
 

 

 

Hybrid Partitioning and Distribution of RDF Data 

 

by 

 

Trupti  Padiya 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

 

Doctor of Philosophy 

 

to 

Dhirubhai Ambani Institute of Information and Communication Technology 

April 2018 

 

 

DA-IICT



 

 

Declaration 

I hereby declare that  

 i) The thesis comprises my original work towards the degree of Doctor of Philosophy in 

Information and Communication Technology at DA-IICT and has not been submitted 

elsewhere for a degree,  

 ii)  Due acknowledegment has been made in the text to all other material used. 

   __________________ 

Trupti  Jayantilal Padiya  

 

 

 

 

 

Certificate 

This is to certify that the thesis work titled “Hybrid Partitioning and Distribution of RDF 

Data” has been carried out by Trupti Padiya (201221002) for the degree of Doctor of 

Philosophy in Information and Communication Technology at Dhirubhai Ambani Institute of 

Information and Communication Technology under my supervision.   

_______________________ 

Prof. Minal Bhise 

Thesis Advisor

 

 



iii 

 

 

 

 

 

 

 

 

 

To 

My Family 



v 

 

Acknowledgements 

 

 

“Showing gratitude is one of the simplest yet most powerful things 

human can do for each other “ – Randy Pausch 

 

Foremost, I would like to express my sincere gratitude to my Ph.D. advisor Prof. Minal Bhise 

for her continuous guidance and support throughout my Ph.D. work. I am indebted to my 

supervisor for her constant motivation during my tough times. I deeply appreciate her 

kindness, patience and constant encouragement that kept me going.  

I am grateful to my RPS (Research Progress Seminar) committee members: Prof. Maniklal 

Das and Prof. Sourish Dasgupta, Synopsis committee members: Prof. Anish Mathuria and 

Prof. P. M. Jat for their inputs and suggestions which helped me broaden my horizon 

progressively.  

I sincerely thank all my colleagues at Database Research Group, DA-IICT. I thank Sandeep 

Vasani, Mohit Pandey, Bhavik Shah, Prashant Rajkotiya, Jai Jai Kanwar, and Anubha Jain. I 

am thankful to DA-IICT for lab resources. I express my heartfelt gratitude to Dixita and 

Tanvina for their constant assurance, love, and support. I will always cherish the moments 

spent together. I thank all my friends outside campus especially Disha for her best wishes and 

constant encouragement. 

Finally, I am heartily grateful to my parents who raised me with utmost love and care. It is 

because of their moral support and motivation I am able to pursue my dream despite 

adversity. My Ph.D. became possible because of invariable support of my husband Dhrumil 

who constantly motivated me and helped me deal with situations assertively.   



vi 

 

Abstract 

 

RDF is a standard model by W3C specifically designed for data interchange on the web. RDF 

was established and used for the development of the semantic web. However, nowadays RDF 

data is being used for diverse domains and is not limited to the semantic web. Tremendous 

increase is witnessed in RDF data due to its applications in various domains. With growing 

RDF data it is vital to manage this data efficiently. The thesis aims at efficient storage and 

faster querying of RDF data using various data partitioning techniques.  

The thesis studies the problem of basic data partitioning techniques for RDF data storage and 

proposes the use of hybrid data partitioning in centralized and distributed environment as a 

part of the solution to store and query RDF data. The dissertation emphasizes on efficient 

data storage and faster query execution for stationary RDF data. It demonstrates basic data 

partitioning techniques like PT (Property Table), BT (Binary Table), HP (Horizontally 

Partitioned Table), and use of MV (Materialized Views) over BT. Even though basic data 

partitioning techniques outperforms TT (Triple Table) they suffer from various performances 

issues.  

The thesis gives a detailed insight into advantages and disadvantages of basic data 

partitioning techniques. Consequently, it proposes hybrid solutions for data partitioning by 

exploiting the best of available techniques. It proposes three hybrid data partitioning 

techniques namely DAHP (Data-Aware Hybrid Partitioning), DASIVP (Data-Aware 

Structure Indexed Vertical Partitioning) and WAHP (Workload-Aware Hybrid Partitioning). 

DAHP and WAHP are a combination of PT and BT whereas DASIVP combines structure 

index partitioning with BT. DAHP and DASIVP consider a data-aware approach and WAHP 

considers a workload-aware approach. Data-aware approach stores RDF data based on how 

the data is related to each other in the dataset and workload-aware approach stores RDF data 

based on how the data that is queried together. The thesis demonstrates detailed evaluation of 

query performance and data storage for all the data partitioning techniques. Query 

performances for these data partitioning techniques are evaluated in terms of QET (Query 

Execution Time). It calculates break-even point for all the data partitioning techniques. 

Hybrid data partitioning techniques have shown significant improvement over basic data 



vii 

 

partitioning techniques. A set of metrics is devised which can help to consider the suitability 

of given data partitioning technique for a RDF dataset.  

 RDF data has increased to a point where it is difficult to manage this data on a single 

machine. It is necessary to distribute the data on different nodes and process it in parallel so 

that efficient query performance can be achieved. Data distribution and parallel processing of 

queries may generate many intermediate results which will involve communication among 

nodes. It becomes necessary to minimize inter-node communication among nodes in order to 

achieve faster execution of queries. This work presents a solution to manage RDF data in a 

distributed environment using a proposed hybrid technique. The solution aims at efficient 

RDF data storage and faster query execution by minimizing inter-node communication 

among nodes.  

Finally, the dissertation proposes DWAHP (Workload-Aware Hybrid Partitioning and 

Distribution) which exploits query workload and distributes data among nodes. DWAHP has 

two phases: Phase 1 considers Workload-Aware Hybrid Partitioning technique which 

generates workload-aware clusters consisting of PT and BT. Phase 2 considers a distribution 

scheme that distributes data among nodes using an n-hop Property Reachability Matrix. 

DWAHP Phase 1 helps in reducing number of joins, as it keeps the data which is queried 

together as a separate partition. DWAHP Phase 2 helps in diminishing inter-node 

communication among nodes with the use of an n-hop Property Reachability Matrix.  The 

thesis demonstrates DWAHP and analyzes its query performance in terms of query execution 

time, query cost, storage space, and inter-node communication. Queries on RDF data mostly 

involve star and linear query patterns. DWAHP manages joins such that it is able to answer 

all linear and star queries without inter-node communication. DWAHP is compared with a 

state-of-the-art solution.  It outperforms the state-of-the-art solution with 72% of faster query 

execution time, 61% of reduced query cost by occupying less than one-third of storage space.  

Increase in RDF data is witnessed as RDF data is being used in diverse domains. Discussed 

partitioning techniques can be utilized for various RDF stores. Data-aware RDF stores can be 

utilized for applications when data characteristics are known and workload-aware RDF stores 

can be utilized when data queries are known in advance.  

 



viii 

 

Table of Contents 

 

1. Introduction ................................................................................................................. 1 

1.1. RDF Data Storage ................................................................................................... 2 

1.2. Motivation .............................................................................................................. 3 

1.3. Objectives ............................................................................................................... 3 

1.4. Goals and Contributions .......................................................................................... 4 

1.4.1. Basic RDF Data Partitioning ............................................................................ 4 

1.4.2. Hybrid RDF Data Partitioning .......................................................................... 4 

1.4.3. Distribution of Partitioned RDF Data ............................................................... 5 

1.4.4. Comparison with State-of-the-art ..................................................................... 5 

1.5. Dissertation Outline ................................................................................................ 5 

2. Related Work ............................................................................................................... 7 

2.1. Basic RDF Data Partitioning ................................................................................... 7 

2.1.1. Triple Table ..................................................................................................... 7 

2.1.2. Indexing ........................................................................................................... 8 

2.1.3. Property Tables ................................................................................................ 9 

2.1.4. Data Partitioning ............................................................................................ 10 

2.2. Hybrid RDF Data Partitioning ............................................................................... 11 

2.3. Distribution of RDF Data ...................................................................................... 12 

2.3.1. Federated Systems ......................................................................................... 12 

2.3.2. Adaptive RDF Data Storage Systems ............................................................. 13 

2.3.3. Data-Aware RDF Data Partitioning Systems .................................................. 13 

2.3.4. Workload-Aware RDF Data Partitioning Systems .......................................... 15 

2.4. Research Issues ..................................................................................................... 15 



ix 

 

2.4.1. Open Research Issues..................................................................................... 16 

2.4.2. Issues Addressed in Dissertation .................................................................... 18 

2.5. Recent Work ......................................................................................................... 19 

2.6. Summary .............................................................................................................. 20 

3. Basic Partitioning for RDF Data ............................................................................... 21 

3.1. Triple Table (TT) .................................................................................................. 21 

3.2. Partitioned Tables ................................................................................................. 22 

3.2.1. Property Tables (PT) ...................................................................................... 22 

3.2.2. Binary Tables (BT) ........................................................................................ 22 

3.2.3. Horizontally Partitioned Tables (HP) ............................................................. 23 

3.2.4. Materialized Views (MV) .............................................................................. 23 

3.3. Experiments .......................................................................................................... 23 

3.3.1. Algorithms ..................................................................................................... 24 

3.3.2. Dataset ........................................................................................................... 26 

3.3.3. Query Set ....................................................................................................... 27 

3.3.4. Hardwares and Softwares ............................................................................... 27 

3.4. Results and Discussions ........................................................................................ 28 

3.4.1. Query Execution for Basic RDF Data Stores .................................................. 28 

3.4.2. Query Execution for Materialized Views........................................................ 30 

3.4.3. Query Execution for Scaled Data ................................................................... 33 

3.5. Summary .............................................................................................................. 34 

4. Hybrid Partitioning for RDF Data ........................................................................... 36 

4.1. Data-Aware Approaches for Partitioning RDF Data .............................................. 36 

4.1.1. Data-Aware Hybrid Partitioning (DAHP)....................................................... 36 

4.1.2. Data-Aware Structure Indexed Vertical Partitioning (DASIVP) ..................... 37 

4.2. Workload-Aware Approach for Partitioning RDF Data ......................................... 38 



 

x 

 

4.2.1. Workload-Aware Hybrid Partitioning (WAHP) .............................................. 38 

4.3. Experiments .......................................................................................................... 39 

4.3.1. Data Structures and Algorithms...................................................................... 39 

4.3.2. Metrics for RDF Data Stores .......................................................................... 45 

4.3.3. Dataset ........................................................................................................... 46 

4.3.4. Query set ....................................................................................................... 47 

4.3.5. Hardwares and Softwares ............................................................................... 47 

4.4. Results and Discussions ........................................................................................ 47 

4.4.1. Query Execution for DAHP ........................................................................... 48 

4.4.2. Query Execution for DASIVP ........................................................................ 49 

4.4.3. Query Execution for WAHP .......................................................................... 52 

4.5. Comparing RDF Data Stores ................................................................................. 54 

4.6. Summary .............................................................................................................. 55 

5. DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 56 

5.1. DWAHP ............................................................................................................... 57 

5.1.1. Phase 1: Hybrid Partitioning .......................................................................... 57 

5.1.2. Phase 2: Distribution Scheme ......................................................................... 58 

5.1.3. Architecture ................................................................................................... 60 

5.2. Experiments .......................................................................................................... 61 

5.2.1. Data Structures and Algorithms...................................................................... 61 

5.2.2. Dataset ........................................................................................................... 63 

5.2.3. Query set ....................................................................................................... 63 

5.2.4. Harwares and Softwares ................................................................................. 64 

5.2.5. Implementation .............................................................................................. 64 

5.3. Results and Discussions ........................................................................................ 68 

5.4. Comparison with state-of-the-art systems .............................................................. 70 



xi 

 

5.4.1. Comparing DWAHP and JARS ..................................................................... 71 

5.4.2. Comparing DWAHP and JARS using Scaled Data ......................................... 73 

5.5. Summary .............................................................................................................. 74 

6. Conclusions and Future Work .................................................................................. 75 

6.1. Future Work .......................................................................................................... 78 

Appendix 1......................................................................................................................... 79 

Appendix 2......................................................................................................................... 82 

Appendix 3......................................................................................................................... 84 

Appendix 4......................................................................................................................... 90 

References.......................................................................................................................... 95 

Publications ..................................................................................................................... 101 



xii 

 

List of Acronyms and Symbols 

Acronyms 

BT Binary Table 

CPU Central Processing Unit 

DAHP Data-Aware Hybrid Partitioning 

DASIVP Data-Aware Structure Indexed Vertical Partitioning 

DBLP Digital Bibliography & Library Project 

DWAHP Workload-Aware Hybrid Partitioning and Distribution 

FOAF Friend of A Friend 

GB GigaByte 

HP Horizontally Partitioned Table 

JARS Join-Aware distributed RDF Storage 

MB MegaByte 

MMDB Main Memory Database 

MPT Multi-Valued Property Threshold 

MV Materialized View 

OPR One Property Retrieval 

PT Property Table 

QET Query Execution Time 

RAM Random Access Memory 

RDF Resource Description Framework 

SR Structuredness Ratio 

TET Total Execution time 

TT Triple Table 

URI Uniform Resource Identifier 

W3C World Wide Web Consortium 

WAHP Workload-Aware Hybrid Partitioning 

XML eXtensive Markup Language 

  



xiii 

 

Symbols 

 

BEA Break-even Analysis 

D Number of insert/update/delete operations 

MC Materialized view creation time 

MR Materialized view refreshment time 

NMP Number of multi-valued properties 

NP Number of properties 

NQ Number of queries 

NT Number of triples 

NUP Number of unique properties 

QETMV Query Execution Time for Materialized View 

QETTT Query Execution Time for Triple Table 

RD1, RD2…RDn RDF data stores 

o Object 

p Property 

s Subject 

c Number of clusters (Algorithm Complexity)  

n Number of records (Algorithm Complexity) 

p Number of properties (Algorithm Complexity) 

q Candidates in Query Property Basket (Algorithm Complexity) 

s Candidates in Subject Property Bin (Algorithm Complexity)  



xiv 

 

List of Figures 

 

Figure 1.1: RDF Data Representations .................................................................................. 1 

Figure 2.1 Triple Table .......................................................................................................... 8 

Figure 2.2: Property Table ..................................................................................................... 9 

Figure 2.3: Binary Tables .................................................................................................... 10 

Figure 2.4 Structure Index Partitioning ................................................................................ 11 

Figure 3.1 Execution Flow for Basic RDF Data Stores ........................................................ 26 

Figure 3.2 Testbed............................................................................................................... 27 

Figure 3.3 Query Execution for Basic RDF Stores............................................................... 29 

Figure 3.4  Query Execution and Scaling for Query 3 .......................................................... 33 

Figure 3.5  Query Execution and Scaling for Query 6 .......................................................... 34 

Figure 4.1 Data Structures for DAHP .................................................................................. 40 

Figure 4.2 Execution Flow for DAHP ................................................................................. 41 

Figure 4.3 Data Structures for DASIVP ............................................................................... 41 

Figure 4.4 Execution Flow for DASIVP .............................................................................. 43 

Figure 4.5 Data Structures for WAHP ................................................................................. 43 

Figure 4.6 Execution Flow for WAHP................................................................................. 45 

Figure 4.7 Query Execution for DAHP and BT ................................................................... 49 

Figure 4.8 Query Execution for DASIVP and BT ................................................................ 50 

Figure 4.9 Query Execution time for DAHP and DASIVP................................................... 52 

Figure 4.10 Break-even point for DASIVP and DAHP ........................................................ 52 

Figure 4.11 Workload Answered by Clusters ...................................................................... 53 

Figure 5.1 DWAHP Phase 1: Hybrid Partitioning ................................................................ 58 

Figure 5.2 DWAHP Phase 2: Distribution Scheme .............................................................. 59 

file:///D:/trupti/DAIICT/PhD/Thesis/Thesis_Review%201and2%20changes%20accomodated%2015%20April.docx%23_Toc511592828


xv 

 

Figure 5.3 DWAHP Architecture ........................................................................................ 60 

Figure 5.4 DWAHP Data Structures .................................................................................... 61 

Figure 5.5 Query Types ....................................................................................................... 64 

Figure 5.6 n-hop Property Reachability Matrix for n=2 ....................................................... 65 

Figure 5.7 Clusters and Allocation ...................................................................................... 66 

Figure 5.8 Cluster Distribution using DWAHP .................................................................... 66 

Figure 5.9 Execution Flow using JARS ............................................................................... 67 

Figure 5.10 Cluster Distribution using JARS ....................................................................... 67 

Figure 5.11  Example Execution Plan for Query Type2 ....................................................... 68 

Figure 5.12 Example Execution Plan for Query Type3 ........................................................ 69 

Figure 5.13 Query Execution for DWAHP and JARS .......................................................... 71 

Figure 5.14 Query Execution for DWAHP and JARS with Scaled Data .............................. 73 



xvi 

 

List of Tables 

 

Table 3.1 FOAF Dataset Specifications ............................................................................... 26 

Table 3.2 MV cost v/s Normal cost for TT (Base tables not updated frequently).................. 31 

Table 3.3 MV cost v/s Normal cost for TT (Base tables updated frequently) ....................... 31 

Table 3.4 MV cost v/s Normal cost for BT (Base tables not updated frequently) ................. 32 

Table 3.5 MV cost v/s Normal cost for BT (Base tables updated frequently) ....................... 32 

Table 4.1 SWetoDBLP Dataset Specifications .................................................................... 47 

Table 5.1 Linked Observation Dataset Specifications .......................................................... 63 

Table 5.2 Summary of Query Performance Comparison between DWAHP and JARS ......... 73 

 

 



1 

 

Chapter 1  

1. Introduction 

RDF (Resource Description Framework) [1] is a standard model for data exchange on web 

established by W3C (World Wide Web Consortium). It encodes semantic relationship 

between things. RDF data is represented as a triplet of the form subject-predicate-object 

symbolized as <s,p,o>. Subject signifies a resource, predicate is property or characteristic of 

the resource, and object denotes value of the property. For example, Trupti is a Student at 

DA-IICT which in triple form is represented as <Trupti, Student, DA-IICT>. To be more 

specific, RDF uses URIs to make RDF statements. URI (Uniform Resource Identifier) is a 

global unique id for every entity on web. Another way to represent RDF structure is using 

graphs. It is a labeled graph structure where subject and predicate are nodes connected by 

edges which represent properties.  

 

 

Figure 1.1: RDF Data Representations 

 

Collection of RDF statements essentially characterizes a set of concepts or a particular kind 

of knowledge that give you an idea about things, and the relationship between things, which 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#Trupti Padiya>

a foaf:Person ;
foaf:name "Trupti Padiya" ;
foaf:mbox <mailto:trupti_padiya@daiict.ac.in> ;
foaf:homepage <http://www.tpadiya.com> ;
foaf:nick “Trupti" ;
foaf:depiction <http://www.tpadiya.com/img_smile.jpg> ;
foaf:interest <http://www.vldb.org> ;
foaf:knows [

a foaf:Person ;
foaf:name "Minal Bhise" ] 

<Trupti Padiya> <foaf:name>  “Trupti Padiya”
<Trupti Padiya> < foaf:mbox> <mailto:trupti_padiya@daiict.ac.in>
<Trupti Padiya> <foaf:homepage> <http://www.tpadiya.com> 
<Trupti Padiya> <foaf:nick>  “Trupti”
<Trupti Padiya> <foaf:depiction> <http://www.tpadiya.com/img_smile.jpg>
<Trupti Padiya> <foaf:interest> <http://www.vldb.org> 
<Trupti Padiya> <foaf:knows> "Minal Bhise"

(a) RDF Data

(b) RDF Data Triples
(c) RDF Data Graph

“Trupti”

Trupti Padiya

foaf:name

“Trupti Padiya”

foaf:mbox

<trupti_padiya@daiict.ac.in>

foaf:homepage

<http://www.tpadiya.com>

foaf:nick

foaf:decipitation

<http://www.tpadiya.com/img_smile.jpg>

foaf:interest

<http://www.vldb.org>

foaf:knows

“Minal Bhise”

rdf:type

rdf:type

foaf:person



 

2 

 

is formally referred to as an ontology.  FOAF [2] is an ontology describing person and their 

details, their activities, their relationship with other persons and so on. It basically describes a 

social network which is expressed in RDF. Figure 1.1 depicts various ways to represent 

FOAF (Friend Of A Friend) data. Figure 1.1 (a) is a RDF XML representation, Figure 1.1 (b) 

represents RDF data as set of triples and Figure 1.1 (c) represents RDF graph.  

RDF initially was introduced for the development of the semantic web. However, RDF is 

now used in a broader spectrum. For e.g. DBpedia [3] and Yago [4] extracts information from 

Wikipedia and stores them in RDF format in order to support structural queries over 

Wikipedia.  RDF is also used in the field of biology which has generated many large RDF 

collections like Bio2RDF and UniProt [5]. RDF is nowadays being used in diverse domains. 

It is a building block for the intelligent web, which is used as a machine-readable standard to 

exchange heterogeneous data on the web. Thus storing, retrieving and managing this data 

remains an important aspect of developing interactive applications. 

1.1. RDF Data Storage 

RDF data storage is of vital importance to materialize intelligent web. Several research 

efforts are made for efficient storage and management of RDF data. Data management has 

been put into execution either by centralized approach or distributed approach. Researchers 

have viewed RDF data storage and management with different viewpoints, irrespective of 

these approaches. RDF data storage is accomplished using these viewpoints: 1) RDF data is 

stored in a relational database system where the data is stored as relational tables. 2) RDF 

data is stored in its native graph pattern. When data is stored as a graph, it maintains its 

original representation of RDF data. However querying these graphs is complex due to tree 

traversal and graph-pattern matching, as the cost of subgraph matching is NP-complete [6]. It 

is intricate to extract frequent patterns from graph databases. It is much more difficult to scale 

graph data in a distributed network compared to scaling simpler data models [7]. On the 

contrary, traditional database techniques such as indexing, and query processing/optimization 

can be utilized to address this issue. Therefore with increasing RDF data, we feel classic 

relational database techniques can be used to store the data, so that one can take advantage of 

years long research on efficient storage and querying, transactions support, locking, indexing, 

query optimization, security and other features of database management systems.  This 

dissertation hence discusses RDF data storage considering a relational perspective.  



Introduction 

3 

 

1.2. Motivation 

RDF is a pillar of the intelligent web which makes the data understandable not only to 

humans but also to machines. It is a linked structure that has gained wide acceptance and is 

used for real-life applications. Lots of tools have been developed for purposes like triple 

stores, inference engines, converters, search engines, middleware, semantic web browsers, 

development environments and semantic wikis to name a few [3][8][9][10]. Linked Data [11] 

connects structured data on the web. It connects data, information, and knowledge on the 

intelligent web using RDF.  RDF is also used as a standard for information exchange for IoT 

(Internet of Things) [12][13]. IoT is an environment where every participating object, say a 

person, place or a thing are provided with a unique identifier in order to endow with the 

ability to transfer information. It is a heterogeneous data originating from various devices 

with different standards. RDF can assist in merging data even if the original schemas differ, 

and it particularly supports the development of schemas over the period of time. RDF allows 

the data to be shared across different applications [1].  

Because of higher utilization of RDF data, a rapid increase in RDF data is observed over the 

period of time. W3C Wikipedia page of RDF dumps [14] is flourished with trillions of 

triples. Linked Open Data is linking more than 9960 datasets out of which, some datasets 

contain more than 50 billion triples [15].  This rapid increase in RDF data makes RDF data 

management an open research issue. Storing, retrieving and managing this proliferating RDF 

data is of major concern. Efficient management of this RDF data is essential in order to 

fabricate robust RDF storage systems. With regard to building highly interactive applications, 

it is crucial to manage this RDF data competently, especially in terms of data storage and 

query execution time. This dissertation aspires to solve some of the major issues in RDF data 

management. Especially efficient RDF data storage and faster query execution using a set of 

proposed techniques, which can help in the development of interactive applications.  

1.3. Objectives 

This thesis deals with stationary RDF data and uses relational perspective to efficiently store 

and manage the data. The research work addressed in this dissertation essentially focuses on 

leveraging query performance using various partitioning strategies. It has following 

objectives: 



 

4 

 

 Explore basic RDF data partitioning techniques  
 Develop appropriate techniques to store RDF data efficiently for faster query 

execution  
 Develop solution for distributed systems using proposed approaches 

1.4. Goals and Contributions 

The comprehensive goal of this dissertation is to advance research into the area of RDF data 

management by enhancing previous attempts to manage RDF data.  It proposes new 

techniques to manage RDF data efficiently. Particularly it concentrates on efficient storage 

and faster querying of RDF data. Fundamentally this thesis gives minute details for a set of 

proposed techniques for RDF data management. First, it details on basic RDF data 

partitioning techniques. Second, it examines the tradeoffs of basic partitioning methods and 

proposes three hybrid data partitioning techniques. Third, it proposes a method for 

partitioning RDF data and then distributes this partitioned data on different nodes for efficient 

query execution. Our proposed method executes queries such that inter-node communication 

among nodes is minimized. This dissertation reflects an empirical research for efficiently 

storing and querying RDF data in both centralized and distributed environment using 

proposed techniques.     

1.4.1. Basic RDF Data Partitioning  

This section discusses available partitioning strategies. A set of experiments are performed 

for existing partitioning techniques, which let us get a hands-on and detailed insight into their 

working mechanisms. Basic partitioning methods include triple table [16], properly tables 

[17], binary tables [18], and materialized views [19] . Experimental work using basic 

partitioning methods and their break-even analysis are reported in [g] [h] [i].  Experimental 

work done during this thesis for basic RDF data partitioning is discussed in Chapter 3 in 

detail. 

1.4.2. Hybrid RDF Data Partitioning 

A series of experiments using basic RDF data partitioning helped us gain a detailed insight 

into advantages and disadvantages of existing approaches, and lead us to propose hybrid 

mechanisms to partition RDF data. We combine existing approaches by considering their 



Introduction 

5 

 

advantages and eliminating their disadvantages to a certain extent. Proposed hybrid RDF 

partitioning techniques include: 1) DAHP (Data-Aware Hybrid Partitioning) [e] 2) DASIVP 

(Data-Aware Structure Indexed Vertical Partitioning) [f] and 3) WAHP (Workload-Aware 

Hybrid Partitioning) [c] [d]. All hybrid partitioning mechanisms are discussed in Chapter 4. 

1.4.3. Distribution of Partitioned RDF Data 

RDF data is increasing rapidly and it has reached a point where processing and managing this 

data on a single machine has become difficult. We propose DWAHP (Workload-Aware 

Hybrid Partitioning and Distribution) [a] which is discussed in Chapter 5. The technique 

performs hybrid RDF data partitioning and manages query joins, such that queries can be 

executed faster. On top of that, it distributes hybrid partitioned data across nodes on a 

network such that, inter-node communication can be minimized and efficient query 

performance can be gained. In short, the proposed technique DWAHP partitions and 

distributes RDF data such that, not only it manages joins but also reduces inter-node 

communication among nodes to execute queries efficiently.  

1.4.4. Comparison with State-of-the-art 

We compare our system with JARS [20], a state-of-the-art mechanism to manage RDF data 

in distributed environment. JARS eliminates inter-node communication for star query 

patterns and minimizes inter-node communication for linear queries. DWAHP is compared 

with JARS in terms of query performance parameters: query execution time, query cost, 

storage space, and inter-node communication. The proposed system DWAHP has 

demonstrated on an average 72% of better query execution time with 61% of reduced query 

cost by occupying less than one third storage space compared to the state-of-the-art solution. 

DWAHP manages joins efficiently, and it is able to answer frequent query patterns like star 

and linear queries without inter-node communication. 

1.5. Dissertation Outline 

This dissertation focuses on using partitioning techniques to store stationary RDF data 

efficiently in a relational system. It proposes three hybrid partitioning techniques namely 

DAHP, DASIVP, and WAHP. It utilizes these techniques and using a proposed distribution 

scheme, the thesis proposes a technique called DWAHP to manage RDF data efficiently in a 



 

6 

 

distributed environment.   The thesis is organized as follows. Chapter 2 highlights related 

work. Chapter 3 demonstrates basic data partitioning techniques to manage RDF data. 

Chapter 4 discusses proposed data-aware and workload-aware based partitioning techniques. 

Chapter 5 demonstrates a solution to manage RDF data in a distributed environment and 

compares it with a state-of-the-art solution followed by conclusions and future work. 



7 

 

Chapter 2 

2. Related Work 

 

RDF has been extensively used for the development of the semantic web. However, RDF 

nowadays is not limited to semantic web, as it is being used for various diverse domains.  

With rapid increase in RDF data, efficient management of this data has always remained a 

primary challenge. Researchers have provided numerous solutions to manage this data 

efficiently over the period of time. Relational databases are thought-out as one of the 

prevalent solutions for managing different kinds of data.  In 1998, Tim Berners Lee discussed 

RDF and E-R model for their distinct characteristics [21]. This work suggested RDF model to 

relational model by mapping record to a RDF node, a field to a RDF property and table cell 

as object-value. There are several tools that have been developed to bridge the gap between 

RDF and relational representation [22]. Continuous attempts are made to find solutions to 

manage RDF data efficiently using a relational system [23].  This chapter discusses some of 

the major contributions in RDF data management.   

2.1. Basic RDF Data Partitioning 

This section discusses basic RDF data partitioning schemes proposed over years. Almost 

every research work uses some of these techniques at the base to partition data in a RDF 

store. 

2.1.1. Triple Table  

RDF data description generally has a triple format representation, which includes a triple of 

the form <subject, predicate, object> or <s,p,o>. Triple Table (TT) is a flat representation of 

these triples in a three column relational table. Systems like SesameSQL92SAIL[16], Oracle 

[24], 3Store [25] used this triple table approach. Figure 2.1 illustrates triple table.  Figure 2.1 

(a) depicts a triple table prepared for a set of RDF triples using row strings and Figure 2.1 (b) 

depicts an example of a triple table using a generic representation where S1, S2 ... Sn 

represents subjects, P1, P2 ... Pn represents predicates and O1, O2 … On represents object 

values. All the examples in this thesis are demonstrated using this generic representation.  



 

8 

 

 

Figure 2.1 Triple Table 

 

The main advantage of TT is, it has a very general representation and it is flexible too. It is 

easier to map a triple directly to a three column table. However, storing a large number of 

triples can result in performance issues. Storing a large number of triples in a single table will 

make the table huge. Moreover, real-life queries will require many self-joins which will result 

in slower query execution and there is a possibility to run out of memory capacity [18]. Due 

to these serious performance issues triple table doesn’t scale well.  

2.1.2. Indexing 

Researchers proposed solutions to use indexing mechanism to overcome these issues of a 

triple table in order to execute queries faster. These alternative solutions made use of 

extensive indexing on triple tables [26]. For every such system, there exists only a single 

triple table but it is indexed extensively. For example systems like Virtuoso [27], Hexastore 

[28] and RDF-3X [29]  use extensive indexing techniques. Virtuoso stores quads by binding a 

graph g with every triple. Conceptually it is a four-column table indexed by g,s,p,o and 

o,g,p,s. Hexastore uses a sextuple indexing mechanism. This six indexing scheme includes 

spo, sop, pso, pos, ops, and osp. On top of that they use dictionary encoding techniques and 

instead of storing entire URIs it stores shorten version of keys. Hexastore needs five times 

storage space than the actual triple table. RDF-3X also considers extensive indexing using 

Subject Predicate Object

Trupti Padiya First name “Trupti”

Trupti Padiya Interest “databases“

Trupti Padiya Institute “DA-IICT“

Disha Pathak First name “Disha”

Disha Pathak Interest “Photography“

Dhrumil Shah First name “Dhrumil”

Dhrumil Shah Institute “CISCO

Subject Property Object

S1 P1 O1

S1 P2 O2

S1 P3 O3

S2 P1 O4

S2 P2 O5

S3 P1 O6

S3 P3 O7

(a) Triple table example using 
row strings

(b) Triple table example using 
generic representation



Related Work 

9 

 

spo, sop, pso, pos, ops, and osp. It stores triples in compressed B+ trees which are sorted 

lexicographically by values of six different permutations. Indexing mechanisms although 

perform efficiently, because of required excess storage space they limit the scalability of data. 

TripleBit [30] tries to reduce storage space to some extent. These extensive indexing 

mechanisms offer the advantage of indexed based faster query processing. However, its 

major drawback is overhead of excess storage space and updating multiple indexes. 

2.1.3. Property Tables 

Property table scheme has been proposed by Jena [17]. Systems like DB2RDF [31] and 

4store [32] also uses property table technique. Property table is a wider, flat representation 

which is similar to traditional relational schemas. Property tables can be of two types: 

Clustered property table and Property class table [33]. Clustered property table contains a 

group of properties that tend to be defined together. Property class table exploits “type” 

property and group subjects in the same table which are associated with similar type. Figure 

2.2 depicts a clustered property table.  

 

 
Figure 2.2: Property Table 

 

 The advantage of using property table approach is subject-subject joins are diminished. 

Hence a query will have fewer joins or in some cases, it can be just a single table scan. 

Besides this advantage, it suffers from many serious drawbacks. There could be a significant 

number of null values in the table and can result in a sparse table for wider tables which will 

result in space overhead. RDF data use multi-valued attributes and it is awkward to express 

Subject Property Object

S1 P1 O1

S1 P2 O2

S1 P3 O3

S2 P1 O4

S2 P2 O5

S3 P1 O6

S3 P3 O7

(a) Triple Table

Subject P1 P2 P3

S1 O1 O2 O3

S2 O4 O5 NULL

S3 O6 NULL O7

(b) Property Table



 

10 

 

multi-valued attributes in property tables. Clustering similar properties will need some 

clustering algorithm and it may require re-clustering as there can be alterations in data 

characteristics over time.  Apart from the subject-subject join, property tables may not help 

other join types.  

2.1.4. Data Partitioning  

These limitations of discussed approaches were addressed by using partitioning technique for 

RDF stores. SW-Store [18] introduced use of vertical partitioning for RDF data. C-store [34] 

and IBM DB2 [35] implements this approach for managing RDF data. It is a fully 

decomposed model [36]. A triple table is partitioned into n two column tables where n is 

number of properties. Each table contains two columns (s, o) for every property. Hence it is 

called binary table.  

 

Figure 2.3: Binary Tables 

 

Figure 2.3 shows binary tables formed from sample triple table. This approach offers many 

advantages. Subjects that do not define a particular property are simply eliminated and hence 

it solves the problem of null value. Compared to property tables it will not need any 

clustering algorithm. All data related to a particular property is residing in the same table. So 

it may result in fewer union clauses. Besides these advantages, this approach suffers from few 

drawbacks. It requires increased number of joins. If multiple properties are queried, one 

needs to access and join all the required binary tables for the queried properties. Insert 

operations can be slow for binary tables as insert operations for same subject need to access 

Subject Property Object

S1 P1 O1

S1 P2 O2

S1 P3 O3

S2 P1 O4

S2 P2 O5

S3 P1 O6

S3 P3 O7

(a) Triple Table

Subject Object

S1 O1

S2 O4

S3 O6

Subject Object

S1 O3

S3 O7

Subject Object

S1 O2

S2 O5

(b) Binary Tables

P1 P2

P3



Related Work 

11 

 

different partitions. In a dynamic scenario where data keeps on changing data insertions can 

be tricky. 

2.2. Hybrid RDF Data Partitioning  

Continuous research efforts lead to Hybrid solutions to manage RDF data. A technique is 

proposed which uses PIG (Parameterized Structure Index) for data partitioning and query 

processing that exploited underlying structure to improve management of RDF data [37] [38] 

[39].  

 

Figure 2.4 Structure Index Partitioning 

 

0

43

8BITS

1

6 7

9DAIICT

In
te

re
st

In
st

itu
te

name
name

2 5

3,4 0,1

8,9 4,6,
7

BITS, 
DA-
IICT

2,5
Interest

In
st

itu
te

na
m

e

In
te

re
st

Institute

Domain

y

z x

DA-
IICT

na
m

e

In
te

re
st

Institute

(a) Data Graph

(b) Index Graph (c) Query Graph



 

12 

 

It uses structure index for RDF. At querying time, structure index is used for structure-level 

query processing to identify data that matches the query structure. And then this structure 

level processing is combined with data-level processing for join operations and retrieval of 

data. Basically, an index graph is prepared using the basic data graph and the query graph is 

mapped on the index graph to retrieve data. Figure 2.4 shows an example of Structure Index 

Partitioning approach. It shows the data graph, index graph and a query graph for query 

“Retrieve people who belong to DA-IICT and are interested in Database”. Structure Index 

Partitioning maps query graph on index graph, followed by query pruning in order to get a 

final answer of the query. Though it outperforms few of the discussed basic RDF storage 

techniques, it suffers from the issue of scalability as it is a graph-based method. Moreover, in 

dynamic environment query structure may change and which may result in increased 

complexity of this solution. 

A RDF data-centric approach [40] is proposed to manage RDF efficiently. It uses a 

combination of binary tables and property tables to store RDF data. It basically decreases the 

need for number of joins in the query plan and also tries to keep the number of null values at 

minimum. It offers a simple solution but in some scenarios, it has shown moderate 

performance as data-centric tables contained some redundant values. 

2.3. Distribution of RDF Data 

RDF data has increased to a point where it is difficult to manage it on a single system. For 

few datasets, it has accelerated to a level where it becomes necessary to partition the data 

across multiple nodes to manage this data proficiently. Researchers have contributed many 

solutions to partition and distribute RDF data. This section briefs some of the prominent 

solutions to manage RDF data in a distributed environment. 

2.3.1. Federated Systems  

Federated systems are proposed to manage RDF data.  FedX [41] offers one such federated 

query processing mechanism for heterogeneous linked data sources. It targets to minimize the 

number of intermediate requests among federated nodes and proposes a mechanism to group 

triples such that they can be evaluated at a single endpoint. It employs an optimization 

technique for efficient query processing. DARQ [42] is also a federated system to query RDF 



Related Work 

13 

 

data and it also discusses use of semi-join same as FedX to compute join between 

intermediate results. 

2.3.2. Adaptive RDF Data Storage Systems 

Though this dissertation deals with stationary data, it will be suitable to highlight some work 

that has been carried out to manage RDF data in a dynamic environment, where data keeps 

on changing over time. Cerise [43] is an adaptive RDF data store for a distributed 

environment.  It dynamically adapts to underlying storage and query execution based on 

query history. It tries to co-locate data on the same node that are accessed together so that 

disk and network latency can be reduced. Though it outperforms few of the techniques to 

manage RDF data in a distributed environment, it has a certain cost involved for co-locating 

data for read-only workloads.  In some cases, this cost is compensated with performance 

improvement of queries. However, this approach is more suitable for query patterns which 

are repeated over time. DREAM [44] is another adaptive query planner for RDF data 

management in a distributed environment. DREAM doesn’t partition data like other 

techniques, instead it partitions only queries. It offers a general paradigm for various query 

patterns and its adaptive scheme automatically runs queries on different machines depending 

on query complexities. Although it outperforms Scalable RDF Storage [45], RDF-3X [29] 

and other distributed systems, it can certainly accelerate its performance by considering 

parallelizing queries at different granularities. PHD-store [46] doesn’t assume any pre-

placement of data and does not require pre-partitioning of data. It answers queries using 

distributed semi-join algorithms and adapts dynamically to query load by progressively 

redistributing frequently accessed data. It uses propagating hash distribution approach to 

solve the problem. 

2.3.3. Data-Aware RDF Data Partitioning Systems 

Various RDF data partitioning mechanisms for distributed systems are also proposed by 

many researchers to efficiently handle this data. TriAD [47] is a shared-nothing RDF engine 

which is based on asynchronous message passing. It combines join ahead pruning with a 

locality based, horizontal partitioning of RDF triples. It uses METIS [48] to partition RDF 

graph. Each partition is distributed among nodes and every node maintains in-memory 

vectors of triples. All vectors are permuted for subject, predicate, and object and hence it has 



 

14 

 

six such vectors.  It also maintains a summary graph which has partition information. Partout 

[49] extends the notion of minterm predicates and use it as a fragmentation unit to partition 

data. 

Scalable RDF Storage [45]  has proposed a scalable querying technique to leverage single 

node data management. It is a horizontally scalable RDF storage system that makes use of 

METIS partitioner [48]. It introduces data partitioning and placement technique on a Hadoop 

framework where query execution is parallelized between nodes. They introduce a parameter 

PWOC (Parallelization WithOut Communication) to check for a query is parallelizable and 

can be executed without the need of message passing. Another RDF partitioning approach for 

scalable RDF store [50] is also a Hadoop based framework which automatically partitions 

RDF data and approximates a solution to place partitions on different nodes such that 

redundancy can be reduced. It actually proposes this framework to make a good tradeoff 

between data redundancy and efficient query execution. It combines advantages of both 

RDF-3X [29] and MapReduce framework. However, it needs considerable data preprocessing 

and additional data structures to perform data distribution among nodes.  

JARS [20] pursue a join aware RDF data distribution approach. It is a relational system based 

approach to distribute RDF data and hence doesn’t hold expensive MapReduce jobs. It uses 

dual-hash partitioning and dual indexing on the triple table. It uses MD5 message digest 

algorithm to generate a hash value for placement of a triple on its respective node. This 

algorithm is applied for both subject and object. After triple placement on their respective 

node using the MD5 algorithm, it indexes subject table and object table. The subject table is 

indexed using pos, pso, osp, and spo while object table is indexed by pos, pso, sop, and ops.  

With this strategy, it eliminates inter-node communication for queries having subject-subject 

joins and it is minimizing inter-node communication for queries having subject-object joins. 

Even though it achieves significant performance improvement over few distribution schemes, 

it suffers from several issues. It stores triple twice and on top of that, it indexes them using 

four permutations of subject, predicate, and object. Consequently, it consumes more than 

double storage space than it is required to store the actual data. While updating triples, one 

need to re-calculate its MD5 hash value for both subject [51] and object, place it on 

respective node and then re-index on their corresponding subject and object table.  This 

complex set of operations makes it difficult to handle updates on such systems.  

 



Related Work 

15 

 

2.3.4. Workload-Aware RDF Data Partitioning Systems 

In parallel, researchers also have utilized workload information in order to answer frequent 

queries efficiently for a distributed environment. For example system like WARP [52] exploit 

workload information to replicate and distribute data among nodes. It avoids expensive 

MapReduce jobs and performs cost-aware optimization of arbitrary queries. Another 

workload based RDF data fragmentation and allocation [53] offers a solution by considering 

frequent access patterns of the queries. It proposes a local pattern-based fragmentation 

strategy by considering the entire workload and satisfying their storage constraint. 

Researchers have worked on systems that separate hot and cold data based on the frequency 

of query workload and then manages hot data in main memory databases [54] [51] [55]. 

ClusterRDF [56] [57] also exploits workload information and generates RDF templates. 

These templates are frequent query patterns identified for the system. It allocates these 

templates such that the data that is queried together can appear on the same node in order to 

reduce messaging passing between nodes. While performing data distribution among nodes, 

it fragments these templates by keeping a check on structure query patterns to cluster them 

solely.  At the time of clustering these fragments, it groups fragments with strong affinities 

considering a storage threshold. Though ClusterRDF outperforms other storage systems, 

there can be significant issues that can arise while using this approach. Depending on number 

of nodes and number of multi-valued relationships in RDF dataset, it is possible that more 

number of fragments may be required. With increase in fragments, the idea of reduced 

message passing gradually dissolves. It is necessary to use an acceptable threshold value to 

reduce data redundancy at the time of clustering fragments. To cluster fragments, it needs to 

traverse through all triples so that fragments with strong affinity can be kept together. This in 

itself is a complex process and on top of that changes in RDF data may make it even more 

difficult to allocate data on nodes. Query graph pattern needs to be defined at an earlier stage 

to use this approach. So it may be difficult to run ad-hoc queries on this system. 

2.4. Research Issues  

Researchers have proposed numerous solutions with different perspectives to manage RDF 

data. However, few research issues are still open. This section discusses some of the open 

research issues in the area of RDF data management followed by the research issues 

addressed in the dissertation and some recent work.  



 

16 

 

2.4.1. Open Research Issues 

Researchers have put in abundant efforts to manage RDF data in a relational system and a lot 

of issues have been solved adequately. However following research issues are still open:  

 Strategies for RDF data storage and query processing 

Basic RDF data stores like triple table [58], property table [17], binary tables [18], use of 

materialized views [18] have been proposed. Triple table though being simple suffers from 

issues of a large number of self-joins. Property table contains potential null values in large 

number making it a sparse matrix, and vertical partitioning face problem of more number of 

joins and update issues.   On the other hand, various indexing mechanisms [27][28][29] are 

also proposed for efficient handling of RDF data. However indexing RDF store faces the 

problem of complex operations like updating indexes and usage of extra memory space to 

store those indexes. Researchers have experimentally evaluated RDF storage systems [59] 

and have proposed workload-aware storage and query processing strategies [60] on 

centralized systems. Many RDF storage systems like [17][61][62] rely on MMDB (Main 

Memory Data Bases) [63] for faster retrieval of data. However managing RDF data using in-

memory systems may not be feasible in the scenarios where there is no strong hardware 

support. Besides storage mechanisms, researchers also have worked on various query 

processing strategies which make use of different query optimization techniques [64] to 

efficiently process RDF queries.  

Although numerous solutions have been proposed to address the issue of RDF data storage 

and query processing, they suffer from some of the performance issues as discussed in 

section 2.1 and section 2.2, which makes a room for further research in this domain and find 

solutions to overcome some of the issues addressed. 

 RDF data management in distributed environment 

With rapid increase in RDF data, it has become difficult to manage this data on a centralized 

system. Hence researchers have proposed solutions to manage RDF data in a distributed 

environment. Various RDF data partitioning systems [47][45][50][20][57][65]  have been 

devised for distributed systems. Mostly these systems provide solutions for minimum 

message passing in order to achieve faster query execution. Scalable RDF storage system 



Related Work 

17 

 

[45] is able to minimize inter-node communication and parallelize queries using a metric 

called PWOC. It is able to perform better than other hash partitioning systems like SHARD. 

However, it doesn’t consider query workload for partitioning RDF data.  JARS [20] is 

another RDF data storage system that achieves significant performance improvement. 

However it stores triples twice and on top of that, it indexes them using four permutations of 

subject, predicate, and object. This eventually results in consumption of more than double 

storage space than it is required to store the actual data.  It also involves a huge complexity 

during update operation due to its data distribution strategy.  ClusterRDF [57]  exploits 

workload information and distributes RDF data using generated templates. All of these 

discussed systems have managed minimum message passing between nodes by either using 

certain partitioning strategies or by managing joins for query processing. However, these 

techniques do suffer from some issues as discussed in detail in section 2.3 which motivates to 

carry out further research in this domain.  RDF systems generally deal with queries having 

subject-subject and subject-object joins. There is a necessity for such systems that can not 

only minimize inter-node communication but also manage both subject-subject and subject-

object join efficiently.  

 RDF data management and applications 

RDF has been used increasingly in real life applications like triple stores, inference engines, 

converters, search engines, middleware, semantic web browsers, development environments 

and semantic wikis. Various new technologies are looking forward to using RDF as a 

standard because of its flexible representation and its capability for interoperable systems. 

For example, researchers feel that RDF is important for the successful Internet of Things [66] 

[9][67]. IoT is an environment where every participating object, say a person, place or a thing 

are provided with a unique identifier in order to endow with the ability to transfer and process 

information. This data is heterogeneous in nature and there is a growing need to manage this 

data together using standard protocols. Although there is no shortage of standards, these 

standards remain disconnected and hence researchers propose utilization of RDF to offer 

connectivity.  RDF has features that assist in data merging even though the underlying 

schema differ, and it particularly supports the evolution of schemas over time without 

requiring all the data patrons to be changed. Use of RDF allows structured and semi-

structured data to be mixed, exposed, and shared across different applications [68]. 



 

18 

 

Furthermore, RDF data management techniques can be applied to IoT data in order to make 

IoT applications interactive [69] [70] [71]. 

2.4.2. Issues Addressed in Dissertation  

This dissertation provides solution to some of the issues discussed in section 2.4.1. Following 

are the highlights of research issues addressed:  

 Proposed hybrid approaches to store RDF data for faster query processing 

We propose three hybrid approaches to leverage query performance and offer a solution for a 

relational based RDF data storage system. DAHP (Data-Aware Hybrid Partitioning) and 

DASIVP (Data-Aware Structure Indexed Vertical Partitioning) are two proposed data-aware 

approaches. They focus on how the data is organized in the dataset and offers a storage plan 

using a hybrid approach in order to execute queries faster. WAHP (Workload-Aware Hybrid 

Partitioning) is a workload-aware approach which offers a solution to store RDF data 

considering the actual query workload and aims at leveraging frequent queries. Further, we 

carry out an insightful comparison of all the approaches by the means of empirical 

evaluation. Our proposed approaches are able to outperform state-of-the-art systems and 

overcome some of the issues discussed in section 2.1 and 2.2.  

 Proposed method to manage RDF data in a distributed environment 

We utilize those ascertained hybrid approaches and propose DWAHP (Workload-Aware 

Hybrid Partitioning and Distribution) to manage RDF data in a distributed environment. 

Basically, we use workload-aware approach to partition RDF data. Subsequently, we make 

use of data-aware approach for data allocation and data distribution among nodes. This blend 

helps us achieve an order of magnitude better performance compared to state-of-the-art 

mechanisms. Our approach not only minimizes inter-node communication but also manages 

subject-subject and subject-object joins such that linear and star queries can be answered 

without inter-node communication.  Further, we apply our proposed techniques for IoT data 

which can direct towards making IoT applications interactive.  

 

 



Related Work 

19 

 

2.5. Recent Work 

This section highlights a few most recent work carried out in the area of RDF data 

management. Some new data storage strategies also have been formulated. For example 

system like RDF-4X [72] provides a scalable solution to manage RDF data. It introduces 

storage methods and indexing mechanisms that scale billions of quads across multiple nodes. 

A Google patent [73] proposes methods and apparatus for querying relational data store using 

schema-less queries. A distributed RDF store [74] introduces a bulk-loading algorithm for 

triples using MapReduce framework. This bulk-loading algorithm for loading billions for 

triples makes it faster to respond to queries. RDFox [75] is an in-memory scalable centralized 

RDF store for static RDF data. Researchers also have proposed in-memory RDF dictionary 

[76] for dynamic and streaming RDF data.     

Indexing mechanism suffers from storage space issues and researchers are working on it to 

minimize storage space occupied by indexes.  Double chain-star [77] is an indexing scheme 

for fast processing of RDF queries. It reduces chain star patterns as it involves multiple self-

joins. Another indexing scheme [78] is proposed for a large scale semantic web data. It 

creates a subject-object index and a separate predicate index to minimize total size of the 

index. v-RDFCSA [79] is a self-indexing solution that provides version-based queries on top 

of compressed RDF  archives. It reduces space-time up to35 - 60 times over current solutions.  

RIQ [80] proposes a solution for faster processing of queries for RDF data that is stored as 

quadruples. It employs a decrease-and-conquer strategy for faster query processing. Instead 

of indexing entire RDF dataset, it identifies similar groups of RDF data and creates an index 

on each group separately. Ontop [81] is an open-source ontology-based access system. It 

allows querying relational data sources through a conceptual representation of their 

corresponding interest domain. Along with a theoretical foundation, it utilizes query rewriting 

technique and extensive optimization techniques. S2RDF [82] proposes a mechanism for 

faster query processing. It uses is relational partitioning schema which employs semi-join 

based preprocessing to efficiently minimize query input size. Cliquesquare [83] is an 

optimization approach for evaluation of RDF queries in massively parallel environment.  It 

minimizes the number of joins encountered on the root to leaf plan. It actually proposes 

optimization algorithms to build flat query plans. 

 



 

20 

 

2.6. Summary 

This chapter of literature survey discusses some of the major contributions in the area of RDF 

data management. It details about various available data partitioning solutions to manage 

RDF data using data and workload information. It discusses proposed solutions for storing 

and querying RDF data efficiently in a centralized and distributed environment. It talks about 

open research issues and issues addressed in this dissertation. 

  

 

 



21 

 

Chapter 3 

3. Basic Partitioning for RDF Data 

RDF data maintains its original representation when stored in its native graph pattern. 

However querying these graphs is complex due to tree traversal and graph-pattern matching. 

It is difficult to deal with large data graphs as graphs may be ideal if nodes are fairly balanced 

[7]. There can be super-nodes with many edges and there can be nodes with very few edges 

which make it challenging to scale. On the other hand, scaling data on simpler models like 

relational models is quite a worked out solution. On top of that, relational database techniques 

such as indexing, and query optimization can be utilized to handle scaled data efficiently. 

Therefore with increasing RDF data, we feel classic relational database techniques can be 

used to store the data. So that one can take advantage of years-long research on efficient 

storage and querying, transactions support, locking, indexing, query optimization, security 

and other features of database management systems.  This chapter discusses basic RDF data 

storage techniques using relational systems. It further discusses the experiments performed 

for basic RDF data partitioning techniques. An empirical evaluation is carried out for a triple 

table, property tables, binary tables, horizontally partitioned tables, and materialized views 

over binary tables. Additionally, these basic storage techniques are also evaluated for scaled 

data. This experimental study has helped to gain hands-on to manage RDF data in a relational 

database system. 

 

3.1. Triple Table (TT) 

Structurally RDF is in the triple format as <subject, predicate, object>. These triples can then 

be stored in a relational database with a flat representation of a three-column schema, known 

as TT (Triple Table) [16]. The advantage of this approach is that it has a very simple and 

flexible data representation. However, it can suffer from serious performance issues, as there 

is only a single RDF table. Almost all interesting queries will involve many self-joins over 

this table. Hence it becomes important to improve RDF query performance as data is 

represented in RDF format on the web. 

 



 

22 

 

3.2. Partitioned Tables  

Data partitioning deals with the logical arrangement of data in the database.  There exist 

mainly two types of data partitioning techniques: Vertical and Horizontal. Vertical 

partitioning divides a table into multiple tables that contain fewer columns.  Horizontal 

partitioning is a horizontal division of a table which contains fewer rows. Vertical Partition 

for RDF data may result in property tables and binary tables. Horizontal partition on RDF 

data results in horizontally partitioned tables. 

3.2.1. Property Tables (PT) 

PT can be visualized as a vertical partitioning of RDF data. It is a de-normalized RDF table, 

which is physically stored in a wider, flattened representation [17]. It is quite similar to 

traditional relational schemas which have subject and its required predicates as columns. 

Now if there are queries which have more joins, then this query will be very slow to execute, 

because as the number of triples in the collection scales, the RDF table may well exceed the 

size of memory, and each of these filters and joins will require a scan or index lookup. Real 

world queries involve much more joins, which complicates selectivity estimation and query 

optimization, and limits the benefit of indices [33]. Even though the representation is very 

simple and flexible, there are several issues with PT which includes a large number of nulls, 

difficulty of storing multi-valued attributes, and complex joins. Besides this, a clustering 

algorithm must be used to find a group of properties to form a property table. These 

clustering algorithms may increase complexity and on top of that, if the data characteristics 

change over time, reclustering might become necessary. 

3.2.2. Binary Tables (BT) 

Using vertical partitioning, another way to store RDF data is to create a table for every 

property. There will be as many tables as number of properties in the dataset. Each table will 

have two columns, one for the subject and other for the object for their corresponding 

property [18]. As it has two columns it is referred to as BT (Binary Tables). Subjects that do 

not have properties defined for them will not appear in BT and hence BT solves the problem 

of null value. Compared to property tables it will not need any clustering algorithm. Besides 

these advantages, this approach suffers from few drawbacks. Some of the queries may require 



Basic Partitioning for RDF Data 

23 

 

larger number of joins. If multiple properties are queried, one needs to access and join all the 

required binary tables for the queried properties.  

3.2.3. Horizontally Partitioned Tables (HP) 

Horizontal partitioning divides a table into multiple tables where each table contains the same 

number of columns, but fewer rows. Horizontal partitioning can be applied on a triple table, 

property table, and binary tables. In this chapter horizontal partitioning is applied on the triple 

table. Basically, they are smaller triple tables considering number of rows. Every HP 

(Horizontally Partitioned table) contains different rows. 

3.2.4. Materialized Views (MV) 

A view is a database object which contains the query result. For example, it may be a local 

copy of data which is located remotely, or it can be a subset of the rows and/or columns of a 

table or join result, or it can be a summary based on aggregations of a table's data [84]. In 

short, a view is a virtual table representing the result of a database query. An MV 

(Materialized View) [19] takes a different approach, in which the query result is cached as a 

concrete table that may be updated from the original base tables from time to time. 

Materialized views are most often used in data warehousing or business intelligence 

applications where large fact tables with thousands of millions of rows are queried. For the 

work represented here, materialized views are considered in conjunction with binary tables, 

which is expected to improve query performance. 

3.3. Experiments 

The presented work experimentally study and evaluate query performance for RDF data 

using various basic RDF storage techniques. Initially, RDF data is converted to triple form. 

This RDF data in the triple form is mapped to a three-column table called triple table. The 

dataset is partitioned vertically and horizontally. Vertical partitioning results in property 

tables and binary tables. A set of clustered property tables are prepared and there exists a 

binary table for each property in the dataset. Horizontally partitioned tables are created based 

on subjects, in order to evaluate query performance for subject-specific queries. These 

horizontally partitioned tables are created for triple tables. Materialized views are applied on 

binary tables in order to gain better performance as materialized views store partial results 



 

24 

 

beforehand. A query set is then executed over all the data stores namely triple table, property 

tables, binary tables, horizontally partitioned tables, and materialized views over binary 

tables.  

Experiments are performed for all basic RDF data storage techniques in order to evaluate 

their query performance and scalability in terms of QET (Query Execution Time). FOAF [85] 

dataset is used to compare TT, PT, BT, HP, and MV. A query set is executed on all the data 

storage techniques described. Cold and hot runs are observed for the queries. A cold run is a 

run of the query right after a database is started and no data is preloaded into the system’s 

main memory, neither by the database nor in file system caches. Such a clean state can be 

achieved via a system reboot or by running an application that accesses sufficient data to 

flush file system caches, main memory, and CPU caches. On the other hand, a hot run is 

defined as repeated runs of the same query without stopping the database, ignoring the initial 

cold run [86]. Hot runs demonstrate a real-life scenario of data access and hence hot runs are 

considered as actual query runs. Hot runs are represented as query runs throughout the thesis. 

Query runs are averaged over three runs and are reported in terms of QET. 

3.3.1. Algorithms 

This section describes algorithms for basic RDF data storage techniques like TT, PT, BT, and 

HP. PT and HP algorithms are customized based on the dataset used for the experiment. All 

the given algorithms converge in either linear or polynomial time.  

TT is a flat representation of RDF triples in the relational model which has three columns 

subject, predicate, and object. It can be seen in the Triple Table algorithm that .n3 file is 

given as input and all triples are read line by line and stored in a database in a three column 

table. 

 Algorithm: TT  

Input: .n3 file  

Output: TT 

1. For all r in RDFTriples    
2.    TT ←  s,p,o   
3. End For  
4. Return TT  

Once a TT is formed, clusters are created for storing data in clustered property tables. Two 

property tables are broadly clustered for relationship details and personal details which are 



Basic Partitioning for RDF Data 

25 

 

customized for the data set used in the experiment. Rest of the data is stored as leftover 

triples.  

Algorithm: PT 

Input: TT  

Output: PT  

1. For all r in RDFTriples  
2. if p in r belongs to relationship  
3.    create property cluster pc1 
4. Else if p in r belongs to personal  
5.    create property cluster pc2 
6. Else 
7.    Consider as leftover triples 
8. End For 
9. For all r ϵ RDFTriples  
10.    For all pi in cluster ci 

11.       pci ←  s, p1,p2..pn  

12.    End For 

13. End For  

14. Return PT  

 

Algorithm: BT  

Input: TT  

Output: BT 

1. For all r in RDF Triples  
2.    create binary table for every unique property 
3. End For 
4. For all r in RDF Triples  
5.    For all p in RDF Triples  
6.       BTi ←  s,o   
7.    End For  
8. End For  
9. Return BT 

 

Algorithm: HP  

Input: TT 

Output: HP  

1. For all r in RDF Triples  
2.    For all n ϵ {0 to 9} ˅ {a-z} ˅ {A-Z}  
3.       HP ← n  
4.       n ←  s,p,o   
5.    End For  
6. End For  
7. Return HP 

 

Binary tables are created for every distinct property. All unique properties are identified for 

the dataset and a two column table is created for each property. Relevant data is then inserted 

into each binary table.  The dataset is horizontally partitioned based on subjects. A 

horizontally partitioned table is created which is a three column triple table, specifically 



 

26 

 

based on the first character of the subject which is customized for the dataset used in the 

experiment. 

Figure 3.1depicts execution flow for experimenting basic RDF data storage techniques. The 

data set is in RDF/XML which is converted to triples using a Jena parser [87] and stored in a 

relational database.  Basic RDF data stores like TT, PT, BT, and HP are created using 

algorithms described in section 3.3.1.  Dataset is scaled in terms of number of triples and 

query performance is reevaluated for all the basic RDF data stores. Query performance is 

measured in terms of QET. 

 

Figure 3.1 Execution Flow for Basic RDF Data Stores  

3.3.2. Dataset 

Basic RDF data storage techniques are experimented on a benchmark dataset, Friend Of A 

Friend (FOAF) [85] from the University of Maryland with 406540 triples and 380961 distinct 

triples. It has 234 unique properties and occupies 65 MB of disk space. Details of FOAF 

dataset are given in Table 3.1. 

Table 3.1 FOAF Dataset Specifications 

Specifications FOAF Dataset 
No of Triples 406540 
No of distinct Triples 380961 
No of unique properties 234 
Size on disk 65 MB 

Benchmark 
Dataset

Benchmark 
Query Set

Conversion to Relational 
Database

Data Storage Techniques
(TT, PT, BT, HP, MV)

Data 
Scaling

Study and Analyze Query 
Performance



Basic Partitioning for RDF Data 

27 

 

3.3.3. Query Set 

In general, there are four kinds of queries fired on RDF data, which includes: star queries, 

linear queries, administrative or range queries, and snowflake queries. Hence RDF queries 

are categorized into four different query types. Type 1 queries are linear queries which 

retrieve predetermined set of properties from the RDF dataset. Type 2 queries are star queries 

that involve selection of properties defined for a particular subject. Type 3 queries are 

administrative or range queries and Type 4 queries are snowflake queries that retrieve 

predetermined properties or subjects. Query set contains 15 queries for FOAF dataset and is 

classified into four different query types. QET is averaged over query types to gain correct 

insight into query performance for a specific query type. All the SQL queries for FOAF 

dataset are given in Appendix 1. 

3.3.4. Hardwares and Softwares 

A test bed is created to implement all RDF data storage techniques and execute queries for 

FOAF dataset. The dataset is in RDF/XML format which is converted to triples by using Jena 

parser [87]. Eclipse 3.5 and Java 1.8 are used to implement the parser and other algorithms of 

the experiment.  PostgreSQL is used as a database tool to store RDF data using various basic 

RDF data storage techniques. These tools are installed on a Linux based machine with hard 

disk storage space of 500 GB and 2 GB RAM. Figure 3.2 gives a glimpse of the test bed for 

all the experiments discussed in the thesis. Corresponding algorithms for the experiment are 

executed to generate RDF store. This RDF store is stored using a relational database. For 

Chapter 3 and Chapter 4 PostgreSQL and for Chapter 5 PostgreSQL-XL is used as a 

relational database.  

 

Figure 3.2 Testbed 

 

Conversion to 
RDF Triples

Benchmark 
Dataset

(RDF/XML)

Jena Parser
(Java 1.8 & 
Eclipse 3.5)

RDF Store
(PostgreSQL/XL)

Algorithms 
(Java 1.8 & 
Eclipse 3.5)

Benchmark 
Query set

Query Execution

Scaled RDF Store
(PostgreSQL/XL)

1

3

2 5

Algorithms 
(Java 1.8 & 
Eclipse 3.5)

4 6



 

28 

 

3.4. Results and Discussions 

This section discusses analysis and comparison of query performance for various RDF data 

storage techniques in terms of QET. TT algorithm takes .n3 file as input and stores RDF data 

in a database in a three column table. TT consists of 406540 records as there are 406540 

triples. Once a TT is formed, clusters are created for storing FOAF data in clustered property 

tables. As FOAF data is a social network data, information like relationship and personal 

details appeared frequently in the dataset. Hence, two PTs are broadly clustered for 

relationship details and personal details.  Relationship details table consists of 9 properties 

and has 186572 records and personal details consist of 5 properties with 50264 records. Rest 

of the data is stored as leftover triples with 169704 records. Binary tables are created for 

every distinct property. FOAF dataset has 234 distinct properties and hence there are 234 

binary tables. FOAF dataset is horizontally partitioned based on subjects. It contains total 36 

tables, out of which 26 tables are for all alphabets (a-z) and 10 tables for all numeric from (0-

9). It denotes subject starting with a corresponding character.   

 

3.4.1. Query Execution for Basic RDF Data Stores 

Query sets are executed on TT, PT, BT, and HP on PostgreSQL. All the queries are executed 

and averaged over three query runs. QET is recorded in milliseconds and it is averaged over 

query types. Figure 3.3 depicts query execution for FOAF dataset for basic data storage 

techniques discussed. It can be clearly seen from Figure 3.3 that partitioning techniques 

outperform TT for all query types for this experiment.  

Query Type 1: Query Type 1 retrieves data for a fixed set of properties. It selects all records 

for which a set of properties are defined. BT, PT, and HP show 99%, 73% and 94% on an 

average improvement over TT respectively. Binary table is having far less number of records 

than a TT and hence join cost comes to minimum. For a sample query, BT contains one 

subject-subject join and one subject-object join within three tables whereas the same query in 

TT consists of 3 self-joins. Time taken by self-join increases due to scan operation for all 

records as TT is huge compared to BT. PT has five attributes based on the query, and it 

contains no joins but the scan operation for all the records costs higher than BT. In case of 



Basic Partitioning for RDF Data 

29 

 

HP, it is a union of 36 tables which makes the operation time consuming compared to BT 

using only three tables. 

Query Type 2: Query Type 2 queries data for a predetermined subject. It selects all records 

defined for a subject.  On an average, BT, PT, and HP perform 98%, 28% and 61% better 

compared to TT for this query type. For a sample query, BT contains no joins but a union of 

nine binary tables. These binary tables are much smaller in size compared to TT, and hence 

scanning cost is lesser for BT compared to TT.  In case of PT, there is only one table with 9 

attributes. However, it takes longer time as it has records for every subject. It also suffers 

from space overhead due to lots of nulls. HP uses a single table which has subjects starting 

with initial of the queried subject. HP takes longer execution time is due to 9 filters for 

queried properties. It is simpler to perform union operation of 9 small tables than to filter 9 

properties out of a horizontally partitioned triple table. 

 

Figure 3.3 Query Execution for Basic RDF Stores 

 

Query Type 3: Query Type 3 falls in the category of administrative queries which are 

generally range queries. It selects all records which satisfy the given range criterion. Query 

performance for BT, PT, and HP is seen to be 97%, 28%, and 81% better than TT. For a 

sample query, BT contains no joins and it queries records from a single binary table and 

hence takes lesser time compared to TT. The clustered property table contains 5 attributes 

and hence takes longer time in scanning the whole table. HP needs to scan a single 

horizontally partitioned triple table. However, size of HP is more than BT and hence it takes 

longer for scan operation. 

Type 1 Type 2 Type 3 Type 4 
TT 7952 734 783 2929 
PT 2185 532 564 1767 
BT 13 11 22 216 
HP 509 289 149 1287 

0 
100 
200 
300 
400 
500 
600 
700 
800 

Ex
ec

ut
io

n 
tim

e 
in

 m
s 



 

30 

 

Query Type 4: Query Type 4 asks for queries with a specific subject and specific properties. 

It selects records with predetermined subject and property. It is observed that on an average 

BT, PT, and HP perform 93%, 40% and 56% better compared to TT. For a sample query, BT 

contains one subject-object join and joins two binary tables. Whereas TT contains two self-

joins and hence takes longer QET than BT because of table size and cost of self-join. 

Clustered PT has no joins but has a larger table with 5 attributes which take longer to execute 

the same query compared to BT. 

As expected, partitioned data occupies less space compared to other RDF data storage 

techniques. FOAF data of initial size for TT occupied 65 MB, for PT it occupied 60 MB, for 

HP and BT it occupied 53 MB and 35 MB respectively.  

3.4.2. Query Execution for Materialized Views  

Queries like “suggest friend of a friend” are very common. In such inference queries, one 

first needs to find friends of the subject from the triple table, and then join this data with the 

triple table to get friend of a friend. In general, these queries are evaluated using subject-

object joins. The process can be accelerated by storing the result beforehand in the form of 

views and avoiding self-joins. One way to address this issue is using query modification 

technique [88]. However, query modification technique creates view on-the-fly and it can 

slow down query execution. An alternative to query modification is to pre-compute the view 

definition and store the result. When the query is posed on the view, the original query is 

executed directly on the pre-computed result. This approach, called View Materialization 

[19] is likely to be much faster than the query modification approach. The drawback is that 

one must maintain the consistency of the materialized view whenever the underlying tables 

are updated. However, it is necessary to deduce how much preprocessing one can afford and 

from when one can start getting the benefit of better query performance. This can be worked 

out using break-even analysis.  

QET for normal queries and queries using materialized views for a triple table and binary 

table are compared.  It is observed that QET for the triple table is 99% more than the 

materialized view based approach for the query “Suggest friend of a friend”. This happens 

because the number of triples to be scanned is decreased from 406538 to 66914, which is 

approximately 16% of actual data size and there is no subject-object join in the materialized 

view base scheme.  A break-even analysis is also carried out for this experiment. Two cases 



Basic Partitioning for RDF Data 

31 

 

have been considered for break-even analysis for triple table and binary table. They are 

explained for Query 3 and Query 6. 

3.4.2.1. Break-even analysis for triple table 

This section describes break-even analysis for triple table considering both cases where the 

base tables are updated frequently and are not updated frequently.  

Case 1: The base tables are not updated frequently.  

This means that the view creation time can be considered as the biggest cost.  For Query 3 

and Query 6 the following costs are observed as given in Table 3.2. The break-even point will 

be reached when NQ* QETTT = MC + NQ* QETMV. Here NQ is the no. of user queries to be 

executed to reach the break-even point after calculation, the value of NQ as 1.14 and 18.59 for 

Query 3 and query 6 respectively. 

Table 3.2 MV cost v/s Normal cost for TT (Base tables not updated frequently) 

Query Materialized view Costs Normal Costs 
Query 3 MV Creation Time  MC  = 3325ms 

Query Execution Time  QETMV  = 4 ms 
Query Execution Time for TT 
 QETTT  =  2929 ms 

Query 6 MV Creation Time MC  = 13591ms 
Query Execution Time QETMV  = 2.88 ms 

Query Execution Time for TT 
 QETTT  = 734 ms 

 

Case 2: The base tables are updated frequently. 

Here the system will take more time to reach the break-even point as the view refreshment 

will have to be done frequently and this is costly.  For Query 3 and Query 6 the following 

costs were observed as depicted in Table 3.3. The break-even point will be reached when NQ 

* QETTT = D*MR + NQ * QETMV. Here NQ is the no. of user queries to be executed to reach 

the break-even point. D is the no of insert/update/delete queries. After calculation, the ratio 

NQ:D is found to be 2.62, signifying that for 1 insert/delete/update query one needs at least 3 

user queries and for query 6 ratio NQ:D as 18.37 signifying that for 1 insert/delete/update 

query one needs at least 18.37 user queries. 

Table 3.3 MV cost v/s Normal cost for TT (Base tables updated frequently) 

Query Materialized view Costs Normal Costs 
Query 3 MV Refreshment Time  MR  = 7672 ms 

Query Execution Time  QETMV  = 4 ms 
Query Execution Time for TT  
 QETTT  = 2929 ms 

Query 6 MV Refreshment Time  MR  =13429 ms 
Query Execution Time  QETMV  = 2.88  ms 

Query Execution Time for TT  
 QETTT  = 734 ms 

 



 

32 

 

3.4.2.2. Break-even analysis for binary tables 

This section describes break-even analysis for triple table considering both cases where the 

base tables are updated frequently and are not updated frequently. 

Case 1: The base tables are not updated frequently.  

This means that the view creation time can be considered as the biggest cost.  For Query 3 

and Query 6, the following costs are observed as given in Table 3.4. The break-even point 

will be reached when NQ * QETTT = MC + NQ * QETMV. Here NQ is the no. of user queries to 

be executed to reach the break-even point after calculation, the value of NQ as 16.05 and 

181.09 for query 3 and query 6 respectively. 

Table 3.4 MV cost v/s Normal cost for BT (Base tables not updated frequently) 

Query Materialized view Costs Normal Costs 
Query 3 MV Creation Time  MC  = 3325 ms 

Query Execution Time  QETMV  = 8.76 ms 
Query Execution Time for BT  
 QETTT  = 216 ms 

Query 6 MV Creation Time  MC   =  297 ms 
Query Execution Time  QETMV  =  9.36 ms 

Query Execution Time for BT  
 QETTT  = 11 ms 

 

Case 2: The base tables are updated frequently.  

Here the system will take more time to reach the break-even point as the view refreshment 

will have to be done frequently and this is costly.  For Query 3 and Query 6, the following 

costs are observed as given in Table 3.5. The break-even point will be reached when NQ * 

QETTT = D*MR + NQ * QETMV. Here NQ is the no. of user queries to be executed to reach 

the break-even point. D is the no of insert/update/delete queries. After calculation, the ratio 

NQ:D is found to be 37.02, signifying that for 1 insert/delete/update query one needs at least 

38 user queries. For Query 6, the ratio NQ:D  is found to be 96.95, signifying that for 1 

insert/delete/update query one needs at least 97 user queries. 

Table 3.5 MV cost v/s Normal cost for BT (Base tables updated frequently) 

Query Materialised view Costs Normal Costs 
Query 3 MV Refreshment Time  MR   = 7672  ms 

Query Execution Time  QETMV    =  8.76 ms 
Query Execution Time for BT  
 QETTT  =    216 ms 

Query 6 MV Refreshment Time  MR   = 159  ms 
Query Execution Time  QETMV =  9.36 ms 

Query Execution Time for BT  
 QETTT  =    11 ms 

 

It can be inferred from the discussed cases that break-even analysis mainly depends on 

materialized view creation and refreshment times which in turn depend on the number of 



Basic Partitioning for RDF Data 

33 

 

records and the number of join operations that need to be performed. When the materialized 

view creation and/or refreshment time are very high then the materialized view based scheme 

is beneficial if there are frequent queries. When the materialized view creation and/or 

refreshment time are low then the materialized view based scheme is beneficial in any case. 

3.4.3. Query Execution for Scaled Data 

RDF data is proliferating and hence it is essential to ensure the query performance with 

increasing RDF data. Data scaling is performed to evaluate query performance for basic RDF 

data storage techniques. It is performed by increasing number of triples to 2 times, 4 times, 8 

times and 10 times of actual data size. Data is scaled maximum up till 10 times considering 

other hardware constraints.  The data size of resultant data stores is 813080, 1626160, 

3252320 and 4065400 triples. The data scaling experiment and analysis is performed for each 

data size on all basic RDF data stores. It is observed that partitioning techniques performed 

an order of magnitude better compared to all other data stores for scaled data.  

 

Figure 3.4  Query Execution and Scaling for Query 3 

 

Real-life queries on RDF data generally have more number of subject-object joins. Apart 

from QET, query performance is further analyzed for scaled data based on joins. For FOAF 

query set, query 1,2,3,4 and 11 contains one subject-object join, query 7, 12, and 15 contains 

two subject-object joins, and Query 14 contains three subject-object joins. Query 

performance is analyzed based on number of joins against scaled data. It is found that queries 

having one subject-object join, when fired on binary tables, shows 43 times average 

improvement over the triple table. Queries having two subject-object join shows 36 times 

FOAF4 FOAF8 FOAF16 FOAF32 FOAF40 
TT 2929 11578 44393 182045 283545 
PT 1767 3823 12051 180360 304482 
BT 216 664 1322 2464 4373 
HP 1287 3230 6177 12609 15645 
MV 9 83 211 750 2131 

0 
50000 

100000 
150000 
200000 
250000 
300000 

Ex
ec

ut
io

n 
tim

e 
in

 m
s 



 

34 

 

average improvement and query having three subject-object joins show 28 times performance 

improvement over the triple table. 

 

Figure 3.5  Query Execution and Scaling for Query 6 

 

It is seen that binary tables outperforms other data storage techniques and hence materialized 

view over partitioned data are implemented to gain even better performance. Materialized 

views are created for every query listed in the query set. Based on the kind of joins, queries 

and their performances with various data size on various data storage techniques are studied. 

Figure 3.4 plots a chart for the scaled data from 406540 triples to 4065400 triples. It shows 

the data for query 3 and 6 with its execution time in milliseconds. Query 3 has one subject-

object join, whereas Query 6 has no joins. It can be seen that binary tables give the best-case 

performance compared to all other storage techniques. The performance got enhanced after 

using materialized views for binary tables. Figure 3.5 show that horizontal partitioning gives 

a best-case performance for query 6. Since query 6 has no subject-object joins materialized 

views have not shown improvement in QET. It is clearly visible that BT and HP scale 

linearly which shows that even with increases of data, partitioning technique leads to better 

performance compared to other discussed storage techniques. 

3.5. Summary 

The chapter discusses basic RDF data storage techniques. An experiment is carried out where 

basic RDF data storage techniques are implemented on a benchmark RDF dataset. Query set 

is fired on the basic RDF data stores and the presented work evaluates query performance in 

terms of QET. The data is scaled in terms of number of triples and QET is reevaluated to 

FOAF4 FOAF8 FOAF16 FOAF32 FOAF40 
TT 1358 2537 4507 8814 10825 
PT 16473 37814 80518 179532 240187 
BT 2972 7326 13773 31003 40472 
HP 1434 2887 4969 8483 10544 
MV 2454 6781 3445 33375 72015 

0 
50000 

100000 
150000 
200000 
250000 
300000 

Ex
ec

ut
io

n 
tim

e 
in

 m
s 



 

35 

 

further study issues related to data scaling. It demonstrates that partitioning techniques have 

shown better performance over TT. There are cases when BT has outperformed TT especially 

when a single property is queried and on the other hand there are cases when PT has 

outperformed TT when set of properties queried together lay in the same property table.  Data 

scaling experiment also have shown that partitioning techniques scales linearly with 

increasing data and leads to better query performance compared to TT.  

 



36 

 

Chapter 4 

4. Hybrid Partitioning for RDF Data 

Basic data partitioning techniques and their experimental evaluations have been discussed in 

Chapter 3. It is observed that all the basic data partitioning techniques have their own 

advantages and disadvantages. The idea is to exploit best of different partitioning techniques 

and combine them together, in order to overcome their disadvantages. This leads to hybrid 

data partitioning techniques. This chapter proposes three different hybrid partitioning 

techniques for RDF data:  1) DAHP (Data-Aware Hybrid Partitioning), which combines 

binary tables with property tables  2) DASIVP (Data-Aware Structure Indexed Vertical 

Partitioning), which combines binary tables with structure indexing  3)WAHP (Workload-

Aware Hybrid Partitioning), it combines binary tables and property tables based on query 

frequencies. 

4.1. Data-Aware Approaches for Partitioning RDF Data 

RDF data can be stored and configured using two ways: Data-aware approach and Workload-

aware approach. Data-aware approach stores RDF data based on how the data is related to 

each other in the dataset. Workload-aware approach stores RDF data based on the data that is 

queried together. 

The data-aware approach helps in designing a customized schema, where a set of data that 

appears together in the dataset can be kept together. It helps in reducing number of joins and 

retrieve data efficiently. This sub-section presents two data-aware approaches: 1) Data-Aware 

Hybrid Partitioning 2) Data-Aware Structure Indexed Vertical Partitioning.  

4.1.1. Data-Aware Hybrid Partitioning (DAHP) 

DAHP combines property tables and binary tables. Property table helps in minimizing 

number of joins. However, it has few issues, such as storage of multi-valued attributes.  It 

also suffers from sparsity as it may contain a lot of nulls. Due to these problems, although 

property tables are able to minimize joins, join operation becomes complex. On the other 

hand, binary tables can execute join queries faster. However, it may suffer from the problem 

of increased number of joins when data is queried from multiple binary tables. Binary tables 



Hybrid Partitioning for RDF Data 

37 

 

can encourage faster query execution when a query contains a single property, and property 

table can possibly give better performance when queried properties are found in the same 

table. Considering these advantages and disadvantages of both the RDF data storage 

techniques this chapter proposes DAHP, a technique that partitions data using a combination 

of binary tables and property tables.  

The dataset is analyzed based on the properties that tend to appear together. The set of 

properties that have a tendency to be defined together for a subject in the dataset is stored as a 

separate group in form of a property table. Properties which are not a part of a group or they 

don’t occur with a set of properties are stored as binary tables. DAHP hence generate two 

kinds of tables: property tables and binary tables. The advantage of using DAHP over 

property tables is that it will contain property tables which will have fewer nulls, as set of 

properties which tend to be together are grouped in a single table. The advantage of using 

DAHP over binary tables is, it will consist of less number of binary tables means less number 

of joins and hence faster query execution can be achieved. 

4.1.2. Data-Aware Structure Indexed Vertical Partitioning (DASIVP)  

DASIVP combines structure index partitioning and binary tables. Structure Index Partitioning 

[38] is a data partitioning technique that partitions RDF triples based on the characteristics of 

data. A data graph of the dataset is primed where subjects and objects are nodes and 

properties are edges between them. The purpose behind creating the data graph is to 

recognize different structures based on incoming and outgoing edges. Data nodes having 

same incoming and outgoing edges in terms of property values are associated with the same 

index known as structure index. Data having the same index are positioned together in one 

table and are accessed via its index. When a query is executed, the query structure is matched 

with structure index graph and the output is generated.  

In structure index partitioning, the data is analyzed considering properties associated with it. 

Subjects which are associated with same properties are kept together and triples related to 

those subjects are grouped together, which is considered as a structure. It uses a Lookup 

Table to keep the record of different structures. Lookup Table holds property list and index to 

structures. Individual access to particular intended structure facilitates in saving a lot of time 

spent on scanning and joining unrelated data while executing queries on basic RDF stores.  



 

38 

 

The advantage of using structure index partitioning over binary tables is that it includes 

relevant data that can cover entire query structure, whereas a binary table contains data for a 

single property that can cover up only one query. However, structure index partitioning 

suffers from the problem of redundant self-joins like TT because structure index partitioning 

is also in the form of RDF triples. Further, if query structure matches with more than one 

structure indexes, join overhead will be augmented.  

Considering the pros and cons of these partitioning techniques, it will be useful to put them 

together in a suitable way so as to improve QET. The chapter introduces integration of binary 

tables and structure index partitioning. Although structure index partitioning requires 

redundant self-joins, it can be compensated by binary tables. Moreover, binary tables may be 

inefficient for queries targeted towards related data, as it may contain some data that is not 

relevant to the query and this problem can be addressed by using structure index partitioning. 

This integration is called DASIVP, where structure index partitioning is followed by binary 

table.  

Algorithms, data structures, and execution flows for both the data-aware approaches are 

discussed in section 4.3.1. 

4.2. Workload-Aware Approach for Partitioning RDF Data 

 A workload-aware approach, as the name implies configures data based on query workload. 

Data which is queried together is kept together in order to retrieve it efficiently. Several 

applications where queries are known in advance can use workload-aware approach to 

configure and partition RDF data stores. This section describes one such workload-aware 

technique: Workload-Aware Hybrid Partitioning. 

4.2.1. Workload-Aware Hybrid Partitioning (WAHP)  

WAHP is a workload-aware approach for RDF data partitioning. This approach is useful in 

applications where queries are known well in advance. Based on query knowledge and its 

frequencies, data can be partitioned such that faster query execution can be achieved. Like 

DAHP, WAHP also combines binary tables and property tables. However, the approach is 

different. WAHP follows a workload-aware approach in contrast to DAHP which follows a 

data-aware approach. 



Hybrid Partitioning for RDF Data 

39 

 

WAHP in advance requires query information like actual data queries and their frequencies. 

Based on the query frequency, a set of properties that are queried together are clustered in a 

table. Frequently queried properties that satisfy null and support thresholds are kept together 

and clustered as a property table and other frequently queried properties that do not satisfy 

these thresholds culminate in binary tables. The actual query workload for these properties is 

then mapped to the table and the table is populated with relevant workload data. Likewise, 

many such property tables and binary tables are generated based on query workload and that 

result in workload-aware clusters. Algorithms, data structures, and execution flow for WAHP 

is discussed in section 4.3.1. 

4.3. Experiments 

The experiments section discusses experimental details like data structures, algorithms, 

dataset, query set and implementation details for all the hybrid RDF data partitioning 

techniques. 

4.3.1. Data Structures and Algorithms 

This sub-section explains relevant data structures and algorithms for all the three hybrid RDF 

data partitioning techniques namely DAHP, DASIVP, and WAHP. 

4.3.1.1. DAHP Data Structures and Algorithms 

DAHP is implemented using two data structures:  Property Use Listing and Subject Property 

Bin. Property Use Listing is prepared by finding the number of subjects associated with that 

property which reflects the occurring frequency of the property in the RDF dataset. Subject 

Property Bin contains set of properties associated with a particular subject. It is sorted in 

descending order of number of properties associated with a subject, giving highest number of 

associated properties first. Figure 4.1 depicts DAHP data structures.   

Apart from these two data structures, occurrence of similar property list is calculated, which 

gives a metric called support threshold. Support threshold helps to reduce number of joins. 

Another metric used is a null threshold which indicates permitted number of nulls. Null 

threshold helps in restricting null storage. Another metric called Multi-valued Property 

Threshold (MPT)   is also used which checks the number of multi-valued properties in the 



 

40 

 

dataset. DAHP algorithm utilizes Subject Property Bin, Property Use Listing, and null and 

support threshold. DAHP returns a set of binary tables and property tables using Apriori 

Algorithm [89]. All data structures require O (n) scans. DAHP algorithm needs O (n) + O (p2 

* s) operations where n is the number of records in the dataset, p is the number of properties 

and s denotes candidates in Subject Property Bin. 

 

Figure 4.1 Data Structures for DAHP 

 

Algorithm: DAHP 

Input:  Null Threshold, Support Threshold, Subject Property Bin, Property 

Use Listing, Triple Table  

Output: Property Tables, Binary Tables 

1. //merge sort 
2. Sort descending Property Use Listing on property-use  
3.    For all properties pi in Property Use Listing  
4.       If pi<support Threshold   
5.         BT  ← pi  
6.       Else 
7.          Cp ← Consider pi for generating property tables  
8.    End for 
9. //Find PT and BT using Apriori Algorithm 
10. spc  ← Subject Property Bin 

11. // Cartesian product  

12. for all pi in Subject Property Bin 

13.    Cp+1 = candidate generated from Subject Property Bin 

14.    For all occurrences in Subject Property Bin 

15.       Increment the count of all candidates in cp+1 that are 

contained in Subject Property Bin 

16.    End for 

17.    spc ← candidates in cp+1 with support threshold and null threshold 

18.    PT ← spc 

19. End For 

20. Return Property Tables, Binary Tables  

 

Subject Property List

S1 P1, P2, P3, P4

S2 P1, P2, P5

S3 P1, P2

S4 P1,P3

S5 P1,P4

Property Use

P1 5

P2 3

P3 2

P4 2

p5 1

(b) Property Use Listing(a) Subject Property Bin



Hybrid Partitioning for RDF Data 

41 

 

Figure 4.2 depicts DAHP execution flow. It takes benchmark dataset as input and generates 

binary tables and property tables. DAHP considers null and support threshold defined for 

underlying properties to generate binary and property tables.  

 

Figure 4.2 Execution Flow for DAHP 

 

4.3.1.2. DASIVP Data Structures and Algorithms 

DASIVP uses three data structures:  (i) Subject Property Bin (ii) Structure Index Table and 

(iii) Lookup Table. They are depicted in Figure 4.3. Subject Property Bin is a list of subject 

with their associated corresponding properties in the dataset. This is same data structure as 

used in DAHP. Structure Index Table contains set of associated subjects and their 

corresponding index. A Lookup Table is also created where similar structures are given an 

index name. 

 

Figure 4.3 Data Structures for DASIVP 

Algorithm: DASIVP1 

Input: RDF Triples  

Output: Subject Property Bin  

1. For all s in RDF Triples  
2.    SPB ← p ˅ o   
3. End For 
4. Return Subject Property Bin 

 

Benchmark RDF
Dataset

Database

Property 
Tables

DAHP

Binary 
Tables

Support  
threshold

null 
threshold

Populate 
Data

(c) Look up Table(a) Subject Property bin

Index Property List 
Structure

Index1 P1, P2, P3, P4

Index2 P1, P2,P3

Index n P1,P3

Associated
Subjects

Corresponding 
Structure Index

S1,S2 Index 1

S3 Index 2

S4,S5 Index 3

(b) Structure Index Table

Subject Property List

S1 P1, P2, P3, P4

S2 P1, P2, P3, P4

S3 P1, P2,P3

S4 P1,P3

S5 P1,P3



 

42 

 

Algorithm: DASIVP2  

Input: RDF Triples, Subject Property Bin  

Output: Structure Index Table 

1. For all p in Subject Property Bin  
2.    Lookup Table ← {Property list, location index}  
3.       For all  s in Subject Property Bin  
4.          SIT ← Identified Triple at location index  
5.       End For 
6. End For 
7. Return Structure Index Table  

 

Algorithm: DASIVP3   

Input: Structure Index Table 

Output: Structure Index Vertical Partitioned Data 

1. For all Structure Index Table 
2.    For all t in triples 
3.       Fetch property p 
4.       If   BT for p exists  
5.         BT ←  (s,o)  
6.       Else 
7.         Create BT  

8.         BT ←  (s,o)  
9.    End For;  
10. End For;  

11. Return Structure Indexed Vertical Partitioned Data 

 

Three algorithms are developed for DASIVP namely DASIVP1, DASIVP2, and DASIVP3. 

DASIVP1 prepares data graph as Subject Property Bin. DASIVP2 prepares index graph as 

Lookup Table, and DASIVP3 matches query structure with partitioned structure. The main 

reason behind preparing data graph is to identify properties associated with each subject 

based on its appearance in triples.  Subject Property Bin gathers all properties associated with 

each subject and stores in the table. Two different indexes are created for subject and object 

column in TT so that searching time can be reduced. Moreover, the properties are sorted to 

make matching of properties easier. Each distinct property list value in Subject Property Bin 

is a different structure. For each value, subject entries are found. Corresponding triples are 

moved to the identified structure location from triple table. For each structure, property list 

value and reference index are recorded in Lookup Table. DASIVP2 prepares Lookup Table 

and partitions data using Structure index partitioning. Every structure indexed partitioned 

triples are converted into binary tables for each property. For every triple, (s,o) value is 

inserted into associated property table. Algorithm DASIVP3 results into DASIVP binary 

tables for each structure. All data structures and algorithms converge in linear time. Figure 



Hybrid Partitioning for RDF Data 

43 

 

4.4 depicts DASIVP execution flow. DASIVP takes benchmark dataset as input and creates 

binary tables from structure indexed partitioned tables. 

 

 

Figure 4.4 Execution Flow for DASIVP 

 

4.3.1.3. WAHP Data Structures and Algorithms 

WAHP uses four data structures to identify workload-aware clusters.  (i) Query Property 

Basket, which contains a list of queries with its associated queried properties.  (ii) Query 

Frequency List holds total frequency count.  (iii) Query Frequency Property Basket stores 

query frequency and their corresponding properties (iv) Property Frequency List is primed 

using Query Property Basket and Property Frequency List.  It includes frequency count of 

each property. WAHP algorithm makes use of a frequency threshold, which is a count for a 

property to be a contender of the hot schema. Figure 4.5 depicts WAHP data structures. 

 

Figure 4.5 Data Structures for WAHP 

Benchmark RDF
Dataset

Database

DASIVP
Populate 

Data

Binary 
Tables

Structure Index 
Partitioning

Structure 
Index

Lookup 
Table

Q Site1 Site2 Site3 f

Q1 100 200 300 600

Q2 150 250 100 500

Q3 400 350 250 1000

Q Property List

Q1 P1, P2, P3,P4

Q2 P2, P5

Q3 P1, P2, P5
Properties f

P1 1600

P2 1100

P3 600

P4 600

P5 1500

f Property List

100 P1, P2, P3,P4

200 P1, P2, P3,P4

300 P1, P2, P3,P4

150 P2, P5

250 P2, P5

100 P2, P5

400 P1, P2, P5

350 P1, P2, P5

250 P1, P2, P5

(c) Query Frequency Property 
Basket

(d) Property Frequency List
(b) Query Frequency List

(a) Query Property Basket



 

44 

 

 

Algorithm: WAHP  

Input:  Null Threshold, Support Threshold, Property Frequency List, 

Query Property Basket, Triple Table  

Output: Property Tables, Binary Tables 

1. //merge sort 
2. Sort descending Property Frequency List on property-frequency  
3. //merge sort 
4. Sort descending Query Property Basket on property count  
5. For all properties pi in Property Frequency List  
6.    If pi<support Threshold   
7.       BT  ← pi  
8.    Else 
9.       Cp ← Consider pi for generating property tables  
10. End for 

11. //Find PT and BT using Apriori Algorithm  

12. QPc  ← Query Property Basket 

13. // Cartesian product  

14. For all pi in Query Property Basket 

15.    Cp+1 = candidate generated from Query Property Basket 

16.    For all occurrences in Query Property Basket 

17.       Increment the count of all candidates in cp+1 that are 

contained in Query Property Basket 

18.    End for 

19.    QPc ← candidates in cp+1 with support threshold and null 

threshold 

20.    PT ← QPc 

21. End for 

22. Return Property Tables, Binary Tables  

 

All data structures require O (n) scans and WAHP algorithm needs O (n) + O (p2 * q) 

operations where n is the number of records in the dataset, p is the number of properties and q 

denotes candidates in Query Property Basket.  

WAHP uses queries and their frequencies to identify the actual workload. WAHP algorithm 

further uses a hybrid approach of partitioning as mentioned for DAHP. The only difference 

between DAHP and WAHP is DAHP focuses on how the data is defined together in the 

dataset and WAHP focuses on how the data is queried together. WAHP algorithm identifies 

hot schema which is a combination of property tables and binary tables. Hot schemas are 

populated with actual query workload. This results in workload-aware clusters. Figure 4.6 

depicts WAHP execution flow. Benchmark dataset, query set and query frequencies are 

considered to generate hot schema. This hot schema is set of binary tables and property tables 

based on query workload. 



Hybrid Partitioning for RDF Data 

45 

 

 

Figure 4.6 Execution Flow for WAHP 

 

4.3.2. Metrics for RDF Data Stores 

A set of metrics is devised to evaluate performance and suitability of each RDF data 

partitioning technique. These metrics can help to consider the suitability of a RDF store for a 

dataset. The following four metrics are devised in order to consider the appropriateness of a 

RDF data store.  

4.3.2.1. Structuredness Ratio (SR)  

Structuredness is categorized as well-structured and semi-structured. Well-structured datasets 

are denser in structure and have higher number of properties defined per subject. Semi-

structured dataset is less dense comparatively and has a lower number of properties defined 

per subject.  Structuredness ratio of the dataset measures usefulness of a particular kind of 

RDF data store. The more the data is structured and more there are subjects per structure, 

DASIVP may be the best suitable RDF store for such data compared to other mentioned RDF 

stores. Structuredness of the dataset can be derived using the following equation: 

SR =  NT/NUP 

Where NT is the number of triples in dataset and NUP is the number of unique properties in 

the dataset. Datasets with higher structured ratio signify well-structured dataset and datasets 

with a lower value of structuredness ratio means they are semi-structured datasets. 

Binary 
Tables

Property 
Tables

Populate
Data

Benchmark RDF
Dataset

Benchmark Query 
Set

Query 
Frequency Set

WAHP

Database



 

46 

 

4.3.2.2. One Property Retrieval (OPR)  

One Property Retrieval implies a query retrieves only one property. It means only a single 

property needs to be fetched. In such situation, binary table gives the best performance.  

Therefore queries using binary tables excel in performance and execution time compared to 

other RDF data stores. 

4.3.2.3. Multi-Valued Property Threshold (MPT)  

Metric MPT finds the multi-valued property threshold which gives the percentage of multi-

valued properties. MPT needs to be met in order to qualify to be a part of property table. MPT 

can help in controlling redundancy. It is given using following equation: 

MPT= NMP / NP 

Where NMP is number of multi-valued properties and NP indicates total number of properties 

in the dataset.  

4.3.2.4. Break-even Analysis (BEA)  

Break-even analysis is carried out for discussed RDF data stores, in order to know from when 

one can start getting the benefit of a particular RDF data storage technique. In general 

following equation is defined to calculate a break-even point, where NQ is the total number of 

queries. RD1 and RD2 define a comparison between different data stores and TET is Total 

Execution Time, which is a summation of the execution time of all phases for RD1. 

NQ * RD2 > NQ * RD1 + TET 

4.3.3. Dataset 

All the hybrid RDF data partitioning technique is implemented on a benchmark dataset 

SWetoDBLP [90] for our experiment. SWetoDBLP- Semantic Web Technology Ontology 

Digital Bibliography Library Project is a large size ontology focused on the bibliography of 

computer science publications. The primary data source of SWetoDBLP is DBLP [91]. It also 

includes additional relationships from other data sources such as FOAF and Dublin Core 

[92]. Basic RDF data partitioning experiment uses FOAF dataset. However, SWetoDBLP 



Hybrid Partitioning for RDF Data 

47 

 

dataset is used for implementation of hybrid RDF data stores as it is a bigger and more 

structured dataset compared to FOAF. This structuredness of dataset can be measured using 

SR metric as discussed in section 4.3.2.  Details of datasets including number of triples, 

number of distinct triples, number of unique properties and data size is provided in Table 4.1 

Table 4.1 SWetoDBLP Dataset Specifications 

Specifications SWetoDBLP dataset 
No of Triples 14932830 
No of distinct Triples 14932603 
No of unique properties 29 
Size on disk 2.16 G.B 

 

4.3.4. Query set 

RDF queries are categorized into four different query types. Type 1 retrieve predetermined 

set of properties from the RDF dataset. Type 2 queries involve selection of properties defined 

for a particular subject. Type 3 queries are range queries and Type 4 includes queries that 

retrieve predetermined properties or subjects. QET is averaged over query types to gain 

correct insight into query performance for a specific query type. All SQL queries for the 

SWetoDBLP dataset are listed in Appendix 2. 

4.3.5. Hardwares and Softwares 

A test bed is created to implement all RDF data storage techniques and execute queries for 

the SWetoDBLP dataset. It is same as the one depicted in Figure 3.2. The dataset is in 

RDF/XML format which is converted to triples by using Jena parser [87]. Eclipse 3.5 and 

Java 1.8 are used to implement the parser and other algorithms of the experiment.  

PostgreSQL is used as a database tool to store RDF data using various basic RDF data 

storage techniques. These tools are installed on a Linux based machine with hard disk storage 

space of 500 GB and 2 GB RAM. 

4.4. Results and Discussions 

This section discusses results for data-aware and workload-aware hybrid approaches. 

DASIVP is a data-aware approach which is a combination of structure indexing and binary 

tables. DAHP and WAHP are hybrid of property tables and binary tables, however, DAHP is 



 

48 

 

data-aware and WAHP is a workload-aware approach. Both the data-aware approaches are 

compared with BT as it is known that BT outperformed other basic RDF data stores. The 

query set is executed on various data storage techniques and averaged over three query runs. 

QET is recorded in milliseconds and it is averaged over query types. All implementation 

details of both data-aware approaches and workload-aware approaches along with their query 

results are discussed here.  

4.4.1. Query Execution for DAHP 

DAHP is implemented for SWetoDBLP. DAHP technique gives 6 property tables and 11 

binary tables which are formulated using Property Use Listing and Subject Property Bin. 

Subject Property Bin is sorted in descending order of number of properties associated with a 

subject, giving highest number of associated properties first. Occurrence of similar property 

list is calculated which helps to find support threshold. One by one all bins is scanned and 

checked for its support threshold. If it satisfies the threshold they are checked for the null 

threshold. Null storage is restricted below the provided null threshold. Satisfying the null 

threshold criterion they are considered as a final set of property tables. Next, Property Use 

Listing is pruned and if property exists in any of the bin then it is dropped else it is stored in 

as a binary table. All property tables are then populated with RDF data.  

BT is also implemented for a SWetoDBLP dataset to compare BT with DAHP.  As the 

dataset has 29 unique properties, BT contains 29 binary tables. Every binary table contains a 

list of subjects and associated objects in their respective table.  All types of queries are fired 

on the database of 29 tables and QET is recorded. Figure 4.7 depicts a comparison between 

BT and DAHP. 

Query Type 1: It retrieves a set of predetermined properties. As each and every subject needs 

to be checked against given properties it becomes an expensive operation. The properties 

asked in the queries are related with other because most of the times related data are retrieved 

together. Query 1 in this type retrieves 5 properties and hence BT uses 5 tables to get the 

query result. For DAHP all these properties are found in the same property table. Even after 

handling the overhead of null values, DAHP is still able to perform 13% better than BT. 

Query Type 2: It asks for a specific subject. Properties are clustered based on relatedness of 

the properties and when it comes to subject-specific queries, it is not necessary to get all the 



Hybrid Partitioning for RDF Data 

49 

 

subjects in the same property table. For query type 2, 50% of improvement over BT is 

observed as accidentally subjects were lying in the same property table. In other cases, it is 

possible that BT can perform better when subjects lay in different property tables and there 

are many property tables.  

 
 

Query Type 3: These are administrative queries where a range is queried from a table. 

Generally, such types of queries have related properties and are found in the same property 

table. In a sample query, it retrieves 3 properties which are laying in the same property table 

gives an improvement of 57% compared to BT.  

Query Type 4: These queries retrieve specific properties and specific subject. They are 

generally constraint-based queries. Such queries perform better for DAHP because filtration 

can be carried out easily on a single property table compared to filtering from many tables in 

BT. In the experiment, DAHP is performing 34% better than BT.  

DAHP shows an average improvement of nearly 40% for all query types over BT. The 

average break-even point is 5 when compared to BT. However, queries which support OPR 

shows that BT performs better compared to DAHP.  

4.4.2. Query Execution for DASIVP 

DASVIP is implemented for the SWetoDBLP dataset and it is compared with BT. Further, 

both the data-aware approaches DASIVP and DAHP are also compared with each other in 

terms of their QET and break-even point. The query set is fired on the SWetoDBLP dataset 

for its BT, DASIVP and DAHP implementation. BT contains 29 binary tables as 

Type 1 Type 2 Type 3 Type 4 
DAHP 360 70 19 660 
BT 413 140 44 993 

0 

200 

400 

600 

800 

1000 

1200 

Ex
ec

ut
io

n 
tim

e 
in

 m
s 

Figure 4.7 Query Execution for DAHP and BT 



 

50 

 

SWetoDBLP dataset consists of 29 properties.  Using Structure Index Partitioning, DASIVP 

consists of 39 structures, which are further followed by binary tables resulting in total 166 

binary tables. DAHP implementation is same as discussed in section 4.4.1.  Figure 4.8 shows 

a comparison between DASIVP and BT for each query type. 

Query Type 1: This kind of queries retrieve records with few predetermined properties. For a 

sample query for query type 1, BT executes in 537 ms and DASIVP executes the same query 

in 307ms using 9 target structures. However, there is a preprocessing onetime cost that 

includes lookup cost and merges cost. Lookup time is 40ms and merge time is 3018ms. The 

average break-even point is found to be 49 for this query type. Query type 1 has shown an 

average of 10% of improvement over BT. 

 

Figure 4.8 Query Execution for DASIVP and BT  

 

Query Type 2: Type 2 asks for records specific to a subject and can retrieve all properties. 

For a sample query of query type 2, BT takes an execution time of 1647ms and DASIVP for 

the same query takes 954 ms and uses 27 target structures. However, there is a preprocessing 

onetime cost that includes lookup cost and merges cost. Lookup time is 39ms and merge time 

is 6667ms. The average break-even point is found to be 71 for this query type.   On an 

average, query type 2 has shown 49 % of improvement over BT. 

Query Type 3: Query Type 3 retrieves queries specified for a typical range. They are 

generally administrative queries. For a sample query of query type 3, BT executes the query 

in 3151 ms and DASIVP in 1957 ms and makes use of 8 target structures. However, there is a 

preprocessing onetime cost that includes lookup cost and merges cost. Lookup time is 20ms 

Type 1 Type 2 Type 3 Type 4 
DASIVP 370 72 25 635 
BT 413 140 44 993 

0 

200 

400 

600 

800 

1000 

1200 

Ex
ec

ut
io

n 
Ti

m
e 

in
 m

s 



Hybrid Partitioning for RDF Data 

51 

 

and merge time is 58867 ms. The average break-even point is found to be 173 for this query 

type.  Query type 3 has shown 43% of average improvement over BT. 

Query Type 4: These queries retrieve records for a specific subject and specific properties. 

For a sample query of query type 4, BT executes the same query in 1317 ms and DASIVP 

executes in 598 ms and uses 12 target structures. However, there is a preprocessing onetime 

cost that includes lookup cost and merges cost. Lookup time is 10ms and merge time is 

2932ms. The average break-even point is found to be 46 for this query type.  Query type 4, 

on an average, shows 36% of improvement over BT.  

When averaging over query types, DASIVP results in 35% better performance compared to 

BT. However, it is also observed that queries that satisfy OPR metric, are more suitable for 

BT than DASIVP as DASIVP requires extra lookup and merge time, unlike BT. The reason 

for the overall better performance of DASIVP is, the merged binary tables for DASIVP are 

either same or less dense compared to binary tables. On top of that, DASIVP covers only 

related data, whereas BT covers all data in the table which is the main advantage of using 

DASIVP over BT.  

Break-even point is also calculated as break-even point specifies the minimum number of 

queries from when DASIVP can become beneficial. For example, to cover up the extra time 

lookup time and merge time in DASIVP, A sample query needs to be submitted at least 124 

times. The average break-even point frequency for all the queries is 97. 

Figure 4.9 depicts a comparison between both hybrid techniques. It can be seen that DASIVP 

and DAHP perform nearly equivalent when compared to BT. However, BT may perform 

better for the queries that satisfy OPR metric. Figure 4.10 depicts break-even point 

comparison between DASIVP and DAHP. It can be seen that break-even point for DASIVP 

is almost 95% more than DAHP. Even though DAHP and DASIVP perform almost 

equivalently, due to the huge difference in break-even point, the philosophy of DAHP is used 

for workload-aware approach.  Detailed evaluation for all the discussed RDF data stores is 

given in section 4.5. 



 

52 

 

 

Figure 4.9 Query Execution time for DAHP and DASIVP 

 

 

Figure 4.10 Break-even point for DASIVP and DAHP 

 

4.4.3. Query Execution for WAHP 

WAHP is a workload-aware hybrid partitioning technique which generates a set of binary 

tables and property tables based on query workload. WAHP is a combination of BT and PT. 

Workload-aware clusters are constructed using WAHP algorithm which uses hot schemas 

and relevant workload. Query performance is analyzed for workload-aware clusters. Queries 

are classified as all queries, frequent queries, and most frequent queries where all queries 

mean all the queries designed for the dataset, frequent queries are top 50% of all queries 

based on query frequency and most frequent queries are top 10% of frequent queries based on 

query frequency. 

Type 1 Type 2 Type 3 Type 4 
DASIVP 370 72 25 635 
DAHP 360 70 19 660 

0 
100 
200 
300 
400 
500 
600 
700 

Ex
ec

ut
io

n 
Ti

m
e 

in
 m

s 

Type1 Type2 Type3 Type4 
DAHP 1 4 7 3 
DASIVP 42 71 173 46 

0 
20 
40 
60 
80 

100 
120 
140 
160 
180 

Br
ea

ke
ve

n 
po

in
t 



Hybrid Partitioning for RDF Data 

53 

 

In case of all queries, the average QET is estimated to be 7 seconds for original data and 6 

seconds is estimated for workload-aware clusters. All the queries running on workload-aware 

clusters provide an average percentage time gain of 22%.  

The average QET for frequent queries when running on original data is observed to be 10 

seconds and 9 seconds on workload-aware clusters. Frequent queries when running on 

workload-aware clusters provide a time gain of 19%.  

For most frequent queries, the average QET for original data is 19 seconds and for workload-

aware clusters, it is estimated to be 14 seconds. Time gain of 5 seconds is observed when 

queries were executed on workload-aware clusters. It is seen that workload-aware clusters 

can answer 73% of the amount of most frequent query workload by using just 9% of the 

actual data.  

 

Figure 4.11 Workload Answered by Clusters 

It is observed that there is an improvement in QET for queries when they are executed on 

workload-aware clusters as compared to original data. Query 9 provides 98% time gain when 

submitted to workload-aware clusters. Query 10 shows 70% of time gain. Likewise, Query 2 

and Query 5 shows a gain of 49% and 50% respectively. Query10 gives the best performance 

using workload-aware clusters with a time gain of 96.8%. On an average 37% of time gain is 

observed for query runs for all queries. The total time saved by most frequent queries when 

submitted to workload-aware clusters is observed to be 16 minutes i.e. on an average 1.7 

minutes per query. Figure 4.11 depicts statistics for workload answered by workload-aware 

clusters in comparison to total workload. Workload is summation of query frequencies. Total 

workload for all the queries means summation of query frequencies of all the queries. Total 

workload for frequent queries means summation of query frequencies of all the frequent 

All Queries Frequent 
Queries 

Most 
Frequent 
Queries 

Total Workload 6013 5295 2045 
Workload Answered by 

clusters 3540 3325 1495 

0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 

Q
ue

ry
 W

or
kl

oa
d 



 

54 

 

queries. Total workload for most frequent queries means summation of query frequencies of 

all the most frequent queries.  Likewise, Workload answered by workload aware clusters 

means summation of those query frequencies which are answered by workload aware 

clusters. 

4.5. Comparing RDF Data Stores 

Various RDF data storage techniques and their query performances are evaluated using the 

set of metrics discussed in section 4.3.2.      

Query Type 1: It retrieves records for specific properties. In this case, if query retrieves a 

single property then BT will be the best suitable technique as it is evident in OPR metric. If a 

query asks for multiple properties, it is necessary to see if there is a tendency of this group of 

properties to occur together in a table. If the properties tend to occur together then PT will 

give best case performance provided table is not wide and contains number of nulls below the 

threshold value. In other cases, hybrid approaches will perform better. DAHP will perform 

best when there are fewer unions between PT and BT. DASIVP may perform best as there 

are index graph and query graph already prepared for the specific query. However, there can 

be overhead of lookup and merge cost based on the query. Based on break-even analysis, on 

an average break-even frequency for DASIVP turns out to be 98 and for DAHP break-even 

frequency is 4.  

Query Type 2:  These types of queries ask for information of a specific subject. If it’s 

specific to a subject and specific to a single property then BT will be best as there will be 

only one record from the BT provided it is not a multi-valued property. Even if, it is a multi-

valued property, it is easier and faster to retrieve such query from BT as it scans only a single 

table out of the huge database. These details are clear from OPR metric for such query types. 

If a query needs multiple properties for a specific subject and BT is used to store data, there 

will be a large number of unions based on the number of tables accessed which may affect 

query performance. When PT is used to store data for such queries, PT may contain a huge 

number of nulls resulting in a sparse matrix. There can be a lot of overhead handling nulls 

and complex joins. It should also be noted that if data is well structured there will be fewer 

nulls which can be derived from SR metric. Hybrid approaches help in eliminating the 

problem of nulls and complex joins. In case of DAHP, properties are clustered based on 

relatedness of the properties and when it comes to subject-specific queries, it is not necessary 



Hybrid Partitioning for RDF Data 

55 

 

that all the subjects belong to the same cluster. However, problem of nulls is almost 

eliminated due to the null threshold used in DAHP and hence a less sparse matrix is seen. 

Also, there are less BT tables used in DAHP which means fewer unions. Break-even point for 

using DAHP data storage technique is 6 and for DASIVP it is 97. 

 Query Type 3:  Range queries fall in this category. These queries are administrative in 

nature. It can ask for a range of subjects or properties. Generally, a range of properties is 

queried more compared to a range of subjects. If such query asks for a range of a particular 

property, BT can be used to gain query performance as evident from OPR metric. If the query 

asks for a range of a subject,  it will be hard to perform the union of all tables in BT. For 

property table, if PT is not wide it can perform well based on structuredness of data which 

can be achieved using SR metric. Structured data will have fewer nulls in PT. If a range of 

subject is asked, then in case of PT, union of several PT will be needed. However, performing 

union operation in DAHP is preferred than performing unions in PT. Hybrid approaches work 

well for such kind of queries. If it is a range of properties which is queried, DAHP gains 

better performance than PT due to less number of nulls as related properties are tied together 

in DAHP. And if it is a range of subjects which is queried, then it will result into fewer 

unions compared to PT.  Break-even point of 4 is achieved for DAHP. In case of DASIVP, a 

respective query graph and an index graph is going to be there which may help to achieve 

best query performance. However, in DASIVP, there is an overhead of lookup and merge 

time. Break-even point for DASIVP is 95.  

Query Type 4: Such queries ask for data for specific properties or specific subjects. They are 

a combination of type 1 and type 2 queries. If such queries ask for a specific property for a 

specific subject or a specific subject for a specific property, BT is going to give best case 

performance which is obvious from OPR metric. Discussions for type 1 and type 2 queries 

are applicable to all other cases and hence are not repeated here.  

4.6. Summary 

This chapter proposes and demonstrates data-aware and workload-aware hybrid approaches 

to store RDF data. It discusses the methodology, data structures, algorithms, execution flow 

and all the experimental details. The chapter also proposes a set of metrics to measure the 

suitability of a RDF store for a particular kind of dataset. Based on the metrics, it compares 

all the RDF data stores, which include basic RDF data stores and hybrid RDF data stores. 



56 

 

Chapter 5 

 
5. DWAHP: Workload-Aware Hybrid Partitioning and Distribution 

for RDF Data 

 

A lot of work has been carried out to efficiently manage RDF data on a single machine. 

However, RDF data has increased to a point where managing RDF data on a single node is 

not adequate. Efforts are being made to achieve high-performance data management, by 

distributing data on multiple nodes, so that the data can be processed in parallel and can 

eventually speed up query processing. In this scenario, message passing across nodes is of 

vital importance for a query to execute. It is obvious that increased number of inter-node 

communication will become a performance bottleneck. So it is necessary to partition and 

distribute data such that message passing can be diminished for faster query execution.  

This chapter presents a solution for faster query execution for RDF queries, in a distributed 

environment. The chapter proposes DWAHP, a hybrid partitioning approach to distribute 

RDF data based on query workload. The proposed approach has two phases: Phase 1 is 

Hybrid Partitioning, which partitions data considering actual query workload and generates 

workload-aware clusters consisting of binary tables and property tables. Property tables 

contain properties that frequently tend to get queried together above some support threshold 

and binary tables are prepared for the properties that have lower support threshold taking into 

consideration the query frequencies. Phase 2 is a Distribution Scheme, which distributes RDF 

data using an n-hop Property Reachability Matrix. This matrix helps in proper placements of 

the clusters on respective nodes as it is acquainted with the underlying relationship between 

properties in the dataset.  DWAHP offers two-fold advantages. First, Hybrid Partitioning 

phase keeps the data which is queried together as a partition and hence reduces number of 

joins at the time of query processing. Second, Distribution Scheme phase uses an n-hop 

Property Reachability Matrix to distribute data, which helps in diminishing message passing 

across nodes such that maximum number of queries can be answered with minimum number 

of message passing. 

 



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

57 

 

5.1. DWAHP 

DWAHP is a workload-aware approach for hybrid partitioning of data in a distributed 

environment. DWAHP consist of two phases: Phase 1 is Hybrid Partitioning which generates 

clusters based on query workload. These workload-aware clusters contain property tables and 

binary tables. Phase 2 is a Distribution Scheme which distributes data by positioning 

workload-aware related clusters on the same node such that, the data that is queried together 

is generally found to be stored on the same node. The workload-aware related cluster is found 

using Property Reachability Matrix. It is a fact that real life queries involve many joins. To 

answer a query with joins, one needs to know how these properties are related to each other. 

Hence the presented work not only studies query workload to find which properties are 

queried together but also look into the actual structural relationship between properties in the 

dataset. 

5.1.1. Phase 1: Hybrid Partitioning 

DWAHP Phase 1 considers queries and query workload in order to achieve suitable 

partitioning method. It generates workload-aware clusters which contain a set of binary tables 

and property tables. Workload-aware clusters are generated for the properties that are queried 

together. Query workload helps us derive property frequencies and their occurrences with 

other properties. Apriori algorithm [89] is used to determine all possible occurrences of 

frequent properties, as it uses join and prune property for execution and generate all possible 

candidates of frequent property sets. These all possible frequent property sets are found based 

on null and support threshold. Null threshold indicates the acceptable percentage of null 

values for a property table and support threshold specifies the acceptable percentage of 

occurrence of properties together in a query set. It results in a set of binary tables and 

property tables based on the query workload. Properties that are queried together and have 

acceptable null and support threshold becomes the candidate of a property table and 

properties that have lesser support threshold or higher null threshold becomes separate binary 

tables. This results in vertical partitioning of RDF data. This combination of property tables 

and binary tables helps in reducing the number of traversals in the RDF data and query the 

required properties faster. DWAHP Phase 1 is depicted in Figure 5.1. 



 

58 

 

 
Figure 5.1 DWAHP Phase 1: Hybrid Partitioning 

 

5.1.2. Phase 2: Distribution Scheme 

The more connected RDF data is the more it is difficult to partition and distribute this data. 

RDF data and queries have certain characteristics which can be exploited to partition the data 

and distribute it over several nodes. RDF data contains rdf:type predicate that generally exists 

in a large number, as it connects all types in the RDF data. This makes data partitioning little 

complex. The idea is to exploit this fact and to make a separate binary table of rdf:type and 

replicate it across multiple nodes. It has three fold advantages. 1) Had rdf:type been a part of 

property table, it may contain a lot of nulls and will ultimately result in space overhead. 

Making rdf:type a binary table, helps in minimizing space overhead. 2) Considering rdf:type 

as a part of property table will also result in a huge table with a lot of null storage space. This 

will eventually deteriorate performance for complex operations like joins and unions, because 

of additional time consumption in the scan and join operations between such huge tables. 

Preparing a separate binary table for rdf:type, will reduce complexity in join and union 

operations. 3) Mostly rdf:type joins other properties for the queries, so making it a separate 

binary table helps in the faster scan as it can be indexed and compressed.  

Distribution of these generated tables can be done in many ways. The easiest way is to 

distribute the same schema over all nodes. This type of design may result in more number of 

message passing between nodes to answer a query. Researchers have worked on this issue 

and have distributed data in various manners that can reduce message passing [45][57][20]. 

Benchmark 
RDF Dataset

Benchmark 
Query Set

Query 
Frequencies

Frequent Attribute Set 

Hybrid Schemas

Property Tables Binary Tables

Schema Generation

Attributes occurring together



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

59 

 

DWAHP focuses on distributing data such that related clusters are allotted to the same node 

so that messaging passing can be decreased. DWAHP Distribution Scheme is represented in 

Figure 5.2. Most of the real-life queries involve multiple joins, especially subject-subject and 

subject-object joins which are common in RDF queries. n-hop Property Reachability Matrix 

is prepared that identifies how a property is related to another property in the dataset. A 

single join indicates 1 hop and hence a query having n joins need to have information 

maximum up to n hop from that property. Property Reachability Matrix is found using the 

concept of domain and range for RDF data [93]. It is well known that rdf:subject and 

rdf:object is an instance of rdf:property. By definition rdfs:domain is an instance of 

rdf:property that is used to state that any resource that has a given property is an instance of 

one or more classes and rdfs:range is an instance of rdf:property that states the value of the 

property are an instance of one or more classes. An obvious overlap is found in between 

domain and range for certain properties. This overlap is identified between subject–subject 

and subject–object for the properties, and a Property Reachability Matrix is prepared. This 

matrix is hence able to reveal join types between properties. This information is exploited and 

used to distribute data among nodes.  

 

Figure 5.2 DWAHP Phase 2: Distribution Scheme 

 

DWAHP knows number of joins in a query, and it also knows the underlying relationship 

between properties which is addressed using n-hop Property Reachability Matrix. For 

example, there exists a query which finds a location of a place in terms of latitude and 

Hybrid Schemas

Property 
Tables

Binary 
Tables

Benchmark 
Dataset Data Distribution

Property Reachability
Matrix

w
or

ke
r n

od
es

.…

Cluster 1

Cluster 2

Cluster n



 

60 

 

longitude with reference to Linked Sensor Data [94] [95]. This query can be answered using 

these properties: longitude, latitude, and process location. To answer this query one needs to 

traverse 2 hops maximum from a property to reach another property. It is obvious it will 

require 2 joins and both are subject-object joins. If it is a frequent query, one can use 2-hop 

Reachability Matrix, and position these properties on nodes such that message passing can be 

avoided or minimized. This scheme will provide following advantages. 1) There is an 

increased possibility of answering frequent queries using a single node as the distribution is 

based on prior knowledge of queries and their properties. 2) When related clusters are there 

on the same node, there is less possibility for message passing and hence complex operations 

like joins become efficient. 3) The data is partitioned vertically considering query frequency 

and then it is distributed among nodes which help manage data efficiently.  

5.1.3. Architecture 

DWAHP architecture is depicted in Figure 5.3. RDF triples are partitioned using Hybrid 

partitioning phase and clusters are created considering query workload. These clusters are a 

combination of binary tables and property tables. Once the data is partitioned, Distribution 

phase is responsible to distribute clusters on different nodes.  

 

Figure 5.3 DWAHP Architecture 

Client

...

Worker Nodes

Cluster 2

(C21 ) (C22 ) … (C2n )

Cluster m

(Cm1 ) (Cm2 ) … (Cmn )

Cluster 1

(C11 ) (C12 ) … (C1n )

Coordinator

Hybrid 
Partitioning Distribution



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

61 

 

Worker nodes contain actual data inside clusters and coordinator contains information related 

to data residing on different nodes. Coordinator checks if the query is parallelizable or not. If 

the query is parallelizable, it is executed on relevant nodes in parallel and results of the local 

nodes are computed on the node itself. On the other hand, if a coordinator finds that a query 

needs inter-node communication, it generates a query plan where a data node having a lesser 

amount of data ships its intermediate results to other nodes. At the end of query processing, 

coordinator returns results to the client. 

5.2. Experiments 

This section discusses all experimental details which include dataset, query set, data 

structures, test bed, and implementations for DWAHP. 

5.2.1. Data Structures and Algorithms 

DWAHP uses five data structures to identify workload-aware clusters.  (a) Query Property 

Basket, which contains a list of queries with its associated queried properties.  (b) Query 

Frequency List holds total frequency count.  (c) Query Frequency Property Basket stores 

query frequency and their corresponding properties  (d) Property Frequency List is primed 

using Query Property Basket and Query Frequency List  (e) n-hop Property Reachability 

Matrix which is a n*n matrix of properties.  

 

Figure 5.4 DWAHP Data Structures 

Q Site1 Site2 Site3 f

Q1 100 200 300 600

Q2 150 250 100 500

Q3 400 350 250 1000

Q Property List

Q1 P1, P2, P3,P4

Q2 P2, P5

Q3 P1, P2, P5

Property f

P1 1600

P2 1100

P3 600

P4 600

P5 1500

f Property List

100 P1, P2, P3,P4

200 P1, P2, P3,P4

300 P1, P2, P3,P4

150 P2, P5

250 P2, P5

100 P2, P5

400 P1, P2, P5

350 P1, P2, P5

250 P1, P2, P5

(c) Query Frequency Property 
Basket

(d) Property 
Frequency List

(b) Query Frequency List(a) Query Property Basket

P1 P2 P3 P4 P5

P1 -2 -1 2 -1 -1

P2 -1 -2 -1 -1 1

P3 2 -1 -2 2 0

P4 -1 -1 2 -2 -1

P5 -1 1 0 -1 -2

(e) Property Reachability
Matrix



 

62 

 

It can contain either of these values in the matrix: -2,-1, m or 0 where -2 indicates the 

property itself, -1 indicates both properties are directly reachable, m indicates property 

number through which it is reachable and 0 indicates they are not reachable for the value of n. 

Figure 5.4 represents DWAHP data structures. All data structures execute in either linear or 

polynomial time. DWAHP phase 1: hybrid partitioning uses algorithm same as WAHP which 

is described in Chapter 4. DWAHP Phase 2: distribution scheme uses two algorithms 1) n-

hop Property Reachability and 2) cluster creation and allocation. 

Algorithm: n-hop Property Reachability  

Input: properties 

Output: n-hop property reachability     

1. N ←n  
2. For all pi ∈ properties  
3.    For all pj ∈ properties 
4.       If i==j  
5.          P (i,j) ← -2 
6.       Else If   s.s join ˅ s.o join   
7.          P (i,j) ← -1  
8.       Else 
9.          P (i,j)  ← 0  
10.       End if 

11.    End for 

12. End for 

13. // Dijkstra’s Algorithm 

14. For every hop in property reachability matrix till N 

15.       If p (i,j)  == 0  

16.          p (i,j)  = pk //minimum distance from pi to pj via pk 

17.       End if 

18. End for 

19. Return n-hop property reachability 

DWAHP algorithms converge in either linear or polynomial time. Hybrid partitioning 

requires O (n) + O (p2 * q) operations where n is total number of records in dataset, p is 

number of properties in the dataset and q denotes candidates in Query Property Basket. 

DWAHP distribution algorithm requires O (p2) + O (c2) operations where p denotes the 

number of properties in datasets and c denotes the number of clusters.  n-hop Property 

Reachability algorithm needs O (p2) operations.  

Algorithm: Cluster Creation and Allocation 

Input: property table, binary table, n-hop property reachability matrix, 

support threshold, Nodes  

Output: Distributed Clusters  

1. Together ← False 
2. For Ci consider every combination of pi in T1 with pj in T2  
3.   For all  pk in n-hop property reachability matrix 
4.      If  pk is Reachable pi,pj   ∧  supportThreshold pi,pj  
5.         Together ← True  
6.      End if 



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

63 

 

7.   End for  
8.   If  Together     
9.         Ci ← Ci  ∪  {T1 ,T2}  
10.   End if 

11. Together ← False 

12. End for 

13. For all Ci ∈ Clusters   
14.      For all Cj ∈ Clusters  
15.         If all properties is Reachable Ci, Cj   

16.            Together ←True  

17.         Else 

18.            Together=False  

19.            Exit  

20.      End for 

21.      If  Together   

22.            Nk ← Nk ∪ Cj ∪ Ci  
23.      Else 

24.            Nk ← Nk ∪ Cj  
25.       End if 

26. End for 

27. Return Distributed Clusters   

 

5.2.2. Dataset 

Linked Observation Data [96] is a benchmark RDF dataset which contains descriptions of 

blizzard and hurricane observations. Linked Sensor Data [94] is a part of Linked Observation 

Data which measures temperature, precipitation, wind speed, wind direction, humidity etc 

through sensors located at weather stations. The dataset used consists of maximum up to 8 

GB of data and contains more than 35 million triples.  Details of the Linked Observation Data 

is given in Table 5.1 

Table 5.1 Linked Observation Dataset Specifications 
 

Specifications Linked Observation Data 
No of Triples 35105649  
No of distinct Triples 35105649  
No of unique properties 20  
Size on disk 8 G.B  

 

5.2.3. Query set 

The query set contains 20 queries. These RDF queries are categorized into four different 

query types as represented in Figure 5.5.  Type 1 queries are linear queries which retrieve 

predetermined set of properties from the RDF dataset. Type 2 contains star queries which 



 

64 

 

involve selection of properties defined for a particular subject. Type 3 queries are range 

queries or administrative queries, and Type 4  are snowflake queries that retrieve 

predetermined properties or subjects. Out of these 20 queries, 5 queries are of Type1, 6 

queries belong to Type2, 4 queries belong to Type3 and 5 queries are of Type4. All the SQL 

queries for Linked Observation dataset are listed in Appendix 3. 

 

Figure 5.5 Query Types 

5.2.4. Harwares and Softwares 

A test bed is created to implement DWAHP and execute queries for the Linked Observation 

dataset. The dataset is in RDF/XML format which is converted to triples by using Jena parser 

[87]. Eclipse 3.5 and Java 1.8 are used to implement the parser and other algorithms of the 

experiment. The experiment uses Postgres-XL [97] which is a Postgresql based database 

cluster tool installed on a Linux based machine. Deployed worker nodes and coordinator, 

each is configured with 1.7 GHz Intel Core i5-4210U processor and 8GB of RAM. 

5.2.5. Implementation 

Benchmark Linked Sensor Dataset is used to implement and evaluate storage and query 

performance for the proposed system. Phase 1 generates workload-aware clusters and 

populates them and Phase 2 distributes clusters among nodes by using n-hop Property 

Reachability Matrix.  For this experiment, n = 2.  n-hop Property Reachability Matrix for n=2 

is shown in Figure 5.6. The dataset contains 20 unique properties and all properties are 

Type 1 (Linear Query) Type 2 (Star Query)

Type 4 (Snowflake Query)Type 3 (Administrative/Range Query)



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

65 

 

numbered from 1 to 20. Let M be the n-hop reachability matrix and i and j be the rows and 

columns respectively. In Figure 5.6, M(i,j) = -1 in the cell denotes property Pi is directly 

reachable from Pj, M(i,j) = -2 denote the property itself, M(i,j) = 0 denotes a property is not 

reachable in n hops and M(i,j) = Px, denotes that Pi is reachable by Pj via property Px.  

DWAHP has generated 7 tables, out of which 3 are property tables:  (14,10,11),  (6,9), and  

(3,2). There are four binary tables:  (16), (7), (5), and (4).  

 

Figure 5.6 n-hop Property Reachability Matrix for n=2 

 

rdf:type is a binary table that gets replicated on all nodes as discussed in section 5.1.2. The 

number assigned to rdf:type is (8). Besides rdf:type, DWAHP made another binary table to 

become a candidate to be replicated on two nodes. This property is numbered (16). It is due 

to its association with other tables on the nodes based on query workload. All tables are 

indexed on the subject. Default B-tree indexing of Postgres-XL is used to index tables. Figure 

5.7 shows cluster allocation using n-hop Property Reachability Matrix. The highlighted 

matrix in Figure 5.7 shows the possible set of properties to be candidate of workload-aware 

clusters. Cluster Creation and Allocation algorithm is used to find the clusters and its 

distribution scheme for various nodes. Figure 5.8 depicts the actual cluster distribution for a 

given query workload.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 -2 -1 2 -1 -1 0 2 -1 8 8 0 2 2 8 8 8 0 8 8 0

2 -1 -2 -1 -1 1 0 -1 -1 8 8 0 -1 -1 8 7 8 7 8 8 0

3 2 -1 -2 2 0 0 -1 2 0 0 0 -1 -1 0 7 0 7 0 0 0

4 -1 -1 2 -2 -1 0 2 -1 8 8 0 2 2 8 8 8 0 8 8 0

5 -1 1 0 -1 -2 0 0 -1 8 8 0 0 0 8 8 8 0 8 8 0

6 0 0 0 0 0 -2 0 9 -1 0 0 0 0 0 0 9 0 9 9 0

7 2 -1 -1 2 0 0 -2 2 0 0 0 2 2 0 -1 0 -1 0 0 0

8 -1 -1 2 -1 -1 9 2 -2 -1 -1 10 2 2 -1 -1 -1 15 -1 -1 10

9 8 8 0 8 8 -1 0 -1 -2 8 0 0 0 8 8 -1 0 -1 -1 0

10 8 8 0 8 8 0 0 -1 8 -2 -1 0 0 8 8 -1 0 8 8 -1

11 0 0 0 0 0 0 0 10 0 -1 -2 0 0 -1 0 10 0 0 0 -2

12 2 -1 -1 2 0 0 2 2 0 0 0 -2 -1 0 0 0 0 0 0 0

13 2 -1 -1 2 0 0 2 2 0 0 0 -1 -2 0 0 0 0 0 0 0

14 8 8 0 8 8 0 0 -1 8 8 -1 0 0 -2 8 8 0 8 8 -1

15 8 7 7 8 8 0 -1 -1 8 8 0 0 0 8 -2 8 -1 8 8 0

16 8 8 0 8 8 9 0 -1 -1 -1 10 0 0 8 8 -2 0 -1 -1 10

17 0 7 7 0 0 0 -1 15 0 0 0 0 0 0 -1 0 -2 0 0 0

18 8 8 0 8 8 9 0 -1 -1 8 0 0 0 8 8 -1 0 -2 -1 0

19 8 8 0 8 8 9 0 -1 -1 8 0 0 0 8 8 -1 0 -1 -2 0

20 0 0 0 0 0 0 0 10 0 -1 -2 0 0 -1 0 10 0 0 0 -2



 

66 

 

 

Figure 5.7 Clusters and Allocation  

 

 

 

Figure 5.8 Cluster Distribution using DWAHP 

 

Hybrid Schemas

Property 
Tables

1. (2,3)
2. (6,9)
3. (10,11,14)

Binary 
Tables

1. (4)
2. (5)
3. (7)
4. (8)
5. (16) Data 

Distribution

Property Reachability Matrix

(10,11,14)
(16) (8)

(6,9) (16) 
(8)

(3,2) (7) (4) 
(5) (8)

Disks on 
worker 
nodes

Cluster 1

Cluster 2

Cluster n



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

67 

 

JARS implementation: JARS [20] is a join aware distributed RDF storage system. It uses 

two layered clustered indexes with dual hashing for distribution of triples. Triples are hashed 

twice based on subject and object. The resulting hash value is divided by the number of nodes 

and the remainder becomes the target node for the triple. The triple is then allotted to the 

target node.   

 

Figure 5.9 Execution Flow using JARS 

 

This experiment is performed on the same configuration as it is done for DWAHP. Every 

node has one subject triple table and one object triple table. JARS store triples twice so the 

data is almost doubled. All subject triple tables are cluster indexed like: pos, pso, osp, and 

spo. All object triple tables are indexed like: pos, pso, sop, and ops. Figure 5.9 depicts 

execution flow for JARS. Figure 5.10 depicts an actual implementation of JARS on the test 

bed. 

 

Figure 5.10 Cluster Distribution using JARS 

 

 

RDF Dataset

Hash value for 
subject and 

object 

Distribution of 
triples on 

nodes based on 
hash values

Dual 
Hashing

Distribution
plan

Dual cluster 
Indexing

Query 
Execution

Data 
distribution 

based on 
calculated 

hash values

RDF Triples

(sub TT1)
(obj TT1)

(sub TT2)
(obj TT2)

(sub TT3)
(obj TT3)

Disks on 
worker 
nodes

Cluster 1

Cluster 2

Cluster n

MD5 message 
digest hash 

value 
calculation



 

68 

 

5.3. Results and Discussions 

This section discusses DWAHP results and its performance comparison with JARS. Data 
scaling is performed for DWAHP and JARS both. Data is scaled from 2GB, 4GB, 6GB, till 
8GB.  This section discusses results for 8GB of data. Query performance for DWAHP is 
evaluated using following parameters:  

a. Query Execution Time is the time taken by a query to execute.  

b. Query Cost is the cost of the query execution plan, which is a summation of costs 

of different database operations like joining, scanning, indexing, and sorting.  

c. Storage Space is the space occupied by the database on the disk.  

d. Inter-node Communication parameter identifies message passing between nodes 

to answer a query.  

 

The RDF query set is executed on both the systems and query execution time is recorded in 

milliseconds. Query execution time is averaged over three query runs for both the systems to 

minimize fluctuations. Real life RDF queries often include linear and star queries. In the 

query set, queries which belong to Type1 and Type2 are linear and star queries respectively. 

With the blend of workload-aware hybrid partitioning and proposed distribution scheme, star 

and linear queries are able to get answered without inter-node communication, which 

naturally results in faster query execution of these queries.   

 

 

Figure 5.11  Example Execution Plan for Query Type2  

⟗

BT: Lat PT: Id, process location

BT: Long

⟗

π

X

X

Node 3
Node 2

Node 1



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

69 

 

In the query set, out of 20 queries 12 queries i.e.  60% of the total queries are answered 

without inter-node communication. When the queries are looked at in descending order of 

query frequency, Out of top 10 frequent queries, 9 queries are answered without inter-node 

communication, which indicates that 90% of the most frequent queries are answered without 

inter-node communication. Query workload analysis is also carried out for the amount of 

workload answered by the proposed system. Different queries have different occurrence 

frequencies. The overall workload of the system is based on the summation of frequencies of 

all the queries targeted for the system. DWAHP is able to answer 67% of the total query 

workload and 83% of frequent query workload without inter-node communication. Queries 

which needed inter-node communication were executed in parallel using the default 

mechanism of Postgres-XL. 

 

Figure 5.12 Example Execution Plan for Query Type3 

 

The Query set in the experiment contains queries with different number of joins. In order to 

execute these queries using triple tables, one needs minimum two and maximum up to six 

joins. However, DWAHP generates clusters consisting set of property tables and binary 

tables considering query workload. As a result, it minimizes these joins and requires 

maximum up to three joins. It can be noted that 1) Property table reduces subject-subject 

joins. 2) subject-object joins and inter-node communications are managed by keeping related 

binary tables and property tables together on the same node which is derived from n-hop 

Property Reachability Matrix. For example, during this experiment, DWAHP replicated one 

such binary table due to its association with other nodes. Because of these reasons, a 

⟗

BT: rdf:type PT: UFR PT: Id, Process Location

⟗

π

Node 1 Node 2



 

70 

 

significant reduction in inter-node communication and number of query joins is observed.   

Considering these two points, similar kind of results are expected for any dataset or query 

workload because n in the n-hop Property Reachability Matrix can be tweaked accordingly. 

Setting n to a point, where at least one property is reachable from every property can result in 

a situation, where communication among nodes can be eliminated for the star and linear 

queries. Value of n may vary from dataset to dataset. If n needs to be set at some higher 

value, which indicates that a longer path is needed to reach at least one property from all 

other properties. Clearly, this tells that the number of joins in the query may also increase. 

Hence, query performance parameters like query cost and storage-space may get affected. 

This trade-off may be dealt with compromising on inter-node communication to achieve 

efficient query execution. However, parameter like inter-node communication, not only 

depend on number of joins but also on the hardware capacity of worker nodes. Worker nodes 

with sufficient hardware capacity may also help to deal with this trade-off. Overall, it can be 

said that DWAHP can reduce complex operations like joins to a certain extent that results in 

efficient query execution for RDF data. 

Real life applications access a small amount of data from the entire database. These 

applications display highly skewed access patterns as they have certain kinds of queries 

frequently pose on their systems. For such applications, if query workload is known, 

DWAHP can be utilized for data storage and distribution for efficient query processing, as it 

exploits workload information. For example, IoT applications produce a lot of data 

periodically. These applications generally observe skewed access patterns for their queries. 

DWAHP can be utilized for such applications with skewed query workload and growing data. 

5.4. Comparison with state-of-the-art systems 

A scalable RDF data storage system [45] tries to minimize inter-node communication and 

uses a parameter called PWOC to find out that it can parallelize queries without inter-node 

communication. However, it uses data-aware approach, whereas DWAHP uses workload-

aware approach and it minimizes inter-node communication by managing joins using n-hop 

Property Reachability Matrix. DWAHP is also able to answer star and linear queries without 

inter-node communication. Besides this, DWAHP needs less replication compared to this 

scalable storage system as DWAHP replicates “rdf:type” property on different nodes. WARP 

[52] is quite similar to the scalable RDF data storage system. However, it follows a 



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

71 

 

workload-aware approach and tries to use lesser replication compared to scalable RDF data 

storage system. WARP uses horizontal partitioning and on the other hand, DWAHP uses 

vertical partitioning by using a combination of binary tables and property tables. DWAHP is 

hence able to minimize inter-node communication among nodes. ClusterRDF [57] partitions 

data based on workload and uses both horizontal and vertical partitioning. It distributes same 

schema on different machines and tries to minimize inter-node communication. DWAHP 

performs only vertical partitioning and distributes different schemas on different machines 

and hence able to eliminate inter-node communication for the star and linear queries.  

JARS [20] is a Join-Aware distributed RDF Storage system. It uses two layered clustered 

indexes with dual hashing for distribution of triples. JARS manages joins and tries to 

minimize inter-node communication. DWAHP also manages joins and tries to minimize 

inter-node communication. JARS uses a data-aware approach and on the other hand, 

DWAHP uses a workload approach. DWAHP and JARS both use relational based system to 

manage RDF data. DWAHP is closely comparable to JARS and hence this section presents a 

comparison between DWAHP and JARS using performance parameters like QET, query 

cost, storage space and inter-node communication.   

5.4.1. Comparing DWAHP and JARS  

Query performance is compared for DWAHP and JARS. Figure 5.13 shows execution time 

for Linked Observation dataset queries on DWAHP and JARS.   

 
Figure 5.13 Query Execution for DWAHP and JARS 

It is clearly visible that DWAHP outperforms JARS. Out of 20 queries, DWAHP is able to 

answer 12 queries without inter-node communication. It includes all linear and star queries. 

Star queries contain subject-subject joins and linear queries contain subject-object joins. 

Type 1 Type 2 Type 3 Type 4 
DWAHP 760 170 1098 1127 
JARS 3411 505 4059 4358 

0 
500 

1000 
1500 
2000 
2500 
3000 
3500 
4000 
4500 
5000 

E
xe

cu
tio

n 
tim

e 
in

 m
s 



 

72 

 

DWAHP is able to answer all star and linear queries without inter-node communication 

because it distributes clusters based on n-hop Property Reachability Matrix, which covers 

subject-subject and subject-object joins between properties. JARS is able to answer 6 queries 

all of which are star queries. JARS manage joins by distributing triples based on 

subject/object hash values. So subjects with same hash values appear on same node. As star 

queries consist of subject-subject joins, JARS is able to answer all star queries without inter-

node communication. 

DWAHP utilizes query workload information to partition data and also manages joins by 

partitioning it into property tables and binary tables. On top of that, data is distributed 

considering underlying property relationships which not only reduces number of joins but 

also reduces inter-node communication. Comparing DWAHP query performance based on 

query types with JARS, it can be noticed that Type1 queries executes with an average time 

gain of 78%, Type2 queries executes with an average time gain of 66%, Type3 queries 

executes with an average time gain of 73% and Type4 queries executes with an average time 

gain of 74%. DWAHP on an average gives 72% better query performance than JARS for the 

entire query set. Besides query execution time gain query costs are also calculated for all the 

queries. DWAHP costs 20%, 50%, 90%, and 85% lesser for Type1, Type2, Type3, and 

Type4 queries respectively.  On an average DWAHP costs 61% lesser than JARS query costs 

for the entire query set.  

There is a significant difference between storage space occupied by DWAHP and JARS. 

DWAHP uses almost same storage space as the actual database as the triple table is 

partitioned in a group of binary tables and property tables. However, it occupies additional 

storage space for tables that are indexed and replicated over different nodes. On the other 

hand, JARS stores triple twice. So it is obvious that data storage space is doubled. 

Additionally, it uses dual indexing technique which also adds to storage space. DWAHP 

occupies 71% less total storage space than JARS. Specifically, DWAHP occupies 64% less 

index space and 36% less data storage space. So in all DWAHP occupies a lot less space than 

JARS. The total performance gain in summarized in Table 5.2. 

DWAHP minimizes inter-node communication for frequent queries and manages joins 

efficiently. However, during Phase 1, it needs to partition triple table into a set of property 

tables and binary tables based on query workload. Whereas JARS does not require such pre-

processing of data as it simply uses a hash function and distributes data among nodes. 



DWAHP: Workload-Aware Hybrid Partitioning and Distribution for RDF Data 

73 

 

DWAHP uses workload-aware clusters which are created at a certain point of time 

considering certain query workload. Therefore DWAHP may not be able to execute ad-hoc 

queries that efficiently. On the other hand, JARS doesn’t consider any query workload and 

may execute ad-hoc queries. Additionally, JARS uses some preliminary RDF compression 

techniques for disk space reduction. 

Table 5.2 Summary of Query Performance Comparison between DWAHP and JARS 
 

Performance Parameters % Gain using DAWHP 
over JARS  

Query Execution Time 72% 
Query Cost 61% 
Storage Space 71% 
Inter-node Communication 50% 

 

5.4.2. Comparing DWAHP and JARS using Scaled Data 

Data scaling for Linked Observation Data is performed from 2 GB, 4 GB, 6 GB, and 8 GB. It 

is observed that query performances for all the query types for DWAHP and JARS increase 

linearly. However, it can be seen from Figure 5.14 that QET slopes for JARS is steeper 

compared to DWAHP which clearly indicates better performance of DWAHP with increasing 

data compared to JARS.   

 

Figure 5.14 Query Execution for DWAHP and JARS with Scaled Data 

2GB 4 GB 6GB 8GB
DWAHP 222 405 592 760
JARS 537 1167 2385 3411

0
500

1000
1500
2000
2500
3000
3500
4000

E
xe

cu
tio

n 
T

im
e

Type 1

2GB 4 GB 6GB 8GB
DWAHP 67 91 132 170
JARS 167 233 372 505

0

100

200

300

400

500

600

E
xe

cu
tio

n 
T

im
e

Type 2

2GB 4 GB 6GB 8GB
DWAHP 365 692 925 1330
JARS 1212 2358 3221 4948

0

1000

2000

3000

4000

5000

6000

E
xe

cu
tio

n 
T

im
e

Type 3

2GB 4 GB 6GB 8GB
DWAHP 481 731 927 1127
JARS 1346 2320 3125 4358

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

E
xe

cu
tio

n 
T

im
e

Type 4



 

74 

 

5.5. Summary 

DWAHP focuses on creating workload-aware clusters and managing joins in order to 

minimize message passing across nodes. DWAHP create workload-aware clusters which can 

answer 90% of the most frequent queries without inter-node communication.  Star and linear 

queries are the most frequent query types in real life.  It manages joins such that it is able to 

answer all linear and star queries without inter-node communication. DWAHP and JARS are 

compared in terms of query execution time, query costs, storage space, and message passing 

parameters.  DWAHP has shown on an average 72% of better query performance than JARS 

with 61% of reduced query cost. Considering storage space, DWAHP occupies less than one-

third of storage space compared to JARS. JARS eliminates inter-node communication for star 

queries and minimizes inter-node communication for linear queries, whereas DWAHP is able 

to get rid of inter-node communication for both linear and star queries.  



75 

 

Chapter 6 

6. Conclusions and Future Work 

 

The thesis aims at managing RDF data efficiently in terms of storage and query execution 

time. It initially explores basic RDF data partitioning techniques. It demonstrates use of 

various data partitioning techniques for efficient RDF data storage and faster query 

execution.  It demonstrates TT (Triple Table), PT (Property Table), BT (Binary Table), HP 

(Horizontally Partitioned Table), and MV (Materialized Views). It gives detailed study of 

these basic data partitioning techniques.  

Chapter 3 demonstrates query execution for basic RDF data stores. It measures query 

performance in terms of QET which are averaged over query types. It finds that partitioned 

tables (PT, BT, and HP) outperform TT and even with scaled RDF data in terms of triples, it 

is observed that partitioned tables outperform TT. HP can be applied over TT, BT, and PT. 

BT may perform better when a query involves less number of joins. Moreover, MV can be 

used over BT to achieve faster execution for queries involving subject-object joins. PT may 

perform better when the queried set of properties appear in the same table. 

The dissertation proposes three hybrid data partitioning techniques namely DAHP (Data-

Aware Hybrid Partitioning), DASIVP (Data-Aware Structure Indexed Partitioning), and 

WAHP (Workload-Aware Hybrid Partitioning) to manage stationary RDF data for a 

centralized relational database system.  

Chapter 4 discusses advantages and disadvantages of the basic data partitioning techniques 

and proposes three hybrid partitioning techniques which either uses a data-aware approach or 

a workload-aware approach. DAHP and DASIVP use a data-aware approach. WAHP uses a 

workload-aware approach. DAHP combines binary tables and property tables. It gives 40% 

of an average improvement over binary tables. DASIVP combines structure index 

partitioning and binary tables. It gives 38% of an average improvement over binary tables. 

Both the data-aware approaches have performed nearly equivalent. However, the break-even 

point of DAHP is 95% lesser than DASIVP. Therefore DAHP is carried further and looked at 

using a workload-aware approach which resulted in WAHP. WAHP combines binary tables 



 

76 

 

and property tables alike DAHP. WAHP creates workload-aware clusters, which are able to 

answer 73% of query workload by using just 9% of the actual data with 37% of time gain. 

This chapter proposes a set of metrics which helps in considering the suitability of a data 

partitioning technique for a RDF dataset and compares all the data partitioning techniques 

using the derived set of metrics.  

The thesis further demonstrates use of WAHP to manage RDF data in a distributed 

environment and proposes a distribution scheme. This proposed solution DWAHP 

(Workload-Aware Hybrid Partitioning and Distribution) is then compared with a state-of-the-

art system called JARS (Join-Aware distributed RDF Storage). DWAHP is conceptually 

compared with a scalable RDF storage, WARP and ClusterRDF. 

Chapter 5 proposes DWAHP, a workload-aware hybrid partitioning approach for a 

distributed environment. DWAHP uses two phases: hybrid partitioning and distribution 

scheme.  DWAHP architecture is presented and it is compared with a state-of-the-art system 

called JARS. DWAHP and JARS are compared in terms of query execution time, query 

costs, storage space, and message passing parameters. DWAHP create workload-aware 

clusters which can answer 90% of the most frequent queries without inter-node 

communication. Generally, it is observed that queries for RDF data mostly involve either star 

or linear query patterns. DWAHP manages joins such that it is able to answer all linear and 

star queries without inter-node communication. DWAHP uses n-hop Property Reachability 

Matrix which considers subject-subject and subject-object joins between properties in the 

dataset, and sets n to such a value where at least one property is reachable from all other 

properties. Value of n may vary from dataset to dataset and setting n to such a value will 

result in similar query performances. However there is a trade-off and this trade-off can be 

dealt by considering data characteristics and hardware requirements.  DWAHP has shown on 

an average 72% of faster query execution time than JARS with 61% of reduced query cost. 

Considering storage space, DWAHP occupies less than one-third of storage space compared 

to JARS. For our experiment, JARS eliminates inter-node communication for star queries and 

minimizes inter-node communication for linear queries and DWAHP is able to get rid of 

inter-node communication for both linear and star queries. 

DWAHP is compared with other state-of-the-art solutions like a scalable RDF data storage 

system which tries to minimize inter-node communication and uses a parameter called 

PWOC to find out that it can parallelize queries without inter-node communication. However, 



Conclusions and Future Work 

77 

 

it uses data-aware approach, whereas DWAHP uses workload-aware approach and it 

minimizes inter-node communication by managing joins using n-hop Property Reachability 

Matrix. DWAHP is also able to answer star and linear queries without inter-node 

communication. Besides this, DWAHP needs less replication compared to this scalable 

storage system as DWAHP replicates “rdf:type” property on different nodes. DWAHP is also 

compared with WARP, which is quite similar to the scalable RDF data storage system. 

However, it follows a workload-aware approach and tries to use lesser replication compared 

to scalable RDF data storage system. WARP uses horizontal partitioning and on the other 

hand, DWAHP uses vertical partitioning by using a combination of binary tables and 

property tables. DWAHP is hence able to minimize inter-node communication among nodes. 

DWAHP is then compared with ClusterRDF, which partitions data based on workload and 

uses both horizontal and vertical partitioning. It distributes same schema on different 

machines and tries to minimize inter-node communication. DWAHP performs only vertical 

partitioning and distributes different schemas on different machines and hence able to 

eliminate inter-node communication for the star and linear queries.  

Applications in various domains use RDF data as a standard for information exchange. Now-

a-days application’s data, its characteristics, data queries, and nature of the queries are 

generally known well in advance. Workload-aware techniques like WAHP and DWAHP can 

be utilized for such applications at the data storage level to alleviate query performances. In 

some cases if data queries or nature of the queries are not known or queries change 

frequently, data characteristics are generally inevitable and data-aware RDF stores can be 

utilized for efficient data storage and execution of queries. 



78 

 

6.1. Future Work 

Although the discussed hybrid data partitioning techniques have shown improvement over 

other techniques, there is a room for further enhancement.  

 Discussed partitioning techniques, whether they are for a centralized system or a 

distributed system, deals with static RDF data. Therefore they might be suitable only 

for read intensive applications. However, in a dynamic scenario, these techniques 

need to be looked at with a completely different perspective:  

o When considering a data-aware approach, there may be change in data and 

data characteristics. Techniques need to be devised to manage database 

operations along with change in data and data characteristics of a RDF dataset. 

o When considering a workload-aware approach, not only data and data 

characteristics are going to change but also the data queries may change over 

time. All of these changes need to be addressed in order to manage RDF data. 

 Discussed techniques try to separate frequent and non-frequent data and store it on the 

disk. However main memory databases can be utilized to further improve query 

performance.  

 

 

 

 



79 

 

Appendix 1 

Below are the SQL queries as implemented for a triple table for the FOAF dataset. Note that 

for clarity of presentation the properties are shown as row strings instead of actual URI. 

Query 1 
 
 

Type 4 Select t2.subject,t2.object,t3.object from triples t2 , triples t3, triples 
t4 
where t2.subject =t4.object 
and t4.predicate= 'text' 
and t4.subject= 'text '   
and  t2.predicate = 'text '  
and  t3.predicate = 'text '  
and t2.subject=t3.subject; 
 

Query 2 
 

Type 2 select t1.subject,t1.object from triples t1  
where t1.subject= ‘text’ 
and t1.predicate= ‘text’ 
intersect 
select t2.subject,t2.object from triples t2,triples t3  
where t2.predicate= ‘text’ 
and t2.subject = t3.object 
and   t3.predicate = ' text '   
and t3.subject= ‘text’; 
 

Query 3 
 

Type 4 select distinct t1.subject,t2.subject,t2.object from triples t2 ,triples t1 
where t2.subject =t1.object 
and   t1.predicate = ' text '   
and t1.subject= ‘text’ 
and   t2.predicate = ' text '  ; 
 

Query 4 
 

Type 2 select distinct t1.subject,t1.object from triples t1,triples t3 
where  t1.predicate = ' text '   
and t1.object like ' text '   
and t1.subject = t3.object 
and   t3.predicate = ' text '   
and t3.subject= ‘text’; 
 

Query 5 
 

Type 4 select t1.subject,count t1.subject  from triples t1  
where   t1.predicate = ' text '   
and t1.subject= ‘text’ 
group by t1.subject; 
 

Query 6 
 

Type 2 select t1.subject,count (t1.subject) from triples t1  
where   t1.predicate = ' text '   
group by t1.subject order by count t1.subject  asc; 
 

Query 7 
 

Type 2 select distinct t2.subject,t2.object,t3.object from triples t2,triples 
t3,triples t4  
where t2.subject =t4.object  
and   t4.predicate = ' text '   
and t4.subject= ‘text’ 
and   t2.predicate = ' text '   
and   t3.predicate = ' text '   



 

80 

 

and t2.object=t3.subject; 
 

Query 8 
 

Type 4 select t1.object from triples t1  
where   t1.predicate = ' text '   
and t1.subject= ‘text’ 
intersect 
select t1.object from triples t1  
where   t1.predicate = ' text '   
and t1.subject= ‘text’; 
 

Query 9 
 

Type 2 select distinct t1.subject,t1.predicate,t1.object from triples t1  
where   t1.predicate = ' text '  
or  t1.predicate = ' text '  
or  t1.predicate = ' text '  
. 
. 
or  t1.predicate = ' text '   
and t1.subject= ‘text’; 

Query 10 
 

Type 4 select t1.object from triples t1  
where t1.subject= ‘text’ 
and   t1.predicate = ' text '   
intersect 
select t2.object from triples t2,triples t1  
where   t2.predicate = ' text '   
and t2.subject = t1.object 
and   t1.predicate = ' text '    
and t1.subject= ‘text’;  
 

Query 11 
 
 

Type 1 select t1.object from triples t1,triples t2,triples t3 
where   t1.predicate = ' text '    
and   t2.predicate = ' text '    
and   t3.predicate = ' text '    
and t3.object like ' text ' 
and t1.object=t3.subject 
and t2.subject=t3.subject; 
 

Query 12 
 

Type 2 select t1.object,t2.object from triples t1,triples t2,triples t3 
where   t1.predicate = ' text '    
and   t2.predicate = ' text '    
and t1.object=t2.subject 
and   t3.predicate = ' text '    
and t3.object in  
(select t4.object from triples t4,triples t5 
where   t4.predicate = ' text '    
and   t5.predicate = ' text '    
and t4.subject=t5.subject ) 
intersect 
select t6.object from triples t6,triples t7 
where   t6.predicate = ' text '    
and   t7.predicate = ' text '    
and t6.subject=t7.object  
 

Query 13 
  

Type 1 select t1.subject from triples t1,triples t2,triples t3 
where   t1.predicate = ' text '    



Appendix 1 

81 

 

and   t2.predicate = ' text '    
and   t3.predicate = ' text '    
and t1.object = t2.object 
and t2.subject=t3.subject 
intersect 
select t1.subject from triples t1,triples t2,triples t3 
where   t1.predicate = ' text '    
and   t2.predicate = ' text '    
and   t3.predicate = ' text '    
and t2.subject=t3.object 
and t1.object = t2.object  
 

Query 14 
 

Type 3 select t1.object,t2.object from triples t1,triples t2,triples t3,triples 
t4,triples t5 
where   t1.predicate = ' text '    
and t1.subject= ‘text’ 
and   t2.predicate = ' text '    
and   t2.predicate = ' text '    
and   t4.predicate = ' text '    
and   t5.predicate = ' text '    
and t4.subject=t5.object 
and t1.object=t2.subject 
and t1.object=t3.subject 
and t3.object = t4.object 
 

Query 15 
  

Type 1 select t1.object,t2.object from triples t1,triples t2 
where   t1.predicate = ' text '    
and   t2.predicate = ' text '    
and t1.subject=t2.object 
and t2.object in 
select t3.object from  triples t3,triples t4 
where   t3.predicate = ' text '    
and   t4.predicate = ' text '    
and t3.subject=t4.subject  
intersect 
select t5.object from triples t5,triples t6 
where   t5.predicate = ' text '    
and   t6.predicate = ' text '    
and t5.subject=t6.object   

 



82 

 

Appendix 2 

Below are the SQL queries as implemented for a triple table for the SWetoDBLP dataset. 

Note that for clarity of presentation the properties are shown as row strings instead of actual 

URI. 

 

Query 1 
 
 

Type 1 Select subject from triples t1 
where t1.predicate = 'text' 
and t1.obj = 'text'; 
 

Query 2 
 

Type 1 select t1.subject,t1.object from triples t1, triples t2 
where t1.predicate= ‘text’ 
and t2.predicate= ‘text’ 
and t2.subject = t1.object 
 

Query 3 
 

Type 4 select t2.object from  triples t1,  triples t2,  triples t3 
where 
t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object  
and t3.predicate = 'text ' 
and t3.object like 'text'; 

 
Query 4 
 

Type 4 select count(t1.subject) from  triples t1,  triples t2,  triples t3 
where t1.subject = 'text' 
and t1.predicate = ' text ' 
and t2.subject = t1.object 
and t2.predicate = ' text ' 
and t2.object = ' text ' 
and t3.subject = t2.subject 
and t3.predicate = ' text '; 
 

Query 5 
 

Type 3 select t2.subject from  triples t1,  triples t2 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.predicate = 'text ' 
and t2.subject = t1.subject; 
 

Query 6 
 

Type 3 select t4.subject from  triples t1,  triples t2,  triples t3,  triples t4 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text '; 



Appendix 2 

83 

 

 
Query 7 
 

Type 4 select t1.object from  triples t1,  triples t2 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.predicate = 'text ' 
and t2.object = t1.subject 
 

Query 8 
 

Type 3 select t1.object from t1subject t1, t1subject t2 
where t1.subject like ‘text’  
and t1.object like 'text ' 
and t1.predicate like 'text ' 
and t1.subject like ‘text’  
and t2.predicate like 'text ' 
and t2.subject = t1.subject 
 

Query 9 
 

Type 2 select t1.object from  triples t1,  triples t2,  triples t3,  triples t4 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text ' 
 

Query 10 
 

Type 2 select t4.object from  triples t1,  triples t2,  triples t3,  triples t4 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.predicate = 'text ' 
and t2.subject = t1.subject 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t3.subject = t2.object 
and t4.predicate = 'text ' 
and t4.subject = t3.subject 
 

   
   
   
   
   



84 

 

Appendix 3 

Below are the SQL queries as implemented for a triple table for the Linked Observation 

dataset. Note that for clarity of presentation the properties are shown as row strings instead of 

actual URI. 

Query 1 
 
 

Type 3 select avg (t5.object) from  triples t1,  triples t2,  triples t3,  triples t4,  
triples t5 
where t1.subject = 'text' 
and t1.predicate = ' text ' 
and t2.subject = t1.object 
and t2.predicate = ' text ' 
and t2.object = ' text ' 
and t3.subject = t2.subject 
and t3.predicate = ' text ' 
and t4.object = ' text ' 
and t4.predicate = ' text ' 
and t4.subject = t3.object 
and t5.subject = t4.subject 
and t5.predicate = ' text '; 
 

Query 2 
 

Type 1 select t4.object from  triples t1,  triples t2,  triples t3,  triples t4 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.predicate = 'text ' 
and t2.subject = t1.subject 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t3.subject = t2.object 
and t4.predicate = 'text ' 
and t4.subject = t3.subject; 
 

Query 3 
 

Type 3 select max(t6.object) from  triples t1,  triples t2,  triples t3,  triples t4,  
triples t5,   triples t6 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text ' 
and t5.object = 'text ' 
and t5.predicate = 'text ' 
and t5.subject = t4.object 
and t6.subject = t5.subject 
and t6.predicate = 'text '; 
 

Query 4 
 

Type 1 select t4.object from  triples t1,  triples t2,  triples t3,  triples t4,  triples 
t5 
where 



Appendix 3 

85 

 

t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.predicate = 'text ' 
and t2.subject = t1.subject 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t3.subject = t2.object 
and t4.predicate = 'text ' 
and t4.subject = t3.subject 
and t5.predicate = 'text ' 
and t1.subject = t5.object 
and t5.subject IN  
(select t2.subject from  triples t2,  triples t3,  triples t4,  triples t5,  
triples t6 
where 
t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text ' 
and t5.object = 'text ' 
and t5.predicate = 'text ' 
and t5.subject = t4.object 
and t6.subject = t5.subject 
and t6.predicate = 'text ' 
and t6.object text '); 
 

Query 5 
 

Type 1 select t2.object from  triples t1,  triples t2,  triples t3 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object  
and t3.predicate = 'text ' 
and t3.object like 'text'; 
 

Query 6 
 

Type 4 select t6.object from  triples t1,  triples t2,  triples t3,  triples t4,  triples 
t5,  triples t6 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text ' 
and t5.object = 'text ' 
and t5.predicate = 'text ' 
and t5.subject = t4.object 
and t6.subject = t5.subject 
and t6.predicate = 'text '; 
 



 

86 

 

 
Query 7 
 

Type 3 select t4.subject from  triples t1,  triples t2,  triples t3,  triples t4,  
triples t5,  triples t6 
where 
t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.predicate = 'text ' 
and t2.subject = t1.subject 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t3.subject = t2.object 
and t4.predicate = 'text ' 
and t4.subject = t3.subject 
and t6.object like 'text' 
and t6.predicate = 'text ' 
and t5.object = t6.subject 
and t5.predicate = 'text ' 
and t5.subject = t1.subject) 
union 
select t4.subject from  triples t1,  triples t2,  triples t3,  triples t4,  
triples t5,  triples t6 
where 
t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.predicate = 'text ' 
and t2.subject = t1.subject 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t3.subject = t2.object 
and t4.predicate = 'text ' 
and t4.subject = t3.subject 
and t6.object like 'text' 
and t6.predicate = 'text ' 
and t5.object = t6.subject 
and t5.predicate = 'text ' 
and t5.subject = t1.subject; 
 

Query 8 
 

Type 4 select t4.object from t3object t1, t3object t2, t3object t3, t3object t4, 
t3object t5, t3object t6 
where 
t1.subject like ‘text’  
and t1.object like 'text ' 
and t1.predicate like 'text ' 
and t1.subject like ‘text’  
and t2.predicate like 'text ' 
and t2.subject = t1.subject 
and t3.predicate like 'text ' 
and t3.subject = t2.object 
and t4.predicate like 'text ' 
and t4.subject = t3.subject 
and t6.object like '2004-08-12%' 
and t6.predicate like 'text ' 
and t5.object = t6.subject 
 



Appendix 3 

87 

 

Query 9 
 

Type 4 select t4.object from t1subject t1, t1subject t2, t1subject t3, t1subject 
t4, t1subject t5, t1subject t6 
where 
t1.subject like ‘text’  
and t1.object like 'text ' 
and t1.predicate like 'text ' 
and t1.subject like ‘text’  
and t2.predicate like 'text ' 
and t2.subject = t1.subject 
and t3.predicate like 'text ' 
and t3.subject = t2.object 
and t4.predicate like 'text ' 
and t4.subject = t3.subject 
and t6.object like '2004-08-12%' 
and t6.predicate like 'text ' 
and t5.object = t6.subject 
 

Query 10 
 

Type 3 select max(t6.object) from  triples t1,  triples t2,  triples t3,  triples t4,  
triples t5,  triples t6 
where 
t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text ' 
and t5.object = 'text ' 
and t5.predicate = 'text ' 
and t5.subject = t4.object 
and t6.subject = t5.subject 
and t6.predicate = 'text '; 
 
 

Query 11 Type 2 select t6.object from  triples t1,  triples t2,  triples t3,  triples t4,  triples 
t5,  triples t6 
where 
t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text ' 
and t5.object = 'text ' 
and t5.predicate = 'text ' 
and t5.subject = t4.object 
and t6.subject = t5.subject 
and t6.predicate = 'text '; 
 



 

88 

 

Query 12 Type 4 select t6.object from t3subject t1, t3subject  t2, t3subject  t3, t3subject  
t4, t3subject  t5, t3subject  t6 
where 
t1.object like 'text ' 
and t1.predicate like 'text ' 
and t2.subject = t1.subject 
and t3.predicate like 'text ' 
and t3.object like 'text ' 
and t4.subject = t3.subject 
and t4.predicate like 'text ' 
and t5.predicate like 'text ' 
and t5.subject = t4.object 
and t6.subject = t5.subject 
and t6.predicate like 'text ' 
 

Query 13 Type 1 select t4.object from t2subject t1, t2subject t2, t2subject t3, t2subject 
t4 
where 
t1.object like 'text ' 
and t1.predicate like 'text ' 
and t1.subject like ‘text’  
and t2.predicate like 'text ' 
and t2.subject = t1.subject 
and t3.predicate like 'text ' 
and t3.object like 'text ' 
and t3.subject = t2.object 
and t4.predicate like 'text ' 
and t4.subject = t3.subject 
 

Query 14 Type 2 select t1.object from  triples t1,  triples t2 
where t1.subject = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text '; 
 

Query 15 Type 2 select t2.object, t3.object from  triples t1,  triples t2,  triples t3 
where t1.subject = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.object 
and t2.predicate = 'text ' 
and t3.subject = t1.object 
and t3.predicate = 'text '; 
 

Query 16 Type 2 select distinct t2.object from  triples t1,  triples t2 
where t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text '; 
 

Query 17 Type 1 select t1.subject from  triples t1 
where t1.predicate = 'text ' 
and t1.object = 'text '; 

Query 18 Type 2 select t2.object from  triples t1,  triples t2 
where t1.subject = 'text ' 



Appendix 3 

89 

 

and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text '; 
 

Query 19 Type 4 select t1.subject from  triples t1,  triples t2,  triples t3,  triples t4,  
triples t5,  triples t6 
where 
t1.object = 'text ' 
and t1.predicate = 'text ' 
and t2.subject = t1.subject 
and t2.predicate = 'text ' 
and t3.subject = t2.object 
and t3.predicate = 'text ' 
and t3.object = 'text ' 
and t4.subject = t3.subject 
and t4.predicate = 'text ' 
and t5.object = 'text ' 
and t5.predicate = 'text ' 
and t5.subject = t4.object 
and t6.subject = t5.subject 
and t6.predicate = 'text ' 
and t6.object text '; 
 

Query 20 Type 2 select t1.subject from  triples t1 
where t1.object = 'text ' 
and t1.predicate = 'text '; 
 

 



90 

 

Appendix 4 

 

This appendix contains all the algorithms and its complexity calculation. Variable r denotes 
total records, pc is property clusters, p is properties, h is number of horizontally partitioned tables, and 
spf is properties occur that together. Complexities are mentioned beside the algorithm name.  

 
Algorithm: Triple Table O(r) 

Input: .n3 file 

Output: Triple Table 

1 for all r ϵ RDFTriples    ---- r 

2    TT ← (s,p,o) ----- 1 

3 end for  

4 return TT  

 

 
Algorithm: Property Table -- r + r * pc ~ O(r * pc) 

Input: Triple Table  

Output: Property Table  

1 for all r ϵ RDFTriples ---- r 

2 if(p in r belongs to relationship) 

3 create property cluster pc1 

4 Else if(p in r belongs to personal) 

5 create property cluster pc2 

6 Else 

7 Consider as left over triples 

8 end for 

9 for all r ϵ RDFTriples ---- r 

10 for all pi in cluster ci 

11 pci ← (s, p1,p2..pn)---- pc 

12 end for 

13 end for  

14 return PT  

 

 
Algorithm: Binary Table ---  r * p+r ~ O(r * p) 

Input: Triple Table  

Output: Binary Tables 

1 for all r ϵ RDFTriples ---- r 

2 create binary table for every unique property 

3 end for 

4 for all r ϵ RDFTriples --- r  

5 for all p ϵ RDFTriples ---- p 

6 BTi ← (s,o) --- r 

7 end for  

8 end for  

9 return Binary Tables 



Appendix 4 

91 

 

 
Algorithm: Horizontally Partitioned Table -- r * h ~ O(r * h) 

Input: Triple Table  

Output: Horizontally Partitioned Tables  

1 for all r ϵ RDFTriples --- r 

2 for all n ϵ {0 to 9} ˅ {a-z} ˅ {A-Z} --- h 

3 HP ← h --- 1 

4 n ← (s,p,o) --- 1 

5 end for  

6 end for  

7 return Horizontal Partitioned Table  

 

 
Algorithm: DAHP – plogp+slogs+ p+r+(p2 * spf) ~  O(r) + O(p2 * spc) 

Input:  Null Threshold, Support Threshold, Subject-property bin, Property-use listing, Triple Table  

Output: Property Tables, Binary Tables 

1 //merge sort 

2 Sort descending property-use listing on property-use -- r+plogp 

3 For all properties pi in property-use listing --- p 

4 If(pi<support Threshold)  

5 BT  ← pi --1 

6 Else 

7 Cp ← Consider pi for generating property tables --1  

8 End for 

9 //Find PT and BT using Apriori Algorithm O(p2 * spc) 

10 spc  ← subject-property bin 

11 // Cartesian product  

12 for all pi in subject-property bin 

13 Cp+1 = candidate generated from subject-property bin 

14 For all occurrences in subject-property bin 

15 Increment the count of all candidates in cp+1 that are contained in subject-property bin 

16 end for 

17 spc ← candidates in cp+1 with support threshold and null threshold 

18 PT ← spc 

19 end for 

20 Return Property Tables, Binary Tables – r 

 

Algorithm: DASIVP1 O(r) 

Input: RDF Triples – r 

Output: Property Basket  

1 For ∀ s ϵ RDFTriples – r 

2 PB ← p ˅ o  -- 1 

3 End For` 

4 Return Property Basket Table 

 

 

 



 

92 

 

Algorithm: DASIVP2 --- s+r ~r ~ O(r) 

Input: RDF Triples, Property Basket  

Output: Indexed Partitioned Triples 

1 For ∀ p ϵ PropertyBasket --- s 

2 Lookup Table ← {Property list, location index} --- 1 

3 For ∀  s  ϵ PropertyBasket --- r 

4 IPT ← Identified Triple at location index -- 1 

5 End For 

6 return Indexed Partitioned Triples  

 

 
Algorithm: DASIVP3  --- p * r ~ O(p * r) 

Input: RDF Triples, Property Basket 

Output: Indexed Partitioned RDF Triples 

1 For ∀ property List ϵ PropertyBasket --- p 

2 Lookup Table ← {Property list, location index} -- 1 

3 For ∀  s  ϵ PropertyBasket   --- r 

4 IPRT ← Identified Triple at location index --- 1 

5 End For 

6 Return Indexed Partitioned RDF Triples 

 

 
Algorithm: WAHP – plogp+slogs+ p+r+(p2 * QPc) ~ O(r)+ O(p2 * QPc) 

Input:  Null Threshold, Support Threshold, PF list, QP basket, Triple Table  

Output: Property Tables, Binary Tables 

1 //merge sort 

2 Sort descending PF list on property-frequency -- r+plogp 

3 //merge sort 

4 Sort descending QP basket on property count -- r+slogs 

5 For all properties pi in PF list --- p 

6 If(pi<support Threshold)  

7 BT  ← pi --1 

8 Else 

9 Cp ← Consider pi for generating property tables --1  

10 End for 

11 //Find PT and BT using Apriori Algorithm O(p2 * QPc) 

12 QPc  ← QP basket 

13 // Cartesian product  

14 for all pi in QP basket 

15 Cp+1 = candidate generated from QP basket 

16 For all occurrences in QP basket 

17 Increment the count of all candidates in cp+1 that are contained in QP basket 

18 end for 

19 QPc ← candidates in cp+1 with support threshold and null threshold 

20 PT ← QPc 

21 end for 

22 Return Property Tables, Binary Tables – r 

 

 



Appendix 4 

93 

 

Algorithm: DWAHP 1(Hybrid Partitioning [PT+BT])  

plogp+slogs+ p+r+(p2 * QPc) ~ O(r)+ O(p2 * QPc)  

Input:  Null Threshold, Support Threshold, PF list, QP basket, Triple Table  

Output: Property Tables, Binary Tables 

1 //merge sort 

2 Sort descending PF list on property-frequency --plogp 

3 //merge sort 

4 Sort descending QP basket on property count --slogs 

5 For all properties pi in PF list --- p 

6 If(pi<support Threshold)  

7 BT  ← pi --1 

8 Else 

9 Cp ← Consider pi for generating property tables --1  

10 End for 

11 //Find PT and BT using Apriori Algorithm O(p2 * QPc) 

12 QPc  ← QP basket 

13 // Cartesian product  

14 for all pi in QP basket 

15 Cp+1 = candidate generated from QP basket 

16 For all occurrences in QP basket 

17 Increment the count of all candidates in cp+1 that are contained in QP basket 

18 end for 

19 QPc ← candidates in cp+1 with support threshold and null threshold 

20 PT ← QPc 

21 end for 

22 Return Property Tables, Binary Tables – r 

 
Algorithm: DWAHP2 (Cluster Creation and Allocation)--- p2 ~ O(p2) + O(c2) 

Input: property table, binary table, n hop matrix, support threshold, Nodes N  

Output: Clusters, Dc (Distributed Clusters)      

1 Together ← False 

2 For Ci consider every combination of pi in T1 with pj in T2 -- p 

3 For ∀  pk in n hop matrix -- p 

4 If (pk is Reachable(pi,pj)) ∧  supportThreshold(pi,pj) – 1 

5 Together ← True -- 1 

6 End if 

7 End for  

8 If (Together)   -- 1 

9 Ci ← Ci  ∪  {T1 ,T2} --- 1 

10 End if 

11 Together ← False 

12 End for 

13 For ∀ Nk ∈ N – n 

14 //Matrix Multiplication-- O(c2) 

15 For ∀ Ci ∈ Clusters  -- c 

16 For ∀ Cj ∈ Clusters  -- c 

17 If all properties is Reachable(Ci, Cj)  --1 

18 Together ←True  

19 Else 

20 Together=False  

21 Exit  

22 End for 



 

94 

 

23      If (Together) --1 

24            Nk ← Nk ∪ Cj ∪ Ci  

25      Else 

26            Nk ← Nk ∪ Cj  

27       End if 

28   End for 

29 End For 

30 Return N, Dc 

 
Algorithm: n hop reachability matrix (p+p2) ~ O(p2) 

Input: properties 

Output: n hop matrix     

1 N ←n -- 1 

2 For ∀ pi ∈ properties – O(p2) 

3    For ∀ pj ∈ properties 

4       If(i==j) 

5          P(i,j)← -2 

6       Else If  (s.s join ˅ s.o join)  --1 

7          P(i,j)← -1 --1 

8       Else 

9          P(i,j) ← 0 --1 

10       End if 

11    End for 

12 End for 

13 // Dijkstra’s Algorithm O(p2) 

14 For ∀ pi ∈ properties  

15    For ∀ pj ∈ properties 

16       If((pi,j) == 0) 

17          p(i,j) = pk //minimum distance from pi to pj via pk 

18       End if 

19    End for 

20 End for 

21 Return n hop matrix 



95 

 

References 

[1] (2014, Feb) RDF 1.1 Primer W3C Working Group Note 25 February 2014. [Online]. 
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/ 

[2] Li Ding, Lina Zhou, Tim Finnin, and Anupam Joshi, "How the semantic web is being 
used: An analysis of foaf documents," in 38th Annual Hawaii International Conference 
of System Sciences, 2005, p. 113c. 

[3] Christian Bizer et al., "DBpedia- A crystallization point for the Web of Data," Web 
Semantics: Science, Services and Agents on the World Wide Web, vol. 7(3), pp. 154-165, 
September 2009. 

[4] FM Suchanek, G Kasneci, and G Weikum, "Yago: a core of semantic knowledge," in 
16th international conference on World Wide Web, 2007, pp. 697-706. 

[5] (2013) Bio2RDF: Linked Data for the Life Sciences. [Online]. 
http://bio2rdf.org/describe/?uri=http://bio2rdf.org/uniprot:P05067 

[6] Tamer Özsu, "A survey of RDF data management systems," Frontiers of Computer 
Science, pp. 1-15, May 2016. 

[7] Jaroslav Pokorný, "Graph Databases: Their Power and Limitations," in Computer 
Information Systems and Industrial Management (CISIM 2015), 2015, pp. 58-69. 

[8] Dominique Hazael-Massieux. (2003) RDF in Real Life - Some examples of RDF 
applications. [Online]. https://www.w3.org/2003/Talks/semtour-athens-rdfapp/ 

[9] P Barnaghi, W Wang, C Henson, and K Taylor, "Semantics for the Internet of Things: 
early progress and back to the future," International Journal on Semantic Web and 
Information Systems (IJSWIS), vol. 8(1), pp. 1-21, 2012. 

[10] S Bischof et al., "Semantic modelling of smart city data," in W3C Workshop on the Web 
of Things, Berlin, Germany, 2014. 

[11] Christian Bizer, Tom Heath, and Tim Berners Lee, "Linked Data - The Story So Far," 
Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205-
227, 2009. 

[12] A Gyrard, S Datta, C Bonnet, and K Boudaoud, "Standardizing generic cross-domain 
applications in Internet of Things," in Globecom Workshops (GC Wkshps), December 
2014, pp. 589-594. 

[13] H Hasemann, A Kroller, and M Pagel, "RDF Provisioning for the Internet of Things.," in 
3rd International Conference on the Internet of Things (IOT), 2012, pp. 143-150. 

[14] (2009) W3C Dataset RDF Dumps. [Online]. 
https://www.w3.org/wiki/DataSetRDFDumps 

[15] LOD Stats. [Online]. http://stats.lod2.eu 
[16] Broekstra Kampman and Harmelen Van, "Sesame: A Generic Architecture for Storing 

and Querying RDF and RDF Schema," in 1st International Semantic Web Conference, 
2002, pp. 54–68. 

[17] Wilkinson and Kevin, "Jena property table implementation," in Second International 

https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://bio2rdf.org/describe/?uri=http://bio2rdf.org/uniprot:P05067
https://www.w3.org/2003/Talks/semtour-athens-rdfapp/
https://www.w3.org/wiki/DataSetRDFDumps
http://stats.lod2.eu/


 

96 

 

Workshop on Scalable Semantic Web Knowledge Base Systems, 2006, pp. 35-46. 
[18] Daniel Abadi, Marcus Adam, Samuel Madden, and Kate Hollenbach, "SW-Store: a 

vertically partitioned DBMS for Semantic Web data management," The VLDB Journal—
The International Journal on Very Large Data Bases, pp. 385-406, 2009. 

[19] A Levy, A Mendelzon, and Y Sagiv, "Answering queries using views: A Survey," The 
VLDB Journal, vol. 10 (4), pp. 270-294, 2001. 

[20] Anjali Rajith, Shoji Nishimura, and Haruo Yokota, "JARS: Join-Aware Distributed RDF 
Storage," in 20th International Database Engineering & Applications 
Symposium(IDEAS '16), ACM, New York, NY, USA, 2016, pp. 264-271. 

[21] (1998, September) Relational Databases on the Semantic Web. [Online]. 
https://www.w3.org/DesignIssues/RDB-RDF.html 

[22] Ramanujam Sunitha, Anubha Gupta, Latifur Khan, Steven Seida, and Bhavani 
Thuraisingham, "R2D: A bridge between the semantic web and relational visualization 
tools," in IEEE International Conference on Semantic Computing, 2009, pp. 303-311. 

[23] Sherif Sakr and Al-Naymat Ghazi, "Relational processing of RDF queries: a survey," in 
ACM SIGMOD, 2010, pp. 23-28. 

[24] Chong E, Das S, Eadon G, and Srinivasan J, "An efficient SQL-based RDF Querying 
Scheme," in 31st International Conference on Very Large Data Bases, 2005, pp. 1216–
1227. 

[25] Harris Stephen and Nicholas Gibbin, "3store: Efficient bulk RDF storage," , 2003, pp. 1-
15. 

[26] Y Luo, F Picalausa, G Fletcher, J Hidders, and S Vansummeren, "Storing and indexing 
massive RDF datasets," in Semantic Search over the Web, Data centric Systems and 
Applications.: Springer Berlin Heidelberg, 2012, pp. 31-60. 

[27] ORRI ERLING and IVAN MIKHAILOV, "RDF Support in the Virtuoso DBMS," in 
Networked Knowledge-Networked Media.: Networked Knowledge-Networked Media, 
2009, pp. 7-24. 

[28] Cathrin Weiss, Panagiotis Karras, and Bernstein Abraham, "Hexastore: sextuple 
indexing for semantic web data management," in VLDB, 2008, pp. 1008-1019. 

[29] Thomas Neumann and Weikum Gerhard, "RDF-3X: a RISC-style engine for RDF," in 
VLDB, 2008, pp. 647-659. 

[30] P Yuan, P Liu, H Jin, W Zhang, and L Liu, "TripleBit: a fast and compact system for 
large scale RDF data," in VLDB, vol. 6(7), 2013, pp. 517–528. 

[31] M Bornea et al., "Building an efficient RDF store over a relational database," in 2013 
ACM SIGMOD International Conference on Management of Data, Jun 22 2013, pp. 
121-132. 

[32] Steve Harris, Nick Lamb, and N Shadbolt, "4store: The design and implementation of a 
clustered RDF store," in 5th International Workshop on Scalable Semantic Web 
Knowledge Base Systems (SSWS2009), 2009, pp. 94-109. 

[33] Daniel Abadi, Marcus Adam, Samuel Madden, and Kate Hollenbach, "Scalable semantic 

https://www.w3.org/DesignIssues/RDB-RDF.html


References 

97 

 

web data management using vertical partitioning," in VLDB Endowment, 2007, pp. 411-
422. 

[34] M Stonebraker et al., "C-store: a column-oriented DBMS," in 31st international 
conference on Very large data bases , VLDB Endowment., 2005, pp. 553-564. 

[35] V Raman et al., "DB2 with BLU acceleration: so much more than just a column store," 
in VLDB Endowment, vol. 6(11), 2013, pp. 1080-1091. 

[36] Daniel Abadi, Samuel Madden, and Nabil Hachem, "Column-Stores vs. Row-Stores: 
How different are they really?," in ACM SIGMOD, 2008, pp. 967-980. 

[37] T Tran and G Ladwig, "Structure index for RDF data," in Workshop on Semantic Data 
Management, SemData@ VLDB, vol. 2(10), 2010. 

[38] T Tran, G Lagwig, and S Rudolph, "Managing structured and semistructured RDF data 
using structure indexes," in Transaction on Knowledge and Data Engineering, IEEE, 
vol. 25(9), 2013, pp. 2076-2089. 

[39] M Yang, B Zhang, and Y Li, "RDF Data Query and Management Method Based on 
HBase and Structure Index in Railway Sensor Application," in International Conference 
on Parallel and Distributed Computing, Applications and Technologies (PDCAT), 
December 2013, pp. 36-43. 

[40] J Levandoski and F Mokbel, "RDF data-centric storage," in IEEE International 
Conference on Web Services 2009 (ICWS 2009), July 2009, pp. 911-918. 

[41] A Schwarte, P Haase, K Hose, R Schenkel, and M Schmidt, "Fedx: Optimization 
techniques for federated query processing on linked data," in International Semantic 
Web Conference (ISWC 2011), Oct 23 2011, pp. 601-616. 

[42] B QuilitZ. (2007) DARQ- Federated Quereis with SPARQL. [Online]. 
http://darq.sourceforge.net/ 

[43] H Kobashi, N Carvalho, B Hu, and T Saeki, "Cerise: an RDF store with adaptive data 
reallocation," in the 13th Workshop on Adaptive and Reflective Middleware ACM 2014, 
2014. 

[44] M Hammoud, D Rabbou, R Nouri, S Beheshti, and S Sakr, "DREAM: distributed RDF 
engine with adaptive query planner and minimal communication," in VLDB Endowment 
2015, vol. 8(6), 2015, pp. 654-665. 

[45] J Huang, D Abadi, and Kun Ren, "Scalable SPARQL querying of large RDF graphs," in 
VLDB Endowment, vol. 4.11, 2011, pp. 1123-1134. 

[46] R Al-Harbi, Y Ebrahim, and P Kalnis. (2014) PhD-Store: An adaptive SPARQL engine 
with dynamic partitioning for distributed RDF repositories. CoRR,abs/1405.4979. 

[47] S Gurajada, S Seufert, I Miliaraki, and M Theobald, "TriAD: A Distributed Shared-
Nothing RDF Engine based on Asynchronous Message Passing," in 2014 ACM 
SIGMOD international conference on Management of data, 2014, pp. 289-300. 

[48] (2013) METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering. [Online]. 
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview 

[49] L Galarraga, K Hose, and R Schenkel, "Partout: A Distributed Engine for Efficient RDF 

http://darq.sourceforge.net/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview


 

98 

 

Processing," in 23rd International Conference on World Wide Web, 2014, pp. 267-268. 
[50] X Wang, T Yang, J Chen, L He, and X Du, "RDF partitioning for scalable SPARQL 

query processing," Frontiers of Computer Science, vol. 9(6), pp. 919-933, 2015. 
[51] M Boissier, "Optimizing main memory utilization of columnar in-memory databases 

using data eviction," in VLDB PhD Workshop , 2014, pp. 1-6. 
[52] K Hose and R Schenkel, "WARP: Workload-Aware Replication and Partitioning for 

RDF," in 29th IEEE International Conference on Data Engineering Workshops, 2013, 
pp. 1-6. 

[53] P Peng, L Zou, L Chen, and D Zhao, "Query Workload-based RDF Graph 
Fragmentation and Allocation," in EBDT 2016, 2016, pp. 377-388. 

[54] J Levandoski, P Larson, and R Stoica, "Identifying Hot and Cold Data in Main-Memory 
Databases," in IEEE 29th international conference on Data Engineering, 2013. 

[55] C Curino, E Jones, Y Zhang, and S Madden, "Schism: a workload-driven approach to 
database replication and partitioning," in VLDB Endowment, vol. 3(1-2), 2010, pp. 48-
57. 

[56] Rebeca Schroeder, Raqueline Penteado, and Carmem Hara, "Partitioning RDF exploiting 
workload information," in 22nd International Conference on World Wide Web(WWW 
'13 Companion), ACM, New York, NY, USA, 2013, pp. 213-214. 

[57] R Schroeder and C Hara, "Partitioning Templates for RDF," in Advances in Databases 
and Information Systems (ADBIS 2015), September 2015, pp. 305-319. 

[58] Yan Ying et al., "Efficiently querying rdf data in triple stores," in World Wide Web, 
2008, pp. 1053-1054. 

[59] MahmoudiNasab Hooran and Sherif Sakr, "An experimental evaluation of relational 
RDF storage and querying techniques," in Database Systems for Advanced Applications, 
2010, pp. 215-226. 

[60] MahmoudiNasab Hooran and Sherif Sakr, "Efficient and Adaptable Query Workload-
Aware Management for RDF Data," in WISE’10 of 11th International Conference, on 
web information system engineering, 2010, pp. 390-399. 

[61] A Kemper and T Neumann, "HyPer: A hybrid OLTP&OLAP main memory database 
system based on virtual memory snapshots," in IEEE 27th International Conference on 
Data Engineering (ICDE 2011), 2011, pp. 195-206. 

[62] B Motik, Y Nenov, R Piro, I Horrocks, and D Olteanu, "Parallel Materialisation of 
Datalog Programs in Centralised, Main-Memory RDF Systems," in AAAI, 2014, pp. 129-
137. 

[63] H Garcia-Molina and K Salem, "Main memory database systems: An overview," IEEE 
Transactions on knowledge and data engineering, vol. 4(6), pp. 509-516, 1992. 

[64] Herodotou Herodotos, Nedyalko Borisov, and Shivnath Babu, "Query optimization 
techniques for partitioned tables," in ACM SIGMOD, 2011, pp. 49-60. 

[65] Jingren Zhou, Nicolas Bruno, and Wei Lin, "Advanced partitioning techniques for 
massively distributed computation," in 2012 ACM SIGMOD International Conference 



References 

99 

 

on Management of Data, Scottsdale, Arizona, USA, May 20-24, 2012. 
[66] C Aggarwal, N Ashish, and A Sheth, "The Internet of Things: A Survey from the Data-

Centric Perspective," Managing and Mining Sensor Data, pp. 383-428, 2013. 
[67] Irene Polikoff. (2014, May) RDF is Critical to a Successful Internet of Things. [Online]. 

http://www.dataversity.net/rdf-critical-successful-internet-things/ 
[68] RDF Working Group. (2014, Feb) Resource Description Framework (RDF). [Online]. 

https://www.w3.org/RDF/ 
[69] H Hasemann, A Kröller, and M Pagel, "The wiselib tuplestore: a modular RDF database 

for the internet of things," in arXiv preprint arXiv:1402.7228, 2014. 
[70] D Pfisterer et al., "SPITFIRE: toward a semantic web of things," IEEE Communications 

Magazine, vol. 49(11), pp. 40-48, 2011. 
[71] X Su et al., "Connecting iot sensors to knowledge-based systems by transforming senml 

to rdf," in Procedia Computer Science, vol. 32, Dec 31 2014, pp. 215-222. 
[72] S Abbassi and R Faiz, "RDF-4X: a scalable solution for RDF quads store in the cloud," 

in International Conference on Management of Digital EcoSystems, 2016, pp. 231-236. 
[73] P Britton, A Kumar, D Bigwood, A DeFusco, and H Greenblatt, "Methods and apparatus 

for querying a relational data store using schema-less queries," US9529937 B2, Dec 27, 
2016. 

[74] J Um et al., "Distributed RDF store for efficient searching billions of triples based on 
Hadoop," The Journal of Supercomputing, vol. 72(5), pp. 1825-1840, 2016. 

[75] Y Nenov et al., "RDFox: A highly-scalable RDF store," in International Semantic Web 
Conference, 2015, pp. 3-20. 

[76] H Bazoobandi et al., "A compact in-memory dictionary for RDF data," in European 
Semantic Web Conference, 2015, pp. 205-220. 

[77] M Meimaris and G Papastefanatos, "Double Chain-Star: an RDF indexing scheme for 
fast processing of SPARQL joins," in EDBT, 2016, pp. 668-669. 

[78] K Bok, J Lim, K Kim, and J Yoo, "A RDF Indexing Scheme for Large Scale Semantic 
Web," International Information Institute (Tokyo) Information, vol. 19(3), pp. 1011-
1019, 2016. 

[79] A Cerdeira-Pena, A Farina, J Fernández, and M Martínez-Prieto, "Self-indexing rdf 
archives," in Data Compression Conference (DCC 2016), 2016, pp. 526-535. 

[80] A Katib, V Slavov, and P Rao, "Fast processing of SPARQL queries on RDF 
quadruples," Web Semantics: Science, Services and Agents on the World Wide Web, vol. 
37, pp. 90-111, 2016. 

[81] D Calvanese et al., "Ontop: answering SPARQL queries over relational databases," 
Journal of Semaitc Web, pp. 1-17, 2016. 

[82] A Schätzle, M Przyjaciel-Zablocki, S Skilevic, and G Lausen, "S2RDF: RDF querying 
with SPARQL on spark," in VLDB Endowment, vol. 9(10), 2016, pp. 804-815. 

[83] F Goasdoué, Z Kaoudi, L Manolescu, J Quiané-Ruiz, and S Zampetakis, "Cliquesquare: 
Flat plans for massively parallel RDF queries," in IEEE 31st International Conference 

http://www.dataversity.net/rdf-critical-successful-internet-things/
https://www.w3.org/RDF/


 

100 

 

on Data engineering (ICDE 2015), 2015, pp. 771-782. 
[84] (2017, July) Materialized view. [Online]. 

https://en.wikipedia.org/wiki/Materialized_view 
[85] Tim Finin. (2005, Jan) UMBC ebiquity FOAF Dataset. [Online]. 

http://ebiquity.umbc.edu/blogger/2005/01/25/foaf-dataset-available/ 
[86] Sidirourgos Lefteris, Romulo Goncalves, Martin Kersten, Niels Nes, and Stefan 

Manegold, "Column-store support for RDF data management: not all swans are white," 
in VLDB, 2008, pp. 1553-1563. 

[87] Apache Jena. (2011) Jena RDF/XML How-To. [Online]. 
https://jena.apache.org/documentation/io/rdfxml_howto.html 

[88] Michael Stonebraker, "Implementation of integrity constraints and views by query 
modification," in SIGMOD, 1975, pp. 65-78. 

[89] R Agrawal and R Srikant, "Fast Algorithm for Mining Association Rules," in VLDB, vol. 
1215, 1994, pp. 487-499. 

[90] (2009, Oct) SwetoDblp. [Online]. https://datahub.io/dataset/sweto-dblp 
[91] (2011) The DBLP Computer Science Bibliography. [Online]. 

https://old.datahub.io/dataset/dblp 
[92] DCMI. Dublin Core Metadata Initiative. [Online]. http://dublincore.org 
[93] (2014, Feb) RDF 1.1 Primer W3C Working Group Note. [Online]. 

https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/ 
[94] H Patni, C Henson, and A Sheth, "Linked sensor data," in 2010 International Symposium 

on InCollaborative Technologies and Systems (CTS 2010), 2010, pp. 362-370. 
[95] P Barnaghi and M Presser, "Publishing linked sensor data," in 3rd International 

Conference on Semantic Sensor Networks, vol. 668, November 2010, pp. 1-16. 
[96] LinkedSensorData. [Online]. 

http://wiki.knoesis.org/index.php/LinkedSensorData#Linked_Observation_Data 
[97] (2016, Nov) Postgres-XL 9.5 R1.4. [Online]. http://www.postgres-xl.org 

https://en.wikipedia.org/wiki/Materialized_view
http://ebiquity.umbc.edu/blogger/2005/01/25/foaf-dataset-available/
https://jena.apache.org/documentation/io/rdfxml_howto.html
https://datahub.io/dataset/sweto-dblp
https://old.datahub.io/dataset/dblp
http://dublincore.org/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://wiki.knoesis.org/index.php/LinkedSensorData#Linked_Observation_Data
http://www.postgres-xl.org/


101 

 

Publications 

a. Trupti Padiya and Minal Bhise, DWAHP: Distributed Workload-Aware Hybrid 
Partitioning for RDF Data, in ACM International Database Engineering & 
Applications Symposium IDEAS '17 , 2017, pp. 235-241. 

b. Anubha Jain, Trupti Padiya, and Minal Bhise, Log-based Method for Faster IoT 
Queries, in IEEE Region 10 Symposium  TENSYMP'17 , 2017, pp. 1-4. 

c. Trupti Padiya, Jai Jai Kanwar, and Minal Bhise, Workload-Aware Hybrid 
Partitioning, in ACM Compute 2016, 2016, pp. 51-58. 

d. Trupti Padiya and Minal Bhise, Hot and Cold Data Classification for Main Memory 
Databases, in Ph.D. Forum collocated with IEEE International Parallel and 
Distributed Processing Symposium IPDPS 2015, 2015. 

e. Trupti Padiya, Minal Bhise, and Prashant Rajkotiya, Data Management for Internet of 
Things, in IEEE Region 10 Symposium  TENSYMP  IEEE, 2015, pp. 62-65 

f. Bhavik Shah, Trupti Padiya, and Bhise Minal, Query Execution for RDF Data Using 
Structured Indexed Vertical Partitioning, in IEEE International Parallel and 
Distributed Processing Symposium Workshop  IPDPSW , 2015, pp. 575-584. 

g. Trupti Padiya, Minal Bhise, Sandeep Vasani, and Mohit Pandey, Query Execution for 
RDF Data on Row and Column Store, in International Conference on Distributed 
Computing and Internet Technology, 2015, pp. 403-408. 

h. Trupti Padiya and Minal Bhise, Query Execution for Partitioned RDF Data, in ACM 
International Conference for Women in Engineering, 2013, pp. 1-8. 

i. Sandeep Vasani, Mohit Pandey, Minal Bhise, and trupti Padiya, Faster Query 
Execution for Partitioned RDF Data, in International Conference on Distributed 
Computing and Internet Technology, 2013, pp. 547-560. 

j. Trupti Padiya, Minal Bhise, and Sanjay Chaudhary, Semantic Web Data Partitioning, 
in Advancing Information Management through Semantic Web Concepts and 
Ontologies.: ISBN 978-1-4666-2494-8, 2013, ch. 8, pp. 154-165. 

k. Trupti Padiya, Mohit Ahir, Minal Bhise, and Sanjay Chaudhary, Data Partitioning for 
Semantic Web, International Journal of Computer and Communication Technology, ISSN 
(Online): 2231 – 0371, ISSN (Print): 0975 – 7449, Vol 3, Issue 2, 2012, pp. 32-35 

 




