0, λ ≥ Gp
2

{
(γ̃1 + ec)

p
2 +

(
γ̃2 + ed) p

2

}
C1 p2

4 (dU2 + I1 + 2cd) , Gp
2

{
(γ̃1 + e−c)

p
2 +

(
γ̃2 + e−d) p

2

}
< λ < Gp

2

{
(γ̃1 + ec)

p
2 +

(
γ̃2 + ed) p

2

}
1, λ ≤ Gp

2

{
(γ̃1 + e−c)

p
2 +

(
γ̃2 + e−d) p

2

}
(4.25)

where we use R2(z) = − ln
((

A− (ez + γ̃2)
p
2
) 2

p − γ̃1

)
, U2 = max [−c, R2(−d)],

U3 = min [c, R2(d)],

aa =
(

A− (1 + γ̃)
p
2
) 2

p , α =
−
[
(1 + γ̃)(

p
2−1)

]
A− (1 + γ̃)

p
2

,

I1 =
aa
α

(
e−αU3 − e−αU2

)
+ (1 + γ̃2) (U3 −U2) + dU3.

The derivation for P̄D,plc is given in Appendix A.1. Once again, we need to find λ

for which both the conditions in Eq. (4.4) are satisfied. Hence, we need to select λ

as

e
cp
2 + e

dp
2 ≤ λ ≥

(
γ̃1 + e−c) p

2 +
(

γ̃2 + e−d
) p

2 . (4.26)

44



The lowest value of γ̃1 and γ̃2 for which this inequality holds can be found by

equating the upper and the lower limits. We can find γ̃1 in terms of γ̃2 for which

the upper limit is equal to the lower limit. With this, we get the condition on γ̃1

for unlimited reliability as

γ̃1 ≥
[

e
cp
2 + e

dp
2 −

(
γ̃2 + e−d

) p
2
] 2

p

− e−c. (4.27)

Note that, here, we have obtained γ̃1 in terms of γ̃2. However, one can obtain γ̃2

in terms of γ̃1. In Eq. (4.27), one needs to select γ̃2 such that γ̃1 ≥ 0 giving us the

condition on γ̃2 as

0 ≤ γ̃2 ≤
(

e
cp
2 + e

dp
2 − e

−cp
2

) 2
p − ed. (4.28)

The two conditions in Eq. (4.27) and Eq. (4.28) represent the conditions for SNR

wall, when we consider the pLC diversity with two diversity branches. Looking

at these expressions, one can draw the following conclusions.

• In the absence of NU at the input of both the diversity branches, i.e., L1 =

L2 = 0, from Eq. (4.27) and Eq. (4.28), we get γ̃1 > 0 and γ̃2 > 0. This

indicates that, one can find a threshold for which both the conditions in Eq.

(4.4) are satisfied at any SNR greater than zero. This means that the sensing

scheme is unlimitedly reliable when there is no NU.

• Let us consider that both the branches have same noise uncertainties, i.e.,

L1 = L2, and SNR, i.e., γ̃1 = γ̃2. Substituting L1 = L2 = L and γ̃1 = γ̃2 = γ̃

in Eq. (4.27) we get

(
γ̃ + e−c) p

2 ≥ e
cp
2 + e

dp
2 −

(
γ̃ + e−d

) p
2 . (4.29)

Since L1 = L2 = L, we get c = d. Substituting for c = d and solving for γ̃,

we get

γ̃ ≥ 10
L
10 − 10

−L
10 . (4.30)
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Figure 4.1: p VS. γ̃1 for γ̃2 = 0.1, L1 = L2 = 1 dB.

Hence, we get the same SNR wall expression as in Eq. (4.15) that is the SNR

wall is the same as in the case of no diversity case. This indicates that, there

is no improvement in terms of SNR wall. We also observe that the SNR wall

is independent of the value of p.

• In the scenario when both the diversity branches have same SNRs, i.e., γ̃1 =

γ̃2 = γ̃, and different noise uncertainties, i.e., L1 6= L2, the SNR walls remain

almost the same for all p. For example, with L1 = 1 dB and L2 = 0.5 dB in

Eq. (4.27), we get γ̄ = 0.3472 when p = 1 and γ̃ = 0.3677 as p → ∞ which

are approximately the same.

• The advantage of using diversity lies in the fact that the SNR wall is deter-

mined by SNRs at different diversity branches, i.e., γ̃1 and γ̃2. Hence, even

if the SNR is low at one diversity branch and the other has sufficiently high

SNR, we could still satisfy conditions to achieve unlimitedly reliable sens-

ing. For example with L1 = L2 = 1 dB and p = 2, the unlimited reliability

can be obtained if one of the diversity branches has SNR of 0.3 and the other

has SNR of 0.6262.

• The SNR wall depends on the selected value of p, i.e., with increasing value

of p, the SNR wall decreases. This is demonstrated with the help of Fig. 4.1,

where we plot p VS. γ̃1 for fixed value of γ̃2 = 0.1. We can clearly see that

with increasing value of p the value of γ̃1 goes down showing improvement

in terms of SNR wall.
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• For a fixed value of γ̃2 the smallest value of γ̃1 that can be achieved as we

increase p can be found by setting p → ∞ in Eq. (4.27). The value of γ̃1

obtained will now depend on the values of L1 and L2. Note that when we

consider L1 > L2, the term e
dp
2 −

(
γ̃2 + e−d) p

2 becomes very small when com-

pared to e
cp
2 as p→ ∞. Under this condition we get

γ̃1 ≥ ec − e−c = 10
L1
10 − 10

−L1
10 . (4.31)

Similarly, if L2 > L1, we get

γ̃1 ≥ ed − e−c = 10
L2
10 − 10

−L1
10 . (4.32)

Finally, if L1 = L2 = L, we get

γ̃1 ≥= 10
L
10 − 10

−L
10 . (4.33)

For example, with L1 = 1 dB, L2 = 0.5 dB and γ̃2 = 0.1, we require γ̃1 ≥

0.4646 as p→ ∞. This shows that with γ̃2 = 0.1, one can have γ̃1 as small as

0.4646 and still get the unlimited performance.

Now the derivation for PF,plc and PD,plc for the two diversity branches given

in Eq. (4.19) and Eq. (4.20), respectively, can be extended to P number of branches

by selecting the threshold τ as τ = λ
P (σ̂

p
w1 + σ̂

p
w2 + · · ·+ σ̂

p
wP). Following a similar

procedure, PF,plc and PD,plc for P number of diversity branches and fixed values

of NU factors β1, β2, · · · , βP are obtained as

PF,plc = Q


Pλ

P
∏
i=1

β
p
2
i − Gp

P
∑

i=1

P
∏

j=1,j 6=i
β

p
2
j√

P
∑

i=1

P
∏

j=1,j 6=i
β

p
j

√
N
Kp

 , (4.34)
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PD,plc = Q


Pλ

P
∏
i=1

β
p
2
i −

P
∑

i=1
Gp (1 + βiγ̃i)

p
2

P
∏

j=1,j 6=i
β

p
2
j√

Kp
N

√
P
∑

i=1
(1 + βiγ̃i)

p P
∏

j=1,j 6=i
β

p
j

 , (4.35)

respectively. Averaging the PF,plc and PD,plc in Eq. (4.34) and Eq. (4.35) over jpdf

of β1, β2, · · · , βP, we get P̄F,plc and P̄D,plc. To derive the SNR wall in this case, one

can follow the procedure similar to two diversity branches. To keep it simple,

we derive the SNR wall by considering p = 2. In this case, to achieve unlimited

reliability, we need to select λ as

10
L1
10 + 10

L2
10 + · · ·+ 10

LP
10 ≤ λ ≤ γ̃1 + 10

−L1
10 + γ̃2 + 10

−L2
10 + · · ·+ γ̃P + 10

−LP
10

(4.36)

Using this, the SNR wall can be given as

P

∑
i=0

γ̃i =
P

∑
i=0

10
Li
10 −

P

∑
i=0

10
−Li
10 . (4.37)

where, Li and γ̃i represent the upper bounds on the NU and the average SNR at

the ith diversity branch with i = 1, 2, · · · , P. One can see from Eq. (4.37) that,

we need to set the combined SNR, i.e., γ̃1 + γ̃2 + · · · + γ̃P, to achieve unlimited

performance. The conclusions that we draw for the case of P = 2 can be directly

applied to this general case as well.

4.3.3 pLS Diversity

In pLS diversity scheme, the new decision statistic is obtained as the maximum

of the decision statistics obtained at the diversity branches which is given as

Tpls = max {T1, T2, · · · , TP}, where T1, T2, · · · , TP represent the decision statistics

obtained at M diversity branches. The decision on the occupancy of the PU is then

taken after comparing Tpls against the threshold.

Since we assume that the diversity branches receive independent decision
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statistics, the average probability of false alarm can be expressed as

P̄F,pls = 1−
P

∏
i=1

(
1− P̄Fi

)
, (4.38)

where, P̄Fi corresponds to the average probability of false alarm at the ith diversity

branch which can be obtained by using Eq. (4.12). Similarly, the average proba-

bility of detection in this case can be obtained as

P̄D,pls = 1−
P

∏
i=1

(
1− P̄Di

)
, (4.39)

where, P̄Di corresponds to the average probability of detection at the ith diversity

branch. The P̄D,pls can be obtained by using Eq. (4.13) in Eq. (4.39).

In this case also, we use P = 2 to derive the SNR wall and then extend the

analysis to general case. Substituting P = 2 in Eq. (4.38), P̄F,pls can be obtained as

P̄F,pls = 1− (1− P̄F1)(1− P̄F2), (4.40)

where, P̄F1 and P̄F2 are the average probability of false alarm associated with

branches 1 and 2, respectively. It is clear from Eq. (4.40) that to achieve limN→∞ P̄F,pls =

0, both P̄F1 and P̄F2 must be 0. Let L1 and L2 be upper bound on the uncertainties

associated with branches 1 and 2, respectively.

To set P̄F1 = 0, using Eq. (4.12) it is clear that λ should be selected as

λ ≥ Gp

(
10

L1
10

) p
2

, (4.41)

Similarly, to set P̄F2 = 0, λ has to satisfy

λ ≥ Gp

(
10

L2
10

) p
2

, (4.42)
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Since we need both P̄F1 and P̄F2 as 0, λ has to satisfy

λ ≥ max

{
Gp

(
10

L1
10

) p
2

, Gp

(
10

L2
10

) p
2
}

, (4.43)

After substituting P = 2 in Eq. (4.39), we get P̄D,pls as

P̄D,pls = 1− (1− P̄D1)(1− P̄D2), (4.44)

where, P̄D1 and P̄D2 are the average probability of detection associated with branch

1 and 2, respectively. We can see from Eq. (4.44) that to achieve limN→∞ P̄D,pls = 1,

P̄D1 or P̄D2 must be 1. To set P̄D1 = 1, λ has to be selected as

λ ≤ Gp

(
10
−L1
10 + γ̃1

) p
2

. (4.45)

Similarly, to set P̄D2 to 1,

λ ≤ Gp

(
10
−L2
10 + γ̃2

) p
2

. (4.46)

Since any one of the conditions given in Eq. (4.45) and Eq. (4.46) must be satisfied

to get P̄D,pls = 1, they can be written in compact form as

λ ≤ max

{
Gp

(
10
−L1
10 + γ̃1

) p
2

, Gp

(
10
−L2
10 + γ̃2

) p
2
}

(4.47)

In order to see the implications of the conditions given in Eq. (4.43) and Eq. (4.47),

let us consider L1 > L2. In this case, the conditions on γ̃1 and γ̃2 can be given by

γ̃1 ≥ 10
L1
10 − 10

−L1
10 OR γ̃2 ≥ 10

L1
10 − 10

−L2
10 . (4.48)

From this the SNR wall for pLS diversity is obtained by considering equality sign

in Eq. (4.48). Hence, to achieve unlimited reliability, SNR at the input of any one

branch has to be ≥ its respective SNR wall. To understand this let us take L1 =

0.5 dB and L2 = 0.3 dB. Substituting in Eq. (4.48), we get γ̃1 = 0.2308 and γ̃2 =
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0.1888. Therefore, to achieve unlimited reliability we must have either γ̃1 ≥ 0.2308

or γ̃2 ≥ 0.1888. One can also see from Eq. (4.48) that unlike pLC case the SNR wall

in this case is independent of p. Another advantage of pLS diversity is that any

one branch should have SNR ≥ its SNR wall and hence even if the other branch

is experiencing worst channel condition, one can achieve the unlimited reliability

with sufficiently high SNR at other branch. Following a similar procedure, the

analysis for P = 2 can be extended to any P and is given as

γ̃i ≥ 10
L+
10 − 10

−Li
10 , for i = 1, 2, · · · , P, (4.49)

where, L+ = max [L1, L2, · · · , LP]. In this case, to achieve unlimited reliability,

any one among P conditions in Eq. (4.49) must be satisfied.

4.3.4 CSS with Hard Combining

Until now we discussed about deriving the SNR walls when we consider the di-

versity. We now discuss the same when CSS is used where multiple CSUs collab-

orate by sharing their information in order to detect the presence or the absence of

the PU. Let us consider that there are M number of independent CSUs and each

one of them receive N samples during the observation interval. We denote the

true and average noise variance at the ith CSU as σ2
wi

and σ̂2
wi

, respectively, where

i = 1, 2, · · · , M. Note that, we are not considering diversity reception for CSUs.

The decision statistic obtained at the ith CSU is denoted as Ti. Once again we as-

sume that the NU factor βi at the ith CSU is uniformly distributed in the interval

[−Li, Li]. In the case of hard decision combining, all the CSUs take independent

decisions regarding the occupancy of PU and send the results as ON/OFF to the

fusion center (FC). The FC then takes the final decision considering all the received

decisions. Let Q̄F and Q̄D denote the average probability of false alarm and de-

tection at the FC, respectively. When using CSS, one has to modify the definition

of SNR wall which is given as follows. Given the different SNRs (γ̃i > 0) at the
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SUs, i = 1, 2, · · · , M, if there exists a threshold for which

lim
N→∞

Q̄F = 0 and lim
N→∞

Q̄D = 1, (4.50)

then the sensing scheme is considered as unlimitedly reliable [139]. We require

Q̄F and Q̄D as N → ∞ in order to derive the SNR wall and to derive the same,

first we need to obtain average probability of false alarm (P̄Fi) and detection (P̄Di)

for the ith CSU considering N → ∞. Using Eq. (4.10) and Eq. (4.11), P̄Fi and P̄Di

for N → ∞ can be written as

P̄Fi =


0, λ ≥ Gp (bi)

p
2

5
Li ln(10)

[
ln
(

max
{

min
{(

Gp
λ

) 2
p

, bi

}
, ai

})
− ln (ai)

]
, Gp (ai)

p
2 < λ < Gp (bi)

p
2

1, λ ≤ Gp (ai)
p
2

(4.51)

P̄Di =



0, λ ≥ Gp (γ̃i + bi)
p
2

5
Li ln(10)

ln

max

min

 1(
Gp
λ

) 2
p−γ̃i

, bi

 , ai


− ln (ai)

 , Gp (γ̃i + ai)
p
2 < λ < Gp (γ̃i + bi)

p
2

1, λ ≤ Gp (γ̃i + ai)
p
2

(4.52)

where, ai = 10
−Li
10 , bi = 10

Li
10 and γ̃i is the average SNR at the ith CSU. Using these

one can obtain Q̄F and Q̄D which can then be used to investigate the SNR wall for

three combining rules, i.e., OR, AND and k out of M combining rule.

OR Rule

In OR combining rule, the FC declares the PU as active whenever at least one of

the CSUs reports the channel as occupied. Considering this, we first derive the

SNR wall for M = 2 only and then extend the result to any number of CSUs. Let

L1 and L2 be the upper bounds on the NU factors and γ̃1 and γ̃2 be the SNRs at
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the two CSUs. In this case, Q̄F and Q̄D at the FC can be written as

Q̄F = P̄F1 + P̄F2 − P̄F1 P̄F2 and Q̄D = P̄D1 + P̄D2 − P̄D1 P̄D2 . (4.53)

From Eq. (4.53), it is clear that to satisfy lim
N→∞

Q̄F = 0, we need both P̄F1 and P̄F2 to

be 0. Hence, using Eq. (4.51), one has to set the λ at both the CSUs as

λ ≥ Gp

(
10

L1
10

) p
2

AND λ ≥ Gp

(
10

L2
10

) p
2

. (4.54)

The condition in Eq. (4.54) can be written in compact form as

λ ≥ max

{
Gp

(
10

L1
10

) p
2

, Gp

(
10

L2
10

) p
2
}

(4.55)

Similarly, to satisfy the condition lim
N→∞

Q̄D = 1, we see from Eq. (4.53) that PD1 or

PD2 must be 1. Once again, using the Eq. (4.52), we need to set λ as

λ ≤ Gp

(
10
−L1
10 + γ̃1

) p
2

OR λ ≤ Gp

(
10
−L2
10 + γ̃2

) p
2

. (4.56)

If we assume L1 > L2, then using the Eq. (4.55) and Eq. (4.56), λ to be chosen for

unlimited reliability should satisfy

Gp

(
10

L1
10

) p
2

≤ λ ≤ Gp

(
10
−L1
10 + γ̃1

) p
2

, OR

Gp

(
10

L1
10

) p
2

≤ λ ≤ Gp

(
10
−L2
10 + γ̃2

) p
2

.

(4.57)

Using Eq. (4.57), the condition on γ̃1 and γ̃2 can be given as

γ̃1 ≥ 10
L1
10 − 10

−L1
10 OR γ̃2 ≥ 10

L1
2 − 10

−L2
10 . (4.58)

Therefore the SNR wall for the OR case is obtained by considering equality con-

dition in Eq. (4.58). To understand this, let us take L1 = 1 dB and L2 = 0.5 dB.

Substituting in Eq. (4.58), we get γ̃1 = 0.4646 and γ̃2 = 0.3676. Therefore one can

achieve unlimited reliability if γ̃1 ≥ 0.4646 or γ̃2 ≥ 0.3676. One can also see from
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Eq. (4.58) that the SNR wall in this case is independent of p.

Following a similar procedure, the conditions given for the case of M = 2 in

Eq. (4.58) can be extended to any M as

γ̃i ≥ 10
L+
10 − 10

−Li
10 , for i = 1, 2, · · · , M, (4.59)

where L+ = max {L1, L2, · · · , LM}. In this case, to achieve unlimited reliability,

any one among M conditions in Eq. (4.59) must be satisfied.

AND Rule

Here, the FC declares the channel as occupied only when all the CSUs declare the

PU channel as occupied. Similar to OR case, here also we first derive SNR wall by

considering M = 2 and then extend it to any M. The Q̄F and Q̄D can be written as

Q̄F = P̄F1 P̄F2 and Q̄D = P̄D1 P̄D2 . (4.60)

It is clear from Eq. (4.60) that in order to satisfy the condition on Q̄F in Eq. (4.50),

either P̄F1 or P̄F2 must be 0. Hence, one has to select λ as

λ ≥ min

{
Gp

(
10

L1
10

) p
2

, Gp

(
10

L2
10

) p
2
}

. (4.61)

Similarly, to satisfy the condition on Q̄D, both P̄D1 and PD̄2
in Eq. (4.60) must be 1

and hence we need to set λ as

λ ≤ Gp

(
10
−L1
10 + γ̃1

) p
2

AND λ ≤ Gp

(
10
−L2
10 + γ̃2

) p
2

. (4.62)

Once again assuming L1 > L2 and using Eq. (4.61) and Eq. (4.62), λ has to be

selected as

Gp

(
10

L2
10

) p
2

≤ λ ≤ Gp

(
10
−L1
10 + γ̃1

) p
2

AND Gp

(
10

L2
10

) p
2

≤ λ ≤ Gp

(
10
−L2
10 + γ̃2

) p
2

.

(4.63)
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Using this, γ̃1 and γ̃2 in this case should satisfy

γ̃1 ≥ 10
L2
10 − 10

−L1
10 AND γ̃2 ≥ 10

L2
10 − 10

−L2
10 . (4.64)

From this, the equality condition in the Eq. (4.64) gives us the SNR walls for the

two CSUs. Once again considering L1 = 1 dB and L2 = 0.5 dB, the unlimitedly

reliable performance can be obtained if γ̃1 ≥ 0.3277 and γ̃2 ≥ 0.2308. Note that, in

this case both the SNRs have to satisfy the inequality conditions. The conditions

given in Eq. (4.64) can be extended to any number of M and is given by Eq.

(4.59) with L+ = min {L1, L2, · · · , LM}. Note that all the SNRs must be ≥ their

respective SNR walls in order to achieve unlimited reliability.

k Out Of M Combining Rule

In this rule, FC declares the channel as occupied when k out of the total of M CSUs

report the PU channel as occupied. For this case, we first derive the SNR wall by

considering M = 3 and k = 2, and then extend the result to general case of any M

and k. With this setting, Q̄F and Q̄D can be written as

Q̄F = P̄F1 P̄F2 + P̄F2 P̄F3 + P̄F1 P̄F3 − 2P̄F1 P̄F2 P̄F3 , (4.65)

Q̄D = P̄D1 P̄D2 + P̄D2 P̄D3 + P̄D1 P̄D3 − 2P̄D1 P̄D2 P̄D3 , (4.66)

Now for lim
N→∞

Q̄F = 0, we must have any of the two P̄Fis, i = 1, 2, 3 must be 0 in

Eq. (4.65). Therefore, λ has to be selected such that

λ ≥ max
{

Gp

(
10

L1
10

)
, Gp

(
10

L2
10

)}
, OR

λ ≥ max
{

Gp

(
10

L2
10

)
, Gp

(
10

L3
10

)}
, OR

λ ≥ max
{

Gp

(
10

L1
10

)
, Gp

(
10

L3
10

)}
.

(4.67)

55



To achieve the other condition of lim
N→∞

Q̄D = 1, using Eq. (4.66), any two P̄Dis, for

i = 1, 2, 3 must be 1 which is obtained by setting λ as

λ ≤ min

{
Gp

(
10
−L1
10 + γ̃1

) p
2

, Gp

(
10
−L2
10 + γ̃2

) p
2
}

OR

λ ≤ min

{
Gp

(
10
−L1
10 + γ̃1

) p
2

, Gp

(
10
−L3
10 + γ̃3

) p
2
}

OR

λ ≤ min

{
Gp

(
10
−L2
10 + γ̃2

) p
2

, Gp

(
10
−L3
10 + γ̃3

) p
2
} (4.68)

In order to see the implications of these conditions, let us consider L1 > L2 > L3.

Using Eq. (4.67) and Eq. (4.68), the conditions on γ̃1, γ̃2 and γ̃3 can be given by

γ̃1 ≥ 10
L2
10 − 10

−L1
10 , γ̃2 ≥ 10

L2
10 − 10

−L2
10 , γ̃3 ≥ 10

L2
10 − 10

−L3
10 . (4.69)

Therefore, for k = 2 any two conditions given in Eq. (4.69) must be satisfied, in

order to get unlimited reliability. Equality sign in Eq. (4.69) then gives us the SNR

wall for 2 out of 3 rule. One can also see from Eq. (4.69) that the SNR wall in

this case is independent of the value of p. As an example, let us take L1 = 1 dB,

L2 = 0.7 dB and L3 = 0.5 dB. Substituting in Eq. (4.69), we get the SNR walls for

3 CSUs as γ̃1 = 0.3806, γ̃2 = 0.3238 and γ̃3 = 0.2836. Therefore one can achieve

unlimited reliability if any two of the SNRs at the CSUs are ≥ to their respective

SNR wall values.

Following the similar procedure, the conditions given for the case of M = 3 in

Eq. (4.69) can be extended to any k out of M CSUs and is given by Eq. (4.59) with

L+ = min {k largest from (L1, L2, · · · , LM)}. For example, with M = 3, k = 2 and

L1 > L2 > L3 then L+ = L2 and we arrive at Eq. (4.69). Note that, to achieve

unlimited reliability, any k SNRs must be ≥ their respective SNR walls. In TABLE

4.1, we list the SNR wall under OR, AND and k out of M combining rule when

hard combining is used. We consider k = 2 for k out of M combining rule. Note

that, the value of k also represents the required number of SNRs are to be ≥ their

respective SNR walls at the CSUs in order to get the unlimited reliability. Looking

at Table 4.1, one may notice that, though the SNR wall values that we get for OR
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Table 4.1: Comparison of SNR walls for hard combining. Here, M = 3, L1 = 1 dB,
L2 = 0.7 dB and L3 = 0.5 dB.

Decision Rule γ̃1 γ̃2 γ̃3 k
OR 0.4646 0.4077 0.3677 1

AND 0.3277 0.2708 0.2307 3
2 out of 3 0.3806 0.3238 0.2836 2

combining rule are higher when compared to other two rules, it requires only a

one SNR to be ≥ the respective SNR wall value to achieve unlimited reliability.

When AND combining rule is used, the SNR wall values are smallest but we re-

quire all three SNRs ≥ their SNR wall values for achieving unlimited reliability.

With k out of M combining rule, the SNR wall values lie between those of OR

and AND combining rules, and any k SNR values at the CSUs have to be ≥ their

respective SNR wall values. The use of combining rule depends on the channel

conditions of the secondary users (SUs). If one of the SUs is experiencing good

channel conditions so that the received SNR is high, then it is better to use OR

combining rule. On the other hand, if all the SUs are experiencing low SNRs due

to faded channel conditions, then one can employ AND combining rule. The K

out N rule is useful when few secondary users are having good channel condi-

tions.

4.3.5 CSS with Soft Combining

We investigate the SNR wall for soft decision combining when equal gain com-

bining (EGC) is used at the FC. Here, the decision on PU being ON/OFF is not

taken by the CSUs. Instead, the decision statistics from all the CSUs are sent to

the FC where they are added to obtain a new decision statistic and the decision

is taken by FC based this. Let Ti be the decision statistic at the ith CSU. Then, the

new decision statistic at the FC is obtained as

T =
1
M

M

∑
i=1

Ti. (4.70)
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We see that, the derivation for Q̄F and Q̄D in this case is same as that of P̄F,plc

and P̄D,plc for pLC diversity given in Section 4.3.2, only the interpretation of the

variables change. Specifically, Li and γ̃i used in Section 4.3.2 are now interpreted

as the upper bound on the NU and the average SNR at the ith CSU.

4.4 SNR Wall for Fading Channel

In this section we first derive P̄D under Nakagami fading and NU for both no

diversity and diversity cases. Since we know that P̄F is independent of SNR, here

we give the derivation for P̄D only. We then discuss the SNR wall for each case.

4.4.1 No Diversity

The instantaneous SNR when we consider fading and no NU is given by γ =

|h|2 σ2
s

σ2
w
= |h|2 σ2

s
σ̂2

w
since σ2

w = σ̂2
w in this case. This SNR at the input of the SU with

Nakagami fading depends upon the random fading channel gain ζ as given in

[15] as

fζ(z) =
mm

Γ(m)
zm−1e−mz, z ≥ 0, (4.71)

where, m represents the Nakagami parameter. To obtain average probability of

detection under Nakagami fading, i.e., P̄Nak
D , we need to replace γ̃ with γ̄ζ in Eq.

(4.11) and average over the pdf of ζ given in Eq. (4.71) where γ̄ is the average SNR

when fading is considered. Note that γ̃ defined earlier in Section 4.3 is different

from γ̄. With this, P̄Nak
D under Nakagami fading can be written as

P̄Nak
D =

∞∫
0

b∫
a

Q

(
λx

p
2 − Gp(1 + γ̄xz)

p
2

(1 + γ̄xz)
p
2

√
N
Kp

)
5

Lx ln(10)
mm

Γ(m)
zm−1e−mzdxdz.

(4.72)

Now, to obtain the SNR wall, we need to apply limit N → ∞ to Eq. (4.72).

In order to derive the expression, we define R3(z) =

(
1
γ̄

(
λ

Gp

) 2
p − 1

zγ̄

)
, U5 =

max [0, R3(a)] and U6 = max [0, R3(b)]. After carrying out the mathematical sim-
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plifications, the P̄Nak
D can be expressed as

P̄Nak
D =

5
L ln (10)

[(
1−

(
λ

Gp

) 2
p
)
[P (m, mU6)− P (m, mU5)]− ln (a) Q(m, mU5)

+ γ̄ [P (m + 1, mU6)− P (m + 1, mU5)] + ln (b) Q (m, mU6)

]
(4.73)

given in Eq. (4.73) which is given on the top of next page, where P (a, z) and

Q (a, z) represent the regularized lower and lower incomplete Gamma functions

[2]. The derivation for the same is given in Appendix A.2.

Once the P̄Nak
D is obtained, we need to obtain the condition on λ such that both

the conditions in Eq. (4.4) are satisfied. To get lim
N−→∞

P̄Nak
D = 1, using Eq. (4.72)

we get the condition on λ as

λ ≤ Gp
(

10
−L
10

) p
2 , (4.74)

Using Eq. (4.12), to set P̄F = 0, we need to select λ as

λ ≥ Gp
(

10
L
10

) p
2 , (4.75)

One can notice that, these two conditions can not be satisfied simultaneously. For

example, with L = 1 dB, we need λ ≥ 1.2589 to make P̄Nak
F = 0 and λ ≤ 0.7943

to achieve P̄Nak
D = 1. Such contradictory conditions arise because of the approxi-

mation of decision statistic as Gaussian. Hence, the expression given in Eq. (4.73)

can never reach 1 for λ ≥ Gp
(

10
L
10

) p
2 . In such a situation, one can find the SNR

wall numerically which can be done as follows. The condition given in Eq. (4.75)

implies that to obtain limN→∞ P̄F = 0, we need to choose λ ≥ Gp

(
10

L
10

) p
2 . Now

to maximize the probability of detection, we have to select the threshold as small

as possible and hence λ can be chosen as Gp

(
10

L
10

) p
2 . With this, the SNR wall can

be obtained by using this chosen threshold in Eq. (4.73) and finding the lowest

value of SNR, i.e., γ̄, for which P̄Nak
D approximates 1. With λ ≥ Gp

(
10

L
10

) p
2 , the

P̄Nak
D never reaches 1 and hence we consider the SNR wall as that value of γ̄ for

which Eq. (4.73) approximates to 1, for example say 0.99. With p = 2, L = 0.5 dB
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and m = 2, we get the SNR wall as γ̄ = 1.841. For the same parameter settings,

when we do not consider fading γ̃ = 0.2308.

4.4.2 pLC Diversity

The P̄Nak
D,plc considering two diversity branches can be obtained by averaging P̄D,plc

in Eq. (4.23) over the pdfs of ζ1 and ζ2 which is given by

P̄Nak
D,plc = C2

∞∫
0

∞∫
0

b1∫
a1

b2∫
a2

Q


2λ(xy)

p
2 − Gp(1+γ̄1xz)

p
2

y−
p
2

− Gp(1+γ̄2yw)
p
2

x−
p
2√

Kp
N

√
(1 + γ̄1xz)pyp + (1 + γ̄2yw)pxp

 1
xy

(zw)m−1 e−m(z+w)dydxdzdw.

(4.76)

where C2 = 25m2m[Γ(m)]−2

L1L2 ln(10)2 . Here, γ̄1 and γ̄2 represent average SNRs under fading at

diversity branches 1 and 2, respectively. Note that, we can reduce this expressions

following the procedure given in Appendix A.2 for no diversity case but the final

expression becomes too lengthy and complicated. Hence, in Appendix A.3, we

give few initial steps of reduction to arrive at Eq. (4.77) which has three integrals

to be reduced.

P̄Nak
D,plc = C2

∞∫
0

∞∫
0

ln(b1)∫
ln(a1)

[
max

[
min

[
ln (b2) ,− ln

((
A−

(
γ1z + e−t) p

2
) 2

p
− γ2w

)]
, ln (a2)

]

− ln (a2)

]
zm−1e−mzwm−1e−mwdtdzdw (4.77)

Here, we assume that both the diversity branches are experiencing independent

fading. The analysis for P̄Nak
D,plc can be extended to P diversity branches by follow-

ing the similar procedure and in that case the expression has 2P integrals where P

integrals are for averaging over NU and another P for averaging over the fading.

In this case also, the SNR wall has to be obtained numerically for the same

reason explained in Section 4.4.1. Using Eq. (4.24), to achieve limN→∞ P̄F,plc = 0,

we get the condition on λ as

λ ≥
Gp

2

((
10

L1
10

) p
2

+

(
10

L2
10

) p
2
)

. (4.78)
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In this case, the SNR wall when both the diversity branches have the same SNR

can be obtained by using γ̄1 = γ̄2 = γ̄ in Eq. (4.77) and finding γ̄ by considering

λ = (Gp/2)

((
10

L1
10

) p
2
+
(

10
L2
10

) p
2

)
for which P̄Nak

D,plc attains 0.99. For example,

with L1 = L2 = 0.5 dB, p = 2 and m = 2, we get the SNR wall at the two

diversity branches as γ̄1 = γ̄2 = 0.67. For no diversity case with L = 0.5, we

get SNR wall as γ̄ = 1.82. We can observe that with the use of pLC diversity,

we get improvement in terms of SNR wall. Finding SNR wall when we consider

γ̄1 6= γ̄2 is not possible unless we have additional constraints, since substituting

λ in Eq. (4.77) results in one equation with two unknowns which has infinite

solutions. In this case, one can find the SNR wall by fixing the value of SNR at

one of the diversity branches and then finding the other value numerically. For

example, with the same parameter settings as given above and with γ̄1 6= γ̄2, one

combination of SNR for which unlimitedly reliable performance can be obtained

is γ̄1 = 0.5 and γ̄2 = 0.84. One can follow the similar procedure to obtain the SNR

wall when we consider more number of diversity branches.

4.4.3 pLS Diversity

The average probability of detection under Nakagami fading, i.e., P̄Nak
D,pls, can be

obtained by using Eq. (4.39) and Eq. (4.73). The average probability of false alarm

remains the same as in AWGN case given in Eq. (4.38).

In this case, one can select λ as given in Eq. (4.43) and substitute the same in

Eq. (4.73) to obtain the SNR walls for two diversity branches numerically. For

example, with L1 = 0.5 dB, L2 = 0.3 dB, m = 2, and p = 2, we get the SNR walls

at the two branches as γ̄1 = 1.82 and γ̄2 = 1.71. Once again, we see that any one

of the two branches should have SNR above their respective SNR wall values to

achieve the unlimited reliability. Similar procedure can be followed to obtain SNR

wall for the general case of P diversity branches. In this case also, the SNR walls

are independent of the value of p.
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4.4.4 CSS with Hard Combining

We now consider the cooperative spectrum sensing scenario. In this case, to de-

rive Q̄F and Q̄D, we need to obtain the average probability of false alarm (P̄Nak
Fi

)

and detection (P̄Nak
Di

) at the ith CSU under Nakagami fading. Since P̄Nak
Fi

is inde-

pendent of SNR, it remains the same as that of AWGN case given in Eq. (4.51).

The derivation of P̄Nak
Di

is the same as that of Eq. (4.73) which can be obtained by

replacing L and γ̃ with Li and γ̃i, respectively, in Eq. (4.73) and is given as

P̄Nak
Di

=
5

Li ln (10)

[(
1−

(
λ

Gp

) 2
p
)
[P (m, mU6)− P (m, mU5)]− ln (ai) Q(m, mU5)

+ γ̄i [P (m + 1, mU6)− P (m + 1, mU5)] + ln (bi) Q (m, mU6)

]
(4.79)

where, R3(z) =
(

1
γ̄i

(
λ

Gp

) 2
p − 1

zγ̄i

)
, U5 = max [0, R3(ai)] and U6 = max [0, R3(bi)].

Here, we derive the SNR walls considering k out of M rule and the other two

are discussed as the special cases. We first derive them by considering M = 3 and

k = 2 and then extend it to general case. Using Eq. (4.51) and Eq. (4.79), to achieve

P̄Fi = 0 and P̄Di = 1, we need to select λ as

λ ≥ Gp (bi)
p
2 and λ ≤ Gp (ai)

p
2 for i = 1, 2, 3, (4.80)

respectively. Suppose we consider L1 > L2 > L3. In that case, using Eq. (4.80),

we need to set λ ≥ Gp(b2)
p
2 and λ ≤ Gp (a2)

p
2 , respectively. However, these two

conditions are contradictory and cannot be satisfied simultaneously. For example,

with p = 2, L1 = 1 dB, L2 = 0.7 dB and L3 = 0.5 dB, we need to select λ ≥ 1.1749

and λ ≤ 0.8511. In such a situation, the expression given in Eq. (4.79) can never

reach 1 for λ ≥ Gp (b2)
p
2 and we need to obtain the SNR walls numerically which

can be done as follows. Note that, we always try to set λ as small as possible since

it maximizes the probability of detection. Hence, choosing λ = Gp (b2)
p
2 , the SNR

wall for ith CSU can be found by using this threshold in Eq. (4.79) and by finding

the lowest values of SNR, i.e., γ̄i i = 1, 2, 3, for which P̄Nak
Di
≈ 1. To do this, one

may consider the SNR for which P̄Nak
Di

reaches 0.99 (close to 1) as the SNR wall.
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Table 4.2: Comparison of SNR walls for hard combining under Nakagami fading.
Here, M = 3, L1 = 1 dB, L2 = 0.7 dB and L3 = 0.5 dB.

Decision Rule γ̄1 γ̄2 γ̄3 k
2 out of 3 2.88 2.62 2.49 2

OR 3.85 3.67 3.58 1
AND 2.32 2.02 1.84 3

For example, for the chosen uncertainties, we get the SNR walls as γ̄1 = 2.88,

γ̄2 = 2.62 and γ̄3 = 2.49. Since k = 2, the SNRs at any two CSUs must be ≥

their respective SNR walls in order to achieve unlimited reliability. The case of

M = 3 can be extended to any M by choosing the threshold as λ = Gp

(
10

L+
10

) p
2
,

where L+ = min {k largest from (L1, L2, · · · , LM)}, and finding γ̄i for which P̄Nak
Di

approximates 1. In this case, any k SNRs must be ≥ their respective SNR walls in

order to achieve unlimited reliability. We next discuss OR and AND combining

as the special cases of k out of M combining rule where the procedure to obtain

SNR wall remains the same but the value of L+ changes.

OR Combining

In OR combining, FC declares PU channel as occupied when at least one CSU

declares channel as occupied. The SNR wall in this can be obtained by choosing

k = 1 in k out of M rule. Hence, we get L+ = max {L1, L2, · · · , LM}. Similar

to k out of M rule, by choosing the threshold as λ = Gp

(
10

L+
10

) p
2

in Eq. (4.79)

and finding the smallest γ̄i for which we get P̄Nak
Di
≈ 1 gives us the SNR walls.

Here, SNR at any one CSU needs to be ≥ its respective SNR wall in order to get

unlimited reliability.

AND Combining

When AND combining is used, PU is considered as occupied when all the CSUs

report it as occupied and using k = M one can get the SNR walls. with k = M

we get L+ = min {L1, L2, · · · , LM}. Following the procedure similar to OR case

one can easily obtain the SNR walls numerically. Note that, since k = M, all CSUs

must have SNRs ≥ their SNR walls in this case.
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In TABLE 4.2, we list the SNR walls for different combining rules where the

value of k represents the required number of SNRs that are to be≥ their respective

SNR walls at the CSUs in order to get the unlimited reliability. One can see that the

values of SNR walls obtained for the AND case are the lowest but we need to have

SNRs of all CSU above these values to achieve unlimited reliability. Although,

the SNR walls for OR combining are high, only one CSU needs to have SNR ≥

its SNR wall. For k out of M rule, the SNR wall values lie between OR and AND

combining rule. Another important point worth mentioning is that, the SNR walls

for hard combining are independent of p, i.e., we get the same SNR wall values as

given in TABLE 4.2 for any value of p.

4.4.5 CSS with Soft Combining

We need to obtain the SNR in this case numerically for the same reasons explained

in Section 4.4.4. Once again, the process to obtain the SNR wall remains same as

that for pLC diversity under Nakagami fading given in Section 4.4.2. The conclu-

sions drawn in Section 4.4.2 are also valid in this case with Li and γ̄i representing

upper bound on the NU and the average SNR under Nakagami fading at the ith

CSU, respectively.

4.5 Results and Discussion

In this section, we validate the theoretical analysis that is carried out using Monte

Carlo simulations. For simulation, we generate both the PU signal and the noise

as complex Gaussian and the results are averaged over 105 iterations. We first val-

idate the expressions for SNR walls derived in Section 4.3 for the case of AWGN

channel. Then the validation of the same for fading case given in Section 4.4 is

discussed.

4.5.1 SNR wall for AWGN Case

In this section, we consider experiments to verify the validity of SNR wall expres-

sions derived in Section 4.3 and 4.4. Since our major contribution lies in deriving
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the SNR wall by considering diversity and CSS, we show the plots for validating

the expressions for diversity and CSS cases only. We have already shown that the

SNR wall is independent of p for pLS diversity and CSS with hard combining.

Therefore, we illustrate the validity of SNR wall by considering any p for pLC

diversity and by considering p = 2 for pLS diversity and CSS (hard combining).

Note that, one can easily obtain the plots to validate SNR walls for no diversity,

pLS diversity and CSS with hard combining with any p but to avoid repetition of

similar plots we have omitted those plots.

In Section 4.3.2 (Fig. 4.1), we conclude that with increase in the value of p, the

SNR wall decreases. We first validate this conclusion using Monte Carlo simula-

tion. Here, we plot threshold τ VS. detection probabilities P̄F,plc, P̄D,plc, by select-

ing a large N as required in establishing the SNR wall condition and by choosing

L1 = L2 = 1 dB and γ̃2 = 0.1. The infinite sample size is approximated by a

very large N, i.e., N = 107. Fig. 4.2(a) and Fig. 4.2(b) are plotted for p = 1 and

p = 5, respectively. The vertical line in Fig. 4.2 gives us the threshold τ for which

both the conditions in Eq. (4.4) are satisfied. This means that if we set τ ≈ 0.9944

for p = 1 and choose a very large value of N, we can achieve P̄F,plc = 0 and

P̄D,plc = 1. In both these figures we can see that unlimited performance is indeed

achieved but the required value of γ̃1 (see Fig. 4.1) to achieve unlimited reliability

for p = 1 is 0.8914 where as for p = 5 it is 0.7153. We see that the value of SNR

wall required at the branch 1 for p = 5 is 0.9958 dB lower than that for p = 1. One

can also obtain plots by choosing the values of γ̃1 and γ̃2 not satisfying the SNR

wall conditions. In that case, it is not possible to find τ for which the conditions

in Eq. (4.4) are satisfied. The plots in Fig. 4.2 are shown for the scenario where

both the diversity branches have different SNRs. One can also validate the other

conclusions drawn in Section 4.3.2.

In Fig. 4.3, we show the plots of τ VS. detection probabilities for pLS diversity

with two branches. The simulation is carried out using L1 = 0.5 dB and L2 =

0.3 dB. On substituting L1 and L2 in Eq. (4.48), we obtain the SNR walls as γ̃1 =

0.2308 and γ̃2 = 0.1888. As discussed in Section 4.3.3, any one of the SNRs at

the two branches must be ≥ their respective SNR wall values in order to achieve
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Figure 4.2: Threshold (τ) VS. detection probabilities for pLC diversity with two
branches under AWGN channel using L1 = 1 dB, L2 = 1 dB, γ̃2 = 0.1, N = 107

(a) for p = 1 and γ̃1 = 0.8914 (b) for p = 5 and γ̃1 = 0.7153.
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Figure 4.3: Threshold (τ) VS. detection probabilities for pLS diversity with two
branches under AWGN channel using L1 = 0.5 dB, L2 = 0.3 dB, γ̃1 = 0.2, γ̃2 =
0.1888, p = 2, N = 107.

unlimited reliability. Hence, we choose γ̃1 = 0.2 which is below the SNR wall at

first diversity branch and γ̃2 = 0.1888 which is equal to the SNR wall value at the

second branch. It can be seen from Fig. 4.3 that by setting τ ≈ 1.12 and using

high N, one can achieve unlimitedly reliable performance. This is shown by the

vertical line in Fig. 4.3.

We next show the plots for CSS with one of the hard decision combining, i.e.,

k out of M combining rule. In Fig. 4.4, we demonstrate the SNR wall for k out

of M combining rule and consider three CSUs, i.e., M = 3, having L1 = 1 dB,

L2 = 0.7 dB and L3 = 0.5 dB with k = 2. Using these parameters in Eq. (4.69),

we compute the SNR walls as γ̃1 = 0.3806, γ̃2 = 0.3238 and γ̃3 = 0.2836. In Fig.

3, we show the plots by choosing γ̃1 = 0.2 which is below the required value of
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Figure 4.4: Plots of τ VS. Q̄F and Q̄D for k out of M combining rule. Here, N = 106,
M = 3, L1 = 1 dB, L2 = 0.7 dB, L3 = 0.5 dB, p = 2, γ̃1 = 0.2, γ̃2 = 0.3238 and
γ̃3 = 0.2836.

SNR wall and γ̃2 = 0.3238 and γ̃3 = 0.2836 which are equal to their SNR walls.

Since we have k = 2, and 2 out of 3 CSUs have the inputs with SNR ≥ their SNR

walls, an unlimited operation is obtained. We can see from Fig. 4.4 that choosing a

value of τ = 1.16 (threshold corresponding to the vertical line) gives the unlimited

reliability, i.e., choosing this threshold value with two of the three SNRs ≥ their

SNR walls gives us Q̄F = 0 and Q̄D = 1. In order to reduce the repetition of the

similar plots, here we give plots for k out of M combining rule only. One can show

similar plots for OR as well as AND combining rules.

The SNR wall for CSS with soft combining is similar to the pLC diversity.

Hence, one can consider plots given in Fig. 4.2 to understand the SNR walls

for soft combining. For CSS with soft combining γ̃1 and γ̃2 represent the aver-

age SNRs at CSU 1 and 2, respectively, and L1 and L2 represent the NU levels at

CSU 1 and 2, respectively. We can see that for fixed value of SNR at CSU 2, i.e.,

γ̃2 = 0.1, the required value of SNR at CSU 1, i.e., γ̃1, in order to achieve unlim-

ited reliability is 0.8914 for p = 1 and 0.7153 for p = 5 showing the improvement

in SNR wall with increasing value of p.

4.5.2 SNR Wall for Fading Case

In this section we consider fading in addition to noise uncertainty and use Monte

Carlo simulations to validate the SNR wall. We first consider the case of no di-

versity and then extend it diversity and CSS. As already discussed, the SNR walls
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Figure 4.5: Threshold (τ) VS. detection probabilities for no diversity under Nak-
agami fading channel using p = 2, N = 107 for (a) no diversity with L = 0.5 dB,
γ̄ = 1.82, (b) pLC diversity using L1 = L2 = 0.5 dB, γ̄1 = γ̄2 = 0.67 and (c) pLS
diversity using L1 = 0.5 dB, L2 = 0.3, γ̄1 = 0.1, γ̄2 = 1.71.

in this case have been obtained numerically and one can find a threshold theoret-

ically for which the probability of false alarm is 0 with infinite sample size. We

then need to find the SNR for which the probability of detection becomes 1 with

this threshold to get the SNR wall.

In Fig. 4.5(a), we show the plots for no diversity case. As discussed in Section

4.4.1, to achieve P̄Nak
F = 0, λ should satisfy the condition given in Eq. (4.75). For

L = 0.5 dB and p = 2, using Eq. (4.75), we get λ ≥ 1.122. As already discussed, we

always try to set the threshold as small as possible and hence we choose λ = 1.122.

Since we assume σ̂2
w = 1, λ gives us the threshold. Using this λ in Eq. (4.73) and

finding γ̄ for which P̄Nak
D = 1 gives us the SNR wall as γ̄ = 1.82. In Fig. 4.5(a), the

vertical line shows that we can achieve unlimited reliability by setting τ = 1.122.

Note that, here we have shown plot for p = 2 only. In this case, it turns out that

the SNR wall is independent of value of p. Hence, for any value of p, SNR wall

values will remain the same.

We next consider the case of pLC diversity. Here, we assume that both the

diversity branches have the same SNRs, i.e., γ̄1 = γ̄2 = γ̄ and we choose L1 =

L2 = 0.5 dB. Using Eq. (4.78), we obtain the threshold as τ = λ = 1.122. Using

this threshold in Eq. (4.77) to find the values of γ̄1 and γ̄2 for which P̄Nak
D,plc = 1

give us the SNR walls as γ̄1 = 0.67 and γ̄2 = 0.67. The vertical line at τ = 1.122

in Fig. 4.5(b) shows that by choosing τ = 1.122 with large sample size, one can
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Figure 4.6: Threshold (τ) VS. Q̄F and Q̄D, for hard combining under fading chan-
nel using N = 107, M = 3, p = 2, (a) k out of M combining, (b) OR combining.

obtain P̄F,plc = 0 and P̄Nak
D,plc = 1. Note that, although we have shown the plots

by considering only one case of γ̄1 = γ̄2 and L1 = L2, one can obtain SNR wall

for different scenarios where γ̄1 6= γ̄2 and L1 6= L2. For example, with L1 = L2 =

0.5 dB, we get one combination of SNR walls as γ̄1 = 0.5 and γ̄2 = 0.84 which also

gives the sum as 1.34. Similarly, with γ̄1 = γ̄2 with L1 = 0.5 dB and L2 = 0.3 dB,

we get the SNR walls as γ̄1 = γ̄2 = 0.64.

In Fig. 4.5(c), we demonstrate the SNR wall for pLS diversity under fading.

We choose L1 = 0.5 dB and L2 = 0.3 dB, and hence using Eq. (4.43), we get the

threshold as λ = 1.122. Using Eq. (4.39) and Eq. (4.72), we get the SNR walls

as γ̄1 = 1.82 and γ̄2 = 1.71. As discussed in Section 4.4.3, any one diversity

branch should have SNR ≥ its respective SNR wall value to achieve unlimited

reliability. In Fig. 4.5(c), we choose γ̄1 = 0.1 which is below to its SNR wall value

and γ̄2 = 1.71 which is equal the SNR wall. The vertical line in Fig. 4.5(c) shows

that unlimited performance can be obtained by using the given setting. As done

in case of pLC, one can consider different scenarios to obtain SNR wall in this case

as well.

We next validate the SNR wall for hard combining obtained in Section 4.4.4

and listed in TABLE 4.2. In Fig. 4.6(a), we show the plot of τ VS. Q̄F and Q̄D, for k

out of M rule considering L1 = 1 dB, L2 = 0.7 dB, L3 = 0.5 dB, k = 2 and M = 3.

For these parameters, we obtained the SNR walls as listed in TABLE 4.2. In Fig.

4.6(a), we show the plots by choosing γ̄1 = 0.3 which is below the required value

of SNR wall and γ̄2 = 2.62 and γ̄1 = 2.49 which are equal to their respective SNR
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walls. Since we have k = 2, and 2 out of 3 CSUs have the inputs with SNR ≥ their

SNR walls, we should get the unlimited reliability. We can see from Fig. 4.6(a) that

choosing a value of τ = 1.1749 gives us the unlimited reliability which is marked

as the vertical line. We next validate the OR combining with the same parameter

settings. We get the SNR walls as γ̄1 = 3.85, γ̄2 = 3.67 and γ̄1 = 3.58. In this case,

it is required that at least one CSU has the SNR ≥ its SNR wall in order to achieve

the unlimited reliability. With γ̄1 = 0.1, γ̄2 = 0.1 and γ̄1 = 3.58, the plot in Fig.

4.6(b) shows the vertical line at τ = 1.2589 to get the unlimited reliability. One can

also show similar plot for AND combining. Here, we need to choose SNRs at all

the CSUs ≥ their SNR walls which are listed in TABLE 4.2. Finally, the SNR wall

for soft combining under Nakagami fading is similar to that of pLC where γ̄1 and

γ̄2 interpreted as SNRs at CSUs 1 and 2, respectively. We can consider plot in Fig.

4.5(b) as the plot for soft combining under Nakagami fading.

4.6 Conclusion

In this work, we study the SNR wall for generalized energy detector under no di-

versity, diversity and CSS in the presence of both the NU and the fading. We con-

sider hard as well as soft combining for CSS. We derive closed form expressions

for P̄F and P̄D for no diversity, diversity and CSS considering very large sample

size. Using those expressions, we first derive the SNR wall for AWGN channel

case under NU. This analysis is then extended to the case when there exist Nak-

agami fading in addition to NU in which the SNR wall is obtained numerically.

All the derived expressions are validated using Monte Carlo simulations. Our fu-

ture research work involves analysis of SNR wall for GED by considering noise

uncertainty and more general fading models.
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CHAPTER 5

Wideband Spectrum Sensing Under Fading:

Use of Diversity

In all our previous works, we looked at the problem of narrowband spectrum

sensing. In this work, we consider wideband spectrum sensing (WSS) where mul-

tiple frequency bands are sensed for finding spectrum opportunities. If the SUs

can sense multiple frequency bands at a time, they provide multiple spectrum op-

portunities. Authors in [96, 97], propose the optimal multiband joint detection for

WSS in CR. The bank of multiple narrowband detectors are jointly optimized to

improve the aggregate opportunistic throughput of a CR system while limiting

the interference to the PU system. The Nyquist sampling rate required to sam-

ple the wideband is very high and can be practically challenging. In order to

overcome this problem, many researchers have attempted the use of compressed

sensing to acquire the signal at sub-Nyquist rates [8, 30, 79, 107, 118, 130]. How-

ever, these sampling schemes are complex and their implementation is expensive.

In general, a SU may not be interested in finding all the spectrum opportunities,

instead the interest lies in finding sufficient numbers of spectrum opportunity.

For example, a SU may be interested in finding a single spectrum opportunity for

its transmission. This can be achieved if we consider only a part of the wideband

spectrum for sensing. Keeping this into consideration, authors in [112] propose

partial band Nyquist sampling (PBNS) which samples part of the wideband in-

stead of entire wideband thus reducing the sampling rate.

Different detection techniques have been proposed by the researchers for find-

ing the presence or the absence of signal while using WSS. Authors in [112], have
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proposed two detection algorithms, namely, channel by channel detection (CCD)

and ranked channel detection (RCD) by considering the primary signal and the

noise as additive white Gaussian noise (AWGN). However, in practice, the re-

ceived signal often undergoes fading. Limited work is done on WSS considering

the fading [34, 110]. In [20], the performance of these detection algorithms is ana-

lyzed for two different fading channels, namely, Rayleigh and Nakagami fading.

None of these approaches consider diversity reception. It may be of interest to

note that the performance can be improved by using diversity reception. Limited

work is done on the use of diversity to improve the performance of WSS [6, 99].

Here in this work, we propose two new detection algorithms, namely, ranked

square law combining (R-SLC) and ranked square law selection (R-SLS), where

SLC and SLS diversities are used to improve the performance of WSS under fad-

ing. In our work we use PBNS as the wideband sampling scheme. We provide

complete theoretical analysis of the proposed detection algorithms under Nak-

agami fading channel. To quantify the performance we use recently proposed

performance metrics, namely, the probability of excessive interference opportu-

nity (PEIO) and the probability of insufficient spectrum opportunity (PISO) [112].

Mathematical analysis is verified by Monte Carlo simulation. We also study the

effect of different parameters on the performance of the proposed algorithms. We

observe that proposed algorithms outperform RCD without diversity. Also, the

R-SLC algorithm performs better than R-SLS. Note that throughout this chapter,

when detection algorithm is used without the diversity it is referred to as RCD

and when used with the diversity they are referred to as R-SLC and R-SLS.

5.1 System Model and Performance Metrics

The wideband signal is modeled as the collection of U subbands, i.e., narrowband

channels, each of bandwidth B0 making the total bandwidth as B = UB0. In [8, 9,

55, 94, 112, 113], similar channel model is used. The primary transmission within

each subband is subject to flat fading. Let Hm denotes the primary occupancy

of the mth subband, with Hm = 0 and Hm = 1 corresponding to PU being OFF
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and ON, respectively. We assume that the occupancy status of the PU remains

unchanged during the observation interval. It is also assumed that all the PUs

have equal priorities. In this work, the discussion is restricted to one sensing

window with a fixed duration of Tw = UNTN, where FN = 1/TN = 2B is the

Nyquist sampling frequency and N represents number of Nyquist samples per

subband. We would like to mention here that the terms subband and channel are

used interchangeably.

We assume that the occupancy status of subbands as well as their transmis-

sions are independent of each other. Assuming the occupancy probability (OP)

of subbands as p, the state of each subband is modeled by a Bernoulli random

variable and the probability mass function (PMF) of the same given as

f (Hm, p) =

p, if Hm = 1

1− p, if Hm = 0.
(5.1)

With the number of ON channels as K, PMF of primary occupancy is given by

Binomial distribution as

f (K, U, p) =
(

U
K

)
pK (1− p)U−K . (5.2)

Note that in order to detect the free primary channels the detector has to decide

on their presence or absence. The received signal at the SU due to mth primary

subband can now be modeled as

ym(t) = hm · sm(t) + nm(t), (5.3)

where, sm(t) represents the transmitted signal in the mth primary subband, nm(t)

represents AWGN and hm represents the channel coefficient for the mth primary

subband. Note that, in this chapter we do not consider noise uncertainty.

Authors in [51, 55, 79, 118, 127] use mean-square estimation error (MSE) as

the criteria for measuring performance. In [8, 53, 94, 107], the probability of miss

detection (PM) and false alarm (PF) or their average over the channels are used
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as performance measures. These measures are more suitable for single channel

detection. However, the goal of WSS can be different from that of single channel

sensing. The SUs in CR may not be interested in finding all the spectrum oppor-

tunities. A fraction of spectrum opportunities may be sufficient for the SUs and

hence WSS can tolerate much higher PF. Keeping this in perspective, new per-

formance metrics are proposed in [112] that are more suitable for WSS. We use

these two new performance metrics, i.e., PEIO and PISO, in order to characterize

the performance of the detection algorithms. Let S be the number of spectrum

opportunity, i.e., the number of successfully identified OFF channels and let Sd be

the desired number of spectrum opportunity. Then PISO is defined as

PISO = Pr {S < Sd} (5.4)

where, Pr represents probability. Similarly, PISO is defined as

PEIO = Pr {I > Id} . (5.5)

where, I represents the number of missed ON channels and Id corresponds to the

maximum number of allowed interference to the primary channels.

5.2 Detection Algorithms

Various diversity schemes have been studied in the literature [12, 37, 38, 58, 102],

to name a few, maximum ratio combining (MRC), equal gain combining (EGC),

square law selection (SLS), switched combining, square law combining (SLC), etc.

MRC represents the optimal combining technique and it gives the best possible

performance that can be achieved by using diversity. However, the disadvan-

tage here is that it requires complete channel state information (CSI) at the SU

and hence the complexity is very high. EGC is a suboptimal diversity technique

and has reduced complexity compared to the MRC technique. Though it does

not require channel fading amplitudes, we still need to use channel carrier phase

estimation. The SLS combining technique selects the strongest signal branch for
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detection and is simple to implement when compared to MRC and EGC. In SLC

diversity scheme, the decision statistic obtained at all the diversity branches are

added in order to obtain new decision statistic and the decision is taken based

on that. Both SLS and SLC are non-coherent combining schemes and are easy to

implement. Taking into consideration all the above points, we propose two new

detection algorithms, namely, R-SLC and R-SLS, which use SLC and SLS diversi-

ties, respectively.

5.2.1 Ranked Square law Combining (R-SLC) Detection

Consider P diversity branches that receive wideband signal consisting of U chan-

nels. The PBNS is used at the input of all the diversity branches. As already

discussed earlier, a SU may not be interested in finding all the spectrum opportu-

nity, instead the interest lies in finding sufficient numbers of SO. This motivates

the idea of PBNS, which samples only the fraction of the entire wideband at the

corresponding Nyquist rate. PBNS is characterized by the number of channels in

the partial band (L) and filters out L channels from the wideband having M chan-

nels. The received signal after filtering is sampled at the Nyquist rate of 2LB0 on

which the fast Fourier transform (FFT) is performed. We take N samples for each

channel. Hence, the number of samples in the sensing window is NL. Let V[k]

denote the frequency samples in PBNS. Then, V[k] = Y[k], for 0 ≤ k ≤ NL− 1,

where Y[k] denotes the normalized discrete Fourier transform (DFT) of the re-

ceived wideband signal consisting of U channels. The energy within mth narrow-

band channel is then calculated as

Tm = ∑
k∈Im

|V[k]|2 , (5.6)

where 1 ≤ m ≤ L and Im is the set of frequency indices that fall into channel m.

Fig. 5.1, represents the block schematic of R-SLC detection schemes and the

steps involved in implementing it are given in Algorithm 1. As shown in Fig. 5.1,

energies are computed for each of the L channels from all P diversity branches.

The energies within each of the L channels from all the diversity branches are
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Figure 5.1: Block diagram of ranked square law combining (R-SLC) detection.

added to obtain T1, T2, · · · , TL. Once this is done, the channels are ranked, i.e.,

arranged in ascending order with regard to Tm, m = 1, 2, · · · , L. Then the decision

is taken on first Ld channels, where Ld ≤ Sd ≤ L. Remaining U − Ld channels are

ignored. Referring to Fig. 5.1, let Ld = 2 and let channels L and 2 have the least

received energy. Based on the decision made, channels L and 2 are declared as

free and occupied, respectively. Note that, considering P = 1 in R-SLC results in

RCD proposed in [112].

Algorithm 1 Ranked Square Law Combining

1: Compute energy for each of the L channels from all P diversity branches.

2: Add the energy within each of the L channels from all the diversity branches.

The resulting new energies are denoted by Tm, m = 1, 2, · · · , L.

3: Sort the selected channels in ascending order with regard to Tm.

4: Make decisions for first Ld channels, where Sd ≤ Ld ≤ L, using energy detec-

tion with the given threshold τ. Ignore the remaining U − Ld channels.
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5.2.2 Ranked Square Law Selection (R-SLS) Detection

Fig. 5.2 represents the block diagram of R-SLS detection scheme. As shown in Fig.

5.2, energy computed within each of the L channels from all the diversity branches

are given as input to a selector. The selector selects highest energy for each of the

L channels. Once, this is done, the selected channels are ranked, i.e., arranged in

ascending order with regard to Tm, m = 1, 2, · · · , L. Then the decision is taken on

first Ld channels, where Ld ≤ Sd ≤ L. Remaining U − Ld channels are ignored.

Fig. 5.2 represents the case with Ld = 2. Here, C1, C2, · · · , CL represent L nar-

rowband channels. Here, diversity branches P and 1 are shown to be selected for

channel 1 and 2, i.e., TP
max1

and T1
max2

, respectively. As shown in Fig.5.2, diversity

branches P and 1 have maximum energies TP
max1

and T1
max2

for channels C1 and

C2, respectively. Note that, in T j
maxi , maxi and j represent the selected maximum

energy in channel i and the corresponding diversity branch j, respectively, where

i = 1, 2, · · · , L and j = 1, 2, · · · , P. After ranking CL is shown to have the lowest

energy and C2 has next lowest energy from the selected maximum energies. The

detection is made on these channels L and 2. Based on threshold τ, CL and C2

are shown as free and occupied, respectively. Note that reducing the number of

diversity branches to one results in RCD proposed in [112]. The steps involved in

detection using a fixed threshold τ are listed in Algorithm 2.

Algorithm 2 Ranked square law selection (R-SLS) with fixed threshold τ

1: Select maximum energy for each of the L channels from all P diversity

branches.

2: Sort the selected channels in ascending order with regard to Tm.

3: Make decisions for first Ld channels, where Sd ≤ Ld ≤ L, using energy detec-

tion with the given threshold τ. Ignore the remaining U − Ld channels.
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Figure 5.2: Block diagram of ranked square law selection (R-SLS) detection.

5.3 Approximation of Decision Statistic

The probability density function (pdf) of received energy under Nakagami fading

is given as [65],

fTm(t) =


1(t)tG−1e−

t
2

(G−1)!2GD 1F1 (m1; G; tE) , Hm = 1

χ2
N, Hm = 0

(5.7)

where χ2
N is the chi-square pdf with N degrees of freedom, D = (1 + γ̄/m1)

m1 ,

E = 0.5− 0.5m1/(m1 + γ̄), γ̄ is the average SNR, G = N/2, M = G− 1, m1 is the

Nakagami parameter, 1F1(·; ·; ·) is the confluent hypergeometric function [50] and

1(t) is the unit step function.

If the pdf under Hm = 1 is directly used to obtain the expressions for per-

formance metrics, they lead to infinite series representation and one may find it

difficult to draw insight of different parameters from these expressions. In order
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to resolve this problem, we first approximate the pdf of Tm under Hm = 1 using a

simple expression by performing the asymptotic analysis. Using the Taylor series

expansion of a function f (t), we can write [36]

f (t) = atq + a1tq+1 + O(tq+2) as t→ 0+. (5.8)

Here, a, a1 and q represent real constants and O(tq+2) is the error term as t→ 0+.

Using Eq. (5.8), the authors in [36] propose the approximation as

f (t) ≈ atqe−αt, as t→ 0+, (5.9)

where α = − a1
a . The Taylor series expansion of Eq. (5.7) under Hm = 1 can be

obtained as

fTm(t) =
1

2GDΓ(G)
tG−1 +

2m1E− G
2G+1DΓ(G + 1)

tG + O(tG+1), (5.10)

as t → 0+. On comparing Eq. (5.10) with Eq. (5.8) we get a = 1
2GDΓ(G)

, a1 =

(2m1E−G)
2G+1DΓ(G+1) , α = − a1

a and q = G − 1. With this, the approximated pdf of Tm is

given by,

fTm(t) =

1(t)ae−αttq, Hm = 1

χ2
N, Hm = 0

(5.11)

This approximation may not result in proper pdf, i.e., the area under fTm(t) is not

necessarily 1. However, it better approximates expression given in Eq. (5.7) un-

der low γ̄. In Fig. 5.3, we show the plots for actual and approximated pdf for

different values of γ̄. One can see that for γ̄ = 0 dB, the approximation slightly

deviates from the actual pdf, where as for γ̄ = −5 dB and γ̄ = −10 dB the ap-

proximated pdf almost overlaps with the actual pdf. For γ̄ > 0 dB, we observe

that the approximation deviates from the actual pdf. Hence, we conclude that the

approximated pdf can be used to analyze the performance of the algorithms for

γ̄ ≤ 0 dB. This is acceptable since in order to implement the CR without interfer-
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Figure 5.3: Plots showing the actual and approximated pdf considering N = 10,
m1 = 2 for (a) γ̄ = 0 dB, (b) γ̄ = −5 dB and (c) γ̄ = −10 dB.

ence to the PU, it is important to be able to detect the existence of the PU under

very low SNR environment. Also, if the detection algorithms perform better un-

der low SNR, they also perform well under high SNR since the density functions

under H0 and H1 are well separated.

5.3.1 PDF for SLC Diversity

As already discussed, under the SLC diversity scheme, the measured energy from

different diversity branches are added to obtain the new decision statistic [37,

38]. Assuming same average SNR (γ̄) for all the diversity branches, pdf of sums

of independent random variables can be obtained by convolving their marginal

pdfs. Considering received energy as independent and identically distributed

(iid) random variable, the pdf of decision statistic for SLC can be obtained by

convolving branch pdfs of Tm, m = 1, 2, · · · , L. Under Hm = 0, adding P iid

central chi-square random variables, each with N degrees of freedom results in

another chi-square random variable with PN degrees of freedom [37]. The pdf

of Tm under Hm = 1 with P diversity branches can be obtained by successive

convolution of Eq. (5.11) with itself. With this, the pdf of decision statistic can be

summarized as

fTm(t) ≈


1(t)aPΓ(1+q)PtPq+P−1e−αt

Γ(pq+P) , Hm = 1

χ2
PN, Hm = 0

(5.12)
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The derivation for the pdf in Eq. (5.12) is given in Appendix B.1. Note that sub-

stituting P = 1 results in no diversity case and fTm(t) corresponds to that given in

Eq. (5.11).

5.3.2 PDF for SLS Diversity

In SLS diversity, we select maximum energy for each of the L channels from all

P diversity branches, i.e., Tmaxm = max
{

T1
m, T2

m, · · · , TP
m
}

, where the subscript

m = 1, 2, · · · , L represents the index of the channel and the superscript represents

the index of the diversity branch. The pdf of Tmaxm can be obtained as [92]

fTmaxm
(t) = P (FTm(t))

P−1 fTm(t) (5.13)

where, fTm(t) and FTm(t) represent the pdf and cdf of decision statistic for mth

channel. Using fTm(t) given in Eq. (5.11), one can derive FTm(t). Using these, we

obtain the pdf of Tmaxm as

fTmaxm
(t) ≈


P
[

aγ(q+1,αt)
αq+1

]P−1
ae−αttq, Hm = 1

P
[

γ(G, t
2)

Γ(G)

]P−1
tG−1e−

t
2

2GΓ(G)
. Hm = 0

(5.14)

5.4 Theoretical Analysis of Detection Algorithms

In this section, first we derive the expressions for PISO and PEIO for R-SLC and

then the same are derived for R-SLS. Note that, in the subsequent explanation the

superscript Nak represents the Nakagami fading.

5.4.1 Theoretical Analysis for R-SLC

To make the analysis easy to understand, we first considering only two channels

in the partial band, i.e., L = 2 and then extend the analysis to general case. We as-

sume the desired number of spectrum opportunity as one, i.e., Sd = 1 and Id = 0,

i.e., no primary channel interference. We take a decision on one channel only, i.e.,

Ld = 1. With these parameter settings, the energies for the two channels are com-
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puted which are represented as T1 and T2 for channel 1 and 2, respectively. These

energies are ranked, i.e., they are arranged in ascending order by computing the

minimum of the two energies, i.e., Tmin = min{T1, T2}. Since Ld = 1, decision is

made on Tmin and the other channels are declared ON. Now if Tmin < τ, channel

is declared as OFF otherwise it is declared as ON. For example, suppose T2 < T1,

then channel 1 is declared ON and decision is made on channel 2.

In order to obtain PISO and PEIO, we need to derive the probability of spectrum

opportunity (PS) and the probability of interference opportunity (PI). Since we

use L = 2, depending on the number of ON channels, there are three possible

cases for primary occupancy of two channels, i.e., both channels are OFF, only

one channel is ON and both channels are ON.

If both the channels are OFF, the probability of spectrum opportunity, i.e.,

PSNak
00 (τ) can be obtained by calculating probability of Tmin < τ under H1 =

H2 = 0. i.e.,

PS(τ|H1, H2 = 0) = PSNak
00 (τ) = Pr {Tmin < τ} , (5.15)

Here, Tmin = min(T1, T2). If we consider L iid random variables, the pdf of mini-

mum, i.e., Tmin = min (T1, T2, · · · , TL) is obtained as [92],

fTmin(t) = L fT(t) (1− FT(t))
L−1 = L fT(t)F̄T(t)L−1, (5.16)

where, FT(t) and F̄T(t) = 1− FT(t) are the cumulative distribution functions (cdf)

and the complementary cdf (ccdf) of fT(t), respectively.

Using Eq. (5.12) in Eq. (5.16) and substituting L=2, one can obtain the pdf of

Tm when both the channels are off as

fTmin(t) =
tPG−1e−

t
2 Γ(P · G, t

2)

2P·G−1Γ(P · G)2 . (5.17)

Now, PS can be obtained by using series representation of Γ(n, x) for integer n

from [7, 8.69] in Eq. (5.17) and integrating the same from 0 to τ. After performing
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mathematical simplifications we obtain the expression for PS as

PSNak
00 (τ) =

P·G−1

∑
k=0

γ(P · G + k, τ)

2PG+k−1 k! Γ(P · G)
. (5.18)

Since both the channels are OFF, there is no chance of interference and hence

PI(τ|H1, H2 = 0) = PINak
00 (τ) = 0.

We now consider the case when both the channels are ON. In this case, spec-

trum opportunity does not exist and hence PS(τ|H1, H2 = 1) = PSNak
11 (τ) = 0.

The probability of interference opportunity, i.e., PINak
11 (τ) in this scenario can be

obtained by calculating the probability of Tmin < τ under H1 = H2 = 1.

PI(τ|H1, H2 = 1) = PINak
11 (τ) = Pr {Tmin < τ} . (5.19)

Once again using Eq. (5.12) but under Hm = 1 in Eq (5.16) and substituting L = 2,

we obtain the pdf of Tm as

fTmin(t) =
2aPΓ(1 + q)PtPq+P−1e−αt

Γ(Pq + P)
− 2a2PΓ(1 + q)2PtPq+P−1e−αtγ (Pq + P, αt)

Γ(Pq + P)2αPq+P .

(5.20)

From this, PINak
11 (τ) is obtained by integrating Eq. (5.20) from 0 to τ, which can be

shown to be

PINak
11 (τ) =

Pq+P−1

∑
k=0

a2PΓ(1 + q)2Pγ(Pq + P + k, 2ατ)

Γ(Pq + P)α2Pq+2Pk!2Pq+P+k−1

+
2aP(q!)Pγ(Pq + P, ατ)

(
αPq+P − aPΓ(1 + q)P)

Γ(Pq + P)α2Pq+2P . (5.21)

Finally, if only one channel is ON (assuming channel 1 is OFF and channel 2

is ON), PSNak
01 (τ) can be obtained by calculating the probability of event {T1 <

T2, T1 < τ}, i.e.,

PS(τ|H1 = 0, H2 = 1) = PSNak
01 (τ) = Pr {T1 < T2, T1 < τ}

=
∫ τ

0

(
fT1(t1)

∫ ∞

t1

fT2(t2)dt2

)
dt1 =

∫ τ

0
fT1(t1)F̄T2(t1)dt1, (5.22)
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where, fT1(t) and fT2(t) are the pdfs of energy received in channel 1 and 2, respec-

tively, and F̄T2(t) is the ccdf of fT2(t). Substituting pdfs from Eq. (5.12) into Eq.

(5.22) and integrating using variable transformation, PSNak
01 (τ) is given by

PSNak
01 (τ) =

Pq+P−1

∑
k=0

aPΓ(q + 1)Pγ(P · G + k, (α + 1
2)τ)

2P·GΓ(P · G)αPq+P−kk!(α + 1
2)

P·G+k
. (5.23)

The PI in this case can be obtained using

PI(τ|H1 = 0, H2 = 1) = PINak
01 (τ) = Pr {T2 < T1, T2 < τ}

=
∫ τ

0

(
fT2(t2)

∫ ∞

t1

fT1(t1)dt1

)
dt2 =

∫ τ

0
fT2(t2)F̄T1(t2)dt2. (5.24)

The PINak
01 (τ) is derived by substituting pdfs from Eq. (5.12) into Eq. (5.24) and

performing the integration. After simplification, it is given by

PINak
01 (τ) =

P·G−1

∑
k=0

aPΓ(1 + q)Pγ(Pq + P + k,
(

α + 1
2

)
τ)

Γ(Pq + P)2k k!
(

α + 1
2

)Pq+P+k . (5.25)

Note that, if we consider channel 1 as ON and channel 2 as OFF, we obtain the

same results as in Eq. (5.23) and Eq. (5.25), respectively, i.e., PSNak
01 (τ) = PSNak

10 (τ)

and PINak
01 (τ) = PINak

10 (τ). Once, PS and PI are available for all three cases, PISO

and PEIO can be obtained as

PNak
ISO (τ) = 1−

1

∑
i=0

1

∑
j=0

(1− p)L−i−j pi+jPSNak
ij (τ), (5.26)

PNak
EIO (τ) =

1

∑
i=0

1

∑
j=0

(1− p)L−i−j pi+jPINak
ij (τ), (5.27)

respectively.

The analysis considering 3 channels in the partial band is given in Appendix

B.2. Looking at the analysis for L = 2 and L = 3, we observe that there exists a

pattern and hence the analysis for the general case of any number of channels in
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the partial band (L) can be easily arrived at. To do this, let us use Eq. (5.11) to

write the pdfs and ccdfs of the received decision statistic as follows

fH0(t) =
tP·G−1e−

t
2

2P·GΓ(P · G)
, pdf under Hm = 0, (5.28)

fH1(t) =
aPΓ(1 + q)PtPq+P−1

eαtΓ(Pq + P)
, pdf under Hm = 1, (5.29)

F̄H0(t) =
Γ(P · G, t

2)

Γ(P · G)
, ccdf of fH0(t), (5.30)

F̄H1(t) =
Γ(1 + q)PΓ(Pq + p, αt)

a−PΓ(Pq + P)αPq+P , ccdf of fH1(t). (5.31)

Using these equations, PNak
ISO (τ) and PNak

EIO (τ) for any L can be given by

PNak
ISO (τ) = 1−

L

∑
i=0

(
L
i

)
(1− p)L−i pi(L− i)

∫ τ

0
fH0(t) (F̄H0(t))

L−i−1
(F̄H1(t))

i dt

(5.32)

PNak
EIO (τ) =

L

∑
i=0

(
L
i

)
(1− p)L−i pi i

∫ τ

0
fH1(t) (F̄H1(t))

i−1
(F̄H0(t))

(L−i) dt (5.33)

Note that, if we use P = 1 in the analysis, it results in no diversity case, i.e., RCD.

Also, Eq. (5.32) and Eq. (5.33) are general and can be used with any fading model

once the pdf of decision statistic under that fading is available.

5.4.2 Theoretical Analysis of R-SLS

In this section we provide theoretical analysis of R-SLS detection algorithm. The

analysis here is similar to that carried out for R-SLC in Section 5.4.1. We first

consider a case with L = P = 2, Ld = 1 = Sd = 1, Id = 0 and same SNRs at the
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input of all diversity branches and then extend it to general case.

Since we have L = P = 2, we first select maximum energy Tmaxm i.e., Tmaxm =

max{T1
m, T2

m}, m = 1, 2 represents the index of the channel and the superscripts 1

and 2 represent indices of the diversity branches. The pdf of Tmaxm is obtained by

using P = 2 in Eq. (5.14). Now, there are three possible cases for occupancy of

the two channels C1 and C2. These correspond to: 1. Both the channels are OFF, 2.

Only one channel is ON and 3. Both the channels are ON. If both the channels are

OFF, one can write the probability of spectrum opportunity (PS) as

PS(τ|H1 = 0, H2 = 0) = PS00(τ) = 2
∫ τ

0

(
fTmax1

(t1)
∫ ∞

t1

fTmax2
(t2)dt2

)
dt1,

(5.34)

where, Tmin = min{Tmax1 , Tmax2}. Here, Tmax1 = max
{

T1
1 , T2

1
}

and Tmax2 =

max
{

T1
2 , T2

2
}

. Since both the channels are OFF, we have fTmax1
(t1) = fTmax(t) =

fTmax(t) which is given in Eq. (5.14) under Hm = 0. It is mathematically too in-

volved to arrive at the close form expression for Eq. (5.34) and hence we keep

it in integral form only. Since both the channels are OFF, there is no chance of

interference and hence, PI(τ|H1 = 0, H2 = 0) = PI00(τ) = 0.

Next, we consider the case when only one channel is ON. Assuming channel

1 is OFF and channel 2 is ON, PS can be written as

PS(τ|H1 = 0, H2 = 1) = PS01(τ) = Pr{Tmax1 < Tmax2 , Tmax1 < τ}. (5.35)

Now, PS in this scenario can be obtained as

PS01(τ) =
∫ τ

0

(
fTmax1

(t1)
∫ ∞

t1

fTmax2
(t2)dt2

)
dt1, (5.36)

where, fTmax1
(t1) and fTmax2

(t2) are the pdfs given in Eq. (5.14) under Hm = 0 and

Hm = 1, respectively. Similarly, the probability of interference opportunity (PI)

can be written as

PI(τ|H1 = 0, H2 = 1) = PI01(τ) = Pr{Tmax2 < Tmax1 , Tmax2 < τ}. (5.37)
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This can be obtained as

PI01(τ) =
∫ τ

0

(
fTmax2

(t2)
∫ ∞

t2

fTmax1
(t1)dt1

)
dt2 (5.38)

Note that, one can obtain the same expressions for PS and PI assuming channel 1

as ON and channel 2 as OFF, i.e., PS01(τ) = PS10(τ) and PI01(τ) = PI10(τ).

Now, if both channels are ON, we have PS(τ|H1 = 1, H2 = 1) = PS11(τ) = 0,

as this results in zero spectrum opportunities. The PI in this case can be written as

PI(τ|H1 = 1, H2 = 1) = PI11(τ) = 2
∫ τ

0

(
fTmax1

(t1)
∫ ∞

t1

fTmax2
(t2)dt2

)
dt1. (5.39)

Here, we consider both the channels as ON and hence fTmax1
(t1) = fTmax2

(t2) =

fTmax(t) which is given by Eq. (5.14) under Hm = 1.

Using PSij(τ) and PIij(τ), for i, j = 0, 1, probability of a spectrum opportunity

(PS(τ)) and the probability of interference opportunity (PI(τ)) for the selected

threshold τ can be computed using

PS(τ) = (1− p)2PS00(τ) + 2p(1− p)PS01(τ) + p2PS11(τ) and (5.40)

PI(τ) = (1− p)2PI00(τ) + 2p(1− p)PI01(τ) + p2PI11(τ). (5.41)

Finally, using Eq. (5.40) and Eq. (5.41), PISO and PEIO can be obtained as

PISO(τ) = Pr{S < Sd} = 1− PS(τ) and PEIO(τ) = Pr{I > Id} = PI(τ), (5.42)

respectively. The expressions for PISO and PEIO given in Eq. (5.32) and Eq. (5.33),

respectively, can be used for general analysis of R-SLS detection algorithm.

5.5 Results and Discussion

In this section, we carry out the experiments using theoretical analysis given in

Section 5.4. The performance is illustrated using the plots of PEIO VS PISO under
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Figure 5.4: PEIO VS PISO for different P considering m1 = 2, p = 0.1, Sd = 1,
Id = 0, Ld = 1, N = 10, γ̄ = −5 dB for (a) R-SLC with L = 16 and (b) R-SLS with
L = 2.

Nakagami fading channels. The Monte-Carlo simulations are also carried out in

order to discuss the effect of different parameters on the performance of the pro-

posed detection schemes. For Monte-Carlo simulations, the results are averaged

over 105 realizations. Here, the plots shown in Fig. 5.4 to 5.7 are obtained using

the mathematical expressions derived in Section V and those in Fig. 5.9 are ob-

tained using Monte-Carlo simulations. Fig. 5.8 has the plots obtained using both

the approaches.

In Fig. 5.4(a), we display PEIO VS PISO for the proposed R-SLC considering

different number of diversity branches P. The plots are shown for P ranging from

1 to 8. Note that P = 1 in R-SLC corresponds to no diversity case, i.e., RCD.

Looking at the plot, we see that for a PEIO ≈ 0.040, the PISO ≈ 0.544 for RCD

and it is 0.250 for R-SLC with P = 8 indicating that PISO is much smaller for given

PEIO when we use diversity. This is illustrated in Fig. 5.4(a) using the dotted lines.

Fig. 5.4(b) demonstrates the effect of increasing P on the performance of R-SLS.

Once again P is varied from 1 to 8. We see that for a value of PEIO ≈ 0.057, the

values of PISO for RCD and R-SLC with P = 8 are 0.412 and 0.275, respectively, in-

dicating the improvement in the performance when diversity is used. The dotted

lines in the figure indicate this.

In Fig. 5.5 we show the comparison of the two proposed algorithms. We ob-

serve that among the two algorithms, R-SLC performs better than R-SLS. For ex-

ample, for PEIO of approximately 0.063 we observe PISO ≈ 0.260 for R-SLC and
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Figure 5.5: PEIO VS PISO showing the comparison of R-SLC with R-SLS consider-
ing m1 = 2, p = 0.1, L = 2, P = 4, Sd = 1, Id = 0, Ld = 1, N = 10, γ̄ = −5 dB.
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Figure 5.6: PEIO VS PISO for varying γ̄, p and L using m1 = 2, N = 10, Sd = 1,
Id = 0, Ld = 1, P = 4, (a) with p = 0.1, L = 16, for different γ̄, (b) with γ̄ = −5 dB,
L = 16 for different p, (c) with γ̄ = −5 dB, p = 0.1 for different L.

0.282 for R-SLS.

We next show the effect of different parameters on the performance of the R-

SLC detection algorithm. In Fig. 5.6 we display the effect of average SNR (γ̄),

occupancy probability p and the number of channels in the partial band L. Fig

5.6(a) shows the effect of increasing γ̄ for p = 0.1 and L = 16 where γ̄ is increased

from −15 dB to −5 dB. It is observed that with the increase in γ̄, the performance

improves. In Fig. 5.6(b), the effect of increase in p of PUs is shown using γ̄ =

−5 dB and L = 16. As p increases the number of occupied channels in the partial

band increases resulting in higher interference and lower spectrum opportunity

and hence the performance degrades which is clearly seen in the plots. The effect

of increasing L is illustrated in Fig. 5.6(c). Here, the simulation is done by varying

L from 2 to 40 keeping γ̄ = −5 dB and p = 0.1. We see that increase in L results
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Figure 5.7: PEIO VS PISO plots considering different p for channels in the partial
band for m1 = 2, L = P = 8, Sd = 1, Id = 0, Ld = 1, N = 10, γ̄ = −5 dB.

Table 5.1: Occupancy Probabilities for L = 8 subbands

Occupancy Probability p1 p2 p3 p4 p5 p6 p7 p8

All Low 0.09 0.07 0.11 0.12 0.08 0.12 0.13 0.1

Few High 0.1 0.2 0.09 0.3 0.4 0.12 0.25 0.08

All High 0.2 0.25 0.3 0.15 0.4 0.35 0.2 0.45

in improved performance. This is because increasing L results in more number of

free channels in the partial band. It can also be observed that when L exceeds a

certain value, the improvement is not significant thus validating the use of PBNS.

Since the SUs do not require all the channels for use, it is not required to sense the

entire wideband. For example, in Fig. 5.6(c), there is not much improvement in

the performance for L > 16 and hence there is no advantage in sensing more than

16 channels.

In Fig. 5.7, we show the PEIO VS. PISO plots considering different p for pri-

mary channels. These plots are obtained for three scenarios namely: 1. all the

channels have low occupancy probability, 2. only few channels have high occu-

pancy probability and 3. all channels have high occupancy probability. Different

p’s considered for L = 8 are given in TABLE 5.1. We observe that the performance

is better when all the channels have lower p and the performance degrades when

all of them have high p. For example, for PEIO of approximately 0.020 we observe

PISO as approximately 0.616, 0.804, and 0.881 for three cases of all low, few high

and all high, respectively. From this one can deduce that those groups of chan-
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Figure 5.8: PEIO VS PISO for R-SLC and R-SLS using theoretical analysis and
Monte-Carlo simulation considering m1 = 2, p = 0.1, Sd = 1, Id = 0, Ld = 1,
N = 10 for (a) R-SLC with L = P = 4, and γ̄ = −5 dB and (b) R-SLS with
P = L = 2 with γ̄ = 0 dB.

nels where occupancy probabilities are not significantly high have to be selected

to yield better sensing performance.

In Fig. 5.8, we show the plots obtained using theoretical expressions derived

in Section 5.4 and using the Monte-Carlo simulations. We see that the plots almost

overlap validating the theoretical analysis carried out for both R-SLC and R-SLS.

Finally, in Fig. 5.9 we show the effect of Ld, Sd and Id on the performance of

R-SLC using Monte-Carlo simulations. Fig. 5.9(a) shows the effect of increasing

Ld by considering L = 8 and keeping the other parameters fixed. We see that

increasing Ld degrades the performance. This is because although increasing Ld

enhances the chance of getting free channels it also increases interference to the

PUs. With Id = 0, increasing Ld, degrades the performance. From this result,

we can say that it is advantageous to choose Ld = Sd. Next, we illustrate the

effect of increase in Sd in Fig. 5.9(b). As seen from the plots, it is clear that as

Sd increases, the performance degrades. This happens because, if we increase Sd,

it requires Ld to be increased since Sd ≤ Ld. But increasing Ld results in higher

interference to the PUs causing degradation in the performance. Finally, in Fig.

5.9(c), we demonstrate the effect of varying Id on the performance. Increasing

Id (i.e., Id > 0) implies SUs are allowed to interfere with the PUs. For example,

with Id = 1, interference to any one of the PU channels is allowed. From the

simulation, we observe that performance improves as Id increases. Note that, we
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Figure 5.9: PEIO VS PISO for varying Ld, Sd and Id using m1 = 2, N = 10, P = 4,
γ̄ = 0 dB. (a) with Sd = 1, Id = 0, p = 0.1, L = 8, for different values of Ld, (b)
with Ld = 4, p = 0.1, L = 8, Id = 0 for different values of Sd, (c) with Sd = 4,
p = 0.5, L = 16, Ld = 8 for different values of Id.

have given plots showing the effect of different parameters on the performance

of R-SLC, only. One can also show similar plots for R-SLS. All the conclusions

drawn for R-SLC are also valid for R-SLS.

5.6 Conclusion

In this work, we have proposed two new detection algorithms for WSS that use

diversity to improve the detection performance. We have given complete math-

ematical analysis to find the performance of WSS with and without diversity by

considering Nakagami fading. Our analysis is general and can be used with any

fading model and any diversity technique. From the analysis, it is clear that the

use of diversity improves the detection performance. We have also demonstrated

the effect of different parameters on the performance. We observe that R-SLC

technique outperforms R-SLS. Our future work involves the use of other diversity

schemes and more general fading models including frequency selective fading for

finding the performance of WSS. Next, an optimization technique can be used for

finding the optimal thresholds when different priorities, and different occupancy

probabilities are considered for PU channels. Furthermore, the approach in this

chapter can be extended to cooperative WSS where multiple SUs cooperate in de-

tecting the presence of PUs.
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CHAPTER 6

Detection Algorithm for Cooperative Wideband

Spectrum Sensing

In our previous work, we used antenna diversity for wideband spectrum sensing

(WSS) to improve the detection performance. For antenna diversity, the spac-

ing between antennas has to be sufficiently high in order to receive independent

observations which incurs limit on the number of antennas that can be used at

the secondary users. The cooperative spectrum sensing (CSS) has been shown as

an effective method that improves the detection performance by exploiting the

spatial diversity. An expectation maximization based joint detection and estima-

tion (JDE) scheme for cooperative spectrum sensing in multiuser multiantenna

CR network is proposed in [10], where multiple spatially separated SUs cooper-

ate to detect the state of occupancy of a wideband frequency spectrum. In [97],

the spectrum sensing problem is formulated as a class of optimization problems

that maximize the aggregated opportunistic throughput of a CR system under

the constraints as the interference to the primary users. All these techniques use

traditional sampling technique for wideband sensing and hence require higher

sampling rates. In this work, we propose a novel algorithm based on CSS with

hard combining for wideband spectrum sensing. We make use of PBNS at all the

CSUs to reduce the higher sampling rate requirements. We use hard combining

for data fusion which requires reduced control channel bandwidth when com-

pared to soft combining. The experiments are carried out using theoretical anal-

ysis and also verified using Monte Carlo (MC) simulations. Our analysis shows

that the proposed approach outperforms the ranked channel detection used un-
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der no cooperation. We show that by choosing appropriate number of CSUs, the

algorithm performs better than both R-SLC and R-SLS algorithms.

6.1 System Model

The wideband signal received at the CSUs can be modeled as the collection of

U subbands, i.e., narrowband channels, each of bandwidth B0 making the total

bandwidth as B = UB0. A similar channel model is used in [8, 94, 112]. Let Hm

denotes the occupancy status of mth subband of primary user with Hm = 0 and

Hm = 1 corresponding to PU being OFF and ON, respectively. Since the observa-

tion interval is small, the occupancy status of the PU remains unchanged during

this time which is a reasonable assumption. We assume that the occupancy status

of subbands is independent of each other and all the PUs have equal priorities. In

this work, the discussion is restricted to one sensing window with a fixed dura-

tion of Tw = UNTN, where FN = 1/TN = 2B is the Nyquist sampling frequency

and N is the number of samples per subband. We would like to mention here that

we use the two terms subband and channel interchangeably. Once again, the state

of each channel is modeled as a Bernoulli random variable whose PMF is given

in Eq. (5.1). The PMF of number of ON channels (K) in the wideband is given by

Binomial distribution given in Eq. (5.2).

Note that in order to find the availability of the free primary channels, the

detector has to decide on their presence or absence. Here, we consider the case

of cooperative spectrum sensing where M number of SUs cooperate to find the

occupancy of the wide frequency band. Let yi(t), si(t) and zi(t) be the received

signal, the wideband PU signal after propagation, and the additive white Gaus-

sian noise (AWGN) at time t at the ith SU, respectively, where i = 1, 2, · · · , M.

The CSUs receive yi(t) = si(t) + zi(t) when there is transmission from PU and

yi(t) = zi(t) when there is no transmission. Let yi[n], si[n], and zi[n] denote their

corresponding wideband Nyquist samples. Using an AWGN model for the pri-

mary signal within each channel, one can model both the signal and the noise as

si[n] ∼ CN (0, σ2
si
) and zi[n] ∼ CN (0, σ2

zi
), where, σ2

si
and σ2

zi
represent the average
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power of si[n] and zi[n], respectively, at the ith CSU. It is reasonable to assume that

the signal and noise are statistically independent. Also, in this work we assume

that all the CSUs experience the same SNR at their inputs. This makes σ2
si
= σ2

s

and σ2
zi
= σ2

z . Note that we have not considered fading in this case.

6.2 Proposed Detection Algorithm

Consider M number of CSUs receiving the wideband signal consisting of U chan-

nels. Since the SU may not be interested in finding all the spectrum opportunities,

instead the interest lies in finding sufficient numbers of spectrum opportunity,

we use the idea of PBNS, which samples only a fraction of the entire wideband.

PBNS filters out L channels from the wideband having U channels. The signal af-

ter filtering is sampled at the Nyquist rate of 2LB0 on which the FFT is performed.

Taking N samples per channel, the number of samples in the sensing window

becomes NL. Considering V[k] as the frequency samples in PBNS, we can write

V[k] = Y[k], for 0 ≤ k ≤ NL− 1, where Y[k] denotes the normalized DFT of the

received wideband signal having U channels. The energy, i.e., decision statistic,

within mth narrowband channel is then calculated as

Tm =
1
N ∑

k∈Im

|V[k]|2 , (6.1)

where 1 ≤ m ≤ L and Im is the set of frequency indices that fall into channel m.

In CSS, number of SUs cooperate in order to detect spectrum holes. In the pro-

posed algorithm, we make use of CSS with hard combining where all the CSUs

take their own decision on the occupancy of the channels and send the final re-

sults to the FC which takes the final decision. Fig. 6.1 shows the block schematic

of the proposed detection algorithm and the steps involved in implementing it

are given in Algorithm 3. In Fig. 6.1, we consider L = 2 and M = 3. We num-

ber the two channels in the partial band as channel 1 and 2, respectively. Let Ld

and Xd represent the number of channels on which the FC and CSUs take the de-

cision, respectively. Let Fd represents the total number of times a channel must

be reported as OFF by the CSUs in order for it to be declared free. We consider
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Sd = Ld = Xd = 1, Id = 0. The proposed detection scheme works as follows.

After receiving the wideband signal, all three CSUs perform PBNS. Each CSU

performs ranked channel detection (RCD), i.e., computes the decision statistic for

both the channels, arranges them in ascending order and then take decision on the

first channel only. If this channel is declared as free, the CSUs send the channel

number to the FC which in turn computes how many times a particular channel

is reported as free. The FC then arranges them in descending order with regard

to the number of times a particular channel is reported as free. In Fig. 6.1, chan-

nel 1 is reported free once where as the channel 2 is reported as free twice. If we

consider Sd = Ld = 1, the FC takes decision on the channel which is appearing on

the top of the order. As shown in Fig. 6.1, the channel 2 is reported as free twice

which is greater than Fd = 1 and hence the FC declares channel 2 as free. Now if

two channels are reported free for equal number of times and are reported more

than Fd times, the FC choses any one channel from them with equal probability.

For example, with M = 4, if both channels are reported free twice, the FC declares

any one of them as free with probability of 0.5.

Algorithm 3

1: At each CSU: Compute decision statistic (Eq. 6.1) for each of the L channels in

the partial band and arrange them in ascending order. Take decision on first

Xd channels.

2: Each CSU reports the free channel numbers to the fusion center (FC).

3: FC counts the number of times a particular channel is reported free and then

arranges them in descending order with regard to it.

4: At FC: Take decision on first Ld channels, where Sd ≤ Ld ≤ Xd ≤ L, and

report the channels as free if they are reported free > Fd times. If channels are

reported free for equal number of times and are reported free > Fd times, the

FC declares them as free with equal probability.
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Figure 6.1: Block diagram of proposed detection algorithm with L = 2, M = 3,
Sd = Ld = Xd = 1, Id = 0, Fd = 1.

6.3 Theoretical Analysis of The Detection Algorithm

Nyquist sampling ensures independent observations across channels for the sys-

tem model described in Section 6.1. Hence, the decision statistic in Eq. (6.1) for

the mth channel follows Gamma distribution with pdf given as

fTm (x) =


1

Γ(k0)θ
k0
0

xk0−1e−
x

θ0 , if Hm = 0

1
Γ(k1)θ

k1
1

xk1−1e−
x

θ1 , if Hm = 1.
(6.2)

where, k0 = k1 = N, θ0 = 1
N , θ1 = 1

N (1 + γ) and γ = σ2
s

σ2
z

is the average SNR.

The theoretical analysis for the proposed detection scheme when we consider

any value of M and L is mathematically involved and hence we derive the general

expressions by considering any M and any L separately. To make the analysis easy

to understand, we first derive the expressions for PEIO and PISO for L = 2, M = 3,

Sd = Ld = Xd = Fd = 1 and Id = 0. With Xd = 1, each CSU performs RCD

and takes decision on the channel which is appearing first after arranging them in

ascending order. If this channel is found free, it sends the channel number to the

FC which then counts the number of times a particular channel is reported free

and arranges them in descending order. Since Ld = 1, the FC takes decision on

one channel only. With Fd = 1, if a channel is reported free more than once, the

FC declares that channel as free. Since L = 2, there are three possible cases for the

occupancy of the channels, i.e., both the channels are OFF, any one channel is OFF

97



and both the channels are ON.

We start with the case when both the channels are OFF. Since each CSU per-

forms RCD, with L = 2 and Xd = 1, the probability that CSUs report channel

number 1 as free, i.e., P1
00(τ), is

P1
00(τ) =

∫ τ

0

[
fT1(t1)

∫ ∞

t1

fT2(t2)dt2

]
dt1, (6.3)

where, fT1(t1) and fT2(t2) are the pdfs of decision statistic for the channel 1 and

2, respectively which are given in Eq. (6.2). Since H1 = H2 = 0 in this case,

fT1(t1) = fT2(t2). Here, Pr {·} represents the probability. Note that, the subscript

00 and the superscript 1 in P1
00(τ) represent the case of both the channels being

OFF and the channel number 1, respectively. Due to page limitations, we keep

Eq. (6.3) in integral form itself. These integrals can be reduced in closed form

by using the series representations of incomplete gamma functions. Since both

the channels are OFF, the probability that a CSU sends channel number 1 and 2

as free is equal, i.e., P1
00(τ) = P2

00(τ). To compute the probability of spectrum

opportunity (PS), we need to consider all the possible combinations of received

channel numbers from the CSUs for which the FC declares any one channel as

free. For example, one possible combination of received free channel numbers

could be CSU1 and CSU2 sending channel number 1, and CSU3 sending channel

number 2. In this case the FC declares channel 1 as free. Note that with Fd = 1,

only two CSUs reporting same channel number as free is sufficient to declare that

channel as free. Considering this, PS in this case, i.e., PS00, can be obtained as

PS00(τ) = 8
[

P1
00(τ)

]3
+ 6

[
P1

00(τ)
]2 [

1− 2P1
00(τ)

]
. (6.4)

In this case, there is no chance of interference and hence the probability of inter-

ference (PI) is zero, i.e., PI00(τ) = 0.

We now consider the case when only one channel is ON. Let us assume that

channel 1 is OFF and channel 2 is ON. In this case, the probability that a CSU
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reports channel 1 as free, i.e., P1
01(τ), can be obtained as

P1
01(τ) =

∫ τ

0

[
fT1(t1)

∫ ∞

t1

fT2(t2)dt2

]
dt1. (6.5)

Similarly, the probability that a CSU reports channel 2 as free, i.e., P2
01(τ), can be

obtained as

P2
01(τ) =

∫ τ

0

[
fT2(t2)

∫ ∞

t2

fT1(t1)dt1

]
dt2. (6.6)

Since H1 = 0 and H2 = 1, fT1(t) and fT2(t) are to be used from Eq. (6.2) under

Hm = 0 and Hm = 1, respectively.

In this case, we get the SO if the channel 1 is reported as free at least two

times. For example, we get spectrum opportunity when CSUs 1 and 2 report

channel number 1 as free and CSU 3 reports channel 2 as free. Considering all

such possible combinations, the PS, i.e., PS01(τ), can be obtained as

PS01(τ) =
[

P1
01(τ)

]3
+ 3

[
P1

01(τ)
]2

P2
01(τ) + 3

[
P1

01(τ)
]2 [

1− P1
01(τ)− P2

01(τ)
]

.

(6.7)

Similarly, it results in interference if the channel 2 is reported as free at least two

times. In this case, the probability of interference, i.e., PI01, can be obtained as

PI01(τ) =
[

P2
01(τ)

]3
+ 3

[
P2

01(τ)
]2

P1
01(τ) + 3

[
P2

01(τ)
]2 [

1− P2
01(τ)− P1

01(τ)
]

.

(6.8)

Note that, if we consider channel 1 as ON and channel 2 as OFF, we get the same

results, i.e., PS01(τ) = PS10(τ) and PI01(τ) = PI10(τ).

Finally, we consider the case when both the channels are ON. In this case there

is no chance of spectrum opportunity and hence PS11(τ) = 0. The probability of

reporting channel 1 as free, i.e., P1
11(τ), by the CSU can be obtained as

P1
11(τ) =

∫ τ

0

[
fT1(t1)

∫ ∞

t1

fT2(t2)dt2

]
dt1. (6.9)
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Since both the channels are ON, the probability that CSU sends channel number

1 and 2 is equal, i.e., P1
11(τ) = P2

11(τ). The probability of interference in this case,

i.e., PI11(τ), can be obtained as

PI11(τ) = 8
[

P1
11(τ)

]3
+ 6

[
P1

11(τ)
]2 [

1− 2P1
11(τ)

]
. (6.10)

Once the PS and the PI for all three cases are obtained, PISO(τ) and PEIO(τ) can

be obtained as

PISO(τ) = 1− (1− p)2PS00(τ)− 2p(1− p)PS01(τ) and (6.11)

PEIO(τ) = 2p(1− p)PI01(τ) + p2PI11(τ), (6.12)

respectively.

6.3.1 Performance Using any Value of M with Fixed L

In this section we extend the performance analysis to any value of M while keep-

ing L = 2, Sd = Ld = Xd = Fd = 1 and Id = 0. Once again with L = 2, there are

three possible cases. When both the channels are OFF, PS00(τ) can be obtained as

PS00(τ) =
M−3

∑
i=0

2(M−i)
(

M
i

) [
P1

00(τ)
](M−i) [

1− 2P1
00(τ)

]i

+ 2
(

M
M− 2

) [
P1

00(τ)
]2 [

1− 2P1
00(τ)

](M−2)
(6.13)

When channel 1 is OFF and 2 is ON, PS01(τ) and PI01(τ) can be given by

PS01(τ) =
M−3

∑
i=0

(
M
i

) bM−i
2 c−1

∑
j=0

[(
M− i

j

) [
P1

01(τ)
]M−i−j [

P2
01(τ)

]j
[
1− P1

01(τ)− P2
01(τ)

]i
]

+
( M−i
bM−i

2 c)
[
P1

01(τ)
]M−i−bM−i

2 c [P1
01(τ)

]bM−i
2 c [1− P1

01(τ)− P2
01(τ)

]i

gcd (i− 1, 2)mod(M, 2) + gcd(i, 2)mod(M− 1, 2)

+

(
M

M− 2

) [
P1

01(τ)
]2 [

1− P1
01(τ)− P2

01(τ)
]M−2

. (6.14)
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PI01(τ) =
M−3

∑
i=0

(
M
i

) bM−i
2 c−1

∑
j=0

[(
M− i

j

) [
P2

01(τ)
]M−i−j

[
P1

01(τ)
]j [

1− P2
01(τ)− P1

01(τ)
]i
]

+
( M−i
bM−i

2 c)
[
P2

01(τ)
]M−i−bM−i

2 c [P2
01(τ)

]bM−i
2 c [1− P2

01(τ)− P1
01(τ)

]i

gcd (i− 1, 2)mod(M, 2) + gcd(i, 2)mod(M− 1, 2)

+

(
M

M− 2

) [
P2

01(τ)
]2
[
1− P2

01(τ)− P1
01(τ)

]M−2
. (6.15)

where, gcd(a, b) represents the greatest common divisor of a and b and mod(a, b)

represents the modulo operation. Finally, when we consider both the channels as

ON, the PI11(τ) can be obtained as

PI11(τ) =
M−3

∑
i=0

2(M−i)
(

M
i

) [
P1

11(τ)
](M−i) [

1− 2P1
11(τ)

]i

+ 2
(

M
M− 2

) [
P1

11(τ)
]2 [

1− 2P1
11(τ)

](M−2)
. (6.16)

Substituting Eq. (6.13) to Eq. (6.16) in Eq. (6.11) and Eq. (6.12) give us PISO(τ)

and PEIO(τ).

6.3.2 Performance using any Value of L with Fixed M

We now derive the expressions for PISO and PEIO for any value of L by considering

M = 3, Sd = Ld = Xd = Fd = 1 and Id = 0. To do this, let us denote pdfs in Eq.

(6.2) as

fH0(x) =
NNxN−1

Γ(N)exN , and fH1(x) =
NNxN−1e

−xN
(1+γ)

Γ(N) (1 + γ)N , , (6.17)

under Hm = 0 and Hm = 1, respectively. The respective complementary cumula-

tive distribution functions (ccdfs) are

F̄H0(x) =
Γ (N, Nx)

Γ(N)
, and F̄H1(x) =

Γ
(

N, Nx
(1+γ)

)
Γ(N)

. (6.18)
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Using these, one can obtain PISO(τ) and PEIO(τ) as

PISO(τ) = 1−
L−1

∑
i=0

L!(1− p)L−i pi

i!(L− i− 1)!

[
(1 + 3 (L− i− 1)) I3

1

+ 3iI2
1 I2 + 3I2

1 (1− (L− i) I1 − iI2)

]
, (6.19)

PEIO(τ) =
L

∑
i=1

(
L
i

)
(1− p)L−i pi

[
(i + 3i(i− 1)) I3

2+

3i(L− i)I2
2 I1 + 3iI2

2 (1− (L− i)I1 − iI2)

]
, (6.20)

where I1 and I2 are given by the following integrals

I1 =
∫ τ

0
fH0(x) [F̄H0(x)]L−i−1

[F̄H1(x)]i dx (6.21)

I2 =
∫ τ

0
fH1(x) [F̄H1(x)]i−1

[F̄H0(x)]L−i dx (6.22)

6.4 Results and Discussion

In this section we carry out the experiments using the theoretical analysis given

in Section 6.3. The performance is illustrated using the plots of PEIO VS. PISO.

Monte Carlo simulations are also carried out to validate the theoretical analysis

and to study the effect of different parameters on the performance of the proposed

algorithm. For MC simulation we consider both the PU signal and the noise as

complex Gaussian and the results are averaged over 105 realizations. In Fig. 6.2,

we show the plots obtained using both Monte Carlo simulations and theoretical

analysis to validate expressions derived in Section 6.3. The plots shown in Fig. 6.3

and Fig. 6.4 are obtained using theoretical analysis given in Section 6.3 and those

in Fig. 6.5 are obtained using MC simulation.

Fig. 6.2(a) validates the general theoretical analysis for any value of M with

fixed L given in Section 6.3.1 where as Fig. 6.2(b) validates the expressions given
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Figure 6.2: PEIO VS. PISO for the proposed algorithm using theoretical analysis
and Monte Carlo simulation considering Sd = Ld = Xd = Fd = 1, Id = 0, N = 10,
γ = −5 dB (a) theoretical analysis in Section 6.3.1 with M = 8 and L = 2, (b)
theoretical analysis in Section 6.3.2 with L = 4 and M = 3.

in Section 6.3.2 for any value of L with fixed M. Overlapping of the plots conforms

the correctness of our analysis.

In Fig. 6.3, we compare the performance of the proposed algorithm against

RCD [112], R-SLC [23] and R-SLS [22]. The plot for proposed algorithm is ob-

tained using M = 5. It can be clearly observed that the proposed algorithm out

performs the RCD. For example, for PEIO ≈ 0.02, the PISO for the proposed algo-

rithm is 57.515% smaller than that of RCD. Also, the proposed algorithm performs

better than both R-SLC and R-SLS having two diversity branches, i.e., P = 2. For

example, for PEIO ≈ 0.02, the PISO for the proposed algorithm is 20.905% and

35.167% smaller than R-SLC and R-SLS, respectively. We can see that by choosing

the appropriate number of CSUs, the proposed algorithm performs better than

both R-SLC and R-SLS. This happens despite the fact that R-SLS uses detection

scheme similar to the soft combining used in CSS. Also, note that for antenna

diversity the spacing between antennas has to be sufficiently high in order to re-

ceive independent observations. This makes the implementation of both R-SLC

and R-SLS difficult when the number of diversity branches increases.

In Fig. 6.4(a), we demonstrate the effect of increasing the number of CSUs, i.e.,

M, on the performance where we vary M between 4 and 16. We see that for a
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Figure 6.3: PEIO VS. PISO showing comparison of the proposed, RCD, R-SLC (P =
2) and R-SLS (P = 2) considering L = 2, M = 5, Sd = Ld = Xd = Fd = 1, Id = 0,
N = 10 and γ = −5 dB.
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Figure 6.4: PEIO VS PISO for varying M and L using N = 10, Sd = Ld = Xd = Fd =
1, Id = 0, p = 0.1, γ = −5 dB, (a) with L = 2 for different M, (b) with M = 3 for
different L.

value of PEIO ≈ 0.016, the values of PISO with M = 4 and M = 16 are 0.249 and

0.071, respectively, indicating that the PISO with M = 16 is 71.188% smaller than

with M = 4. This shows that the performance can be significantly improved by

increasing the number of CSUs. The effect of increasing number of channels in

the partial band, i.e., L, is illustrated in Fig. 6.4(b). We observe that with increase

in L, the performance improves. This is because, increasing L results in more

number of free channels in the partial band. One can see that the performance

improvement is not significant when L is increased from 4 to 5. From this we may

conclude that after certain value of L, the improvement tends to saturate and one

does not get an advantage by simply increasing L.
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Figure 6.5: PEIO VS PISO for varying Fd and Ld using N = 10, Sd = 1, Id = 0,
p = 0.1, γ = −5 dB, (a) with Xd = 2, L = 4, M = 8, Ld = 2 for different Fd, (b)
Xd = 4, L = 8, M = 4, Fd = 1 for different Ld.

Finally, in Fig. 6.5, we demonstrate the effect of increasing Fd and Ld on the

performance. In Fig. 6.5(a), we show the effect of varying the Fd. We know that

in order to declare a channel as free, it must be reported as free at least Fd + 1

times. This indicates that with the increase in Fd, we are providing more security

against the interference to the PU. In Fig. 6.5(a), we can see the clear improvement

in the performance with the increase in Fd. One has to choose the value of Fd ap-

propriately because it also decides the maximum possible probability of spectrum

opportunity. If the number of CSUs are more, higher value of Fd can be selected.

In Fig. 6.5(b), we demonstrate the effect of increasing Ld on the performance. One

can observe that increasing Ld degrades the performance. The reason for perfor-

mance degradation when Ld is increased is as follows. Although increasing the Ld

results in higher probability of obtaining the free channels, it also increases the in-

terference to the PU that degrades the performance. The FC arranges the reported

free channels in descending order with regard to number of times channels are

reported as free and hence the probability of channels which are at the top after

ordering being free is high. Hence one should choose Sd = Ld.
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6.5 Conclusion

In this work, we propose a novel algorithm based on cooperative spectrum sens-

ing with hard combining for wideband spectrum sensing. We provide the com-

plete theoretical analysis of the proposed algorithm. From the analysis, it is clear

that with the use of cooperation from the SUs, the detection performance can be

improved. We validate the theoretical analysis using the Monte Carlo simulations.

We show that the proposed algorithm out performs ranked channel detection al-

gorithm. We show that by choosing appropriate number of CSUs, the proposed

algorithm performs better than ranked square law combining and ranked square

law selection. It is shown that the proposed algorithm performs comparable to

both R-SLC and R-SLS at very low SNR. We also demonstrate the effect of differ-

ent parameters on the detection performance using theoretical analysis and the

simulations. Our future work involves the use of soft combining for cooperative

spectrum sensing and to include fading channels for analysis.
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CHAPTER 7

Conclusions and Future Research Directions

In this chapter, we provide the conclusions by summarizing our main contribu-

tions and also indicate future research directions.

7.1 Conclusions

In this thesis we have addressed the problem of spectrum sensing for cognitive ra-

dio by providing theoretical analysis of energy detection based approach consid-

ering practical scenarios and by proposing novel detection algorithms. We began

with the discussion of energy detection based spectrum sensing over η − λ − µ

fading channel. The η − λ − µ fading model represents a general model which

includes other existing models as special cases. The performance improvement

was shown using diversity and cooperative spectrum sensing. The analysis was

then extended to the case of shadowing in addition to fading.

In our next work, we have analyzed the performance of generalized energy

detector in the presence of noise uncertainty and fading. First, the expressions for

detection probabilities considering AWGN channel were derived for three cases

namely, no diversity, with diversity and cooperative spectrum sensing. We then

derive the expressions for SNR walls and discussed the effect of diversity and

cooperative spectrum sensing on the SNR walls. The analysis was then extended

to the channel with Nakagami fading and it was shown that in this scenario, the

SNR wall increases significantly. All the derived expressions were validated using

Monte Carlo simulations.

Above works were carried out by considering narrowband sensing. Our next
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work involved detection techniques for wideband spectrum sensing. Two new

detection algorithms, namely, ranked square law combining (R-SLC) and ranked

square law selection (R-SLS), were proposed that make use of diversity. Complete

theoretical analysis was provided for these algorithms considering Nakagami fad-

ing. The proposed algorithms outperform the ranked channel detection algorithm

when used without diversity. The theoretical analysis was then validated using

Monte Carlo simulations. Also, the effects of different parameters on the detection

performance was studied.

In our next work, a novel detection algorithm for cooperative wideband spec-

trum sensing was proposed using hard combining. The complete theoretical anal-

ysis was provided for the proposed algorithm which is validated using Monte

Carlo simulations. It was shown that the proposed algorithm outperforms the

ranked channel detection algorithm. By choosing appropriate number of cooper-

ating secondary users, the proposed algorithm performs better than both R-SLC

and R-SLS. The effects of different parameters on the detection performance was

also studied.

7.2 Future Research Directions

This thesis has presented theoretical analysis of existing narrowband spectrum

sensing algorithms considering practical scenarios and few novel detection algo-

rithms for wideband spectrum sensing. In the process of this work, however,

we identified related problems that one may consider worth pursuing. These are

briefly described as below.

• Analysis of other detection techniques under generalized fading :

In Chapter 3, we have analyzed the performance of energy detection based

spectrum sensing under general fading model. This analysis can be ex-

tended for other spectrum sensing techniques available in literature, namely,

matched filter detection, cyclostationary detection, eigenvalue based detec-

tion, covariance based detection, etc.

• Machine learning techniques for spectrum sensing:
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In Chapters 3 and 4, we addressed the problem of spectrum sensing where

it is assumed that primary users transmit at single power level. Recently, a

new multiple primary transmit power (MPTP) scenario has been proposed

in [66], where PU could work under more than one discrete power levels

while the task of spectrum sensing is not only to detect the status of PU,

but also to recognize PU’s transmit power level. This can be addressed as

a classification problem with multiple classes. Machine learning techniques

can be applied to solve this problem. The machine learning techniques can

also be applied to the traditional scenario where PU transmits at a single

power level which can be considered as a problem of binary classification.

• Analysis of proposed algorithms in practical scenarios:

In Chapter 5, we proposed detection algorithms that use SLC and SLS di-

versity and the analysis was given considering Nakagami fading. One can

extend the same to more general system models consisting of varying chan-

nel bandwidths, SNR levels across channels, fading, noise uncertainty, etc.

The problem can be formulated in an optimization frame work to find the

optimal thresholds when different priorities, and different occupancy prob-

abilities are considered for PU channels.

• Use of soft combining for cooperative wideband spectrum sensing:

In Chapter 6, we addressed the problem of cooperative wideband spectrum

sensing where we use hard combining at the fusion center. We know that

the soft combining gives better performance when compared to hard com-

bining. Hence, the soft combining can be used for solving the problem we

considered for cooperative wideband spectrum sensing. However, the use

of soft combining require higher control channel bandwidth. One can use

quantized soft combining in order to reduce the required control channel

bandwidth.

• Combining antenna diversity and cooperative spectrum sensing for performance

improvement:

In all our works where we use cooperative spectrum sensing, we consider
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that all the cooperating secondary users have single receive antenna. One

can consider the scenario where cooperating secondary users have multiple

antennas. In this case, one can get improved performance since it takes ad-

vantages of both antenna diversity and CSS. The major problem with this

kind of scheme is the computational complexity. One can use quantized

cooperative spectrum sensing to reduce the complexity.
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CHAPTER A

Appendix for Chapter 4

A.1 Derivation for P̄D,plc in Eq. (4.25)

To derive P̄D,plc, we require the following result

lim
N→∞

Q
(

a
√

N
)
=


0, if a > 0,

1, if a < 0,

0.5 if a = 0.

(A.1)

Applying limit N → ∞ to Eq. (4.23) and using Eq. (A.1), we get

P̄D,plc =

b1∫
a1

b2∫
a2

H
[

Gp

(
(1 + γ̃1x)

p
2 + (1 + γ̃2y)

p
2
)
− 2λ (xy)

p
2
] 25

L1L2 (ln (10))2 xy
dydx

(A.2)

where,H(x) represents the Heaviside function defined as

H(x) =


0, if x < 0,

1
2 , if x = 0,

1 if x > 0.

(A.3)
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Applying the change of variables as z = ln (z) and w = ln (w), we get

P̄D,plc = C1

c∫
−c

d∫
−d

H
[

Gp

(
(1 + ezγ̃1)

p
2 + (1 + ewγ̃2)

p
2
)
− 2λe

zp
2 e

wp
2

]
dwdz, (A.4)

where, c = ln (b1), d = ln (b2) and C1 = 100/L1L2p2 ln (10)2.

We will evaluate this integral for three ranges of λ. First, we evaluate P̄D,plc for

λ ≤
Gp

2

{(
γ̃1 + e−c) p

2 +
(

γ̃2 + e−d
) p

2
}

(A.5)

In this range, the argument of H [·] in Eq. (A.4) is > 0 for any z < c or w < d.

Hence, we get P̄D,plc as

P̄D,plc = C1

c∫
−c

d∫
−d

(1) dwdz = 1 (A.6)

The next range of λ is considered as

λ ≥
Gp

2

{
(γ̃1 + ec)

p
2 +

(
γ̃2 + ed

) p
2
}

(A.7)

In this range, the argument of H [·] in Eq. (A.4) is < 0 for z > −c or w > −d.

Hence, we get P̄D,plc as

P̄D,plc = C1

c∫
−c

d∫
−d

(0) dwdz = 0. (A.8)

Finally, we consider the range of λ as

Gp

2

{(
γ̃1 + e−c) p

2 +
(

γ̃2 + e−d
) p

2
}

< λ <
Gp

2

{
(γ̃1 + ec)

p
2 +

(
γ̃2 + ed

) p
2
}

(A.9)

Here, we can find the integration range of w in terms of z for which the argument
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ofH [·] is > 0. After some mathematical simplifications, we get this condition as

w < − ln

[{
A−

(
e−z + γ̃1

) p
2

} 2
p
− γ̃2

]
, (A.10)

where A = 2λ/Gp. This will be the upper limit of w for which H(·) in Eq. (A.4)

becomes 1. Note that, we need to make sure that the upper limit does not go

beyond d and below −d. Hence, the upper limit for w can be written as

U1 = max

[
min

{
d,− ln

[{
A−

(
e−z + γ̃1

) p
2

} 2
p
− γ̃2

]}
,−d

]
(A.11)

Using this, we can write P̄D,plc as

P̄D,plc = C1

c∫
−c

U1∫
−d

(1) dwdz = C1

c∫
−c

U1dz

︸ ︷︷ ︸
I1

+2cd. (A.12)

The integration limit of I1 in Eq. (A.12) can be split into two parts as

I1 =

U2∫
−c

(d) dz

︸ ︷︷ ︸
I11

+

c∫
U2

max [R2(−z),−d] dz

︸ ︷︷ ︸
I12

(A.13)

where R2(z) = − ln
((

A− (ex + γ̃2)
p
2
) 2

p − γ̃1

)
and U2 = max [−c, R2(−d)]. The

I11 in Eq. (A.13) is reduced as

I11 = dU2 + dc (A.14)

Now, the integration limit of I12 in Eq. (A.13) can again split into two parts as

I12 =

U3∫
U2

− ln

[{
A−

(
e−z + γ̃1

) p
2

} 2
p
− γ̃2

]
dz +

c∫
U3

(−d) dz, (A.15)

where U3 is given as U3 = min [c, R2 (d)].
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It is mathematically too involved to integrate the first integral in Eq. (A.15) and

hence we approximate the ln(x) term by using the approximation ln (x + 1) ≈ x

for small x. Using this approximation, we can write I12 as

I12 ≈ −
U3∫

U2

{
A−

(
e−z + γ̃1

) p
2

} 2
p

dz +
U3∫

U2

γ̃2 + 1dz +
c∫

U3

(−d) dz. (A.16)

Since it is mathematically involved to integrate the first integral in Eq. (A.16), we

first approximate its integrand using asymptotic analysis. Using the Taylor series

expansion of a function f (t), we can write [36]

f (z) = aazq + aa1zq+1 + O(zq+2) as z→ 0+. (A.17)

Here, aa, aa1 and q represent real constants and O(tq+2) is the error term as t →

0+. Using Eq. (A.17), the authors in [36] propose the approximation as

f (z) ≈ aazqe−αz, as z→ 0+, (A.18)

where α = − aa1
aa . The Taylor series expansion of integrand of first integral in Eq.

(A.16) can be obtained as

f (z) =
(

A− (1 + γ̃1)
p
2
) 2

p
+ (1 + γ̃1)

p
2−1

(
A− (1 + γ̃1)

p
2
) 2

p−1
z + O

(
z2
)

,

(A.19)

as z→ 0+. On comparing Eq. (A.19) with Eq. (A.18) we get aa =
(

A− (1 + γ̃1)
p
2
) 2

p ,

aa1 = (1 + γ̃1)
p
2−1

(
A− (1 + γ̃1)

p
2
) 2

p−1
, α = −aa1

aa and q = 0. Using this approxi-

mation, we can write I12 as

I12 ≈ −
U3∫

U2

aa e−αzdz +
U3∫

U2

(γ̃2 + 1) dz +
c∫

U3

(−d) dz, (A.20)
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After performing the integration I12 can be reduced as

I12 ≈
aa
α

[
e−αU3 − e−αU2

]
+ (γ̃2 + 1) (U3 −U2)− d (c−U3) . (A.21)

Substituting I11 and I12 from Eq. (A.14) and Eq. (A.21), respectively, into Eq.

(A.13) gives us the reduced expression for I1. Using this I1 in Eq. (A.12), we get the

reduced expression for P̄D,plc for the final range of λ. This expression combined

with Eq. (A.6) and Eq. (A.8) gives us the expression given in Eq. (4.25).

A.2 Derivation for P̄Nak
D in Eq. (4.73)

After applying the change of variable as w = ln (x) in Eq. (4.72) and applying

limit N → ∞, using Eq. (A.3), the P̄Nak
D can be written as

P̄Nak
D =

∞∫
0

ln(b)∫
ln(a)

H
(

Gp (1 + γ̄ewz)
p
2 − λe

wp
2

) 5mmzm−1e−mz

L ln (10) Γ (m)
dwdz (A.22)

The range of w in terms of z for which argument ofH > 0 can be found as

w < − ln

[(
λ

Gp

) 2
p
− zγ̄

]
. (A.23)

Using this, we can write P̄Nak
D as

P̄Nak
D =

5 mm

L ln (10) Γ (m)

∞∫
0

U4∫
ln(a)

zm−1

emz dwdz =
5

L ln (10)


∫ ∞

0
U4

mmzm−1

Γ(m)emz dz︸ ︷︷ ︸
I1

− ln (a)
∞∫

0

mmzm−1

Γ(m)emz dz

︸ ︷︷ ︸
I2

 ,

(A.24)

where, U4 is given as

U4 = max

[
min

[
ln (b) ,− ln

[(
λ

Gp

) 2
p
− zγ̄

]]
, ln (a)

]
(A.25)
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The integral I1 in Eq. (A.24), can be written as

I1 =

U5∫
0

ln (a)mmzm−1

Γ(m)emz dz

︸ ︷︷ ︸
I11

+

U6∫
U5

− ln
(

λ

Gp
− zγ̄

)
mmzm−1

Γ(m)emz dz

︸ ︷︷ ︸
I12

+

∞∫
U6

ln (b)mmzm−1

Γ(m)emz dz

︸ ︷︷ ︸
I13

,

(A.26)

where we use R3(z) =
(

1
γ̄

(
λ

Gp

) 2
p − 1

zγ̄

)
, U5 = max [0, R3(a)] and U6 = max [0, R3(b)].

The I11 and I13 in Eq. (A.26) can be reduced as

I11 =
ln (a)
mm P (m, m U5) and I13 =

ln (b)
mm Q (m, m U6) , (A.27)

where P(a, z) = γ(a,z)
Γ(a) and Q(a, z) = Γ(a,z)

Γ(a) are the regularized lower and upper

incomplete Gamma functions.

Using the approximation ln (x + 1) = x for small x, we can derive approxi-

mate I12 in Eq. (A.26) as

I12 ≈
(

1−
(

λ

Gp

) 2
p
)
[P (m, m U6)− P (m, m U5)] + γ̄ [P (m + 1, m U6)− P (m + 1, m U5)]

(A.28)

Substituting I11, I12 and I13 from Eq. (A.27) and Eq. (A.28) Eq. (A.26) we get I1.

The I2 in Eq. (A.24) can be reduced as I2 = ln (a). Using I1 and I2 in Eq. (A.24)

and carrying out few simplifications, we get P̄Nak
D given in Eq. (4.73).
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A.3 Derivation for P̄Nak
D,plc in Eq. (4.77)

Using transformation of random variable as t = ln (x) and u = ln (y) in Eq. (4.76)

and applying limit N → ∞ we get

P̄Nak
D,plc =

25m2m

L1L2 (ln (10))2

∞∫
0

∞∫
0

c∫
−c

d∫
−d

zm−1e−mzwm−1e−mw

H

Gp

(1 + γ̄1etz
) p

2

e
−up

2

+
(1 + γ̄2euw)

p
2

e
−tp

2

− 2λ

e
−(t+u)p

2

 dudtdzdw (A.29)

Here, we can find the integration limit of u in terms of t, z and w for which the

argument of H(·) is > 0. After few mathematical simplifications, we get upper

limit of u as

u < − ln

[(
2λ

Gp
−
(
γ̄1z + e−t) p

2

) 2
p
− γ̄2w

]
(A.30)

Once again, we need to make sure that, the upper limit do not go beyond d and

below −d. Hence, we can write the upper limit of u as

U7 = max

[
min

[
− ln

[(
2λ

Gp
−
(
γ̄1z + e−t) p

2

) 2
p
− γ̄2w, d

]]
,−d

]
(A.31)

Hence, we can write P̄Nak
D,plc in Eq. (A.29) as

P̄Nak
D,plc =

25m2m

L1L2 (ln (10))2

∞∫
0

∞∫
0

c∫
−c

U7∫
−d

zm−1e−mzwm−1e−mwdudtdzdw (A.32)

After carrying out the integration with respect to u, we get the expression for

P̄Nak
D,plc given in Eq. (4.77). These are the steps for reducing the expression to three

integrals from four integrals. We can continue in this fashion to derive the final

expression but the final expression will be too lengthly. Hence, we keep the ex-

pression that is reduced to three integrals.
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CHAPTER B

Appendix for Chapter 5

B.1 Derivation of pdf in Eq. (5.11)

The pdf of sum of two independent random variables X and Y. i.e., Z = X +

Y, can be obtained by convolving the marginal pdfs of X and Y, which can be

obtained as

fZ(z) =
∫ ∞

−∞
fX(x) fY(z− x)dx. (B.1)

First we derive the pdf of decision statistic under SLC diversity for Hm = 1. After

substituting pdf from Eq. (5.11) under Hm = 1 into Eq. (B.1), we obtain

fZ(z) = a2e−αz
∫ z

0
xq(z− x)qdx, (B.2)

After performing the convolution, we obtain the pdf of decision statistic under

SLC diversity with two diversity branches. It is given as

fZ(z) =
a2Γ(1 + q)2z2q+1e−αz

Γ(2q + 2)
. (B.3)

The pdf of decision statistic under SLC diversity with three diversity branches

can be obtained by convolving pdf in Eq. (B.3) with Eq. (5.11) under Hm = 1.

Following the similar procedure of convolution as done for two diversity case,
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the pdf for the case of three diversity branch can be obtained as

fz(z) =
a3Γ(1 + q)3z3q+2e−αz

Γ(3q + 3)
. (B.4)

Looking at the pattern in Eq. (B.3) and Eq. (B.4), we can write the pdf of decision

statistic under SLC diversity with P diversity branches as

fTm(t) =
aPΓ(1 + q)PtPq+P−1e−αt

Γ(Pq + P)
. (B.5)

The pdf of decision statistic under Hm = 0 follows chi-squared distribution. If

Y = X1 + X2 + · · ·+ XP, where X1, X2, · · · , XP are following chi-squared distri-

bution with N degrees of freedom then Y follows chi-squared distribution with

PN degrees of freedom. Hence, the pdf of decision statistic using SLC diversity

under Hm = 0 with P diversity branches is given as

fTm(t) = χ2
PN =

tP·G−1e−
x
2

2P·GΓ(P · G)
. (B.6)

B.2 Theoretical analysis of R-SLC for L = 3

Consider the case when there are three channels in the partial band, i.e., L = 3

with Sd = Ld = 1, Id = 0. Based on the number of ON channels, there are

four cases, i.e., all channels OFF, only one channel ON, two channels ON and all

the channels ON. First, let us consider that all the channels are OFF. In this case

PSNak
000 (τ) can be obtained as

PS(τ|H1, H2, H3 = 0) = PSNak
000 (τ) = Pr {Tmin < τ} . (B.7)

The pdf of Tmin, i.e., fTmin(t), for this case can be obtained by using pdf under

Hm = 0 from Eq. (5.12) in Eq. (5.16) and using L = 3. Once pdf of Tmin is

obtained, PSNak
000 (τ) can be obtained by integrating fTmin(t) from 0 to τ. Since all

the channels are ON, there is no chance of interference and hence the probability

of interference opportunity is zero, i.e., PINak
000 (τ) = 0.
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We now consider the case when all the channels are ON. In this case PINak
111 (τ)

can be obtained as

PI(τ|H1, H2, H3 = 1) = PINak
111 (τ) = Pr {Tmin < τ} . (B.8)

The fTmin(t) in this case can be obtained in a similar way corresponding to OFF

case by using pdf under Hm = 1 from Eq. (5.12). PSNak
111 (τ) is zero since all the

channels are ON.

Next we consider the case of only one channel being ON. Assuming channels

1 and 2 as OFF and channel 3 as ON, PSNak
001 (τ) can be obtained as

PS(τ|H1 = H2 = 0, H3 = 1) = PSNak
001 (τ)

= Pr {T1 < (T2, T3), T1 < τ}+ Pr {T2 < (T1, T3), T2 < τ}

=
∫ τ

0

[
fT1(t1)

(∫ ∞

t1

fT2(t2) dt2

)(∫ ∞

t1

fT3(t3) dt3

)]
dt1

+
∫ τ

0

[
fT2(t2)

(∫ ∞

t2

fT1(t1) dt1

)(∫ ∞

t2

fT3(t3) dt3

)]
dt2. (B.9)

Since channels 1 and 2 are OFF, fT1(t1) = fT2(t2) = fT(t). Using this, PSNak
001 (τ)

reduces to

PSNak
001 (τ) = 2

∫ τ

0
fT(t) F̄T(t) F̄T3(t)dt. (B.10)

where, F̄T(t) and F̄T3(t) are the ccdfs for fT(t) and fT3(t3), respectively. The PI in

this case can be obtained as

PI(τ|H1,H2 = 0, H3 = 1) = PINak
001 (τ),

= Pr {T3 < (T1, T2), T3 < τ} ,

=
∫ τ

0
fT3(t) (F̄T(t))

2 dt. (B.11)

Finally, we consider only one channel being OFF. Let us consider channel 1 as OFF
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and channels 2 and 3 as ON. The PS is then obtained as

PS(τ|H1 = 0, H2 = H3 = 1) = PSNak
011 (τ)

= Pr {T1 < (T2, T3), T1 < τ}

=
∫ τ

0
fT1(t) (F̄T(t))

2 dt. (B.12)

Since channels 2 and 3 are ON, fT2(t2) = fT3(t3) = fT(t). Following a similar

procedure, the PI in this case can be obtained as

PINak
011 (τ) = 2

∫ τ

0
fT(t)F̄T(t)F̄T1(t)dt. (B.13)

Once PS and PI are known for all four cases, PISO and PEIO can be obtained as

PNak
ISO (τ) = 1−

1

∑
i=0

1

∑
j=0

1

∑
k=0

(1− p)L−i−j−k pi+j+kPSNak
ijk (τ), (B.14)

PNak
EIO (τ) =

1

∑
i=0

1

∑
j=0

1

∑
k=0

(1− p)L−i−j−k pi+j+kPINak
ijk (τ), (B.15)

respectively.

In a similar way, the analysis can be done for any parameter setting. Note

that when we consider L channels in the partial band, we need to find PS and

PI considering (L
1) + 1 cases. For example, for L = 4, we need to consider five

cases, i.e., all channels OFF, any one channel ON, any two channels ON, any three

channels ON and all four channels ON.
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