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Abstract

Microwave imaging is emerging as new diagnostic option for breast cancer detec-

tion because of non-ionizing nature of microwave radiation and significant contrast

between dielectric properties of healthy and malignant breast tissues. Class III and

IV breasts have more than 50% fibro-glandular tissues. So, it is very difficult to

detect cancer in class III and IV breasts by using X-ray based mammography. Mi-

crowave imaging is very promising for cancer detection in case of dense breasts.

Complex permittivity profile of breasts is reconstructed in three dimensions for mi-

crowave breast imaging. 3D level set based optimization proposed in this thesis is

able to reconstruct proper shape and dielectric property values of breast tissues.

Multiple frequency inverse scattering problem formulation improves computational

efficiency and accuracy of microwave imaging system because complex number com-

putations are avoided. Measurements of scattered electric fields are taken at five

equally spaced frequencies in the range 0.5-2.5 GHz. Class III numerical breast

phantom and Debye model are used in multiple frequency inverse scattering prob-

lem formulation. There are three unknowns per cell of numerical breast phantom

due to Debye model. Linear relationships between Debye parameters are applied to

get only static permittivity as unknown per cell of numerical breast phantom. Two

level set functions are used to detect breast cancer in 3D level set based optimization.

Pixel based reconstruction is replaced by initial guess about static permittivity solu-

tion in this modified four stage reconstruction strategy. Frequency hopping method

is used to avoid local minima present at particular frequency in the 3D level set

based optimization. 3D FDTD solves forward problem efficiently during each itera-

tion of 3D level set method which leads to better reconstruction of static permittivity

profile.

viii



3D reconstruction problem is very challenging due to Ill posed system matrix

and noisy scattered fields data. Tikhonov and total variation (TV) regularization

schemes are used to overcome above challenges. The performance of TV regulariza-

tion is better than Tikhonov regularization in 3D level set based optimization. TV

regularization reconstructs shape and size of very small tumour but it fails to recon-

struct exact location of very small tumour. Better 3D reconstruction is achieved by

using regularized 3D level set based optimization for at least 20 dB SNR in electric

field data. 3D FDTD method based electric field computation in heterogeneous nu-

merical breast phantom is very efficient because it solves Maxwell’s equations on grids

by using an iterative process. Microwave imaging problem is solved with millions of

cells because 3D FDTD is used.

Method of moments is used to solve electric field integral equation (EFIE) which

estimates complex permittivity of 2048 cell human breast model. Matrix formation

and inversion time are reduced to allow large number of cells in breast model. Com-

putational efficiency of the imaging system is improved by exploiting symmetry using

group theory. Matrix formed by method of moments is ill posed due to presence of

large number of buried cells in inverse scattering formulation. Ill posed system ma-

trix and noise are two major challenges in the solution of inverse scattering problem.

Levenberg-Marquardt method is used to solve above challenges.

ix
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Chapter 1

Introduction

Breast cancer incidence and mortality are increasing worldwide. Mortality rate

can be reduced by early breast cancer detection. It is quite important to understand

anatomy of breasts for breast cancer detection system development. Internal struc-

ture of human female breast is shown in figure1.1 [1]. Each breast has approximately

Figure 1.1: Human female breast internal structure [1]

14-20 lobes as shown in figure 1.1. These lobes are formed by structure known as

lobules. There are bulbs at the end of each lobule which can produce milk and ducts

carry milk from lobules to nipple. Whole milk producing network is surrounded by
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fatty tissues. Lymph node has ability to filter harmful bacteria. So, lymph nodes

are key locations because cancer can spread in other body parts through them.

In general, breast cancer is broadly divided in non-invasive and invasive categories.

Non-invasive type of cancers stay within some part of breasts. They do not grow

beyond breast. On the other hand, invasive types of cancers do spread in normal

healthy tissues. Unfortunately, most breast cancers are invasive. Ductal carcinoma

in situ (DCIS), lobular carcinoma in situ (LCIS) and invasive ductal carcinoma,

(IDC) are most common types of breast cancer. DCIS type of breast cancer stays

inside milk ducts. So it is non-invasive type of breast cancer. LCIS type indicates

risk of developing invasive breast cancer. IDC type of breast cancer starts in milk

ducts and it spreads in normal healthy breast tissues. Patient’s survival depends

on early detection of breast cancer. Three main techniques used for breast cancer

detection are described below.

X-ray based mammography

It is main technique used for breast screening. In mammography, breasts are

compressed between two plates of machine to improve contrast. Now, X-rays are

transmitted on breasts. These signals are recorded on film after passing through

breasts. Main advantages and disadvantages of mammography are given below.

Advantages

• High sensitivity

• Good Resolution

• Short image formation time

Disadvantages

• Sensitivity is less for dense breasts.

• Low contrast.

• Painful for patients because breasts are pressed to improve image quality.

• It uses ionizing radiation.

2



Ultrasound Imaging

Ultrasound imaging is also used for breast screening. This system uses ultrasonic

waves for imaging which generates breast image by using reflected sound waves.

Main advantages and disadvantages of ultrasound are given below.

Advantages

• Non-ionizing radiation

• Examination of dense breasts and implants is possible

• Good resolution

Disadvantages

• Technician’s skills based system performance

• Difficult to distinguish solid masses

• Lesions lying deep inside breast are difficult to detect

Magnetic resonance imaging (MRI)

MRI uses magnets and radio waves for breast screening. Patient has to lie on

bed which is protected by shield. It is time consuming process. Advantages and

disadvantages of MRI are given below.

Advantages

• Non-ionizing technique

• Capability of detecting small tumours

• Multi focal cancers can be detected

Disadvantages

• It is extremely expensive

• It is immobile

• Contrast agent injection is needed

• Time consuming

3



1.1 Motivation

Breast cancer cases are increasing rapidly with high mortality rate according to

globocan [2]. Breast cancer statistics show alarming situation for developing coun-

tries [2]. At present, gold standard technique for breast screening is X-rays based

mammography. It uses ionizing X-ray radiation for breasts screening. High radiation

dose of X-ray or frequent mammography screening increases risk of cancer because

X-rays are an ionizing radiation. False negative and false positive rates are about

15% and 13%, respectively in mammography which leads to additional imaging and

biopsies [3, 4]. Breasts are compressed between two plates to enhance contrast in

mammography which makes it uncomfortable and painful for patients. An alter-

native breast screening technique is required to overcome above disadvantages of

mammography.

Microwave imaging is emerging as new diagnostic option for breast screening in

the last decade [3, 4]. Advantages of microwave imaging are mentioned below.

1. Significant contrast has been observed between dielectric properties of healthy

and malignant breast tissues over microwave frequencies [5, 6, 7].

2. Non-ionizing nature of microwave radiation is considered as key advantage over

X-rays based mammography.

3. Low power microwave signal is used for breast screening which does not harm

patient.

It is extremely important to understand breast tissues and tumour cell properties.

Breast anatomy gives clear idea about different tissues and their locations which

are used in this thesis. Breasts mainly contain fatty and fibro-glandular tissues as

shown in figure 1.2 [8, 9]. Tumour detection point of view, it is extremely important

to know tumour cell properties given below [10].

1. Dielectric properties of tumour tissues are different from healthy tissues in

microwave frequency range [5, 6, 7].

4



Figure 1.2: Breast anatomy showing main tissues [9]

2. Cell Reproduction rate is higher

3. Glucose and blood consumption are high due to abnormal reproduction rate.

4. Temperature is high due to abnormal reproduction rate.

5. Shape and size are abnormal.

6. Electrical properties are also different

7. They neither become mature nor commit suicide.

8. They don’t follow commands of surrounding healthy cells.

First property of tumour cells is base of microwave imaging. Positron emission

tomography (PET) is based on third property of tumour cells. Thermography is

based on fourth property of tumour cells. Electrical impedance tomography (EIT)

is based on sixth property of tumour cells. Microwave imaging is most promising

technique as compared to PET, thermography and EIT [4]. There are four classes

of breasts according to Breast Imaging Reporting and Data System (BI-RADS).

Mammography based images of four breast classes are shown in figure 1.3 [11, 12].

Class I breasts have only 25% glandular tissues which makes it almost entirely

fatty. Class II breasts have 25% to 50% scattered glandular tissues. Class III breasts
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Figure 1.3: Classification of breast according to density. Class I, ClassII, Class III
and Class IV breasts(Left to right) [12]

are heterogeneously dense due to 51% to 75% glandular tissues. Class IV breasts

are known as extremely dense due to more than 75% of glandular tissues. Women

with class III and class IV breasts have high breast cancer risk [13, 14, 15, 16]. The

colour of breast tumour is white in mammographic images. It is very difficult to

detect tumour in class III and class IV breasts because of white glandular tissues. If

tumour is hidden inside glandular tissues then it results into false negative detection.

If higher density of glandular tissues is detected as tumour then it results into false

positive detection. False positive and false negative rates are higher in class III and

class IV breasts [17]. In microwave imaging, inverse scattering problem has been

solved by computer to reconstruct microwave image of breast. There are several

techniques for microwave image reconstruction. Traditional optimization schemes

don’t have shape related features. Shape reconstruction is an additional burden in

case of 3D image reconstruction.

1.2 Microwave Imaging

Microwave imaging is used to develop image in terms of object’s unknown dielectric

properties. Dielectric profiles of object are reconstructed using microwaves. These

images of dielectric profiles are also known as microwave image. Microwave imaging

is classified in two types as shown below.
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• Passive microwave imaging

• Active microwave imaging

1.2.1 Passive Microwave Imaging

Electromagnetic signals coming out of tissues are captured in this technique. Elec-

tromagnetic signals are captured from breast tissues. Temperature of malignant

tumour is higher than the healthy breast tissues. Based on these signals and tem-

perature difference, malignant tissues are distinguished. Figure 1.4 shows typical

setup for passive microwave imaging [3]. As shown in figure 1.4, signals from differ-

Figure 1.4: Passive microwave imaging setup

ent breast tissues are captured using radiometer, Tumour is detected based on these

received signals. Detection of weak signal is involved which makes it more sensitive

to noise. It is considered as a disadvantage of passive microwave imaging.

1.2.2 Active Microwave Imaging

Microwave signals are transmitted through antennas placed near object to be im-

aged. Now, these microwave signals interact with object of interest. Signals are

received by antennas after these interaction. These received signals are used to re-

construct microwave image of breast. Active microwave imaging is further divided

7



in microwave tomography and RADAR based microwave imaging. Typical setup of

active microwave imaging is shown in figure 1.5.

Figure 1.5: Microwave Tomography

In microwave tomography, low power microwave signals are transmitted on breast

using antennas. These incident signals are scattered according to dielectric proper-

ties of breast tissues. The scattered waves are received by antennas. This process

is known as forward problem. To get measured electric field data, noise is added to

known scattered field. Dielectric (complex permittivity) profile of breast is recon-

structed from noisy scattered fields data. This process is known as inverse scattering

problem. Classification of different methods to solve forward and inverse scattering

problems is given in [18]. If different sets of antennas are used as transmitters and

receivers, then it is known as bi-static system. If same sets of antennas are used

as transceivers, then it is known as mono-static system. In radar based microwave

imaging, tumour is detected based on high reflection criteria [3].

1.3 Microwave Breast Imaging Research Groups

Well known research groups in microwave breast imaging are shown in Table 1.1

[19]. Imaging method column of table 1.1 clearly shows diversity. Main contributions
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Table 1.1: Well known research groups in microwave breast imaging

Group Leader Location Antenna Type Imaging Method
(Starting Year) (Elements)

Qing H. Liu Duke University, Patch 3D Inversion Methods
(2003) Durham, USA (32-125) DTA-BIM,

BCGS-DBIM
P.M.Meaney Dartmouth College Monopole 2D and 3D

(2000) Hanover, USA (16) Inversion Methods

S.C.Hagness Wisconsin University Pyramidal Space-Time Beam-forming
(1998) Madison, USA Horn (40) combined with Generalised

likelihood ratio test

Elise C. Fear University of Calgary Wu-King Quasi-3D tissue sensing
(2002) Alberta, Canada Monopole adaptive radar and Microwave

Imaging via Space-Time

Maciej Klemm University of Bristol Stacked Conformal Delay and sum
(2006) Bristol, UK Patch (16) beam-forming

Matteo Pastorino University of Genoa Antenna Array Genetic Algorithm
(2004) Genova, Italy

of Qing H. Liu’s group are 3D forward scattering for microwave breast imaging

and microwave-induced thermal acoustic tomography to detect breast tumour [20,

21]. Meaney’s group is working on two step inversion method and development of

realistic supelec-breast phantom for microwave breast imaging[22, 23]. This group

have developed clinical prototype for active microwave imaging of the breast [24].

The group of S.C.Hagness have worked on different areas (e.g., measurements of

healthy and malignant breast tissue dielectric properties, Numerical breast phantom

development, Debye model development for breast tissues, FDTD based confocal

algorithm and 3D level set based microwave breast imaging) of microwave breast

imaging [25, 26, 27, 28, 29]. This group has started using FDTD for microwave

breast imaging [27, 28]. Elise C. Fear’s group is working on comparison of radar-

based microwave imaging algorithms applied to experimental breast phantoms [30].

This group has worked in different areas of microwave breast imaging [3, 4, 30, 31, 32].
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Maciej Klemm’s group is working on development of different types of antenna arrays

for microwave breast imaging [33, 34]. This group has also performed clinical trials

for microwave breast imaging [35]. Matteo Pastorino’s group is working on microwave

breast imaging system simulation [36].

1.4 Thesis Organization

Short overview of important chapters is given below.

• Multiple Frequency Inverse Scattering Problem Formulation

Multiple frequency inclusion in the inverse scattering problem improves computa-

tional efficiency and accuracy of microwave imaging system. Numerical breast phan-

tom, Antenna placement and Debye model are required for multiple frequency in-

verse scattering problem formulation. Complex permittivity profile of human breast

is function of frequency. Single pole Debye model is used to incorporate frequency

dependence of human breast complex permittivity profile. Now, computationally

efficient inverse scattering problem is formulated for multiple frequencies. Cost func-

tion is calculated using matrix formulation of inverse scattering problem.

• 3D Level Set Based Optimization

Human breast complex permittivity profile reconstruction is always challenging

in three dimensions. Shape and value reconstructions both are important in three

dimension. Shape reconstruction does not involve in most of the current optimization

techniques. It can be considered as major drawback in 3D reconstruction. This

limitation has been avoided using 3D level set functions. The idea of level set was

first proposed by Osher and Sethian in [37]. In level sets, topological merging and

breaking is occurred naturally in any number of space dimensions. They don’t require

that the moving surface be written as a function. One level set function is used

to distinguish two different regions. Two level set functions can distinguish four

different regions. In general, N level set functions can distinguish 2N different regions.

Evolution and optimization are two main level set approaches used for reconstruction
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problems. These two approaches are combined in this thesis work. Novel 3D level

set based optimization is used to reconstruct dielectric properties as well as shape

of breast images. Debye parameter values and 3D level set functions are updated

to minimize cost function. Ill posed system matrix and noisy scattered fields data

make 3D reconstruction very challenging. Regularization is used to overcome above

challenges.

• 3D FDTD Method

FDTD is an useful method for simultaneous acquisition of multi-frequency vector

electromagnetic fields data over bandwidth of interest. FDTD method is computa-

tionally efficient because multiple frequency total electric field vector data acquisi-

tion is achieved in just one FDTD simulation. In this work, 3D FDTD is used to

get multiple frequency total field vector data inside human breast model. Complex

permittivity distribution of human breast model is determined by Debye model. De-

bye model is required only for numerical breast phantom region on grid. Perfectly

matched layer (PML) is used to absorb signals at the boundary. Different sets of

electric field update equations are given for PML and numerical breast phantom

regions.

• Method of Moments

Microwave imaging system is represented by electric field integral equation (EFIE).

Method of moments is used to solve electric field integral equation (EFIE) which esti-

mates complex permittivity of 2048 cell human breast model. Matrix formation and

inversion time should be reduced to allow large number of cells in breast model. This

is achieved by exploiting symmetry using group theory which improve computational

efficiency of the imaging system. EFIE is solved by using method of moments to find

scattered electric field due to human breast models. Additive white Gaussian noise is

added to this electric field vector. Matrix formed by method of moments is ill posed

due to presence of large number of buried cells in inverse scattering formulation [38].

The effects of total volume, number of cells, symmetry and multiple view on complex

permittivity reconstruction are investigated in this chapter. The effect of saline and
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air as surrounding medium on complex permittivity reconstruction is evaluated for

microwave breast imaging system.
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Chapter 2

Literature Review

Cancer incidence and mortality analysis is very important for prevention and

early detection of cancer. GLOBOCAN is an initiative of world health organization

(WHO) which aims to provide estimates of the incidence, prevalence and mortality

from major cancer types for 184 countries. In USA, 43909 women died out of 232714

women with newly diagnosed breast cancer during 2012 [1]. One woman died in

every 6 women who were diagnosed with breast cancer in USA [1]. In China, 47984

women died out of 187213 women with newly diagnosed breast cancer during 2012

[1]. One woman died in every 4 women who were diagnosed with breast cancer in

china [1]. Year wise statistics of breast cancer is provided in figure 2.1 for India

[1]. In India, 70218 women died out of 144937 women with newly diagnosed breast

Figure 2.1: Breast cancer statistics in India[1]
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cancer during 2012 [1]. One women died in every 2 women who were diagnosed with

breast cancer in India [1]. Breast cancer incidences and mortality rate are projected

to be high in India, according to statistics of figure 2.1.

Fear et al. have described different types of microwave imaging modalities with

significant advantages over X-ray based mammography in [2, 3]. They have provided

very promising initial results and analysis of microwave breast imaging. Microwave

images have better contrast as compared to X-ray based mammography [2, 3]. Di-

electric properties of breast tissues are measured in [4, 5, 6]. Campbell et al. have

measured dielectric properties of female human breast tissues at 3.2 GHz in [4]. Their

work was converted in online resource which provides dielectric constant values for

different human tissues from 10 Hz to 100 GHz. Lazebnik et al. have measured

dielectric properties of healthy breast tissues obtained after reduction surgeries in

[5]. They have used microwave spectroscopy for this measurement in the frequency

range of 0.5 GHz to 20 GHz. Lazebnik et al. have measured dielectric properties

of normal, benign and malignant breast tissues obtained after reduction surgeries in

[6]. These measured values are widely used in microwave breast imaging research.

Jesinger has given breast internal structure details in [7], which provides useful

insights to breast cancer researchers. Hanahan et al. have described great details of

human cancer cell properties in [8], which provides very useful information for breast

cancer researcher. Zhou et al. have estimated breast density based on analysis of

mammographic computer images in [9]. They have estimated four classes of breast

which are very useful in risk analysis of breast cancer. Breast cancer risk factors

based on mammographic breast density are investigated in [10, 11, 12, 13]. Class

III and IV breasts have higher cancer risk as compared to class I and II breasts.

Above conclusion clearly suggests use of class III or IV breast models in simulation

experiment. Nelson et al. have investigated factors associated with false positive and

false negative rates for digital mammography screening in [14]. Their investigation

suggests higher breast density results in high false positive and false negative rates.
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2.1 Multiple Frequency Inverse Scattering Prob-

lem Formulation

Complex permittivity profile of human breast is function of temperature and fre-

quency. Temperature is assumed to be constant. Frequency dependence of human

breast complex permittivity profile is incorporated by using single pole Debye model.

Now, computationally efficient inverse scattering problem is formulated for multiple

frequencies. Cost function is calculated using matrix formulation of inverse scat-

tering problem. Multiple frequency inclusion in inverse scattering problem leads to

better reconstruction. Numerical breast phantom, Debye model and antenna place-

ment are required for multiple frequency inverse scattering problem formulation.

Zastrow et al. have developed anatomically realistic numerical breast phantom with

accurate dielectric properties in [15]. They have provided their class III numerical

breast phantom in online repository which is used in our work. Lazebnik et al. have

developed highly accurate Debye models for normal and malignant breast tissues

using data fitting in [16]. Winters et al. have proposed formulation of multiple fre-

quency inverse scattering problem for dispersive dielectric properties estimation by

using patient specific Gaussian basis function in [17]. Shea et al. have used multiple

frequency inverse scattering problem formulation with 3D FDTD in [18]. They have

solved forward and inverse scattering problems by using 3D FDTD and conjugate

gradient respectively in [18]. Garret et al. have proposed a novel technique to analyse

average dielectric properties of breast tissues with multipath effect mitigation in [19].

Kurrant et al. have investigated hemispherical, cylindrical and patient specific 3D

data acquisition surfaces in [20]. The patient specific acquisition surface of Kurrant

et al. results in better object coverage, good target responses and improved images

as compared to other two acquisition surfaces. Bourqui et al. have proposed ultra

wideband sensors with time delay spectroscopy to estimate dielectric properties of

human breast tissues for 1.5 to 10 GHz frequency range in [21]. Their results show

only about 2% error in the estimation of human breast dielectric properties.
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2.2 Level Set Methods for Optimization

Human breast complex permittivity profile reconstruction is always challenging

in three dimensions. Shape and value reconstructions both are important in three

dimension. Shape reconstruction is not involved in most of the current optimization

techniques. It is considered as major drawback in 3D reconstruction. This limitation

is avoided using 3D level set functions. Novel 3D level set based optimization is

used to reconstruct values as well as shape of complex permittivity profile. Debye

parameter values and 3D level set functions are updated to minimize cost function.

Ill posed system matrix and noisy scattered fields data make 3D reconstruction very

challenging. Regularization is used in 3D level set based optimization to overcome

above challenges. Osher et al. have solved Hamilton-Jacobi equation by using moving

fronts with curvature dependent speed in [22]. Now, their work is recognized as level

set methods. The algorithm proposed by Osher et al. handles topology merging

and breaking naturally which makes it attractive for shape reconstruction. Osher

et al. have proposed level set method with fast marching method and extension

velocity in [23]. Their level set methods are used widely in many fields of science,

engineering and technology now. Santosa has proposed level set based evolution

and optimization approaches for inverse problems with deconvolution and diffraction

screen reconstruction examples in [24].

Dorn et al. have proposed an efficient two step shape reconstruction method for

electromagnetic cross-borehole tomography using adjoint fields and level set in [25].

In this method, shape of obstacle is reconstructed by applying adjoint fields and

level set to an initial guess. FDTD is used twice per iteration to solve helmholtz

equations. Dorn et al. have consider Only shape reconstruction of object by using

known permittivity values inside the object. This level set method is the method of

asymptotic regularization, which has been developed for ill-posed problems in Hilbert

spaces. They have shown regularizing properties of the level set method with the

discrepancy principle as a stopping criteria. Ferraye et al. have proposed a shape

reconstruction of obstacle for electromagnetic tomography using level set method
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based on contour deformations with frequency hopping technique in [26]. In this ap-

proach, automatic merging and breaking capability is used for shape reconstruction

inverse scattering problem.

A very good survey of level set method for inverse problems is done in [27, 28, 29].

Survey includes general level set method formulation for following areas.

1. Geometry based inverse and optimization problems

2. Level set methods based evolving interfaces

3. Shape calculus by using level set method

4. Level set methods based shape optimization

5. Level set method for ill posed problems

General framework for above topics are given nicely with several open issues in

[27, 28]. Recent techniques which have a level set based representation of shapes for

solving inverse scattering problems are given in [29]. Electromagnetic scattering by

using different popular models, for example TM-polarized and TE-polarized waves,

Maxwell’s equations, impedance tomography, a transport equation or its diffusion

approximation are described with topological derivatives and shape sensitivity analy-

sis in this work. Various techniques are proposed with realistic application examples

in two and three dimensions for incorporating regularization into the shape inverse

scattering problem.

Aghasi et al. have proposed reconstruction of obstacles by using parametric level

set method in [30]. General level set evolution equations are derived for an unknown

obstacle reconstruction. Significantly lower dimensional problem is obtained by ap-

plying appropriate form of parametric level set function. Radial basis function is

used to make the parametric level set which provide a "narrow-banding" advantage

that the number of unknowns are reduced at each step of the evolution by using this

approach. The performance of this approach is tested in diffuse optical tomography,

electrical impedance tomography and X-ray computed tomography.
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Semerci et al. have proposed a novel polychromatic dual-energy processing algo-

rithm, which can detect and characterize objects embedded in background [31]. In

this paper, Level-set based characteristic function of the object is used with a num-

ber of regularization techniques for addressing both the physical properties of the

object and the prior information. The proposed approach gives zero characteristic

function in the absence of an object. So, it can be viewed as simultaneously solving

both characterization and detection problems. Level set is defined parametrically by

using radial basis functions with a Gauss-Newton algorithm for cost minimization.

Numerical results show that the algorithm successfully detects objects. It also finds

objects’ shape, location with reconstruction of the background. A modified level set

method (MLSM) is proposed to reconstruct 2D object’s shape and electrical proper-

ties simultaneously in [32]. Eskandari et al. have proposed an evolution strategy to

reconstruct complex permittivity and shape of a 2D object. As the cost function is

minimized iteratively, the initial guesses about the complex permittivity and shape

of the target object converge to their values. L1 and L2 norms are added to cost func-

tion as regularization terms. Sudden changes in the shape of the object are prevented

by a curvature-based regularization. Fluctuations in the object’s parameters are re-

duced by Laplacian based regularization. The capabilities of MLSM in microwave

imaging are evaluated by using different synthetic data sets. Two objects separated

by a distance of one-fifteenth of a wavelength can be reconstructed completely using

MLSM. Targets of different relative permittivity can be retrieved with less than 10%

error by using this method. Reconstruction of the immersed one-tenth wavelength

targets in highly contrasting domains is considered as an important feature of this

method. These features of MLSM are precious in distinguishing malignant tissues

from normal tissues.

Irishina et al. have proposed level set based evolution strategy in two broad steps

for early breast cancer detection using microwave imaging [33]. In the first step,

location and size of tumour is found. Where as in second step dielectric property of

tumour is determined. Level set method of [33] is verified by 2D numerical breast

phantom. The tumour characterization may fail for very small hidden breast tu-

mours in the presence of strong noise [33]. Irishina et al. have proposed level set
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based strategy for microwave imaging based early breast cancer detection in [34, 35].

Level set based solution has advantages over traditional pixel based approaches when

reconstruction of size, shape and static permittivity value of hidden tumour is very

crucial. Level set based strategy is useful for correct estimation of interfaces between

fibro-glandular and fatty tissues. Level set based proposed strategy of [34, 35] is able

to detect and characterize small tumours successfully. In order to reconstruct correct

shape, size and location of tumour an initial guess of tumour permittivity value is

required.

Reconstructed difference permittivity (∆ε) profile of class 3 numerical breast phan-

tom by using conjugate gradient method is shown in figure 2.2 [18]. Results of figure

Figure 2.2: Class 3 phantom:(a)-(c) exact and (d)-(f) reconstructed profile of ∆ε
shown in coronal (x-y,top row), sagittal (y-z,middle row), and axial (x-z, bottom
row) cross sections[18].

2.2 clearly show that the shape is not reconstructed well by using conjugate gradient

method. Some important results of [35] are shown below. Figure 2.3 shows com-
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Figure 2.3: Comparison of permittivity profiles in less dense breast (a) Original
permittivity profile (b) Reconstructed permittivity profile at the end of four stage
algorithm [35]

parison of permittivity profiles in less dense breast. Figure 2.4 shows comparison

Figure 2.4: Comparison of permittivity profiles in high dense breast (a) Original
permittivity profile (b) Reconstructed permittivity profile at the end of four stage
algorithm [35]

of permittivity profiles in high dense breast. Figures 2.3 and 2.4 show promising

results of level set based four stage inversion method [35]. Figure 2.5 shows original

and reconstructed permittivity profiles when there is no tumour. Figure 2.6 shows

original and reconstructed permittivity profiles when there are two tumours. Above

results clearly show robustness of algorithm proposed in [35].

Colgan et al. have proposed 3D level set based optimization for microwave breast

imaging in [36]. Breast density classification is proposed using single level set func-

tion. Level set based adjoint method requires two FDTD simulations per iteration.
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Figure 2.5: Comparison of permittivity profiles without tumour (a) Original permit-
tivity profile (b) Reconstructed permittivity profile at the end of four stage algorithm
[35]

Figure 2.6: Comparison of permittivity profiles with two tumour (a) Original permit-
tivity profile (b) Reconstructed permittivity profile at the end of four stage algorithm
[35]

Level set method of [36] is computationally efficient as compared to adjoint method

of Dorn et al. because it requires single FDTD simulation per iteration. Figure

2.7 shows promising results of level set based optimization by using single level set

function [36]. Results of figure 2.7 clearly show that the performance of 3D level set

optimization is better than 3D distorted born iterative method (DBIM).

Ping et al. have proposed modified Newton Raphson algorithm with regulariza-

tion in [37]. Ping et al. have investigated initial guess, image iteration and optimal
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Figure 2.7: Coronal cross section of static permittivity profiles in class 3 breast
phantom. Top row shows original permittivity profiles. middle row shows recon-
structed permittivity profiles by using 3D Distorted born iterative method (DBIM).
Bottom row shows reconstructed permittivity profiles by using 3D level set based
optimization. The coronal cross sections are taken every 8 mm [36].

current updating factors in [37]. Prior-image induced nonlocal (PINL) regulariza-

tion technique was proposed in [38] for statistical iterative reconstruction through

the penalized weighted least-squares (PWLS). The PINL regularization uses the re-

dundant information in the prior image. The weighted least-squares term considers

a data-dependent variance estimation to improve low-dose image quality. A mod-

ified iterative algorithm is used to optimize objective function. Noise reduction,

edge detail preservation and low-contrast object detection can be improved by using

PWLS-PINL [38]. Tikhonov and total variation regularization methods are devel-

oped for ground penetrating radar signals in [39]. Regularization improves GPR

signal range resolution in the presence of noise for thin asphalt overlay thickness

prediction. Kozegar et al. have proposed computerized segmentation system by us-

ing 3D level set method and Gaussian mixture model in [40] which provides accurate

automatic segmentation.

2.3 FDTD Method

Yee has proposed novel method to solve Maxwell’s equations by using finite dif-

ference on discrete grid which is very well known as Yee grid [41]. Taflove has
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proposed a numerical method to predict sinusoidal steady state of electromagnetic

fields penetration in an arbitrary dielectric or conducting body by introducing lat-

tice truncation conditions and loss factors [42]. Small air-dielectric loss factors are

introduced to accelerate the sinusoidal steady state convergence of cavity interior

fields. This method is evaluated by using experimental results via application to a

dielectric sphere and a cylindrical metal cavity with an aperture. Results of missile-

like cavity with two different types of apertures illuminated by an axial-incidence

plane wave are also described in [42]. Okonievski et al. have proposed three simple

and efficient algorithms to incorporate multi-term Debye or Lorentz dispersion in

the FDTD method [43].

Hagness et al. have proposed time-gating and pulsed confocal techniques to en-

hance tumour detection by suppressing absorption and tissue heterogeneity effects

in [44]. A two-dimensional FDTD analysis of the system is conducted by using

published data for the dielectric properties of malignant tumors and normal breast

tissues. The FDTD simulation results show that small tumours can be detected

robustly in the presence of the background clutter. 2D FDTD analysis of the system

provides promising results in [44]. Hagness et al. have proposed pulsed microwave

confocal system by using 3D FDTD for breast cancer detection in [45]. They have

used bowtie antenna element for breast cancer detection because of its sufficient

dynamic range to detect small cancerous tumours usually missed by X-rays based

mammography [45].

Bond et al. have proposed microwave imaging via space-time (MIST) beam-

forming for detecting early-stage breast cancer in [46]. An ultra wideband (UWB)

signal is transmitted sequentially from each antenna of the array. Removal of arte-

facts present in the received signals is possible by this data-adaptive algorithm. The

effectiveness of this algorithm is demonstrated by using a variety of MRI derived

numerical breast phantoms. Malignant tumours embedded in the complex fibro-

glandular structure are easily detected in [46]. Li et al. have proposed experimental

study of UWB antenna performance for dielectric contrast of malignant to normal

breast tissues in [47]. Research work of Li et al. represents the first experimen-
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tal demonstration of three dimensions MIST beam-forming for malignant-to-normal

dielectric contrasts down to 1.5:1 with a synthetic tumour in multilayer breast phan-

toms.

Kosmas and Rappaport have proposed time reversal algorithm to detect breast

cancer in [48]. Amplitude and phase information of the tumour response is used

to get enough focusing. They have shown that the algorithm is robust to breast

inhomogeneities. Guo et al. have proposed a new FDTD formulation using cole-cole

model for electromagnetic wave propagation in dispersive biological tissues in [49].

Kosmas and Rappaport have proposed FDTD based time reversal algorithm for three

dimensions in [50]. They have shown that the 3D algorithm based reconstructions

are better than 2D algorithm based reconstructions. Kosmas and Rappaport have

proposed a clutter dominated total signal processing using matched filter approach

with FDTD based time reversal algorithm in [51]. Low complexity cole-cole model

is used with FDTD for human tissues modelling by Kang et al. [52]. Gedney has

proposed solution to FDTD lattice truncation problem by using an anisotropic per-

fectly matched layer (PML) absorbing medium in [53]. Schneider et al. has proposed

FDTD equations which incorporate polarization and different types of dispersions

[54]. Taflove and Hagness have proposed FDTD methods and parameters for differ-

ent cases in [55].

Moll et al. have proposed computationally efficient and flexible ray tracing al-

gorithm for micowave based tumour localization in moderate heterogeneous breast

tissues in [56]. Easy tumour localization is possible using this proposed method

[56]. Moll et al. have proposed a novel RADAR based beam-forming procedure by

using 31 element array configuration and heterogeneous numerical breast phantom

for microwave breast cancer detection in [57]. Yin et al. have proposed a novel

adaptive combining through correlation exploration algorithm for breast cancer de-

tection using UWB imaging in [58]. The performance of this algorithm is validated

by using accurate 3D FDTD breast models. Song et al. have proposed UWB based

microwave breast cancer detection system by using MRI derived realistic numerical

breast phantom in [59]. Mirza et al. have implemented 1D, 2D and 3D FDTD nu-
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merical methods for breast cancer detection in [60]. They have also discussed about

best ways to identify the existence of cancerous tissues in the breast. Wang et al.

have proposed microwave imaging system with wearable conformal antenna array

for breast cancer detection in [61]. Tumour of size 5 mm diameter inside glandular

region can be precisely located and detected by using FDTD solver of microwave

studio in computer simulation technology (CST) [61]. Kwon et al. have proposed

cost effective breast cancer imaging system with time domain measurements which

can reconstruct breast image in the presence of white noise [62]. The above system

can acquire images in short time so instantaneous microwave imaging is possible.

2.4 Method of Moments

Livesay et al. have proposed method of moment based procedure to calculate

electric field inside arbitrary shaped biological body with approximate solution of

green function integral in [63]. They have also found electric field inside fat and

muscles tissues. Hohmann has proposed three dimensional induced polarization and

electromagnetic modelling using method of moment in [64]. He had solved integral

of green’s function in three dimensions. Ghodgaonkar et al. have proposed complex

permittivity reconstruction of 36 cell 3D human chest model with performance evalu-

ation of surrounding medium in [65]. Cohoon has proposed computationally efficient

solution of electromagnetic scattering integral equation through use of group theory

in [66]. He has exploited symmetry by using group theory. Ghodgaonkar and Ismail

have used symmetry exploitation in electromagnetic imaging by using group theory

in [67].

Rubaek et al. have proposed an iterative Newton-based algorithm for reconstruct-

ing the images with method of moment in 3D microwave breast imaging system [68].

Zaeytijd et al. have proposed regularized gauss-newton method for three dimen-

sional microwave imaging in [69]. A regularized cost function is proposed to miti-

gate the measurement noise effect on the reconstruction. Regularized cost function

effectively deals with the non-linear optimization problem. The modified Gauss-

Newton method converges much faster than the Broyden-Fletcher-Goldfarb-Shanno
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(BFGS) quasi-Newton method with experimental and simulated data based quanti-

tative reconstructions in [69]. Park et al. have developed hybrid algorithm based on

Levenberg-Marquardt and genetic algorithms for microwave image reconstruction in

[70]. The iterative inverse scattering technique (IIST) uses the finite element method

(FEM) for calculating the electric fields and it uses hybrid (Levenberg-Marquardt

and genetic) algorithm for minimizing the cost function. Numerical results show that

the proposed hybrid algorithm can reconstruct the permittivity of the high contrast

object, where as LMA alone can not reconstruct the desired permittivity. Numerical

results also show that the quality and convergence of permittivity reconstruction by

the hybrid algorithm is better than that of GA. [70]. Rubaek et al. have proposed

Gauss-Newton’s method and conjugate gradient least square (CGLS) inversion al-

gorithms for non-linear microwave breast imaging in [71]. The proposed iterative

CGLS algorithm can solve the update problem by using only Jacobian. To recon-

struct images, this algorithm is taking fewer iterations than Tikhonov regularized

Gauss-Newton method [71]. Fang et al. have proposed singular value analysis of

the microwave imaging system Jacobian matrix in [72]. The results show significant

ill-posedness reductions for increased signal frequency, property parameter sampling

and antenna array density. The decay rate of Jacobian singular spectrum decreases

with signal frequency and it is improved with 35 equally-spaced circumferentially

positioned antenna array elements. These results are useful in design specifications

development for an optimized hardware installation in [72].

Ney et al. have proposed Pseudo-inverse algorithm to reconstruct consecutive pa-

rameter distributions of infinitely long dielectric cylinders from the scattered field

produced by them [73]. Pichot et al. have proposed numerical method for to-

mographic reconstruction of body with experimental technique by using diffraction

phenomena in [74]. Spatial impulse response, simulated human arm, dielectric rods,

isolated animal organs and inhomogeneous bodies examples are covered in [74]. Gar-

nero et al. have proposed a novel iterative algorithm based on simulated annealing

for quantitative reconstruction of the dielectric properties of strongly inhomogeneous

object by active microwave imaging [75]. The performance of simulated annealing

is more efficient than iterative deterministic methods in [75]. Belkebir et al. have
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collected multiple frequency scattered fields data for reconstruction of location and

shape of object by using Newton-Kantorovich (NK) and modified gradient methods

in [76]. Caorsi et al. have solved two dimensional inverse scattering problem by using

model driven approach and a priori information about biological tissues in [77]. The

reconstruction of scatterers like living tissues and 2D TM mathematical formulation

are shown in [77]. Pastorino has reviewed different stochastic methods for the solu-

tion of inverse scattering problems in [78]. Differential evolution methods, particle

swarm optimizations, ant colony optimization, hybrid techniques, genetic algorithms

and their use in electromagnetic are covered. Buried object detection, tomography

and borehole sensing imaging modalities are also covered with the computational

load reduction strategies in [78]. Andreuccetti et al. have provided dielectric prop-

erties of different human tissues for frequency range of 10 Hz-100 GHz in [79].

Meany et al. have build active microwave breast imaging clinical prototype in

[83]. This prototype has 16-elements transceiver monopole antenna array which op-

erates in the 300-1000 MHz frequency range. An examination of five women are

done through a water-coupled interface to the pendant breast in prone position on

an examination table. Full tomographic data acquisition is done at seven different

array heights. Data collection starts at the chest wall and moving toward the nipple

for seven different frequencies at each array position. This is the first clinical expe-

rience report of active near-field microwave imaging to exploit model-based image

reconstructions in vivo. It appears that the average relative permittivity of the breast

correlates with radiologic breast density classification in [83]. El-shenawee and Miller

have proposed breast cancer tumour shape and location reconstruction algorithm by

using microwave spherical harmonics in [84]. Spherical harmonic decomposition ap-

proach is used to capture the shape of the tumour. A direct electromagnetic solver is

combined with gradient descent optimization method to determine the coefficients in

the harmonics. The results show the advantage of multiple-view/tomographic-type

strategy for data collection. This approach shows accurate tumour image reconstruc-

tion regardless of the source polarization. This algorithm is useful for Gaussian noise

affected data in the absence of perfect knowledge about tumour electrical properties

[84]. Donelli et al. have proposed modified particle swarm optimization for three
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dimensional microwave imaging problems in [85]. The aim of this modified algorithm

is to reduce both the dimension of search space and computational load of the opti-

mization. The exploitation of particle swarm global search capabilities is favourable

in the large-scale 3-D inverse scattering problems [85]. Single and multiple 3-D tar-

gets are used to assess this technique. Tong et al. have proposed reconstruction

of dielectric objects Gauss-Newton minimization with line search and multiplicative

regularization methods in [88]. Ahmadabadi et al. have proposed Fourier-Jacobi

expansion of two dimensional inverse scattering problem for microwave imaging in

[89].
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Chapter 3

Multiple Frequency Inverse Scattering Prob-

lem Formulation

3.1 Introduction

Multiple frequency inclusion in the inverse scattering problem improves compu-

tational efficiency and accuracy of microwave imaging system. Numerical breast

phantom, Antenna placement and Debye model are required for multiple frequency

inverse scattering problem formulation. Numerical breast phantom and antenna

placement are given in appendix A for breast cancer detection system. Zastrow et

al. have developed anatomically realistic numerical breast phantom with accurate

dielectric properties in [1]. Debye model is used to model polarization and dispersion

properties of human breast tissues. Derivation of Debye model is given in appendix

B1. Lazebnik et al. have developed highly accurate Debye models for normal and

malignant breast tissue dielectric properties in 0.5 to 20 GHz frequency range [2].

Experimental approximation of human breast tissue properties by using improved

Debye model is proposed by Khuda et al in [3]. Average dielectric property analysis

and bulk dielectric permittivity estimation for breast tissues are given in [4] and

[5] respectively. Winters et al. have proposed multiple frequency inverse scattering

problem in [6]. Shea et al. have also used multiple frequency inverse scattering prob-

lem formulation of winters et al. in [7]. Irishina has proposed antenna placement

for 2D microwave breast imaging system in [8]. Colgan et al. have used multiple

frequency inverse scattering problem formulation for 3D level set technique in [9].

Our work on multiple frequency inverse scattering problem formulation is described
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in [10, 11, 12].

3.2 Problem Formulation

Multiple frequency inverse scattering problem formulation for human breast tis-

sues requires Debye model. Debye model is incorporated in the system of scattered

field equations. Antenna placement surrounding breast of appendix A.2 is used to

formulate multiple frequency inverse scattering problem. Scattered fields at antenna

locations are calculated by using equation (3.1).

~Es(~r) =
∫∫∫

G(~r,~r
′
) · ~J(~r

′
)dv′ (3.1)

In equation (3.1), ~Es(~r) is scattered electric field at antenna locations ~r , Green’s

function of homogeneous background medium is G(~r,~r′), and ~J(~r
′
) is polarization

current density. Equation (3.2) is obtained by substituting polarization current den-

sity into equation (3.1).

~Es(~r) = ω2µ
∫∫∫

G(~r,~r
′
) · ~Et(~r

′
)[ε(~r

′
)− εb(~r)]dr′ (3.2)

In equation (3.2), ε(~r′)− εb(~r) is contrast in permittivity with respect to homoge-

neous background medium, ~Et(~r
′
) is total electric field intensity at location ~r′ . Single

pole Debye model of equation (3.3) is substituted in equation (3.2).

ε(ω) = ε∞ +
∆ε

1 + jωτ
+

σs
jωε0

(3.3)

In equation 3.3, ε∞ is infinite frequency permittivity, ∆ε is difference between static

permittivity (εs) and infinite frequency permittivity (ε∞), and σs is static conduc-

tivity. τ is relaxation time constant with 15ps value for all breast tissues. Relaxation

time constant is assumed to be spatially invariant. Approximation of equation (3.2)

is obtained by using procedure of [6, 7]. Numerical breast phantom is represented by

K voxels after discretization. There are 40 antennas surrounding breast as shown in

appendix A.2. Each antenna works as transceiver. One antenna transmits microwave

signal on breast and other antennas receive scattered microwave signal due to differ-
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ent breast tissues. This process is repeated for each antenna present in the system.

Let us consider there are N antennas in the system. F is number of frequencies.

Ideally there are N2F measurements possible. There are onlyM = (N(N − 1)/2)F

measurements possible after removing redundancy. There are N-1 receivers when

first antenna transmits. There are N-2 receivers when second antenna transmits. By

this way, there are channels among transmitters and receivers. By considering, N

antennas, M number of channels, F number of frequencies, and K voxels equation

(3.4) is obtained from equation (3.2).



Re(A∞1 ) Re(A∆
1 ) Re(Aσ1 )

Im(A∞1 ) Im(A∆
1 ) Im(Aσ1 )

�

�

�

Re(A∞M ) Re(A∆
M ) Re(AσM )

Im(A∞M ) Im(A∆
M ) Im(AσM )




δ(ε∞)

δ(∆ε)

δ(σs)

 =



Re(Es1)

Im(Es1)

�

�

�

Re(EsM )

Im(EsM )



(3.4)

In equation (3.4), δ(ε∞) = (ε∞)k − (ε∞)b, is difference between kth voxel’s infi-

nite frequency permittivity and background medium’s infinite frequency permittiv-

ity, δ(∆ε) = (∆ε)k − (∆ε)b and δ(σs) = (σs)k − (σs)b are defined same as above.

Re(.) and Im(.) represent real part and imaginary part respectively. By com-

paring equation (3.4) with Aε = b, Sizes of A, ε and b are 2MF × 3K, 3K × 1

and 2MF × 1 respectively. There are total 2MF equations, and 3K unknowns.

Let’s consider an example with 40 antennas, 18 frequencies, and 64000 voxels.

There are 28,080 equations and 192000 unknowns in our system. It means this

approximated linear system of equation (3.4) is under-determined. In equation

(3.4), each element of matrix A is represented by equation (3.5) and Scattered

fields column vector of right hand side is given by equation (3.6). In equation

(3.5), apk(ω1) = ω2
1µε0 · Ety(~rj |~rm,ω1) · IGy(~rn|~rj ,ω1) and C∞(ω) = 1, C∆(ω) =

(1 + jωτ )−1, Cσ(ω) = (jωε0)−1. Ety(~rj |~rm,ωl) is y direction electric field present

at jth voxel location due to transmitter at location ~rm for angular frequency ωl,

IGy(~rn|~rj ,ωl) is y direction component of the integration of the green’s function
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at angular frequency ωl. Where, ~rn, p and k represent receiver location, particular

channel number and total number of voxels respectively. Scattered electric field ma-

trix of equation (3.4) is known due to forward simulation. Left hand side matrix A

of equation (3.4) is also known. Permittivity contrast profile column matrix is only

unknown in equation (3.4).

Aep =



Ce(ω1)[a
p
1(ω1) . . . . . . a

p
k(ω1)]

�

�

�

Ce(ωF )[a
p
1(ωF ) . . . . . . a

p
k(ωF )]


(3.5)

Esp =



Ety(~rn|~rm,ω1)−Eiy(~rn|~rm,ω1)

�

�

�

Ety(~rn|~rm,ωF )−Eiy(~rn|~rm,ωF )


(3.6)

C(ε) =
1
2

F∑
f=1

M∑
n=1
|Esm(~rn,ωf )−Esr (~rn,ωf , ε(~r

′
))|2 (3.7)

In equation (3.7), C(ε) is cost function, Esm(~rn,ωf ) is known scattered field (mea-

sured) at location ~rn for frequency ωf , Esr (~rn,ωf , ε(~r′)) is reconstructed scattered

field at location ~rn for frequency ωf and dielectric profile ε(~r′), F is the number of

frequencies, M is the number of measurements (channels), ~rn is receiver location, ωf
is angular frequency. Now, cost function is represented in residual form by using

eqaution (3.8).

C(ε) =
1
2

FM∑
i=1
|Ri|2 (3.8)

The cost function of equation (3.8) is minimized in the next chapter. Sample code

for inverse scattering matrix formulation is given in appendix C.1.
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Chapter 4

3D Level Set based Optimization

3D Level set based optimization provides better shape and dielectric properties

reconstruction for microwave breast imaging. Shape reconstruction does not involve

in most of the traditional optimization techniques. This limitation has been avoided

by using 3D level set functions. Novel 3D level set based optimization is used to

reconstruct dielectric properties as well as shape of breast images. Debye param-

eter values and 3D level set functions are updated to minimize cost function. Ill

posed system matrix and noisy scattered fields data make 3D reconstruction very

challenging. Regularization is used to overcome above challenges.

First time, level set method was proposed by Osher and Sethian as propagating

fronts for Hamilton-Jacobi formulations in 1988 [1]. Osher and Fedkiw have proposed

level set methods for different applications in [2]. Santosa has proposed novel level

set based evolution and optimization approaches for inverse problems in [3]. Single

3D level set function based breast classification is implemented by colgan et al. in [4].

Classical reviews on level set methods for inverse problems are described in [5, 6, 7].

4.1 Theoretical Foundations

Evolution and optimization approaches are discussed in [3]. F is characteristic set

of interest and its boundary is described by a function φ(r).

∂F = {r : φ(r) = 0} (4.1)
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A sequence of functions φk(r) is generated by using level set approach such that

Fk = F (4.2)

In inverse scattering problem, complex permittivity is reconstructed. Consider ε as

the unknown parameter. Relationship of φ(r) with ε is given by equation (4.3).

ε(r) =

 εint for {r : φ(r) < 0}

εext for {r : φ(r) > 0}
(4.3)

In equation (4.3), ε(r) = εint whenever function φ(r) is negative, ε(r) = εext when-

ever function φ(r) is positive. Advantages of representing ε as function φ(r) are

given below.

• Priori assumptions about the topology of F are not needed. F may be made

up of several disconnected subregions. F may be multiple times connected.

• Priori assumptions about the nature of F are not needed.

Representation of equation (4.3) makes linear inverse problem non-linear due to

dependence of ε on φ. In equation (4.3), find φ(r) such that Aε = b, where A and b

are known. If φ(r) is changed by a small variations δφ(r) then r is changed by δr.

This variation results in the new region denoted by F′. If variation of the equation

φ(r) is equal to 0, then

δφ+∇φ · δr = 0 (4.4)

In figure 4.1, the unit outward normal at r is given by equation (4.5).

n(r) =
∇φ(r)
|∇φ(r)|

(4.5)

The inner product of δε with a test function g(x) is given by equation (4.6).

< δε, g >:=
∫
R2
δε(r)g(r)dr =

∫
F∩F ′

δε(r)g(r)dr (4.6)

The value of δε(r) is equal to εint − εext with plus or minus sign. Inner product is
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Figure 4.1: The variations of the curve r : φ(r) = 0 under variation δφ(r).

simplified to equation (4.7) for infinitesimal δε.

< δε, g >:=
∫
∂F

(εint − εext)δr · n(r)g(r)ds(r) (4.7)

where ds(r) is the incremental arc length. δε is given by equation (4.8).

δε = (εint − εext)
∇φ(r)
|∇φ(r)|

· δr (4.8)

The dot product in above equation includes correct sign for δε. δε will have same

sign as (εint − εext) at the point r. The opposite sign will be there if the normal

component of δr is in the opposite direction of the normal.

4.1.1 Evolution Approach

In this approach, evolution equation for φ(r) is derived to solve inverse obstacle

problem. The evolution equation will have property that as time t tends to infinity

function φ(r) is evolved such that the associated ε(r) is the solution to the inverse

problem. If t represent time, then level set function φ depends on both r and t.

∂F (t) = {r : φ(r, t) = 0} (4.9)

53



Therefore, an evolving region is associated with φ(r, t). The cost function of equation

(4.10) is to be minimized in least square sense.

C(ε) =
1
2‖Aε− b‖

2
2 (4.10)

The minimal requirement for the variation of φ(r, t) is that C(ε) be a decreasing

function of t. Let’s assume that each point r∈ ∂F (t) moves perpendicular to the

surface. The variation of δr satisfies equation (4.11).

δr = β(r, t) ∇φ
|∇φ|

(4.11)

In equation (4.11), β(r, t) is viewed as the velocity of the surface at r. Equation

(4.12) is obtained by substituting equation (4.11) into equation (4.8).

δε = (εint − εext)β(r, t) (4.12)

The directional derivative of the function C(ε) in the direction δε is given by

δC(ε) =< JT (ε)(Aε− b), δε > (4.13)

Where J(ε) is Jacobian of Aε at ε. Equation (4.14) is obtained by substituting

equation (4.12) into equation (4.13).

δC(ε) =
∫
∂F (t)

[JT (ε)(Aε− b)](εint − εext)β(r, t)ds(r) (4.14)

Assuming that εint > εext, Natural choice of β(r, t) is given by equation (4.15).

β(r, t) = −JT (ε)(Aε− b) (4.15)

Equation (4.16) for δφ(x, t) is determined by using equations (4.4) and (4.11).

δφ = −∇φ · δr = −∇φ · (β(r, t) ∇φ
|∇φ|

) = −β(r, t)|∇φ| (4.16)
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Any β(r, t) satisfying equation (4.15) produce δφ which will reduce C(ε). This leads

to equation of δφ.

δφ = [JT (ε)(Aε− b)]|∇φ| (4.17)

This initial value problem for φ(r, t) is a hamilton-jacobi system as shown by equa-

tions (4.18) and (4.19).

∂φ

∂t
= [JT (ε)(Aε− b)]|∇φ| (4.18)

φ(r, 0) = φ0(r) (4.19)

It is observed that evolutionary approach has following characteristics.

1. The evolution is such that C(ε) is non-increasing; that is ∂
∂tC(ε) ≤ 0.

2. If a solution ε exists, then at the solution Aε = b, so that ∂φ
∂t = 0 at the

solution.

3. It can be viewed as the evolution in the steepest descent direction for the

residual of C(ε)

This evolution approach can be used to find solution of inverse problems.

4.1.2 Optimization Approach

In the optimization approach, sequence of surfaces φk(r) whose associated function

ε(r) represent descent directions for the functional C(ε). It is convenient to use

notation given below for this purpose.

∂Fk = {r : φk(r) = 0} (4.20)

Consider φk(r) as an initial point in this approach. An update δφ(r) is needed to

generate φk+1(r). Gauss-Newton approach is used to minimize C(ε). The descent

update is given by δε′, where

JT (ε)J(ε)δε′ = JT (ε)(b−Aε) (4.21)
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Equation (4.21) is an update for ε. Now our task is to find the associated update for

φ. Equation (4.12) is rewritten as follows.

δε = (εint − εext)β(r) (4.22)

For δε′, equation (4.22) can be written as equation (4.23)

δε′ = (εint − εext)β(r) (4.23)

Equation (4.24) can be obtained by rearranging equation (4.23).

β(r) =
δε′

(εint − εext)
(4.24)

The natural choice for β(r) is to extend the above relation to all points on R3.

Update for δφ(r) is given by equation (4.25).

δφ(r) = − δε′

(εint − εext)
|∇φk(r)| (4.25)

It can be shown that this is the descent direction for C(ε). Equation (4.24) is

substituted in equation (4.14) to get .

δC(ε) = −
∫
∂Fk

[JT (ε)(Aε− b)]δε′ds(r) (4.26)

Equation (4.27) is obtained by substituting δε′ value of equation (4.21) in equation

(4.26).

δC(ε) = −
∫
∂Fk

[JT (ε)(Aε− b)][JT (ε)J(ε)]−1JT (ε)(b−Aε)ds(r) (4.27)

Above equation is negative if JT (ε)J(ε) > 0. Therefore, the variation δφ(r) cor-

responds to a variation in C(ε) that is negative. Gauss-Newton algorithm for the

inverse problem is given below.

1. Choose φ0(r); set k = 0.

2. Compute associated ε; if C(ε) > tolerance, do
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(i). Compute J(ε)TJ(ε)δε′ = JT (ε)(b−Aε).

(ii). Compute δφ(r) = − δε′

(εint−εext)
|∇φk(r)|.

(iii). Set k = k+1, update φk+1(r) = φk(r) + δφ(r).

This algorithm is implemented to find solution of inverse problem.

4.2 Single 3D Level Set Function based Optimiza-

tion

Single 3D level set function based optimization is described in [4]. Reviews of

level set methods for different types of inverse problems are described in [5, 6, 7].

Electromagnetic tomography for shape reconstruction is proposed by using adjoint

and level set methods in [8]. Contour deformation based inverse scattering method

using frequency hopping technique is given in [9]. Parametric level set method for

inverse problems is described in [10, 11]. Modified level set method (MLSM) for

simultaneous microwave imaging and parameter estimation is given in [12]. Single

level set function is shown in figure 4.2. Figure 4.2 shows level set function which

distinguish two different regions in 2D. Scenario of figure 4.2 is given as an equation.

Figure 4.2: Level set function to distinguish two different regions
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ε(r) = εfib(r)H(φ(r)) + εfat(r)(1−H(φ(r))) (4.28)

In equation (4.28), φ(r) is level set function, H(·) is the unit step function, εfib is the

complex permittivity of the fibro-glandular tissues, εfat is the complex permittivity

of the fatty tissues. Region φ > 0 is represented by H(φ) and region φ ≤ 0 is

represented by 1−H(φ). Equations (4.29) and (4.30) represent linear relationships

among Debye parameters [4].

ε∞ = 0.3265εs + 1.6326 (4.29)

σs = 0.0151εs − 0.0365 (4.30)

Above equations are used to reduce number of unknowns per voxel. Now, cost

function of equation (3.8) is minimized in level set based optimization. The adjoint

solution of level set optimization is computationally heavy. This computational cost

is avoided by calculating jacobian matrix. The jacobian matrix of cost function

equation (3.8) is calculated using equation (4.31) [4].

Gr(r|r′) ◦Etr(r′) = J(ε) (4.31)

In equation (4.31), Gr(r|r′) is the MF×K green’s function matrix, Etr(r′) is the

MF×K total field matrix. Where M, F and K are number of measurements, number

of frequencies and number of voxels respectively. The Jacobian matrix is element by

element product of green’s function matrix and total field matrix. Each row of the

Jacobian matrix is the frechet derivative of the residuals with respect to complex

permittivity ε. Green function calculations are given in [4, 13, 14]. The frechet

derivative of the cost function is calculated by using equation (4.32) [4].

∇C(ε) = JT (ε)R(ε) (4.32)
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In equation (4.32), Size of JT (ε) is K×MF and size of residual is MF×1. The

size of partial derivative of cost function with respect to ε is K×1. This method

of calculating frechet derivative reduces computational complexity as compared to

adjoint method [4, 8]. Only single FDTD simulation is required at every iteration in

this method. Therefore, it reduces computational burden by half at every iteration.

The partial derivative of equation (4.28) with respect to φ is computed by using

equation (4.33) [4].
∂ε

∂φ
= (εfib(r)− εfat(r))δ(φ(r)) (4.33)

The partial derivative of equation (4.28) with respect to static permittivity of fibro-

glandular tissues εfibs is computed by using equation (4.34) [4].

∂ε

∂εfibs
= H(φ(r))

∂εfib

∂εfibs
(4.34)

The partial derivative of equation (4.28) with respect to static permittivity of fatty

tissues εfats is computed by using equation (4.35) [4].

∂ε

∂εfats

= (1−H(φ(r)))
∂εfat

∂εfats

(4.35)

The partial derivative of cost function with respect to level set function φ is calculated

by using equation (4.36) [4].

∂C

∂φ
= ∇C(ε) ∂ε

∂φ
(4.36)

The partial derivative of cost function with respect to εfibs is computed by using

equation (4.37) [4].
∂C

∂εfibs
= ∇C(ε) ∂ε

∂εfibs
(4.37)

The partial derivative of cost function with respect to εfats is computed by using

equation (4.38) [4].
∂C

∂εfats

= ∇C(ε) ∂ε

∂εfats

(4.38)
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The partial derivatives obtained above are used to implement gradient based descent

optimization approach as shown below [4].

φn+1 = φn − αφ
∂C

∂φ
(4.39)

(εfibs )n+1 = (εfibs )n − αfibεs
∂C

∂εfibs
(4.40)

(εfats )n+1 = (εfats )n − αfatεs

∂C

∂εfats

(4.41)

Where n is the iteration number. The step sizes are αφ,αfibεs , and αfatεs are individually

chosen. A priori information related to breast tissues is useful in deciding above

parameters.

4.3 Two 3D Level Set Function based Optimiza-

tion

Shape and dielectric property reconstruction both are important in 3D reconstruc-

tions [15, 16, 17]. 3D level set based optimization is more suitable for 3D reconstruc-

tion because it can reconstruct shape and dielectric property simultaneously. Two

level set functions are used in figure 4.3 to identify four different regions. In figure

Figure 4.3: Application of two level set functions to distinguish four different regions
(in 2D)
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4.3, φ ≥ 0,ψ ≥ 0, φ ≥ 0,ψ < 0, φ < 0,ψ ≥ 0 and φ < 0,ψ < 0 represent healthy

fatty tissues, healthy fibro-glandular tissues, malignant fatty tissues and malignant

fibro-glandular tissues respectively. Scenario of figure 4.3 is expressed as equation

(4.42).

ε(r) = εtum(1−H(φ)) +H(φ)[εfibH(ψ) + εfat(1−H(ψ))] (4.42)

In equation (4.42), εtum, εfib and εfat are complex permittivity of tumour, fibro-

glandular and fatty tissues respectively, H() is unit step or heavy-side function.

εtum, εfib and εfat are expressed in terms of single pole Debye model. In equation

(4.42), φ and ψ are two level set functions. 3D level set based optimization starts

with an initial guess about solution. Signed distance function of initial guess is

required. Steps to calculate signed distance function are given below.

• Find the edges of initial guess

• Find the positive distance inside the edge boundary

• Find the negative distance outside the edge boundary

• Normalize the distance

Signed distance function is between -1 to 1 after performing above steps. Now, this

signed distance function is updated using iterative optimization approach. Sample

code for signed distance fucntion generation is given in appendix C.2. Equations

(4.29) and (4.30) represent linear relationships among Debye parameters. Partial

derivative of equation (3.8) (cost function) with respect to permittivity is given

below.
∂C

∂ε
= JT (ε)R(ε) (4.43)

In equation (4.43), JT (ε) is transpose of Jacobian matrix, R(ε) is residual. Jacobian

matrix is calculated by element wise multiplication of green’s function matrix with

total electric field matrix [4, 13, 14]. Partial derivative of cost function with respect

to level set function φ is calculated by using equation (4.44).

∂C

∂φ
=
∂C

∂ε

∂ε

∂φ
(4.44)
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In equation (4.44), second partial derivative is calculated by taking partial derivative

of equation (4.42) with respect to level set function φ.

∂C

∂φ
= JT (ε)R(ε) · δ(φ)(εfibH(ψ) + εfat(1−H(ψ))− εtum) (4.45)

Similarly, Partial derivative of cost function with respect to level set function ψ is

calculated by using equation (4.46).

∂C

∂ψ
=
∂C

∂ε

∂ε

∂ψ
(4.46)

In equation (4.46), second partial derivative is calculated by taking partial derivative

of equation (4.42) with respect to level set function ψ.

∂C

∂ψ
= JT (ε)R(ε) · (H(φ)δ(ψ)(εfib − εfat)) (4.47)

Partial derivative of cost function with respect to fibro-glandular tissue’s static per-

mittivity is given by equation (4.48).

∂C

∂εfibs
=
∂C

∂ε

∂ε

∂εfib
∂εfib

∂εfibs
(4.48)

Second partial derivative of equation (4.48) is calculated by taking partial derivative

of equation (4.42) with respect to εfib. Third partial derivative of equation (4.48) is

calculated using two steps. In first step, equations (4.29) and (4.30) are substituted

in equation (3.3). In second step, partial derivative of resultant equation is taken

with respect to εfibs . Equation (4.49) is obtained by substituting partial derivatives

in equation (4.48).

∂C

∂εfibs
= JT (ε)R(ε) ·H(φ)H(ψ)

∂εfib

∂εfibs
(4.49)

Partial derivative of cost function with respect to fatty tissue’s static permittivity is

given by equation (4.50).

∂C

∂εfats

=
∂C

∂ε

∂ε

∂εfat
∂εfat

∂εfats

(4.50)
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Equation (4.51) is obtained after calculating second and third partial derivatives of

equation (4.50).

∂C

∂εfats

= JT (ε)R(ε) ·H(φ)(1−H(ψ))
∂εfat

∂εfats

(4.51)

Now, Four update equations are derived using equations (4.45), (4.47), (4.49) and

(4.51).

φn+1 = φn − αφ
∂C

∂φ
(4.52)

ψn+1 = ψn − αψ
∂C

∂ψ
(4.53)

(εfibs )n+1 = (εfibs )n − α
εfibs

∂C

∂εfibs
(4.54)

(εfats )n+1 = (εfats )n − α
εfats

∂C

∂εfats

(4.55)

Algorithm can not converge to solution for larger values of step size. It becomes

slower due to smaller step size. Equations (4.52), (4.53), (4.54) and (4.55) are up-

dated using four stage reconstruction strategy and frequency hopping [4, 17]. Four

stage reconstruction strategy used in thesis is modified to reduce computations. First

stage is an initial guess of class 3 numerical breast phantom internal structure. Sec-

ond stage is reconstruction of breast tissues’ shapes and dielectric profiles by using

equations (4.53), (4.54) and (4.55). In third stage tumour location and shape are

reconstructed by using equations (4.52) and (4.53). In last stage tumour permittivity

value is decided by using equation (4.52).

4.3.1 3D Level Set based Regularized Optimization

In case of inverse scattering problem solution using ill posed system matrix and

noise affected measurements, regularization is very useful [18, 19, 20]. Need of reg-

ularization is quite clear from figure.4.4. Numerical breast phantom and antenna

placement of figure 4.4 are described in appendix A.1 and A.2 respectively. Sizes
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of system matrix A, permittivity column vector x or ε and scattered electric field

column vector b are 2MF × 3K, 3K × 1 and 2MF × 1 respectively. Additive white

Gaussian noise n is added to scattered electric field vector b. Tikhonov and total

Figure 4.4: Block diagram of practical microwave breast imaging system.

variation regularization techniques are evaluated in this section. Details of both

techniques are given in [20].

4.3.1.1 Tikhonov Regularization

Tikhonov regularization is very well known technique. Cost function is updated

to include regularization term. Now, cost function of equation 4.56 is obtained by

adding tikhonov regularization term in equation (3.8).

C(ε) =
1
2(

FM∑
i=1
|Ri|2 + λ‖X1‖2) (4.56)

In equation (4.56), λ is regularization parameter, and ‖X1‖ is L2 norm of column

vector X1. Column vector X1 contains static permittivity values for all voxels.

Two things are achieved by regularization: First, Small residue is obtained with an

accurate solution. Second, small solution is achieved such that the perturbation
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does not affect it much. Partial derivate of cost function with respect to unknown

parameter is given by equation (4.57).

∂C

∂ε
= JT (ε)R(ε) + λX1 (4.57)

In equation (4.57), JT (ε) is transpose of Jacobian matrix. It is element by ele-

ment multiplication of green’s function matrix and total electric field matrix, R(ε)

is residual.

4.3.1.2 Total Variation Regularization

Tikhonov regularization performs well in the situation where solution has smooth

changes. It will not perform well in the case where solution has abrupt changes.

Total variation regularization term is defined as shown in equation (4.58).

TV (X) =
n−1∑
j=1
|Xj+1 −Xj | = ‖L1X‖1 (4.58)

In equation (4.58), ‖L1X‖1 is L1 norm of ‖L1X‖. L1 is a derivative matrix as shown

by equation (4.59).

L1 =



−1 1 0 � � 0

0 −1 1 0 � 0

0 0 −1 1 0 �

� � 0 � � �

� � � � � �

� � � 0 −1 1

0 0 0 0 0 −1



(4.59)

Now, equation (4.60) is obtained by replacing tikhonov regularization term with total

variation regularization term.

C(ε) =
1
2

FM∑
i=1
|Ri|2 + λ‖L1X‖1 (4.60)
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L1 norm is non differentiable. In order to obtain partial derivative, diagonal matrix

W is used. Equation (4.61) is obtained by using the procedure of [20].

∂C

∂ε
= JT (ε)R(ε) + λLT1 WL1x (4.61)

Wj,j =1/|xj+1 − xj |, where (xj+1 − xj) is jth element of vector L1x. Tolerance can

be set on values of W to accommodate non differentiability of L1 norm.

wj,j =


1

|Xj+1−Xj | , |Xj+1 −Xj | ≥ ε

1
ε , |Xj+1 −Xj | < ε

(4.62)

Diagonal matrix W is calculated by using equation (4.62) in the iterative process.

Cost function and it’s partial derivative with respect to permittivity are changed to

include regularization.

4.3.2 Steps for 3D Level Set based Optimization Implemen-

tation

Level set based optimization implementation steps are given below.

1. Convert system in matrix form (Aε = b)

2. Calculate scattered electric field vector b using known ε values.

3. Add noise to scattered electric field (b̂ = b+ n).

4. Identify different regions to be reconstructed.

5. Decide number of level set functions to be used.

6. Start with the initial guess about ε.

7. Calculate signed distance function.

8. Calculate initial cost function (C(ε)).

9. Calculate total electric field using 3D FDTD.

10. Calculate Jacobian matrix (J(ε)).
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11. Calculate required partial derivatives of cost function.

12. Update all equations such that the cost function is minimized.

13. If stopping criteria is satisfied then stop else repeat steps 8 to 13 by using

reconstructed results of current iteration.

The above steps are implemented to reconstruct static permittivity values and shapes

of breast tissues by minimizing cost function.

4.4 Simulation Parameters

Values of Debye parameters are given for different breast tissues in table 4.1 [13,

14]. These values are valid for 0.5 GHz to 3 GHz. For simplicity, only two major

type of tissues are considered in class 3 numerical breast phantom [21, 22]. Five

frequencies 0.5, 1, 1.5, 2 and 2.5 GHz are considered in the microwave breast imaging

system simulation. Static permittivity values are found by adding ∆ε to ε∞. These

static permittivity values are used in simulation. In microwave breast imaging using

3D level set based optimization, human breast is immersed in oil based surrounding

medium because it matches the average dielectric properties of human breast. RMSE

Table 4.1: Values of Debye parameters for different breast tissues

Tissues ε∞ ∆ε σs(s/m)

Adipose (fatty) 4.09 3.54 0.0842
Fibro-glandular 18.6 35.6 0.817

Skin 15.3 24.8 0.741
Tumour (assumed) 23.2 41 0.93

Immersion (Surrounding) medium 2.6 0 0

in complex permittivity is calculated by using equation (4.63).

RMSE =

√√√√√√ K∑
i=1

((εs)i − ˆ(εs)i)2

K
(4.63)

In equation (4.63), (εs)i is an original static permittivity value of ith cell. ˆ(εs)i is

reconstructed permittivity value of ith cell. K is total number of cells used in the
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breast phantom.

4.5 Results

Inverse scattering problem is solved for two regularization schemes to compare

performance of both. SNR is 20 dB for all reconstructions. Original profile of static

permittivity (εs) with 2cm×2cm×2cm tumour is shown in figure 4.5.

Figure 4.5: Coronal cross section of original static permittivity (εs) profile at (a) 1.5
cm. (b) 3 cm. (c) 4.5 cm. (d) 6 cm. (Brown dot in (b) represents 2cm×2cm×2cm
tumour).

Figure 4.6: Coronal cross section of reconstructed static permittivity (εs) profile
without regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot
in (b) represents tumour).
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Now, these original static permittivity profile of figure 4.5 is used in simulation.

Reconstructed profile of static permittivity without regularization is shown in figure

4.6. By comparing figure 4.6 with figure 4.5, it is clear that the reconstruction

without regularization results in poor static permittivity profile. The size and shape

parameters of the reconstructed tumour are different as compared to original tumour.

Reconstructed profiles of static permittivity (εs) with tikhonov and TV regularization

schemes are shown in figure 4.7 and figure 4.8 respectively.

Figure 4.7: Coronal cross section of reconstructed static permittivity (εs) profile with
tikhonov regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot
in (b) represents tumour).

Figure 4.8: Coronal cross section of reconstructed static permittivity (εs) profile with
TV regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot in
(b) represents tumour).
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By comparing figure 4.7 with figure 4.6, it is clear that the reconstruction with

tikhonov regularization results in better static permittivity profile than reconstruc-

tion without regularization. By comparing figure 4.8 with figures 4.6 and 4.7, it is

clear that the reconstruction with TV regularization results in better static permit-

tivity profile than all other reconstructions.

Figure 4.9: Coronal cross section of original static permittivity (εs) profile at (a) 1.5
cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot in (b) represents 1cm×1cm×1cm
tumour).

Figure 4.10: Coronal cross section of reconstructed static permittivity (εs) profile
without regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot
in (b) represents tumour).
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Original profile of static permittivity (εs) with 1cm×1cm×1cm tumour is shown

in figure 4.9. Reconstructed profile of static permittivity without regularization is

shown in figure 4.10. By comparing figure 4.9 with figure 4.10, it is clear that the

reconstruction of small tumour parameters is very difficult without regularization.

Reconstructed profiles of static permittivity (εs) with tikhonov and TV regularization

schemes are shown in figure 4.11 and figure 4.12 respectively. By comparing figure

Figure 4.11: Coronal cross section of reconstructed static permittivity (εs) profile
with tikhonov regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm.
(Brown dot in (b) represents tumour).

Figure 4.12: Coronal cross section of reconstructed static permittivity (εs) profile
with TV regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot
in (b) represents tumour).

4.11 with figure 4.7, it is clear that the reconstruction of small tumour parameters

71



is difficult with tikhonov regularization. Figure 4.12 shows that the reconstruction

of small tumour parameters is very good with TV regularization.

Original profile of static permittivity (εs) with 0.5cm×0.5cm×0.5cm tumour is

shown in figure 4.13. Reconstructed profile of static permittivity without regular-

Figure 4.13: Coronal cross section of original static permittivity (εs) profile at
(a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot in (b) represents
0.5cm×0.5cm×0.5cm tumour).

ization is shown in figure 4.14. By comparing figure 4.14 with figure 4.13, it is

Figure 4.14: Coronal cross section of reconstructed static permittivity (εs) profile
without regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm.

clear that the reconstruction of very small tumour parameters is impossible without
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regularization. Reconstructed profiles of static permittivity (εs) with tikhonov and

TV regularization schemes are shown in figure 4.15 and figure 4.16 respectively. By

Figure 4.15: Coronal cross section of reconstructed static permittivity (εs) profile
with tikhonov regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm.

Figure 4.16: Coronal cross section of reconstructed static permittivity (εs) profile
with TV regularization at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6.5 cm. (Brown dot
in (b) represents tumour).

comparing figure 4.15 with figure 4.13, it is clear that the reconstruction of very small

tumour parameters is almost impossible with tikhonov regularization. By comparing

figure 4.16 with figure 4.13, it is clear that the reconstruction of very small tumour

parameters is difficult with TV regularization. Location of very small tumour is not

properly detected with TV regularization.
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RMSE versus SNR graph is shown in figure 4.17 for three cases. Cost function

versus number of iterations graph is shown in figure 4.18. RMSE values clearly show

Figure 4.17: RMSE in static permittivity (εs) vs. SNR

that the performance of total variation regularization is better than the tiknonov

regularization. Comparison of different algorithms are given below. Details of Gauss-

Figure 4.18: Cost vs. No. of Iterations
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Newton, conjugate gradient and genetic algorithms are given in [14, 23, 24, 25, 26].

Table 4.2 clearly shows that the performance of 3D level set method is better than

Table 4.2: Comparison of RMSE for different algorithms

Methods RMSE(%)
Gauss-Newton 24.14

Conjugate gradient method 21.62
Genetic algorithm 17.71
Level Set method 12.43

all other methods. 3D level set method has shape optimization feature which results

in less error as compared to other methods.

4.6 Conclusions

3D level set based evolution and optimization approaches are described with math-

ematical framework for inverse scattering problems. Characteristics of evolution

approach are discussed with implementation details. Gauss-Newton based optimiza-

tion algorithm is described with steps for implementation. Four update equations

are derived for two level set functions based optimization approach which can detect

healthy and malignant breast tissues. Tikhonov and TV regularization schemes are

used to improve performance of 3D level set based optimization. Shape, Size and

location detection of breast tumour is possible by using 3D level set based methods.

Tikhonov regularization improve reconstruction results but its performance de-

grades for very small breast tumour size. The performance of TV regularization is

better than Tikhonov regularization for medium, small and very small breast tu-

mours. TV regularization reconstructs shape and size of very small tumour but it

fails to reconstruct exact location of very small tumour. Total variation regulariza-

tion performs better than tikhonov regularization because there are abrupt changes

in the solution. Oscillations in cost function minimization are reduced by using

regularization schemes which makes convergence faster.
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3D level set based optimization with TV regularization is very effective for 5 dB

to 25 dB SNR. In this work, 20 dB SNR is required for better microwave image

reconstruction and breast tumour detection. Shape and dielectric properties both

are reconstructed simultaneously in 3D level set based regularized optimization.
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Chapter 5

3D FDTD Method

FDTD is an useful method for simultaneous acquisition of multi-frequency vector

electromagnetic fields data over bandwidth of interest. FDTD method is computa-

tionally efficient because multiple frequency total electric field vector data acquisi-

tion is achieved in just one FDTD simulation. In this work, 3D FDTD is used to

get multiple frequency total field vector data inside human breast model. Complex

permittivity distribution of human breast model is determined by Debye model. Per-

fectly matched layer (PML) is required at all boundaries to absorb microwave signal.

Two different sets of 3D FDTD update equations are required for implementation of

Debye model and PML. In this chapter, The effect of breast cancer on electric field

distribution is evaluated.

5.1 Theoretical Background

3D FDTD is used to solve forward problem due to limitations of method of mo-

ments (MoM). Maxwell’s equations are solved on discrete grid in FDTD [1, 2, 3, 4].

Equations of Faraday and Ampere laws are given by equations (5.1) and (5.2).

∇× ~E = −µ∂
~H

∂t
(5.1)

∇× ~H = ε
∂ ~E

∂t
(5.2)

In equation (5.1), ∇× ~E is curl of electric field vector, ~H is magnetic field vector

and µ is permeability of medium. In equation (5.2), ∇× ~H is curl of magnetic
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field vector, ~E is electric field vector and ε is permittivity of medium. Now, finite

difference approximation of Equations (5.1) and (5.2) are shown by equations (5.3)

and (5.4) respectively.

~Ht+∆t
2
= ~Ht−∆t

2
− ∆t

µ
(∇× ~Et) (5.3)

~Et+∆t = ~Et +
∆t
ε
(∇× ~Ht+∆t

2
) (5.4)

In equation (5.3), ~Ht+∆t
2
is magnetic field vector at future time step, ~Ht−∆t

2
is magnetic

field vector at previous time step, ∆t is time step and ∇× ~Et is curl of electric field

vector at time t. In equation (5.4), ~Et+∆t is electric field vector at future time step,
~Et is electric field vector at current time step and ∇× ~Ht+∆t

2
is curl of magnetic field

at time t+ ∆t
2 . Above equations are also known as update equations. Curl of electric

field is calculated on whole discrete grid. Now, magnetic field is updated on whole

grid by using equation (5.3). Curl of magnetic field is calculated on whole grid. Now,

electric field is updated on whole grid by using eqaution (5.4). This updating process

is repeated up to certain number of iterations. This approach is known as FDTD.

Figure 5.1: Grid for 3D FDTD [4]

∆t ∝ ∆ (5.5)
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Time step is directly proportional to spatial size. Where, ∆x = ∆y = ∆z = ∆.

Temporal accuracy increases for smaller values of time step up to several extent.

Spatial step size reduction results in smaller time step values, which improve overall

accuracy with longer simulation time. 3D FDTD grid is shown in figure 5.1. In figure

5.1, light grey region is used for numerical breast phantom and dark grey region at

the boundary is used for perfectly matched layer (PML). All six PML boundaries are

shown in figure 5.2. Dispersion is incorporated by using Debye model for numerical

Figure 5.2: PML boundaries for 3D FDTD [4]

breast phantom region [3, 6, 7]. PML equations are required only at the boundaries.

Now, two sets of electric field update equations are required. One set of electric field

update equations is used for numerical breast phantom region excluding boundaries.

The other set of electric field update equations is used for PML boundaries.

5.2 Electric Field Update Equations for Numeri-

cal Breast Phantom Region

Debye model is required to incorporate polarization and dispersion properties of

numerical breast phantom region on grid. Electric field update equations for class

III numerical breast phantom are derived for FDTD [3, 5]. Equation (5.6) represents
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equation of Ampere’s law after incorporating Debye model in it [3, 5, 6, 7].

∇× ~H = ε0ε∞jω ~E + σs ~E + jωε0
∆ε

1 + jωτ
~E (5.6)

In equation (5.6), ~H is magnetic field intensity vector, ~E is electric field intensity vec-

tor. Equation (5.6) is converted into time domain by using inverse Fourier transform.

Now, equation (5.8) is obtained by applying FDTD on this time domain equation.

Derivation of equation is shown in appendix B.2. Equation (5.7) shows result of

derivation.

~Et+∆t =

(
1− σs∆t

2ε0ε∞ + ∆t·mj2
2δε0ε∞

)
(
1 + σs∆t

2ε0ε∞ + ∆t·mj2
2δε0ε∞

) ~Et + c0∆t

2δε∞
(
1 + σs∆t

2ε0ε∞ + ∆t·mj2
2δε0ε∞

) ·
(

2δ∇× ~Ht+∆t
2
− η0(1 +mj1)δ ~J tP

) (5.7)

~Et+∆t = me1 · ~Et +me2 · [(2∆x · ∇× ~H)− (η0 · (1 +mj1) · ∆x · ~JP )] (5.8)

In equation (5.8), ~Et+∆t is electric field intensity vector at next time step, ~Et is

electric field intensity at current time step, ∇× ~H is curl of magnetic field intensity

vector, ~JP is polarization current density vector, ∆x is size of voxel in x direction.

Coefficient me1 is given by equation (5.9).

me1 =
1− σs∆t

2ε0ε∞ + mj2·∆t
2ε0ε∞∆x

1 + σs∆t
2ε0ε∞ + mj2·∆t

2ε0ε∞∆x

(5.9)

In equation (5.9), ∆t is time step. Coefficient me2 is given by equation (5.10).

me2 =
c0∆t

2∆x · ε∞(1 + σs∆t
2ε0ε∞ + mj2·∆t

2ε0ε∞∆x)
(5.10)

In equation (5.10), c0 is velocity of light in free space. Derivation of equation (5.11)

is shown in appendix B.2. Final result of derivation is shown by equation (5.11).

Polarization current density update equation is given by equation (5.12).

δ ~J t+∆t
P =

1− 1
2Nt

1 + 1
2Nt

 δ ~J tP +

 ε0∆εδ
Nt∆t · (1 + 1

2Nt )

 ( ~Et+∆t − ~Et) (5.11)
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~J t+∆t
P = mj1 · ~J tP +

mj2 · ( ~Et+∆t − ~Et)

∆x
(5.12)

In equation (5.12), ~J t+∆t
P is polarization current density at next time step, ~J tP is

polarization density at current time step. Coefficient mj1 is given by equation (5.13).

mj1 =
1− 1

2Nt
1 + 1

2Nt
(5.13)

In equation (5.13), relaxation time constant is given by τ = Nt∆t. Coefficient mj2

is given by equation (5.14).

mj2 =
ε0∆ε∆x

Nt∆t · (1 + 1
2Nt )

(5.14)

Equations (5.12), (5.13) and (5.14) are implemented for x, y and z components

of the polarization current density vector. Polarization current density vector is

updated before updating electric field vector. Equations (5.8), (5.9) and (5.10) are

implemented for x, y, z components of the electric field vector. Detailed derivation

of electric field update equations for numerical breast phantom region is given in

appendix B.2.

5.3 Electric Field Update Equations for PML Re-

gion

PML is required only at the boundaries of grid to absorb microwave signal. Elec-

tric field update equation derivation for PML region is given in [3, 5, 8]. Modified

equation of Ampere’s law to include PML is shown by equation (5.15).

∇× ~H = jω[s] ~D (5.15)

Now, matrix S is substituted in equation (5.15). Derivation of X,Y and Z components

are same so only single component derivation is included in this work. X component
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of above equation after substituting matrix s is shown by equation (5.16).

jω

(
1 + σx

jωε0

)−1 (
1 + σy

jωε0

)(
1 + σz

jωε0

)
Dx =

c0

[
∂Hz

∂y
− ∂Hy

∂z

] (5.16)

Now, Equation (5.16) is used to derive final equation (5.17). Detailed derivation of

electric field update equation is given in the appendix B.3.

Dt+∆t
x =

(
1

∆t −
σy+σz

2ε0 −
σy·σz ·∆t

4ε20

)
(

1
∆t +

σy+σz
2ε0 + σy·σz ·∆t

4ε20

)Dt
x +

c0 ·CHx(
1

∆t +
σy+σz

2ε0 + σy·σz ·∆t
4ε20

)
+

c0 · ∆t · σx(
1

∆t +
σy+σz

2ε0 + σy·σz ·∆t
4ε20

)
· ε0

(Ich)x −
∆t · σy · σz · IDx(

1
∆t +

σy+σz
2ε0 + σy·σz ·∆t

4ε20

)
· ε20

(5.17)

~Dt+∆t = mdx1 · ~Dt +mdx2 · (∇× ~H)x +mdx3 · (Ich)x +mdx4 · (ID)x (5.18)

In equation (5.18), ~Dt+∆t is electric field density (x component) at next time step,
~Dt is electric field density (x component) at previous time step, (∇ × ~H)x is x

component of curl of vector H. (Ich)x is x component of integration of curl of vector

H. (ID)x is x component of integration of electric field density vector D. Coefficient

mdx0 is given by equation (5.19).

mdx0 =
1

∆t
+
σy + σz

2ε0
+
σy · σz · ∆t

4ε20
(5.19)

In equation (5.19), σy and σz are conductivity in y and z directions respectively.

These conductivity values are non zero only in the PML region. Coefficient mdx1 is

given by equation (5.20).

mdx1 =
1

mdx0

(
1

∆t
− σy + σz

2ε0
− σy · σz · ∆t

4ε20

)
(5.20)
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Coefficient mdx2 is given by equation (5.21).

mdx2 =
c0

mdx0 (5.21)

In equation (5.21), c0 is speed of light. Coefficient mdx3 is given by equation (5.22).

mdx3 =
c0 · ∆t · σx
mdx0 · ε0

(5.22)

In equation (5.22), σx is x component of conductivity. Coefficient mdx4 is given by

equation (5.23).

mdx4 = −∆t · σy · σz
mdx0 · ε20

(5.23)

Equations (5.18) to (5.23) are implemented for x, y and z components of electric

field density vector D in PML region. Electric field in PML region is updated by

using simple relation between electric field density and electric field intensity.

5.4 Magnetic Field Update Equations

Human body is non magnetic, so only one set of FDTD equations are required

through out the grid. Faraday’s law with loss matrix s is given by equation (5.24).

∇× ~E = −jωµ0[µr][s] ~H (5.24)

Equation (5.25) is obtained by applying same procedure as electric field update

equation derivation

H
t+∆t

2
x =

(
1

∆t −
σy+σz

2ε0 −
σy·σz ·∆t

4ε20

)
(

1
∆t +

σy+σz
2ε0 + σy·σz ·∆t

4ε20

)Ht−∆t
2

x − c0 ·CEx
µxx

(
1

∆t +
σy+σz

2ε0 + σy·σz ·∆t
4ε20

)
− c0 · ∆t · σx
µxx

(
1

∆t +
σy+σz

2ε0 + σy·σz ·∆t
4ε20

)
· ε0

(Ice)x −
∆t · σy · σz · IHx(

1
∆t +

σy+σz
2ε0 + σy·σz ·∆t

4ε20

)
· ε20

(5.25)

~Ht+∆t
2
= mhx1 · ~Ht−∆t

2
+mhx2 · (∇× ~E)x +mhx3 · (Ice)x +mdx4 · (IH)x (5.26)
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In equation (5.26), ~Ht+∆t
2

is magnetic field intensity (x component) at future time

step, ~Ht−∆t
2
is magnetic field intensity (x component) at previous time step, (∇× ~E)x

is x component of curl of electric field vector E. (Ice)x is x component of integration

of curl of electric field vector E. (IH)x is x component of integration of magnetic

field intensity vector H. Coefficient mhx0 is given by equation (5.27).

mhx0 =
1

∆t
+
σy + σz

2ε0
+
σy · σz · ∆t

4ε20
(5.27)

In equation (5.27), σy and σz are conductivity in y and z directions respectively.

These conductivity values are non zero only in the PML region. Coefficient mhx1 is

given by equation (5.28).

mhx1 =
1

mhx0

(
1

∆t
− σy + σz

2ε0
− σy · σz · ∆t

4ε20

)
(5.28)

Coefficient mhx2 is given by equation (5.29).

mhx2 = − c0
mhx0 · µxx

(5.29)

In equation (5.29), c0 is speed of light. Coefficient mhx3 is given by equation (5.30).

mhx3 = − c0 · ∆t · σx
mhx0 · ε0µxx

(5.30)

In equation (5.30), σx is x component of conductivity. Coefficient mhx4 is given by

equation (5.31).

mhx4 = −∆t · σy · σz
mhx0 · ε20

(5.31)

Equations (5.26) to (5.31) are implemented for x, y and z components of magnetic

field intensity vector H.

5.5 Steps for FDTD Implementation

FDTD implementation steps are given below.

1. Define FDTD parameters

2. Set all fields to zero
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3. Set all integration terms to zero

4. Set up numerical breast phantom on grid

5. Calculate coefficient of E field and H field update equations (including PML)

6. Start main FDTD loop

7. Update curl of electric field

8. Update magnetic field related integration terms

9. Update magnetic field using update equations

10. Insert electric field source

11. Update curl of magnetic field

12. Update electric field related integration terms

13. Update electric field using update equations

14. Insert magnetic field source

15. Apply Fourier transform to electric field

16. Visualize fields

17. Stop main FDTD loop after certain number of iterations

The proposed approaches of [9, 10, 11, 12] have used above FDTD simulation. Some

of the advanced signal processing approaches are combined with FDTD in [13, 14,

15, 16]. Sample code for 3D FDTD is given in appendix C.3.
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5.6 Simulation Parameters

Values of Debye parameters are given for different breast tissues in table 4.1.

These values are valid for 0.5 GHz to 3 GHz. For simplicity, only two major type of

tissues are considered in class 3 numerical breast phantom. Coronal cross sections

of numerical breast phantom with ∆ε original profile is shown in figure 5.3. The

malignant tumour is assumed in the fibro-glandular tissues. Five frequencies 0.5, 1,

1.5, 2 and 2.5 GHz are considered for 3D FDTD simulation.

Figure 5.3: Coronal cross section of class 3 breast phantom with original profile of
∆ε at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6 cm. (Dark pink dot of (b) indicates
malignant tumour tissues)
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5.7 Results

Electric field is calculated inside numerical breast phantom using FDTD simula-

tion. Dielectric profile of figure 5.3 is used in this simulation. Electric field after 200,

400, 600 and 800 iterations are shown in figures 5.4, 5.5, 5.6 and 5.7 respectively.

Figure 5.4: Electric field in class 3 numerical breast phantom (without cancer) after
200 iterations at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6 cm.

Figure 5.5: Electric field in class 3 numerical breast phantom (without cancer) after
400 iterations at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6 cm.

Electric field is applied as narrow Gaussian pulse. It is quite clear from figures

5.4 and 5.5 that the electric field increases up to 400 iterations. Figures 5.6 and
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Figure 5.6: Electric field in class 3 numerical breast phantom (without cancer) after
600 iterations at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6 cm.

Figure 5.7: Electric field in class 3 numerical breast phantom (without cancer) after
800 iterations at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6 cm.

5.7 clearly show decrease in electric field after 400 iterations. Above figures clearly

show validity of FDTD code. Now, malignant tumour is included in numerical breast

phantom. Electric field is calculated inside numerical breast phantom with cancer.
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Figure 5.8: Electric field in class 3 numerical breast phantom (with cancer) after 200
iterations at (a) 1.5 cm. (b) 3 cm. (c) 4.5 cm. (d) 6 cm.

Figure 5.9: Normalized reflected power vs. frequency for different directions

Electric field after 200 iterations is shown in figure 5.8. Comparison of figure 5.4

with figure 5.8 clearly shows capability of FDTD as forward problem solver. Electric

field in cancerous tissues of figure 5.8 is different. Figure 5.8 shows that electric field

inside numerical breast phantom is affected due to inclusion of cancerous tissues.
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Now, graph of normalized reflected power versus frequency is shown in figure 5.9. It

is quite clear from figure 5.9 that normalized reflected power varies with the direction

of wave propagation. This effect is due to heterogeneous nature of numerical breast

phantom.

5.8 Conclusions

Debye equation is included in 3D FDTD to model polarization and dispersion

properties of human breast tissues. Electric field update equations are derived for

numerical breast phantom and PML regions on the grid. Magnetic field update

equations are derived for the whole grid. Electric field computation in heterogeneous

numerical breast phantom is very efficient using 3D FDTD method. Dispersion and

polarization properties of breast tissues are easily incorporated in 3D FDTD update

equations.

Electric field distribution is found in healthy and malignant breast tissues by

using 3D FDTD. Malignant and healthy breast tissues have different electric field

distributions. This property makes 3D FDTD suitable for microwave imaging of

heterogeneous breast model. 3D FDTD solves forward problem efficiently during

each iteration of 3D level set method which leads to better reconstruction of per-

mittivity. Normalized reflected power varies with direction of wave propagation in

heterogeneous numerical breast phantom.
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Chapter 6

Method of Moments

Method of moments is used to solve electric field integral equation (EFIE) which

estimates complex permittivity of 2048 cell human breast model. Matrix forma-

tion and inversion time should be reduced to allow large number of cells in breast

model. This is achieved by symmetry exploitation using group theory which improve

computational efficiency of the imaging system.

EFIE is solved by using method of moments to find scattered electric field due to

human breast models. Additive white Gaussian noise is added to this electric field

vector. Matrix formed by method of moments is ill posed due to presence of large

number of buried cells in inverse scattering formulation [1]. Ill posed system matrix

and noise are two major challenges in the solution of inverse scattering problem.

Levenberg-Marquardt method is used to solve above challenges. The effects of total

volume, multiple view, symmetry and number of cells on complex permittivity recon-

struction are investigated in this chapter. The effect of saline and air as surrounding

medium on complex permittivity reconstruction is evaluated for microwave breast

imaging system.

6.1 Problem Formulation

Microwave signal is transmitted by antennas on breast. This signal is scattered

due to its interaction with breast tissues. Scattered electric field at observation point
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~r is calculated by equation (6.1).

~Es(~r) =
∫∫∫

G(~r,~r′)J(~r′)dv′ (6.1)

Equation (6.2) is obtained by substituting Green’s function G(~r,~r′) and polarization

current density J(~r′) in equation (6.1).

~Es(~r) = k2
ε

∫∫∫
(εr(~r

′)− 1) ~E(~r′)
[
I +
∇∇
k2
ε

]
e−jkεR

4πR dv′ (6.2)

In equation (6.2), E(~r′) is internal electric field at source point ~r′, ∇∇ is dyadic, R

is the distance between observation point and source point, and kε is wave number

of the immersion (surrounding) medium. Relationship among total electric field,

incident electric field and scattered electric field is given by equation (6.3).

~E(~r) = ~Ei(~r) + ~Es(~r) (6.3)

Equation (6.4) is obtained by substituting equation (6.2) in equation (6.3).

− ~Ei(~r) = k2
ε

∫∫∫
(εr(~r

′)− 1) ~E(~r′)
[
I +
55
k2
ε

]
e−jkεR

4πR dv′ − ~E(~r) (6.4)

Now, Body is divided in N cells. Equation (6.4) is converted into matrix form of

equation (6.5) by using method of moments [1, 2, 3, 4].

− ~Ei = (A1R
ε − I) ~E (6.5)

Volume integral of green’s function is solved to obtain A1. Size of A1 is 3N×3N.

Rε is complex permittivity matrix. Size of Rε is 3N×3N. ~Ei is incident electric field

matrix in the absence of body. Size of ~Ei is 3N×1. ~E is electric field inside the

body. Size of ~E is 3N×1. Equation (6.6) is obtained by writing (A1Rε − I) = A in

equation (6.5).

− ~Ei = A~E (6.6)
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Equation (6.2) is converted into matrix form of equation (6.7) by using method of

moments [1, 2, 3, 4].
~Es = B1R

ε ~E (6.7)

Volume integral of green’s function is solved to obtain B1. Size of B1 is 3N×3N. ~Es

is scattered electric field matrix. Size of ~Es is 3N×1. Equation (6.8) is obtained by

writing B1Rε = B in equation (6.7).

~Es = B ~E (6.8)

Incident electric field matrix of equation (6.6) is calculated by placing source. Matrix

A of equation (6.6) is known. electric field inside body is only unknown in equation

(6.6). Now, electric field inside body of N cells is calculated by inverting matrix A of

equation (6.6). Now matrix B and matrix E of equation (6.8) are known. Scattered

electric fields at receiver locations are calculated using equation (6.8). This process

is known as forward problem. In inverse problem, Rε is only unknown in equation

(6.7). The process of obtaining matrix Rε using equation (6.7) is known as inverse

problem.

6.2 Computation Reduction using Group Theory

6.2.1 Human Breast Models

Simple human breast model is shown in figure 6.1. It has 16 cells. This model is

used to explain group theory. Top and bottom layers of breast model are given in

figures 6.2 and 6.3 respectively. Receiver and cell numbers are given in both layers.

Complex permittivity is assigned to each cell according to breast anatomy. Complex

permittivity is calculated by using equation (6.9).

ε∗r(ω) = εr − j
σ

ωε0
(6.9)

In equation 6.9, εr is relative permittivity, σ is conductivity, ε0 is absolute permit-

tivity, and ω is angular frequency.
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Figure 6.1: Simple human breast model

Figure 6.2: Top layer of simple breast model (bi-static system)

2D view of 64 cell breast model is shown in figure 6.4. Volume of 512 cm3 is

assumed for this model. Nipple is represented by layer 1. Skin, milk ducts, fatty

tissues, and fibro-glandular tissues are represented by layer 2. Skin, fatty tissues,

fibro glandular tissues, and lobules are represented by layer 3. Skin, fatty tissues,

fibro-glandular tissues, cancerous tissues are represented by layer 4. In 3D, layer 1

has 4 cells, layer 2 has 16 cells, layer 3 has 20 cells and layer 4 has 24 cells. Above

64 cell model is considered in the simulation. 2D view of 38 cell model is shown in

figure 6.5. It is used to evaluate performance of surrounding medium. It has one

more layer as compared to 64 cell model.
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Figure 6.3: Bottom layer of simple breast model (bi-static system)

Figure 6.4: 2D view of 64 cell human breast model

Figure 6.5: 2D view of 38 cell human breast model

6.2.2 Symmetry Exploitation using Group Theory

Matrix B1 is calculated by solving volume integral of green’s function. Sample

code for integral of green’s fucntion is given in appendix C.4. Structure of matrix
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B1 is shown by equation (6.10).

B1 =



b11 b12 . . . b1n

b21 b22 . . . b2n

� � . . . �

� � . . . �

bm1 bm2 . . . bmn


(6.10)

In equation (6.10), m and n are number of receivers and cells respectively. Each

element of B1 is also 3×3 matrix.

b11 =



bxx11 bxy11 bxz11

byx11 byy11 byz11

bzx11 bzy11 bzz11


(6.11)

b11 element of matrix B1 is shown by equation (6.11). Each element of matrix B1

is symmetric [5, 6]. This symmetry of measurement domain is exploited by using

group theory. Basic group theory operators are shown by equations (6.12), (6.13)

and (6.14).

R1(x, y, z) = (−x, y, z) (6.12)

R2(x, y, z) = (x,−y, z) (6.13)

R3(x, y, z) = (x, y,−z) (6.14)

Group formed by above operators is shown by equation (6.15).

G = {I,R1,R2,R3,R1R2,R2R3,R3R1,R1R2R3} (6.15)

Octant and Group multiplication table are described in [5, 6]. Now, consider figures

6.2 and 6.3 for next few lines. Receivers and cells numbered as 1,2 have coordinates
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(x,y,z), so they are represented by identity element of group. Receivers and cells

numbered as 3,4 have coordinates (-x,y,z), so they are represented by R1 element

of group. Receivers and cells numbered as 5,6 have coordinates (x,y,-z), so they

are represented by R3 element of group. Receivers and cells numbered as 7,8 have

coordinates (-x,y,-z), so they are represented by R1R3 element of group. Receivers

and cells numbered as 9,10 have coordinates (x,-y,z), so they are represented by R2

element of group. Receivers and cells numbered as 11,12 have coordinates (-x,-y,z),

so they are represented by R1R2 element of group. Receivers and cells numbered

as 13,14 have coordinates (x,-y,-z), so they are represented by R2R3 element of

group. Receivers and cells numbered as 15,16 have coordinates (-x,-y,-z), so they are

represented by R1R2R3 element of group. Equation (6.16) represents transformation

matrix [6].

V =
1

2
√

2



+Is +Is1 +Is3 −Is2 +Is2 −Is3 −Is1 −Is
+Is +Is1 −Is3 +Is2 +Is2 −Is3 +Is1 +Is

+Is −Is1 +Is3 +Is2 +Is2 +Is3 −Is1 +Is

+Is −Is1 −Is3 −Is2 +Is2 +Is3 +Is1 −Is
+Is +Is1 +Is3 −Is2 −Is2 +Is3 +Is1 +Is

+Is +Is1 −Is3 +Is2 −Is2 +Is3 −Is1 −Is
+Is −Is1 +Is3 +Is2 −Is2 −Is3 +Is1 −Is
+Is −Is1 −Is3 −Is2 −Is2 −Is3 −Is1 +Is



(6.16)

Transformation matrix elements are given by equations (6.17), (6.18), (6.19) and

(6.20).

Is = diag(I0, I0, ....I0) (6.17)

Is1 = diag(I1, I1, ....I1) (6.18)

Is2 = diag(I2, I2, ....I2) (6.19)

Is3 = diag(I3, I3, ....I3) (6.20)
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Now, matrices I0, I1, I2 and I3 are given by equations (6.21), (6.22), (6.23) and

(6.24) respectively.

I0 =


1 0 0

0 1 0

0 0 1

 (6.21)

I1 =


−1 0 0

0 1 0

0 0 1

 (6.22)

I2 =


1 0 0

0 −1 0

0 0 1

 (6.23)

I3 =


1 0 0

0 1 0

0 0 −1

 (6.24)

Matrices B1, Jp = RεE, and Es are block-diagonalized by using equations (6.25),

(6.26) and (6.27) respectively.

B1b = V B1V
T (6.25)

Jpb = V Jp (6.26)

Esb = V Es (6.27)

6.3 Inverse Scattering Problem Formulation

Inverse scattering problem is solved by using levenberg-marquardt method [7, 8,

9]. Inverse scattering problem is solved by different methods for microwave breast

imaging in [10, 11, 12, 13, 14]. A model driven approach and stochastic optimization
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methods are described for microwave breast imaging in [15, 16, 17]. Matrix inversion

is needed per iteration in this method. Inverse scattering problem without group

theory is solved by using equation (6.28).

[∆ε] = (JTa Ja + λdiag(JTa Ja))
−1JTa ( ~E

s − ~̂Es) (6.28)

In equation (6.28), Ja is Jacobian matrix. It is calculated by taking partial derivative

of scattered electric field with respect to complex permittivity of each cell. ( ~Es− ~̂Es)

is residual scattered electric field column vector. [∆ε] is change in complex permit-

tivity. It is obtained in each iteration. λ is regularization parameter or damping

factor. Inverse scattering problem with group theory is solved by using equation

(6.29).

[∆ε] = (JTb Jb + λdiag(JTb Jb))
−1JTb ( ~E

s
b − ~̂Esb ) (6.29)

In equation (6.29), Jb is Jacobian matrix. It is calculated by taking partial derivative

of block diagonalized scattered electric field with respect to complex permittivity of

each cell. ( ~Esb − ~̂Esb ) is residual block diagonalized scattered electric field column

vector.

6.4 Simulation Parameters and Noise Considera-

tion

Simulation parameters are given for 64 cell model. Saline is used as surrounding

medium. Frequency 500 MHz is considered in simulation, which provides better

penetration depth and enough resolution. Complex permittivity values of table 6.1

are used to calculate volume averaged complex permittivity for each cell [18]. Cell

size and number of cells vary but volume remains constant during whole simulation

process. Radius of the receiver circle is 13 cm. In bi-static system, dipole antenna

of 2 cm is used. Two transmitters are at 9 cm from the centre of the body. Size

of receiver is same as cell size. Scattered field at receivers’ locations is obtained by

solving forward problem. Now, noise is added to it by using equation (6.30) and

complex permittivity value of each cell is reconstructed by solving inverse scattering
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Table 6.1: Complex permittivity values for different breast tissues

Biological Tissues Complex Permittivity
Breast Fat 5.5- j1.32
Skin dry 44.92-j26.19
Skin wet 48.62-j25.32

Glandular tissues 20-j14.38
Nipple 45-j25.16

Blood vessels 46.23-j21.07
Cancerous tissues 65-j32

problem.
~Es = B ~E + n (6.30)

In equation (6.30), n is additive white gaussian noise column vector. RMSE in

complex permittivity is calculated by using equation (6.31).

RMSE =

√√√√√√ K∑
i=1

(εi − ε̂i)2

K
(6.31)

In equation (6.31), εi is an original permittivity value. ε̂i is reconstructed permittivity

value. K is total number of cells used in the model.

6.5 Results

Simulation time is calculated by inverting matrix only once. Now, comparison of

matrix inversion time is shown with and without group theory in table 6.2.

Table 6.2: Matrix inversion time in seconds

Number of cells Matrix inversion time Matrix inversion time
without group theory with group theory

64 0.102 0.0872
512 0.896 0.62
1024 1.982 1.15

Table 6.2 gives clear idea about effect of group theory on matrix inversion time.

Matrix inversion time is reduced by applying group theory. Graph of RMSE in
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Figure 6.6: RMSE(%) in complex permittivty vs. SNR (dB) (bi-static system)

complex permittivity versus SNR is shown in figure 6.6. RMSE with group theory is

higher than RMSE with out group heory. Graph of overall simulation versus number

of cells is shown in figure 6.7. Overall simulation time includes time to simulate all

iterations with overhead time. Overall simulation time increases with number of

Figure 6.7: Overall simulation time vs. Number of cells

cells. Overall simulation time with group theory is less than that of without group

theory. Graph of RMSE in complex permittivity versus SNR is shown in figure 6.8.
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It is clear that RMSE with group theory is higher than RMSE without group theory.

Graph of RMSE in complex permittivity versus SNR is shown for 38 cell model in

figure 6.9. It is quite clear that saline is better surrounding medium as compare to

air [1].

Figure 6.8: RMSE(%) in complex permittivity vs. SNR (dB) for 1024 cells (mono-
static system)

Figure 6.9: RMSE(%) in complex permittivity vs. SNR (dB) for 38 cells (bi-static
system)
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6.6 Conclusions

Matrix formulation is described by using method of moment for microwave breast

imaging. Symmetry is exploited in microwave breast imaging system by using group

theory. Overall simulation time is reduced considerably with group theory. By using

group theory, approximately 30% to 35% computation time is reduced. Levenberg-

Marquardt method is implemented with and without group theory. Matrix inversion

with group theory is faster than without group theory because group theory con-

verts matrices in the block diagonalized form. RMSE in complex permittivity is

higher with group theory. This is considered as compensation to get computational

efficiency. However, for SNR greater than 50 dB, RMSE in complex permittivity

without group theory is approximately same as RMSE in complex permittivity with

group theory. Overall microwave image reconstruction time is reduced by exploit-

ing symmetry using group theory. The performance of saline is better than air as

surrounding medium because it provides better matching with human breasts than

air. Multiple view (mono-static system) is better than bi-static system because of

redundant measurement data.
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Chapter 7

Conclusions and Suggestions for FutureWork

7.1 Conclusions

Breast cancer incidences and mortality rate are increasing throughout the world.

Microwave radiation are non ionizing as opposed to X-rays so, they offer relative

safety as compared with X-rays. It is very difficult to detect cancer in class III and IV

breasts by using X-rays based mammography. Microwave imaging can complement

mammography due to its high contrast between malignant and healthy breast tissues.

Multiple frequency inverse scattering problem formulation of microwave breast

imaging system is computationally efficient because complex number computations

are avoided. 3D level set based optimization method has better shape reconstruction

capability. Dielectric properties of healthy and malignant breast tissues are recon-

structed by using two 3D level set functions based optimization. Performance of 3D

level set based optimization is improved by using regularization. The performance

of TV regularization is better than Tikhonov regularization for medium, small and

very small breast tumours. TV regularization reconstructs shape and size of very

small tumour but it fails to reconstruct exact location of very small tumour. Better

3D reconstruction is achieved by using regularized 3D level set based optimization

for at least 20 dB SNR in measured electric field data.

Electric field computation in heterogeneous numerical breast phantom is very ef-

ficient using 3D FDTD method because it solves Maxwell’s equations on grids by

using iterative process. Dispersion and polarization properties of breast tissues are
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easily incorporated in 3D FDTD update equations. 3D FDTD solves forward prob-

lem efficiently during each iteration of 3D level set method which leads to better

reconstruction of complex permittivity. Normalized reflected power varies with di-

rection of wave propagation in heterogeneous numerical breast phantom. FDTD can

solve forward problem for multiple frequencies with millions of cells.

Microwave imaging problem can be solved at a single frequency by using method of

moment. Matrix inversion is required in method of moments which imposes limita-

tion on number of cells. So it is limited to 2048 cells. However, this limit is extended

to several extent by using group theory. Symmetry is exploited in microwave breast

imaging system by using group theory. By using group theory, approximately 30%

to 35% computation time is reduced. Performance of saline is better than air as

surrounding medium because it provides better matching than air.

FDTD method is computationally efficient and accurate as compared to MoM

because there is no requirement of matrix inversion in FDTD. 3D level set based

optimization is computationally efficient and accurate as compared to Levenberg-

Marquardt method. Overall, better performance in complex permittivity recon-

struction is achieved by using 3D level set based optimization and FDTD method.

7.2 Suggestions for Future Work

1. 3D level set based optimization can be applied to more complex numerical

breast phantoms with more than two level set functions.

2. More number of frequencies can be included in the implementation of 3D level

set based optimization for best complex permittivity reconstruction.

3. Hybrid algorithm can be proposed by combining 3D level set method with

other algorithms (e.g.,particle swarm optimization, simulated annealing and

ant colony optimization) for best complex permittivity reconstruction.

4. Multiple frequency inverse scattering problem of this work can be solved by

deep learning approaches for best complex permittivity reconstruction [1].
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Appendix A

Numerical Breast Phantom, Antenna Place-

ment and Immersion (Surrounding) Medium

A.1 Numerical Breast Phantom

Anatomically realistic numerical breast phantoms are required to make reliable

microwave breast imaging system. 3D view of class III numerical breast phantom

is shown in figure A.1 [1]. Breast density classification is discussed in the introduc-

Figure A.1: 3D view of numerical breast phantom

tion. Class III or class IV numerical breast phantoms is obvious choice for testing

microwave breast imaging system. Y-Z, X-Z, and X-Y views of class III numerical

breast phantom are shown in figure A.2. Fibro-glandular tissues are represented by

white (bright) colour and adipose tissues are represented by black or gray (dark)

colour. MRI derived numerical breast phantom makes imaging system more realis-
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Figure A.2: Y-Z, X-Z and X-Y view of class 3 MRI derived numerical breast phan-
tom.

tic because it captures heterogeneity well. In numerical breast phantom, dielectric

properties of fibro-glandular and adipose breast tissues are assigned to regions with

one and zero, respectively.

A.2 Antenna Placement Surrounding Numerical

Breast Phantom

Antenna placement surrounding numerical breast phantom for inverse scattering

problem formulation is discussed in this appendix. Antenna placement is shown in

figure A.3. Middle point of numerical breast phantom is origin of coordinate system.

Figure A.3: Antenna placement surrounding the numerical breast phantom.

There are five rings of antennas around numerical breast phantom [2]. Each circular

ring has eight short dipole of length 1cm, which lead to 40 antennas in the system.
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Distance between two consecutive rings is 3 cm. Radius of each ring is 6 cm.

A.3 Immersion (Surrounding) Medium

Surrounding medium is required in microwave breast imaging system for better

matching with human breast model. Oil based surrounding medium is considered in

this microwave breast imaging system [2, 3]. Infinite frequency permittivity (ε∞) of

this surrounding medium is 2.6 because it matches the average dielectric properties

of the human breast tissues. Difference permittivity (∆ε) and static conductivity

(σs) are zero for this surrounding medium.

Method of moment is a frequency domain method. Saline is used as surrounding

medium in method of moments [4]. Performance of saline is better than air as

surrounding medium because it provides better matching than air. Error in complex

permittivity reconstruction is less for saline as surounding medium.
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Appendix B

Important Derivations

B.1 Debye Model

The biological molecules are polar molecules with relaxation frequencies in the

range of high frequency (HF) to microwave frequencies. Complex permittivity of

human breast tissues is function of temperature and frequency. Temperature is

assumed to be constant. Dispersion and polarization effect of human breast tissues

are incorporated by using single pole Debye model given by equation (B.4).

Transient response of dielectric medium is shown in figure B.1 [1]. D is electric

Figure B.1: Transient response of dielectric medium.

displacement, τ is relaxation time constant. D∞ is initial value of electric displace-

ment. D0 is final value of electric displacement. Situation of figure B.1 is expressed
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in terms of equation (B.1).

D = D∞ + (D0 −D∞)(1− e−
t
τ ) (B.1)

Now, equation (B.2) is obtained by substituting D = ε0εrE, D∞ = ε0ε∞E and

D0 = ε0εsE in equation (B.1).

εr = ε∞ + (εs − ε∞)(1− e−
t
τ ) (B.2)

In equation (B.2), εr is relative permittivity, ε∞ is infinite (high) frequency permit-

tivity, εs is static (low) frequency permittivity. Now, equation (B.3) is obtained by

applying Laplace transform to equation (B.2).

εr
s
=
ε∞
s

+
(εs − ε∞)

s
− (εs − ε∞)

s+ 1
τ

(B.3)

In order to obtain equation (B.4), equation (B.3) is simplified after multiplying both

sides by s and substituting s = jω.

εr = ε∞ +
(εs − ε∞)
1 + jωτ

(B.4)

B.2 Derivation of Electric Field Update Equations

for Numerical Breast Phantom Region

FDTD electric field update equation is derived by using polarization density equa-

tion. The polarization property of human breast tissues is included by substituting

Debye model into the ampere’s law equation. All derivations are done by assum-

ing air as surrounding medium. In case of specific surrounding medium replace

impedance and velocity of light values according to surrounding medium.

∇× ~H = ε0ε∞jω ~E + jωε0
∆ε

1 + jωτ
~E + σs ~E (B.5)
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σs is static conductivity. ∆ε is difference between static permittivity and infinite

permittivity. Equation (B.6) is obtained by rearranging equation (B.5).

∇× ~H = ε0ε∞jω ~E ++σs ~E + jωε0
∆ε

1 + jωτ
~E (B.6)

Polarization current density equation is important for derivation of the FDTD electric

field update equations. Equation of polarization current density is given below.

~Jp = jωε0
∆ε

1 + jωτ
~E (B.7)

~Jp is polarization current density vector and ~E is electric field intensity vector. Equa-

tion (B.8) is obtained by rearranging equation (B.7).

~Jp(1 + jωτ ) = jωε0∆ε ~E (B.8)

By applying Inverse Fourier transform.

~Jp + τ
∂ ~Jp
∂t

= ε0∆ε
∂ ~E

∂t
(B.9)

Now, By applying FDTD [2] and rearranging terms

τ

∆t
~J t+∆t
P

(
1 + ∆t

2τ

)
=

τ

∆t
~J tP

(
1− ∆t

2τ

)
+ ε0∆ε

~Et+∆t − ~Et
∆t

(B.10)

Whatever the time-constant τ is, it can be expressed as multiple of the time-step,

τ = Nt∆t where Nt does not need to be an integer. Put τ = Nt∆t and multiplying

both sides by ∆x = δ

δ ~J t+∆t
P =

1− 1
2Nt

1 + 1
2Nt

 δ ~J tP +

 ε0∆εδ
Nt∆t · (1 + 1

2Nt )

 ( ~Et+∆t − ~Et) (B.11)

δ ~J t+∆t
P = (mj1)δ ~J tP + (mj2)( ~Et+∆t − ~Et) (B.12)
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Divide both sides by ∆x = δ to get polarization current density equation.

δ ~J
t+∆t

2
P =

δ ~J t+∆t
P + δ ~J tP

2 (B.13)

By applying Inverse Fourier transform to equation (B.6)

∇× ~Ht+∆t
2
= ε0ε∞

∂ ~E

∂t
+ σs ~E + ~J

t+∆t
2

P (B.14)

By applying FDTD and Multiplying both sides by ∆x = δ.

δ∇× ~Ht+∆t
2
= δε0ε∞

~Et+∆t − ~Et
∆t

+ δσs
~Et+∆t + ~Et

2 + δ ~J
t+∆t

2
P (B.15)

By substituting δJ t+
∆t
2

P in above equation

δ∇× ~Ht+∆t
2
=δε0ε∞

~Et+∆t − ~Et
∆t

+ δσs
~Et+∆t + ~Et

2 +

1/2[(1 +mj1)δ ~J tP +mj2( ~Et+∆t − ~Et)]

(B.16)

By rearranging above equation after normalizing electric field vector.

δε0ε∞
∆t

(
1 + σs∆t

2ε0ε∞
+

∆t ·mj2
2δε0ε∞

)
~Et+∆t =

δε0ε∞
∆t

(
1− σs∆t

2ε0ε∞
+

∆t ·mj2
2δε0ε∞

)
~Et+

δ

η0
∇× ~Ht+∆t

2
− 1

2(1 +mj1)δ ~J tP

(B.17)

Electric field update equation is given by equation (B.18)

~Et+∆t =

(
1− σs∆t

2ε0ε∞ + ∆t·mj2
2δε0ε∞

)
(
1 + σs∆t

2ε0ε∞ + ∆t·mj2
2δε0ε∞

) ~Et + c0∆t

2δε∞
(
1 + σs∆t

2ε0ε∞ + ∆t·mj2
2δε0ε∞

) ·
(

2δ∇× ~Ht+∆t
2
− η0(1 +mj1)δ ~J tP

) (B.18)
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By substituting

(
1− σs∆t

2ε0ε∞
+ ∆t·mj2

2δε0ε∞

)
(

1+ σs∆t
2ε0ε∞

+ ∆t·mj2
2δε0ε∞

) = me1 and c0∆t

2δε∞
(

1+ σs∆t
2ε0ε∞

+ ∆t·mj2
2δε0ε∞

) = me2

~Et+∆t =me1 · ~Et +me2 · [(2∆x · ∇× ~Ht+∆t
2
)−

(η0 · (1 +mj1) · ∆x · ~J tP )]
(B.19)

B.3 Derivation of Electric Field Update Equations

for PML Region

PML is required at grid boundaries to avoid reflection of microwave signals in

FDTD. Artificial losses in x direction is given below [3, 4].

Sx =


(
1 + σx

jωε0

)−1
0 0

0
(
1 + σx

jωε0

)
0

0 0
(
1 + σx

jωε0

)

 (B.20)

σx in above matrix is defined as below.

σx =
0.5ε0

∆t

(
x

Lx

)3
(B.21)

In above equation, Lx is length of PML in x direction. x is particular cell number

of PML. Artificial losses in Y direction is given below.

Sy =


(
1 + σy

jωε0

)
0 0

0
(
1 + σy

jωε0

)−1
0

0 0
(
1 + σy

jωε0

)

 (B.22)

In above equation, Ly is length of PML in z direction. z is particular cell number of

PML. Artificial losses in Z direction is given below.

Sz =


(
1 + σz

jωε0

)
0 0

0
(
1 + σz

jωε0

)
0

0 0
(
1 + σz

jωε0

)−1

 (B.23)
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Artificial losses in all three directions can be combined as

[S] = [Sx][Sy][Sz] (B.24)

Ampere law equation can be written to incorporate artificial losses in all directions.

∇× ~H = jω[S] ~D (B.25)

Writing x component of above equation after substituting [S] in it.

jω

(
1 + σx

jωε0

)−1 (
1 + σy

jωε0

)(
1 + σz

jωε0

)
Dx =[

∂Hz

∂y
− ∂Hy

∂z

] (B.26)

By substituting
[
∂Hz
∂y −

∂Hy
∂z

]
= (CH)x and rearranging terms.

jω

(
1 + σy

jωε0

)(
1 + σz

jωε0

)
Dx =

(
1 + σx

jωε0

)
(CH)x (B.27)

Equation (B.28) by simplifying equation (B.27).

jωDx +
σy + σz
ε0

Dx +
σyσz

jωε20
Dx = (CH)x +

σx
jωε0

(CH)x (B.28)

By applying Inverse Fourier Transform

∂

∂t
Dx +

σy + σz
ε0

Dx+
σyσz

ε20

∫ t

−∞
Dxdτ = (CH)x+

σx
ε0

∫ t

−∞
(CH)xdτ

(B.29)

By applying FDTD and normalizing electric field density component.

Dt+∆t
x −Dt

x

∆t
+
σy + σz
ε0

Dt+∆t
x +Dt

x

2 +
σyσz∆t
ε20

Dt+∆t
x +Dt

x

4 +
t∑

T=0
Dx


= c0CHx +

c0σx
ε0

t+∆t
2∑

T=0
CHx

(B.30)
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By rearranging above equation.

Dt+∆t
x =

(
1

∆t −
σy+σz

2ε0 −
σy·σz ·∆t

4ε20

)
(

1
∆t +

σy+σz
2ε0 + σy·σz ·∆t

4ε20

)Dt
x +

c0 ·CHx(
1

∆t +
σy+σz

2ε0 + σy·σz ·∆t
4ε20

)
+

c0 · ∆t · σx(
1

∆t +
σy+σz

2ε0 + σy·σz ·∆t
4ε20

)
· ε0

(Ich)x −
∆t · σy · σz · IDx(

1
∆t +

σy+σz
2ε0 + σy·σz ·∆t

4ε20

)
· ε20

(B.31)

Electric field can be updated as given below.

Ex =
Dx

εxx
(B.32)

Electric field update equations in y and z directions are obtained by repeating above

procedure.

B.4 Power Calculations

Power calculations is extremely important to validate the implementation. Steps

are given below to calculate power [2].

• Transverse wave vector expansion

~kxy(m,n) = kx(m)x̂+ ky(n)ŷ (B.33)

kx(m)x̂ and ky(n)ŷ are wave vectors in above equation.

kx(m) =
2πm
Sx

(B.34)

Sx is total number of cells in x direction. m is varying from -Sx/2 to +Sx/2.

ky(n) =
2πn
Sy

(B.35)

Sy is total number of cells in y direction. n is varying from -Sy/2 to +Sy/2.
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• Longitudinal wave vector expansion for reflection and transmission.

kzr(m,n) =
√
(k0nref )2 − k2

x(m)− k2
y(n) (B.36)

kzt(m,n) =
√
(k0ntm)2 − k2

x(m)− k2
y(n) (B.37)

k0 is wave number for free space. nref and ntm are refractive indices of reflection

and transmission respectively on grid.

• Normalize reflected and transmitted fields using source field

• Calculate spatial harmonics Spxr,Spyr,Spxt,Spyt by using FFT.

• Now find Spz.

Spzr = −(kx. ∗ Spxr + ky. ∗ Spyr)./kzr (B.38)

Spzt = −(kx. ∗ Spxt + ky. ∗ Spyt)./kzt (B.39)

• Calculate diffraction efficiencies

Spref = abs(Spxr).2 + abs(Spyr).2 + abs(Spzr).2 (B.40)

Sptrn = abs(Spxt).2 + abs(Spyt).2 + abs(Spzt).2 (B.41)

ref = real(kzr/kzinc). ∗ Spref (B.42)

trn = real(kzt/kzinc). ∗ Sptrn (B.43)

REF (nfreq) = sum(ref(:)) (B.44)
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TRN(nfreq) = sum(trn(:)) (B.45)

REF and TRN are reflected and transmitted powers due to numerical breast

phantom.

129



References

[1] Ikram-e-Khuda, Sabira Khatun, Khondker Jahid Reza, Md. Mijanur Rahman,

Md.Moslemuddin Fakir, "Improved Debye Model for Experimental Approxima-

tion of Human Breast Tissue Properties at 6 GHz Ultra-Wideband Centre Fre-

quency", International Journal of Engineering and Technology, Vol. 5, no. 6, pp.

4708-4717, 2013.

[2] John B. Schneider, "Understanding the Finite-Difference Time-Domain

Method," pp. 33-308, www.eecs.wsu.edu/ schneidj/ufdtd, 2010.

[3] Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for

the truncation of FDTD lattices," IEEE Transactions on Antennas and Propa-

gation, Vol. 44, no. 12, pp. 1630-1639, 1996

[4] Computational electromagnetic lecture 9, available at

http://emlab.utep.edu/ee5390cem/Lecture 9–Perfectly Matched Layer.pdf,

accessed January 2015

130



Appendix C

MATLAB Sample Codes

C.1 Multiple Frequency Inverse Scattering Prob-

lem Formulation

Multiple frequency inverse scattering matrix formulation is implemented by this code.

clc;

clear all;

close all;

u0 = 4*pi *10^ -9;

mu0 = u0;

e0 = 8.854*10^ -14;

del_l = 0.5;

a = ((3/(4* pi))^(1/3))*del_l;

u1 = [1 0 0];

u2 = [0 1 0];

u3 = [0 0 1];

dx = 0.5;

dy = 0.5;

dz = 0.5;

Nx1 = 40;

Ny1 = 40;
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Nz1 = 40;

c=3 e10;

Nv = Nx1*Ny1*Nz1;

Nfreq = 4;

f = 5e8;

f1 = 5e8;

f2 = 2e8;

Na = 40;

MF = Na*Nfreq;

freq = linspace (f1 ,f2 ,Nfreq);

k= 2*pi ./(c./ freq);

w = 2*pi.* freq;

xn = zeros(Nv ,Nfreq);

yn = zeros(Nv ,Nfreq);

zn = zeros(Nv ,Nfreq);

ed = zeros(Nx1 ,Ny1 ,Nz1);

einf = ones(Nx1 ,Ny1 ,Nz1);

sigd = zeros(Nx1 ,Ny1 ,Nz1);

tau = 15e -12;

w = 2*pi.* freq;

cinf = 1;

cdel = 1./(1+1 i*w.* tau);

csig = 1./(1i*w.*e0);

L = 0.01;

Iz = 0.000001;

n = 377;

i0 =0.000001;

l=0.01;

Na =40;

N = 40;
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[z, y, x] = ndgrid (.5:N); %// note reverse order to ...

get desired order of result

vc1 = [x(:) y(:) z(:) ]; %// desired result

m (1:64000 ,1:3) = 20;

vc2 = m-vc1;

vc = vc2 *0.5;

for i=1: Nv

rL(:,:,i)=vc(i ,:);

end

for i = 1:5

rm (: ,: ,1+8*(i -1)) = [15 0 6.75 -4*(i -1) ];

rm (: ,: ,2+8*(i -1)) = [10.61 10.61 6.75 -4*(i -1) ];

rm (: ,: ,3+8*(i -1))= [0 15 6.75 -4*(i -1) ];

rm (: ,: ,4+8*(i -1)) = [ -10.61 10.61 6.75 -4*(i -1) ];

rm (: ,: ,5+8*(i -1))= [-15 0 6.75 -4*(i -1) ];

rm (: ,: ,6+8*(i -1)) = [ -10.61 -10.61 6.75 -4*(i -1) ];

rm (: ,: ,7+8*(i -1)) = [0 -15 6.75 -4*(i -1) ];

rm (: ,: ,8+8*(i -1)) = [10.61 -10.61 6.75 -4*(i -1) ];

end

for m = 1:Na

for p = 1: Nfreq

for n = 1:Nv

r=(( rL(1,1,n)-rm(1,1,m))^2+( rL(1,2,n)-rm(1,2,m))^2+

(rL(1,3,n)-rm(1,3,m))^2) ^0.5;

r=1;

x1 = rL(1,1,n)-rm(1,1,m);

y1 = rL(1,2,n)-rm(1,2,m);

c = k(p)*r;

d = 1/c;
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e = 1/c.^2;

er(n,p) = ...

((n*i0*l*x1)/(2* pi*r^3))*(1 -1i*d)*exp(-1i*c);

eth(n,p) = ((1i*n*k(p)*i0*l*y1)/(4* pi*r^2))*

(1-1i*d-e)*exp(-1i*c);

ephi(n,p) = 0;

end

end

[x,y,z] = sph2cart (eth ,ephi ,er);

xn = xn+x;

yn=yn+y;

zn=zn+z;

end

for m=1: Nv

rfx1 (:,:,m) = rL(:,:,m) + ( (-1) ^1*( del_l /2)).*u1;

rfx2 (:,:,m) = rL(:,:,m) + ( (-1) ^2*( del_l /2)).*u1;

rfy1 (:,:,m) = rL(:,:,m) + ( (-1) ^1*( del_l /2)).*u2;

rfy2 (:,:,m) = rL(:,:,m) + ( (-1) ^2*( del_l /2)).*u2;

rfz1 (:,:,m) = rL(:,:,m) + ( (-1) ^1*( del_l /2)).*u3;

rfz2 (:,:,m) = rL(:,:,m) + ( (-1) ^2*( del_l /2)).*u3;

end

for m=1: Na

for n =1: Nv

rml(m,n) = ((rm(1,1,m)-rL(1,1,n))^2 +

(rm(1,2,m)-rL(1,2,n))^2 +

(rm(1,3,m)-rL(1,3,n))^2) ^0.5;

rx1(m) = ((rm(1,1,m)-rfx1 (1,1,m))^2 +
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(rm(1,2,m)-rfx1 (1,2,m))^2 +

(rm(1,3,m)-rfx1 (1,3,m))^2) ^0.5;

rx2(m) = ((rm(1,1,m)-rfx2 (1,1,m))^2 +

(rm(1,2,m)-rfx2 (1,2,m))^2 +

(rm(1,3,m)-rfx2 (1,3,m))^2) ^0.5;

ry1(m) = ((rm(1,1,m)-rfy1 (1,1,m))^2 +

(rm(1,2,m)-rfy1 (1,2,m))^2 +

(rm(1,3,m)-rfy1 (1,3,m))^2) ^0.5;

ry2(m) = ((rm(1,1,m)-rfy2 (1,1,m))^2 +

(rm(1,2,m)-rfy2 (1,2,m))^2 +

(rm(1,3,m)-rfy2 (1,3,m))^2) ^0.5;

rz1(m) = ((rm(1,1,m)-rfz1 (1,1,m))^2 +

(rm(1,2,m)-rfz1 (1,2,m))^2 +

(rm(1,3,m)-rfz1 (1,3,m))^2) ^0.5;

rz2(m) = ((rm(1,1,m)-rfz2 (1,1,m))^2 +

(rm(1,2,m)-rfz2 (1,2,m))^2 +

(rm(1,3,m)-rfz2 (1,3,m))^2) ^0.5;

end

end

for m = 1:Na

for n =1: Nv

for p = 1: Nfreq

[y,z] = meshgrid (rL(1,2,n) -(del_l /2):dy:

rL(1,2,n)+( del_l /2) ,rL(1,3,n) -(del_l /2):dz:

rL(1,3,n)+( del_l /2));

[x,z1] = meshgrid (rL(1,1,n) -(del_l /2):dx:

rL(1,1,n)+( del_l /2) ,

rL(1,3,n) -(del_l /2):dz:rL(1,3,n)+( del_l /2));

[x1 ,y1] = meshgrid (rL(1,1,n) -(del_l /2):dx:
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rL(1,1,n)+( del_l /2) ,

rL(1,2,n) -(del_l /2):dy:rL(1,2,n)+( del_l /2));

% "Gmlxx element "

rxx1_n = ((rm(1,1,m)-rfx1 (1,1,n)).^2 +

(rm(1,2,m)-y).^2 + (rm(1,3,m)-z).^2) .^0.5;

rxx2_n = ((rm(1,1,m)-rfx2 (1,1,n)).^2 +

(rm(1,2,m)-y).^2 + (rm(1,3,m)-z).^2) .^0.5;

Gxx1 =((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,1,m)-rfx1 (1,1,n));

Gxx2 =((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,1,m)-rfx2 (1,1,n));

IGxx1 = sum(sum(Gxx1))*(dy*dz);

IGxx2= sum(sum(Gxx2))*(dy*dz);

B1(p+(m -1) *4 ,1+(n -1) *1) = ...

(( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGxx1+IGxx2;

A1(p+(m -1) *4 ,1+(n -1) *1) = exp(-1i*k(p)*a)*

(1+(1i*k(p)*a)) -1;

end

end

end

xn = xn ';

[Ogn] = VOXELISE (Nx1 ,Ny1 ,Nz1 ,

'ClassIII_printed_phantom .stl ','xyz ');

Ogn = +Ogn;

delx1 = 1;

dely1 = 1;

delz1 = 1;
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xa = (1: Nx1)*delx1;

xa = xa -mean(xa);

ya = (1: Ny1)*dely1;

ya = ya -mean(ya);

za = (1: Nz1)*delz1;

za = za -mean(za);

r = 12;

r2 = 15;

[Xa ,Ya ,Za] = meshgrid (xa ,ya ,za);

A = ((Xa +1) .^2+( Ya).^2) <= r^2;

B= +A;

A2 = ((Xa).^2+( Ya).^2) <= r2 ^2;

B2 = +A2;

for nz =1: Nz1

for nx =1: Nx1

for ny = 1: Ny1

if(Ogn(nx ,ny ,nz)==0&&B(nx ,ny ,nz)==1)

ed(nx ,ny ,nz) = 35.6;

einf(nx ,ny ,nz) = 18.6 -2.6;

sigd(nx ,ny ,nz) = 0.00817;

elseif(Ogn(nx ,ny ,nz)==1&&B(nx ,ny ,nz)==1)

ed(nx ,ny ,nz) = 3.54;

einf(nx ,ny ,nz) = 4.09 -2.6;
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sigd(nx ,ny ,nz) = 0.000842;

else

einf(nx ,ny ,nz) =2.6;

ed(nx ,ny ,nz)=1;

sigd(nx ,ny ,nz) = 0.0001;

end

end

end

end

for nx = 1: Nx1

for ny = 1: Ny1

for nz = 1: Nz1

deinf ((( Nx1*Ny1)*(nx -1))+( Ny1 *(ny -1))+nz ,1)=

einf(nx ,ny ,nz);

dedel ((( Nx1*Ny1)*(nx -1))+( Ny1 *(ny -1))+nz ,1)=

ed(nx ,ny ,nz);

dsigs ((( Nx1*Ny1)*(nx -1))+( Ny1 *(ny -1))+nz ,1)=

sigd(nx ,ny ,nz);

end

end

end

x = [deinf;dedel;dsigs ];

for nm = 1:Na

for nk = 1:Nv

nf =1 ;

Ain (1+(nm -1)*Nfreq ,nk) = cinf*w(nf)^2* mu0*e0*

B1 (1+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Adel (1+(nm -1)*Nfreq ,nk) = cdel(nf)*(w(nf)^2)*mu0*e0*
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B1 (1+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Asig (1+(nm -1)*Nfreq ,nk) = csig(nf)*(w(nf)^2)*mu0*e0*

B1 (1+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

nf = 2;

Ain (2+(nm -1)*Nfreq ,nk) = cinf*w(nf)^2* mu0*e0*

B1 (2+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Adel (2+(nm -1)*Nfreq ,nk) = cdel(nf)*(w(nf)^2)*mu0*e0*

B1 (2+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Asig (2+(nm -1)*Nfreq ,nk) = csig(nf)*(w(nf)^2)*mu0*e0*

B1 (2+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

nf = 3;

Ain (3+(nm -1)*Nfreq ,nk) = cinf*w(nf)^2* mu0*e0*

B1 (3+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Adel (3+(nm -1)*Nfreq ,nk) = cdel(nf)*(w(nf)^2)*mu0*e0*

B1 (3+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Asig (3+(nm -1)*Nfreq ,nk) = csig(nf)*(w(nf)^2)*mu0*e0*

B1 (3+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

nf = 4;

Ain (4+(nm -1)*Nfreq ,nk) = cinf*w(nf)^2* mu0*e0*

B1 (4+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Adel (4+(nm -1)*Nfreq ,nk) = cdel(nf)*(w(nf)^2)*mu0*e0*

B1 (4+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

Asig (4+(nm -1)*Nfreq ,nk) = csig(nf)*(w(nf)^2)*mu0*e0*

B1 (4+(nm -1)*Nfreq ,nk)*xn(nf ,nk);

end
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end

for nm = 1:MF

for nk = 1:Nv

A11 (1+(nm -1)*2,nk) = real(Ain(nm ,nk));

A11 (2+(nm -1)*2,nk) = imag(Ain(nm ,nk));

A22 (1+(nm -1)*2,nk) = real(Adel(nm ,nk));

A22 (2+(nm -1)*2,nk) = imag(Adel(nm ,nk));

A33 (1+(nm -1)*2,nk) = real(Asig(nm ,nk));

A33 (2+(nm -1)*2,nk) = imag(Asig(nm ,nk));

end

end

A= [A11 A22 A33 ];

b = A*x;
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C.2 Signed Distance Function Generation

Signed distance function calculation is extremely important in 3D level set based

optimization. Signed distance function is implemented by using this code.

clear all;

close all;

clc;

% Initialize FDTD Parameters

Nx = 80;

Ny = 80;

Nz = 80;

Sx = 20;

Sy = 20;

Sz = 20;

c0a = 3e10;

f = 7e8;

nimp = 377;

e0 = 8.854e -14;

mu0 = 4*pi*1e -9;

NPML = [20 20 20 20 20 20];

delx = 0.5;%Sx/Nx

dely = 0.5;%Sy/Ny;

delz = 0.5;%Sz/Nz;

delt = 9e -12;

%T = 1.11e -08;

steps = 1500;%4000;

%steps = 5;

delts = 13.5e -12;
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[X,Y,Z] = meshgrid (1:Nx ,1:Ny ,1: Nz);

z0 = (mu0/e0)^0.5;

Nx1 = 40;

Ny1 = 40;

Nz1 = 40;

[X1 ,Y1 ,Z1] = meshgrid (1:Nx1 ,1:Ny1 ,1: Nz1);

sdfth=zeros(Nx ,Ny ,Nz);

sdfd=zeros(Nx ,Ny ,Nz);

sdf=zeros(Nx ,Ny);

sdfe=zeros(Nx ,Ny ,Nz);

Og = zeros(Nx ,Ny ,Nz);

delx1 = 1;%Sx/Nx

dely1 = 1;%Sy/Ny;

delz1 = 1;%Sz/Nz;

% Voxelise the STL:

nx1 = 21;

nx2 = 60;

ny1 = 21;

ny2 = 60;

nz1 = 21;

nz2 = 60;

[Ogn] = VOXELISE (Nx1 ,Ny1 ,Nz1 ,

'ClassIII_printed_phantom .stl ','xyz ');

Ogn = +Ogn;

Ogn = 1-Ogn;

for nx = 21:60

for ny = 21:60

for nz = 21:60

Og(nx ,ny ,nz) = Ogn(nx -20,ny -20,nz -20);

end
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end

end

for nz = 21:60

sdf = Og (34:42 ,36:44 , nz);

sdfe (34:42 ,36:44 , nz) = edge(sdf);

end

sdfd (27:55 ,25:52 ,:) = bwdist(sdfe (27:55 ,25:52 ,:));

for nz = 21:60

for ny = 21:60

for nx = 21:60

if (Og(nx ,ny ,nz)==0)

sdfth(nx ,ny ,nz) = -1* sdfd(nx ,ny ,nz);

elseif(Og(nx ,ny ,nz)==1)

sdfth(nx ,ny ,nz) = 1* sdfd(nx ,ny ,nz);

end

end

end

end

for nx = 21:60

for ny = 21:60

for nz = 21:60

if (sdfth(nx ,ny ,nz) >=15)

sdfth(nx ,ny ,nz)=15;

end

if (sdfth(nx ,ny ,nz) <=-15)

sdfth(nx ,ny ,nz)= -15;

end
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end

end

end

sdfth = sdfth /15;

figure('color ','w')

slice(sdfth ,[] ,[] ,32);

whitebg ('w')

shading interp

colormap gray

colorbar

axis off

view (2)
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C.3 3D FDTD

3D FDTD electric field and magnetic filed update equations are used on discrete

grid to find electric field profile in the numerical breast phantom. 3D FDTD is

implemented to visualize electric field by using this code.

clear all;

close all;

clc;

% Initialize FDTD Parameters

Nx = 40;

Ny = 40;

Nz = 40;

Sx = 20;

Sy = 20;

Sz = 20;

c0a = 3e10;

iNx = 25;

iNy = 25;

iNz = 25;

m=0;

nimp = 377;

e0 = 8.854e -14;

mu0 = 4*pi*1e -9;

NPML = [5 5 5 5 5 5];

delx = 0.5;%Sx/Nx

dely = 0.5;%Sy/Ny;

delz = 0.5;%Sz/Nz;

delt1 = 1.8e -12;

delt = 5* delt1;

%T = 1.11e -08;
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steps = 1000;%4000;

%steps = 5;

delts1 = 2.7e -12;

delts = 5* delts1;

ft1 = 7;

ft2 = 34;

ft11 = 7;

ft22 = 34;

Ae = 0.4;

Ah = -0.4/233;

[X,Y,Z] = meshgrid (1:Nx ,1:Ny ,1: Nz);

z0 = (mu0/e0)^0.5;

Nx1 = 40;

Ny1 = 40;

Nz1 = 40;

delx1 = 1;%Sx/Nx

dely1 = 1;%Sy/Ny;

delz1 = 1;%Sz/Nz;

% Voxelise the STL:

nx1 = 7;

nx2 = 34;

ny1 = 7;

ny2 = 34;

nz1 = 1;

nz2 = 40;

[x1 ,y1 ,z1] = meshgrid (1:Nx1 ,1:Ny1 ,1: Nz1);

einfx1 = zeros (40 ,40 ,40);

edx1 = zeros (40 ,40 ,40);

sigdx11 = zeros (40 ,40 ,40);

[Ogn] = VOXELISE (Nx ,Ny ,Nz ,

'ClassIII_printed_phantom .stl ','xyz ');
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%Ogn = 1-Ogn;

Og = zeros(Nx ,Ny ,Nz);

Bn = zeros(Nx ,Ny ,Nz);

B1n = zeros(Nx ,Ny ,Nz);

xa = (1: Nx)*delx1;

xa = xa -mean(xa);

ya = (1: Ny)*dely1;

ya = ya -mean(ya);

za = (1: Nz)*delz1;

za = za -mean(za);

r = 12;

r1 = 13;

[Xa ,Ya ,Za] = meshgrid (xa ,ya ,za);

A = ((Xa +1) .^2+( Ya).^2) <= r^2;

A1 = ((Xa +1) .^2+( Ya).^2) <= r1 ^2;

B= +A;

B1 = +A1;

B1 = and(B1 ,Ogn);

B4 = or(B1 ,Ogn);

% Initalize Reflection and transmittance parameters

Nfreq = 20;

f1 = 5e8;

f2 = 2.5 e9;

FREQ = linspace (f1 ,f2 ,Nfreq);

k = exp(-1i*2* pi*delt .* FREQ);

tau = 0.5/ f2;

t0 = 6* tau;

k0= (2* pi)./( c0a ./ FREQ);

srcfx = zeros(iNx ,iNy ,Nfreq);

srcfy = zeros(iNx ,iNy ,Nfreq);

srcfxy = zeros(iNx ,iNz ,Nfreq);
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srcfzy = zeros(iNx ,iNz ,Nfreq);

srcfyx = zeros(iNy ,iNz ,Nfreq);

srcfzx = zeros(iNy ,iNz ,Nfreq);

nref = 7;

ntra = 34;

P= (-( floor (( iNx)/2)):( floor (( iNx)/2))) ';

M = (-( floor (( iNy)/2)):( floor (( iNy)/2))) ';

N =(-( floor (( iNz)/2)):( floor (( iNz)/2))) ';

kx = -2*pi*P/12.5;

ky = -2*pi*M/12.5;

kz = -2*pi*N/12.5;

[kxz ,kyz] = meshgrid (kx ,ky);

[kyx ,kzx] = meshgrid (kz ,ky);

[kxy ,kzy] = meshgrid (kz ,kx);

% Initialize all fields and integrations to zero

Hx = zeros(Nx ,Ny ,Nz);

Hy = zeros(Nx ,Ny ,Nz);

Hz = zeros(Nx ,Ny ,Nz);

Ex = zeros(Nx ,Ny ,Nz);

Ey = zeros(Nx ,Ny ,Nz);

Ez = zeros(Nx ,Ny ,Nz);

Dx = zeros(Nx ,Ny ,Nz);

Dy = zeros(Nx ,Ny ,Nz);

Dz = zeros(Nx ,Ny ,Nz);

Icex = zeros(Nx ,Ny ,Nz);

Icey = zeros(Nx ,Ny ,Nz);

Icez = zeros(Nx ,Ny ,Nz);

IHx = zeros(Nx ,Ny ,Nz);

IHy = zeros(Nx ,Ny ,Nz);
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IHz = zeros(Nx ,Ny ,Nz);

Ichx = zeros(Nx ,Ny ,Nz);

Ichy = zeros(Nx ,Ny ,Nz);

Ichz = zeros(Nx ,Ny ,Nz);

IDx = zeros(Nx ,Ny ,Nz);

IDy = zeros(Nx ,Ny ,Nz);

IDz = zeros(Nx ,Ny ,Nz);

Exsrc = zeros(Nx ,Ny ,Nz);

Eysrc = zeros(Nx ,Ny ,Nz);

Exsrcy = zeros(Nx ,Ny ,Nz);

Ezsrcy = zeros(Nx ,Ny ,Nz);

Eysrcx = zeros(Nx ,Ny ,Nz);

Ezsrcx = zeros(Nx ,Ny ,Nz);

Hxsrc = zeros(Nx ,Ny ,Nz);

Hysrc = zeros(Nx ,Ny ,Nz);

Hxsrcy = zeros(Nx ,Ny ,Nz);

Hzsrcy = zeros(Nx ,Ny ,Nz);

Hysrcx = zeros(Nx ,Ny ,Nz);

Hzsrcx = zeros(Nx ,Ny ,Nz);

muxx = ones(Nx ,Ny ,Nz);

muyy = ones(Nx ,Ny ,Nz);

muzz = ones(Nx ,Ny ,Nz);

exx = ones(Nx ,Ny ,Nz);

eyy = ones(Nx ,Ny ,Nz);

ezz = ones(Nx ,Ny ,Nz);

einfx = ones(Nx ,Ny ,Nz);

einfy = ones(Nx ,Ny ,Nz);

einfz = ones(Nx ,Ny ,Nz);

Ntx = ones(Nx ,Ny ,Nz);

Nty = ones(Nx ,Ny ,Nz);

Ntz = ones(Nx ,Ny ,Nz);
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ed = zeros(Nx ,Ny ,Nz);

einf = ones(Nx ,Ny ,Nz);

sigd = zeros(Nx ,Ny ,Nz);

edx = zeros(Nx ,Ny ,Nz);

edy = zeros(Nx ,Ny ,Nz);

edz = zeros(Nx ,Ny ,Nz);

cjjx = zeros(Nx ,Ny ,Nz);

cjex = zeros(Nx ,Ny ,Nz);

cjjy = zeros(Nx ,Ny ,Nz);

cjey = zeros(Nx ,Ny ,Nz);

cjjz = zeros(Nx ,Ny ,Nz);

cjez = zeros(Nx ,Ny ,Nz);

sigdx1 = zeros(Nx ,Ny ,Nz);

sigdy1 = zeros(Nx ,Ny ,Nz);

sigdz1 = zeros(Nx ,Ny ,Nz);

jpx = zeros(Nx ,Ny ,Nz);

jpy = zeros(Nx ,Ny ,Nz);

jpz = zeros(Nx ,Ny ,Nz);

srcx = zeros(iNx ,iNy);

srcy = zeros(iNx ,iNy);

for nz=nz1:nz2

for nx=nx1:nx2

for ny = ny1:ny2

if (mod(nz ,10) ==0)

m= m+3;

r = 12-m;

r1 = 13-m;

A2 = ((Xa +1) .^2+( Ya).^2) <= r^2;

A3 = ((Xa +1) .^2+( Ya).^2) <= r1 ^2;

B2 = +A2;

150



B3 = +A3;

end

end

end

end

%

for nz=nz1:nz2

for nx=nx1:nx2

for ny = ny1:ny2

if(Ogn(nx ,ny ,nz)==0&& B1(nx ,ny ,nz)==0)

edx(nx ,ny ,nz) = 35.6;

einfx(nx ,ny ,nz) = 18.6;

sigdx1(nx ,ny ,nz) = 0.00817;

elseif(Ogn(nx ,ny ,nz)==1 && B1(nx ,ny ,nz)==1)

edx(nx ,ny ,nz) = 3.54;

einfx(nx ,ny ,nz) = 4.09;

sigdx1(nx ,ny ,nz) = 0.000842;

end

end

end

end

for nz=nz1:nz2

for ny=ny1:ny2

for nx = nx1:nx2

edz(nx ,ny ,nz) = edx(nz ,nx ,ny);

einfz(nx ,ny ,nz) = einfx(nz ,nx ,ny);

sigdz1(nx ,ny ,nz) = sigdx1(nz ,nx ,ny);

end

end
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end

for ny=ny1:ny2

for nx=nx1:nx2

for nz = nz1:nz2

edy(nx ,ny ,nz) = edx(ny ,nx ,nz);

einfy(nx ,ny ,nz) = einfx(ny ,nx ,nz);

sigdy1(nx ,ny ,nz) = sigdx1(ny ,nx ,nz);

end

end

end

for nx =nx1:nx2

for ny=ny1:ny2

for nz =nz1:nz2

if(Bn(nx ,ny ,nz) >0.6)

Ntx(nx ,ny ,nz) = 1.667;

Nty(nx ,ny ,nz) = 1.667;

Ntz(nx ,ny ,nz) = 1.667;

end

end

end

end

% Build UPML on grid

Nx2 = 2*Nx;

Ny2 = 2*Ny;

Nz2 = 2*Nz;
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sigx = zeros(Nx2 ,Ny2 ,Nz2);

for nx = 1:2* NPML (1)

nx1 = 2* NPML (1) -nx +1;

sigx(nx1 ,: ,:) = (0.5* e0/delt)*(nx /2/ NPML (1))^3;

end

for nx = 1:2* NPML (2)

nx1 = Nx2 -2* NPML (2)+nx;

sigx(nx1 ,: ,:) = (0.5* e0/delt)*(nx /2/ NPML (2))^3;

end

sigy = zeros(Nx2 ,Ny2 ,Nz2);

for ny = 1:2* NPML (3)

ny1 = 2* NPML (3) -ny +1;

sigy (:,ny1 ,:) = (0.5* e0/delt)*(ny /2/ NPML (3))^3;

end

for ny = 1:2* NPML (4)

ny1 = Ny2 -2* NPML (4)+ny;

sigy (:,ny1 ,:) = (0.5* e0/delt)*(ny /2/ NPML (4))^3;

end

sigz = zeros(Nx2 ,Ny2 ,Nz2);

for nz = 1:2* NPML (5)

nz1 = 2* NPML (5) -nz +1;

sigz (:,:, nz1) = (0.5* e0/delt)*(nz /2/ NPML (5))^3;

end
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for nz = 1:2* NPML (6)

nz1 = Nz2 -2* NPML (6)+nz;

sigz (:,:, nz1) = (0.5* e0/delt)*(nz /2/ NPML (6))^3;

end

% Calculate UPML update coeffieicnts

sighxx = sigx (1:2: Nx2 ,2:2: Ny2 ,2:2: Nz2);

sighyx = sigy (1:2: Nx2 ,2:2: Ny2 ,2:2: Nz2);

sighzx = sigz (1:2: Nx2 ,2:2: Ny2 ,2:2: Nz2);

sighxy = sigx (2:2: Nx2 ,1:2: Ny2 ,2:2: Nz2);

sighyy = sigy (2:2: Nx2 ,1:2: Ny2 ,2:2: Nz2);

sighzy = sigz (2:2: Nx2 ,1:2: Ny2 ,2:2: Nz2);

sighxz = sigx (2:2: Nx2 ,2:2: Ny2 ,1:2: Nz2);

sighyz = sigy (2:2: Nx2 ,2:2: Ny2 ,1:2: Nz2);

sighzz = sigz (2:2: Nx2 ,2:2: Ny2 ,1:2: Nz2);

sigdxx = sigx (2:2: Nx2 ,1:2: Ny2 ,1:2: Nz2);

sigdyx = sigy (2:2: Nx2 ,1:2: Ny2 ,1:2: Nz2);

sigdzx = sigz (2:2: Nx2 ,1:2: Ny2 ,1:2: Nz2);

sigdxy = sigx (1:2: Nx2 ,2:2: Ny2 ,1:2: Nz2);

sigdyy = sigy (1:2: Nx2 ,2:2: Ny2 ,1:2: Nz2);

sigdzy = sigz (1:2: Nx2 ,2:2: Ny2 ,1:2: Nz2);

sigdxz = sigx (1:2: Nx2 ,1:2: Ny2 ,2:2: Nz2);

sigdyz = sigy (1:2: Nx2 ,1:2: Ny2 ,2:2: Nz2);

sigdzz = sigz (1:2: Nx2 ,1:2: Ny2 ,2:2: Nz2);
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for nx = 1:Nx

for ny = 1:Ny

for nz = 1:Nz

mhx0(nx ,ny ,nz)=(1/ delt)+(( sighyx(nx ,ny ,nz)+sighzx(nx ,ny ,nz))/

(2* e0))+( sighyx(nx ,ny ,nz)*sighzx(nx ,ny ,nz)*delt /(4* e0 ^2));

mhx1(nx ,ny ,nz) = (1/ mhx0(nx ,ny ,nz))*((1/ delt)-

(( sighyx(nx ,ny ,nz)+sighzx(nx ,ny ,nz))/(2* e0))-

(sighyx(nx ,ny ,nz)*sighzx(nx ,ny ,nz)*delt /(4* e0 ^2)));

%mhx2(nx ,ny ,nz) = ...

-(1/ mhx0(nx ,ny ,nz))*( c0a /( muxx(nx ,ny ,nz)*

einfx(nx ,ny ,nz)));

mhx2(nx ,ny ,nz) = ...

-(1/ mhx0(nx ,ny ,nz))*( c0a /( muxx(nx ,ny ,nz)));

mhx3(nx ,ny ,nz) = ...

-(1/ mhx0(nx ,ny ,nz))*( c0a*delt*sighxx(nx ,ny ,nz)/

(e0*muxx(nx ,ny ,nz)));

mhx4(nx ,ny ,nz) = ...

-(1/ mhx0(nx ,ny ,nz))*( delt*sighyx(nx ,ny ,nz)

*sighzx(nx ,ny ,nz)/e0 ^2);

mhy0(nx ,ny ,nz) = (1/ delt)+(( sighxy(nx ,ny ,nz)+

sighzy(nx ,ny ,nz))/(2* e0))+

(( sighxy(nx ,ny ,nz)*sighzy(nx ,ny ,nz)*delt)/(4* e0 ^2));

mhy1(nx ,ny ,nz) = (1/ mhy0(nx ,ny ,nz))*((1/ delt)-

(( sighxy(nx ,ny ,nz)+sighzy(nx ,ny ,nz))/(2* e0))-

(sighxy(nx ,ny ,nz)*sighzy(nx ,ny ,nz)*delt /(4* e0 ^2)));

%mhy2(nx ,ny ,nz) = ...

-(1/ mhy0(nx ,ny ,nz))*( c0a /( muyy(nx ,ny ,nz)

*einfy(nx ,ny ,nz)));
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mhy2(nx ,ny ,nz) = ...

-(1/ mhy0(nx ,ny ,nz))*( c0a /( muyy(nx ,ny ,nz)));

mhy3(nx ,ny ,nz) = ...

-(1/ mhy0(nx ,ny ,nz))*( c0a*delt*sighyy(nx ,ny ,nz)/

(e0*muyy(nx ,ny ,nz)));

mhy4(nx ,ny ,nz) = ...

-(1/ mhy0(nx ,ny ,nz))*( delt*sighxy(nx ,ny ,nz)*

sighzy(nx ,ny ,nz)/e0 ^2);

mhz0(nx ,ny ,nz) = (1/ delt)+(( sighxz(nx ,ny ,nz)+

sighyz(nx ,ny ,nz))/(2* e0))+

(sighxz(nx ,ny ,nz)*sighyz(nx ,ny ,nz)*delt /(4* e0 ^2));

mhz1(nx ,ny ,nz) = (1/ mhz0(nx ,ny ,nz))*((1/ delt)-

(( sighxz(nx ,ny ,nz)+sighyz(nx ,ny ,nz))/(2* e0))-

(sighxz(nx ,ny ,nz)*sighyz(nx ,ny ,nz)*delt /(4* e0 ^2)));

%mhz2(nx ,ny ,nz) = -(1/ mhz0(nx ,ny ,nz))*

(c0a /( muzz(nx ,ny ,nz)*einfz(nx ,ny ,nz)));

mhz2(nx ,ny ,nz) = ...

-(1/ mhz0(nx ,ny ,nz))*( c0a /( muzz(nx ,ny ,nz)));

mhz3(nx ,ny ,nz) = -(1/ mhz0(nx ,ny ,nz))*

(c0a*delt*sighzz(nx ,ny ,nz)/(e0*muzz(nx ,ny ,nz)));

mhz4(nx ,ny ,nz) = -(1/ mhz0(nx ,ny ,nz))*

(delt*sighxz(nx ,ny ,nz)*sighyz(nx ,ny ,nz)/e0 ^2);

mdx0(nx ,ny ,nz) = (1/ delt)+(( sigdyx(nx ,ny ,nz)+

sigdzx(nx ,ny ,nz))/(2* e0))+

(sigdyx(nx ,ny ,nz)*sigdzx(nx ,ny ,nz)*delt /(4* e0 ^2));

mdx1(nx ,ny ,nz) = (1/ mdx0(nx ,ny ,nz))*((1/ delt)-

(( sigdyx(nx ,ny ,nz)+sigdzx(nx ,ny ,nz))/(2* e0))-

(sigdyx(nx ,ny ,nz)*sigdzx(nx ,ny ,nz)*delt /(4* e0 ^2)));

mdx2(nx ,ny ,nz) = c0a /( mdx0(nx ,ny ,nz));
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mdx3(nx ,ny ,nz) = (1/ mdx0(nx ,ny ,nz))*

(c0a*delt*sigdxx(nx ,ny ,nz)/(e0));

mdx4(nx ,ny ,nz) = -(1/ mdx0(nx ,ny ,nz))*

(delt*sigdyx(nx ,ny ,nz)*sigdzx(nx ,ny ,nz)/e0 ^2);

mdy0(nx ,ny ,nz) = (1/ delt)+(( sigdxy(nx ,ny ,nz)+

sigdzy(nx ,ny ,nz))/(2* e0))+

(sigdxy(nx ,ny ,nz)*sigdzy(nx ,ny ,nz)*delt /(4* e0 ^2));

mdy1(nx ,ny ,nz) = (1/ mdy0(nx ,ny ,nz))*((1/ delt)-

(( sigdxy(nx ,ny ,nz)+sigdzy(nx ,ny ,nz))/(2* e0))-

(sigdxy(nx ,ny ,nz)*sigdzy(nx ,ny ,nz)*delt /(4* e0 ^2)));

mdy2(nx ,ny ,nz) = c0a /( mdy0(nx ,ny ,nz));

mdy3(nx ,ny ,nz) = (1/ mdy0(nx ,ny ,nz))*

(c0a*delt*sigdyy(nx ,ny ,nz)/(e0));

mdy4(nx ,ny ,nz) = -(1/ mdy0(nx ,ny ,nz))*

(delt*sigdxy(nx ,ny ,nz)*sigdzy(nx ,ny ,nz)/e0 ^2);

mdz0(nx ,ny ,nz) = (1/ delt)+(( sigdxz(nx ,ny ,nz)+

sigdyz(nx ,ny ,nz))/(2* e0))+

(sigdxz(nx ,ny ,nz)*sigdyz(nx ,ny ,nz)*delt /(4* e0 ^2));

mdz1(nx ,ny ,nz) = (1/ mdz0(nx ,ny ,nz))*((1/ delt)-

(( sigdxz(nx ,ny ,nz)+sigdyz(nx ,ny ,nz))/(2* e0))-

(sigdxz(nx ,ny ,nz)*sigdyz(nx ,ny ,nz)*delt /(4* e0 ^2)));

mdz2(nx ,ny ,nz) = c0a /( mdz0(nx ,ny ,nz));

mdz3(nx ,ny ,nz) = (1/ mdz0(nx ,ny ,nz))*

(c0a*delt*sigdzz(nx ,ny ,nz)/(e0));

mdz4(nx ,ny ,nz) = -(1/ mdz0(nx ,ny ,nz))*

(delt*sigdxz(nx ,ny ,nz)*sigdyz(nx ,ny ,nz)/e0 ^2);

end

end

end
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% Calculate Polarization current density update ...

coefficients

for nx = 1:Nx

for ny = 1:Ny

for nz = 1:Nz

cjjx(nx ,ny ,nz) = (1 -(1/(2* Ntx(nx ,ny ,nz))))/

(1+(1/(2* Ntx(nx ,ny ,nz))));

cjex(nx ,ny ,nz) = ((1/ Ntx(nx ,ny ,nz))/

(1+(1/(2* Ntx(nx ,ny ,nz)))))*

(e0*edx(nx ,ny ,nz)*delx/delt);

cjjy(nx ,ny ,nz) = (1 -(1/(2* Nty(nx ,ny ,nz))))/

(1+(1/(2* Nty(nx ,ny ,nz))));

cjey(nx ,ny ,nz) = ((1/ Nty(nx ,ny ,nz))/

(1+(1/(2* Nty(nx ,ny ,nz)))))*

(e0*edy(nx ,ny ,nz)*dely/delt);

cjjz(nx ,ny ,nz) = (1 -(1/(2* Ntz(nx ,ny ,nz))))/

(1+(1/(2* Ntz(nx ,ny ,nz))));

cjez(nx ,ny ,nz) = ((1/ Ntz(nx ,ny ,nz))/

(1+(1/(2* Ntz(nx ,ny ,nz)))))*

(e0*edz(nx ,ny ,nz)*delz/delt);

end

end

end

% Calculate E field update coefieicents (for Breast)

for nx = 1:Nx

for ny = 1:Ny

for nz = 1:Nz
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e11x(nx ,ny ,nz)=(1 -( sigdx1(nx ,ny ,nz)*delt/

(2* e0*einfx(nx ,ny ,nz)))+

(cjex(nx ,ny ,nz)*delt /(2* delx*e0*einfx(nx ,ny ,nz))))/...

(1+( sigdx1(nx ,ny ,nz)*delt /(2* e0*einfx(nx ,ny ,nz)))+

(cjex(nx ,ny ,nz)*delt /(2* delx*e0*einfx(nx ,ny ,nz))));

e12x(nx ,ny ,nz)= (c0a*delt)/(2* delx*einfx(nx ,ny ,nz)*

(1+( sigdx1(nx ,ny ,nz)*delt/

(2* e0*einfx(nx ,ny ,nz)))+( cjex(nx ,ny ,nz)*delt/

(2* delx*e0*einfx(nx ,ny ,nz)))));

e11y(nx ,ny ,nz)=(1 -( sigdy1(nx ,ny ,nz)*delt/

(2* e0*einfy(nx ,ny ,nz)))+

(cjey(nx ,ny ,nz)*delt /(2* dely*e0*einfy(nx ,ny ,nz))))/...

(1+( sigdy1(nx ,ny ,nz)*delt /(2* e0*einfy(nx ,ny ,nz)))+

(cjey(nx ,ny ,nz)*delt /(2* dely*e0*einfy(nx ,ny ,nz))));

e12y(nx ,ny ,nz)= (c0a*delt)/(2* dely*einfy(nx ,ny ,nz)*

(1+( sigdy1(nx ,ny ,nz)*delt /(2* e0*einfy(nx ,ny ,nz)))+

(cjey(nx ,ny ,nz)*delt /(2* dely*e0*einfy(nx ,ny ,nz)))));

e11z(nx ,ny ,nz)=(1 -( sigdz1(nx ,ny ,nz)*delt/

(2* e0*einfz(nx ,ny ,nz)))+

(cjez(nx ,ny ,nz)*delt /(2* delz*e0*einfz(nx ,ny ,nz))))/...

(1+( sigdz1(nx ,ny ,nz)*delt /(2* e0*einfz(nx ,ny ,nz)))+

(cjez(nx ,ny ,nz)*delt /(2* delz*e0*einfz(nx ,ny ,nz))));

e12z(nx ,ny ,nz)=( c0a*delt)/(2* delz*einfz(nx ,ny ,nz)*

(1+( sigdz1(nx ,ny ,nz)*delt /(2* e0*einfz(nx ,ny ,nz)))

+( cjez(nx ,ny ,nz)*delt /(2* delz*e0*einfz(nx ,ny ,nz)))));

end

end
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end

% Main FDTD Loop

for T=1: steps

%Cex (curl of Ex)

for nx = 1:Nx

for ny = 1:Ny -1

for nz = 1:Nz -1

Cex(nx ,ny ,nz) = ((Ez(nx ,ny+1,nz)-Ez(nx ,ny ,nz))/dely)-

((Ey(nx ,ny ,nz +1) -Ey(nx ,ny ,nz))/delz);

end

Cex(nx ,ny ,Nz) = ((Ez(nx ,ny+1,Nz)-Ez(nx ,ny ,Nz))/dely)-

((0-Ey(nx ,ny ,Nz))/delz);

Cex(nx ,ny ,nref) = ...

((Ez(nx ,ny+1, nref)-Ez(nx ,ny ,nref))/dely)-

((Ey(nx ,ny ,nref +1) -Ey(nx ,ny ,nref))/delz)+

(Eysrc(nx ,ny ,nref +1)/delz);

end

for nz =1:Nz -1

Cex(nx ,Ny ,nz) = ...

((0-Ez(nx ,Ny ,nz))/dely) -((Ey(nx ,Ny ,nz +1) -

Ey(nx ,Ny ,nz))/delz);

Cex(nx ,nref ,nz) = ...

((Ez(nx ,nref +1,nz)-Ez(nx ,nref ,nz))/dely)-

((Ey(nx ,nref ,nz +1) -Ey(nx ,nref ,nz))/delz)-

(Ezsrcy(nx ,nref +1,nz)/dely);

end
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Cex(nx ,Ny ,Nz) = ...

((0-Ez(nx ,Ny ,Nz))/dely) -((0-Ey(nx ,Ny ,Nz))/delz);

end

% Cey (Curl of Ey)

for ny = 1:Ny

for nx = 1:Nx -1

for nz = 1:Nz -1

Cey(nx ,ny ,nz) = ...

((Ex(nx ,ny ,nz +1) -Ex(nx ,ny ,nz))/delz)-

((Ez(nx+1,ny ,nz)-Ez(nx ,ny ,nz))/delx);

end

Cey(nx ,ny ,Nz) = ...

((0-Ex(nx ,ny ,Nz))/delz) -((Ez(nx+1,ny ,Nz)-

Ez(nx ,ny ,Nz))/delx);

Cey(nx ,ny ,nref) = ...

((Ex(nx ,ny ,nref +1) -Ex(nx ,ny ,nref))/delz)-

((Ez(nx+1,ny ,nref)-Ez(nx ,ny ,nref))/delx)-

(Exsrc(nx ,ny ,nref +1)/delz);

end

for nz =1:Nz -1

Cey(Nx ,ny ,nz) = ((Ex(Nx ,ny ,nz +1) -Ex(Nx ,ny ,nz))/delz)-

((0-Ez(Nx ,ny ,nz))/delx);

Cey(nref ,ny ,nz) = ...

((Ex(nref ,ny ,nz +1) -Ex(nref ,ny ,nz))/delz)-

((Ez(nref +1,ny ,nz)-Ez(nref ,ny ,nz))/delx)+

(Ezsrcx(nref +1,ny ,nz)/delx);

end
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Cey(Nx ,ny ,Nz) = ...

((0-Ex(Nx ,ny ,Nz))/delz) -((0-Ez(Nx ,ny ,Nz))/delx);

end

% Cez(curl of Ez)

for nz = 1:Nz

for nx = 1:Nx -1

for ny = 1:Ny -1

Cez(nx ,ny ,nz) = ...

((Ey(nx+1,ny ,nz)-Ey(nx ,ny ,nz))/delx)-

((Ex(nx ,ny+1,nz)-Ex(nx ,ny ,nz))/dely);

end

Cez(nx ,Ny ,nz) = ((Ey(nx+1,Ny ,nz)-Ey(nx ,Ny ,nz))/delx)-

((0-Ex(nx ,Ny ,nz))/dely);

Cez(nx ,nref ,nz) = ...

((Ey(nx+1,nref ,nz)-Ey(nx ,nref ,nz))/delx)-

((Ex(nx ,nref +1,nz)-Ex(nx ,nref ,nz))/dely)+

(Exsrcy(nx ,nref +1,nz)/dely);

end

for ny =1:Ny -1

Cez(Nx ,ny ,nz) = ...

((0-Ey(Nx ,ny ,nz))/delx) -((Ex(Nx ,ny+1,nz)-

Ex(Nx ,ny ,nz))/dely);

Cez(nref ,ny ,nz) = ...

((Ey(nref +1,ny ,nz)-Ey(nref ,ny ,nz))/delx)-

((Ex(nref ,ny+1,nz)-Ex(nref ,ny ,nz))/dely)-

(Eysrcx(nref +1,ny ,nz)/delx);

end

Cez(Nx ,Ny ,nz) = ...

((0-Ey(Nx ,Ny ,nz))/delx) -((0-Ex(Nx ,Ny ,nz))/dely);
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end

% insert Electric field of Source

for nx = ft1:ft2

for ny = ft11:ft22

Exsrc(nx ,ny ,nref +1) = ...

Ae *1.5* exp ( -(((5* delt1*T)-t0)/( tau))^2);

Eysrc(nx ,ny ,nref +1) = ...

Ae *1.5* exp ( -(((5* delt1*T)-t0)/( tau))^2);

end

end

% integration terms

for nx = 1: NPML (1)

for ny = 1: NPML (1)

for nz = 1: NPML (1)

Icex(nx ,ny ,nz) = Icex(nx ,ny ,nz) + Cex(nx ,ny ,nz);

IHx(nx ,ny ,nz) = IHx(nx ,ny ,nz) + Hx(nx ,ny ,nz);

Icey(nx ,ny ,nz) = Icey(nx ,ny ,nz) + Cey(nx ,ny ,nz);

IHy(nx ,ny ,nz) = IHy(nx ,ny ,nz)+ Hy(nx ,ny ,nz);

% Icez(nx ,ny ,nz) = Icez(nx ,ny ,nz) + Cez(nx ,ny ,nz);

% IHz(nx ,ny ,nz) = IHz(nx ,ny ,nz)+ Hz(nx ,ny ,nz);

end

end

end

for nx = Nx -NPML (1) +1: Nx

for ny = Ny -NPML (1) +1: Ny

for nz = Nz -NPML (1) +1: Nz

Icex(nx ,ny ,nz) = Icex(nx ,ny ,nz) + Cex(nx ,ny ,nz);
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IHx(nx ,ny ,nz) = IHx(nx ,ny ,nz) + Hx(nx ,ny ,nz);

Icey(nx ,ny ,nz) = Icey(nx ,ny ,nz) + Cey(nx ,ny ,nz);

IHy(nx ,ny ,nz) = IHy(nx ,ny ,nz)+ Hy(nx ,ny ,nz);

% Icez(nx ,ny ,nz) = Icez(nx ,ny ,nz) + Cez(nx ,ny ,nz);

% IHz(nx ,ny ,nz) = IHz(nx ,ny ,nz)+ Hz(nx ,ny ,nz);

end

end

end

% update H

for nx = 1:Nx

for ny = 1:Ny

for nz = 1:Nz

Hx(nx ,ny ,nz) =( mhx1(nx ,ny ,nz)*Hx(nx ,ny ,nz))+

(mhx2(nx ,ny ,nz)*Cex(nx ,ny ,nz))+

(mhx3(nx ,ny ,nz)*Icex(nx ,ny ,nz))+

(mhx4(nx ,ny ,nz)*IHx(nx ,ny ,nz));

Hy(nx ,ny ,nz) = (mhy1(nx ,ny ,nz)*Hy(nx ,ny ,nz))+

(mhy2(nx ,ny ,nz)*Cey(nx ,ny ,nz))+

(mhy3(nx ,ny ,nz)*Icey(nx ,ny ,nz))+

(mhy4(nx ,ny ,nz)*IHy(nx ,ny ,nz));

% Hz(nx ,ny ,nz) = (mhz1(nx ,ny ,nz)*Hz(nx ,ny ,nz))+

(mhz2(nx ,ny ,nz)*Cez(nx ,ny ,nz))+

(mhz3(nx ,ny ,nz)*Icez(nx ,ny ,nz))+

(mhz4(nx ,ny ,nz)*IHz(nx ,ny ,nz));

end

end

end
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% Chx (Curl of Hx)

for nx = 1:Nx

for ny = 2:Ny

for nz = 2:Nz

Chx(nx ,ny ,nz) = ...

((Hz(nx ,ny ,nz)-Hz(nx ,ny -1,nz))/dely)-

((Hy(nx ,ny ,nz)-Hy(nx ,ny ,nz -1))/delz);

end

Chx(nx ,ny ,1) = ((Hz(nx ,ny ,1) -Hz(nx ,ny -1 ,1))/dely)-

((Hy(nx ,ny ,1) -0)/delz);

Chx(nx ,ny ,nref +1) ...

=(( Hz(nx ,ny ,nref +1) -Hz(nx ,ny -1, nref +1))/dely)-

((Hy(nx ,ny ,nref +1) -Hy(nx ,ny ,nref))/delz)+

(Hysrc(nx ,ny ,nref)/delz);

end

for nz =2: Nz

Chx(nx ,1,nz) =(( Hz(nx ,1,nz) -0)/dely) -((Hy(nx ,1,nz)-

Hy(nx ,1,nz -1))/delz);

Chx(nx ,nref +1,nz) ...

=(( Hz(nx ,nref +1,nz)-Hz(nx ,nref ,nz))/dely)-

((Hy(nx ,nref +1,nz)-Hy(nx ,nref +1,nz -1))/delz)-

(Hzsrcy(nx ,nref ,nz)/dely);

end

Chx(nx ,1 ,1) = ...

((Hz(nx ,1 ,1) -0)/dely) -((Hy(nx ,1 ,1) -0)/delz);

end

%Chy (Curl of Hy)

for ny = 1:Ny

for nx = 2:Nx
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for nz = 2:Nz

Chy(nx ,ny ,nz) = ((Hx(nx ,ny ,nz)-Hx(nx ,ny ,nz -1))/delz)-

((Hz(nx ,ny ,nz)-Hz(nx -1,ny ,nz))/delx);

end

Chy(nx ,ny ,1) = ((Hx(nx ,ny ,1) -0)/delz)-

((Hz(nx ,ny ,1) -Hz(nx -1,ny ,1))/delx);

Chy(nx ,ny ,nref +1) = ...

((Hx(nx ,ny ,nref +1) -Hx(nx ,ny ,nref))/delz)-

((Hz(nx ,ny ,nref +1) -Hz(nx -1,ny ,nref +1))/delx)-

(Hxsrc(nx ,ny ,nref)/delz);

end

for nz =2: Nz

Chy(1,ny ,nz) = ((Hx(1,ny ,nz)-Hx(1,ny ,nz -1))/delz)-

((Hz(1,ny ,nz) -0)/delx);

Chy(nref +1,ny ,nz) = ((Hx(nref +1,ny ,nz)-

Hx(nref +1,ny ,nz -1))/delz)-

((Hz(nref +1,ny ,nz)-Hz(nref ,ny ,nz))/delx)+

(Hzsrcx(nref ,ny ,nz)/delx);

end

Chy(1,ny ,1) = ...

((Hx(1,ny ,1) -0)/delz) -((Hz(1,ny ,1) -0)/delx);

end

%Chz (Curl of Hz)

for nz = 1:Nz

for nx = 2:Nx

for ny = 2:Ny

Chz(nx ,ny ,nz) = ((Hy(nx ,ny ,nz)-Hy(nx -1,ny ,nz))/delx)-

((Hx(nx ,ny ,nz)-Hx(nx ,ny -1,nz))/dely);

end
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Chz(nx ,1,nz) = ((Hy(nx ,1,nz)-Hy(nx -1,1,nz))/delx)-

((Hx(nx ,1,nz) -0)/dely);

Chz(nx ,nref +1,nz) = ...

((Hy(nx ,nref +1,nz)-Hy(nx -1, nref +1,nz))/delx)-

((Hx(nx ,nref +1,nz)-Hx(nx ,nref ,nz))/dely)+

(Hxsrcy(nx ,nref ,nz)/dely);

end

for ny =2: Ny

Chz(1,ny ,nz) = ((Hy(1,ny ,nz) -0)/delx)-

((Hx(1,ny ,nz)-Hx(1,ny ,nz))/dely);

Chz(nref +1,ny ,nz) = ...

((Hy(nref +1,ny ,nz)-Hy(nref ,ny ,nz))/delx)-

((Hx(nref +1,ny ,nz)-Hx(nref +1,ny -1,nz))/dely)-

(Hysrcx(nref ,ny ,nz)/delx);

end

Chz (1,1,nz) = ...

((Hy(1,1,nz) -0)/delx) -((Hx(1,1,nz) -0)/dely);

end

% Insert Magnetic field of Source

for nx = ft1:ft2

for ny = ft11:ft22

Hxsrc(nx ,ny ,nref) = ...

Ah *1.5* exp ( -(((5* delt1*T)-t0+delts)/

(tau))^2);

Hysrc(nx ,ny ,nref) = ...

Ah *1.5* exp ( -(((5* delt1*T)-t0+delts)/

(tau))^2);

end

end
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% integration terms

for nx = 1: NPML (1)

for ny = 1: NPML (1)

for nz = 1: NPML (1)

Ichx(nx ,ny ,nz) = Ichx(nx ,ny ,nz) + Chx(nx ,ny ,nz);

IDx(nx ,ny ,nz) = IDx(nx ,ny ,nz) + Dx(nx ,ny ,nz);

Ichy(nx ,ny ,nz) = Ichy(nx ,ny ,nz) + Chy(nx ,ny ,nz);

IDy(nx ,ny ,nz) = IDy(nx ,ny ,nz)+ Dy(nx ,ny ,nz);

% Ichz(nx ,ny ,nz) = Ichy(nx ,ny ,nz) + Chz(nx ,ny ,nz);

% IDz(nx ,ny ,nz) = IDz(nx ,ny ,nz)+ Dz(nx ,ny ,nz);

end

end

end

for nx = Nx -NPML (1) +1: Nx

for ny = Ny -NPML (1) +1: Ny

for nz = Nz -NPML (1) +1: Nz

Ichx(nx ,ny ,nz) = Ichx(nx ,ny ,nz) + Chx(nx ,ny ,nz);

IDx(nx ,ny ,nz) = IDx(nx ,ny ,nz) + Dx(nx ,ny ,nz);

Ichy(nx ,ny ,nz) = Ichy(nx ,ny ,nz) + Chy(nx ,ny ,nz);

IDy(nx ,ny ,nz) = IDy(nx ,ny ,nz)+ Dy(nx ,ny ,nz);

% Ichz(nx ,ny ,nz) = Ichy(nx ,ny ,nz) + Chz(nx ,ny ,nz);

% IDz(nx ,ny ,nz) = IDz(nx ,ny ,nz)+ Dz(nx ,ny ,nz);

end

end

end

% Update D in the UPML
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for nx = 1: NPML (1)

for ny = 1: NPML (1)

for nz = 1: NPML (1)

Dx(nx ,ny ,nz) = (mdx1(nx ,ny ,nz)*Dx(nx ,ny ,nz))+

(mdx2(nx ,ny ,nz)*Chx(nx ,ny ,nz))+

(mdx3(nx ,ny ,nz)*Ichx(nx ,ny ,nz))+

(mdx4(nx ,ny ,nz)*IDx(nx ,ny ,nz));

Dy(nx ,ny ,nz) = (mdy1(nx ,ny ,nz)*Dy(nx ,ny ,nz))+

(mdy2(nx ,ny ,nz)*Chy(nx ,ny ,nz))+

(mdy3(nx ,ny ,nz)*Ichy(nx ,ny ,nz))+

(mdy4(nx ,ny ,nz)*IDy(nx ,ny ,nz));

% Dz(nx ,ny ,nz) = (mdz1(nx ,ny ,nz)*Dz(nx ,ny ,nz))+

(mdz2(nx ,ny ,nz)*Chz(nx ,ny ,nz))+

(mdz3(nx ,ny ,nz)*Ichz(nx ,ny ,nz))+

(mdz4(nx ,ny ,nz)*IDz(nx ,ny ,nz));

Ex(nx ,ny ,nz) = (1/ exx(nx ,ny ,nz))*Dx(nx ,ny ,nz);

Ey(nx ,ny ,nz) = (1/ eyy(nx ,ny ,nz))*Dy(nx ,ny ,nz);

% Ez(nx ,ny ,nz) = (1/ ezz(nx ,ny ,nz))*Dz(nx ,ny ,nz);

end

end

end

% Update E in the numerical breast phantom

for nx = NPML (1) +1:Nx -NPML (1)

for ny = NPML (1) +1:Ny -NPML (1)

for nz = NPML (1) +1:Nz -NPML (1)

Etmpx(nx ,ny ,nz)= Ex(nx ,ny ,nz);

Etmpy(nx ,ny ,nz)= Ey(nx ,ny ,nz);

% Etmpz(nx ,ny ,nz)= Ez(nx ,ny ,nz);

Ex(nx ,ny ,nz) = (e11x(nx ,ny ,nz)*Ex(nx ,ny ,nz))+
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(e12x(nx ,ny ,nz)*((2* delx*Chx(nx ,ny ,nz))-

((z0)*(1+ cjjx(nx ,ny ,nz))*delx*jpx(nx ,ny ,nz))));

Ey(nx ,ny ,nz) = (e11y(nx ,ny ,nz)*Ey(nx ,ny ,nz))+

(e12y(nx ,ny ,nz)*((2* dely*Chy(nx ,ny ,nz))-

((z0)*(1+ cjjy(nx ,ny ,nz))*dely*jpy(nx ,ny ,nz))));

% Ez(nx ,ny ,nz) = (e11z(nx ,ny ,nz)*Ez(nx ,ny ,nz))+

(e12z(nx ,ny ,nz)*((2* delz*Chz(nx ,ny ,nz))-

((z0)*(1+ cjjz(nx ,ny ,nz))*delz*jpz(nx ,ny ,nz))));

jpx(nx ,ny ,nz) = (cjjx(nx ,ny ,nz)*jpx(nx ,ny ,nz))+

(cjex(nx ,ny ,nz)*(Ex(nx ,ny ,nz)-Etmpx(nx ,ny ,nz))/delx);

jpy(nx ,ny ,nz) = (cjjy(nx ,ny ,nz)*jpy(nx ,ny ,nz))+

(cjey(nx ,ny ,nz)*(Ey(nx ,ny ,nz)-Etmpy(nx ,ny ,nz))/dely);

%jpz(nx ,ny ,nz) = (cjjz(nx ,ny ,nz)*jpz(nx ,ny ,nz))+

(cjez(nx ,ny ,nz)*(Ez(nx ,ny ,nz)-Etmpz(nx ,ny ,nz))/delz);

end

end

end

% Update D in the UPML

for nx = (Nx -NPML (1) +1):Nx

for ny = (Ny -NPML (1) +1):Ny

for nz = (Nz -NPML (1) +1):Nz

Dx(nx ,ny ,nz) = (mdx1(nx ,ny ,nz)*Dx(nx ,ny ,nz))+

(mdx2(nx ,ny ,nz)*Chx(nx ,ny ,nz))+

(mdx3(nx ,ny ,nz)*Ichx(nx ,ny ,nz))+

(mdx4(nx ,ny ,nz)*IDx(nx ,ny ,nz));

Dy(nx ,ny ,nz) = (mdy1(nx ,ny ,nz)*Dy(nx ,ny ,nz))+

(mdy2(nx ,ny ,nz)*Chy(nx ,ny ,nz))+

(mdy3(nx ,ny ,nz)*Ichy(nx ,ny ,nz))+
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(mdy4(nx ,ny ,nz)*IDy(nx ,ny ,nz));

% Dz(nx ,ny ,nz) = (mdz1(nx ,ny ,nz)*Dz(nx ,ny ,nz))+

(mdz2(nx ,ny ,nz)*Chz(nx ,ny ,nz))+

(mdz3(nx ,ny ,nz)*Ichz(nx ,ny ,nz))+

(mdz4(nx ,ny ,nz)*IDz(nx ,ny ,nz));

Ex(nx ,ny ,nz) = (1/ exx(nx ,ny ,nz))*Dx(nx ,ny ,nz);

Ey(nx ,ny ,nz) = (1/ eyy(nx ,ny ,nz))*Dy(nx ,ny ,nz);

% Ez(nx ,ny ,nz) = (1/ ezz(nx ,ny ,nz))*Dz(nx ,ny ,nz);

end

end

end

if (mod(T ,100) ==0)

fig=figure;

h1 = subplot (2 ,2 ,1);

slice(X,Y,Z,Ey ,[] ,[] ,8);

shading interp

colormap hsv

axis equal tight

axis off;

caxis auto

colorbar

view (2)

movegui (h1 ,'onscreen ');

set(gca ,'nextplot ','replacechildren ');

set(gcf ,'Renderer ','zbuffer ');

drawnow ;

hold all;
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h2 = subplot (2 ,2 ,2);

slice(X,Y,Z,Ey ,[] ,[] ,13);

shading interp

colormap hsv

axis equal tight

axis off;

caxis auto

colorbar

view (2)

movegui (h2 ,'onscreen ');

set(gca ,'nextplot ','replacechildren ');

set(gcf ,'Renderer ','zbuffer ');

drawnow ;

hold all;

h3 = subplot (2 ,2 ,3);

slice(X,Y,Z,Ey ,[] ,[] ,21);

shading interp

colormap hsv

axis equal tight

axis off;

caxis auto

colorbar

view (2)

movegui (h3 ,'onscreen ');

set(gca ,'nextplot ','replacechildren ');

set(gcf ,'Renderer ','zbuffer ');

drawnow ;

hold all;

172



h4 = subplot (2 ,2 ,4);

slice(X,Y,Z,Ey ,[] ,[] ,31);

shading interp

colormap hsv

axis equal tight

axis off;

caxis auto

colorbar

view (2)

movegui (h4 ,'onscreen ');

set(gca ,'nextplot ','replacechildren ');

set(gcf ,'Renderer ','zbuffer ');

drawnow ;

hold all;

end

end
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C.4 Integral of Green’s Function for Method of

Moments

Forward problem is solved by method of moment for electromagnetic imaging. In-

tegral of green’s function is required in method of moments. Integral of green’s

function is calculated by this code.

clc;

clear all;

close all;

u0 = 4*pi *10^ -9;

mu0 = u0;

e0 = 8.854*10^ -14;

del_l = 0.5;

a = ((3/(4* pi))^(1/3))*del_l;

u1 = [1 0 0];

u2 = [0 1 0];

u3 = [0 0 1];

dx = 0.5;

dy = 0.5;

dz = 0.5;

%c1 = input('Enter number of cells :');

Nx1 = 40;

Ny1 = 40;

Nz1 = 40;

c=3 e10;

Nv = Nx1*Ny1*Nz1;

Nfreq = 4;

f = 5e8;

f1 = 5e8;
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f2 = 2e9;

Na = 40;

MF = Na*Nfreq;

freq = linspace (f1 ,f2 ,Nfreq);

k= 2*pi ./(c./ freq);

w = 2*pi.* freq;

xn = zeros(Nv ,1);

yn = zeros(Nv ,1);

zn = zeros(Nv ,1);

ed = zeros(Nx1 ,Ny1 ,Nz1);

einf = ones(Nx1 ,Ny1 ,Nz1);

sigd = zeros(Nx1 ,Ny1 ,Nz1);

tau = 15e -12;

w = 2*pi.* freq;

cinf = 1;

cdel = 1./(1+1 i*w.* tau);

csig = 1./(1i*w.*e0);

%k(p) = 2*pi/(c/f);

L = 1;

Iz = 0.000001;

n = 377;

i0 =0.000001;

l=1;

p=1;

%Na =40;

N = 40;

[z, y, x] = ndgrid (.5:N); %// note reverse order to ...

get desired order of result

vc1 = [x(:) y(:) z(:) ]; %// desired result

m (1:64000 ,1:3) = 20;
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vc2 = m-vc1;

vc = vc2 *0.5;

for i=1: Nv

rL(:,:,i)=vc(i ,:);

end

for i = 1:5

rm (: ,: ,1+8*(i -1)) = [15 0 6.75 -4*(i -1) ];

rm (: ,: ,2+8*(i -1)) = [10.61 10.61 6.75 -4*(i -1) ];

rm (: ,: ,3+8*(i -1))= [0 15 6.75 -4*(i -1) ];

rm (: ,: ,4+8*(i -1)) = [ -10.61 10.61 6.75 -4*(i -1) ];

rm (: ,: ,5+8*(i -1))= [-15 0 6.75 -4*(i -1) ];

rm (: ,: ,6+8*(i -1)) = [ -10.61 -10.61 6.75 -4*(i -1) ];

rm (: ,: ,7+8*(i -1)) = [0 -15 6.75 -4*(i -1) ];

rm (: ,: ,8+8*(i -1)) = [10.61 -10.61 6.75 -4*(i -1) ];

end

for m = 1:Na

for n = 1:Nv

r = ((rL(1,1,n)-rm(1,1,m))^2+( rL(1,2,n)-rm(1,2,m))^2+

(rL(1,3,n)-rm(1,3,m))^2) ^0.5;

x1 = rL(1,1,n)-rm(1,1,m);

y1 = rL(1,2,n)-rm(1,2,m);

c = k(p)*r;

d = 1/c;

e = 1/c.^2;

er(n ,1) = ((n*i0*l*x1)/(2* pi*r^3))*(1 -1i*d)*exp(-1i*c);

eth(n ,1) = ((1i*n*k(p)*i0*l*y1)/(4* pi*r^2))*

(1-1i*d-e)*exp(-1i*c);
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ephi(n ,1) = 0;

end

[x,y,z] = sph2cart (eth ,ephi ,er);

xn = xn+x;

yn=yn+y;

zn=zn+z;

end

for m=1: Nv

rfx1 (:,:,m) = rL(:,:,m) + ( (-1) ^1*( del_l /2)).*u1;

rfx2 (:,:,m) = rL(:,:,m) + ( (-1) ^2*( del_l /2)).*u1;

rfy1 (:,:,m) = rL(:,:,m) + ( (-1) ^1*( del_l /2)).*u2;

rfy2 (:,:,m) = rL(:,:,m) + ( (-1) ^2*( del_l /2)).*u2;

rfz1 (:,:,m) = rL(:,:,m) + ( (-1) ^1*( del_l /2)).*u3;

rfz2 (:,:,m) = rL(:,:,m) + ( (-1) ^2*( del_l /2)).*u3;

end

for m=1: Na

for n =1: Nv

rml(m,n) =(( rm(1,1,m)-rL(1,1,n))^2 + ...

(rm(1,2,m)-rL(1,2,n))^2+

(rm(1,3,m)-rL(1,3,n))^2) ^0.5;

rx1(m) =(( rm(1,1,m)-rfx1 (1,1,m))^2 + ...

(rm(1,2,m)-rfx1 (1,2,m))^2+

(rm(1,3,m)-rfx1 (1,3,m))^2) ^0.5;

rx2(m) =(( rm(1,1,m)-rfx2 (1,1,m))^2 + ...

(rm(1,2,m)-rfx2 (1,2,m))^2+

(rm(1,3,m)-rfx2 (1,3,m))^2) ^0.5;

ry1(m) =(( rm(1,1,m)-rfy1 (1,1,m))^2 + ...

(rm(1,2,m)-rfy1 (1,2,m))^2+

(rm(1,3,m)-rfy1 (1,3,m))^2) ^0.5;
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ry2(m) =(( rm(1,1,m)-rfy2 (1,1,m))^2 + ...

(rm(1,2,m)-rfy2 (1,2,m))^2+

(rm(1,3,m)-rfy2 (1,3,m))^2) ^0.5;

rz1(m) =(( rm(1,1,m)-rfz1 (1,1,m))^2 + ...

(rm(1,2,m)-rfz1 (1,2,m))^2+

(rm(1,3,m)-rfz1 (1,3,m))^2) ^0.5;

rz2(m) =(( rm(1,1,m)-rfz2 (1,1,m))^2 + ...

(rm(1,2,m)-rfz2 (1,2,m))^2+

(rm(1,3,m)-rfz2 (1,3,m))^2) ^0.5;

end

end

% Generation of Matrix B1 and A1

for m = 1:Na

for n =1: Nv

[y,z]= meshgrid (rL(1,2,n) -(del_l /2):dy:rL(1,2,n)+

(del_l /2) ,rL(1,3,n) -(del_l /2):dz:rL(1,3,n)+( del_l /2));

[x,z1]= meshgrid (rL(1,1,n) -(del_l /2):dx:rL(1,1,n)+

(del_l /2) ,rL(1,3,n) -(del_l /2):dz:rL(1,3,n)+( del_l /2));

[x1 ,y1]= meshgrid (rL(1,1,n) -(del_l /2):dx:rL(1,1,n)+

(del_l /2) ,rL(1,2,n) -(del_l /2):dy:rL(1,2,n)+( del_l /2));

% "Gmlxx element "

rxx1_n =(( rm(1,1,m)-rfx1 (1,1,n)).^2 + ...

(rm(1,2,m)-y).^2 +

(rm(1,3,m)-z).^2) .^0.5;

rxx2_n =(( rm(1,1,m)-rfx2 (1,1,n)).^2 + ...

(rm(1,2,m)-y).^2 +

(rm(1,3,m)-z).^2) .^0.5;

Gxx1 =((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*
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exp(-1i*k(p).* rxx1_n).*( rm(1,1,m)-rfx1 (1,1,n));

Gxx2 =((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,1,m)-rfx2 (1,1,n));

IGxx1 = sum(sum(Gxx1))*(dy*dz);

IGxx2= sum(sum(Gxx2))*(dy*dz);

B1 (1+(m -1) *3 ,1+(n -1) *3) =(( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGxx1+IGxx2;

% display (IGxx1);

% "Gmlxy element "

rxx1_n =(( rm(1,1,m)-x).^2 + ...

(rm(1,2,m)-rfy1 (1,2,n)).^2 +

(rm(1 ,3 ,1)-z1).^2) .^0.5;

rxx2_n =(( rm(1,1,m)-x).^2 + ...

(rm(1,2,m)-rfy2 (1,2,n)).^2 +

(rm(1 ,3 ,1)-z1).^2) .^0.5;

Gxx1 =((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,1,m)-x);

Gxx2 =((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,1,m)-x);

IGxy1 =sum(sum(Gxx1))*(dx*dz);

IGxy2 =sum(sum(Gxx2))*(dx*dz);

B1 (1+(m -1) *3 ,2+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGxy1+IGxy2;

% display (IGxy1);

% "Gmlxz element "

rxx1_n = ((rm(1,1,m)-x1).^2 + (rm(1,2,m)-y1).^2 +

(rm(1,3,m)-rfz1 (1,3,n)).^2) .^0.5;
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rxx2_n = ((rm(1,1,m)-x1).^2 + (rm(1,2,m)-y1).^2 +

(rm(1,3,m)-rfz2 (1,3,n)).^2) .^0.5;

Gxx1 = ((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,1,m)-x1);

Gxx2 = ((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,1,m)-x1);

IGxz1 = sum(sum(Gxx1))*(dx*dy);

IGxz2 = sum(sum(Gxx2))*(dx*dy);

B1 (1+(m -1) *3 ,3+(n -1) *3) =(( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGxz1+IGxz2;

% "Gmlyx element "

rxx1_n = ((rm(1,1,m)-rfx1 (1,1,n)).^2 + ...

(rm(1,2,m)-y).^2 +

(rm(1,3,m)-z).^2) .^0.5;

rxx2_n = ((rm(1,1,m)-rfx2 (1,1,n)).^2 + ...

(rm(1,2,m)-y).^2 +

(rm(1,3,m)-z).^2) .^0.5;

Gxx1 = ((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,2,m)-y);

Gxx2 = ((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,2,m)-y);

IGyx1 = sum(sum(Gxx1))*(dy*dz);

IGyx2 = sum(sum(Gxx2))*(dy*dz);

B1 (2+(m -1) *3 ,1+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGyx1+IGyx2;

% "Gmlyy element "
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rxx1_n = ((rm(1,1,m)-x).^2 + ...

(rm(1,2,m)-rfy1 (1,2,n)).^2 +

(rm(1,3,m)-z1).^2) .^0.5;

rxx2_n = ((rm(1,1,m)-x).^2 + ...

(rm(1,2,m)-rfy2 (1,2,n)).^2 +

(rm(1,3,m)-z1).^2) .^0.5;

Gxx1 = ((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,2,m)-rfy1 (1,2,n));

Gxx2 = ((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,2,m)-rfy2 (1,2,n));

IGyy1 = sum(sum(Gxx1))*(dx*dz);

IGyy2 = sum(sum(Gxx2))*(dx*dz);

B1 (2+(m -1) *3 ,2+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGyy1+IGyy2;

% "Gmlyz element "

rxx1_n = ((rm(1,1,m)-x1).^2 + (rm(1,2,m)-y1).^2 +

(rm(1,3,m)-rfz1 (1,3,n)).^2) .^0.5;

rxx2_n = ((rm(1,1,m)-x1).^2 + (rm(1,2,m)-y1).^2 +

(rm(1,3,m)-rfz2 (1,3,n)).^2) .^0.5;

Gxx1 = ((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,2,m)-y1);

Gxx2 = ((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,2,m)-y1);

IGyz1 = sum(sum(Gxx1))*(dx*dy);

IGyz2 = sum(sum(Gxx2))*(dx*dy);

B1 (2+(m -1) *3 ,3+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGyz1+IGyz2;
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% "Gmlzx element "

rxx1_n = ((rm(1,1,m)-rfx1 (1,1,n)).^2 + ...

(rm(1,2,m)-y).^2 +

(rm(1,3,m)-z).^2) .^0.5;

rxx2_n = ((rm(1,1,m)-rfx2 (1,1,n)).^2 + ...

(rm(1,2,m)-y).^2 +

(rm(1,3,m)-z).^2) .^0.5;

Gxx1 = ((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,3,m)-z);

Gxx2 = ((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,3,m)-z);

IGzx1 = sum(sum(Gxx1))*(dy*dz);

IGzx2 = sum(sum(Gxx2))*(dy*dz);

B1 (3+(m -1) *3 ,1+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGzx1+IGzx2;

% "Gmlzy element "

rxx1_n = ((rm(1,1,m)-x).^2 + ...

(rm(1,2,m)-rfy1 (1,2,n)).^2 +

(rm(1,3,m)-z1).^2) .^0.5;

rxx2_n = ((rm(1,1,m)-x).^2 + ...

(rm(1 ,2 ,1)-rfy2 (1,2,n)).^2 +

(rm(1,3,m)-z1).^2) .^0.5;

Gxx1 = ((1+1i*k(p).* rxx1_n)./(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,3,m)-z1);

Gxx2 = ((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,3,m)-z1);

IGzy1 = sum(sum(Gxx1))*(dx*dz);

IGzy2 = sum(sum(Gxx2))*(dx*dz);

B1 (3+(m -1) *3 ,2+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))./
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(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGzy1+IGzy2;

% "Gmlzz element "

rxx1_n = ((rm(1,1,m)-x1).^2 + (rm(1,2,m)-y1).^2 +

(rm(1,3,m)-rfz1 (1,3,n)).^2) .^0.5;

rxx2_n = ((rm(1,1,m)-x1).^2 + (rm(1,2,m)-y1).^2 +

(rm(1,3,m)-rfz2 (1,3,n)).^2) .^0.5;

Gxx1 = ((1+1i*k(p).* rxx1_n)./

(4* pi .*( rxx1_n).^3)).*

exp(-1i*k(p).* rxx1_n).*( rm(1,3,m)-rfz1 (1,3,n));

Gxx2 = ((1+1i*k(p).* rxx2_n)./(4* pi .*( rxx2_n).^3)).*

exp(-1i*k(p).* rxx2_n).*( rm(1,3,m)-rfz2 (1,3,n));

IGzz1 =sum(sum(Gxx1))*(dx*dy);

IGzz2 = sum(sum(Gxx2))*(dx*dy);

B1 (3+(m -1) *3 ,3+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))./

(k(p).* rml(m,n)))*

(sin(k(p)*a) -(k(p)*a*cos(k(p)*a)))-IGzz1+IGzz2;

A1 (1+(m -1) *3 ,1+(n -1) *3) = ...

exp(-1i*k(p)*a)*(1+(1i*k(p)*a)) -1;

A1 (1+(m -1) *3 ,2+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))/

(k(p).* rml(m,n)))*( sin(k(p)*a) -(k(p)*a*cos(k(p)*a)));

A1 (1+(m -1) *3 ,3+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))/

(k(p).* rml(m,n)))*( sin(k(p)*a) -(k(p)*a*cos(k(p)*a)));

A1 (2+(m -1) *3 ,1+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))/

(k(p).* rml(m,n)))*( sin(k(p)*a) -(k(p)*a*cos(k(p)*a)));

A1 (2+(m -1) *3 ,2+(n -1) *3) = ...

exp(-1i*k(p)*a)*(1+(1i*k(p)*a)) -1;

A1 (2+(m -1) *3 ,3+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))/

(k(p).* rml(m,n)))*( sin(k(p)*a) -(k(p)*a*cos(k(p)*a)));

A1 (3+(m -1) *3 ,1+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))/
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(k(p).* rml(m,n)))*( sin(k(p)*a) -(k(p)*a*cos(k(p)*a)));

A1 (3+(m -1) *3 ,2+(n -1) *3) = (( exp(-1i*k(p).* rml(m,n)))/

(k(p).* rml(m,n)))*( sin(k(p)*a) -(k(p)*a*cos(k(p)*a)));

A1 (3+(m -1) *3 ,3+(n -1) *3) = ...

exp(-1i*k(p)*a)*(1+(1i*k(p)*a)) -1;

end

end

display (A1);

display (B1);
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