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Abstract

The Body Sensor Network systems consist of signal acquisition and processing

blocks along with Power Management Unit and radio transmission capabilities.

The high power consumption of the radio transmission is often eliminated by

adopting the on-node processing through signal processing platform with in-

creased computation ability. Dedicated hardware accelerators optimized for op-

erations predominantly seen in biomedical signal processing algorithms are of-

ten used in tandem with a microprocessor for this purpose. However, they do

not support further algorithm improvements and optimizations owing to their

dedicated nature. The benefits of configurability can be found in reconfigurable

architectures at the cost of reconfiguration overheads. The shift-accumulate archi-

tecture developed in this thesis leverage the regularity in dominant functions in

biomedical signal processing and thereby yields gate count advantages. The con-

figurable datapath of the architecture renders multiple DSP operation emulation

by means of mapping methodologies developed for efficient realization in terms

of hardware utilization and memory accesses. The architecture exhibits various

topologies which further supports efficient function realization.

The configuration scheme of the architecture is developed which effectively

consist of control word and tightly coupled data memory. The architecture is real-

ized on a Filed Programmable Gate Array (FPGA) platform demonstrating the tar-

get function emulation and hardware results are compared with ideal outcomes.

The Video Graphics Array (VGA) and Universal Asynchronous Receiver Trans-

mitter (UART) interface controllers are developed in this work for error quan-

tification and analysis. The architecture contains a 6×6 array of functional units

having shift-accumulate as its underlying operation and has gate count of ≈25k

viii



and 46.9 MHz operating frequency while emulating 36-tap FIR, CORDIC, DCT,

DWT, moving average, squaring and differentiation functions.

Generally, biomedical signal processing functions include multiple stages con-

sisting of noise removal, feature detection and extraction etc. The on-the-fly re-

configurability is incorporated into the architecture that leverage the low input

datarates of biosignals. The architecture reconfigures dynamically while realiz-

ing different functions of the signal chain. The memory adapts to the incoming

target function and supports 7 functions in its present structure. However, the

architecture and memory remains scalable. Pan-Tompkins Algorithm based QRS

detection realization is demonstrated on the architecture using the reconfigurabil-

ity. This work offers ≈4× reduced area and 2.3× increase in performance with

respect to the existing contemporary literatures.
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CHAPTER 1

Introduction

Physiology is the science related to functioning of various systems of the human

body that are often termed as physiological systems. The cardiovascular, respi-

ratory, nervous and digestive systems constitutes the major physiological func-

tional systems of the human body [7]. Deterioration or failure in the performance

of one or more of these systems have serious implications on one’s life causing

permanent damage to organs or fatality in long run. The biomedical signals of-

ten serve as primary indicators for functional integrity of physiological systems

not accessible for direct observation and investigation as they are internal to the

body. Biomedical signals are interpreted to extract information on various biolog-

ical systems. The process of extracting information can be as simple as feeling the

pulse on the wrist of a person or as complex as analysing the structure of internal

soft tissues by an ultrasound scanner. Biomedical signals originate from different

sources and processes occurring within the body. Signals generated by nerve and

muscle cells are termed as bioelectric signals and represent the action potential

caused by excitation of cell membrane potential under certain conditions. Electro-

CardioGram (ECG) and ElectoEncephaloGram (EEG) signals are most common

example of bioelectric signals. Bioacoustic, Biomechanical, Biochemical signals

constitute other biomedical signals arising out of sound/flow, motion and con-

centration of ions, respectively, in various sections of body.

Medical instrumentation is used to measure or determine the presence of phys-

ical quantity that assist the medical practitioner to make better assessment and

treatment decisions. This is done by measuring, recording and monitoring var-

ious biomedical signals. The majority of instruments used are electrical or elec-
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Figure 1.1: Block Diagram of Man-Instrument System.

tronic systems although mechanical systems like ventilators or spirometers are

also employed. A generic medical instrumentation with its major functional blocks

is shown in Fig. 1.1. The physical quantity under measurement is termed as

measurand and is generated within the body. The primary use of the transducer

in medical instrumentation is to generate proportional electrical equivalents of

non-electrical phenomenons. For instance, Plethysmographs designed for con-

stant pressure or volume measurement uses pressure or displacement transducer

that responds to pressure changes within the chamber and provides a signal cal-

ibrated to represent the volume of the limb. Signal Conditioner Equipment acts

on the electrical output of the transducer and amplifying, modifies or changes the

signal making it suitable for operating the recording or display system that fol-

lows. The electrical output of the signal-processing equipment is converted to a

form that can be perceived by physicians and consequently convey the informa-

tion obtained by the measurement in a meaningful way using a Display System.

A graphic pen recorder generating a permanent record of data, for example, is a

display system for ECG recorder. Recording, Data-Processing, and Transmission

Equipment equipment ensures recording the measured information for storage

or transmission from one location to another often desirable in medical systems.

This equipment also performs the necessary data processing when a computer is

a part of the instrumentation system.

Sensor networks and personal digital assistant based monitoring systems are
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Figure 1.2: The Block Diagram of Biotemeletry Transmitter and Receiver.

increasingly becoming popular as data acquisition system and data manipulation

system, respectively. Wearable sensors offer great patient mobility within and

outside hospitals and are a cost-efficient solution.

1.1 Monitoring Systems

1.1.1 Patient Monitoring Systems

Patient monitoring systems use electronic equipments that record vital character-

istics and parameters of the critically ill by means of continuous monitoring facil-

itating early detection with remedies taken before problems translate into severe

damage. Cardiac-monitoring units are often employed in coronary care units as

they can reliably measure the associated parameters. Other than critical care units,

monitoring systems are also employed in operation theatres, catheterization lab-

oratories etc.
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1.1.2 Biotelemetry and Telemedicine

Biotelemetry System includes remote measurement and transmission of biolog-

ical parameters. Various means can be adopted for the purpose of transmitting

data from point of generation to the point of reception. One of the earliest ev-

idences of such transmission is seen in 1903, when Einthoven used telephone

lines to transmit electrocardiogram from hospital to his laboratory many miles

away. However, technological improvements and innovations in telemetry over

the years led to elimination of wires in modern telemetry systems predominantly

based on radio transmissions. The basic functional blocks of a biotelemetry sys-

tem is shown in Fig. 1.2. In the transmitter side, the physiological signal obtained

from the transducer is passed through amplification and processing circuits and

a modulation stage. The receiver selects the transmission frequency using a tuner

and separates the signal from the carrier in the demodulation block. The obtained

signal can be displayed on a chart recorder/ oscilloscope.

1.1.3 Ambulatory Monitoring

In recent times, ambulatory monitoring outweighs the conventional clinical or

home monitoring systems due to its increased accuracy, reliability and diagnostic

capabilities based on continuous monitoring of physiological signals throughout

the day [8–10]. Studies in [11, 12] demonstrates patients exhibit an increased ac-

ceptance to ambulatory systems over home or clinical setup due to psychological

ease and physical comfort in former the settings. Predominantly, the blood pres-

sure and electrical activity of the heart, brain and muscles indicated by ECG, EEG

and Electromyogram (EMG) potentials, respectively, along with PhotoPlethysmo-

graph (PPG), blood saturation, heart sound, constitute signals analysed by ambu-

latory monitoring systems. The ambulatory monitors detect conditions ranging

from critical cardiovascular diseases (CVD) such as cardiac arrhythmia, hyperten-

sion etc., onset of epileptic seizures to evaluating effectiveness of preventive (and

curative) measures like ongoing medication, pacemaker function. The first use of

these monitors is reported in 1960s [13] and the real-time analysis of ambulatory
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Figure 1.3: A Conceptual Generic Biomedical System.

monitoring system is reported in [14] twenty years later. Advances in integrated

circuit technologies in recent times have also made miniaturization possible in

these devices favouring patient convenience as a result. This promoted the use

of ambulatory or biomedical devices in general for everyday monitoring as a part

of wireless or body sensor network [15, 16] that engages data exchanges among

sensor nodes over wireless interface.

Wearable Biomedical Systems

A generic biomedical device typically consist of sensors and actuators for signal

acquisition, signal processing block, energy management unit and communica-

tion subsystems (Fig. 1.3). The biomedical signals interfaces with the physical en-

vironment by means of sensors and are processed on the signal processing block.

These signals undergo data conversion, storage, feature extraction etc. as part of

processing for further sending them to medical practitioners or database servers

after necessary data conversions and amplification. The biomedical devices work

with tight power budgets that directly translates into battery lifetimes and thus

require efficient energy subsystems consisting of energy harvesters [17, 18] and

energy management units [19, 20]. Apart from the low energy operation, these

devices must exhibit small aspect ratio for the ease of wearability when deployed

as wearable sensor nodes.

A wireless autonomous transducer system (WATS) proposed in [3] presents
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Figure 1.4: The power consumption profile for a WATS system based on off-the-
shelf blocks for an ECG application [3].

custom models of RF harvester, analog to digital converter and radio transmis-

sions. A study of ECG application using off-the-shelf WATS components estab-

lishes that radio and power management are the major power dissipating blocks

consuming >85% of the total power (See Fig. 1.4). Limiting the radio transmis-

sions to transmitting alerts and alarms favours the low power budget requirement

of biomedical devices. The physiological signals must undergo processing in the

signal processing block on the device that generates alarms and alerts indicating

deviation from normal operation. This requires the signal processing block to

perform computation intensive functions focussed on feature extraction in addi-

tion to noise removal, storage, data compression etc. The proportion and type of

signal processing functions used in a few ambulatory biomedical applications is

shown in Fig. 1.5 . Clearly, certain functions, say, Finite Impulse Response (FIR),

Discrete Wavelet Transform (DWT), trigonometric operations, Fast Fourier Trans-

form (FFT) etc. are the dominant signal processing functions for these applica-

tions. Dedicated ASIC (Application Specific Integrated Circuit) and hardware ac-

celerators for these functions provide a cycle and energy efficient solution [21–23].

However, these platforms do not support further algorithm enhancement due to

their dedicated nature. Reconfigurable Architectures (RAs) support architectural

flexibility but the interconnect overhead amounts to high gate count. Biomedi-

cal signal processing domain specific RA is relatively unexplored and the general

purpose RAs fail to leverage the inherent regularity in the biomedical signal pro-

cessing algorithms.
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Figure 1.5: Proportion and kind of signal processing functions in (a) ECG Arrhyth-
mia Classification [4] (b) Heart Sound processing [5] (c) Pulse Oximetry [6].

A light-weight and reconfigurable architecture is developed in this thesis tar-

geting the biomedical signal processing application domain. The fundamental op-

eration of the developed architecture is a shift-accumulation which results in a low

gate count or light-weight platform primarily because of elimination of multipli-

ers. The architecture has the capability to perform various digital signal process-

ing functions by means of configurable datapath. Additionally, the architecture

offers flexibility (coarse-grained) and various topologies for realizing functions

and applications unaccounted for during design time. The mapping methodolo-

gies for target functions are developed considering optimized resource and cy-

cle utilization thereby complying to the light-weight nature of the architecture.

Due to the innate low performance nature of biosignal datarates, the on-the-fly

reconfigurability aspect strikes an optimal balance between energy and through-

put. The hardware realization of the architecture with various target functions

mapped confirms functional integrity. As a proof of concept, the architecture is
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realized on the Field Programmable Gate Array (FPGA) with energy and cycle

quantifications in the circuit level simulations. The architecture is demonstrated

with widely used biomedical application, QRS Detection in ECG signal, utilizing

the on-the-fly reconfigurability feature. In the process of developing the config-

urable platform, several supporting interfaces are also implemented.

1.2 Thesis Contributions

The key contributions of the thesis are listed below:

• Architecture Development: The underlying operation of the developed ar-

chitecture is shift-accumulation and hence is named as Shift-Accumulate

(SAC) architecture. The architecture consists of systolic array of functional

units (called Register Units or RUs) computing multiply-accumulate opera-

tion of thiry-six 8-b×8-b binary numbers in a serial manner. The accumu-

lation is carried out in Computation Unit (or CU) by means of an adder

tree with the latency of 8 clock cycles. The architecture is made flexible by

adding configuration elements in the datapath which makes mapping of

multiple and diverse functions possible. The configuration scheme for the

architecture is developed along with the input/output memories. The input

memory serves as the data memory and has a circular structure which ex-

hibits different interpretations while serving multiple function data require-

ments. The SAC architecture is ported on an FPGA as proof-of-concept and

functionality for all the target functions is verified. The architecture configu-

ration is achieved using a time multiplexed 9-b input bus. The control word

for target functions and different architecture topologies is developed. The

fields of control word can be configured independently which gives rise to

numerous architecture topologies and thus enables efficient realization of a

diverse set of functions. Two interfaces, VGA and RS-232, developed for

visual perception and output communication between the FPGA and com-

puter. It is observed, that the SAC architecture realization reports minimum

gate count among dedicated or software-hardware implementations target-
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ing similar functions.

• Function Mapping Methodologies: A set of functions often encountered in

biomedical signal processing are targeted on the architecture and mapping

methodologies are developed for them. The mapping methodology ensures

optimum functional unit implementation by altering the datapath as well as

increases the hardware resource utilization by storing intermediate results

within the architecture eliminating excess memory and its access time re-

quirements. In case of algorithm-driven functions, coefficient multiplexers

are employed to provide fixed coefficients stored internal to the architec-

ture. The regularity in the algorithm is exploited to map such functions with

smaller state machines and cycle counts.

• On-the-fly Reconfigurability and Application Demonstration: The SAC

architecture could support on-the-fly reconfigurability because of its ability

to emulate individual functions at performance sufficiently large for recon-

figuration while maintaining pace with the input datarates of biomedical

signal processing applications. Furthermore, on-the-fly reconfigurability is

incorporated within the architecture while keeping its interfaces unchanged

by introducing a memory management methodology. The results for func-

tions appearing in the midst of the function-chain are stored inside the mem-

ory thereby abiding to the light-weight nature of the architecture. The state

machine controlling the execution of functions in the on-the-fly reconfig-

urable manner contains configuration, restore, compute, store states. The

status of the function is captured and later restored (context switching) in

the restore state beneficial particularly in windowing functions. A modified

QRS detection algorithm is mapped on the architecture realized on FPGA

as proof-of-concept. Additionally, the architecture is characterized for en-

ergy, gate count and cycle count in the circuit level implementation. The

architecture is compared on the basis of gate count and energy with other

hardware implementations realizing QRS detection. The architecture offers

comparable energy and ≈ 10 times reduced gate count in comparison with

other literature.
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1.2.1 Thesis Organisation

A large number of studies focussed on low power signal processing module across

ASIC, FPGA and micro-processor platforms (µP) with computational abilities at

par with on-node processing required in biomedical devices are discussed in Chap-

ter 2. Additionally, system requirements of a biomedical device is analyzed.

The SAC architecture is presented in Chapter 3 along with its organisation.

The functional units of the architecture are briefly discussed in section 3.2. The

working of the architecture is explained next along with its latency. The architec-

ture is later analyzed for configurability (Section 3.2.4) on examining DSP func-

tions commonly encountered in biomedical signal processing applications. Fol-

lowing the configurability, the various topologies of the architecture is discussed

in section 3.3.

In Chapter 4, the target DSP functions are analyzed on mathematical as well

as hardware implementation aspects and mapping methodologies are discussed

for these functions. The functional units involved in mapping target functions are

identified and their state machines are presented. The hardware implementation

of the architecture is discussed in Chapter 5. The functional verification of the

hardware results is presented along with the clock and gate count profile.

A common biomedical signal processing application focussed on ECG analysis

is mapped on architecture in Chapter 6. The QRS detection algorithm is analyzed

and modified for mapping on 3×3 variant of the architecture. In the process, the

concept of on-the-fly reconfigurability is explored and applied on the architec-

ture. The clock and gate count of the architecture are estimated and compared

with literature dedicated to ECG processing. The circuit level simulations of the

3×3 SAC architecture are carried out with clock and energy quantifications of in-

dividual functions and application realization. Chapter 7 includes conclusion and

future work.
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CHAPTER 2

Literature Review

2.1 General introduction to Wireless Sensor Networks

(WSNs)

The origin of WSNs can be attributed to the Sound Surveillance System developed

by the United States Military in 1950s to detect and track enemy submarines. The

United States Defence Advanced Research Projects Agency (DARPA) initiated the

Distributed Sensor Network (DSN) program in 1980 exploring the challenges and

constraints in implementing distributed sensor networks. Since then, fuelled by

the Government and Universities efforts, WSNs found home in academia and

civilian scientific research.

Various fields of applications of WSNs are shown in Fig. 2.1. Smart Dust

[24,25] platform is increasingly became popular for majority of WSN applications.

Smart Dust motes along with its supplementary TinyOS (Tiny Microthreading

Operating System) software operating system can be deployed easily as well as

work well under the constraints of power, size and cost. Few of the pilot projects

of precision agriculture and animal tracking are Zebranet [26], Great Duck Is-

land [27], Minerva [28, 29] and railway tracking [30] to avoid animal fatality due

to accidents, understand their interaction patterns through activity tracking and

monitoring. [31] presents the applicability of WSNs in industrial scenario in the

form of controlling various processes, early detection of equipment failure etc.

by means of monitoring various physical and environmental parameters. The

WISE-WAI [32] project by University of Padova aims to monitor and control traf-
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fic, pollution, habitat and environment as well as provide real-time assistance to

fireman and rescue squads, open places surveillance etc. The real-time operation

and response of WSNs are gaining popularity because of its suitability for inter-

active monitoring of systems leading to efficient control of operating conditions.

Authors in [33] present various application scenarios of WSNs operating in real-

time.

Figure 2.1: Various fields of Application of WSN (Adapted from OECD).

2.2 Wireless Body Area Networks (WBANs)

Use of WSNs in healthcare has brought revolutionary effects in the form of im-

proved (practically continuous) patient’s access to the care givers approaching

the necessary framework for pervasive health care. Human body monitoring, also

termed as Body Sensor Network (BSN), includes a system that responds to and

interacts with its external surroundings in a self-contained manner using a net-

work of wireless sensors attached inside/outside the body. Owing to the critical

physiological processes and the associated crisis involved, BSN is expected to nec-

essarily exhibit greater robustness, accuracy, energy-efficiency, bio-compatibility,

real-time processing and early event detection capabilities.

A BSN contains a number of portable, miniaturized, and autonomous sensor

nodes in , on and around the human body that monitor the body function for
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sporting, health, entertainment, and emergency applications. The BSN applica-

tions can be categorized into medical and non-medical domains. The medical do-

main includes wearable and implantable BSNs which assess, monitor, detect and

provide feedback making the patient aware of probable organ damage, episodic

events, allergic agents aiding better rehabilitation with timely analysis and treat-

ment. Additionally, it includes network of remote controlled medical devices

building the framework for self-conducted care of patients by administering var-

ious conditions of recovery process, assisted living, ambulatory monitoring etc.

The non-medical applications of BSN includes gaming, social networking, emo-

tion detection, video/audio streaming, emergency detection (fire/poisonous gas

detection), security authentication etc.

2.2.1 Constraints of Wireless Body Sensor Nodes

We now discuss the general requirements [34] of a typical sensor node in BSN

platform. The sensors employed in body networks are generally mobile and con-

sequently are battery powered. The target lifetime must be upto 5 years for im-

plantable sensors and couple of weeks for wearable sensors. The target battery

lifetime can be increased by adopting various energy scavenging techniques [35]

(e.g. solar, thermal, motion and vibration), energy-efficient MAC, routing and data

dissemination protocols or wireless charging technologies etc. Alternatively, on-

node processing replacing the raw data transmission indicates a significant reduc-

tion on the energy consumption of the sensor node. BSN operates in a multiple

sensor nodes scenario sensing a range of data on a subject as well as dealing with

multiple subjects simultaneously. This requires the sensor nodes to co-exist with

legacy devices in a physiological environment while maintaining the security and

privacy of data. Other highly desirable features include re-programmability, re-

configuration, customization, bio-compatibility and ergonomic ease. The afore-

mentioned requirements gives rise to a number of crucial constraints that requires

due consideration while designing a body sensor node. On the system level, the

sensor node must exhibit on-node processing with re-programmability capabil-

ities in an energy-aware manner while being light-weight. Furthermore owing

13



to the advances and innovations in Integrated Circuit (IC) technologies, an in-

tegrated chip with sensor, processor unit and antenna in close proximity yields

a favourable form factor, cost-efficient and setup and procedure time-compliant

implementation, in general.

2.3 System Specifications

The body sensor node typically consists of sensors, data conversion components

(ADC/DAC, low noise amplifiers etc.), energy subsystem (primarily DC-DC con-

verters, power sources and energy harvesters), data processing block (processor,

memory, interfaces) and communication module. The data processing unit plays

an important role in the overall performance and power budgeting of the body

sensor node system. Over the years various signal processing platforms are con-

sidered and adopted catering to data processing requirements of BSN, which, gen-

erally speaking, are limited to light signal conditioning, feature detection, extrac-

tion etc. The reason for limited sensor node processing capabilities is primarily

the tight power budget of the device which allows room only for low complexity

function computations. This has motivated researchers to develop architectures

that can perform light signal processing activities in a power-aware manner in

recent years. Before moving on to the various signal processing solutions, a brief

overview of power, performance and target function domain for the biomedical

applications is presented, with special focus on body area (or ambulatory) appli-

cations.

2.3.1 Power/Energy Profile

The power and energy budget of the biomedical application has unprecedented

affect on its battery lifetime. The performance profile of certain biomedical ap-

plications is presented in [36]. Among them pacemaker [37], hearing aid and

cochlear processor [38] represent the traditional applications in the biomedical do-

main where associated techniques and methods are well matured. The primary

concern for pacemaker devices is the power consumption and the battery is ex-
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pected to yield years of operation. The typical power consumption of pacemaker

lies in tens of µW. The batteries of hearing aids and cochlear processor are rela-

tively easier to access and provide a few weeks of uninterrupted operation. Body

area monitoring [39] is an emerging application in battery powered domain with

≈140µW power consumption. Table 2.1 lists a few recent BSN systems emphasiz-

ing the low power requirements of the devices. As can be seen, the applications

mostly require 8 to 12-bit processing with frequency of operation ranging from

kHz to few MHz. Furthermore, the power consumption lies within tens of mW to

hundreds of µW.

Table 2.1: Performance specification of biomedical signal processing applications.

Application Power ADC Processor
Beat Detection [40] 71µ 12-bit DSP, 1MHz
Arrhythmia Detection
(frequency domain) [41] 72µ 8-bit µC*, 10kHz
R-R Detection [41] 92µ
Congestive Heart Failure (PPG
SoC) [42] 336-1554µ 9-bit low power µC*

Capsule Endoscopy [43] 6.2m 8-bit ASIC, 40MHz
Universal Sensing Module [44] 7.4m 8-bit low power µC*, 32.768kHz
Physical activity
Monitoring [45] - 12-bit MCU*, 38.4kHz

Anesthesia Depth
Monitoring [46] 25.2m 6-bit DSP, 50 MHz

* represents commercially available devices

The sensor node communication interface is the heart of the system as it is

responsible for secure and reliable data exchanges. However, commercial low

power radios available now a days are not able to meet the stringent BSN require-

ments [47,48]. A commercial radio based BSN system discussed in [49] establishes

that the current consumption during the radio transmission in active mode trans-

lates to ≈90% of the total system power. Another study in [3] presents power

profile of a wireless system while recording and evaluating the ECG signal. The

radio consumes 51% (= 558.96µW) of the total power when the system is mod-

elled using off-the shelf components for raw data transmission. This propelled

the research and innovation in two directions. First, exploring techniques and

designs for custom low power radios that support ad-hoc ultra low power wire-
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less networking. Second, reducing the active mode fraction of radio by limiting

the transmission data leading to rigorous duty cycling. The simplistic approach

to achieve the latter is on-node signal processing. Additionally, combining the

aforementioned two approaches furnish increased energy efficiency at multiple

levels provided the power consumed in on-node processing does not exceed the

power savings from the radio duty-cycling.

The said power trade-off is analyzed by means of a few studies reported in

literature focussed on evaluating the net effect on power in the two scenarios,

namely on-node processing and slackened duty-cycling of radio. Authors in [40]

analyze three scenarios for wireless transmission modes with the primary objec-

tive of estimating the power saving as a result of on-node signal processing. The

first mode represents streaming raw ECG signal at 256 Hz. The filtered ECG sig-

nal is transmitted in the second mode at the same sampling frequency. The third

mode includes involved signal processing algorithms aimed at accurate R-peak

search and heart-beat detection transmitting only the heart rate at 1 Hz. The over-

all system power consumption adopting the third mode of transmission in 1.04

mW reporting an improvement of 19× and 12× over first and second transmis-

sion modes. This translates to upto one month additional lifetime with a standard

400 mAh battery thereby increases the autonomy of the system. Another study

in [50] reports 95.6% energy reduction while sending heart-rate only as compared

to raw data streaming. Although custom low power radios architectures are re-

ported in [51–54], their inclusion in the system requires precise synchronization

and necessary overhead which adds to the power cost.

2.3.2 Performance

Sensor nodes in wearable applications usually monitor biological functions and

environmental conditions. The data requirements of majority of such sensors

are modest in general, since both the resolution as well as the update rates are

low. Table 2.2 summarizes the data rates and frequency range of few exam-

ples. It is evident that the signal data rates are quite low, with a maximum of

≈ 300kbits/s. This further implies moderate to low clock rates for the process-
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ing platform performing data manipulations. The same is also evident from table

2.1, where the processor operating frequency attains a maxima of tens of MHz for

biomedical applications. However, it can be observed that further lower clock

(tens of kHz) frequencies are reported for applications specific to ambulatory

monitoring [40, 41, 44, 45]. This is further substantiated by the low sampling rate

of standard databases for biopotentials. The various ECG databases: MIT BIH

arrhythmia [55, 56], Long-Term ST segment and ANSI/AAMI EC13 test wave-

forms/databases haves sampling rates 360 Hz, 250 Hz and 720 Hz, respectively.

The EEG database presented in [4] is sampled at 256 Hz. The MIMIC database [57]

for PPG exhibits the sampling rate of 125 Hz. In general, low performance nature

of ambulatory applications renders the associated electronics to be operated at

sub/near threshold region resulting in low power operation, much desired in the

BSN domain.

Table 2.2: Typical data rates and bandwidth of human biopotentials and biophys-
ical signals [1]

Data rate (bit/s) Bandwidth (Hz)
ECG (12 leads) 288k 0.1-1000
Electromyogram 320k 5-10000
EEG (12 leads) 50k 0.1-100
Movement 35k 0-500
Temperature 120 0-1
Blood Saturation 16 0-1
Blood Pressure 16 0-1

2.3.3 Functionality

Various signal processing functions are used in biomedical applications for signal

conditioning, feature extraction, classification etc. However, because of the de-

sired limited signal processing capability of a body sensor node, a subset of DSP

functions suffice for the task. Table 2.3 presents the survey of DSP functions used

in biomedical applications performed in ambulatory setting. Majority of the tab-

ulated applications report the use of Finite Impulse Response or Infinite Impluse

Response (FIR or IIR) filtering adopted primarily for noise removal and occasion-

ally in feature extraction as well. The differentiation function is highly used to
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track the variation pattern of signal by means of slope information. Moving av-

erage, median and maxima functions are used to extract the peak information

of a signal. The transform domain functions, Fast Fourier Transform (FFT) and

Discrete Wavelet Transform (DWT) are used at large for analysis of signal in the

frequency domain. The classical approach of estimating blood saturation involves

the Discrete Cosine Transform (DCT) computations. Additionally, the DWT and

DCT algorithms are reported to be used for the signal compression purpose to

reduce the transmission share of the radio. Furthermore, complex trigonometric

function computations is reported alongside the fundamental operations of mul-

tiplication, addition, scaling, division etc.

Table 2.3: Digital signal processing functions in ambulatory biomedical applica-
tions.

Signal Application DSP functions

ECG

Onset and Duration of
QRS [58]

Infinite Impulse Response (IIR),
Magnitude of vector (

√
·, (·)2, addition),

division, median

QRS Detection [2]
IIR, Finite Impulse Response (FIR), d

dx ,
(·)2, moving average

QRS Detection [59] FIR, d
dx , (·)2, weighted moving average

QRS Detection [60] running Slope, multiplication, scaling,
average, maxima

ECG fudicial points [61] Discrete Wavelet Transform (DWT),
local maxima modulus

EEG

Epileptic Seizure
onset [4] FIR

Seizure Detection [62] DWT
Automatic recognition
of alertness [63] DWT

PPG Pulse Oximetry [6] FIR, log

Blood Saturation [64] Fast Fourier Transform (FFT), Discrete
Cosine Transform (DCT)

Heart
Sound Auscultation Aid [5] FFT, tan, sin

In general, µP does not readily support
√
(·) and log functions and thus re-

quire extensive software emulation. The CORDIC algorithm supports these func-

tions along with trigonometric, FFT, division computations utilizing simple shift-

add operations. Clearly, it can be observed that FIR or IIR, CORDIC, DWT, DCT,
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differentiation and moving average form the dominant operations encountered

in ambulatory biomedical signal processing. As a consequence, these operations

constitute the target domain functions for a signal processing platform and con-

firms a variety of application realization on platform supporting these functional-

ities.

In conclusion, the BSN system requirements include 8 to 12-bit processing ca-

pability with the operating frequency ranging from kHz to few MHz. The signal

processing algorithms used in the BSN systems exhibit regularity in terms of the

kind of DSP operations. These operations include FIR, CORDIC, DWT, Moving

Average, FFT etc. The BSN device signal processing platform is required to sup-

port these functions with the said performance in an energy aware manner. In the

following section, various signal processing platforms used in biomedical signal

processing are discussed and evaluated upon aforementioned requirements.

2.4 Various Body Sensor Node Systems

The characteristic features of flexibility, energy-efficiency and performance play

pivotal role in choosing the signal processing platform among Application Spe-

cific Integrated Circuit (ASIC), micro-controller/micro-processor (µC/µP) and Re-

configurable processors/Field Programmable Gate Array (FPGA). On one end of

the horizon lies the ASIC, that exhibits greater energy-efficiency as compared to

the other two alternatives owing to the direct matching between the target ap-

plication and hardware. Additionally, it also provides the highest performance

owing to minimum cycle and gate overheads. However, in general, ASIC imple-

mentation is not cost-efficient unless manufactured at large scale because of the

custom development, sophisticated fabrication and longer design time. On the

other end lies the micro-controllers that are highly flexible and cost-efficient but

lacks the energy-efficient operation (three orders less as compared to ASIC) due

to generic instruction set architecture (ISA) and increased execution time. The

middle ground is owned by the reconfigurable processors and FPGAs, that pro-

vide the combination of performance benefits of hardware implementation and
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flexibility of software realizations at the cost of increased overhead and routing.

The energy-efficiency of the reconfigurable processors is not as high as ASIC be-

cause overhead and routing are equally dominant as the logic realizing blocks but

it can be as high as two orders of magnitude as compared to embedded proces-

sors. Intermediate approaches include Application Specific Instruction Processors

(ASIP) and Digital Signal Processors (DSPs) which are energy-optimized for cer-

tain classes of applications by using a mix of dedicated hardware and instruction

set.

Literature reports extensive use of all the three aforementioned platforms as

signal processing solutions in biomedical applications. [21, 65–70] are some of the

ASIC implementations of the ECG based processor, primarily computing ECG

fudicial points followed by detecting and classifying arrhythmias. The former

two uses novel algorithms based on wavelet transform and level crossing tech-

niques for QRS detection in an ECG signal. The derivative based Pan-Tompkins

algorithm is adopted in [21] wherein each of the signal processing step is imple-

mented as a dedicated module. The implemented ASICs in these works are ded-

icated hardware power optimized exclusively for the purpose they are designed

for, QRS detection in this case. These hardware do not support any architectural

alterations arising out of new algorithm/technique development/optimization

due to their application specific nature and thus do not present a lucrative picture

alongside the ever advancing research and development efforts. Nevertheless,

all of them report low power operation for the target application of QRS detec-

tion because of low performance operation (few hundreds of Hz) and hardware

matched realization of computation intensive functions which otherwise would

require increased clock cycles (consequently, power) on an alternate implementa-

tion, for example µP based. However, this was achieved at the cost of flexibility.

Other studies focussed on ambulatory processing using ASIC based platforms

include [23,71]. The application under consideration for these studies is EEG pro-

cessing along with feature classification and tend to lie on slightly higher side

of the performance scale i.e. operating at tens of MHz. The fundamental signal

processing blocks in these chips include FIR filtering, multiplication, addition,
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matrix multiplication, CORDIC engine (square root, magnitude and angle com-

putations), division etc.

Often simultaneous monitoring and combined analysis of multiple parame-

ters aids in better diagnosis and treatment. For instance, joint analysis of EEG

with heart rate variablility (HRV) is preferred for seizure detection [72], sleep

apnea [73] etc. The joint monitoring is an attractive feature in the context of

WBANs as the functional domain of the node now encompasses multiple phys-

iological parameters. This has attracted the attention of researchers who in [74]

and [75] present fully custom multi-processor SoCs for bedside monitoring and

brain-heart monitoring, respectively. The SoC in [74] implements dedicated en-

gines for monitoring brain, heart and basic physiological signals. In addition to

these, the later incorporates a dedicated compression engine to reduce the trans-

mitted data bits. Though these solutions target a wider set of biomedical appli-

cations, they use dedicated engine for every added functionality which requires

sophisticated control and synchronisation among various signals, typically hav-

ing different sampling rates. Albeit, the target application domain of these solu-

tions is wider than the single application platforms, they remain inflexible and

application specific.

Various µP based biomedical signal processors are reported in [76–79] that

exhibit increased flexibility as compared to the ASIC implementations and low

power operation. Other body area network pilot projects based on commercial

motes ( For example, Telos, MicaZ, Pluto, BSN node, TmoteSky etc.) consisting of

low power µPs like TI MSP430F149, Atmel Atmega 128L etc. include Code Blue

(Harward University) [80], MIThril 2003 (MIT) [81], BSN node (Imperial College),

disaster aid network (John Hopkins University) [82]. They use power aware and

lightweight operating systems (OS) (for example, TinyOS) that readily support

hardware emulation. The use of neural network for anomaly detection in ECG

on a custom processor is discussed in [83]. Alternatively, use of personnel digi-

tal assistant (PDA) is reported in [81] to manage and process sensor data. Low

power operation is extracted by means of multiple power domain operation of

the µPs that can be software programmed. For instance, CoolFlux BSP adopted
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in [76] has 15 power domains. Additionally, the µPs employ techniques of clock

gating, dynamic voltage and frequency scaling and duty cycling to reduce power

consumption at multiple abstraction levels. Though, flexibility offered by µPs

support realizing multiple application realization, easy sensor interfaces, in-situ

programmability, they are less energy-efficient as compared to hardware imple-

mentation while computing computation intensive tasks, in particular. For such

computations, they tend to consume large number of clock cycles which adversely

affects the energy-efficiency as they remain active is over an increased spread of

time. The traditionally existing approaches of hardware-software co-design can

be beneficial which combines the advantages of both paradigms. The control

related activities and decision making processes are designated to the software

whereas computationally intensive functions are dealt by the hardware that, in

general, provides optimized implementation at multiple facets, namely, hardware

resources, energy and cycle count.

A hardware-software co-design based ECG processor presented in [40, 50] bi-

furcates the processing into three pipelined stages, namely pre-processing, clas-

sification and post-processing. The classification stage is implemented in 16-b

RISC whereas dedicated hardware is used for the other two stages. The flexi-

bility in the classification stage permits varied conditions to be evaluated which

can be fine tuned according to patient requirements. Additionally, it allows anal-

ysis of multiple parameters simultaneously (for example, atrial and ventricular

arrhythmias) which provides a holistic view necessary for better assessment. The

dedicated hardware for pre/post processing stages ensure fast computation of

complex operations involved in feature extraction, encryption etc. Another study

in [84] presents a custom biological signal processing unit which functions along-

side a general controller, as a co-processor, enhancing its signal processing and

compression capabilities. The co-processor provides time-domain and transform-

domain functions and contains a configurable DWT engine. The configurable

DWT engine enables targeting multiple mother wavelet functions which can be

used to extract different features of the signal under interest.

Another family of systems alongside the processors are the hardware acceler-
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ators that are used to improve the computation power of the processor. The use of

accelerators in biomedical signal processing domain has largely captivated the at-

tention of researchers in the last decade. The low performance nature of biomedi-

cal application encourage aggressive voltage scaling, which results in energy and

cycle efficient solution out of dedicated accelerator implementations. Authors

in [22, 41, 50, 85, 86] reported use of various accelerators yielding energy benefits

of as high as 50% as compared to a non-accelerator implementation. However,

the choice of accelerator is highly determined by the application under consider-

ation. General practice followed on this aspect is, the operation identified with

more computation time and contribution in the function profile is most likely

to be realized as an accelerator. For instance, compression accelerator [50, 85]

are used in applications with large data transmission requirement, FFT acceler-

ator [41, 86] employed for applications dominated by transform domain analysis,

noise dominated application use FIR filtering accelerator [85] etc. This provides

an energy-efficient realization for the target application, however this solution be-

comes inflexible as the accelerators are dedicated and optimized only for target

application parameters. Additionally, accelerators only optimizes certain part of

the application and the remaining application still continues to runs on the µP in

an inefficient manner.

Researchers in [22] addresses this issue by identifying and developing ac-

celerators for common signal processing functions predominantly observed in

biomedical signal processing applications. These accelerators could be connected

in any sequence to realize multiple varied algorithms. This presented a con-

figurable energy-efficient solution with enough flexibility to map a large set of

biomedical applications while allowing algorithm advancements to some extent.

The role of the µP was limited to control and configuration tasks among vari-

ous accelerators and peripheral interfaces. However, the accelerators individu-

ally may be accessed for little or no time in an application and remain idle dur-

ing majority of run-time. Additionally, multiple accelerators increase the over-

all gate count of the system which adversely affects the power in the low volt-

age (sub-threshold) regime [87]. Furthermore, increased gate count increases the
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area which adversely affects the form factor as well as cost of the device. Au-

thors in [87] analyzed the effect of gate count on power and critical path of an

architecture in the sub(near)-threshold region and reported the energy benefits of

low gate count design over its high gate count equivalent. Additionally, the per-

formance/throughput advantage of light-weight architecture is presented in [88]

which enables real-time processing of large and complex computations.

The average access time of the accelerator can be increased by adding the fea-

ture of hardware reconfigurability. This combines the benefits of hardware im-

plementation with the software flexibility to some extent. In this approach, sin-

gle accelerator (re)configures itself to perform multiple functions of an applica-

tion in a time-multiplexed manner. Furthermore, reconfiguration ensures a wide

functional domain for the accelerator with the ability to target varied algorithms.

However, (re)configuration is obtained at the expense of overhead, which in fine-

grained architectures proves daunting for applications working in a power-frugal

environment. In addition to this, the pitfalls of low/medium performance and

poor area realization become pronounced when fine-grained architectures are

used to implement word-level data processing. Coarse-grained reconfigurable ar-

chitectures (CGRAs) are more suited for such applications which supports word-

level operations on optimally designed processing elements (PEs) and special-

purpose interconnections retaining enough flexibility for mapping varied appli-

cations. Due to their coarse-grained granularity higher performance, reduced re-

configuration overhead and lower power consumption than the fine-grained ar-

chitectures is achieved [89]. When dealing with domain specific processing, the

coarse-grained architectures typically consume less energy as compared to low

power Digital Signal Processors (DSPs) owing to faster processing i.e. computa-

tions over a short time interval.

CGRAs have been previously proposed for multimedia, communication, em-

bedded and DSP applications. In these works, the researchers efforts were fo-

cussed primarily on attaining enhanced performance rather than on reducing en-

ergy consumption. Use of CGRA as a processing platform in the wearable and

implantable biomedical devices has received little attention over the years. The
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applicability of certain existing CGRAs in the biomedical signal processing do-

main is now presented. Single Instruction Multiple Data (SIMD) based CGRAs,

MorphoSys [90], ADRES [91], CGRA Express [92], render efficient operation for

vectorized algorithms but are ineffective for signal chain or concatenated oper-

ations. SmartCell [93] architecture support algorithms that have irregular access

pattern, like Fast Fourier Transform (FFT), but is power and area hungry owing to

dense interconnections. REMARC [94], AMBER [95] perform floating-point oper-

ations and report large functional unit area, thereby are less suited for biomedical

devices from the form factor and power perspectives. Authors in [96] demonstrate

the seizure detection application on the SYSCORE architecture [97]. It accepts four

inputs in every functional unit and support logic operations like MULT-ADD,

MULT-SUB, compare because of their significance in feature extraction process.

The architecture attains low power operation by voltage scaling and collectively

reducing the intermediate memory accesses and logic switching. [98] discusses

the CGRA features necessary for real-time processing of biological signals and

demonstrates the same through use-cases. Another architecture, Ultra Low Power

Samsung Reconfigurable Processor (ULP-SRP) with a CGRA component reported

in [99] is explored for ExG applications in [100] with the objective of increasing

the computational power at high performance in an energy-aware manner suit-

able for involved on-node biomedical signal processing. The architecture adopts

multiple power domains, power gating, unified memory techniques for reduced

power consumption. The mapping on both these architectures require elaborate

data flow graphs and dedicated Software Development Kit (SDK). This binds the

efficacy of these platforms to the effectiveness of the compiler, which partitions the

target application to extract maximum parallelization, performance mode selec-

tion, kernel mapping, memory accesses etc. Another architecture in [101] consist

of 8 RISC processors with a sophisticated synchronizer programmed by means of

software ISA. The SYSCORE and ULP-SRP contains ≈2500k and 500k NAND2

equivalent gates, respectively, which contributes to tremendous leakage power

when coupled with aggressive voltage scaling.

From the functionality analysis of BSN systems, it is clear that the biomedi-

25



cal application algorithms possess an inherent regularity in terms of the nature

of DSP functions encountered in them. This aspect is predominantly neglected in

biomedical domain-specific CGRAs reported in literature [97,99,101] that primar-

ily focus on increased flexibility necessary to emulate varied applications achieved

at the cost of increased gate count. The regularity of biomedical signal processing

algorithms is exploited in this work which enables restricting the extent of archi-

tectural flexibility to encompass frequently occurring DSP functions in algorithms

of interest. The limited flexibility results in reduced overhead and consequently,

a light-weight architecture is obtained.

Within this purview, in this thesis a light-weight architecture with configurable

datapath is developed which renders gate count benefits. The architecture is

based on shift-accumulate operation and follows serial execution. The mapping

schemes for DSP functions found dominant in biomedical signal processing are

developed. The mapping schemes ensures increased hardware utilization, re-

usability and reduced memory accesses. Additionally, the developed architecture

has simplistic configuration scheme having little configuration time with tightly

coupled memory. The architecture supports on-the-fly reconfigurability which

renders signal chain emulation with provision for context switching. Further-

more, the architecture is based on the dominant application kernel exhibiting reg-

ularity, repetitive execution, context-aware switching ability at performance suf-

ficient for biomedical signal processing domain.
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CHAPTER 3

Reconfigurable Shift-Accumulate (SAC) Archi-

tecture

A novel configurable architecture, called the shift-accumulate (SAC) architecture,

as shift-accumulate operation constitutes its underlying principle is presented in

this chapter. The developed architecture performs multiply-accumulate opera-

tion in a serial multiplier-less manner yielding a light-weight platform with gate

count advantages. The configurable datapath of the architecture enables multi-

ple function realization on the same platform as opposed to multiple dedicated

hardware unit implementation. Conceptually, this further boosts the gate savings

advantage. However, the number of components used to achieve configurability

is crucial in maintaining the light-weight nature. The judicious placement and use

of these components has resulted in optimized datapath and resource utilization

of the architecture. The gate count of building blocks of architecture and compo-

nents aiding configurability are reported individually, bringing out the effect of

configurability on an otherwise dedicated hardware implementation. The discus-

sion related to various fields of control word used to configure the architecture

is presented. Additionally, the mathematical framework leading to architecture

development is presented along with various topologies it exhibits.
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3.1 Underlying Mathematics

The mathematical equation of y[n], output of N-tap FIR filtering function with

inputs x[n] and coefficients bi is given by Eqn 3.1

y[n] = b0 · x[n] + b1 · x[n− 1] + · · ·+ bN−1 · x[n− (N − 1)] (3.1)

Assuming the standard 8-b binary processing, the coefficient bi in Eqn 3.1 can be

expressed as bit value, bik (‘0’ or ‘1’), and bit weights (2k) where k varies from 0 to

7 resulting in Eqn 3.2.

y[n] =
N−1

∑
i=0

bi · x[n− i] =
N−1

∑
i=0

[( 7

∑
k=0

bik · 2k
)

x[n− i]
]

(3.2)

The direct hardware implementation of Eqn 3.1 (Method I) requires N 8-b×8-

b multipliers and (N-1) 16-b adders. Alternatively, a multiplier-less realization

would utilize 64 AND gates and 7 16-b adders in place of one multiplier. Eqn 3.2

(Method II) offers hardware optimization over Eqn 3.1 by replacing each multi-

plication operation by 8-b×1-b AND gate and 16-b shift-accumulation. The gen-

erated multiplication results are accumulated in adder tree producing the final

output.

y[n] =
7

∑
k=0

[( N−1

∑
i=0

bik · x[n− i]
)

2k
]

(3.3)

A simple rearrangement of Eqn 3.2 (Method III) results in Eqn 3.3. Here, AND

matrix is used to generate the partial products. The common bit weight partial

products are accumulated and shift operation is used when partial product sum

of different bit weights is added together, generating the FIR output. As opposed

to N shift-accumulators used in Eqn 3.2, only one shift-accumulator is required

to implement Eqn 3.3. Additionally, in Eqn 3.3 a smaller (in terms of number of

bits) adder tree is adequate to accumulate N 8-b partial products as compared to

16-b adder tree of Eqn 3.2. The comparison of three methods and resultant gate

savings are also tabulated in Table 3.1 along with discussion in next subsection.
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3.1.1 Optimized Interpretation

The hardware implementation of Method I translates into N multipliers and (N-1)

adders and results in an entirely parallel realization with no latency but low hard-

ware utilization. The unoptimized 8-b×8-b array multiplier contains 64 AND

gates and 7 16-b adders or 1808 equivalent NAND gates. Here, XOR, OR and

AND gates are accounted as 4, 3 and 2 NAND gates, respectively. Furthermore,

(N-1) 16-b adder contributes 240 equivalent NAND gates each, resulting in 2048N-

240 total gates. Method II is a mixed architecture where the partial products of

multiplication are generated and accumulated in a serial manner but the sub-

sequent accumulation of multiplication results is done parallelly. Serial compu-

tation of multiplication reduces and reuses the hardware increasing its utiliza-

tion factor but has 8 cycles latency. In this case, 8 AND gates and 16-b shift-

accumulator (SA) i.e. 16-b adder and 16-b register constitute a multiplier. The

multiplication results are accumulated using (N-1) 16-b adders yielding NAND

equivalent gate count of 496N-240 with 16N additional FFs for Method II imple-

mentation. Method III realization is serial with latency of 8 cycles. The partial

product generation is done in a similar way as Method II, however the com-

mon weight partial products are accumulated using 9-b adder tree containing N

adders. The final accumulation uses one 16-b SA. This method uses 143N+240

gates with 16 FFs for its realization and provides 13.43× and 3.47× saving over

Method I and II, respectively.

Table 3.1: The comparison of Methods I, II and III suited to implement multiply-
accumulate equation.

Method I Method II Method III
Nature of Execution Parallel Mixed Serial
Partial Product Generation 64 AND 8 AND 8 AND
Partial Product
Accumulation 7 16-b adders SA 9-b adder tree

Multiplication result
Accumulation

(N-1) 16-b
adders

(N-1) 16-b
adders SA

Equivalent NAND gates 2048N-240 496N-240 143N+240
Gates Savings 13.43× 3.47× 1
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3.2 Functional Units

The proposed architecture, called the Shift-Accumulate (or SAC) architecture, con-

sist of Register Units, Computation Unit and Control unit. A systolic array of

functional units (called the Register Units (RU)) based on Eqn 3.3 is developed

and is shown in Fig. 3.1. The array consist of thirty-six RUs arranged as a 6×6

matrix. The partial products generated in RUs are forwarded to the Computation

Unit (CU). The output is obtained from the CU after partial products accumu-

lation and shift adjustments. The architecture has configurable datapath deter-

mined by the control word of target functions discussed later in 3.2.4 subsection.

In addition to controlling the function execution, the control unit generates neces-

sary synchronising signals for RUs and CU.

Figure 3.1: The Shift-Accumulate Architecture.

3.2.1 Register Unit

The Register Unit (RU) shown in Fig. 3.2 consists of registers, 8×1 AND matrix,

8×1 XOR matrix and supporting logic for partial product generation. The 9-b

(sign + 8-bit magnitude) inputs x[n] (input data) and bi (coefficients) are loaded

into data {±,D7–D0} and coefficient {±,C7–C0} registers, respectively. In general,

these registers hold the multiplicand and multiplier for the multiplication opera-

tion. The coefficient is further loaded to shifter block where the multiplier is ro-

tated one place left at every clock cycle. The MSB of the shifter block is fed to the
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AND matrix and D7–D0 is the second input. The unsigned partial product thus

generated is further converted to signed partial product (1’s complement form) by

XORing it with the sign bit. The 9-b 2:1 multiplexer makes the selection between

registered and unregistered incoming data based on the signal from the control

word. The latter is of importance in case of functions with feedback where the de-

lay incurred during registering the input upsets the computation synchronisation.

The data register forwards its data to the next RU after eight clock cycles. This is

beneficial for windowing functions where the previous data are also required for

computations. The gate count break-up for RU is presented in Table 3.2 and 6×6

array has 8712 total gates. Here, AND, OR, XOR, NOT are considered basic gates

and each flip-flop is considered as 7 equivalent gates.

Figure 3.2: The Register Unit.

3.2.2 Computation Unit

The Computation Unit (CU) is divided into four identical sub-blocks ( called sub-

sections) and each sub-block acts on nine partial products as shown in Fig. 3.3.

The outputs of subsections are accumulated by 21-b and 22-b adders. Each CU

subsection (see Fig. 3.3) contains adder tree, shift-accumulator and output reg-
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Table 3.2: Number of gates in RU

Components Type of Gate Gate Count
AND Gate matrix AND 8
XOR Gate matrix + sign computing XOR XOR 9
27 Reg (1 Reg = 7 gates ) 189

2:1 9-b mux

{ AND 18
OR 9

NOT 9
Total Gates in RU = 242

RU array (36 * RU) = 8712

ister. The adder tree has ripple carry adders (RCA) that adds nine 9-b partial

products. The partial product sum is added with the previous partial product

accumulated sum using the 21-b adder and shift-accumulate register. The 23-b

output register is loaded with the final result once the serially computed multi-

plication concludes. Earlier research in adders [102, 103] indicates compact adder

circuit architectures profits in area, delay and power with scaling technology. Ad-

ditionally, authors in [87] elucidates that RCA exhibits minimum energy in near

threshold voltages. For the above metric and ease of implementation, RCA is

adopted in this thesis.

The tree adder adds the signed partial products generated in 1’s complement

form as opposed to 2’s complement representation because the later requires an

additional adder. The MSB of full-adder is duplicated while realizing n-bit adder

in the tree adder as shown in Fig. 3.4. This is done to address the potential prob-

lem arising out of negative number addition that generates a carry because of bit

overflow. An an illustration, when -255 and -1 are added, the expected result is

-256 that generates a carry-out because of overflow in 8-b magnitude representa-

tion. In conventional 1’s complement addition, this carry-out is added into the

magnitude which gives erroneous result +255. On the other hand, with MSB (or

sign bit) duplication, the carry (nth bit) and sign bit ((n+1)th bit) are clearly demar-

cated resulting in correct computation of results. The component wise gate count

of the computation unit is presented in Table 3.3.
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Figure 3.4: MSB duplication in RCA of tree adder with example.

Table 3.3: Number of gates in CU

Adder Tree

Component Name # of
Components

# of 1-b full
adders # of Gates

9-b Adder 4 10 × 4 = 40 200
10-b Adder 2 11 × 2 = 22 110
11-b Adder 1 12 × 1 = 12 60
12-b Adder 1 13 × 1 = 13 65
13-b Adder 2 14 × 2 = 28 140
1-b Adder 3 1 × 3 = 3 15
2-b Adder 1 2 × 1 = 2 10
3-b Adder 1 3 × 1 = 3 15

Total Gates = 615
CU Sub-Section

Component Name # of 1-b full
adders # of Gates

Adder Tree – 615
21-b Adder 21 × 1 = 21 105
21-b Shift Accumulator Reg – 21 × 7 = 147
21-b Output Reg – 21 × 7 = 147

Total Gates = 1014
CU

Component Name # of
Components

# of 1-b full
adders # of Gates

CU Sub-Section 4 – 4 × 1014 =
4056

21-b Adder 2 21 × 2 = 42 210
22-b Adder 1 22 × 1 = 22 110

Total Gates = 4376
1-b full adder = 5 gates (2 AND, 2 XOR and 1 OR), 1 Reg = 7 gates

34



Figure 3.5: MSB rotation in coefficient register.

3.2.3 Architecture Operation

The coefficient register is loaded with multiplier in one clock followed by multi-

plicand loading in the data register and multiplier forwarded to shifter block in

the subsequent clock (Clock #1). The multiplicand is ANDed with 7th bit or MSB

of multiplier generating the unsigned partial product. The partial product is a

copy of multiplicand when the MSB is ‘1’ and is 0 otherwise. The sign bits of

multiplier and multiplicand are XORed to generate the sign of multiplication re-

sult that is positive if both inputs are of same polarity and is negative otherwise.

The resultant sign bit is XORed with the unsigned partial product that remains

unaltered when the resultant sign is ‘0’. In case the resultant sign bit is ‘1’, the

unsigned partial product is changed to its 1’s complement representation because

XOR operation generates the complement of its input when one of the inputs is

held at ‘1’. The signed partial products are added in the adder tree in the CU. This

partial product sum is added with the 0 i.e. reset value of the shift-accumulator in

21-b adder and is stored in the shift-accumulator.

In the next clock (Clock #2), shifter block has rotated the multiplier left by one

place and 6th bit is in MSB now as illustrated in Fig. 3.5. The signed partial prod-

ucts for 6th bit are generated and are added in adder tree. The shift-accumulator

block has 7th bit partial product sum (PP7) that is shifts left by one place i.e. mul-

tiplied by 21. The 6th partial product sum (PP6) is added with the shifted PP7 in

the 21-b adder. The shift-accumulator register is now loaded with PP7·21+PP6. In
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the following clock (Clock #3), due to another left shift PP7 is multiplied by 22

and PP6 is multiplied by 21. This is added with 5th bit partial product sum re-

sults in PP7·22+PP6·21+PP5. The shift-accumulator register holds the final output

i.e. PP7·27+PP6·26+PP5·25+PP4·24+PP3·23+PP2·22+PP1·21+PP0 after 8 clock cycles

which represent the architecture latency. This result is loaded into the output reg-

ister and is available for further processing.

3.2.4 Configurable Datapath

The SAC architecture implements the multiply-accumulate by means of simple

AND-shift-accumulate operation. However, keeping the entire architecture in ac-

tive state while analysing simple operations like multiply, add, shift etc. results in

low utilization factor as well as adversely affects the power of the system. This

condition is addressed by making the datapath of the architecture configurable,

making it possible to disconnect certain sections of the architecture. Addition-

ally, the configurable datapath also ensures simultaneous realization of multiple

functions, increasing the throughput as well as hardware utilization.

The architecture is configured using a 54-b control word. The control word has

Code, Config, Feedback and Resolution fields. The 5-bit Code field is used to identify

the function realized on the architecture broadly between two categories - fixed

or external coefficient functions. The 31-b Config field denotes the select line of

the multiplexers placed in the datapath. Two sets of multiplexers, called the Con-

figuration and Bypass, are used in the datapath and allow different connection

topologies between RUs as well as disconnect RUs from the active datapath. For

instance, group of nine RUs is called a RU Tile, shown in gray boxes in Fig. 3.6.

The configuration multiplexer provides input to the RU data register (multiplier)

and makes the selection between the incoming data from previous RU or exter-

nal data (marked Dataextn in Fig. 3.6). Additional configuration multiplexers are

placed between the tiles to derive tile configuration and provide feedback. This

is discussed further in section 3.3. The bypass multiplexer either forwards the

configuration multiplexer output or feeds 0 to the RU disconnecting it from the

datapath as 0 data does not contribute to the computation irrespective of the mul-
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tiplicand. The bypass multiplexers are situated after every three RUs, thus RUs

can be bypassed in a set of three. This set of three RUs is termed as RU triplet in

the rest of the thesis.

Least significant thirteen bits in the control word, labelled FBx and fbx, rep-

resent the select lines of feedback multiplexers (marked in blue in Fig. 3.6) and

constitute the feedback field of control word. The individual or combined output

of tiles can be fed to RU using the feedback multiplexer. Bits 0-4 of the control

word are the select lines of the multiplexer inside RU that forwards registered

or unregistered multiplicand. These bits are dedicated for RUs that can receive

feedback data i.e. RU #1,4,19,22 and 34.

The leading four bits of the control word (Resolution field) provide the resolu-

tion of output. While doing calculations with numbers involving decimal points

the resolution of output varies with function mapped and different data sets.

However, based on the resolution of input data and coefficients the resolution

of the output can be determined. The 23-b output is truncated to 9-b in accor-

dance with the resolution bits that helps in locating the bits having the relevant

output to be fed back to the architecture as input in case of feedback or multiple

function operation described later in subsection 3.3.3. The remaining bits of the

control word are reserved for future modifications.
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Table 3.4: Gate count of multiplexers in Configurable Datapath

Datapath Configuration (1620 Gates)

Dimension Units Equi 9-b 2:1
Muxes Total Gates

Configuration Mux 9-b 2:1 31 31 31 × 1 × 36 = 1116
Feedback Mux 9-b 4:1 4 3 4 × 3 × 36 = 432
CORDIC Internal
Mux 9-b 2:1 2 1 2 × 1 × 36 = 72

Coefficient Configuration (5368 Gates)

Dimension Units Equi n-b 2:1
Muxes Total Gates

Coefficient Mux n=9
{ 9-b 5:1 3 4 3 × 4 × 36 = 756

9-b 4:1 17 3 17 × 3 × 36 = 432
9-b 3:1 1 2 1 × 2 × 36 = 72

DCT Mux n=8,1 9-b 7:1 19 6(8-b) +
1(1-b)

19 ×(6 × 32 + 1 × 4) =
3724

CORDIC Mux n=8 8-b 7:1 2 6 2 × 6 × 32 = 384
Total Gates in Configuration = 6988

Configuration Muxes have 20 CMx and 11 BPx.

3.2.5 Configurable Datapath Gate Count

Datapath multiplexers employed are 9-b wide and are either 2:1 or 4:1 contribut-

ing 1620 gates as shown in Table 3.4. This overhead amount to≈12.5% of the com-

bined gate count of RU and CU. The SAC architecture inherently supports linear

functions, however its functional domain is extended to include certain non-linear

functions by adding coefficient multiplexers. Chapter 4 contains a function-wise

discussion on coefficient multiplexers highlighting its utility in context with the

target functions of the architecture. These multiplexers are connected to the coeffi-

cient register of RU and provide necessary coefficients while computing functions

that follow an algorithm. The coefficient multiplexers contribute 5368 gates to the

architecture amounting to 41% of the RU-CU gates. In addition to this, inter-

nal storage of coefficients require 156 flip-flops. This increases the configuration

overhead to≈50% of the gate count dedicated for computation indicating a trade-

off between the configurability overhead and employing dedicated hardware for

every function. However, if the developed implementation methodology of the

target functions comprehends them as a set of common operations by means of

minor modifications, the use of configurability hardware may turn out gate effi-
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Figure 3.7: Different Architecture Topologies.

cient as opposed to dedicated hardware realization which would require separate

input/output memory modules, interfaces, interconnects and interrupt logic for

every function.

3.3 Architecture Topologies

The configurable datapath of the SAC architecture exhibits various topologies

(shown in Fig. 3.7) that are discussed now.

3.3.1 Systolic Array

The RUs can be arranged in a continuous chain of nine, eighteen, twenty-seven or

thirty-six RUs (see Fig. 3.7 (a)). The most straight forward structure of thirty-six

RUs forming a chain is formed with RUs connected one after the other. The bypass

multiplexer select are set and configuration multiplexers passes the previous RU

output. The eighteen RU chain can also be realized in the same manner with

BP19 forced to ‘0’. However, a chain of nine RU is obtained in Tile #1 and it

consists of RU # 1,2,3,10,11,12,13,14,15 by forcing ‘0’ and ‘1’ on CM10B and CM13.

Additionally, select line of all bypass multiplexers is ‘0’ except for BP10 and BP13.

The twenty seven RU chain is formed by combining the eighteen RU chain and

Tile #3 while bypassing Tile #4.
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3.3.2 Four Tile

The four tile structure (see Fig. 3.7 (b)) is obtained on dividing the RUs into four

groups of nine RU blocks. This configuration enables parallel execution of func-

tions as each tile forwards its partial products to their respective CU subsection

that computes the results irrespective of the ongoing computation in other tile or

CU subsection. The configuration multiplexers CMxB select line are forced to ‘0’

thereby passing forward the data from the RU above it. For instance, Dataout #3,

9, 21 and 27 are fed to RU #10, 16, 28 and 34, respectively. The bypass multiplexers

are set when all the four tiles are in use. However, when less than four tiles are

required for function realization the bypass multiplexer of RU leading the tile is

used to disconnect the tile.

3.3.3 Systolic Tile

The tiles when connected one after the other forms the systolic tile structure (see

Fig. 3.7 (c)). This structure is beneficial when a function chain is mapped on the

architecture. As an example, function 1 can be realized on Tile #1, function 2 on

Tile #2 and so on. On doing this, the architecture is handling multiple functions

that have interdependencies i.e. function 2 is acting on output of function 1. Here,

not only the computation of different functions is independent of each other but

also the functions outputs are calculated almost simultaneously thereby saving

on the architecture reconfiguration latency. Furthermore, no additional memory

is required to store the function 1 outputs as they get stored within the architecture

in Tile #2.

The feedback multiplexer placed in front of the tile feeds individual or com-

bined outputs of other tiles by means of dedicated select lines (FBx) in the control

word. The combined output of tiles is represented as feed12, feed23 etc. The CM

and BP select lines are set according to the four tile structure.

Several alternate realizations of the aforementioned topologies are possible.

The eighteen-RU chain can be formed by combining RU #19-36 or nine-RU chain

realized in Tile #3 are few of the many possibilities. Additionally, the architecture
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also supports mixed topologies. For instance, one of the possible combination of

systolic tile and array structures can result in datapath from Tile1 –> Tile2 –> RU

#19-36. These topologies can be obtained by setting the necessary CMx and BPx

bits in the control word.

3.4 Other Domain-Specific Reconfigurable Architec-

tures

Flexible reconfigurable architectures intended for DSP and multi-media appli-

cations are presented in [104] and [105], respectively. The former leverage the

similarity in popular DSP algorithms and their architectures to develop the ar-

chitecture consisting of adder and multiplier in its processing element (PE) with

programmable datapath leading to various combinations of these two operations.

Furthermore, the fine-grained interconnect architecture in [104], inspired by the

traditional FPGA interconnect design, is configurable and consists of local inter-

connect, switch box and connection box enabling communication among various

PEs. In case, little or no encoding is used on the interconnect bit stream, the con-

figuration bits grow considerably with the adopted hierarchical interconnection

scheme. However, owing to the coarse grained PE design in [104], ≈ 7× area

savings is achieved as compared to a fine grained FPGA implementation.

The MORA architecture in [105] performs high performance, computation in-

tensive, real time data processing using a 2-D array of identical reconfigurable

cells having a tightly coupled memory. The processing element contains two 8×4

multipliers and adders along with supporting logic for high data rates process-

ing. The interconnection network is flexible but does not support run-time con-

figuration. Further, [105] reports that MORA outperforms DSP processors and

fine-grained FPGA implementations while computing 8×8 2-D DCT operation in

performance as well as area. However, the large memory (256×8-bit SRAM) cou-

pled with the processing element might affect the power consumption in limited

energy systems, typical of wearables, mobile devices etc.

An Ultra Low Power Samsung Reconfigurable Processor (ULP-SRP) [99] ded-
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icated for biomedical signal processing exhibits a Coarse Grained Reconfigurable

Architecture (CGRA) consisting of nine functional units (FUs). It supports high

performance data processing (order of 100 MHz) with a shortened execution time,

thereby reducing the total energy consumption. It has three performance modes

chosen dynamically according to the application during run-time. The perfor-

mance modes require certain sections of the processor to be active/inactive dur-

ing execution. This is achieved using a Power Management Unit (PMU) having

fourteen power domains. The change over between performance modes requires

a series of steps to be performed which includes writing special registers, execut-

ing special instructions, selective powering of FUs etc. This results in frequent

stalling of the processor adversely affecting its execution time. Furthermore, the

data interdependencies in certain applications may limit computations in high

performance mode missing out on the reduced execution time advantage. Ad-

ditionally, determining the switching sequence of performance modes requires a

sophisticated compiler making critical decisions based on the incoming applica-

tion rendering increased complexity and reduced user control over the system.

Another biomedical processing platform, a multi-core reconfigurable architec-

ture in [101] uses multiple software cores along with a shared CGRA platform

deployed for application acceleration. A scheduler is used to partition the appli-

cation between software cores and CGRA providing better energy efficiency by

means of efficient mapping and consequently increased idle time. The reconfig-

urable cell (RC) embeds an ALU with tightly coupled memory to reduce data ac-

cess and storage time. The synchronizer also takes care of the flow of data among

different cores and CGRA as well as provides the conventional interconnect net-

work.

The SYSCORE platform in [97] has a energy efficient CGRA architecture target-

ing biosignal processing. It has coarse grained interconnect network and compact

processing element (called reconfigurable function unit) that reduces the recon-

figuration overhead and logic switching leading to reduced energy consumption.

The systolic structure of the architecture favours reduced RAM access which fur-

ther improves the energy efficiency.
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3.5 Conclusion

The SAC architecture is an inherently light weight design owing to various adopted

measures. The processing element of SAC architecture, Register Unit (RU), is

coarse grained and ensures logic switching at every clock through serial genera-

tion of partial products. The elimination of multiplier from the design yields gate

savings. The custom interconnect network, designed to support various biomed-

ical signal processing functions, is a coarse grained network yet ensures varied

kernels realization along with optimized resource utilization using selective acti-

vation and deactivation of RUs. Furthermore, the coarse grained interconnections

provide a scope of efficient function mapping through increased user control over

the architecture which is seldom observed in compiler based systems. The systolic

structure and tightly coupled data memory, both ensures considerably reduced

memory accesses. The fetch and decode stage of the traditional processor is cou-

pled into a single configuration stage. Additionally, the reduced gate count of

the architecture ensures reduced overall leakage and consequently a potential in-

crease in energy efficiency when voltage scaling scheme is adopted. Furthermore,

the increased switching activity due to the serial nature of architecture, results in

reduced leakage power at the cost of increased dynamic power [87].

A 6×6 shift-accumulate configurable architecture presented in this chapter,

has multiply-accumulate as its underlying operation that furnish reduced gate

count as compared to parallel or mixed form MAC based architectures. The de-

veloped architecture is designed to operate on signed partial products and has a

latency of 8 clock cycles. The Register Unit uses AND gates to generate partial

products, accumulated later in Computation Unit. The datapath of architecture

contains multiplexers that enables connecting RUs in various topologies and ef-

ficient hardware utilization by means of disconnecting unused RUs from datap-

ath. The architecture has simple configuration scheme and control word predom-

inantly consists of datapath multiplexers select lines. The gate level structure and

gate count of RUs, CU and configuration components are presented. The gate

configuration overhead constitutes ≈12.5% of the gates dedicated for computa-
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tion which further increases to ≈50% when coefficient multiplexers are included.

However, the configuration overhead may be acceptable over multiple dedicated

hardware solution that includes separate memory modules, input/output inter-

faces and associated interrupt logic. Additionally, the architecture can exhibit var-

ious topologies including systolic array, four tile, systolic tile etc. These topologies

are obtained owing to disjoint partial products accumulation with each tile acting

as an individual processing unit. This indicates that modularity and scalability

features are readily supported by the developed architecture.
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CHAPTER 4

Mapping of Processing Functions

Predominantly, ambulatory monitoring includes recording and analysis of phys-

iological signals like ElectroEncephaloGraph (EEG), ElectroCardioGraph (ECG/

EKG), ElectroMyoGraph (EMG) and PhotoPlethysmoGraph (PPG) signals neces-

sary for estimating normal neural, cardiac, muscle and blood oxygenation activity,

respectively. In some cases, artifacts derived from these signals serve as reliable

indicators of organ damage in renal and retinal systems. The acquired physiolog-

ical signals undergo multiple processing steps including denoising, feature detec-

tion, extraction, classification etc. to identify abnormal events. The configurability

of the developed SAC architecture can be leveraged to realize multiple biomedical

signal processing steps on it. This was possible, because majority of the digital sig-

nal processing functions include multiplication and addition as their fundamental

operations which is also the underlying principle of the SAC architecture. Various

biomedical signal processing algorithms are proposed in literature that detect and

extract useful features from physiological signals vital in ambulatory monitoring.

These algorithms were further analyzed for the number of signal processing func-

tions present in them in previous chapter (section 2.3.3 and functions frequently

used in biomedical signal processing were identified. Mapping methodologies

for the predominant signal processing functions that are optimized for cycle, gate

count and computations are presented in this chapter. The target functions are

classified broadly into two categories: Variable and Fixed coefficient functions. The

coefficients of the former depends on characteristic parameters of these functions.

For example, bandwidth, gain and number of taps determine the coefficients of

FIR filter. On the other hand, the fixed coefficient functions have constant coeffi-
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cients as the name suggests. These functions undergo a series of steps following a

fixed sequence/algorithm resulting in constant coefficients. Therefore, it is redun-

dant for the user to explicitly provide constant coefficients to the architecture and

it is eliminated by means of designing small state machines for these functions.

4.1 Variable Coefficient Functions

This category includes functions that accept user-defined coefficients. The specifi-

cations of functions plays an important role in determining the coefficients. These

coefficients can be derived using analytical equations or MATLAB tool sets. In

the following sections, the underlying mathematical equations and usability in

biomedical applications of the target functions are discussed followed by map-

ping and interpretation on SAC architecture.

4.1.1 Multiplication

Multiplication is one of the most fundamental operations of digital signal pro-

cessing and accepts two inputs (multiplicand and multiplier) to generate one out-

put. Classic method of computing the product A×B includes generation of partial

products followed by their accumulation in accordance with the weight associ-

ated with them. In binary number system, multiplication of two inputs, A and

B, having N1 and N2 bits, respectively results in (N1 + N2) bits output, P. The

binary representation for inputs A and B is shown in eqn 4.1

A =
N1−1

∑
i=0

Ai · 2i; B =
N2−1

∑
j=0

Bj · 2j with Ai, Bj ε {0, 1} (4.1)

The multiplication operation is defined as follows:

P = A× B =
M+N−1

∑
k=0

Pk · 2k (4.2)

=

(
N1−1

∑
i=0

Ai · 2i

)
·
(

N2−1

∑
j=0

Bj · 2j

)
=

N1−1

∑
i=0

(
N2−1

∑
j=0

Ai · Bj · 2i+j

)
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The array multiplier is the straightforward hardware implementation of clas-

sic multiplication method and has one-to-one topological correspondence with

the manual multiplication. However, it is not optimized for area, critical path de-

lay and efficient layout. Literature reports various multiplier architectures that

are optimized for one or more of these short-comings. Hierarchical, pipelined,

vedic, modified booth are some of the multiplier architectures [106–109] with im-

proved area, energy and (or) performance along with support for floating point

computations in [109].

Biomedical signal processing algorithms make use of multiplication in Finite/

Infinite Impulse Response (FIR/IIR) filtering, matrix multiplications, wavelet trans-

form etc. The squaring operation can be considered as a special case of multipli-

cation where a number is multiplied with itself i.e. same number acts as multipli-

cand and multiplier (A = B). This operation is often employed in signal analysis

and error analysis. For example, mean square error estimation uses square oper-

ation to limit the signal deviations to positive direction. Additionally, multiplica-

tion by (1/n) implements division functions used in computing averages, relative

errors, normalized data etc.

A paradigm shift is observed in multiplier designs and multiplier-less architec-

tures for computing products are gaining popularity in recent times for biomedi-

cal [110] and DSP applications [88], in general. This is achieved by serial compu-

tation of multiplication as opposed to a parallel mode seen in case of array multi-

plier earlier. The serial mode of computation increases the hardware utilization at

the expense of increased latency. The simplest realization of serial multiplication

is repetitive addition where the multiplicand is added with itself multiplier num-

ber of times. Such an implementation requires an adder along with a subtractor

and comparator logic wherein the later decrements the multiplier till it becomes

zero and addition operation is terminated at this point. An alternate method of

serial multiplication discussed in Chapter 3, generates the partial products seri-

ally using AND gates matrix followed by shift-accumulate operation. We now

discuss the mapping of multiplication operation on the SAC architecture.
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Mapping Methodology of Multiplication

The multiplication of multiplicand and multiplier terms can be realized on SAC

architecture by loading them into the data and coefficient registers of RU #1, re-

spectively. The SAC architecture supports 8-b×8-b signed multiplication in fixed

point arithmetic. The data and coefficient registers are loaded with same num-

ber to map square operation. To emulate squaring, the data bus is connected to

coefficient bus through a coefficient multiplexer which ensures data forwarded

to the coefficient. This is advantageous for systems with separate coefficient and

data memory as it is not necessary to provide squaring input to both the memo-

ries explicitly. The division by N operation, where NεR limited to 8-b resolution,

is realized by loading the coefficient with 1/N. The subsequent multiplication

causes the multiplier to be divided by N.

Figure 4.1: Mapping scheme for multiplication along with circular and coefficient
memories.

The multiplier and multiplicand terms are provided to the architecture through

circular and coefficient memories, respectively. Multiplier is written into the lo-

cation_0 (address 0) of the circular memory and further writing is ceased. This

data is read by read_pointer_1 which supplies the multiplier to Dataext1 input of

RU #1. The multiplicand is loaded into RU #1 coefficient register from coefficient

memory by activating the respective coefficient register through load enable sig-

nal. The EXT input of coefficient multiplexer is attached to coefficient register

input and gets loaded once register is enabled. These enabling signals are gen-
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erated using the coefficient state machine. Additionally, a coefficient multiplexer

connects the data to the coefficient register input as required by the square op-

eration. Figure 4.1 illustrates the data and coefficient registers connections with

associated memories and multiplexers. The gray colored text and arrows indi-

cate inputs and connections unused at the moment. However, as we progress

with other functions mapping, the purpose of these inputs and connections will

be addressed.

4.1.2 Multiply-Accumulate (MAC)

In most general sense, the multiply-accumulate (MAC) operation decomposes

into a combination of multiplication and addition. A typical MAC unit performs

A + B× C, where numbers B and C are multiplied together followed by addition

with the accumulator data A. The accumulator data is updated to represent the

MAC result after every such operation leading to serial accumulation of product

terms. The direct hardware implementation of MAC requires a multiplier, adder

and accumulator register as shown in Fig. 4.2.

Figure 4.2: The direct hardware implementation of multiply-accumulate opera-
tion.

Alternatively, N-term multiply-accumulate can be obtained by generating N

product terms using N multipliers and subsequent accumulation by (N− 1) adders.

This constitutes the parallel or dot product approach to compute MAC which

leverage cycle advantage when a large number of products are to be accumulated

and is particularly beneficial for real-time processing [88]. This form of MAC can

be readily realized on the SAC architecture because of its direct topological equiv-

alence. Further, such a unit is capable of performing add (or subtract) only by

setting B = ±1 converting MAC into A± C.
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Mapping Methodology of MAC

The SAC architecture supports MAC for ≤12 terms implementing the general

equation ∑11
i=0 ai · bi. When i < 12, the excess (12-i) ais are set to zero which

translates to clearing coefficient register of RUs used to implement MAC. RU #1,

4, 7, 10, 13, 16, 19, 22, 25, 28, 30 and 33 accept external data input (Dataext n,

1 ≤ n ≤ 7) (through corresponding configuration multiplexers) and thus become

obvious sites for MAC computation. The active multiplexer inputs and RUs are

shown in Fig. 4.3. The select line of configuration multiplexer CM1 is clear, con-

necting Dataext1 to RU #1 data register. For the remaining RUs, this connection is

made through the bypass multiplexer which is set forwarding the configuration

multiplexer data to corresponding RU data register. An alternate way to realize

MAC with < 12 terms is by clearing the bypass multiplexer select line which re-

sults in disconnecting a RU section by feeding 0 in RU’s data register. The active

RUs and multiplexer setting for addition operation is same as MAC mapping,

with the exception that coefficients of active RUs are loaded with 1 using coeffi-

cient multiplexers.

For MAC (or addition) operation with ≤ 36 terms alternate mapping scheme

can be employed where the data is propagated to the RUs next to active RUs

indicated in Fig. 4.3. MAC operation upto 24 (or 36) terms can be realized when

data propagates to one (or two) RU down the line. The latency increases by 8

clock cycles with every depth level increase. The active RUs represent depth level

0 and generate the MAC (or addition) result in 8 clock cycles i.e. the minimum

latency of the architecture. The MAC realization with depth level 1 i.e. active and

its adjacent RU involved in the operation takes 16 clock cycles to produce result.

Similarly, results produced in depth level 2 realization takes 24 clock cycles.

The bi terms of the MAC equation is loaded in data registers and ai’s in coef-

ficient registers. For implementing depth level 0 MAC, n data where n ≤ 12 is

written into the circular memory that are later read in parallel by multiple read

pointers. This data is provided to architecture through the Dataext n inputs. The

read pointers are anchored at various memory addresses and Fig. 4.4 shows the

location of 12 read pointers. The coefficient ai’s are taken from the coefficient
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memory through the EXT input of coefficient multiplexer.
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4.1.3 FIR filtering

The term filter is used to describe a linear time-invariant system used to perform

spectral shaping or frequency selective filtering. It modifies the input signal spec-

trum X(w) according to its frequency response of the filter H(w) to yield output

signal with spectrum y(w) = H(w)X(w). The nature of this filtering action is

determined by the frequency response characteristics H(w), which in turn de-

pends on the choice of system parameters (e.g. passband (and stopband) ripple,

gain, passband (and stopband) edge frequency). These system parameters de-

termine the coefficients, ak and bk in the difference equation, required for fre-

quency selective filter design that pass signals with frequency components in

some bands while attenuate signals containing frequency components in other

frequency bands.

Z-transform serves as a discrete version of laplace transform and is partic-

ularly important in modelling transfer function and characterizing the nature of

system based on pole-zero analysis. We estimate system function, H(z), of a linear

time-invariant system described by a linear constant-coefficient difference equa-

tion represented as eqn 4.3 by computing the z-transform of both sides of the

equation.

y(n) = −
N

∑
k=1

aky(n− k) +
M

∑
k=0

bkx(n− k) (4.3)

By applying the time-shifting property of z-transform, we obtain eqn 4.4 which

takes the form of eqn 4.5 on rearrangement

Y(z) = −
N

∑
k=1

akY(z)z−k +
M

∑
k=0

bkX(z)z−k (4.4)

Y(z)

(
1 +

N

∑
k=1

akY(z)z−k

)
= X(z)

(
M

∑
k=0

bkXz−k

)
Y(z)
X(z)

= H(z) =
∑M

k=0 bkz−k

1 + ∑N
k=1 akz−k

(4.5)
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Eqn 4.5 represents the general form for the system function of a system de-

scribed by linear constant-coefficient difference equation. This form contains both

poles and zeroes, and hence the corresponding system is called a pole-zero system,

with N poles and M zeroes. Due to the presence of poles, the impulse response of

such a system is infinite in duration, and hence it is an Infine Impulse Response

(IIR) system.

From the general form of system function, we obtain an important special form

by setting ak = 0 for 1 ≤ k ≤ N. This reduces the system function to

H(z) =
M

∑
k=0

bkz−k =
1

zM bkX(z)zM−k (4.6)

In this case, H(z) contains M zeroes, whose values are determined by the system

parameters bk, and an Mth-order pole at origin z = 0. Since the system contains

only trivial poles (at z = 0) and non-trivial zeroes, it is called an all-zero system.

Clearly, as such a system has finite-duration impulse response (FIR) it is called an

FIR system or a Moving Average (MA) system.

FIR Architectures and Applications

Few methods for implementing FIR system are now presented. Note that equiva-

lent implementation for IIR systems can be found in [111]. The direct-form struc-

ture realization follows immediately from the non-recursive difference equation

given by eqn 4.3 with ak = 0. The structure is illustrated in Fig. 4.5 where the unit

delay system is represented by its system function z−1. Delays of more than one

sample can be denoted with a system function of z−M, where M is the number

of samples of delay. The actual implementation of M samples of delay would

generally be done by cascading M unit delays. We observe that the structure re-

quires (M− 1) memory locations for storing the (M− 1) previous inputs, and has

a computation complexity of M multiplications and (M− 1) additions per output

point. Since the output consists of the weighted linear combination of (M− 1) past

values of the input and present value of input, the structure resembles a tapped

delay line or a transversal system and thus is often called as tapped-delay-line or
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transversal filter.

Figure 4.5: The direct-form realization of FIR filter.

Another structure used extensively in digital speech processing and adaptive

filter implementations is lattice filters shown in Fig. 4.6. A direct equivalence

between mth-order direct-form FIR and an m-stage lattice filter is discussed in

[111]. The lattice form provides a compact representation of the class of m FIR

filters as they are described by a set of recursive equations.

Figure 4.6: Lattice filter implementation of FIR filter.

Difference equations are often used to calculate numerical differentiation and

integration that forms the heart of calculus and are exploited in many applica-

tions. Derivative of a function, f (x) at x = a, is defined as

(
d f
dx

)
x=a

= lim
f (a +4x)− f (a)

4x
, as4x → 0. (4.7)

This is called a forward-difference approximation. An equivalent backward-

difference approximation can be obtained by approaching the limit from the op-

posite direction. A digital system processing discrete data calculates the approx-

imation to the derivative by using a very small value for 4x while keeping the
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round-off and truncation errors balanced. Higher order differentiation techniques

include weighted accumulation of past, present and future samples also known

as the three-point formulae.

By inspection, it can be observed that the differentiation computation, in gen-

eral, includes accumulation (or signed addition) of adjacent samples and scaling

by factor 4x, thus leverage itself for equivalent MAC implementations. For the

ease of implementation, the future sample in eqn 4.7, f (a +4x), can be treated as

the present sample resulting in time-shifted computation of result.

y[n] = K(x[n + 1]− x[n]) is equivalent to (4.8)

y[n− 1] = K(x[n]− x[n− 1]) (4.9)

Eqn 4.9 shows time-shifted output computation using present and past sample

that is equivalent to eqn 4.8 which in turn is directly analogous to eqn 4.7. In VLSI

systems, such shifted outputs are often encountered and are acceptable as they do

not disrupt the signal integrity.

Digital signal processing applications use filtering to improve signal to noise

ratio by removing the noise in the signal added during acquisition, data conver-

sion etc. The effect of noise is pronounced in case of biomedical signals where the

signal peak amplitude lies in hundreds of µV range. The peak signal amplitude

for EEG and EMG are in 50-500 µV [112] whereas peak amplitude picked up by the

ECG electrodes is slightly higher in comparison and is in the range on 1 mV [113].

For instance, an ECG signal is prone to artefacts arising from the interference from

the power line (50 Hz noise), baseline wandering and muscle tremor [112]. The

movement of patient or electrodes is primarily responsible for shifting of the base-

line causing delay in the electrochemical equilibrium at the electrode-skin inter-

face and muscle tremor is generally observed in older patients. The biomedical

signals are passed through filter stages removing undesirable noise components

along with occasional amplification of the signal.
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Mapping Methodology of FIR

In the light of important role of filters in biomedical signal processing, and digital

signal processing in general, the FIR filters mapping scheme on the SAC architec-

ture is developed and is discussed now. The SAC architecture readily supports

FIR filter mapping as both entities share the same mathematical foundation i.e.

the multiple-accumulate operation. The developed architecture supports thirty-

six taps and 9-b signed arithmetic for filtering functions. The filter coefficients are

applied to the coefficient registers of RUs and input data (x[n]) is applied to RU

#1 through the Dataext1 input. The RUs can be connected back to back by means

of configuration and bypass multiplexers forming a systolic array of thirty-six

functional units. For such a configuration, all RUs are active and the data from

the previous RU is connected to next RU data register by forcing appropriate se-

lect signal on the configuration and bypass multiplexers as illustrated in Fig. 4.7.

For instance, RU #4 accepts data from RU #3 through configuration multiplexers

CM4A and CM4B attached to ‘1’ and ‘0’, respectively. The bypass multiplexer,

BP4 is set for the data to move forward to RU #4 data register. For RU chains

<36, the additional RUs can be disconnected from the active datapath by clearing

the bypass multiplexer select line. The architecture emulates 9, 18 or 27-tap FIR

filtering by using one, combination of two or combination of three tiles, respec-

tively. These topologies are previously discussed in detail in Chapter 3 section 3.3.

Several other topologies for FIR filter chains is possible and one such topology is

discussed now as an example. A scheme for 11-tap FIR filter mapping is presented

that needs 11 RUs for SAC architecture implementation. Among numerous ways

of choosing these RUs, two schemes are presented. First combination constitutes

choosing a tile of 9 RUs and a section of three RUs situated next to the tile. For

instance, Tile #1 and RUs 16, 17 and 18. In this selection, RU #18 must be loaded

with 0 to circumvent its effect in the result. It must be noted that the RUs can

be chosen or bypassed in a group of three because of the chosen arrangement of

bypass multiplexers in the architecture. The second combination can be formed

by joining RU #1-12 and loading 0 in RU #12 coefficient. Both these schemes uses

12 RUs in the datapath and the remaining 24 RUs are bypassed.
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The data and coefficient for FIR filtering is stored in circular and coefficient

memories, respectively. The write pointer writes data till the circular memory is

completely full. Following this, the read pointer reads data and the cycle repeats.

The data is read through one read pointer which in turn is connected to Dataext1

input of architecture. The coefficient memory is connected to EXT input of coef-

ficient multiplexers and coefficient registers receive filter coefficients from it. The

architecture connections with circular and coefficient memories are illustrated in

Fig. 4.8.

Often in signal processing applications, noise cancellation is done in multiple

steps by using different filters handling different types of noise. This would re-

quire the output of one filter to be fed back as input to another filter. For instance,

a notch filter is used to remove the 50 Hz noise followed by the low pass filter can-

celling the high frequency artefacts. The SAC architecture supports multiple filter

realization following the four tile structure topology discussed in Chapter 3 sec-

tion 3.3. This is possible due to the modular nature of the computation unit (CU)

of the architecture that accumulates products received from tiles independent of

one another. The output of a tile (or combination of tiles) can be connected to input

of other tile using the feedback multiplexers of the architecture. This also facili-

tates IIR filter realizations that involves weighted sum of past outputs (y[n − i])

along with the inputs for computing the output.

4.2 Fixed Coefficient Functions

Functions grouped in this category perform computations following their under-

lying algorithm. This includes performing a fixed set of operations on the in-

put.For instance, an algorithmic step may include multiplying a number by 2. In

analogy to the architecture, this operations breaks down to multiplying input data

by fixed coefficient, number 2 in this case. This step can be hard-wired as shift

operation in a state machine when implementing it in hardware. Following the

similar approach, function whose operation is based on a algorithm is mapped on

a architecture using state machine. The state machine breaks the algorithm into a
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series of simple steps performed in an orderly manner. This includes modifying

the input by forcing a fixed sequence of coefficients as directed by the algorithm.

As the coefficients for the function is fixed, they are supplied from within the state

machine wherever needed.

4.2.1 COrdinate Rotation DIgital Computer (CORDIC)

CORDIC algorithm proposed by Volder in [114, 115], is derived from the Givens

rotation transform (shown in Fig. 4.9) that serves as the conventional method

of computing 2-D vector rotation. A vector P0 = (x0, y0) when rotated counter-

clockwise in the Cartesian plane by an angle φ results in vector Pn = (xn, yn) rep-

resented by eqn 4.10, further simplified as eqn 4.11 [116] :

xn = x0 cos φ− y0 sin φ; yn = x0 sin φ + y0 cos φ (4.10)

⇒ xn = cos φ[x0 − y0 tan φ]; yn = cos φ[y0 + x0 tan φ] (4.11)

The hardware realization of these equations require four multiplications, two

signed additions and accessing the table with trigonometric coefficients. How-

ever, according to the algorithm, arbitrary angles of rotation (φ) can be expressed

as a series of successively smaller elementary rotations δi i.e. φ = δ1 + δ2 + δ3 +

· · ·+ δn.

Figure 4.9: (a) Given’s Rotation (b) Elementary angles of rotation.

The elementary rotations when restricted such that tan δi equals ±2−i results

in the iterative rotation given by Eqn 4.12. The selection of δi’s translates the tanφ

multiplication to simple shift operation reducing the computation operation to

only shift and add operations.
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xi+1 = Ki[xi − yi · 2−i · di]

yi+1 = Ki[yi + xi · 2−i · di] (4.12)

zi+1 = zi − arctan(2−i) · di (4.13)

where, Ki and di = ±1 denotes the gain and direction of rotation i, respectively.

Eqn 4.13 represents decision variable that minimizes φ (angle offset) and de-

termines the subsequent direction of rotation. The terms arctan(2−i) are precom-

puted and stored internally in a memory array. The values of arctan(2−i) ex-

pressed in decimal and binary is presented in Table 4.1.

Table 4.1: The value of arctan(2−i) with 2-bit precision.

arctan(2−i)
i 2−i

Dec Binary
0 1 45◦ 101101.00
1 0.5 26.56◦ 011010.10
2 0.25 14.03◦ 001110.00
3 0.125 7.125 ◦ 000111.00
4 0.0625 3.576◦ 000011.10
5 0.03125 1.789◦ 000001.11
6 0.015625 0.895◦ 000000.11
7 0.0078125 0.447◦ 000000.01

After n CORDIC iterations, the rotation equation becomes:

lim
n→∞


xn

yn

zn

 = K×


x0 cos z0 − y0 sin z0

x0 sin z0 + y0 cos z0

0

 (4.14)

where the scale f actorK is equal to ∏∞
n=0
√

1 + 2−2n ≈ 1.646760.

An extended and generalized version of the algorithm, given by Eqn 4.15

[117, 118], computes hyperbolic and non-linear functions (logarithm, square root

etc.) in addition to the standard trigonometric functions. Figure 4.10 represents

implementation of one iteration of generalized CORDIC equation given by eqn

4.15. These equations are applicable in Circular, Linear and Hyperbolic coordinate
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Figure 4.10: Implementation of one iteration.

systems in both, Rotation and Vectoring, modes of operation.

xi+1 = xi −m · yi · 2−i · di

yi+1 = yi + xi · 2−i · di

zi+1 = zi − αi · di (4.15)

The direction of rotation, di, depends on z and y for Rotation and Vectoring modes,

respectively. di is 1 if z > 0 and is -1 otherwise in rotation mode whereas in vec-

toring, di is 1 if y < 0 and is -1 otherwise. Additionally, the coordinate system

variable m and arctan variable α depends on the computed function and cause

minor changes in the generalized CORDIC equations. Table 4.2 provides the val-

ues m and α assumes for various functions computed using CORDIC along with

the respective seed values x0, y0, z0 [119].

CORDIC Architectures and Applications

Few architecture for mapping CORDIC algorithm onto hardware are discussed

in this section. In general, the architectures are classified as folded and unfolded,

based upon the realization of the three iterative equations. Duplicating each of

the CORDIC algorithm difference equation into hardware and time multiplexing
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Table 4.2: The hyperbolic variable (m), the mode of operation, arctan variable (α)
along with intial guess and post-processing for the supported functions.

Mode of
opera-

tion
Function m α Initial Guess Post-Processing

Rsinθ,
Rcosθ,Polar to
Rectangular

1 tan−1(2−i)
x0=R=| P0 |,
y0=0, z0=θ

tan θ = sin θ/ cos θ

Rsinhθ,
Rcoshθ, tanhθ,
Reθ

-1 tanh−i(2−i)
x0=R=| P0 |,
y0=0, z0=θ

tanh θ = sinh θ/cosh θ,
eθ = sinh θ + cosh θ

Rotation

(a·b) 0 2−i x0=a, y0=0,
z0=b Not Required

tan−1 1 tan−1(2−i)
x0=a, y0=b,

z0=0 Not Required

tanh−1 -1 tanh−1(2−i)
x0=a, y0=b,

z0=0 Not Required

sin−1,cos−1 1 tan−1(2−i)
x0=1, y0=a,

z0=0
cos−1(a) = sin−1(a) -

(π/2)

(a/b) 0 2−i x0=b, y0=a,
z0=0 Not Required

Vectoring

√
a, ln a -1 tan−1(2−i)

x0=a+1,
y0=a-1, z0=0 ln(a) = 2 · zn

m takes the value 1, 0 and -1 for Circular, Linear and Hyperbolic coordinate systems, respectively.

the iterations constitute folded architecture. Folding architectures can be further

categorized as bit-serial and word-serial architectures depending upon whether

the functional unit implements logic for one bit or one word of each iteration. The

folded architectures are inherently slow as they trade-off area for time. [114] im-

plemented CORDIC using the bit serial architecture where same hardware was

used to execute all the iterations. The word serial architecture in [117] (Fig. 4.11),

modifies the shifters with each iteration required to obtain the desired shift and

elementary angles were accessed through the lookup table. This architecture suf-

fered in performance due to the carry/borrow propagation delay in critical paths.

These limitations were overcome by unfolding the iteration process. This was

achieved by adopting hard-wired shifters replacing the barrel shifters, and elim-

ination of ROM this ensures each iteration is carried out in different part of the

hardware. The pipelined architectures also offer throughput improvement.

CORDIC algorithm has attracted a lot of attention from academia and indus-

try primarily because of simplified computation and architecture as well as for its

various applications in DSP, biomedical signal processing, software defined radio,
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Figure 4.11: Word-serial implementation.

neural networks, and MIMO (Multiple-Input Multiple-Output) systems etc. In

signal processing, CORDIC techniques are used in adaptive filtering and compu-

tation of sinusoid transforms such as DFT (Discrete Fourier Transfrom) [120], DCT

(Discrete Cosine Transform), DHT (Discrete Hartley Transform) [121] etc. The use

of FFT (Fast Fourier Transform) for spectral analysis in biomedical signal process-

ing is worth mentioning. The spectral information obtained from FFT is a useful

clinical format for interpreting biomedical signals [122] and is used to monitor

muscle fatigue from EMG [123], diagnosing disorders related to stomach muscles

and intestines from EGG (ElectroGastroGram) [124], analysis of cardiac arrhyth-

mias using ECG [125–127]. Many CORDIC based FFT processors [128–132] are

discussed in literature owing to benefits of reduced hardware implementation

without compromising the operation speed.

Mapping Methodology of CORDIC

Each CORDIC iteration requires implementing three equations (4.15) calculating

x, y and z. The CORDIC computation uses an adder/subtractor and the previous

iteration result. Right-shift operation (>>) can be visualized as multiplication

with 2−i. It is fair to assume that the proposed SAC architecture can be used

to realize CORDIC that supports weighted sum and difference equations. The
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SAC architecture performs multiplication by means of AND-XOR operation in

RU, where the 9-b coefficient register is loaded with the content 2−i required for

the ith iteration. The data register is loaded with the x, y or z variable (or α value)

computed in the previous iteration while subsequent additions are carried out in

the CU.
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Tile #1 and 3 are used for CORDIC mapping. The RU triplets are not connected

with each other in both the tiles except for RU# 19-21 with 28-30 forming a 6 RU

chain as shown in Fig. 4.12. Among these RUs the light gray shaded blocks do

not contribute to the computations according to the developed mapping method-

ology though they are the part of active RUs. Two internal multiplexers CM10_int

and CM19_int are used in CORDIC mapping and are controlled by the CORDIC

algorithm state machine. The variables (x, y or z) are computed sequentially lead-

ing to serial computation of the three variables, once every 8 clock cycles. There-

fore, it takes 24 clock cycles to complete one iteration. The outcomes of the ith

iteration, xi, yi and zi, serves as input for the next iteration and thus needs to

be stored and fed back to the data register of RU. To provide an overview of the

operation, we discuss how each of the variables is computed in the proposed ar-

chitecture in the following steps A - G.

A. During the initial step, the direction of rotation is determined for the first

iteration and it depends on the mode of operation i.e. rotation or vectoring

and is as following:

Mode = Rotation Mode = Vectoring

If z0 ≥ 0(positive)⇒ d0 = +1,

otherwise d0 = -1.

If y0 ≥ 0(positive)⇒ d0 = -1,

otherwise d0 = +1.

In the SAC architecture, the sign bit (MSB) of z0 or y0 indicates whether the

data is positive or negative. This sign bit is XORed with the sign (without the

effect of direction) of the equation (‘0’ for addition and ‘1’ for subtraction) to

produce the final sign. For example, in eqn 4.15, for xi+1, the actual sign of

the equation is negative (-) i.e ‘1’ in sign bit. Now, if the direction variable

is positive (+) or ‘0’ in the sign bit, the final sign is obtained by XORing the

two sign bits i.e. ‘1’ ⊕ ‘0’ = ‘1’(-ve).

B. Then architecture is loaded with y0 in RU #1, z0 in RU #10, and x0 in RU #13

through Dataext1, Dataext4 and Dataext5 inputs of SAC architecture.

C. Then y1 is computed, which is dependent on the values of y0 and x0. There-
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fore, coefficient of the RU containing y0 and x0 are set with non-zero coef-

ficients whereas the remaining coefficients are set to 0. After 8 clock cycles,

y1 is computed. It is stored in RU #19 (fedback) through the feed1234 input

and CM19_int (see Fig. 4.12) multiplexer at the 8th clock cycle. The CORDIC

algorithm state machine ensures feed1234 is passed through the CM19_int

multiplexer by clearing the respective select line. Table 4.3 shows the RU

occupancy at different clock instances along with coefficients applied to co-

efficient registers.

D. Variable y1 (the newly computed output) is stored in RU #19 at the 8th clock

cycle. At the same time, the data register contents shift into the next in line

RU after every 8 clock cycles. Thus, x0 is shifted from RU #19 to RU #20; y0

is shifted to RU #2. Similarly, z0 is shifted to RU #11 and α0 is applied to RU

#10.

E. After this, computation for z1 commences. The state machine switches the

RU #7 input from z0 to arctan variable using the CM10_int internal multi-

plexer for further computations and Data_tan input is applied to RU #7 data

register. The z variable is a function of z0 and arctan variable (α0) that is

stored in RU #11 and RU #10, respectively. The coefficient for RU #11 and

RU #10 are non-zero and all the remaining coefficients (including the previ-

ous non-zero coefficients) are set to 0. After 8 clock cycles, z1 gets computed

and z1 gets stored in RU #19 at 16th clock.

F. In this step x1 computation begins that is a function of x0 and y0. Therefore,

the coefficient for RU #15 and RU #3 are non-zero and rest are 0. Variable x1

is computed in the next 8 clock cycles.

It should be noted that the x variable is computed at the end because it has

no role in deciding the direction variable (discussed in step A). Furthermore,

the time in which x computation is carried out, the computation for the next

iteration decision variable is done in parallel.

G. The x variable is stored in RU #19 and the data register shifts (and copies)
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Table 4.3: The RU coefficients for the CORDIC variables computation

Iteration # Variable
Computed Variable (RU #) Coefficient (in 0X)

1
y1 〈y0(1), x0(13)〉 80,80
z1 〈z0(11), tan−1(20)(10)〉 80,80
x1 〈x0(15), y0(3)〉 80,80

2
y2 〈y1(21), x1(19)〉 80,40
z2 〈z1(21), tan−1(2−1)(10)〉 80,80
x2 〈x1(21), y1(29)〉 80,40

3
y3 〈y2(21), x2(19)〉 80,20
z3 〈z2(21), tan−1(2−2)(10)〉 80,80
x3 〈x2(21), y2(29)〉 80,10

4
y4 〈y3(21), x3(19)〉 80,40
z4 〈z3(21), tan−1(2−3)(10)〉 80,80
x4 〈x3(21), y3(29)〉 80,10

5
y5 〈y4(21), x4(19)〉 80,08
z5 〈z4(21), tan−1(2−4)(10)〉 80,80
x5 〈x4(21), y4(29)〉 80,08

6
y6 〈y5(21), x5(19)〉 80,04
z6 〈z5(21), tan−1(2−5)(10)〉 80,80
x6 〈x5(21), y5(29)〉 80,04

7
y7 〈y6(21), x6(19)〉 80,02
z7 〈z6(21), tan−1(2−6)(10)〉 80,80
x7 〈x6(21), y6(29)〉 80,02

8
y8 〈y7(21), x7(19)〉 80,02
z8 〈z7(21), tan−1(2−7)(10)〉 80,80
x8 〈x7(21), y7(29)〉 80,02

In General for j > 0

j
yj+1 〈y(j)(21), x(j)(19)〉 80, (j + 1)th bit from

MSB is set

zj+1 〈zj(21), tan−1(2−(j))(10)〉 80,80

xj+1 〈x(j)(21), y(j)(29)〉 80,(j + 1)th bit from
MSB is set

its content to the next in line RU. This marks the end of first iteration which

takes 24 clock cycles.

H. The steps from A to G are repeated 7 more times with the subscript index

(i) increased by 1 everytime. The variables y8, z8 and x8 are computed after

eight iterations as a final step.

The above steps are explained considering the following example for comput-
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ing sin30◦. In this case, the CORDIC is operated in non-hyperblic rotation mode

with seed values provided in Table 4.2. The decision variable (based on the sign

bit of z0) is +1. Therefore, the CORDIC equations retains its actual sign as the final

sign. As listed in steps A - G, y1 is evaluated where the coefficient for RU #1 and

RU #13 are set to 0x80 with 7-bit precision. The resultant coefficient value is there-

fore 1.0000000b (= 1d) where the decimal point is taken after the 7th bit position.

After 8 clock cycles y1 is computed and stored in RU #19. The RU data registers

shifts content to the next in line RU. Afterwards z1 computation is initiated. For

z1, RU #11 and RU #10 coefficients are set to 0x80. At 16th clock cycle, z1 is stored

in RU #19 and the RUs shift its data to the following RU. Finally, x1, is computed

after this, by loading 0x80 in coefficients of RU #15 and RU #3. At 24th clock cycle,

the iteration ends with x1 being computed and stored in RU #19. It continues for 8

iterations for y8, z8 and x8 computations following the occupancy and coefficients

mentioned in Table 4.3.

It must be noted that, previous value of variable under computation is present

in RU #21 for all three variables. The other variable in the equation (x or y) lies in

RU #19 and 29, and is present in shifted form after 1st iteration. The same sequence

is followed for the following iterations, using this methodology the RU sites for

variable computations is fixed i.e. x variable is computed using RU #21 and 29

for all iterations after 1st. Additionally, this helps in designing a state machine

with fewer states as RU occupancy follows a certain pattern as opposed to being

random. The algorithmic state machine shown in Fig. 4.13 consists of six states

and depicts the RU coefficients loaded in each state during the coarse of CORDIC

computation.

An alternate mapping scheme would result by computing variables in three

different tiles owing to the internally bifurcated structure of CU. However, the

computed variable are required to be fed back to RUs to retain their previous

values for further computations. This loading takes 8 cycles per variable and re-

quire memory to store the variables computed in parallel. The adopted mapping

scheme computing variables sequentially also takes 24 cycles for each iteration

but stores results internally in RUs thereby does not use additional memory.
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Figure 4.13: Flow chart of CORDIC state machine.

The seed for x, y and z are provided simultaneously from three read ports of

circular memory. The coefficients for RUs used in CORDIC algorithm mapping

are applied through the CORDIC input of coefficient multiplexers. A CORDIC

multiplexer shown in Fig. 4.14 is connected to the coefficient multiplexer CORDIC

input of RU #19 and 29. The multiplexer has 2−i terms in binary as inputs and its

select line is controlled by the state machine.
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4.2.2 Compression Algorithms

Data compression is the process of encoding a set of data such that the size of

the encoded set is smaller than the size of the original, unencoded data. It ex-

ists in all forms of digital communications, where maximising the amount of data

that can be transmitted with a limited bandwidth is important. Compression al-

gorithms involve two components; the compression algorithm which is used to

create a representation of the data in its reduced form, and the reconstruction (or

decompression) algorithm that is used to convert the compressed signal back to

its original form. Data compression can be divided into two types: lossless and

lossy [133]. Lossless compression involves no loss of information between the

original data set and the one created after the compressed data has been decom-

pressed/reconstructed, i.e. perfect reconstruction. Lossy compression involves

some loss of signal information such that the reconstructed data is not exactly

equal to that of the original. While lossless compression may seem like the best

choice from the perspective of signal fidelity, the compression gains that can be

achieved are generally quite limited. Lossy compression on the other hand al-

lows for an inexact reconstruction of the data set. This allows the algorithm to

discard elements of the signal it deems unnecessary to preserve the reconstructed

data set or represent them in reduced form. The amount of loss allowed is usu-

ally application-specific and set by the system designer. Generally speaking, the

greater the acceptable levels of loss, the higher the compression gains that can be

achieved.

Discrete Wavelet Transform (DWT)

The Fourier transform has been a powerful tool in data analysis from a long time.

However, it does not represent the abrupt changes efficiently. The reason being

that the Fourier transform represent the data as the sum of sine waves, which

are not localized in time or space. The underlying principle of this problem is

the Heisenberg uncertainty principle, which states that a signal cannot be local-

ized in time and frequency simultaneously. Thus, the researchers came out with

a solution of splitting a signal into components, called wavelets, which are not
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completely a sine wave [134] and are thus localized in both time and frequency. A

wavelet is a short duration finite energy function with zero mean.

∫ +∞

−∞
ψ(t)dt = 0 (4.16)

where ψ is often referred to as the mother wavelet. This mother wavelet is then

used to create other wavelets by means of dilating and shifting. Shifting helps

in analyzing the specific portion of a signal whereas the scaling helps in differen-

tiating the smooth and abrupt changes in the signal. Mathematically, a wavelet

is given by the eqn 4.17 where a is the scaling parameter and b is the shifting

parameter.

Ψa,b(t) =
1√
|a|

Ψ
(

t− b
a

)
(4.17)

The DWT reveals that a signal’s energy is often focused in a small number of coef-

ficients, with the others tending towards zero. By exploiting this redundancy, it is

possible to represent the signal in a more compact form by setting coefficients be-

low a threshold value to zero [135]. In 1910, Alfréd Haar proposed a simple piece-

wise constant function whose dilation and translations generate an orthonormal

basis in [136]. In 1988, Ingrid Daubechies published her seminal work on or-

thonormal wavelets of compact support [137]. This led to the development of

filter bank based transforms [138] and biorthogonal wavelet bases [139, 140].

The 1-D DWT decomposes a signal of one level into two signals, approxima-

tion and detail, of another higher level. For example, if Ai(n) and Di(n) are ap-

proximation and detail coefficients at level i then the approximation and detail

coefficients of next higher level ( i + 1) are given by eqns 4.18 and 4.19, where h(k)

is the low pass filter and g(k) is the high pass filter and L is the size of the filter.

Ai+1(n) =
L−1

∑
k=0

h(k)Ai(2n− k) (4.18)

Di+1(n) =
L−1

∑
k=0

g(k)Di(2n− k) (4.19)

However, in 2-D DWT the same decomposition occurs in both row and col-
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umn dimensions. Thus, the 2-D DWT decomposes a signal in four frequency

sub-bands, namely LL (approximation (cA) matrix), LH (horizontal (cH) matrix),

HL (vertical (cV) matrix) and HH (diagonal (cD) matrix). The Fig. 4.15 depicts the

decomposition of an N × N Lena image into four sub-bands and its reconstruc-

tion from those sub-bands by convolution and sampling. Here, h_d(n) is low

pass decomposition filter coefficients,g_d(n) is high pass decomposition filter co-

efficients, h_r(n) is low pass reconstruction filter coefficients and g_r(n) is high

pass reconstruction filter coefficients. The sampling done is dyadic i.e. alternate

samples are retained.

Figure 4.15: Decomposition and reconstruction of an image using 2D-DWT

DWT Architectures and Applications

The straight forward implementation for DWT is to construct the low-pass and

high-pass filters independently. However, such direct mapping results in compu-

tational waste of upto 50% because the computed signals will be down-sampled

by 2 in the DWT process and conversely half signal will be 0 in IDWT process.

This can be minimized by the use of polyphase decomposition technique, which
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moves the downsampling/upsampling operations to the front/back of the filter

banks. A convolution based architecture is usually used if the required through-

put is two-input/two-output per clock cycle in minimum latency and hardware

resources. Fig. 4.16 illustrates one of the possible convolution based architecture

for 1-D DWT computations. Few of the alternate architectures are based on lifting

scheme, B-spline scheme etc that are discussed in [141].

Figure 4.16: Convolution-based architecture using parallel filters. FH and FG are
the length of low-pass and high-pass filters, respectively.

As far as 2-D DWT architectures are concerned, RAM-based architectures [142]

are most practical for real-life design due to their inherent regularity and stor-

age density [143]. The large amount of internal memory size and external access

bandwidth is the bottleneck of the 2-D DWT implementations. Consequently, the

memory issues dominate the hardware cost and architectural complexity.

In the direct scan implementation, 2-D DWT is computed by successively per-

forming 1-D DWT in two directions i.e. row and column. An external frame

memory is used to store the result of 1-D DWT in one direction commonly called
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intermediate coefficients. For the other decomposition levels, the LL sub-band of

the present level is treated as input signal for next level. This scheme requires

no internal memory but huge external memory access. As, the priorities of row

and column directions 1-D DWT are identical, the order can be assumed as row-

column for odd-level decompositions and column-row for even-level decomposi-

tions [144]. This interpretation leads to row-column-column-row (RCCR) scan which

decreases the external memory access bandwidth by one-half for every level ex-

cept for the first level decomposition as compared to direct scan method. A data

buffer is used to reduce the power intensive external memory access [143] in the

Line-based scan scheme. The coefficients are stored on on-chip buffer after the 1-D

DWT limiting the external memory access to reading image data and writing 2-D

DWT coefficients.

DWT is often used as compression methods in image and biomedical signals

by exploiting signal sparsity, most commonly, in frequency domain [145,146]. Au-

thors in [147] present a wavelet and wavelet packet based EEG compression algo-

rithm that uses a lossy compression scheme where the acceptable level of loss is

largely application dependent. Another EEG compression approach based on WT

and Embedded Zero-tree Wavelet (EZW) encoding is presented in [148]. In this

method, differential encoding is leveraged to maximize compression by exploit-

ing the intra-channel redundancy present in EEG signals. An ECG compression

approach is outlined in [149] includes the use of Huffman entropy coding along

with novel thresholding method for wavelet coefficients. Apart from compres-

sion usage, there exist several techniques for acquisition, delineation and char-

acterization of bioelectric signals that are based on wavelet transform. The use

of wavelet transform for detection of ECG characteristic points was first reported

in [150]. Later, derived wavelets, such as Quadratic Spline Wavelet Transform

(QSWT) reported in [61,65], were used for QRS detection. QSWT could be readily

implemented using FIR filter with reduced taps due to its compact support char-

acteristics. The R-wave gets transformed to a modulus maxima pair after QSWT

operation from which R-wave can be determined conveniently by spotting zero

crossing. Several approaches based on hybrid wavelet [151], multi-domain anal-
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ysis [152], continuous WT [153], lifting-scheme [154] are reported in literature.

Among them, [151, 152] are crafted for abnormal ECG waveforms providing ac-

ceptable results while detecting a variety of arrhythmias including right bundle

branch block, atrial fibrillation, normal sinus rhythm etc. whereas [153, 154] are

more suited for real time analysis and processing of ECG.

Mapping Methodology of DWT

A generic mapping methodology is developed that supports twenty eight wavelets

with filter size <8 [155]. The DWT algorithm first computed low pass filter convo-

lution followed by factor 2 down sampling. The resultant vector is convolved with

high pass filter and DWT matrix is obtained by another factor 2 down sampling.

The generic methodology is developed for filter length = 8. Additionally, peri-

odic padding is necessary to ensure that at both boundaries of the signal, atleast

one signal sample exists and spatially corresponds to each coefficient of the filter

mask. The number of additional samples required at the left (exthl) and right (ex-

thr) of the signal is filter-length Len f ilter dependent [156] and is given by eqns 4.20

and 4.21. For the wavelets with filter length < 8, zeros are padded on both sides at

appropriate locations. For example, for Biorthogonal wavelet bior2.2, Len f ilter = 5

which is increased to 8 by padding 1 zero on right and 2 zeros on left. The result-

ing filter coefficients are shown in Fig. 4.17. DWT computation steps are shown in

Fig. 4.18 wherein the row wise convolution is carried out on 14×8 padded image

and intermediate matrix, Y is generated. Columns 0-3 of padded image is same

as columns 5-8 of the actual image. Thus, the convolution filter mask is modified

by swapping the first four terms with the last four terms. This eliminates the use

of excess memory elements required to store the padding. Furthermore, the mask

advances by two steps as opposed to one step in the conventional convolution

performing down sampling along with the intermediate matrix generation. This

technique also reduces the number of computations by limiting the calculations to

those elements that are retained after down sampling. The second set of convolu-

tion is performed on transposed padded Y matrix. The redundant computations

elimination and mask manipulations are repeated generating the cA DWT ma-
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trix. In order to achieve image compression, LL sub-band i.e. the approximation

coefficient is retained and the other three set of coefficients namely horizontal,

vertical and diagonal are considered zero to achieve a compression of 75% after

1-level of decomposition. However, the compression can be further increased by

the increasing the number of levels of decomposition.

exthl = f loor(lenh/2) (4.20)

exthr = lenh− exthl − 2 (4.21)

Figure 4.17: Coefficients of bior2.2 after zero padding

The following 28 wavelets can be supported through the developed method-

ology and Table 4.4 shows their upscaled decomposition matrix with filter size

8.

• Haar Wavelet

• Biorthogonal Wavelets : bior3.1, bior2.2, bior1.3, bior3.3

• Reverse Biorthogonal Wavelets: rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4,

rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4

• Fejer-Korovkin: fk4, fk6, fk8

• Coiflets : coif1

• Daubechies: db2, db3, db4

• Symlets: sym2, sym3, sym4
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Table 4.4: Filter coefficients of the targetted wavelets

Wavelet C8 C7 C6 C5 C4 C3 C2 C1
Haar 0 0 0 0.7071 0.7071 0 0 0

bior3.1 0 0 -0.3536 1.0607 1.0607 -0.3536 0 0
bior2.2 0 0 -0.1768 -0.3536 1.0607 -0.3536 -0.1768 0
bior1.3 0 -0.0884 0.0884 0.7071 0.7071 0.0884 -0.0884 0
bior3.3 0.0663 -0.1989 -0.1547 0.9944 0.9944 -0.1547 -0.1989 0.0663
rbio1.1 0 0 0 0.7071 0.7071 0 0 0
rbio1.3 0 0 0 0.7071 0.7071 0 0 0
rbio1.5 0 0 0 0.7071 0.7071 0 0 0
rbio2.2 0 0 0 0.3536 0.7071 0.3536 0 0
rbio2.4 0 0 0 0.3536 0.7071 0.3536 0 0
rbio2.6 0 0 0 0.3536 0.7071 0.3536 0 0
rbio2.8 0 0 0 0.3536 0.7071 0.3536 0 0
rbio3.1 0 0 0.1768 0.5303 0.5303 0.1768 0 0
rbio3.3 0 0 0.1768 0.5303 0.5303 0.1768 0 0
rbio3.5 0 0 0.1768 0.5303 0.5303 0.1768 0 0
rbio3.7 0 0 0.1768 0.5303 0.5303 0.1768 0 0
rbio3.9 0.1768 0.5303 0.5303 0.1768 0 0 0 0
rbio4.4 -0.0645 -0.0407 0.4181 0.7885 0.4181 -0.0407 0.0645 0

fk4 0 0 -0.0462 0.0532 0.7533 0.6539 0 0
fk6 0 0.0406 -0.0772 -0.1464 0.3564 0.8129 0.4279 0
fk8 -0.0190 0.0426 0.0431 -0.1600 -0.0997 0.4753 0.7827 0.3492

coif1 0 -0.0157 -0.0727 0.3849 0.8526 0.3379 -0.727 0
db2 0 0 -0.1294 0.2241 0.8365 0.4830 0 0
db3 0 0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327 0
db4 -0.0106 0.0329 0.0308 0.1870 -0.0280 0.6309 0.7148 0.2304

sym2 0 0 -0.1294 0.2241 0.8365 0.4830 0 0
sym3 0 0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327 0
sym4 -0.0758 -0.0296 0.4976 0.8037 0.2979 -0.0992 -0.0126 0.0322
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The architecture supports 8×8 block 2-D DWT operation. The RU triplets are

left unconnected except for RU #19-30 chain. The image data is forced on RU #1,

4, 7, 10, 13, 16, 31 and 33 for Y matrix computations. The Y matrix is stored in

RU #19-29 and filter mask is forced in the coefficients following the mask manip-

ulations. The active RUs in the mapping scheme are indicated in Fig. 4.19. The

following steps are performed while performing 2-DDWT on N×N image. The

input data is considered as an image for convenience, compression being primary

function of DWT.

1. Periodically pad the 8×8 block obtained from N×N image with four columns

on left and two columns on right. Thus, the padded image (Pi) is of 8×14

dimension.

2. To perform row convolution over Pi, take 8×8 block of Pi and multiply each

element of the first row of Pi8 i.e. I51, I61, .......,I21 with the corresponding

coefficient i.e. C8, C7, .......,C1 and add all the products to form X11. Now,

move the mask over second row of Pi8 again multiply and add to form X21.

Do this for all the 8 rows and thus we get the first column of intermediate

matrix (X).

3. Repeat the step 3 for other three 8×8 blocks formed by taking alternate 8×8

block of Pi. We are taking alternate 8×8 block so to eliminate the need of

downsampling thus reducing the number of computations. This will give

us the intermediate matrix X.

4. To perform column convolution over X, periodically pad four rows on top

and two rows on bottom of X giving Px matrix.

5. Now, take take 8×1 column vector of Px and multiply each element i.e. X51,

X61, .......,X21 with the corresponding coefficient i.e. C8, C7, .......,C1 and add

all the products to form cA11. Now, move the mask over alternate 8×1 col-

umn vector of Px again multiply and add to form cA21. Do this for all the 4

8×1 column vector and thus we get the first column of DWT approximation

matrix (cA).
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6. Repeat the step 6 for other three columns of Px matrix. This will give us the

4×4 approximation matrix cA.

7. Repeat steps 1 - 7 for all other 8×8 blocks of N×N image. Thus, we will get

the approximation matrix of dimension N/2× N/2.

Figure 4.20: Flow chart of 2-D DWT state machine.

The state machine (shown in Fig. 4.20) controlling the DWT computations con-

tains five states. The intermediate matrix (Y) rows are computed in first state and

the other four states are visited to compute the first row of DWT matrix. The con-

volution filter coefficients provided by the state machine are forced on RU #1, 4,

7, 10, 13, 16, 31 and 33 and are multiplied with the first row of image matrix to

generate the first element of Y matrix. Similarly, rest of the seven elements of first

row of Y matrix are generated and the entire computation takes 64 cycles in total.

RU #19-26 holds the first row which must be padded on either sides according

to eqns 4.20 and 4.21 as shown in Fig. 4.18(a). This is done by means of mask
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Table 4.5: The active RUs, coefficients loaded and result computed in various
states of 2-D DWT state machine.

State Active RUs Coefficients loaded Value Computed
1 1, 4, 7, 10, 13, 16, 31 and 34 Ext1, 4, 7, 10, 13, 16, 31 and 34 Y (row 1)
2 19-26 Ext10, 7, 4, 1, 34, 31, 16 and 13 cA11
3 20-27 Ext4, 1, 34, 31, 16, 13, 10 and 7 cA12
4 21-28 Ext34, 31, 16, 13, 10, 7, 4 and 1 cA13
5 22-29 Ext16, 13, 10, 7, 4, 1, 34 and 31 cA14

after updating circular memory
1 1, 4, 7, 10, 13, 16, 31 and 34 Ext1, 4, 7, 10, 13, 16, 31 and 34 Y (row 2)
2 19-26 Ext10, 7, 4, 1, 34, 31, 16 and 13 cA21
3 20-27 Ext4, 1, 34, 31, 16, 13, 10 and 7 cA22
4 21-28 Ext34, 31, 16, 13, 10, 7, 4 and 1 cA23
5 22-29 Ext16, 13, 10, 7, 4, 1, 34 and 31 cA24

after updating circular memory
1 1, 4, 7, 10, 13, 16, 31 and 34 Ext1, 4, 7, 10, 13, 16, 31 and 34 Y (row 3)
2 19-26 Ext10, 7, 4, 1, 34, 31, 16 and 13 cA31
3 20-27 Ext4, 1, 34, 31, 16, 13, 10 and 7 cA32
4 21-28 Ext34, 31, 16, 13, 10, 7, 4 and 1 cA33
5 22-29 Ext16, 13, 10, 7, 4, 1, 34 and 31 cA34

after updating circular memory
1 1, 4, 7, 10, 13, 16, 31 and 34 Ext1, 4, 7, 10, 13, 16, 31 and 34 Y (row 4)
2 19-26 Ext10, 7, 4, 1, 34, 31, 16 and 13 cA41
3 20-27 Ext4, 1, 34, 31, 16, 13, 10 and 7 cA42
4 21-28 Ext34, 31, 16, 13, 10, 7, 4 and 1 cA43
5 22-29 Ext16, 13, 10, 7, 4, 1, 34 and 31 cA44

manipulation explained here by means of an example. Let us try to compute cA11

i.e. first element of DWT matrix. According to Fig. 4.18(a), the first column of

padded Y matrix when multiplied by the convolution filter yields cA11. Padded

Y matrix consist of padded elements concatenated on top and bottom of Y ma-

trix column i.e. Y04 − Y07 and Y00 − Y01 on top and bottom, respectively. The

process of padding posses a challenge in hardware implementations as it would

translate into sending data to secondary memory for appropriate padding. Later,

the padded data can be provided to the architecture after the writing and read-

ing operation of circular memory. As a consequence, the computation latency

increases dramatically. This is addressed by manipulating the convolution filter

mask which substitutes for additional padding of Y matrix. The convolution filter

is rearranged by moving the first four coefficients towards the end. By doing this,
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the padded elements which are at the bottom of unpadded image gets multiplied

with the respective coefficients yielding the same result as padded image with

unmodified filter mask. This is illustrated in Fig. 4.21. The mask manipulation

enables computing cA elements without external padding on the intermediate

matrix which further permits storing the intermediate matrix within the SAC ar-

chitecture.

Figure 4.21: The DWT mask manipulation.

The data registers shift their values to next in line RU due to the nature of

the developed SAC architecture. The coefficients loaded in states #2-5 follow this

trend and are pushed down the RU chain accordingly as seen in Table 4.5. The

second set of convolution on the Y matrix is carried out in these states with every

state generating an element of the LL sub-band of DWT matrix in eight clock

cycles each. The entire DWT matrix i.e. four rows of LL sub-band are generated

by traversing the state machine four times. The elements generated in each state

and the associated active RUs are shown in Table 4.5.

The circular memory holds the input data, image pixels in this case. The

write pointer is used to write 8×8 (= 64) image data into memory which is stored

column-wise in different sections of the memory in an interleaved manner. The

interleaved manner of storing data is desirable as it simplifies the reading oper-

ation and ensures moving the convolution mask by 2 steps, a scheme adopted

in the mapping to eliminate down sampling later. Consequently, multiple read

ports ensure reading all columns simultaneously resulting in computation of Y

matrix terms in least computation time the architecture supports i.e. eight clock

cycles. The Fig. 4.22 shows image data stored in interleaved manner in the circu-
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Figure 4.22: Data stored in interleaved manner in the circular memory with the
write and read pointers

lar memory with the write and read pointers. Every time states #1-5 are traversed

the circular memory is updated replacing two columns at a time as shown in Fig.

4.22.
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The DWT coefficients are applied to the RU coefficient registers through coef-

ficient multiplexers. The DWT coefficient multiplexer shown in Fig. 4.23 is a 9-b

8:1 multiplexer which derives its select lines from the state machine. The multi-

plexer inputs are external coefficients obtained from the coefficient memory at the

time of configuration. Connecting the external coefficients to multiplexer provide

three benefits. Firstly, it supports multiple wavelets realization by loading exter-

nal coefficients following Table 4.4, which would not have been possible if the

multiplexer inputs were fixed. Secondly, it reduces the memory overhead arising

out of storing varied coefficients of all target wavelets. Thirdly, it yields a cycle

efficient realization as the coefficients are obtained from the coefficient memory

as opposed to loading new coefficients externally which changes with wavelets

as well as states. The DWT multiplexers are placed on RU #19-29 and are active

during States #2-5. The state machine provide the select for desired coefficient.

The multiplexer selects and selected coefficient are shown in Fig. 4.23.

The mapping methodology modifies slightly when 1-D DWT is implemented.

The low-pass and high-pass filters can be mapped individually in different RU

sections. The filter coefficients are applied on the RU coefficient registers in an

interleaved manner ensuring the dydadic sampling and elimination of redundant

computations.

4.2.3 Discrete Cosine Transform

The discrete cosine transform was first proposed in 1974 by N. Ahmed et al.

for the purpose of pattern recognition and Wiener filtering in the area of im-

age processing [157]. The algorithm was found comparatively optimal, in terms

of emulating the Karhunen-Loève transform, as compared to other orthogonal

transforms, such as discrete fourier transform (DFT), Walsh-Hadamard transform

(WT) and Haar transform (HT). The widely used image compression application

of DCT was pioneered by Chen and Pratt [158] after almost a decade of its dis-

covery. Since then, the DCT has escalated to be the central mathematical oper-

ation for numerous standards of image and video coding including JPEG [159],

MPEG-1 [160], MPEG-2 [161], H.261 [162], H.263 [163], H.264 [164], and the recent
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HEVC [37,38]. These coding standards are ubiquitous in DSP applications and are

also found in a multitude of biomedical applications related to image and video

compression [165–168]. In the scenario of ever increasing medical imaging data

volume (35.5 TB/day in 2010) [169], storage and transfer, the use of optimized

methods like approximate DCT is advocated in [170] over exact computations to

reduce the computation complexity. DCT aided ECG signal compression is pre-

sented in [171, 172]. Techniques like approximating higher order coefficients by

their average value, dynamic thresholding and variable quantization are adopted

to maximize compression for varying data patterns in real time and ambulatory

settings.

The definition of 2-D DCT for an input image ’A’ and output image ’B’ is de-

fined as follows:

Bpq = αp αq

M−1

∑
m=0

N−1

∑
n=0

Amn cos(
π (2m + 1) p

2M
) cos(

π (2n + 1) q
2N

),

0 ≤ p ≤ M− 1; 0 ≤ q ≤ N − 1

(4.22)

where,

αp =
1√
M

, p = 0

=

√
2
M

, 1 ≤ p ≤ M− 1

αq =
1√
N

, q = 0

=

√
2
N

, 1 ≤ q ≤ N − 1

’M’ and ’N’ are the row and column size of ’A’, respectively.

The DCT transform equation (5.1) can be expressed as-
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Bpq = αp αq

M−1

∑
m=0

cos(
π (2m + 1) p

2M
)

N−1

∑
n=0

Amn cos(
π (2n + 1) q

2N
),

0 ≤ p ≤ M− 1; 0 ≤ q ≤ N − 1

(4.23)

This is possible because 2-D DCT follows the separability property. Thus, ac-

cording to eqn 4.23, Bpq can be computed in two steps by successive 1-D opera-

tions on rows and columns of an image. Thus, 2-D DCT can be decomposed into

two 1-D DCT as shown in Fig. 4.24.

Figure 4.24: Computation of 2-D DCT using separability property

The 2-D DCT matrix computation of an image requires two matrix multiplica-

tion operations : DCT = DCTmat ∗ Image ∗ (DCTmat)T. The DCT transform ma-

trix (DCTmat), are cosine of angles determined by the DCT mask size (M×M) and

contains orthogonal basis vectors given by C(m, n) = lm cos(πm(2n + 1)/2M)

where, lm is a constant determined by M. the DCT transform matrix DCTmat of

size M×M is given as-

(DCTmat)xy =
1√
M

, x = 0, 0 ≤ y ≤ M− 1 (4.24)

=

√
2
M

cos(
π (2y + 1) x

2M
), (4.25)

1 ≤ x ≤ M− 1, 0 ≤ y ≤ M− 1

The coefficients of DCTmat matrix obtained by the above equation for M = 8 is-
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0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

0.4904 0.4157 0.2778 0.0975 −0.0975 −0.2778 −0.4157 −0.4904

0.4619 0.1913 −0.1913 −0.4619 −0.4619 −0.1913 0.1913 0.4619

0.4157 −0.0975 −0.4904 −0.2778 0.2778 0.4904 0.0975 −0.4157

0.3536 −0.3536 −0.3536 0.3536 0.3536 −0.3536 −0.3536 0.3536

0.2778 −0.4904 0.0975 0.4157 −0.4157 −0.0975 0.4904 −0.2778

0.1913 −0.4619 0.4619 −0.1913 −0.1913 0.4619 −0.4619 0.1913

0.0975 −0.2778 0.4157 −0.4904 0.4904 −0.4157 0.2778 −0.0975
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Mapping Methodology of DCT

Matrix multiplication can be realized on the SAC architecture by loading row and

column elements of the two matrices in place of coefficients and data registers

respectively. This methodology is adopted for DCT computations. The 2-D DCT

algorithmic steps are shown in Fig. 4.25. The architecture supports 8×8 block

wise DCT and provides a compression of ≈ 84%. This requires calculating 10 of

64 outputs in the DCT matrix. The mapping methodology for DCT exhibits re-

markable resemblance to 2-D DWT mapping and hence is discussed here in brief.

RU #19-30 are connected in a chain whereas rest of the triplets are not connected

with each other resulting in an active RU picture similar to Fig. 4.19. The first ma-

trix multiplication or the intermediate matrix i.e. Intmat = DCTmat ∗ Image, row

wise image data and first row of DCTmat are forced on RU #1, 4, 7, 10, 13, 16, 31

and 33 as data and coefficient, respectively.
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Figure 4.26: Flow chart of 2-D DCT state machine.
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Table 4.6: DCT multiplexer coefficients in decimal and hexadecimal.

DCT Multiplexer Coefficients
Decimal Hexadecimal
0.0975 32
0.1913 62
0.2778 8F
0.3536 B5
0.4157 D5
0.4619 EC
0.4904 FB

The results forms first row of Intmat that is periodically stored from RU #19-

26. This has to be further multiplied with DCTT
mat or rows of DCTmat. The row

coefficients of transform matrix is forced on coefficient registers of RU #19-26 and

the resultant DCT(0,0) is obtained. On forcing subsequent DCTmat rows in the

coefficient of RU #19-30 chain, the remaining elements of first row of DCT are

computed. It must be noted that, Intmat stored in RU #19-26 experiences shifting

down the RU chain every 8 clock cycles and the state machine is designed incor-

porating this shift. The state machine consist of 5 states traversed four times, fully

or partially, that computes Intmat and DCT in successive computations. The state

machine and its sequence is shown in Fig. 4.26. The state sequence differs with the

iteration# because the number of elements computed in the DCT matrix decreases

by one with every row resulting in a upper triangular matrix. The Intmat matrix is

computed in state #1 and DCT matrix is computed in states #2-5. The image data

is stored column wise in an interleaved manner in circular memory similar to data

storage in DWT mapping discussed earlier. The coefficients for 2-D DCT are ap-

plied through DCT multiplexers attached to RU #1, 4, 7, 10, 13, 16, 19-29, 31 and

34 (shown in Fig. 4.27). The DCT multiplexer is designed as a composite struc-

ture of 8-b 7:1 multiplexer and a 1-b 2:1 multiplexer. This was possible because

the 8×8 DCT coefficient matrix consists of seven distinct entries (highlighted in

DCTmat matrix) in positive and negative forms. Thus it was beneficial to apply

the numeric value and sign of the coefficients separately yielding gate savings.

The 7:1 multiplexer provides the former whereas the sign is assigned by the 2:1

multiplexer. The distinct DCT matrix coefficients and equivalent hexadecimal are
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tabulated in Table 4.6.

4.3 Conclusion

The mapping methodologies for DSP functions frequently encountered in biomed-

ical signal processing on the SAC architecture are presented in this chapter. The

data and coefficient registers of the architecture are interpreted perspicaciously

maximizing the number of functions mapped on the architecture while keeping

the configuration overheads in check. The heart of the configuration lies in the

multiplexers placed in the datapath which gives rise to efficient usage of archi-

tecture resources by offering multiple connection topologies and isolating unused

blocks. The light-weight data memory is tightly coupled with the architecture

and exhibits a circular architecture. It has the ability to adapt according to data

requirements of different functions mapped by means of varying read pointers.

The circular memory architecture provides an added advantage in case of 2-D

DWT and 2-D DCT wherein the data storage technique results into simplistic data

fetching. In few cases, especially while realizing fixed coefficient functions, the

coefficient multiplexers are employed to provide the coefficients by means of a

state machine controlling the function execution. The intermediate data is stored

within the architecture providing easy access to this data for subsequent opera-

tions. In general, the developed mapping methodologies discussed in this chapter

uses methods to optimize latency and architecture utilization at multiple stages.
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CHAPTER 5

System Verification on an FPGA

The FPGA (Field Programmable Gate Array) implementation of SAC architecture

along with its associated memories is discussed in this chapter. The configurable

datapath of the SAC architecture is set by the 54-b control word that contains reso-

lution, code, config and feedback fields. The control word is discussed in perspective

of different topologies as well as target functions. The configuration scheme of

the architecture consists of different phases wherein the control word, coefficients

and data are supplied to the architecture followed by computation and storage of

results. The VGA (Video Graphics Array) and UART (Universal Asynchronous

Receiver Transmitter) interfaces are developed on the FPGA development board

for visual perception and offline data processing, respectively. The hardware com-

puted results are compared with their software (MATLAB) counterparts for vari-

ous target functions. Later in the chapter, the clock profile for target functions is

presented along with gate count of the SAC architecture and interfacing memo-

ries.

5.1 Number System

The SAC architecture works on 9-b fixed point arithmetic and uses the sign-magnitude

convention to represent signed numbers. This convention is preferred because

multiplication being the primary operation in SAC architecture does not yield

same results as two numbers multiplied together when their 2’s complement equiv-

alent numbers are multiplied. For instance, -2×-4 in 2’s complement artihmetic

would be “1110”×“1100” = “10101000” 6= 8. While interpreting the 9-b number,
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MSB denotes the sign and remaining 8 bits represent the magnitude.

Figure 5.1: The notional representation of binary point in fixed-point number sys-
tem.

The range of the numbers following this convention is +511 to -511. However,

the resolution of these numbers is programmable which results in multiplying the

said range with a fixed scaling factor. This can also be interpreted as repositioning

the binary point in the number resulting in a notional split as shown in Fig. 5.1.

The scaling factor in binary is 2 raised to the number of bits to the right of the bi-

nary point. While interpreting a binary number, the binary point could be moved

in three ways listed below. For the following discussion, i denotes the number of

bit positions the binary point has moved.

• Moved to right: This case represents that the actual number is greater than

the corresponding stored binary number and additional zeros are appended

if the binary point is moved beyond the LSB. The scale factor in this case is

2i. Such interpretation may be of use when the higher order bits indicate

significant information.

• Remained at its position: This case indicates that the actual number is the

same as its binary representation and scale factor is unity.

• Moved to left: This case indicates that the actual number is smaller than

the represented binary number and scale factor is 2−i. This interpretation is

beneficial when the input resolution is of significance i.e. input data range is

small and minute changes in data translates into large variation in output.
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5.2 Control Word for Various functions and Topolo-

gies

The control word contains four field, namely resolution, code, config and feedback,

which give rise to various architecture topologies. Collectively these fields ad-

minister the datapath, data input through circular memory, generated outputs of

the SAC architecture in ways discussed next. The code and config field for targeted

functions are presented in Table 5.1. The code acts as target function identifier and

controls the data read write operations of circular memory. This includes amount

of data written into and data reading methods (single or multiple read pointers)

of circular memory. The config field is primarily responsible for configuring the ar-

chitecture datapath using configuration and bypass multiplexers. There are a few

cases where two functions share the same config whereas have different codes.

This is because these functions have different coefficient selections in the coeffi-

cient multiplexers which is based on code field. For example, multiplication and

square have same config but external data is forced in coefficient in former whereas

data and coefficient both are the same in latter case. The feedback word depends

on the function requirements i.e. feedback exists or not. In case a feedback exist in

a function, for example an IIR (Infinite Impulse Response) filter, the output can be

fed back to the architecture data register by forcing appropriate data in the feed-

back field. For instance, with FB4 =“00”, the Tile #1 output is fed to RU #4 (tile #2)

data register, resulting in a configuration involving tiles #1 and 2 collectively pro-

ducing the final result. One can also feed the collective output of two tiles (feed12

and feed34) as feedback.

The bits 4-0 of the control word are connected to the 2:1 multiplexer in the

RU. It is preferable to forward unregistered input (fbi = ’0’) to RU when feedback

data is involved as registering the feedback value consumes a clock cycle and

upsets the computation synchronization. For instance, going back to the IIR ex-

ample spread over Tile #1 and 2, output (y[0]) is generated in eight clock cycles

(8th clock) and is forwarded to RU #4 data register. By the time y[0] is registered

i.e. 9th clock, the next output ( y[1]) computation has already begun and coeffi-
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Table 5.1: Control word for target functions and topologies.

Function Code Config
Multiplication 01 00000000
Square 02 00000000

Addition/MAC

03/07(3-tap) 00D00000
04/08(6-tap) 0AD60000
05/09(9-tap) 0AD640D

06/0A(12-tap) 0AD66AB7

FIR, d
dx , MA

0B(9-tap) 00700000
0C(18-tap) 2FFE0000
0D(27-tap) 2FFF4070
0E(36-tap) 2FFF6FFF

DWT 0F 0AB66FD7, fb19=‘1’
2-D Convolution 10 00D00000
CORDIC 11 00D04040, fb19=‘1’
DCT 12 0AB66FD7, fb19=‘1’
Topology Config Feedback
Four Tile 0E724E73 –

Systolic Tiles
Tile #1 output fed to Tile#2
( or #1–>#2) 1E720000 0008

#1–>#2–>#3 1E72C070 008C
#1–>#2–>#3–>#4 1E72DE73 00CE
RU#1-18–>#3–>#4 2FFEDE73 01C6

cient in Tile #1 RUs are rotated by one place. The partial products accumulated

at this stage is PP7Tile#1 and does not include partial product generated from RU

#4. The partial products from RU #4 starts generating from the 10th clock. The

partial product accumulation in this clock is (PP6Tile#1 + PP7RU#4), which results

in erroneous computation of all the subsequent outputs after y[0]. Alternatively,

if unregistered output is propagated through, the partial product accumulation

term at 9th clock becomes PP7Tile#1 + PP7RU#4 and thus accounts for the feedback

output. The feedback field value for few topologies is listed in bottom section of

Table 5.1. The first entry depicts a configuration where the output from Tile #1

is fed as input to Tile #2 or RU #4. FB4 is set to“00” selecting feed1 in feedback

multiplexer Fb4_mux and all fbi but fb4 is set.

Resolution is of prime importance in functions with feedback and ensures sig-

nificant bits are involved in computation especially in binary system. For instance,
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1.100000000 10-b binary output with one bit in the integer part and 9 bits fractional

part representing a resolution of 2−9. If the feedback bits are not configurable but

fixed to, lets say, 7th-0th bits where 0th bit represent the LSB, zero would be fed

back instead of the significant bits of the output resulting in erroneous output cal-

culations. This problem is addressed by making the resolution configurable by

means of selecting the resolution bits in the control word. These bits determines

the output slice fed back to architecture. Resolution bits when set to “0000”, feeds

back the 7th-0th bit section i.e. decimal equivalent of resolution bits decides the

lower bound of feedback section. For the 10-b output example chosen earlier, the

setting the resolution bits to “0010” would result in feeding back 11000000 out-

put slice and retains the significant section of output for computations. For a 22-b

output, there exists fifteen 8-b sections. These sections are tabulated in Table 5.2.

Table 5.2: The resolution bits are respective output sections selected for feedback.

Resolution Bits Output section fedback
0000 7th - 0th

0001 8th - 1st

0010 9th - 2nd

0011 10th - 3rd

0100 11th - 4th

0101 12th - 5th

0110 13th - 6th

0111 14th - 7th

1000 15th - 8th

1001 16th - 9th

1010 17th - 10th

1011 18th - 11th

1100 19th - 12th

1101 20th - 13th

1110 21th - 14th

5.3 Configuration of the Architecture

The SAC architecture is developed in VHSIC (Very High Speed Integrated Cir-

cuit) Hardware Description Language, commonly known as VHDL, and tested

on ModelSim for functional integrity. We now present the various function con-
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Figure 5.2: Architecture input bus. The zoomed section denotes the multiplication
results and 8-b serialized output.

figuration details. The architecture is said to be configured once the control word,

external coefficients and data are loaded in their respective memories. These val-

ues are provided to the architecture through a 9-b input bus in a time multiplexed

manner. The 54-b control word is applied on the 9-b input bus in chunks starting

with the LSB chunk i.e. 8th - 0th bits. Every time a new chunk arrives the previous

chunk is shifted down the control word register. Following this process, the con-

trol word takes 6 cycles for loading. The external coefficients are loaded next and

comprise of 36 9-b binary numbers. The coefficient loading follows the shifting

down technique employed for control word. They are loaded into the coefficient

memory in 36 clock cycles starting with coefficient #1 which shifts down to its own

memory location once all the 36 coefficients are loaded. Following this, input bus

carries the data designated for the 9-b wide 64 position deep data memory. How-

ever, the amount of data and consequently the clock cycles to load it, is highly
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dependent on input data requirements of the target functions. The estimates of

data loading clock cycles are presented in a later section (Sec. 5.10) in this chapter.

The interpretation of input bus contents as control word, external coefficient

or data requires proper delineation. This distinction is achieved by means of con-

trol signals generated using state machine controlling the function execution on

the architecture. The control signals comprise of three enable signals, namely,

ControlWord_Enable, Coe f f icient_Enable and Data_Enable, shown in Fig. 5.2.

The ControlWord_Enable signal is held ‘high’ for the first six clock cycles after

reset and control word is forced on the input bus in a sliced chunk manner. The

Coe f f icient_Enable signal is held ‘high’ for the next thirty-six clock cycles treat-

ing the input bus as carrying external coefficient. Following this, the Data_Enable

signal is made ‘high’ indicating input bus holds the data. The generated control

signals are mutually exclusive and no two control signals go ‘high’ at the same

time. As an illustration (see Fig. 5.2), let the architecture be configured as multi-

plier with code = 01H, multiplicand = 02H and multiplier = 03H. The multiplier

is loaded as data and multiplicand as coefficient #1. The output bus in holds the

output = 06H also seen in the zoomed section of the figure. This 23-b output is

divided into four groups of 8-b starting from LSB for interfacing with the con-

ventional 8-b output ports and limiting the number of I/Os. The architecture

proceeds to the computation phase after configuration.

5.4 Simulation Results

5.4.1 FIR Filtering

The FIR filtering operation is functionally verified on the architecture using the

Low Pass Filtering (LPF) computation of the Pan-Tompkins Algorithm (PTA) [2]

signal chain. In the biomedical signal processing domain, PTA is a widely used

algorithm for QRS detection in Electrocardiogram (ECG) signal. The PTA signal

chain, shown in Fig. 5.3, is a combination of linear and non-linear functions con-

sisting of noise filtering, differentiation, square and moving average operations.

The LPF of PTA is mathematically expressed as y[n] = x[n]− 2 · x[n− 6] + x[n−
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12] + 2 · y[n − 1] − y[n − 2] represents an IIR (Infinite Impulse Response) filter-

ing operation consisting of three input and two output samples in present and

delayed forms.

The input samples are spread across a window of size 13, hence the 18 RUs

connected in a systolic array is suitable. The 18 RU chain can be realized by con-

necting Tiles #1 and 2 together and RU# 1, 7 and 13 are loaded with coefficients 1,

-2 and 1, respectively. The output feedback samples can be applied to RU #34 as

they are spread across a window of size 2 making RU # 34 and 35 as active RUs.

The coefficient of other RUs is maintained at 0. Thus, the PTA LPF can be mapped

on the SAC architecture in Tiles #1, 2 and 4.

The standard MIT/BIH (Beth Israel Hospital) arrhythmia database [55, 56] is

used as input. It encompasses the ECG signal plotted in Fig. 5.4(a) after normal-

ization. The hardware results (thin line) are plotted in Fig. 5.4(b) along with the

MATLAB results (thick line). It can be seen that minor variations are flattened in

hardware results due to limited resolution in output feedback. On the other hand,

the hardware and MATLAB results exhibit good coherence at higher signal range

in positive as well as negative excursions.

Figure 5.3: The Pan-Tompkins Algorithm signal chain.

Table 5.3: Range and Resolution of CORDIC on developed Architecture

HDL resolution
Functions H/W Input Range Output Input
sin, cos −90◦ to +90◦ 2−7 2−1

sinh , cosh, exp -1.118 to +1.118 2−7 2−6

ln 0.1068 to 9.360 2−6 2−4
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Figure 5.4: Hardware and MATLAB results for LPF in PTA.

5.4.2 CORDIC Algorithm

The SAC architecture supports radix-2 CORDIC in its conventional range and res-

olution mentioned in Table 5.3. The position of the binary point is indicated by the

resolution. For instance, binary point between the 1st and 0th bit represent resolu-

tion 2−1 . Additionally, input resolution denotes the precision of input provided

to the architecture and gains importance for functions yielding large change in

output with small change in input (Ex: exponential function). The target range

for circular trigonometric functions covers the entire spectrum of input whereas

hyperbolic trigonometric, exponential and natural logarithmic functions range is

meagre due to convergence issues. The range for hyperbolic functions can be in-

creased by repeating certain iterations [173]. However, any mechanism to expand

the CORDIC range is not attempted in this thesis.

The hardware simulation results are shown in Fig. 5.5. The signal names filled

with gray are internal to the architecture and provide CORDIC mode of operation

information i.e. rotation or vectoring and circular, linear or hyperbolic. After

eight iterations, the variables y8, z8 and x8, takes values 03F, 003 and 06A having

0.4921875, 1.5◦ and 0.829125 as their decimal equivalents while computing sin30◦

and cos30◦ using CORDIC in rotation mode. The results obtained from hardware
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simulation agrees well with the ideal (MATLAB) results for functions sin(cos);

sinh(cosh); ex and ln(x) and are shown over their respective conventional range

in Fig. 5.6(a)-(d). The architecture computes cosine with accuracy ranging from

98%-83%. The resolution is 2−1(= 1 bit) when the binary point is between 1st and

0th bit position. Thus, the smallest degree with which the variable can change is

0.5◦ while the remaining 7 bits denotes range of the input data. The range of %

relative accuracy of functions is provided in Table 5.4. The Cosine function suffers

a decrease in accuracy in small values of cosine which augments the error.
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Figure 5.6: The hardware and MATLAB results for (a) Sine and Cosine (b) Hyper-
bolic Sine and Cosine (c) exponential (d) natural logarithm functions.

Table 5.4: % relative accuracy for CORDIC functions.

Function Relative Accuracy Range (in %)
Sine 99.8-93.6
Cosine 98.4-72.5
Ln 99.23-87.8

5.4.3 Discrete Cosine Transform (2-D DCT)

The results for 2-D DCT operation are presented in terms of image compression,

its most common application. The fundamental basis for certain design choices is

discussed first. The computation complexity of multiplications and additions in

matrix multiplication are both order of O(n3), where n is the dimension of the ma-

trix. Therefore, computing the 2-D DCT of an image becomes challenging task for

hardware implementation as dimension of image increases. In such cases, using

the block wise DCT operation is preferred, wherein the image is partitioned into

small blocks and then DCT is performed on these blocks or sub-images indepen-
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dently. In addition to reducing the computational burden, storing only necessary

blocks of image instead of the entire image reduces the memory requirements.

Three parameters are observed while selecting the size of DCT matrix which

are computational complexity, compression achieved, and the error. In this case,

the error is defined by the difference between the test image and the reconstructed

image obtained by performing DCT and IDCT operation, correspondingly on the

test image. Thus, the DCT of a standard Lena intensity image of size 128×128 is

analyzed by varying both the mask size as well as the coefficients to be retained

after DCT transform in MATLAB. To quantify the error between original image

and the reconstructed image, Mean Square Error (MSE) is used, which is given by

eqn. 5.1.

MSE =
1

128× 128

127

∑
x=0

127

∑
y=0

[Imgactual(x, y)− Imgreconstructed(x, y)]2 (5.1)

Table 5.5: Comparison of various mask size with respect to computation, memory
and MSE metrics.

Mask ∼ 50% Compression ∼2.9e-3% MSE
Size <Computation, Mem,MSE> <Computation, Mem, Compression>
2×2 <9.8e4, 8kB, 1e-3> <3.6e4, 4kB, 75% >
4×4 < 2.2e5, 8kB, 3e-4> < 6.7e4, 3kB, 81%>
8×8 <4.9e5, 8kB, 1e-3> <1.3e5, 2.5kB, 84%>

16×16 <1.01e6, 8kB, 7.4e-4> <2.3e5, 2.3kB, 86%>

It can be observed from the Table 5.5 that for a particular compression, the

number of computations reduces with smaller masks. However, with smaller

mask size, reduced number of DCT coefficients are retained which affects the

quality of the image and is reflected in the table as degrading MSE. The 8 block

size is adopted in this thesis because of its wide acceptability [174] based on a

balanced trade-off between the number of computation and error encountered.

Furthermore, the compression ratio of an image, defined as the number of fre-

quency components retained over the total number of such components, needs to

be optimal along with the amount of computations and error. For block size of

8× 8, the number of computations and the MSE converge at an optimal point of
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10 (shown in Fig. 5.7 ). This leads to retaining 10 coefficients out of 64 coefficients

for a standard 8× 8 mask which results to a compression ratio of 84.38%.

Figure 5.7: Convergence point for DCT matrix of size 8x8.

The test setup for DCT is shown in Fig. 5.8(a). The 8×8 image sub-blocks un-

dergo 2-D DCT operation on the SAC architecture and results are fed to MATLAB

which reconstructs the image by performing offline block wise 2-D IDCT. The re-

constructed image obtained from hardware simulations and MATLAB (Fig. 5.8(b)

and (c)) is compared with the original image using L2 norm, that is reported as

15.77 and 15.75, respectively.

5.5 Hardware Results

The architecture is ported on Virtex-II pro FPGA development board. A brief dis-

cussion on the various components of the FPGA development board is presented

in section 5.6. The operating frequency of FPGA implementation is found to be

46.9 MHz. The system level interactions of various modules of the architecture is

shown in Fig. 5.9. Apart from the SAC architecture, the system has multiple mem-
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Figure 5.8: DCT (a) Hardware setup block diagram (b) Hardware computed (c)
MATLAB computed results.

Figure 5.9: (a)System level interaction of SAC Architecture with peripherals (b)
Actual hardware setup.

ory modules for configuration, control word, coefficient, data and output. Inbuilt

IP core generator is used for configuration memory and it provides control word,

coefficients and data to the architecture that are stored in their respective memo-

ries. The configuration memory is initialized using a coefficient file (.coe) that can

be generated using MATLAB for large data. A UART serial port (bit rate = 115200

bps) is interfaced with the architecture to migrate generated output to comput-

ers for analysis and necessary post-processing. For this, the output is temporarily

stored in output memory which when full signals the start of UART transmission.

A Video Graphics Array (VGA) interface is developed for visual perception of

data, images in particular. The design and development of interfaces is discussed

in detail in section 5.7.
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5.6 Overview of Field Programmable Gate Array (FPGA)

Board

In chip design, logic errors need to be eliminated early in the design to avoid

costly hardware re-spins. Thus, prior to the Application Specific Integrated Cir-

cuit (ASIC) implementation of the platform, the design requires to be verified

against the design failures that may happen due to erroneous human behavior.

The functionality of the design can be verified in simulation environment but it

does not guarantee its hardware counterpart. Hence, it is preferred to opt for

hardware emulation. FPGA chips present a viable technology for emulating com-

plex algorithms, leveraging advances in performance, capacity, and software sup-

port for FPGAs. The FPGA development Board speed up the verification process

by providing suitable interfaces to the FPGA chip, which help in verification of the

design. The FPGA board used in the thesis is Xilinx University Program Virtex-

II Pro Development Board [175] (shown in Fig. 5.10), which has interface VGA

and RS-232 ports among many other peripheral interfaces. It has an on-board

clock oscillator of 100 MHz and a provision of external clock input. The FPGA

chip embedded in the board is Virtex-II Pro “XC2VP30”, which has 30,816 logic

cells, distributed RAM of 428 Kb, block RAM of 2448 Kb, 8 Digital Clock Manager

(DCM), 644 user I/O pads, 2 hardcore PowerPC RISC cores, etc.

5.7 Design of Peripheral Interface Controllers

Interfaces are vital in any system and are of importance in the developed SAC ar-

chitecture for bringing the generated output out of the FPGA environment. This

data can be further sent to a display unit or a computer that validates the accuracy

of results and/or performs necessary post processing steps. This section presents

the two interfaces employed in the thesis with its design in VHDL, hardware emu-

lation on the FPGA followed by the results obtained. . Their protocol and function

of the interface controller are provided in Appendix A.
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Figure 5.10: XUP Virtex-II Pro Development System Board Photo

Design of VGA Controller

A controller is designed which drives these 5 pins of the port based on the timing

parameters tabulated above. In order to ensure proper functioning of the de-

signed controller, a simple demonstration application is chosen. The application

requires flipping of an image along its two principal axes depending on the posi-

tion of two switch (as shown in Fig. 5.10) present on the FPGA board and display

result on a display unit.

The controller module (shown in Fig. 5.11) is divided into different sub mod-

ule units based on the functionality called VGA timing unit, Pixel clock genera-

tion unit, RGB video unit, Transformation unit and the Memory unit. The design

methodology of these modules is discussed in the following subsections.

• Pixel Clock Generation Unit: The clocks available on the board run at 100

MHz, whereas the required pixel clock frequency is 25 MHz as specified
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Figure 5.11: Block Diagram of Image Processing Module

by the resolution standard. The FPGA has Digital Clock Manager (DCM)

unit as a primitive to derive clock of different frequencies and phases from

the master clock of 100 MHz. The advantage of DCM is that uses global

buffers (BUFG) which have outputs that are specifically designed to tolerate

the load of a large fan-out which prevents clock skew.

• Memory Unit: The actual image is stored in the Block RAM (BRAM) of the

FPGA. Due to the size constraint of the BRAM of the board, which is 2448

Kb, the actual image of resolution “240×160×24” is chosen, which occupies

900 Kb (240×160×24) of BRAM. The resolution “240×160×24” specifies 240

rows and 160 columns of pixels, where each pixel is represented by 24 bits (8

bits for each of the three color component). Hence, the FPGA can hold two

image files, the actual and its transformed version in BRAM. Two memory

modules, BRAM_1 and BRAM_2 which will be storing the two images are

generated, each having dimension of 38400 locations corresponding to the

38400 (240×160) pixels of the image with each memory location being 24-b

wide. The BRAM is initialized with the pixel values of the image using a
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coefficient file. The initialization requires the pixel values of the image to

be specified in a specific file format called the coefficient (.coe) format. In

this format, the data (pixels in present context) has to be specified in binary

or hexadecimal format separated by comma character. The data values get

assigned to the memory locations in ascending order, which means the first

data gets assigned to memory address 0, second data to address 1, and so

on. A MATLAB script is written which converts the image to corresponding

.coe file format.

Figure 5.12: Relation of sync signals with the pixels of the screen

• VGA Timing Unit: The timing unit generates h_sync, v_sync and blank sig-

nals. The h_sync and v_sync signals collectively determine the pixel coordi-

nates of the screen whereas the blank signal blanks out the screen at edges

and during retrace period. The mapping of these signals on a display screen

is shown in Fig. 5.12.

The h_sync and v_sync signals are generated using counters that form the

timing unit. The counters keep track of the number of pixels in the horizon-

tal and vertical direction. According to Table A.1, there are 800 pixels in the
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Figure 5.13: Logic for Timing Generation module

horizontal direction and 524 pixels in the vertical direction. To locate a pixel

in the 2-D plane, two 10-bit counters called horizontal counter and vertical

counter, referred as h_count and v_count, respectively are used. The three

signals, h_sync, v_sync and blank are varied according to the count values of

the two counters as shown in the Fig. 5.13. The sync signals are active high

whereas the blank signal is active low. The pseudo- code for the timing unit

consists of a mod-800 (pixel counter) and mod-525 counter (line counter).

The conditions for sync and blank signal are presented below:

h_sync <= ’0’ when ((h_count > 655) and (h_count < 752)) else ’1’

v_sync <= ’0’ when ((v_count > 490) and (v_count < 493)) else ’1’

blank <= ’1’ when ((h_count > 640) and (v_count < 480)) else ’0’

• RGB Video Unit: The image pixels stored in the memory has to be mapped

to the corresponding x-y coordinate of the screen. The screen scan coordi-

nates are derived from the synchronization signals (h_sync and v_sync). The

RGB module generates the read address of BRAM_1 and read address of
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BRAM_2 to access the 8-b Red, Green and Blue signals of the correspond-

ing pixel to be displayed, based on the x-y coordinate of the screen being

scanned. The three 8-b color components of the pixel is connected to the

onboard Digital to Analog Converter (DAC) IC, which generates the equiv-

alent analog signals for Red, Green and Blue pins of the VGA port.

• Transformation Unit: The flipping operation requires the pixel data present

in BRAM_1 to be rearranged in BRAM_2. Thus, a correlation is derived

between the write address of BRAM_2 and the read address of BRAM_1,

depending on the transformation function. The transformations incorpo-

rated are the Identity, Vertical Flip, Inversion and InvertFlip. The identity

transform duplicates the image in BRAM_2, Vertical Flip operation flips the

image along vertical axis, Inversion flips it along the horizontal axis and

InvertFlip performs flip along horizontal and vertical axis simultaneously.

The logic for the said transforms is shown in Table 5.6 in the form of math-

ematical equations. In order to select between the four transforms, the two

switches present on the board is used. The position of the switch selects one

of the four transforms and accordingly the transformed image is stored in

BRAM_2.

Table 5.6: Relation between write address of BRAM_2 with read address of
BRAM_1

Position of Switch Transform Write Address of BRAM_2
00 Identity wr_addr = read_addr
01 Inversion wr_addr = read_addr + (38399) - (240*count)
10 Vertical Flip wr_addr = (240*count) - read_addr -1
11 InvertFlip wr_addr = (38399) - read_addr

Results

The loons image along with the four transformations- Identity, Inversion, Vertical

flip, and InvertFlip is demonstrated on the monitor. The actual image is shown in

Fig. 5.14 and the corresponding transformed images are shown in Fig. 5.15 (a-d).
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Figure 5.14: Hardware Setup for image transformations using VGA interface.

Figure 5.15: Results for (a) Identity (b) Inversion (c) Vertical Flip (d) InvertFlip
transforms on the "240 x 160" loons image.

5.7.1 RS-232 Communication Interface

For objective analysis of the result, the output data must be compared with the

ideal counterparts obtained from MATLAB and deviation must be quantified.

A FPGA to computer communication interface aids providing/obtaining data

to/from FPGAs. The interface also serves the debugging purpose as data can

be easily comprehended. The RS-232 communication interface is adopted in this

thesis for this purpose.
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For a standard image of size “1280×720” where each pixel is represented by

8 bits, the total number of bits are 7.3728 Mbit (1280×720×8). According to RS-

232 protocol, every byte has an overhead of 2 bits (1 start + 1 stop) resulting total

number of bits to 9.216 Mbit. A Baud Rate of 115200 bps imply transmission of

115200 bits in one sec, hence “1280×720” image require 80 sec (= 9.216 M / 115200)

to get transferred from FPGA to computer.

FSM of UART Controller

The transmitter component of UART is employed in the thesis to transmit the

data from FPGA to PC. The UART is represented as a Finite State Machine (FSM)

shown in Fig. 5.16. It consists of four states idle, start, data and stop. The applica-

tion employing UART for transfer of data requires necessary signals to be gener-

ated at suitable intervals which governs the transition of states. Accordingly, the

FSM is controlled by four signals tx_start, end_of_data, data_bit and uart_clk. They

are defined as-

• tx_start: It implies start of communication through UART and is driven by

a signal that indicates that the data is ready to be sent.

• end_of_data: It is asserted when the entire data is read completely. It is used

to stop transmission of same data repeatedly.

• uart_clk: It is oversampled (16 times higher) clock signal of the baud rate

clock signal generated by the Baud Rate Generator module.Thus, there are

16 clock cycles of uart_clk in a single clock of baud rate.

• data_bit: It is a counter which counts the number of bits transmitted in data

state.

The detailed explanation of the four phases of the UART transmitter is now dis-

cussed. When the application employing the UART transmitter has data to be

transmitted through the interface, it dumps the data in a memory and generates a

signal (interfaced to the tx_start of UART transmitter) signifying the start phase of

transmission. When the entire data is transmitted it de-asserts this signal signify-

ing the end phase of transmission. The duration between the start phase and stop
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phase is reserved for transmission and is called transmission phase. The UART

transmitter stays in idle state when it is not in the transmission phase. The tx line

of the RS-232 port is held high (logic value ‘1’) in this state. The transmission of

data occurs in data state. Data is transmitted in frames of bits, where each frame

has a variable run length of data bits (5-8) and an optional parity bit. The start

bit is active low which drives the tx pin from high state to low state indicating

the start of data transmission. The stop bit is active high in order to support the

transition of high state to low state when consecutive frames are transmitted.

These phases are obtained by means of a state machine shown in Fig. 5.16.

The period of start bit, stop bit and data bit is same and decided by the baud rate.

When UART transmitter needs to transmit data, it asserts the tx_start signal to

‘1’ until the entire data is entirely transmitted. The high tx_start signal transits

the FSM from idle state (tx pin is high) to start state (tx pin is low). The UART

stays in start state for a period of 16 cycles of uart_clock (1 cycle of baud clock) and

then transits to data state, where the data is transmitted over the tx pin. The 8 bits

(preset to 8) of data is transmitted in little endian format and then the FSM transits

to stop state (tx pin is high). Now, if the status of tx_start (= ‘1’) and end_of_data

(= ‘0’) is satisfied, the FSM transits to start state and repeats the pattern. The

end_of_data signal is asserted when the application still needs to transmit data

which is under computation.

Design of UART Controller

The control signals necessary for transfer of data from FPGA board to computer

are generated by a custom designed UART controller based on the RS-232 stan-

dard. The designed controller reads data from the memory in parallel manner (8

bits at a time) and transmit it on the tx pin serially. When the memory is com-

pletely filled, a write_complete signal is asserted, which is connected to tx_start of

the controller. The active high tx_start marks the initiation of data transmission

through the UART.

The controller is divided into 3 sub-modules- Baud Rate Generator, Parallel to

Serial Converter and the Memory Controller as shown in Fig. 5.17. The Parallel to
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Figure 5.16: State Machine of UART Controller

Serial Converter is a shift register that loads data in parallel and then shifts it out

bit by bit at the preset baud rate. The FPGA board clock of 100 MHz is required

to be down converted to sixteen times the baud rate frequency to preserve the bit

value transmitted. Hence, a clock of 1.8432 MHz (=16×115200) needs is generated

using the baud rate generator which consists of a mod-54 counter. It divides the

100 MHz clock by 54 resulting in a clock frequency of 1.851 MHz. The Memory

controller generates the read address of the memory. When the last location of the

memory is reached, end_of_data signal is asserted which marks the completion of

transmission through the tx line.

Result

The data received at computer through UART can be viewed using any terminal

software. As a test case, a 16×16 checker board image is operated upon by 3×3

gaussian smoothing transform application. The computation is mapped on the

SAC architecture and UART interface is used to transfer the smoothed image to

computer. The output data received from UART is shown in Fig. 5.18 in the

CoolTerm serial terminal.
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Figure 5.17: Block diagram of UART Transmitter Controller.

Figure 5.18: Screenshot of Coolterm Terminal showing data received in hexadeci-
mal format

5.8 Discrete Wavelet Transform (2-D DWT)

The 2-D DWT operation of an image in one shot requires large memory which

varies according to the different sized images it operates upon. Therefore, DWT is
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Table 5.7: Comparison of the actual and reconstructed Lena images

Image1 Image2 PSNR(dB) Mean Square
Error

L2-
Norm

Actual Matlab Reconstructed 74.8819 0.0020 0.9904

Actual Hardware
Reconstructed 74.6535 0.0022 0.9514

Matlab Re-
constructed

Hardware
Reconstructed 87.7629 1.0883e-04 0.9606

implemented by block wise approach in this thesis. The two parameters observed

while selecting the block size are computational complexity and mean square er-

ror between the actual and reconstructed images. Thus, the 2-D DWT of a Lena

intensity image of size 128×128 is analyzed by varying the mask size in MATLAB.

The result obtained is presented in Table 5.8 as given below.

Table 5.8: The comparison of various 2-D DWT block sizes.

75% Compression
Block Size <Computation, MSE >

2x2 <3.6e4, 2.04E-03>
4x4 <8.6e4, 1.83E-03 >
8x8 <1.3e5,1.06E-04>

16x16 <3.8e5, 2.89E-04>

It can be seen from Table 5.8, that to achieve the same compression, the smaller

masks require fewer computations as compared to the longer masks but they suf-

fer from a higher MSE. For instance, performing 75% compression using 2x2 mask

requires only 9.4% (= 3.6e4) of the computations required by 16x16 mask (= 3.8e5),

but at the same time the MSE experienced is 7.06 (= 2.04e-3/2.89e-4) times of the

later. As shown in Fig. 5.19, the computation and MSE constraints converge at

a point close to mask size of 8×8. Thus, to balance this trade-off, the standard

practice of using an 8×8 mask size is followed.

5.8.1 Block ROM

The control word, wavelet filter coefficients and the image pixels are supplied into

the FPGA using a single port block Read Only Memory (ROM) available on the

FPGA board. The required memory depth is equal to 42 +( 7/4) N2 (6 bytes of the
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Figure 5.19: The MSE and # of computations plotted against different 2-D DWT
block sizes.

control word, 36 bytes of filter coefficients and (7/4)N2 bytes image pixels after

padding the N × N image).

5.8.2 Digital clock manager (DCM)

The operating frequency of the architecture is 46.9 MHz, which is reduced to

match up with the UART frequency to avoid losing data due to overwriting. The

baud rate of the UART is 115200 bps and takes 69.4 µs to read 1 byte. The resulting

frequency of the UART becomes 14.4 kHz. The lowest frequency that is possible

to generate from the DCM is equal to 1/16th of the input frequency, thus gener-

ating a clock frequency of 6.25 MHz since the clock frequency of the FPGA is 100

MHz, which is further reduced using a counter. The architecture generates 128

bytes of computed data in 440 cycles for one 8× 14 block of padded image. A 256

byte buffer is used which will first write complete 128 bytes of data coming from

architecture and then once the UART will start the reading that 128 bytes of data

in the meantime the architecture would have written another set of computed 128

bytes working @ 50kHz.
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Figure 5.20: Reading the approximation coefficient in MATLAB

5.8.3 Reconstructed image

We performed 2-D DWT on the architecture taking two standard test images as

the input, a 16 × 16 checker board image with Haar wavelet and a 128 × 128

Lena image with bior2.2 wavelet. The architecture computes the approximation

coefficients (i.e. LL sub-band) for both these images using respective wavelets.

Thus, the cA matrix obtained is of one-fourth the order of the original image. For

example, for 16× 16 checker board image the cA matrix is of 4× 4. These cA coef-

ficients are transferred from FPGA to PC through the developed RS-232 commu-

nication interface. The Fig. 5.20 shows the approximation coefficients being read

in MATLAB after performing 2-D DWT on Lena image using Bior2.2 wavelet.

The image is reconstructed using these coefficients which denotes 75% com-

pression i.e. only 25% of data (the cA matrix) since cH, cV and cD are discarded

and considered as null matrix. Reconstruction is done the reverse way of de-

composition, first is upsampling with zeros followed by periodic padding and

convolution with the wavelet coefficients. The Fig. 5.21 shows the reconstruction

of image IR from C coefficient matrix.

The mean square error between the coefficient matrix C (consisting of cA, cH, cV

and cD) and the reconstructed image matrix IR of both checkerboard and lena im-
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Figure 5.21: Reconstruction of image IR from the coefficient matrix C where cA is
the computed coefficients and cH, cV and cD are the null matrices

age is 0.3957 and 0.3022, respectively. The actual and the reconstructed images

both from the MATLAB simulation and the hardware implemented are shown in

Fig. 5.22 and Fig. 5.23, respectively.

Figure 5.22: DWT Results on 16×16 checkerboard image (a) Actual (b) MATLAB
simulated (c) Hardware computed.

These images are compared with MATLAB compressed counterpart in Table

5.9 for checkerboard 16 × 16 and in Table 5.10 for Lena 128 × 128.

Device utilization summary for the reconfigurable architecture with 2D-DWT

function for 128× 128 Lena image is given below:

Selected Device : 2vp30ff896-6

Number of Slices: 6234 out of 13696 : 45%

Number of Slice Flip Flops: 3915 out of 27392 : 14%
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Figure 5.23: DWT Results on 128×128 Lena intensity image (a) Actual (b) MAT-
LAB simulated (c) Hardware computed.

Table 5.9: Comparison of the original and reconstructed checkerboard images.

Image1 Image2 PSNR(dB) Mean Square Error L2-Norm
Actual Matlab Reconstructed Infinite 0.00 1.0000

Actual Hardware
Reconstructed 68.1271 0.01 0.8389

Matlab Re-
constructed

Hardware
Reconstructed 68.1271 0.01 1.1920

Table 5.10: Comparison of the original and reconstructed Lena images.

Image1 Image2 PSNR(dB) Mean Square Error L2-Norm
Actual Matlab Reconstructed 74.8819 0.0020 0.9904

Actual Hardware
Reconstructed 74.6535 0.0022 0.9514

Matlab Re-
constructed

Hardware
Reconstructed 87.7629 1.0883e-04 0.9606

Number of 4 input LUTs: 11462 out of 27392 : 41%

Number used as logic: 11206

Number used as RAMs: 256

Number of IOs: 3

Number of bonded IOBs: 3 out of 556 : 0%

Number of BRAMs: 15 out of 136 : 11%

Number of GCLKs: 6 out of 16 : 37%

Number of DCMs: 1 out of 8 : 12%

The clock cycles required for computing 2-D DWT is 496 per 8 × 8 block of a
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N × N image. In general, the for level-1 decomposition the total number of clock

cycles is (31/4)N2. For level-2 decomposition (31/4)N2 + (3/2)N2 clock cycles

are required and for level-3 decomposition (31/4)N2 + (3/2)N2 + (3/8)N2 clock

cycles are required. Thus, in total (77/8) N2 clock cycles are required for 3-level

decomposition.

5.9 Multiple Function realization

Tile #1 and 2 are mapped with FIR filtering leaving Tile #3 and 4 unused in the

four tile topology. The results for such configuration is captured in the serial port

window and shown in Fig. 5.24. The first 8-b section of output is forced to “FF”

to mark the start of result. The CU output is selected in such a way that every

result is repeated twice. The zero initial output indicates the cycles exhausted in

configuring the architecture and writing data into memory.

Figure 5.24: Hardware results for simultaneous mapping of two functions on SAC
Architecture.

5.10 Clock Profiling

The clock profile of the architecture can be broadly categorised into configuration

and computation phases. Configuration phase concludes once control word, co-

efficient and data are loaded through the 9-b input bus. The 54-b control word is

loaded serially and takes 6 clock cycles. Another 36 clock cycles are consumed in

loading 36 9-b coefficients. Data loading takes 1-64 clock cycles as required by the
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target function. For instance, multiplication requires one data whereas 64 data is

written in memory for DCT operation. The computation phase takes 8 clock cy-

cles to generate one output. However, certain functions may require intermediate

results computations prior to final output. Additionally, CORDIC computation

involve calculating three variable in each iteration. The computation cycles for

target functions is listed below:

• CORDIC - 24 cycles/iteration

• DCT - 336 cycles/8×8 block

• DWT - 496 cycles/8×8 block

• Others - 8 cycles for every output

Other activities like storing output does not consume additional cycles as they

are performed in parallel with configuration and computation phases resulting in

cycle optimizations. Additionally, cycle saving is achieved by adopting mapping

methodology that eliminates redundant computations as well as stores interme-

diate results within the architecture.

5.11 Gate Profiling

Each RU contains 9 XOR, 8 AND, 27 flip-flops and 1 2:1 multiplexer that totals

to 242 gates as 2:1 multiplexer and flip-flop have 4 and 7 gates, respectively.

There are 208 equivalent 1-bit adders in CU along with 42 flip-flops amounting

to 4376 gates. The configurable datapath multiplexers have 396 equivalent 2:1

multiplexer whereas coefficient multiplexers are the largest contributor with 9608

gates owing to large DCT, DWT and CORDIC multiplexers. This brings the SAC

architecture gate count to 24280 gates. The interfacing memory has 954 flip-flops

and adds another 6678 gates to the system.
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5.12 Comparison with Similar Works

The architecture developed in this work acts as multiple accelerator unit because

of its configurable datapath and adopts effective mapping methodologies trans-

lating to gate and clock savings. Authors in [22] advocates the use of accelera-

tors dedicated for commonly used signal processing operations like FIR filtering,

CORDIC algorithm, moving average intergration etc. The demonstarted biomed-

ical signal processing algorithm in [22] makes use of of the aforementioned func-

tions and the gate count reported for them is 11k, 9.3k and 37k, respectively with

operating frequency of 1MHz for individual execution of these functions. [21]

implements ECG signal processing algorithm on a custom microprocessor and

reports 36k equivalent NAND2 gates at 600kHz operating frequency. Another

biomedical signal processing system in [77] reports 195k equavilent NAND2 gates

This work reports a gate count of 24280 gates providing≈ 1.5× and 8× gate (and

area) savings with respect to [21] and [77] , respectively. Performance advantage

of ≈ 45× and 78 × is achieved as compared to [77] and [21].

Table 5.11: Comparison with state of the art.

[22] [21] [77] This work
Equiva-

lent Gate
Count

81.3k 36k 195k 24,280

f [MHz] 10 0.6 1 46.9

Target
functions

32-tap FIR,
65-pt median,
512-pt FFT,
CORDIC

LPF,HPF,
Derivative-
square,
moving
average, peak
detection

CWT based
QRS detection

FIR, Moving
Average,
CORDIC, DCT,
DWT,
Multiplication,
Addition,
MAC, Square

On-Chip
Memory 64kb - 2Mb 954b

Platform Hardware
accelerators Custom µP CoolFlux BSP

Custom
Reconfigurable
Architecture
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5.13 Conclusion

The hardware implementation of the SAC architecture on the FPGA development

board is presented in this chapter. The configuration methodology of the archi-

tecture is discussed which comprises of loading the control word, coefficients

and data. This is achieved using a time multiplexed 9-b input bus. The con-

trol word for target functions and different architecture topologies is provided.

The fields of control word can be configured independently which gives rise to

numerous architecture topologies and thus enables efficient realization of a wide

variety of functions. The simulation and hardware computed results for target

functions are provided along with their resolution and input range. The underly-

ing methodology behind choosing the mask size for DCT and DWT is governed

by the computational complexity and mean square error between the actual and

reconstructed data. This approach led to a optimal hardware implementation for

these functions. Two interfaces, VGA and RS-232, developed for visual percep-

tion and output communication between the FPGA and computer. The protocol,

required input signals and controller fundamentals are discussed in detail. An

interesting topology of realizing two functions simultaneously is also presented.

This realization further propelled this work towards incorporation of on-the-fly

reconfigurability. The cycle and gate count of the profile is presented followed

by the comparison with state-of-the-art realizations pertaining to biomedical sig-

nal processing applications. It is observed, that the SAC architecture realization

reports minimum gate count among dedicated or software-hardware implemen-

tations with similar target functions.
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CHAPTER 6

On-the-fly Application Reconfigurability

Often signal processing applications consist of a sequence of operations required

to be performed in succession. This is particularly true for applications pertain-

ing to the biomedical signal processing domain. bioelectric signals are analyzed

for certain characteristic features present in them which are indicatives of devi-

ation from their normal behaviour. For instance, QRS complex present in ECG

signal serves as arrhythmia indicator. For this purpose, there may exist a cou-

ple of signal processing blocks dedicated for feature extraction, classification etc.

In general, the low amplitudes of bioelectric signals are susceptible to noise aris-

ing out of multiple sources such as environmental, instrumental, physiological

etc. Therefore, noise removal block precedes the bioelectric signal analysis blocks.

Furthermore, static configurable system emulating the bioelectric signal process-

ing chain would require separate blocks configured for each of the functions in

signal chain connected in tandem. Alternatively, a single block with configurable

interconnection network can be used repeatedly to perform the signal chain func-

tions one after the other. Following this scheme, the hardware resources, memory

and I/Os are shared between the functions in a time-multiplexed manner with

dynamically changing datapath.

In this chapter, the possibility of incorporating the aspect of dynamic configu-

ration on the SAC architecture is explored and demonstrated by means of a state-

of-the-art QRS detection application. The SAC architecture has configurable inter-

connections which favours multiple and varied function/application emulation.

Adding the provision of dynamic configuration enables changing the datapath

on-the-fly without user interference. The elements of configuration, including the
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control word and various topologies exhibited, are discussed. SAC architecture is

demonstrated to support different biomedical signal processing operations in pre-

vious chapters (Chapters 4 and 5) along with its supporting memories. The exist-

ing data memory structure is conceptually divided into various sections to store

results of intermediate functions. Additionally, there exists few DSP operations

that have data dependencies, thus the methodology for function state restoration

is discussed. SAC architecture emulating the QRS detection application is ported

on the FPGA development board. Further, the circuit analysis of the design is

carried out for accurate energy and timing estimations. The on-the-fly reconfig-

urability concept is applied on the 3×3 variant of the SAC architecture. This lim-

its the number of functions that can be emulated on the platform. Nonetheless,

the scalable nature of the developed methodology enables adding multiple 3×3

blocks in the architecture and extracting higher order or complex functionalities,

that an individual 3×3 block might not be sufficient to support.

Figure 6.1: ECG fudicial points.
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6.1 Morphology of ECG signal

Much information provided by the ECG is contained in the morphologies of three

principal waveforms (a) P wave, (b) QRS complex, and (c) T wave. The cardiac

activity, magnitude and duration of characteristic features of ECG signal (shown

in Fig. 6.1) are presented in Table 6.1. Appendix B contains details of different

ECG lead systems.

Table 6.1: ECG characteristic features specifications for normal ECG signal.

ECG Feature Biological
Interpretation Contour Amplitude

(mV)
Duration

(ms)

P wave Atrial activation smooth <0.2*,
<0.1@ <120

PR interval impulse travel from
atria to ventricles - - 100-210

QRS Complex Ventricular
depolarization

sharp
and

peaked
<0.5*, <1@ 70-110

ST segment
transition between
depolarization and

repolarization
- -

T wave Ventricular
repolarization

smooth
and

rounded

<0.5*,
<1.5@ (460-110)

U wave prolonged recovery
or after potentials

10% of
T-wave

* Frontal plane leads,
@ Tranverse plane leads

6.2 Pan-Tompkins Algorithm (PTA) for QRS detection

QRS detection in ECG processing is an essential tool in diagnosing different med-

ical conditions [176]. A standard approach to detect the QRS complex is the Pan

Tompkins algorithm that detects QRS complexes with accuracy up to 99.3% [2] for

a 24 hour MIT/BIH arrhythmia database. The algorithm is modelled with steps

shown in Fig.6.2(a). The input ECG signal is passed through a band pass filter to

remove any spurious noise present in the signal that restricts the signal to QRS
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frequency band of 5Hz to 15Hz. The algorithm facilitates QRS detection by iden-

tifying the high slope QRS complex in the ECG signal by means of differentiation

and squaring. Following this, the moving average (MA) block extracts the QRS

width and the peak detection block detects the R waves based on the amplitude,

slope and width of the ECG signal [2]. The transfer function of the blocks is shown

in Table 6.2.

Table 6.2: Transfer function of PTA blocks [2].

Block Name Transfer Function
LPF (1-2z−6+z−12)/(1-2z−1+z−2)
HPF (-1+32z−16+z−32)/(1+z−1)
Differentiator (z−2-2z−1+2z1+z2)/8
Squaring x[n]2

Moving Average 1
k ∑k−1

i=0 x[n− i]

6.2.1 Pan-Tompkins Algorithm: Analysis and Discussion

In [2], the combination of low pass and high pass filters yielded integer coeffi-

cients for the frequency band of interest. However, the non-performance intensive

nature, in terms of operating frequency as well as incoming data rates, of biomed-

ical signal processing applications seldom requires coefficient restriction to inte-

gers or power of 2 [36]. However, to ensure minimum hardware implementation,

we reduced the LPF and HPF functions of PTA to a band pass filter (BPF) using fil-

ter design and analysis (FDA) tool in MATLAB by specifying its lower and upper

cutoff frequencies as 5 Hz and 15 Hz, respectively at the sampling rate of 200 sam-

ples/s. The BPF coefficients obtained from the FDA tool are shown in Fig. 6.2(a).

To ascertain whether 9-tap filter is adequate for acceptable noise removal in the

ECG signal the frequency response of BPF and LPF-HPF combination are plotted

using MATLAB (shown in Fig.6.2(b)). Approximately 78% of the BPF response

data points are limited within 1σ of LPF-HPF and 91% within 3σ, indicating good

coherence between both the magnitude responses. Fig. 6.3 (a) shows the ECG

signal processed using the PTA defined LPF-HPF combination and the 9-tap BPF

obtained from MATLAB after normalization. The absolute error between the two
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is plotted in Fig. 6.3(b). The maximum absolute and % relative error are 0.034 and

4.59%, respectively.

Figure 6.2: (a) Reduced PTA signal chain. (b) Magnitude response of LPF-HPF
and BPF in PTA.

Figure 6.3: Noise attenuation block. (a) The LPF-HPF (PTA) and modified BPF
operated ECG signal. (b) Absolute error between them.

In case of moving average (MA), selection of the right window size is crucial,

as too wide a window results in merging of both the R and T peaks into one peak

and too small a window causes multiple peaks in the QRS complex. The PTA
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Figure 6.4: The (3×3) SAC architecture along with its 18-b control word.

chain is analyzed for 9-point MA using a running window peak detection algo-

rithm having window size of 165 samples, which roughly indicates the frequency

of the ECG signal and yields a heart rate of 72.72 beats/s.

The peaks detected in 32-point and 9-point integrated ECG signals are shown

in Fig. 6.2(a) and 9-point MA also results in accurate peak detection. Therefore,

9-points MA operation is an acceptable solution while requiring lower number of

taps. The reduced PTA signal chain is shown as cross hatched blocks in Fig. 6.2(a).

6.3 The Shift-Accumulate (SAC) Architecture

Careful observation of the transfer functions of QRS signal chain indicates that

BPF, differentiation, squaring and MA functions can be realized by a series of

shift-accumulate operations resulting in multiplier-less implementation of these

functions. The modified PTA is mapped on the 3×3 variant of the SAC architec-

ture shown in Fig. 6.4. The partial products generated in register units (RU) are
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added in ripple carry adder tree in the computation unit (CU), producing the final

result after eight clock cycles. The RU structure and operational details of RU and

CU is discussed in Chapter 3.

6.3.1 Control Word and Configurable Datapath

The architecture is configured for multiple functions through the 18-b control

word that has two fields, namely, Code and Config. As shown in Fig. 6.4, the

code field is a 5-b binary data used to recognize the operation under execution.

For example, “00001" serves as FIR/differentiation/MA code, “00111" is code for

squaring etc. The config field is primarily responsible for defining the data path

for the function of interest as well as facilitates minimum RU implementation and

is composed of select lines of the configuration (CMx) and bypass multiplexers

(BPx), output tracking bit (SVO/P) and the feedback bit. The architecture con-

tains three 2:1 9-b configuration multiplexers and two 2:1 9-b bypass multiplexers.

The configuration multiplexer makes the selection between the external input, the

data from the previous RU and the feedback data (in case of CM1) using a 1-b se-

lect line. The multiplexers CM1 feeds 9-b truncated output as input to the RU

creating a feedback path. This is advantageous to implement functions that need

output feedback as is often required by DSP functions, IIR filtering for instance.

The bypass multiplexer disconnects RU from the active datapath when its se-

lect line is clear and vice versa, and feeds zero to the RU data register. The data

supplied to the data register of RUs through the configuration multiplexers is

shown in Table 6.3. The output tracking bit when set ensures storing of the output

in the memory for further use in other functions. The feedback bit (denoted as fb1

in the control word) is set for functions involving feedback and is clear otherwise.

The remaining bits in the control word are reserved for future modifications. For

instance, “0111110" in the config field connects the nine RUs in a sequential chain

as CM4, CM7 and the bypass multiplexers are set. Additionally, the generated

output is stored in the architecture (SVO/P = ‘1’) and the function implemented

on the architecture does not involve feedback (fb = ‘0’).
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Table 6.3: Data selection by Configuration and Bypass Multiplexers

RU1, RU2 and RU3 are always active having RU1→RU2→RU3 interconnection
CM4 BP4 CM7 BP7 RU Interconnection

Both BP4 and BP7 are ‘0’
X 0 X 0 RU1→RU2→RU3

Either BP4 = ‘1’ and BP7 = ‘0’ or BP4 = ‘0’ and BP7 = ‘1’
0 1 X 0 RU4→RU5→RU6,External data feeding to RU4
1 1 X 0 RU1→RU2→RU3→RU4→RU5→RU6
X 0 0 1 RU7→RU8→RU9,External data feeding to RU7

X 0 1 1 Not feasible combination as RU7 is connected to
RU6 but RU4 is bypassed

Both BP4 and BP7 are ‘1’

0 1 0 1 RU4→RU5→RU6; RU7→RU8→RU9, both
connected to External inputs

0 1 1 1 RU4→RU5→RU6→ RU7→RU8→RU9, RU4
connected to External input

1 1 0 1
RU1→RU2→RU3→RU4→RU5→RU6,

RU7→RU8→RU9, RU7 connected to External
input

1 1 1 1 RU1→RU2→RU3→RU4→RU5→RU6→
RU7→RU8→RU9

6.4 On-the-fly Reconfigurability

Biomedical processing algorithms often require multiple processing steps with

data processing rates ranging from 1k to 10k samples per second [36]. The SAC

architecture can support higher frequency (≥45 MHz) meeting the data processing

rates in addition to the multiple configurations on-the-fly.

For example, in PTA, the hardware can be first configured as BPF for n1 clock

Figure 6.5: Timing Diagram of QRS signal chain in respect to the input sample
frequency.
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cycles. Secondly, the control word can configure the SAC to a derivative block

for n2 clock cycles. Assuming the architecture takes n3 and n4 clock cycles to

configure and execute squaring and moving average, respectively, the total cycles

(ntot = n1+n2+n3+n4) can still be smaller than incoming data sample rate as shown

in Fig. 6.5. This indicates that the hardware spend majority of its time in idle state.

Additionally, on-the-fly configuration requires storing intermediate results and

restoring the state of intermediate functions prior to computation. This requires

effective memory management methodology if a large memory is to be avoided.

6.4.1 Memory Management and Interpretation Methodology

The circular data memory is interpreted in a novel manner resulting in a memory

management methodology for storing and feeding the data. The memory has one

write port and multiple read ports, each pointing to a separate memory subsec-

tion. These subsections provide easy access of data by direct addressing of the

read ports and is found particularly beneficial supporting multiple functions for

on-the-fly reconfigurability.

The 9-b 64 deep data memory stores intermediate data. Restoring the state

of a function requires nine data to be restored because of nine RUs present in

the signal chain. This restricts the signal chain to a maximum of seven functions

with the current 64 deep memory structure as executing seven functions one after

the other would require 63 (= 9×7) data to be restored. The memory structure

is shown in one of its many possible forms in Fig. 6.6(a), wherein it is divided

into four subsections, each 16 deep. For one after the other function realization,

the memory is divided into 9 deep seven subsections and one of the memory

location remains unused as shown in Fig. 6.6(b). As an example, the data input to

function1 (f 1) is stored in Location_0 of memory subsection I, denoted as <0,I>.

This data is processed through the SAC architecture and the resulting output is

stored at <0,II>. Function2 (f 2) uses <0,II> as input and its output is stored

at <0,III>. Following the same sequence, output of the intermediate functions

of the signal chain are stored in the first location (<0,i>, where i can be I, II,....,

VII) of memory subsections as shown in Fig. 6.6(c) whereas the final result of the
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signal chain, output7, can be propagated to a visual display or UART interface.

On repeated parsing of signal chain the input data as well as intermediate outputs

are stored in the subsequent locations in the respective memory subsection. Once

the memory subsection is full, i.e. all the nine locations are occupied, the write

pointers for the subsections are reset and the new data (or intermediate result) is

now written starting from Location_0 in every subsection.

Figure 6.6: (a) A general circular memory structure (b) Memory subsections for
on-the-fly reconfigurability (c) The state restore methodology in each memory
subsection (d) Data wrap around on every 9th traversal of signal chain.

6.4.2 State Restoring Methodology

The data restoring starts from the oldest (last) data in the function window due

to the inherent data shifting nature of the architecture. For example, while pars-

ing the signal chain for the first time, Location_0 holds the most recent data and

data restoration starts from the oldest data which is held in Location_1. (hatched
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Figure 6.7: The function execution state machine.

block in memory subsection I shown in Fig. 6.6(c)) for all the functions, f1 to f 7. In

the second parsing, the input data is stored in Location_1 of memory subsection

I and subsequently the output of intermediate functions (f1 to f 6) are also stored

in Location_1 of the memory subsections making it the most recent data and Lo-

cation_2 the oldest. Therefore, restoring starts from Location_2 (hatched block in

memory subsection II shown in Fig. 6.6(c)) during second parsing. It can be stated

that for nth parsing of the signal chain, the restoring starts from Location_i, where

i is {(n+1) mod 9}. Therefore, the memory structure is designed to accommodate

this regular updation of the restoring location with each parsing. The restoring

address wraps around after every nine parsing and ‘data1’ is replaced by ‘data10’

as shown in Fig. 6.6(d), however, the restoring methodology remains the same.

6.4.3 Configuration Methodology

The state machine for the complete execution is shown in Fig. 6.7. Firstly, it

enters the RESET state on reset for initialization to ‘0’. Then, it proceeds to the
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Figure 6.8: Timing diagram for QRS configuration.

CONFIGURE state where the control word and coefficients are loaded. In the fol-

lowing WRITE_READ state, valid data is written into (and later read from) the

data memory depending on the information in the code field of the control word.

In case of on-the-fly reconfiguration of the architecture, only one data is written

into memory and reading is done in the RESTORE state. In the RESTORE state,

the data is fed to the architecture according to the restore location as discussed

in section 6.4.2. Once the state of the function is restored, the execution moves

to COMPUTE for computing the result. The computed result is stored (in case

of intermediate functions) or directed to appropriate output device (for the final

output) in the COMPUTE_DONE state and the execution is again handed over to

the CONFIGURE state. This configures the core for the next function in the signal

chain. The execution follows the path denoted in solid line across the states in on-

the-fly reconfiguration mode. However, in single function mode, the execution

follows the path shown in dotted line in Fig. 6.7. When the architecture is config-

ured only to perform one function and not chain of functions, the RESTORE state

is skipped to proceed directly to COMPUTE state after the WRITE_READ state.

This is because, reading (and supplying) data to the architecture is concluded in

the WRITE_READ state itself. Additionally, once an output is computed in the

COMPUTE_DONE state, the execution can proceed to either STOP_COMPUTE

state or WRITE_READ state based on the processed function.

The execution stays in the STOP_COMPUTE state, unless reset in case of op-

erations that generates result in one computation like squaring, multiplication,
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addition and shift. However, while performing window operations like FIR and

2-D convolution that generally operate on stream of data, the execution moves

to WRITE_READ state that provides data to architecture as well as capture input

data samples.

QRS Configuration

The timing diagram for QRS configuration is shown in Fig. 6.8. Following the

RESET state, the SAC architecture is configured for the BPF function in the CON-

FIGURE state. The code for BPF “00001" causes loading the BPF coefficients into

coefficient registers of RUs. External input is written to the circular memory in

WRITE_READ state and execution proceeds to RESTORE state on sensing the

SVO/P bit. Output of BPF is computed in COMPUTE state once the architecture

state is restored. The output is stored in circular memory sensing the on-the-fly re-

configuration mode. Further, the code field directs the execution to CONFIGURE

state where the architecture is configured for the next function i.e. derivative. The

aforesaid sequence of states is repeated for the complete QRS signal chain.

6.5 Results and Discussion

6.5.1 System overview

To demonstrate the feasibility of the proposed architecture, the design is targeted

onto an Virtex-II FPGA board (XUPV2P). The operating frequency of FPGA im-

plementation is found to be 46.9 MHz.Among various methods of initializing con-

figuration data, the .coe (coefficient) file format is adopted in this work. For on-

the-fly reconfiguration, a configuration is represented as a set of twelve 9-b data

wherein first two data represent the control word, the following nine data repre-

sent the coefficients and last data denote the input sample to be processed which

is loaded into the 9-b wide configuration memory generated using the in-built

memory IP.

The control word, coefficient and data are distinguished and stored in their

respective memories by means of three control signals generated in the CONFIG-
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URE state of the state machine (Fig. 6.7). The SAC architecture generates 21-b

output every eight clock cycles which is stored in the 8-b 36 deep output mem-

ory in slices of 8-b with three zero padded in the MSB side. Therefore, three 8-b

data in the output memory denotes an output of the architecture and the memory

can hold twelve such outputs. The data stored in output memory is sent to the

computer using UART module developed following the RS-232 standard with a

baud rate of 115200 bps. The UART is triggered to start transmission once the

output memory is full and the execution in the architecture is stopped which is

later resumed once UART is finished sending the data from output memory. Due

to its relatively small size, both the output and data memories are implemented

as synthesized register files.

Table 6.4: Range and Resolution of functions in PTA signal chain

Range 〈Max,Min〉 Required
Function Dec Hex Resolution
Normalized
ECG I/P 〈1,0.49〉 〈80,3F〉 2−7(=7.81e-3)

BPF O/P 〈0.45,1.63e-2〉 〈E9,08〉 2−9 (=1.95e-3)
Derivative O/P 〈4.96e-2,1.2e-8〉 〈CB,00〉 2−12 =(2.44e-4)
Squaring O/P 〈2.5e-4,1.45e-16〉 〈A3,00〉 2−16(=1.52e-5)
MA O/P 〈1.4e-4,1.96e-9〉 - -

Table 6.5: Resolution of PTA functions and their representation in the control word

Resolution Resolution bits of
Function 〈Coefficient,Input〉 Final Control_Word
BPF 〈2−11,2−7〉 2−18 1001
Derivative 〈 2−10,2−9〉 2−19 0111
Square 〈 2−12,2−12〉 2−24 1000
MA 〈 2−11,2−16〉 2−27 0011

6.5.2 QRS Detection

Range and Resolution of PTA functions

Storing the 21-b intermediate results in 9-b memory results in loss of accuracy

due to limited resolution. This can be minimized by storing the nine most signif-

150



icant bits of the result located by identifying the range of functions (shown in Ta-

ble 6.4). For example, the normalized ECG signal from the MIT/BIH arrhythmia

database [55, 56] has values between 1 to 0.4943. As the usable peak information

lies in the maximum value of the ECG signal, the resolution is chosen to accom-

modate the maximum value. This is because the minimum value is of secondary

importance in case of QRS detection and represents only the S-peak information.

The architecture employs saturated mathematics and clips values of signal smaller

than the resolution to zero. Figure 6.9 (a-l) shows the MATLAB generated wave-

forms at the output of every function block in PTA chain computed in double and

saturated mathematics. It can be observed that the usable peak information is re-

tained in the waveforms obtained after saturated logic. Figures 6.9 (e,f,i,j) shows

the zoomed sections of differentiation and squaring outputs, respectively about

zero axis. The minor variation about the zero axis are flattened out in the out-

puts computed due to saturated maths for the reason discussed now. The data

range for differentiation output listed in Table 6.4 is from 4.96e-2 to 1.2e-8. A pre-

cision of 2−5 is required to represent the upper limit 4.96e-2 i.e. the binary point

is assumed four positions to the right of the MSB. However, as the four leading

bits in representing the required range are always zero, the MSB can be assumed

to represent 2−5 weight which leads to realizing a higher resolution with smaller

number of bits. For instance, if we assume the number to be 8-b wide, a resolution

of 2−12 as opposed to 2−8 is achieved with MSB weight equals to 2−5. The MSB

weights for the remianing intermediate outputs is assumed likewise according to

the upper bound of the output range. However, it can be observed from Table 6.4

that while keeping the upper bound in range the lower bound of differentiation

and squaring outputs which is smaller than and hence can not be represented

correctly in the achievable resolution . This causes the values falling below the

achievable resolution to be clipped to zero. The number of values clipped to zero

for differentiation and squaring are 769 and 3079, respectively.

Resolution of PTA functions cannot be predicted apriori as it largely depends

on function under execution as well as the input data set. This is solved by send-

ing the resolution to the architecture as a part of the control word. The resolution
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Figure 6.9: The MATLAB computed results of each PTA block in double and 8-b
precision. (a,b) BPF. (c,d) Differentiation. (e,f) Differentiation zoomed about zero
line. (g,h) Squaring. (i,j) Squaring zoomed about zero line. (k,l) Moving average.

mentioned in control word decides which section of the 21-b output is to be re-

tained. For example, if the mentioned resolution is “0000”, then the last eight bit

section i.e. bit 0 to bit 7 along with the sign bit is retained. Table 6.5 presents the
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data and coefficient resolution PTA functions along with resolution bits of the con-

trol word. The final resolution indicates the resolution of 21-b outcome generated

as the result of multiplying data and coefficient. For instance, the BPF function has

resolution 2−18 i.e. in the 21-b output, three bits (starting from the MSB) indicates

whole number part whereas remaining bits indicate fractional part of the result.

On analyzing output of PTA in MATLAB, we figured that only a resolution of 2−9

is required to represent the entire range of BPF output (see Table 6.4). Therefore,

we only store the relevant section i.e. bits 2−2 to 2−9 or 16th bit to 9th bit. Hence

the bits indicating resolution in the control word are set to “1001".

Mapping on SAC Architecture

The code and config fields of control word for the functions in the PTA is shown in

Table 6.6. The BPF, derivative and moving average functions decompose into the

fundamental multiply-accumulate operation using all the nine taps, and hence

have the same control word. The save output bit (SVO/P) is set to save output of

current computation for subsequent use and fb1 bit is reset as feedback does not

exist in PTA transfer functions.

Table 6.6: Control word of the PTA based QRS detection signal chain

Control Word
ConfigFunction Code CM1 CM4 BP4 CM7 BP7 SVO/P fb1

BPF {
00001 0 1 1 1 1 1 0Derivative

MA
Square 00111 0 0 0 0 0 1 0

PTA Implementation - Output obtained from MATLAB and FPGA

Under PTA, the ECG signal is passed through a band pass filter followed by slope

detection, slope accentuation and running integration. The PTA is executed both

in MATLAB and hardware and the stage wise results are presented in Fig. 6.10.

The moving average output is plotted in Figure 6.11 separately for direct compar-

ison with MATLAB output. The dashed line and the triangular points indicate
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Figure 6.10: Hardware computed PTA results (a) BPF. (b) Differentiation. (c)
Squaring (d) Moving Average.

MATLAB and hardware computed results, respectively, when output at interme-

diate stages is saturated (or clipped). It can be seen that both the waveforms over-

lap completely. The output has an initial peak due to the dc component present

in the ECG signal and is of secondary importance while detecting QRS complex.

The other two peaks, occurring at sample #100 and #155, represents the integrated

QRS and T peaks. On applying the peak detection algorithm on the moving inte-

grated results, the QRS peak (precisely the R-peak) being the maximum (ignoring

the dc component peak) gets easily detected.

The solid line in Fig. 6.11 indicates the moving average output computed

by MATLAB without output saturation (or clipping) i.e. the entire 21-b output
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Figure 6.11: The comparison of MATLAB and hardware computed results with
and without bit truncation along with the ECG signal.

is used for computation. The unsaturated result is observed to be scaled and

slightly shifted in samples when compared with the saturated result. As both the

waveforms retain the same shape, scale-up or sample shifting hardly affects the

detection of QRS complex.

Table 6.7: Clock cycle consumed in Configuration and Computation of the Archi-
tecture

Reset 1
Configure 11
Write_Read 1
Restore 75
Compute 8
Compute_done 1

Total cycles consumed in executing one function = 97
Total cycles consumed in executing seven functions = 97+6×96 = 673

Clock Profiling

We now discuss, the number of clock cycles that is taken while executing the state

machine shown in Fig. 6.7. Once the configuration memory is written, the code

execution reaches CONFIGURE state after RESET. In this state, all the necessary

data to initiate computation i.e. control word, coefficients and input data is loaded

through a 9-b input bus. The control word is 18-b wide and requires two cycles

for loading. Following the control word, nine 9-b coefficients are loaded that takes

nine clock cycles. This concludes the configuration in a total of 11 clock cycles and
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execution moves forward to the WRITE_READ state. The WRITE_READ state

takes one clock cycle in case of on-the-fly reconfiguration and execution advances

to the RESTORE state. The previous inputs or intermediate outputs are restored

in the RUs from the circular memory in this state. The data is restored sequen-

tially and takes eight clock cycles to move from one RU to another. Therefore, it

requires 72 (= 9×8) cycles to restore nine data. The execution stays in this state for

another 3 cycles and generates the load and control signals for the coefficient and

data necessary for synchronized results generation before proceeding to COM-

PUTE state which takes 8 clock cycles while performing multiplication by means

of serial generation of partial products.

Once the result is computed, it is stored in the circular memory in the COM-

PUTE_DONE state and requires one clock cycle. The execution again moves to

the CONFIGURE state for subsequent functions configuration and computation.

The clock cycles consumed in traversing the signal chain of seven functions are

presented Table 6.7 along with state wise cycle bifurcation.

Gate Count

The number of gates of the SAC architecture is estimated as 3192 gates and are

presented in Table 6.8. The adder tree consists of ripple carry adders (RCA) equiv-

alent to 123 1-b full adders. In addition to the gates in SAC architecture, 36×8-b

output memory elements, 64×9-b circular memory elements and 18 control word

memory elements are present as part of memory interfaces.

Table 6.8: Gate Count of the Architecture

AND XOR OR NOT Reg-Gates
RU 26 9 9 9 189

RU X 9 234 81 81 81 1701
Adder Tree 246 246 123 - -
21-b Adder 42 42 21 - -
Sum_Acc Reg - - - - 147CU

{
Output Reg - - - - 147

TOTAL = 522 + 369 + 225 + 81 + 1995 = 3192
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6.5.3 Related work

[177–183] discuss various approaches to detect QRS complex and its implementa-

tion on hardware. Among them [177,179,181] adopt PTA based QRS detection. A

median based thresholding is further used in [177] for PTA. Other reported QRS

detection techniques include combination of morphological filtering and wavelet

transform [178,180]. A slope based thresholding [182] and adaptive lifting scheme

is discussed in [183]. The comparison of QRS detection methodology adopted

in this thesis with aforementioned literature is sin Table 6.9. It should be noted

that apart from [181], none of the architectures report reconfigurability, whihown

ch limits the utility of these algorithms to QRS detection only. However, [181]

allows patient-specific multi-parameter monitoring in blood pressure, heart rate

and ECG.

The SAC architecture supports on-the-fly reconfigurablity thus allowing vari-

ous BSN signal processing algorithm realizations and reports notably higher cell

utilization as compared to [180,184]. However, when compared with system sup-

porting reconfigurability [181] it uses≈ 4× less logic cells [181]. The proposed ar-

chitecture reports the highest operating frequency of 46.9 MHz (1.3-2.3× higher)

and power consumption of 568µW/MHz including the memory overheads much

lower than [183]. This is because, the architecture is active for a small proportion

of task and remains idle otherwise. Therefore, the overall power consumption

comes down due to the dominance of static power throughout the operation. The

power consumption reported in [181] does not include the memory overheads.
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6.6 Circuit Implementation

The circuit level implementation of the SAC architecture is attempted in Virtuoso c©

for energy estimation of the platform. This is done by importing the structural

VHDL code of the architecture (including the memories and state machine) in

Virtuoso c©. In addition to energy, an accurate estimate of gates of the system, con-

sisting of SAC architecture, state machine, memory interfaces and configurable

logic, is obtained from the structural code which was not achievable in the FPGA

implementation attempted earlier because of the code optimizations and auto-

matic selection of logic cells by the compiler.

Table 6.10: Basic gates characterized in terms of delay, power and energy at three
different (1.8V, 0.7V and 0.5V) VDD

Gate thl(in ps) tlh(in ps) Power Energy
VDD = 1.8V

Inverter 12.185 15.573 71.9p 431.4f
Nand2 15.69 14.71 153.4p 1.24p
And2 37.247 44.307 195.6p 1.6p
Or2 58.53 53.88 330.6p 2.536p
Xor2 119.01 57.44 554p 4.452p
Nand3 17.888 14.685 531.2p 4.249p
And3 68.568 112.84 628.5p 5.081p
DFF 389.024 593.684 6.368u 210.1n

VDD = 0.7V
Inverter 42.095 130.88 50.05n 200.2p
Nand2 99.4 115.279 14.96n 134.4p
And2 279.783 366.12 14.96n 134.5pp
Or2 507.353 346.74 14.94n 134.3p
Xor2 1008.76 467.75 14.96n 134.5p
Nand3 161.53 114.166 11.26n 135.1p
And3 526.554 985.88 11.27n 135.2p
DFF 18.597e6 3.110e3 164.2p 5.252p

VDD = 0.5V
Inverter 178.5 1292.2 6.012p 72.15f
Nand2 671.2 1138.9 3.105p 37.26f
And2 2501.4 2853.6 6.912p 82.95f
Or2 4488.5 2681.9 15.11p 181.3f
Xor2 8338.7 3802.8 14.42p 173.1f
Nand3 1404.1 1123.14 1.843p 22.12f
And3 4529.85 8065.8 11.82p 141.8f
DFF 56.39e6 7.42e3 45.85p 1.467p
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The structural VHDL code consists of certain basic gates whereas other gates/blocks

are derived from these gates. The basic gates used in the SAC architecture are de-

signed in CMOS logic using 0.18µm UMC technology and are characterized for

delay, power and energy at three different VDD voltages presented in Table 6.10.

It can be seen that the delay increases as VDD decreases causing an increase in

power and energy dissipation. However, further scaling down the VDD voltage

to the near threshold regime causes the energy to decrease because decrease in

supply voltage supersedes the effect of increased delay.

The SAC architecture is demonstrated to emulate functions listed in Table 6.11

using the 18-b control word. The power consumed by the architecture while em-

ulating various functions is also provided in the table at the operating voltage

and frequency of 0.5V and 1MHz, respectively. The SAC architecture undergoes

many states starting from getting configured to computing the emulated function

and finally storing the result in memory. The state-wise execution is discussed in

subsection 6.4.3. The state-wise energy dissipation is provided in Fig. 6.12.

Table 6.11: The Control Word and Energy Consumption (0.5V, 1MHz)
of target functions.

Function Code Config Power (in µW)
9-tap FIR filter 00001 0111100 3.369
MAC2 00010 0010000 3.774
ADD2 00011 0010000 9.44
MAC3 00100 0010100 3.681
ADD3 00101 0010100 10.92
Multiply 00110 0000000 9.967
Square 00111 0000000 9.967
Shift Left 01000 0000000 5.732
Shift Right 01001 0000000 5.732
3×3 Convolution 01010 0010100 8.846

The configuration phase includes reset, datapath structuring and data exchange

between architecture and data memory. Furthermore, in case of on-the-fly recon-

figurability, the configuration phase also includes the state restoring state. From

the energy breakup it is evident that the configuration phase is the major energy

consumer. This is because it programmes the architecture by activating various

components involved in the process such as datapath multiplexers, circular mem-
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Figure 6.12: The state-wise energy dissipation for target functions.

ory etc. Furthermore, it can be observed that windowing functions consume more

configuration energy as compared to the non-windowing functions. This is be-

cause in case of windowing functions more number of data is written into circu-

lar memory. The number of active components on the datapath contributes to the

configuration as well as the computation energy. Greater number of active RUs

result in increased switching activity in the CU leading to increased computation

energy.

Table 6.12: The cycle counts of target functions.

Cycle Count s(Fixed#+ WRITE_READ+STOP_COMPUTE)
Function Single Function Mode On-the-fly Reconfiguration Mode

FIR, Convolution 22+64+0 158
MAC2, ADD2 22+2+1 97
MAC3, ADD3 22+3+1 98

Multiply, Sqaure,
ShiftL, ShiftR 22+1+1 96

# Fixed = Reset (1) + Configure (12) + Compute (8) + Store (1)
On-the-fly Reconfiguration adds another 72 cycles to cycle count.

The function wise cycle profile is provided in Table 6.12. The architecture takes

25-159 cycles based on implemented function. The range of the cycle count ac-

counts for the different data requirements of the target functions. In case of win-

dowing functions, entire circular memory is written with data in WRITE_READ

(64 cycles) whereas variable number of data is written for non-windowing func-

tions. The cycles consumed while writing data into the circular memory is pro-

vided under the WRITE_READ head in the table. Every function undergoes RE-

SET(1 cycle), CONFIGURE (12 cycles), COMPUTE (8 cycles) and COMPUTE_DONE

(1 cycle) states when mapped on the architecture, therefore the combined cycles

of these states are provided as fixed cycles in Table 6.12. Additionally, on-the-fly
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reconfiguration mode adds another 72 cycles to the cycle count on account of the

RESTORE state.

The PTA based QRS detection application is mapped on the SAC architecture,

wherein the architecture configures itself as Band Pass Filter (BPF), differentiator,

squaring circuit and moving average circuit on-the-fly. The gates accounting for

computational logic (RU + CU), memory interface, configuration and reconfigu-

ration are presented in Table 6.13. The datapath multiplexers are grouped in the

configuration head whereas the state machine gate count enabling on-the-fly re-

configuration is included under reconfiguration head. The pie chart in Fig. 6.13

represents the percentage breakup of major components of the architecture and

its supporting logic. The computational logic amounts for 16% of the total gate

count and the remaining 84% accounts for the supporting logic among which the

reconfiguration state machine contributes 61% of gates. The increased share of

reconfiguration logic is due to varied write and read address logic resulting from

the varied memory interpretation mechanisms arising out of target functions.

Table 6.13: Gate count breakup of the architecture along with its interfaces and
supporting state machine.

Component # of Gates
9*RU + CU 3192
Memory 4032
Configuration 432
Reconfiguration 12018

Total = 19694

Figure 6.13: Percentage gate breakup of major components of the architecture.
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The SAC architecture consumes 4.19 nJ when operated at 0.5V and 1MHz while

realizing PTA based QRS detection in which it gets reconfigured four times. The

percentage energy breakup averaged over four reconfigurations is provided in pie

chart of Fig. 6.14. The configuration phase emerged as the major energy contrib-

utor because of the memory hits caused during data exchanges between memory

and architecture. The compute energy accounts for the energy consumed during

partial product generation and accumulation.

Figure 6.14: Percentage energy breakup of the architecture averaged over four
reconfigurations.

Literature dedicated to biomedical application processor includes [21, 22, 77]

and each of them use a different hardware architecture to realize the ECG process-

ing application. A dedicated ASIC is used to implement ECG processor based on

PTA in [21] whereas [77] uses a low power general purpose processor, CoolFlux

BSP for detecting the QRS complex based on continuous wavelet transform (CWT).

A multiple hardware accelerators approach is employed in [22] wherein the low

power microprocessor offloads computationally intensive tasks on the accelera-

tors. The accelerators are chosen in such a way that a combination of operations

performed by them spans majority of the biomedical signal processing applica-

tions. All the three architectures achieve low energy results owing to near/sub

threshold operation and multiple power domains. Among them, [22] and [21]

reports energy per sample in nJ range where [77] reports dissipation in µJ range

as well as has the highest gate count owing to the general instruction set archi-

tecture of CoolFlux BSP. The dedicated ASIC implementation in [21] reports the
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lowest gate count among three at the cost of flexibility. However, the SAC ar-

chitecture, because of it ability to be reconfigured on-the-fly, offers a single plat-

form serving a multitude of functions encountered in the ECG application and

thus reports the lowest gate count among [21, 22, 77]. Additionally, it provides a

flexible platform allowing algorithm improvements and optimization due to its

coarse grained structure. The energy per sample reported is comparable to [22]

because of near-threshold operation and supports data rates upto 1 MHz. Further

reduction in energy can be achieved by defining different power domains in the

architecture wherein the computation section of the architecture can be powered

down during configuration phase and vice versa. However, these schemes are not

attempted in this thesis.

Table 6.14: Comparison with state-of-the-art.

Process Technology 180nm CMOS full custom
Logic 19694

Voltage 0.5V
Energy/Cycle/sample 4.19fJ

Comparison with State-of-the-art
[22] [77] [21] This Work

Application EEG, ECG ECG ECG ECG

Processor Core H/W
accelerator

CoolFlux
BSP

Custom
ECG µP

Configurable
accelerator

Technology (in nm) 130 90 45 180
V (in V),f (in MHz) 0.7,- 0.4,1 0.34,0.6 0.5,1

Energy/sample (in J) 37.6n,
53.05n 47µ 312n 4.19n

Gates (in k) 81.3 195 37 19.6

6.7 Conclusion

The SAC architecture is coupled with the on-the-fly reconfigurability in this chap-

ter. This was explored due to the function-chain like structure of biomedical signal

processing applications. The SAC architecture could support on-the-fly reconfig-

urability because it was demonstrated to emulate individual functions in previous

chapter at performance sufficiently large for reconfiguration while maintaining

pace with the input datarates of biomedical signal processing applications. Fur-
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thermore, on-the-fly reconfigurability is incorporated with the architecture while

keeping its interfaces unchanged by introducing a memory management method-

ology. The results for functions appearing in the midst of the function-chain are

stored inside the memory following this methodology demonstrating adherence

to the light-weight nature of the architecture. The state machine controlling the

execution of functions in the on-the-fly reconfigurable manner contains configu-

ration, restore, compute, store states. The status of the function is captured and

later restored in the restore state beneficial particularly in windowing functions.

A modified QRS detection algorithm is mapped on the architecture realized on

FPGA for proof-of-concept. Additionally, the architecture is characterized for en-

ergy, gate count and cycle count in the circuit level implementation. The archi-

tecture is compared on the basis of gate count and energy with other hardware

implementations realizing QRS detection. The architecture offers comparable en-

ergy and ≈ 10 times reduced gate count in comparison to other literature.
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CHAPTER 7

Conclusion and Future Work

A light-weight and reconfigurable architecture is developed in this thesis target-

ing the biomedical signal processing application domain. The fundamental oper-

ation of the developed architecture is a shift-accumulation which results in a low

gate count or light-weight platform primarily because of elimination of multipli-

ers. The architecture has the capability to perform various digital signal process-

ing functions by means of configurable datapath. Additionally, the architecture

offers flexibility (coarse-grained) and various topologies for realizing functions

and applications unaccounted for during design time. The mapping methodolo-

gies for target functions are developed considering optimized resource and cycle

utilization thereby complying to the light-weight nature of the architecture. Due

to the innate low performance nature of biosignal datarates, the on-the-fly recon-

figurability aspect strikes an optimal balance between energy and throughput.

The hardware realization of the architecture with various target functions mapped

confirms functional integrity. As a proof of concept, the architecture is realized

on the Field Programmable Gate Array (FPGA) with energy and cycle quantifi-

cations in the circuit level simulations. The architecture is demonstrated with

widely used biomedical application, QRS Detection in ECG signal, utilizing the

on-the-fly reconfigurability feature. In the process of developing the configurable

platform, several supporting interfaces are also implemented. The architecture is

compared on the basis of gate count and energy with other hardware implemen-

tations realizing QRS detection. The architecture offers comparable energy and

≈ 10 times reduced gate count in comparison with other literature. Furthermore,

additional topology of multiple 9-FU SAC units connected together is analyzed
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and demonstrated by mapping 8×8 DCT. These units perform individual compu-

tations and exchanges data among each other using a control unit. Additionally,

the control unit can selectively power down/up a SAC unit once its computations

finishes/commences irrespective of state of other units.

7.1 Summary of Contributions

This thesis focuses on low-gate count reconfigurable architectures development

with efficient mapping methodologies for biomedical signal processing, targeting

ambulatory medical monitoring as the end application. Details of the contribu-

tions are summarized below.

Architecture development

• The developed SAC architecture realizes multiply-accumulate, the funda-

mental operation in majority of biomedical signal processing functions, by

serial computation through the process of shift-accumulation. The config-

urable datapath coupled with the multiplier-less and serial implementation

results in a light-weight configurable architecture having low area cost and

utility across applications specifically in domains where high performance

is not a pre-requisite.

• The thirty-six functional unit (FU) of the developed architecture has simplis-

tic design and small footprint as compared to other coarse-grained FUs. The

FUs are connected in a systolic array structure through configurable data-

path that has the ability to disconnect/bypass the unused FUs leading to a

hardware-optimized implementation.

• The datapath enables realizing multiple topologies on the architecture for

easy emulation of varied functions/algorithms. The topologies also support

simultaneous realization of multiple functions by exploiting parallelization

in an algorithm thereby increasing throughput.

• The architecture exhibits hardware configuration by means of a control word

and does not explicitly require a dedicated compiler/scheduler/synchronizer.
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• A light weight unified data memory is proposed with structure adaptable to

the varied requirements of target functions/algorithms. The circular mem-

ory architecture provides an added advantage in case of 2-D DWT and 2-D

DCT wherein the data storage technique results into simplistic data fetching.

Mapping Methodologies

• The mapping methodologies were developed with due consideration to ex-

ploiting the regularity of target algorithms, clock-efficient execution, reduced

memory accesses through storage of intermediate results within architec-

ture, which collectively resulted in an hardware-efficient realization of target

functions/algorithms.

• Elimination of redundant computations reduced the associated computa-

tional cost leading to a cycle and energy-efficient realization.

• The target algorithms were mapped using small state machines that force

the necessary internally stored data on the FUs which ensures reduced stalling

of the architecture and further improves the cycle count of computations.

• The feature of storing intermediate data within the architecture provides

easy access to this data for subsequent operations.

• The target DSP functions are mapped on the architecture by means of a con-

trol word that acts as function identifier, defines datapath and restructure

the memory peripherals. The fields of control word can be configured in-

dependently which gives rise to numerous architecture topologies and thus

enables hardware efficient realization of target functions

On-the-fly Reconfigurability

• On-the-fly reconfiguration favours concatenated algorithm and ensures in-

creased usage of the hardware but at the cost of reconfiguration overhead.

• The scaled SAC architecture with nine FUs (9-FU SAC) is demonstrated to

exhibit on-the-fly reconfiguration by means of a state machine.

168



• Context switching is attained by sectioning the circular memory which sup-

ports reconfiguration upto 7 times in its present structure. This approach

utilized the available memory efficiently resulting in a cycle and area effi-

cient implementation.

• The biomedical application of QRS detection, is demonstrated using the on-

the-fly reconfiguration feature.

• Furthermore, the circuit level implementation of the architecture is attempted

to estimate the energy of the target QRS detection application. The custom

library cells are analyzed at different voltage levels to examine the variation

of energy with voltage scaling. The architecture is compared on the basis of

gate count and energy with other hardware implementations realizing QRS

detection.

7.2 Modularity of the SAC Architecture

The (3×3) SAC architecture with reconfigurability feature targets functions that

appear predominantly in digital/biomedical signal processing applications but

are not sufficient to emulate the entire application on the architecture. Addition-

ally, the span of target applications gets limited as major functions performing

vital tasks like feature extraction are not included in the list of target functions.

These left out functions are generally computation intensive and include (but are

not limited to) CORDIC, DCT/DFT, FFT etc. The (3×3) SAC architecture has the

capability to emulate these functions but may require multiple stages of configu-

ration while doing so. Two mapping schemes are presented in Appendix C. The

mapping scheme for DCT takes 64×4 cycles to compute intermediate matrix and

additional 80 cycles for DCT results amounting to 336 cycles per 8×8 image block.

The cycle efficient realization is obtained at the cost of 4× increase in hardware as

compared to single (3×3) SAC unit emulation. Nevertheless, the simplified con-

trol structure developed for the scheme along with the activation/deactivation of

various components makes it easier to comprehend. Mapping methodologies for
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other computation functions such as CORDIC, DFT, FFT can be developed simi-

larly.

7.3 Future Work

This thesis focussed on the signal processing architecture for the biomedical appli-

cations. However, clearly there are many interesting studies that can be pursued

further. Some of the directions for future work are mentioned below.

Approximate Computations

Approximate computing has emerged as a paradigm for enabling energy efficent

hardware software implementations by exploiting the inherent resilience of the

applications to impreciseness in their underlying computations. This effectively

leads to trading off accuracy for better performance and energy efficiency. In re-

cent years, this has turned out to be an attractive approach for many resource-

frugal applications. The biomedical signal processing can benefit from the energy

efficiency ensured by approximate computing, but its applicability in the said do-

main is yet to be explored. In hardware, the techniques of simplifying/modifying

the design at various levels of abstraction, dynamically reducing the precision of

the computations etc constitute the recent trend.

Multiple Power Domains

The SAC architecture adopts hardware optimized approach through bypassing

unused FUs coupled with low overall gate count and leverage energy benefits as a

spinoff. However, this leads to little gain in the energy savings. Dedicated power

domains have been proposed in literature [77, 100] yielding many folds energy

advantages by means of operating different components at different supply volt-

ages. A control scheme can be developed for the SAC architecture at system level

which applies multiple power domains to various components currently working

on the same supply voltage.

CORDIC Architectures

The radix-2 CORDIC architecture is emulated in this thesis because of the simple

decision scheme it has for the rotation direction determination. However, there
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exists higher radix CORDIC algorithms reported for increased throughput and

resolution along with reduced computation time. Novel methodologies can be

developed to express the complex decision making and shifting logic in a light

weight and energy aware manner.
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tem for QRS Complex Detection based on Integer Wavelet Transform,” Mea-

surement Science Review, vol. 11, no. 4, pp. 131–138, September 2011.

[181] H. Alemzadeh, Z. Jin, Z. Kalbarczyk, and R. K. Iyer, “An Embedded Recon-

figurable Architecture for Patient-Specific Multi-Paramater Medical Moni-

toring,” in Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC) Digest of Technical Papers, pp. 1896–1900, August

2011.

[182] H. K. Chatterjee, R. Gupta, J. N. Bera, and M. Mitra, “An FPGA implemen-

tation of real-time QRS detection,” in International Conference on Computer

and Communication Technology (ICCCT), pp. 274–279, September 2011.

[183] Y. Li, H. Yu, L. Jiang, L. Ma, and Z. Ji, “Adaptive Lifting Scheme for ECG

QRS Complexes Detection and its FPGA Implementation,” in International

Conference on Biomedical Engineering and Informatics, vol. 2, pp. 721–724, Oc-

tober 2010.

[184] S. Roy Chowdhury, “Field Programmable Gate Array based Fuzzy Neural

Signal Processing System for differential diagnosis of QRS Complex Tachy-

cardia and Tachyarrhythmia in noisy ECG Signals,” Journal of medical sys-

tems, vol. 36, no. 2, pp. 765–75, July 2010.

[185] H. Zairi, M. Kedir-Talha, S. Benouar, and A. Ait-Amer, “Intelligent System

for Detecting Cardiac Arrhythmia on FPGA,” in International Conference on

Information and Communication Systems (ICICS), pp. 1–5, April 2014.

[186] P. P. Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 version.

John Wiley & Sons, 2011.

[187] H. J. Wellens, F. W. Bär, E. J. Vanagt, and P. Brugada, “Medical Treatment

of Ventricular Tachycardia: Considerations in the Selection of Patients for

194



Surgical Treatment,” The American Journal of Cardiology, vol. 49, no. 1, pp. 186

– 193, January 1982.

195



CHAPTER A

VGA and UART Controllers basics

A.1 VGA Interface

Video Graphics Array (VGA) is a popular display standard developed by IBM in

the year 1987, for controlling analog monitors. A VGA connector is a three-row

15-pin connector and is commercially called DE15 port. The 15-pin VGA connec-

tor can be found on many video cards, computer monitors, and high definition

television sets. On laptop computers or other small devices, a mini-VGA port is

sometimes used in place of the full-sized VGA connector. VGA connectors and

cables carry component RGBHV (red, green, blue, horizontal sync, vertical sync)

video signals. This interface is commonly available on most of the FPGA develop-

ment boards. The computer controls this port by driving appropriate signals on

the pins of the port by means of device driver to display image/video according

to the target application. These device drivers are not inherently supported by

the FPGA boards. Hence, controllers are required to be designed for these ports

which govern their functionality. The controllers drive the appropriate signals to

the port pins based on the standards defined for the port, VGA standard in this

case. The functional description of the controller is written in VHDL language

and is provided to the Xilinx Toolset which maps it to the FPGA chip of the de-

velopment board.

196



A.1.1 Basic operation of a Display Panel:

The electron gun of the display unit or the monitor generates a focused electron

beam which hits the screen showing pixels of an image. The monitor’s internal

oscillators and amplifiers generate sawtooth waveforms to control the traversal of

electron beam. The electron beam traverses (i.e. scans) the screen systematically

in a fixed pattern, from left to right and from top to bottom. For example, the

electron beam moves from the left edge to the right edge as the voltage applied to

the horizontal deflection coil of the monitor gradually increases. After reaching

the right edge, the beam returns rapidly to the left edge i.e. retraces when the

voltage changes to 0. The generation of the sawtooth waveform is controlled by

two external synchronization signals, h_sync and v_sync which are digital signals

in nature. The relationship between the h_sync signal and the horizontal sawtooth

is shown in Fig. A.1. The on and off period of the h_sync signal correspond to the

rising and falling ramp of the sawtooth waveform.

Figure A.1: Timing diagram of a horizontal scan.
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Timing of VGA controller

The port requires only 5 of 15 pins for enabling the display unit while the remain-

ing pins are either reserved or driven to ground or supply (as shown in Fig. A.2).

The usable pins are - Red (analog), Green (analog), Blue (analog), h_sync (digital)

and v_sync (digital). The Red, Green and Blue are the three color component of the

pixel data to be displayed while the h_sync and v_sync are the synchronization

signals. The state of the synchronization signals is dependent on the resolution

mode of the display. The VGA standard supports a wide range of resolution for-

mats. The resolution format specifies the attribute parameters which defines the

timing of the synchronization signals. The nine attribute parameters which gov-

ern the active period of the two synchronization signals (h_sync and v_sync) are

pixel clock frequency, horizontal active, horizontal front porch, horizontal back porch, hor-

izontal blank, vertical active, vertical front porch, vertical back porch, and vertical blank.

Figure A.2: (a) Pin diagram of VGA connector (DE15 port). (b) VGA cable

The VGA mode employed in the thesis is 640-by-480 (horizontal-by-vertical)

resolution with a refresh rate of 60 Hz, represented as “640×480@60Hz” in gen-

eral. This mode has a frame of 800-by-524 pixels refreshed at 60 Hz, which ac-

counts to the pixel clock frequency of 800×524× 60 = 25.152 MHz. The remaining

eight timing parameters collectively generate the two synchronization signals and

their duration is specified in Table A.1 [186]. The h_sync signal specifies the time

required to traverse (scan) a row and the v_sync signal specifies the time required
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to traverse (scan) all columns of the screen. A detailed timing diagram of one

horizontal scan is shown in Fig. A.1. The screen of the monitor usually includes

a small black border (shown in Fig. A.1). The inner rectangle forms the visible

portion. A period of the h_sync signal contains 800 pixels and can be divided into

four regions:

• Display or horizontal active: It is the region of the display where the pixels

are actually displayed on the screen.

• Retrace or blank phase: It is the region of the display in which the electron

beams return to the left edge. The video signal should be disabled or kept

black.

• Front porch: It is the region of the display that forms the right border of the

display region. The video signal is disabled.

• Back porch: It is the region of the display that forms the left border of the

display region. The video signal is disabled.

Table A.1: VGA Resolution Timing Parameters.

Horizontal Sync Vertical Sync
Name Duration (in pixels) Name Duration (in pixels)

Video Active 640 Video Active 480
Front porch 16 Front porch 11
Blank Phase 96 Blank Phase 2
Back Porch 48 Back Porch 31

Total 800 Total 524

A.2 RS-232 Communication Interface

The visual perception alone is highly subjective and is regarded an insufficient

metric to benchmark results. For objective analysis of the result, the output data

must be compared with the ideal counterparts obtained from MATLAB and de-

viation must be quantified. A FPGA to computer communication interface aids
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providing/obtaining data to/from FPGAs. The interface also serves the debug-

ging purpose as data can be easily comprehended. The RS-232 communication

interface is adopted in this thesis for this purpose.

RS-232 port and its controller

The development board contains the 9-pin serial connector, commercially known

as RS-232 serial port. The PC controls this port by driving appropriate signals on

the pins of the port with the help of device driver to transmit as well as receive

data serially according to the application requirements. These device drivers are

not inherently supported by the FPGA boards. Hence, controllers are required to

be designed for these ports which govern their functioning. The controllers drive

the appropriate signals to port pins based on the RS-232 standard. The 2 pins

,tx and rx, are used in this thesis for transmission and reception of data whereas

the remaining pins are dedicated to supply, ground and optional hardware flow

control (as shown in Fig. A.3).

Figure A.3: (a) Pin diagram of RS-232 port. (b) RS-232 cable.

RS -232 Standard

RS-232 standard specifies the electrical, mechanical, functional and procedural

characteristics of two data communication equipment communicating using Uni-

versal Asynchronous Receiver and Transmitter (UART) circuit. UART is a circuit

that sends parallel data through a serial line. This interface uses an asynchronous

protocol which means that no clock signal is transmitted along the data. Hence,
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certain parameters need to be set before communication. RS-232 standard does it

in following way:

• Both sub-systems agree in advance on the communication parameters (speed,

format). This is done manually before communication starts.

• The transmitter sends idle (= ‘1’) as long as the line is idle.

• The transmitter sends start (= ‘0’) before each byte transmitted signaling the

receiver that a byte is sent on the communication line.

• The 8 data bits of the byte are sent in serial manner.

• The transmitter sends stop (= ‘1’) after each byte.

Figure A.4: State of serial transmission line of RS-232 port when 0x55 is sent as
data.

For instance, a byte value 0x55 needs to be transmitted from FPGA to PC. The

tx (or rx when data are received) line of UART behaves as shown in Fig. A.4.

Multiple Baud rate (specified in bits per second or bps) options available for this

communication viz. 9600 bps, 19200 bps, 115200 bps etc. For a standard image

of size “1280×720” where each pixel is represented by 8 bits, the total number

of bits are 7.3728 Mbit (1280×720×8). According to RS-232 protocol, every byte

has an overhead of 2 bits (1 start + 1 stop) resulting total number of bits to 9.216

Mbit. A Baud Rate of 115200 bps imply transmission of 115200 bits in one sec,

hence “1280×720” image require 80 sec (= 9.216 M / 115200) to get transferred

from FPGA to computer. The time required by the UART interface with baud rate

115200 bps to transfer image of different sizes is shown in Table A.2.
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Table A.2: Time required by UART to transfer image of different sizes

Image Size (each pixel 8-bit wide) Time for transfer using RS-232
8×8 5.56 ms

16×16 22.22 ms
128×128 1.42 sec
256×256 5.69 sec
720×480 30 sec

1280×720 80 sec
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CHAPTER B

ECG Concepts

B.1 The ElectroCardioGram (ECG)

An ECG is the recording (gram) of the electrical activity (electro) generated by the

cells of heart (cardio) that reaches the body surface. It is this electrical activity that

initiates the heart’s muscular contraction (depolarization) leading to pumping of

blood to the body. A brief description of the cardiac cycle is presented with the

intention of gaining a better insight into what does an ECG waveform represent.

The impulses generated by the cells responsible for pacemaking and conduction

actions create a rhythmic repetition of events called the cardiac cycles. These electri-

cal events further initiates the mechanical events that triggers the cardiac muscle

cells (myocardial cells) causing the pumping action of heart. The cardiac muscle

cells have specialized contractile proteins which slide over each other when actu-

ated by the electrical activity causing depolarization and repolarization (recovery)

phases. The depolarization (and repolarization) waves spread through all the my-

ocardial cells resulting in a potential large enough to be reflected on body surface.

The process of depolarization produces a high frequency positive deflection on

the ECG whereas repolarization generates an oppositely directed low frequency

negative waveform.

A single repolarized myocardial cell undergoing depolarization and returning

to recovery state is shown in Figure B.1 representing the cardiac cycle. The as-

sociated electrical activity is shown by the potential variation and representative

ECG. The electrical activity of a single cell or a small group of cells is not produce

enough voltage to be recorded on the body surface and requires a large number
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Figure B.1: Depolarization and repolarization of single myocardial cell during the
cardiac cycle along with potential variation and representative ECG.

of excited atrial as well as ventricular cells for sufficiently large potential. The

myocardial cells itself lacks the ability to generate and rapid propagate electrical

impulses and this purpose is served by specialized cells dedicated for pacemaking

and conduction system. These cells are arranged in nodes, bundles and bundle

branches strategically located through the heart for spontaneous generation and

controlled spread of electrical conduction. The sinoatrial (SA) or sinus node is the

predominant cardiac pacemaker is located high in the right atrium. The atrioven-

tricular (AV) node located low in the right atrium conducts impulses from atria to

the ventricles, these chambers are otherwise separated by non-conducting struc-

tures. The impulses in the ventricles are further spread using right and left bundle

branches of the bundle of His and Purkinje cells.

B.1.1 Standard 12-lead ECG

The standard 12-lead ECG provides 12 viewpoints for recording cardiac electrical

activity. Each lead contains a positive and negative pole and records the poten-

tial difference between them. Six of the leads provide frontal plane views and the

remaining six provide the transverse plane views of the body.
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Einthoven placed recording electrodes on the right and left arms and left leg

resulting in first ever measurement of what he called Elektrokardiogramme (EKG)

using the string galvanometer in 1901. He introduces three leads (I, II, and III)

measurement system shown in Fig. B.2, with each lead consisting of a pair of

electrodes serving as positive and negative pole. The three ECG leads (I, II, and

III) form an equilateral triangle known as the Einthoven triangle.

Figure B.2: Einthoven’s triangle and its position in relation to heart’s schematic.

The 60◦ angles between the leads leave wide gap between the three views

they provide. By the efforts of Wilson et al. these gaps were filled without any

additional body surface electrode by creating a central terminal. The leads using

the central terminal as their negative terminals are termed as V leads. The central

terminal is created by connecting all the three limb electrodes together and led to

decreased amplitude in the positive leads because of partial signal cancellation.

Goldberger et al. presented the concept of augmented lead, wherein the limb at

which the positive electrode is connected in excluded while creating the central

terminal. Hence, the positive lead signal amplitude was increased or augmented

and such an augmented V lead is termed as aV lead. The augmented leads aVR,

aVF and aVL are shown in Fig. B.3. These leads fill the gaps between leads I

and II, II and III, and III and I, respectively. Modern digital electrocardiographs

record leads I and II only and calculated the remaining leads (III and aV) using

Einthoven law and analytical formulas. The six leads of the frontal plane are also

referred to as the hexaxial leads system.

The remaining six leads introduced by Wilson belongs to the transverse plane
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Figure B.3: Frontal plane limb leads.

of the body. The positive electrodes belonging to these leads are positioned at the

anterior and left lateral chest using the bony landmarks of the thorax as a guide.

The central terminal of the hexaxial system is used as the negative electrode for

these leads and therefore are V leads requiring no augmentation. Hence, they are

simply terms as leads V1 through V6 leads shown in Fig. B.4.

Figure B.4: Front view of the transverse leads and its position in relation to heart’s
schematic.

Analysing various ECG features serve as an important diagnostic tool indi-

cating the state of various parts involved in cardiac activity. Rate and regularity

are two primary features in the evaluation of cardiac rhythm. In a very broad

sense, all rhythms other than regular sinus rhythm (60 to 100 beats per minute)

are referred to as arrhythmias. The QRS complex is vital in identifying a number

of arrhythmias including electrolyte abnormalities (hyperkalemia and hypercal-

cemia), rhythm abnormalities (bradyarrhythmia and tachyarrhythmia), myocar-
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dial ischemia etc. as well as distinguishing between conditions of ventricular or

supraventricular origins. The latter is important as both conditions follow differ-

ent line of treatment [187].
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CHAPTER C

Mapping 8×8 DCT on 3×3 SAC Architecture

C.1 Mapping scheme for 8×8 DCT on (3×3) SAC ar-

chitecture

Consider mapping 8×8 DCT on (3×3) SAC architecture. The intermediate ma-

trix rows can be generated by letting the eight input data (corresponding to first

column of image) occupy eight RU sites, say RU #1-8 and apply DCT matrix coef-

ficient on the respective coefficients resulting in first element of first row of inter-

mediate matrix. The second element can be generated by replacing (flushing and

loading) the first image column by the second image column. Similarly remain-

ing elements of intermediate matrix can be generated. These elements needs to be

stored in a memory and applied to the architecture for subsequent computation

of DCT results. Additionally, loading image column takes 16 cycles, resulting in

128 (= 16×8) cycles and 64 (= 8 ×8) computation cycles for each intermediate row

calculation. Subsequently, every DCT result takes (16+8)×8 cycles to compute

every intermediate row and 80 computation cycles to compute 10 DCT results

amounting to a total cycle count of 848 (= (16+8)×8×4 + 80) per 8×8 block. Fur-

thermore, 8-deep 9-b wide register file is required to store intermediate matrix

elements. Apart from the strenuous cycle and memory needs, the architecture is

required to be stalled while one row of image is replacing the other row as well as

when intermediate row data is loaded into the circular data memory. Such details

are difficult to comprehend for a user and result in a complex synchronization

mechanisms and memory interpretation contrary to the simplified configuration
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Figure C.1: A conceptual diagram of four (3×3) SAC units connected together.

scheme of the architecture.

Alternatively, mapping scheme for computation intensive functions can be de-

veloped by deploying multiple (3×3) units of the SAC architecture. The modu-

lar nature of the architecture allows seamless data exchanges and expands the

horizon of target functions many folds. Such a scheme allows the user to realize

functions not considered for mapping during architecture development due to

multitude of possible topologies and coarse user control over units. Primarily, the

user controls ‘when’ and ‘where’ the data must flow among the units by means

of a state machine designated to activate/deactivate units in a time-controlled

manner. A conceptual diagram of four (3×3) SAC units connected side by side is

shown in Fig. C.1.

A mapping scheme for 8×8 DCT using four (3×3) SAC units is discussed now.

The RU-CU and associated data memory are embedded with the ability to be acti-

vated/deactivated individually by means of separate resets. The steps presented

below define the structure of state machine coordinating with the four SAC units

and is independent of the state machine internal to the architecture.

• Memories #1, 2 and 3 are activated. Memory #1 is loaded with image rows

1, 2 and 3. Memory #2 is loaded with image rows 4, 5 and 6. Memory #3 is
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loaded with image rows 7 and 8.

• RU-CU #1, 2 and 3 are activated and accepts data from corresponding mem-

ories. The result from all RU-CUs are generated at every 8th clock and are

accumulated using two adders. The accumulated result corresponds to a

row element of intermediate matrix. The accumulated results are stored in

memory #4.

• RU-CU #4 is activated and generates DCT results every 8th clock. The mem-

ory and RU-CU of remaining SAC units is deactivated.

• The sequence of steps is repeated for four times to generate the upper trian-

gular DCT matrix with 10 terms.
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